Science.gov

Sample records for adipogenic transcription factors

  1. Repressor transcription factor 7-like 1 promotes adipogenic competency in precursor cells.

    PubMed

    Cristancho, Ana G; Schupp, Michael; Lefterova, Martina I; Cao, Shengya; Cohen, Daniel M; Chen, Christopher S; Steger, David J; Lazar, Mitchell A

    2011-09-27

    The identification of factors that define adipocyte precursor potential has important implications for obesity. Preadipocytes are fibroblastoid cells committed to becoming round lipid-laden adipocytes. In vitro, this differentiation process is facilitated by confluency, followed by adipogenic stimuli. During adipogenesis, a large number of cytostructural genes are repressed before adipocyte gene induction. Here we report that the transcriptional repressor transcription factor 7-like 1 (TCF7L1) binds and directly regulates the expression of cell structure genes. Depletion of TCF7L1 inhibits differentiation, because TCF7L1 indirectly induces the adipogenic transcription factor peroxisome proliferator-activated receptor γ in a manner that can be replaced by inhibition of myosin II activity. TCF7L1 is induced by cell contact in adipogenic cell lines, and ectopic expression of TCF7L1 alleviates the confluency requirement for adipocytic differentiation of precursor cells. In contrast, TCF7L1 is not induced during confluency of non-adipogenic fibroblasts, and, remarkably, forced expression of TCF7L1 is sufficient to commit non-adipogenic fibroblasts to an adipogenic fate. These results establish TCF7L1 as a transcriptional hub coordinating cell-cell contact with the transcriptional repression required for adipogenic competency.

  2. Effects of dietary roughage levels on the expression of adipogenic transcription factors in Wagyu steers.

    PubMed

    Yamada, T; Kawakami, S-I; Nakanishi, N

    2009-12-01

    We hypothesized that dietary roughage level would alter the expression levels of adipogenic transcription factors in adipose tissue of Japanese black (Wagyu) steers. Steers were fed whole crop rice silage at three levels: (1) high-roughage feeding group, fed 8kg silage and 5kg concentrate (HR); (2) middle roughage feeding group, fed 5kg silage and 6kg concentrate (MR); and (3) low roughage feeding group, fed 2kg silage and 7kg concentrate (LR) from 22 to 30months of age. In subcutaneous adipose tissue, there were no significant differences in the expression of the adipogenic transcription factors and adipocyte size among feeding groups. In mesenteric adipose tissue, the expression of C/EBPα in the LR and MR groups was significantly higher than that in the HR group. Adipocyte size in the mesenteric adipose tissue of the LR group was significantly larger than that of the HR group. In intermuscular adipose tissue, the expression of C/EBPβ-LAP in the LR group was significantly higher than that in the HR group, and the expression of C/EBPβ-LIP in the LR and MR groups was significantly higher than that in the HR group. Adipocyte size in the intermuscular adipose tissue of the LR and MR groups was significantly smaller than that of the HR group. These results suggest that dietary roughage revel affects the adipose tissue depot-specific differences in C/EBP family expression pattern and adipocyte cellularity in Wagyu steers.

  3. Expression of adipogenic transcription factors in adipose tissue of fattening Wagyu and Holstein steers.

    PubMed

    Yamada, T; Kawakami, S-I; Nakanishi, N

    2009-01-01

    In this experiment, we studied the effects of breed differences on the protein expression of adipogenic transcription factors, the C/EBP family (C/EBPα, C/EBPβ-LAP, C/EBPβ-LIP and C/EBPδ) and PPARγ, in the adipose tissues of Japanese Black (Wagyu) and Holstein steers from various anatomical sites (subcutaneous, intermuscular, and mesenteric) at different fattening periods (19 and 24 months of age). The expression of C/EBPβ-LAP and C/EBPα in the mesenteric fat tissue of Wagyu at 19 months of age was significantly higher than that of Holstein. The expression of C/EBPδ in the subcutaneous, intermuscular and mesenteric fat tissue of Wagyu at 19 months of age was significantly higher than that of Holstein. The plasma insulin concentrations of Wagyu steers at 19 months of age tended to be higher than those of Holstein. No significant differences in the expression of the adipogenic transcription factors and plasma insulin concentration were observed between the breeds at 24 months of age. These results suggest the existence of breed difference on the expression of the C/EBP family between fattening Wagyu and Holstein steers at 19 months of age, whereas breed difference might have disappeared before 24 months of age.

  4. Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network.

    PubMed

    Gubelmann, Carine; Schwalie, Petra C; Raghav, Sunil K; Röder, Eva; Delessa, Tenagne; Kiehlmann, Elke; Waszak, Sebastian M; Corsinotti, Andrea; Udin, Gilles; Holcombe, Wiebke; Rudofsky, Gottfried; Trono, Didier; Wolfrum, Christian; Deplancke, Bart

    2014-08-27

    Adipose tissue is a key determinant of whole body metabolism and energy homeostasis. Unraveling the regulatory mechanisms underlying adipogenesis is therefore highly relevant from a biomedical perspective. Our current understanding of fat cell differentiation is centered on the transcriptional cascades driven by the C/EBP protein family and the master regulator PPARγ. To elucidate further components of the adipogenic gene regulatory network, we performed a large-scale transcription factor (TF) screen overexpressing 734 TFs in mouse pre-adipocytes and probed their effect on differentiation. We identified 22 novel pro-adipogenic TFs and characterized the top ranking TF, ZEB1, as being essential for adipogenesis both in vitro and in vivo. Moreover, its expression levels correlate with fat cell differentiation potential in humans. Genomic profiling further revealed that this TF directly targets and controls the expression of most early and late adipogenic regulators, identifying ZEB1 as a central transcriptional component of fat cell differentiation.

  5. Mouse Mesenchymal Progenitor Cells Expressing Adipogenic and Osteogenic Transcription Factors Suppress the Macrophage Inflammatory Response.

    PubMed

    Fernandez, Natalie; Renna, Heather; McHugh, Lauren; Mazolkova, Katie; Crugnola, William; Evans, Jodi F

    2017-01-01

    Mesenchymal progenitor cell characteristics that can identify progenitor populations with specific functions in immunity are actively being investigated. Progenitors from bone marrow and adipose tissue regulate the macrophage (MΦ) inflammatory response by promoting the switch from an inflammatory to an anti-inflammatory phenotype. Conversely, mesenchymal progenitors from the mouse aorta (mAo) support and contribute to the MΦ response under inflammatory conditions. We used cell lines with purported opposing immune-regulatory function, a bone marrow derived mesenchymal progenitor cell line (D1) and a mouse aorta derived mesenchymal progenitor cell line (mAo). Their interaction and regulation of the MΦ cell response to the inflammatory mediator, lipopolysaccharide (LPS), was examined by coculture. As expected, D1 cells suppressed NO, TNF-α, and IL-12p70 production but MΦ phagocytic activity remained unchanged. The mAo cells enhanced NO and TNF-α production in coculture and enhanced MΦ phagocytic activity. Using flow cytometry and PCR array, we then sought to identify sets of MSC-associated genes and markers that are expressed by these progenitor populations. We have determined that immune-supportive mesenchymal progenitors highly express chondrogenic and tenogenic transcription factors while immunosuppressive mesenchymal progenitors highly express adipogenic and osteogenic transcription factors. These data will be useful for the isolation, purification, and modification of mesenchymal progenitors to be used in the treatment of inflammatory diseases.

  6. Mouse Mesenchymal Progenitor Cells Expressing Adipogenic and Osteogenic Transcription Factors Suppress the Macrophage Inflammatory Response

    PubMed Central

    Fernandez, Natalie; Renna, Heather; McHugh, Lauren; Mazolkova, Katie; Crugnola, William

    2017-01-01

    Mesenchymal progenitor cell characteristics that can identify progenitor populations with specific functions in immunity are actively being investigated. Progenitors from bone marrow and adipose tissue regulate the macrophage (MΦ) inflammatory response by promoting the switch from an inflammatory to an anti-inflammatory phenotype. Conversely, mesenchymal progenitors from the mouse aorta (mAo) support and contribute to the MΦ response under inflammatory conditions. We used cell lines with purported opposing immune-regulatory function, a bone marrow derived mesenchymal progenitor cell line (D1) and a mouse aorta derived mesenchymal progenitor cell line (mAo). Their interaction and regulation of the MΦ cell response to the inflammatory mediator, lipopolysaccharide (LPS), was examined by coculture. As expected, D1 cells suppressed NO, TNF-α, and IL-12p70 production but MΦ phagocytic activity remained unchanged. The mAo cells enhanced NO and TNF-α production in coculture and enhanced MΦ phagocytic activity. Using flow cytometry and PCR array, we then sought to identify sets of MSC-associated genes and markers that are expressed by these progenitor populations. We have determined that immune-supportive mesenchymal progenitors highly express chondrogenic and tenogenic transcription factors while immunosuppressive mesenchymal progenitors highly express adipogenic and osteogenic transcription factors. These data will be useful for the isolation, purification, and modification of mesenchymal progenitors to be used in the treatment of inflammatory diseases. PMID:28191017

  7. Effects of fattening periods on the expression of adipogenic transcription factors in Wagyu beef cattle.

    PubMed

    Yamada, T; Kawakami, S-I; Nakanishi, N

    2007-06-01

    In this experiment, we studied the effects of fattening periods (at 19, 24, and 29 months of age) on the expression of the C/EBP family (C/EBPα, C/EBPβ, and C/EBPδ) and PPARγ protein levels by Western blot analysis from different fat depots (subcutaneous, intermuscular, and mesenteric fat tissue) of Japanese Black steers. The expressions of C/EBPβ-liver-enriched activator protein (LAP), which activates preadipocyte differentiation, in subcutaneous, intermuscular, and mesenteric fat tissue at 29 months of age were significantly lower than those at 19 months. On the other hand, the expressions of C/EBPβ-liver-enriched inhibitory protein (LIP), which represses preadipocyte differentiation, in subcutaneous and intermuscular fat tissue in 29 months of age were significantly higher than those at 19 months. The expressions of C/EBPα, which activates adipocyte terminal differentiation, in intermuscular fat tissue at 29 months of age were significantly higher than those at 19 months. No significant differences in the C/EBPδ and PPAR γ levels were observed in the fattening periods for any fat depots. These results suggest that adipogenic transcription factors, especially C/EBPβ and C/EBPα, play an important role in regulating adipogenesis during the fattening periods of Japanese Black cattle.

  8. Identification of the transcription factor ZEB1 as a central component of the adipogenic gene regulatory network

    PubMed Central

    Gubelmann, Carine; Schwalie, Petra C; Raghav, Sunil K; Röder, Eva; Delessa, Tenagne; Kiehlmann, Elke; Waszak, Sebastian M; Corsinotti, Andrea; Udin, Gilles; Holcombe, Wiebke; Rudofsky, Gottfried; Trono, Didier; Wolfrum, Christian; Deplancke, Bart

    2014-01-01

    Adipose tissue is a key determinant of whole body metabolism and energy homeostasis. Unraveling the regulatory mechanisms underlying adipogenesis is therefore highly relevant from a biomedical perspective. Our current understanding of fat cell differentiation is centered on the transcriptional cascades driven by the C/EBP protein family and the master regulator PPARγ. To elucidate further components of the adipogenic gene regulatory network, we performed a large-scale transcription factor (TF) screen overexpressing 734 TFs in mouse pre-adipocytes and probed their effect on differentiation. We identified 22 novel pro-adipogenic TFs and characterized the top ranking TF, ZEB1, as being essential for adipogenesis both in vitro and in vivo. Moreover, its expression levels correlate with fat cell differentiation potential in humans. Genomic profiling further revealed that this TF directly targets and controls the expression of most early and late adipogenic regulators, identifying ZEB1 as a central transcriptional component of fat cell differentiation. DOI: http://dx.doi.org/10.7554/eLife.03346.001 PMID:25163748

  9. Red yeast rice extracts suppress adipogenesis by down-regulating adipogenic transcription factors and gene expression in 3T3-L1 cells.

    PubMed

    Jeon, Taeil; Hwang, Seong Gu; Hirai, Shizuka; Matsui, Tohru; Yano, Hideo; Kawada, Teruo; Lim, Beoung Ou; Park, Dong Ki

    2004-11-12

    The effects of red yeast rice extracts (RE) on adipocyte differentiation of 3T3-L1 cells were studied. RE were extracted from embryonic rice fermented with red yeast (Monascus ruber). These extracts significantly decreased glycerol-3-phosphate dehydrogenase (GPDH) activity and lipid accumulation, a marker of adipogenesis, in a dose-dependent manner. Moreover, mRNA expression levels of both CCAAT/enhancer-binding protein (C/EBP) alpha and peroxisome proliferator-activated receptor (PPAR) gamma, the key adipogenic transcription factors, were markedly decreased by RE. RE also inhibited the expression of PPARgamma at protein levels. RE decreased significantly gene expression of adipocyte fatty acid binding protein (aP2) and leptin, which are adipogenic marker proteins and C/EBPalpha and PPARgamma target genes. These results suggest that the inhibitory effect of RE on adipocyte differentiation might be mediated through the down-regulated expression of adipogenic transcription factors and other specific genes.

  10. Adipogenic Differentiation of Thyroid Cancer Cells Through the Pax8-PPARγ Fusion Protein Is Regulated by Thyroid Transcription Factor 1 (TTF-1).

    PubMed

    Xu, Bin; O'Donnell, Michael; O'Donnell, Jeffrey; Yu, Jingcheng; Zhang, Yanxiao; Sartor, Maureen A; Koenig, Ronald J

    2016-09-09

    A subset of thyroid carcinomas contains a t(2;3)(q13;p25) chromosomal translocation that fuses paired box gene 8 (PAX8) with the peroxisome proliferator-activated receptor γ gene (PPARG), resulting in expression of a PAX8-PPARγ fusion protein, PPFP. We previously generated a transgenic mouse model of PPFP thyroid carcinoma and showed that feeding the PPARγ agonist pioglitazone greatly decreased the size of the primary tumor and prevented metastatic disease in vivo The antitumor effect correlates with the fact that pioglitazone turns PPFP into a strongly PPARγ-like molecule, resulting in trans-differentiation of the thyroid cancer cells into adipocyte-like cells that lose malignant character as they become more differentiated. To further study this process, we performed cell culture experiments with thyrocytes from the PPFP mouse thyroid cancers. Our data show that pioglitazone induced cellular lipid accumulation and the expression of adipocyte marker genes in the cultured cells, and shRNA knockdown of PPFP eliminated this pioglitazone effect. In addition, we found that PPFP and thyroid transcription factor 1 (TTF-1) physically interact, and that these transcription factors bind near each other on numerous target genes. TTF-1 knockdown and overexpression studies showed that TTF-1 inhibits PPFP target gene expression and impairs adipogenic trans-differentiation. Surprisingly, pioglitazone repressed TTF-1 expression in PPFP-expressing thyrocytes. Our data indicate that TTF-1 interacts with PPFP to inhibit the pro-adipogenic response to pioglitazone, and that the ability of pioglitazone to decrease TTF-1 expression contributes to its pro-adipogenic action.

  11. TRAIL (TNF-related apoptosis-inducing ligand) inhibits human adipocyte differentiation via caspase-mediated downregulation of adipogenic transcription factors

    PubMed Central

    Zoller, Verena; Funcke, Jan-Bernd; Keuper, Michaela; Abd El Hay, Muad; Debatin, Klaus-Michael; Wabitsch, Martin; Fischer-Posovszky, Pamela

    2016-01-01

    Tumor necrosis factor-α (TNFα) and other ligands of the TNF superfamily are potent regulators of adipose tissue metabolism and play a crucial role in the obesity-induced inflammation of adipose tissue. Adipose tissue expression levels of TRAIL (TNF-related apoptosis-inducing ligand) and its receptor were shown to be upregulated by overfeeding and decreased by fasting in mice. In the present study we aimed to elucidate the impact of TRAIL on adipogenesis. To this end, human Simpson-Golabi-Behmel syndrome (SGBS) preadipocytes as well as stromal-vascular cells isolated from human white adipose tissue were used as model systems. Human recombinant TRAIL inhibited adipogenic differentiation in a dose-dependent manner. It activated the cleavage of caspase-8 and -3, which in turn resulted in a downregulation of the key adipogenic transcription factors C/EBPα, C/EBPδ, and PPARγ. The effect was completely blocked by pharmacological or genetic inhibition of caspases. Taken together we discovered a so far unrecognized function of TRAIL in the regulation of adipogenesis. Targeting the TRAIL/TRAIL receptor system might provide a novel strategy to interfere with adipose tissue homeostasis. PMID:27735943

  12. Gelidium amansii extract ameliorates obesity by down-regulating adipogenic transcription factors in diet-induced obese mice

    PubMed Central

    Kang, Ji-Hye; Lee, Hyun-Ah; Kim, Hak-Ju

    2017-01-01

    BACKGROUND/OBJECTIVES In this study, we investigated whether Gelidium amansii extract (GAE) ameliorates obesity in diet-induced obese (DIO) mice. MATERIALS/METHODS The mice were maintained on a high-fat diet (HD) for 5 weeks to generate the DIO mouse model. And then mice fed HD plus 0.5% (GAE1), 1% (GAE2) or 2% (GAE3) for 8 weeks. RESULTS After the experimental period, GAE-supplemented groups were significantly lower than the HD group in body weight gain and liver weight. GAE supplemented groups were significantly lower than the HD group in both epididymal and mesenteric adipose tissue mass. The plasma leptin level was significantly higher in the HD group than in GAE-supplemented groups. The leptin level of HD+GAE3 group was significantly lower than that of the HD+conjugated linoleic acid (CLA) group. In contrast, plasma adiponectin level of the HD group was significantly lower than those of HD+GAE2 and HD+GAE3 groups. The expression levels of adipogenic proteins such as fatty acid synthase, sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor γ, and CCAAT/enhancer binding protein α in the GAE supplemented groups were significantly decreased than those in HD group, respectively. In addition, the expression levels of HD+GAE2 and HD+GAE3 groups are significantly decreased compared to those of HD+CLA group. On the contrary, the expression levels of hormone-sensitive lipase and phospho-AMP-activated protein kinase, proteins associated with lipolysis, were significantly increased in the GAE supplemented groups compared to those in the HD group. HD+GAE3 group showed the highest level among the GAE supplemented groups. CONCLUSIONS These results suggested that GAE supplementation stimulated the expressions of lipid metabolic factors and reduced weight gain in HD-fed C57BL/6J obese mice. PMID:28194261

  13. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells

    SciTech Connect

    Kakudo, Natsuko . E-mail: kakudon@takii.kmu.ac.jp; Shimotsuma, Ayuko; Kusumoto, Kenji

    2007-07-27

    Adipose-derived stem cells (ASCs) have demonstrated a capacity for differentiating into a variety of lineages, including bone, cartilage, or fat, depending on the inducing stimuli and specific growth and factors. It is acknowledged that fibroblast growth factor-2 (FGF-2) promotes chondrogenic and inhibits osteogenic differentiation of ASCs, but thorough investigations of its effects on adipogenic differentiation are lacking. In this study, we demonstrate at the cellular and molecular levels the effect of FGF-2 on adipogenic differentiation of ASCs, as induced by an adipogenic hormonal cocktail consisting of 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and indomethacin. FGF-2 significantly enhances the adipogenic differentiation of human ASCs. Furthermore, in cultures receiving FGF-2 before adipogenic induction, mRNA expression of peroxisome proliferator-activated receptor {gamma}2 (PPAR{gamma}2), a key transcription factor in adipogenesis, was upregulated. The results of FGF-2 supplementation suggest the potential applications of FGF-2 and ASCs in adipose tissue regeneration.

  14. Chemical and genetic blockade of HDACs enhances osteogenic differentiation of human adipose tissue-derived stem cells by oppositely affecting osteogenic and adipogenic transcription factors

    SciTech Connect

    Maroni, Paola; Brini, Anna Teresa; Arrigoni, Elena; Girolamo, Laura de; Niada, Stefania; Matteucci, Emanuela; Bendinelli, Paola; Desiderio, Maria Alfonsina

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Acetylation affected hASCs osteodifferentiation through Runx2-PPAR{gamma}. Black-Right-Pointing-Pointer HDACs knocking-down favoured the commitment effect of osteogenic medium. Black-Right-Pointing-Pointer HDACs silencing early activated Runx2 and ALP. Black-Right-Pointing-Pointer PPAR{gamma} reduction and calcium/collagen deposition occurred later. Black-Right-Pointing-Pointer Runx2/PPAR{gamma} target genes were modulated in line with HDACs role in osteo-commitment. -- Abstract: The human adipose-tissue derived stem/stromal cells (hASCs) are an interesting source for bone-tissue engineering applications. Our aim was to clarify in hASCs the role of acetylation in the control of Runt-related transcription factor 2 (Runx2) and Peroxisome proliferator activated receptor (PPAR) {gamma}. These key osteogenic and adipogenic transcription factors are oppositely involved in osteo-differentiation. The hASCs, committed or not towards bone lineage with osteoinductive medium, were exposed to HDACs chemical blockade with Trichostatin A (TSA) or were genetically silenced for HDACs. Alkaline phosphatase (ALP) and collagen/calcium deposition, considered as early and late osteogenic markers, were evaluated concomitantly as index of osteo-differentiation. TSA pretreatment, useful experimental protocol to analyse pan-HDAC-chemical inhibition, and switch to osteogenic medium induced early-osteoblast maturation gene Runx2, while transiently decreased PPAR{gamma} and scarcely affected late-differentiation markers. Time-dependent effects were observed after knocking-down of HDAC1 and 3: Runx2 and ALP underwent early activation, followed by late-osteogenic markers increase and by PPAR{gamma}/ALP activity diminutions mostly after HDAC3 silencing. HDAC1 and 3 genetic blockade increased and decreased Runx2 and PPAR{gamma} target genes, respectively. Noteworthy, HDACs knocking-down favoured the commitment effect of osteogenic medium. Our results reveal

  15. Phorbaketal A inhibits adipogenic differentiation through the suppression of PPARγ-mediated gene transcription by TAZ.

    PubMed

    Byun, Mi Ran; Lee, Cham Han; Hwang, Jun-Ha; Kim, A Rum; Moon, Sung Ah; Sung, Mi Kyung; Roh, Jung-Rae; Hwang, Eun Sook; Hong, Jeong-Ho

    2013-10-15

    Obesity causes several metabolic diseases, including diabetes. Adipogenic differentiation is an important event for fat formation in obesity. Natural compounds that inhibit adipogenic differentiation are frequently screened to develop therapeutic drugs for treating obesity. Here we investigated the effects of phorbaketal A, a natural marine compound, on adipogenic differentiation of mesenchymal stem cells. Phorbaketal A significantly inhibited adipogenic differentiation as indicated by less fat droplets and decreased expression of adipogenic marker genes. The expression of TAZ (transcriptional coactivator with PDZ-binding motif), an inhibitor of adipogenic differentiation, significantly increased during adipogenic differentiation in the presence of phorbaketal A. Phorbaketal A increased the interaction of TAZ and PPARγ to suppress PPARγ (peroxisome proliferator-activated receptor γ) target gene expression. TAZ-depleted cells showed higher adipogenic potential than that of control cells even in the presence of phorbaketal A. During cellular signaling induced by phorbaketal A, ERK (extracellular signal-regulated kinase) played an important role in adipogenic suppression; an inhibitor of ERK blocked phorbaketal A-induced adipogenic suppression. Thus, the results show that phorbaketal A inhibits adipocyte differentiation through TAZ.

  16. Basic fibroblast growth factor is pro-adipogenic in rat skeletal muscle progenitor clone, 2G11 cells.

    PubMed

    Nakano, Shin-ichi; Nakamura, Katsuyuki; Teramoto, Naomi; Yamanouchi, Keitaro; Nishihara, Masugi

    2016-01-01

    Intramuscular adipose tissue (IMAT) formation is a hallmark of marbling in cattle. IMAT is considered to originate from skeletal muscle progenitor cells with adipogenic potential. However, the mechanism involved in IMAT formation from these progenitor cells in vivo remains unclear. In the present study, among the growth factors tested, which were known to be expressed in skeletal muscle, we found only basic fibroblast growth factor (bFGF) has a pro-adipogenic effect on skeletal muscle derived adipogenic progenitor clone, 2G11 cells. Pre-exposure of 2G11 cells to bFGF did not affect initial gene expressions of CCAAT/enhancer-binding protein (C/EBP)β and C/EBPδ, while resulting in an enhancement of subsequent expressions of C/EBPα and proliferator-activated receptor gamma (PPARγ) during adipogenesis, indicating that bFGF is acting on the transcriptional regulation of C/EBPα and PPARγ. In addition, the effect of bFGF is mediated via two types of FGF receptor (FGFR) isoforms: FGFR1 and FGFR2 IIIc, and both receptors are prerequisite for bFGF to express its pro-adipogenic effect. These results suggest that bFGF plays an important role as a key trigger of IMAT formation in vivo.

  17. Myeloid Elf-1-like factor stimulates adipogenic differentiation through the induction of peroxisome proliferator-activated receptor γ expression in bone marrow.

    PubMed

    Baek, Kyunghwa; Cho, Je-Yoel; Hwang, Hyo Rin; Kwon, Arang; Lee, Hye-Lim; Park, Hyun-Jung; Qadir, Abdul S; Ryoo, Hyun-Mo; Woo, Kyung Mi; Baek, Jeong-Hwa

    2012-11-01

    Myeloid Elf-1 like factor (MEF) is one of the Ets transcription factors known to regulate cell proliferation and differentiation. A previous report has shown that osteoblast-specific MEF transgenic mice (Col1a1-MEF TG mice) have low bone mass but high bone marrow adiposity. In the present study, we explored a previously unappreciated mechanism whereby MEF promotes adipogenesis in bone marrow. An adipogenic colony-forming unit assay showed that bone marrow cells derived from Col1a1-MEF TG mice had a higher adipogenic differentiation potential compared to those from wild-type. The levels of adipogenic marker genes expression in 3T3L1 cells were higher when co-cultured with Col1a1-MEF TG bone marrow cells than with wild-type cells. MC3T3-E1 preosteoblasts transfected with MEF secreted higher levels of 15-deoxy-delta (12, 14)-prostaglandin J(2), a potent endogenous ligand of peroxisome proliferator-activated receptor γ (PPARγ), under adipogenic conditions. MEF overexpression increased the adipogenic marker genes expression including PPARγ and lipid droplet accumulation in MC3T3-E1 preosteoblasts and 3T3L1 preadipocytes. Endogenous MEF expression levels increased as adipocyte differentiation proceeded. Knockdown of MEF by siRNA suppressed expression levels of adipogenic marker genes including PPARγ. MEF directly bound to the MEF binding element on the mouse PPARγ promoter, transactivating promoter activity. Immunohistochemical staining of tibia sections demonstrated that bone lining cells and bone marrow cells express higher levels of PPARγ protein in Col1a1-MEF TG mice than in wild-type mice. These results suggest that MEF transactivates PPARγ expression, which, in turn, enhances adipogenic differentiation. Furthermore, MEF overexpressing osteoblasts secrete higher levels of adipogenic factors, creating a marrow microenvironment that favors adipogenesis.

  18. Insulin-like growth factor-1 and bone morphogenetic protein-2 jointly mediate prostaglandin E2-induced adipogenic differentiation of rat tendon stem cells.

    PubMed

    Liu, Junpeng; Chen, Lei; zhou, You; Liu, Xiangzhou; Tang, Kanglai

    2014-01-01

    Tendinopathy is characterized histopathologically by lipid accumulation and tissue calcification. Adipogenic and osteogenic differentiation of tendon stem cells (TSCs) are believed to play key roles in these processes. The major inflammatory mediator prostaglandin E2 (PGE2) has been shown to induce osteogenic differentiation of TSCs via bone morphogenetic protein-2 (BMP-2), and BMP-2 has also been implicated in adipogenic differentiation of stem cells. We therefore examined the mechanisms responsible for PGE2-induced adipogenesis in rat TSCs in vitro. Insulin-like growth factor-1 (IGF-1) mRNA and protein were significantly up-regulated in PGE2-stimulated TSCs, measured by quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Incubation with specific inhibitors of cAMP, cAMP-dependent protein kinase A (PKA), and CCAAT/enhancer binding protein-δ (CEBPδ) demonstrated that IGF-1 up-regulation occurred via a cAMP/PKA/CEBPδ pathway. Furthermore, neither IGF-1 nor BMP-2 alone was able to mediate adipogenic differentiation of TSCs, but IGF-1 together with BMP-2 significantly increased adipogenesis, indicated by Oil Red O staining. Moreover, knock-down of endogenous IGF-1 and BMP2 abolished PGE2-induced adipogenic differentiation. Phosphorylation of CREB and Smad by IGF-1 and BMP-2, respectively, were required for induction of the adipogenesis-related peroxisome proliferator-activated receptor γ2 (PPARγ2) gene and for adipogenic differentiation. In conclusion, IGF-1 and BMP-2 together mediate PGE2-induced adipogenic differentiation of TSCs in vitro via a CREB- and Smad-dependent mechanism. This improved understanding of the mechanisms responsible for tendinopathies may help the development of more effective therapies.

  19. EGF and hydrocortisone as critical factors for the co-culture of adipogenic differentiated ASCs and endothelial cells.

    PubMed

    Volz, Ann-Cathrin; Huber, Birgit; Schwandt, Alina Maria; Kluger, Petra Juliane

    2017-01-20

    In vitro composed vascularized adipose tissue is and will continue to be in great demand e.g. for the treatment of extensive high-graded burns or the replacement of tissue after tumor removal. Up to date, the lack of adequate culture conditions, mainly a culture medium, decelerates further achievements. In our study, we evaluated the influence of epidermal growth factor (EGF) and hydrocortisone (HC), often supplemented in endothelial cell (EC) specific media, on the co-culture of adipogenic differentiated adipose-derived stem cells (ASCs) and microvascular endothelial cells (mvECs). In ASCs, EGF and HC are thought to inhibit adipogenic differentiation and have lipolytic activities. Our results showed that in indirect co-culture for 14 days, adipogenic differentiated ASCs further incorporated lipids and partly gained an univacuolar morphology when kept in media with low levels of EGF and HC. In media with high EGF and HC levels, cells did not incorporate further lipids, on the contrary, cells without lipid droplets appeared. Glycerol release, to measure lipolysis, also increased with elevated amounts of EGF and HC in the culture medium. Adipogenic differentiated ASCs were able to release leptin in all setups. MvECs were functional and expressed the cell specific markers, CD31 and von Willebrand factor (vWF), independent of the EGF and HC content as long as further EC specific factors were present. Taken together, our study demonstrates that adipogenic differentiated ASCs can be successfully co-cultured with mvECs in a culture medium containing low or no amounts of EGF and HC, as long as further endothelial cell and adipocyte specific factors are available.

  20. The transcription factor encyclopedia.

    PubMed

    Yusuf, Dimas; Butland, Stefanie L; Swanson, Magdalena I; Bolotin, Eugene; Ticoll, Amy; Cheung, Warren A; Zhang, Xiao Yu Cindy; Dickman, Christopher T D; Fulton, Debra L; Lim, Jonathan S; Schnabl, Jake M; Ramos, Oscar H P; Vasseur-Cognet, Mireille; de Leeuw, Charles N; Simpson, Elizabeth M; Ryffel, Gerhart U; Lam, Eric W-F; Kist, Ralf; Wilson, Miranda S C; Marco-Ferreres, Raquel; Brosens, Jan J; Beccari, Leonardo L; Bovolenta, Paola; Benayoun, Bérénice A; Monteiro, Lara J; Schwenen, Helma D C; Grontved, Lars; Wederell, Elizabeth; Mandrup, Susanne; Veitia, Reiner A; Chakravarthy, Harini; Hoodless, Pamela A; Mancarelli, M Michela; Torbett, Bruce E; Banham, Alison H; Reddy, Sekhar P; Cullum, Rebecca L; Liedtke, Michaela; Tschan, Mario P; Vaz, Michelle; Rizzino, Angie; Zannini, Mariastella; Frietze, Seth; Farnham, Peggy J; Eijkelenboom, Astrid; Brown, Philip J; Laperrière, David; Leprince, Dominique; de Cristofaro, Tiziana; Prince, Kelly L; Putker, Marrit; del Peso, Luis; Camenisch, Gieri; Wenger, Roland H; Mikula, Michal; Rozendaal, Marieke; Mader, Sylvie; Ostrowski, Jerzy; Rhodes, Simon J; Van Rechem, Capucine; Boulay, Gaylor; Olechnowicz, Sam W Z; Breslin, Mary B; Lan, Michael S; Nanan, Kyster K; Wegner, Michael; Hou, Juan; Mullen, Rachel D; Colvin, Stephanie C; Noy, Peter John; Webb, Carol F; Witek, Matthew E; Ferrell, Scott; Daniel, Juliet M; Park, Jason; Waldman, Scott A; Peet, Daniel J; Taggart, Michael; Jayaraman, Padma-Sheela; Karrich, Julien J; Blom, Bianca; Vesuna, Farhad; O'Geen, Henriette; Sun, Yunfu; Gronostajski, Richard M; Woodcroft, Mark W; Hough, Margaret R; Chen, Edwin; Europe-Finner, G Nicholas; Karolczak-Bayatti, Magdalena; Bailey, Jarrod; Hankinson, Oliver; Raman, Venu; LeBrun, David P; Biswal, Shyam; Harvey, Christopher J; DeBruyne, Jason P; Hogenesch, John B; Hevner, Robert F; Héligon, Christophe; Luo, Xin M; Blank, Marissa Cathleen; Millen, Kathleen Joyce; Sharlin, David S; Forrest, Douglas; Dahlman-Wright, Karin; Zhao, Chunyan; Mishima, Yuriko; Sinha, Satrajit; Chakrabarti, Rumela; Portales-Casamar, Elodie; Sladek, Frances M; Bradley, Philip H; Wasserman, Wyeth W

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe.

  1. The Transcription Factor Encyclopedia

    PubMed Central

    2012-01-01

    Here we present the Transcription Factor Encyclopedia (TFe), a new web-based compendium of mini review articles on transcription factors (TFs) that is founded on the principles of open access and collaboration. Our consortium of over 100 researchers has collectively contributed over 130 mini review articles on pertinent human, mouse and rat TFs. Notable features of the TFe website include a high-quality PDF generator and web API for programmatic data retrieval. TFe aims to rapidly educate scientists about the TFs they encounter through the delivery of succinct summaries written and vetted by experts in the field. TFe is available at http://www.cisreg.ca/tfe. PMID:22458515

  2. Fungal CSL transcription factors

    PubMed Central

    Převorovský, Martin; Půta, František; Folk, Petr

    2007-01-01

    Background The CSL (CBF1/RBP-Jκ/Suppressor of Hairless/LAG-1) transcription factor family members are well-known components of the transmembrane receptor Notch signaling pathway, which plays a critical role in metazoan development. They function as context-dependent activators or repressors of transcription of their responsive genes, the promoters of which harbor the GTG(G/A)GAA consensus elements. Recently, several studies described Notch-independent activities of the CSL proteins. Results We have identified putative CSL genes in several fungal species, showing that this family is not confined to metazoans. We have analyzed their sequence conservation and identified the presence of well-defined domains typical of genuine CSL proteins. Furthermore, we have shown that the candidate fungal protein sequences contain highly conserved regions known to be required for sequence-specific DNA binding in their metazoan counterparts. The phylogenetic analysis of the newly identified fungal CSL proteins revealed the existence of two distinct classes, both of which are present in all the species studied. Conclusion Our findings support the evolutionary origin of the CSL transcription factor family in the last common ancestor of fungi and metazoans. We hypothesize that the ancestral CSL function involved DNA binding and Notch-independent regulation of transcription and that this function may still be shared, to a certain degree, by the present CSL family members from both fungi and metazoans. PMID:17629904

  3. The ubiquitous transcription factor CTCF promotes lineage-specific epigenomic remodeling and establishment of transcriptional networks driving cell differentiation.

    PubMed

    Dubois-Chevalier, Julie; Staels, Bart; Lefebvre, Philippe; Eeckhoute, Jérôme

    2015-01-01

    Cell differentiation relies on tissue-specific transcription factors (TFs) that cooperate to establish unique transcriptomes and phenotypes. However, the role of ubiquitous TFs in these processes remains poorly defined. Recently, we have shown that the CCCTC-binding factor (CTCF) is required for adipocyte differentiation through epigenomic remodelling of adipose tissue-specific enhancers and transcriptional activation of Peroxisome proliferator-activated receptor gamma (PPARG), the main driver of the adipogenic program (PPARG), and its target genes. Here, we discuss how these findings, together with the recent literature, illuminate a functional role for ubiquitous TFs in lineage-determining transcriptional networks.

  4. The ubiquitous transcription factor CTCF promotes lineage-specific epigenomic remodeling and establishment of transcriptional networks driving cell differentiation

    PubMed Central

    Dubois-Chevalier, Julie; Staels, Bart; Lefebvre, Philippe; Eeckhoute, Jérôme

    2015-01-01

    Cell differentiation relies on tissue-specific transcription factors (TFs) that cooperate to establish unique transcriptomes and phenotypes. However, the role of ubiquitous TFs in these processes remains poorly defined. Recently, we have shown that the CCCTC-binding factor (CTCF) is required for adipocyte differentiation through epigenomic remodelling of adipose tissue-specific enhancers and transcriptional activation of Peroxisome proliferator-activated receptor gamma (PPARG), the main driver of the adipogenic program (PPARG), and its target genes. Here, we discuss how these findings, together with the recent literature, illuminate a functional role for ubiquitous TFs in lineage-determining transcriptional networks. PMID:25565413

  5. Zinc finger factor 521 enhances adipogenic differentiation of mouse multipotent cells and human bone marrow mesenchymal stem cells.

    PubMed

    Tseng, Kuo-Yun; Lin, Shankung

    2015-06-20

    Previously, we found that ZNF521 expression was up-regulated with advancing age in human bone marrow mesenchymal stem cells (bmMSCs). Here, we investigated the regulatory role of ZNF521 in the differentiation of mouse C3H10T1/2 cells and human bmMSCs. Our data show that ZNF521 overexpression repressed osteoblastic differentiation of C3H10T1/2 cells, accompanied by a decrease in Runx2 expression and an increase in PPARγ2 expression. In contrast, ZNF521 overexpression enhanced adipogenic differentiation of C3H10T1/2 cells, concomitant with increased expression of PPARγ2, aP2, adiponectin and C/EBPδ. Chromatin immunoprecipitation followed by quantitative PCR analyses and luciferase reporter assays suggested that ZNF521 overexpression enhances PPARγ2 expression at the transcriptional level. The enhancing effect of ZNF521 overexpression on the adipogenic differentiation of C3H10T1/2 cells was also observed ex vivo. Finally, similar to those noted in C3H10T1/2 cells, ZNF521 overexpression in human bmMSCs was found to promote adipogenic differentiation in vitro and ex vivo, but repressed osteoblastic differentiation in vitro. ZNF521 knockdown significantly repressed adipogenic differentiation in vitro and ex vivo, but promoted osteoblastic differentiation in vitro. We propose that ZNF521 can function as a repressor of osteoblastic differentiation of bmMSCs while promoting adipogenesis, and that elevated ZNF521 expression might play a role in the age-related bone loss.

  6. Butein is a novel anti-adipogenic compound.

    PubMed

    Song, No-Joon; Yoon, Hyang-Jin; Kim, Ki Hyun; Jung, So-Ra; Jang, Woo-Seok; Seo, Cho-Rong; Lee, Young Min; Kweon, Dae-Hyuk; Hong, Joung-Woo; Lee, Jeong-Soo; Park, Ki-Moon; Lee, Kang Ro; Park, Kye Won

    2013-05-01

    Rhus verniciflua Stokes (RVS) has been used as a traditional herbal medicine for its various biological activities including anti-adipogenic effects. Activity-guided separation led to the identification of the anti-adipogenic functions of butein. Butein, a novel anti-adipogenic compound, robustly suppressed lipid accumulation and inhibited expression of adipogenic markers. Molecular studies showed that activated transforming growth factor-β (TGF-β) and suppressed signal transducer and activator of transcription 3 (STAT3) signaling pathways were mediated by butein. Analysis of the temporal expression profiles suggests that TGF-β signaling precedes the STAT3 in the butein-mediated anti-adipogenic cascade. Small interfering RNA-mediated silencing of STAT3 or SMAD2/3 blunted the inhibitory effects of butein on adipogenesis indicating that an interaction between two signaling pathways is required for the action of butein. Upon butein treatments, stimulation of TGF-β signaling was still preserved in STAT3 silenced cells, whereas regulation of STAT3 signaling by butein was significantly impaired in SMAD2/3 silenced cells, further showing that TGF-β acts upstream of STAT3 in the butein-mediated anti-adipogenesis. Taken together, the present study shows that butein, a novel anti-adipogenic compound from RVS, inhibits adipocyte differentiation through the TGF-β pathway followed by STAT3 and peroxisome proliferator-activated receptor γ signaling, further implicating potential roles of butein in TGF-β- and STAT3-dysregulated diseases.

  7. Nuclear Factor-Y is an adipogenic factor that regulates leptin gene expression

    PubMed Central

    Lu, Yi-Hsueh; Dallner, Olof Stefan; Birsoy, Kivanc; Fayzikhodjaeva, Gulya; Friedman, Jeffrey M.

    2015-01-01

    Objective Leptin gene expression is highly correlated with cellular lipid content in adipocytes but the transcriptional mechanisms controlling leptin expression in vivo are poorly understood. In this report, we set out to identify cis- and trans-regulatory elements controlling leptin expression. Methods Leptin-BAC luciferase transgenic mice combining with other computational and molecular techniques were used to identify transcription regulatory elements including a CCAAT-binding protein Nuclear Factor Y (NF-Y). The function of NF-Y in adipocyte was studied in vitro with 3T3-L1 cells and in vivo with adipocyte-specific knockout of NF-Y. Results Using Leptin-BAC luciferase mice, we showed that DNA sequences between −22 kb and +8.8 kb can confer quantitative expression of a leptin reporter. Computational analysis of sequences and gel shift assays identified a 32 bp sequence (chr6: 28993820–2899385) consisting a CCAAT binding site for Nuclear Factor Y (NF-Y) and this was confirmed by a ChIP assay in vivo. A deletion of this 32 bp sequence in the −22 kb to +8.8 kb leptin-luciferase BAC reporter completely abrogates luciferase reporter activity in vivo. RNAi mediated knockdown of NF-Y interfered with adipogenesis in vitro and adipocyte-specific knockout of NF-Y in mice reduced expression of leptin and other fat specific genes in vivo. Further analyses of the fat specific NF-Y knockout revealed that these animals develop a moderately severe lipodystrophy that is remediable with leptin therapy. Conclusions These studies advance our understanding of leptin gene expression and show that NF-Y controls the expression of leptin and other adipocyte genes and identifies a new form of lipodystrophy. PMID:25973387

  8. The Wnt-target gene Dlk-1 is regulated by the Prmt5-associated factor Copr5 during adipogenic conversion

    PubMed Central

    Paul, Conception; Sardet, Claude; Fabbrizio, Eric

    2015-01-01

    ABSTRACT Protein arginine methyl transferase 5 (Prmt5) regulates various differentiation processes, including adipogenesis. Here, we investigated adipogenic conversion in cells and mice in which Copr5, a Prmt5- and histone-binding protein, was genetically invalidated. Compared to control littermates, the retroperitoneal white adipose tissue (WAT) of Copr5 KO mice was slightly but significantly reduced between 8 and 16 week/old and contained fewer and larger adipocytes. Moreover, the adipogenic conversion of Copr5 KO embryoid bodies (EB) and of primary embryo fibroblasts (Mefs) was markedly delayed. Differential transcriptomic analysis identified Copr5 as a negative regulator of the Dlk-1 gene, a Wnt target gene involved in the control of adipocyte progenitors cell fate. Dlk-1 expression was upregulated in Copr5 KO Mefs and the Vascular Stromal Fraction (VSF) of Copr5 KO WAT. Chromatin immunoprecipitation (ChIP) show that the ablation of Copr5 has impaired both the recruitment of Prmt5 and β-catenin at the Dlk-1 promoter. Overall, our data suggest that Copr5 is involved in the transcriptional control exerted by the Wnt pathway on early steps of adipogenesis. PMID:25681392

  9. Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells.

    PubMed

    Zhang, Yanmin; Marsboom, Glenn; Toth, Peter T; Rehman, Jalees

    2013-01-01

    Human mesenchymal stem cells (MSCs) are adult multipotent stem cells which can be isolated from bone marrow, adipose tissue as well as other tissues and have the capacity to differentiate into a variety of mesenchymal cell types such as adipocytes, osteoblasts and chondrocytes. Differentiation of stem cells into mature cell types is guided by growth factors and hormones, but recent studies suggest that metabolic shifts occur during differentiation and can modulate the differentiation process. We therefore investigated mitochondrial biogenesis, mitochondrial respiration and the mitochondrial membrane potential during adipogenic differentiation of human MSCs. In addition, we inhibited mitochondrial function to assess its effects on adipogenic differentiation. Our data show that mitochondrial biogenesis and oxygen consumption increase markedly during adipogenic differentiation, and that reducing mitochondrial respiration by hypoxia or by inhibition of the mitochondrial electron transport chain significantly suppresses adipogenic differentiation. Furthermore, we used a novel approach to suppress mitochondrial activity using a specific siRNA-based knockdown of the mitochondrial transcription factor A (TFAM), which also resulted in an inhibition of adipogenic differentiation. Taken together, our data demonstrates that increased mitochondrial activity is a prerequisite for MSC differentiation into adipocytes. These findings suggest that metabolic modulation of adult stem cells can maintain stem cell pluripotency or direct adult stem cell differentiation.

  10. The E3 ubiquitin ligase TRIM23 regulates adipocyte differentiation via stabilization of the adipogenic activator PPARγ.

    PubMed

    Watanabe, Masashi; Takahashi, Hidehisa; Saeki, Yasushi; Ozaki, Takashi; Itoh, Shihori; Suzuki, Masanobu; Mizushima, Wataru; Tanaka, Keiji; Hatakeyama, Shigetsugu

    2015-04-23

    Adipocyte differentiation is a strictly controlled process regulated by a series of transcriptional activators. Adipogenic signals activate early adipogenic activators and facilitate the transient formation of early enhanceosomes at target genes. These enhancer regions are subsequently inherited by late enhanceosomes. PPARγ is one of the late adipogenic activators and is known as a master regulator of adipogenesis. However, the factors that regulate PPARγ expression remain to be elucidated. Here, we show that a novel ubiquitin E3 ligase, tripartite motif protein 23 (TRIM23), stabilizes PPARγ protein and mediates atypical polyubiquitin conjugation. TRIM23 knockdown caused a marked decrease in PPARγ protein abundance during preadipocyte differentiation, resulting in a severe defect in late adipogenic differentiation, whereas it did not affect the formation of early enhanceosomes. Our results suggest that TRIM23 plays a critical role in the switching from early to late adipogenic enhanceosomes by stabilizing PPARγ protein possibly via atypical polyubiquitin conjugation.

  11. Anti-adipogenic activity of berberine is not mediated by the WNT/β-catenin pathway.

    PubMed

    Bae, Sungmin; Yoon, Yoosik

    2013-06-01

    Adipogenesis is a differentiation process from preadipocytes to adipocytes, accompanied by the inductions of adipogenic transcription factors and lipid metabolizing enzymes. Among cellular pathways regulating adipogenesis, the WNT/β-catenin pathway is well-known as a suppressor of adipogenesis. Berberine (BBR) is an isoquinoline alkaloid component of the medicinal plants including Coptis chinensis and Coptis japonica with diverse biological activities. This study was conducted to elucidate whether the anti-adipogenic effect of BBR is mediated by the WNT/β-catenin pathway. The results of the present study confirmed that BBR efficiently inhibited adipogenesis of 3T3-L1 cells. However, the anti-adipogenic effects of BBR were not accompanied by the modulations of the WNT/β-catenin pathway members including WNT10B, LRP6, DVL2, GSK3β and β-catenin. When β-catenin was knocked down by its siRNA transfection, the anti-adipogenic effects of BBR including the expression of adipogenic transcription factors and lipid metabolizing enzymes as well as the intracellular fat accumulation were not affected at all. The results of this study showed that the anti-adipogenic effect of BBR is not mediated by the WNT/β-catenin pathway.

  12. Genes that integrate multiple adipogenic signaling pathways in human mesenchymal stem cells.

    PubMed

    Ito, Tomoya; Tsuruta, So; Tomita, Koki; Kikuchi, Kunio; Yokoi, Takahide; Aizawa, Yasunori

    2011-06-17

    Adipogenesis is a well-characterized cell differentiation process. A large body of evidence has revealed the core transcription factors and signaling pathways that govern adipogenesis, but cross-talks between these cellular signals and its functional consequences have not been thoroughly investigated. We, therefore, sought to identify genes that are regulated by multiple signaling pathways during adipogenesis of human mesenchymal stem cells. Focusing on the early stage of adipogenesis, microarray analysis and quantitative RT-PCR identified 12 genes whose transcription levels were dramatically affected by the complete adipogenic induction cocktail but not by the cocktail's individual components. Expression kinetics of these genes indicate diverse mechanisms of transcriptional regulation during adipogenesis. Functional relationships between these genes and adipogenic differentiation were frequently unknown. This study thus provided novel adipogenic gene candidates that likely mediate communications among multiple signaling pathways within human mesenchymal stem cells.

  13. Berberine reduces the expression of adipogenic enzymes and inflammatory molecules of 3T3-L1 adipocyte.

    PubMed

    Choi, Bong-Hyuk; Ahn, In-Sook; Kim, Yu-Hee; Park, Ji-Won; Lee, So-Young; Hyun, Chang-Kee; Do, Myoung-Sool

    2006-12-31

    Berberine (BBR), an isoquinoline alkaloid, has a wide range of pharmacological effects, yet its exact mechanism is unknown. In order to understand the anti-adipogenic effect of BBR, we studied the change of expression of several adipogenic enzymes of 3T3-L1 cells by BBR treatment. First, we measured the change of leptin and glycerol in the medium of 3T3-L1 cells treated with 1 micrometer, 5 micrometer and 10 micrometer concentrations of BBR. We also measured the changes of adipogenic and lipolytic factors of 3T3-L1. In 3T3-L1 cells, both leptin and adipogenic factors (SREBP-1c, C/EBP-alpha, PPAR-gamma, fatty acid synthase, acetyl-CoA carboxylase, acyl-CoA synthase and lipoprotein lipase) were reduced by BBR treatment. Glycerol secretion was increased, whereas expression of lipolytic enzymes (hormone-sensitive lipase and perilipin) mRNA was slightly decreased. Next, we measured the change of inflammation markers of 3T3-L1 cells by BBR treatment. This resulted in the down-regulation of mRNA level of inflammation markers such as TNF-alpha, IL-6, C- reactive protein and haptoglobin. Taken together, our data shows that BBR has both anti-adipogenic and anti-inflammatory effects on 3T3-L1 adipocytes, and the anti-adipogenic effect seems to be due to the down-regulation of adipogenic enzymes and transcription factors.

  14. Dimethylfumarate suppresses adipogenic differentiation in 3T3-L1 preadipocytes through inhibition of STAT3 activity.

    PubMed

    Kang, Hyeon-Ji; Seo, Hyun-Ae; Go, Younghoon; Oh, Chang Joo; Jeoung, Nam Ho; Park, Keun-Gyu; Lee, In-Kyu

    2013-01-01

    The excessive accumulation of adipocytes contributes to the development of obesity and obesity-related diseases. The interactions of several transcription factors, such as C/EBPβ, PPARγ, C/EBPα, Nrf2, and STAT3, are required for adipogenic differentiation. Dimethylfumarate (DMF), an immune modulator and antioxidant, may function as an inhibitor of STAT3 and an activator of Nrf2. This study examined whether DMF inhibits adipogenic differentiation of 3T3-L1 preadipocytes by inhibiting STAT3 or activating Nrf2. DMF suppressed 3T3-L1 preadipocyte differentiation to mature adipocytes in a dose-dependent manner as determined by Oil Red O staining. The mRNA and protein levels of adipogenic genes, including C/EBPβ, C/EBPα, PPARγ, SREBP-1c, FAS, and aP2, were significantly lower in DMF-treated 3T3-L1 preadipocytes. Suppression of adipogenic differentiation by DMF treatment resulted primarily from inhibition of the early stages of differentiation. DMF inhibits clonal expansion during adipogenic differentiation through induction of a G1 cell cycle arrest. Additionally, DMF regulates cell cycle-related proteins, such as p21, pRb, and cyclin D. DMF treatment markedly inhibited differentiation medium-induced STAT3 phosphorylation and inhibited STAT3 transcriptional activation of a reporter construct composed of four synthetic STAT3-response elements. Moreover, inhibition of endogenous Nrf2 activity using a dominant negative Nrf2 did not abolish the DMF-induced inhibition of adipogenic differentiation of 3T3-L1 preadipocytes. In summary, DMF is a negative regulator of adipogenic differentiation based on its regulation of adipogenic transcription factors and cell cycle proteins. This negative regulation by DMF is mediated by STAT3 inhibition, but is unlikely to involve Nrf2 activation.

  15. PDGF, TGF-beta, and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs): transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages.

    PubMed

    Ng, Felicia; Boucher, Shayne; Koh, Susie; Sastry, Konduru S R; Chase, Lucas; Lakshmipathy, Uma; Choong, Cleo; Yang, Zheng; Vemuri, Mohan C; Rao, Mahendra S; Tanavde, Vivek

    2008-07-15

    We compared the transcriptomes of marrow-derived mesenchymal stem cells (MSCs) with differentiated adipocytes, osteocytes, and chondrocytes derived from these MSCs. Using global gene-expression profiling arrays to detect RNA transcripts, we have identified markers that are specific for MSCs and their differentiated progeny. Further, we have also identified pathways that MSCs use to differentiate into adipogenic, chondrogenic, and osteogenic lineages. We identified activin-mediated transforming growth factor (TGF)-beta signaling, platelet-derived growth factor (PDGF) signaling and fibroblast growth factor (FGF) signaling as the key pathways involved in MSC differentiation. The differentiation of MSCs into these lineages is affected when these pathways are perturbed by inhibitors of cell surface receptor function. Since growth and differentiation are tightly linked processes, we also examined the importance of these 3 pathways in MSC growth. These 3 pathways were necessary and sufficient for MSC growth. Inhibiting any of these pathways slowed MSC growth, whereas a combination of TGF-beta, PDGF, and beta-FGF was sufficient to grow MSCs in a serum-free medium up to 5 passages. Thus, this study illustrates it is possible to predict signaling pathways active in cellular differentiation and growth using microarray data and experimentally verify these predictions.

  16. Transcription factor-based biosensor

    DOEpatents

    Dietrich, Jeffrey A; Keasling, Jay D

    2013-10-08

    The present invention provides for a system comprising a BmoR transcription factor, a .sigma..sup.54-RNA polymerase, and a pBMO promoter operatively linked to a reporter gene, wherein the pBMO promoter is capable of expression of the reporter gene with an activated form of the BmoR and the .sigma..sup.54-RNA polymerase.

  17. Transcription factors in alkaloid biosynthesis.

    PubMed

    Yamada, Yasuyuki; Sato, Fumihiko

    2013-01-01

    Higher plants produce a large variety of low-molecular weight secondary compounds. Among them, nitrogen-containing alkaloids are the most biologically active and are often used pharmaceutically. Whereas alkaloid chemistry has been intensively investigated, alkaloid biosynthesis, including the relevant biosynthetic enzymes, genes and their regulation, and especially transcription factors, is largely unknown, as only a limited number of plant species produce certain types of alkaloids and they are difficult to study. Recently, however, several groups have succeeded in isolating the transcription factors that are involved in the biosynthesis of several types of alkaloids, including bHLH, ERF, and WRKY. Most of them show Jasmonate (JA) responsiveness, which suggests that the JA signaling cascade plays an important role in alkaloid biosynthesis. Here, we summarize the types and functions of transcription factors that have been isolated in alkaloid biosynthesis, and characterize their similarities and differences compared to those in other secondary metabolite pathways, such as phenylpropanoid and terpenoid biosyntheses. The evolution of this biosynthetic pathway and regulatory network, as well as the application of these transcription factors to metabolic engineering, is discussed.

  18. Targeting Transcription Factors in Cancer

    PubMed Central

    Bhagwat, Anand S.; Vakoc, Christopher R.

    2015-01-01

    Transcription factors (TFs) are commonly deregulated in the pathogenesis of human cancer and are a major class of cancer cell dependencies. Consequently, targeting of TFs can be highly effective in treating particular malignancies, as highlighted by the clinical efficacy of agents that target nuclear hormone receptors. In this review we discuss recent advances in our understanding of TFs as drug targets in oncology, with an emphasis on the emerging chemical approaches to modulate TF function. The remarkable diversity and potency of TFs as drivers of cell transformation justifies a continued pursuit of TFs as therapeutic targets for drug discovery. PMID:26645049

  19. Sphingosine-1-phosphate inhibits the adipogenic differentiation of 3T3-L1 preadipocytes.

    PubMed

    Moon, Myung-Hee; Jeong, Jae-Kyo; Lee, You-Jin; Seol, Jae-Won; Park, Sang-Youel

    2014-10-01

    Sphingosine-1-phosphate (S1P) is a pluripotent lipid mediator that transmits signals through G-protein-coupled receptors to control diverse biological processes. The novel biological activity of S1P in the adipogenesis of 3T3-L1 preadipocytes was identified in the present study. S1P significantly decreased lipid accumulation in maturing preadipocytes in a dose‑dependent manner. In order to understand the anti‑adipogenic effects of S1P, preadipocytes were treated with S1P, and the change in the expression of several adipogenic transcription factors and enzymes was investigated using quantitative RT-PCR. S1P downregulated the transcriptional levels of the peroxisome proliferator-activated receptor γ, CCAAT/enhancer binding proteins and adiponectin, which are markers of adipogenic differentiation. The effects of S1P on the levels of mitogen‑activated protein kinase (MAPK) signals in preadipocytes were also investigated. The activation of JNK and p38 were downregulated by S1P treatment in human preadipocytes. In conclusion, the results of this study suggest that S1P alters fat mass by directly affecting adipogenesis. This is mediated by the downregulation of adipogenic transcription factors and by inactivation of the JNK and p38 MAPK pathways. Thus, selective targeting of the S1P receptors and sphingosine kinases may have clinical applications for the treatment of obesity.

  20. Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules

    PubMed Central

    Moseti, Dorothy; Regassa, Alemu; Kim, Woo-Kyun

    2016-01-01

    Adipogenesis is the process by which precursor stem cells differentiate into lipid laden adipocytes. Adipogenesis is regulated by a complex and highly orchestrated gene expression program. In mammalian cells, the peroxisome proliferator-activated receptor γ (PPARγ), and the CCAAT/enhancer binding proteins (C/EBPs) such as C/EBPα, β and δ are considered the key early regulators of adipogenesis, while fatty acid binding protein 4 (FABP4), adiponectin, and fatty acid synthase (FAS) are responsible for the formation of mature adipocytes. Excess accumulation of lipids in the adipose tissue leads to obesity, which is associated with cardiovascular diseases, type II diabetes and other pathologies. Thus, investigating adipose tissue development and the underlying molecular mechanisms is vital to develop therapeutic agents capable of curbing the increasing incidence of obesity and related pathologies. In this review, we address the process of adipogenic differentiation, key transcription factors and proteins involved, adipogenic regulators and potential anti-adipogenic bioactive molecules. PMID:26797605

  1. Maternal obesity induces epigenetic modifications to facilitate Zfp423 expression and enhance adipogenic differentiation in fetal mice.

    PubMed

    Yang, Qi-Yuan; Liang, Jun-Fang; Rogers, Carl J; Zhao, Jun-Xing; Zhu, Mei-Jun; Du, Min

    2013-11-01

    Maternal obesity (MO) predisposes offspring to obesity and type 2 diabetes despite poorly defined mechanisms. Zfp423 is the key transcription factor committing cells to the adipogenic lineage, with exceptionally dense CpG sites in its promoter. We hypothesized that MO enhances adipogenic differentiation during fetal development through inducing epigenetic changes in the Zfp423 promoter and elevating its expression. Female mice were subjected to a control (Con) or obesogenic (OB) diet for 2 months, mated, and maintained on their diets during pregnancy. Fetal tissue was harvested at embryonic day 14.5 (E14.5), when the early adipogenic commitment is initiated. The Zfp423 expression was 3.6-fold higher and DNA methylation in the Zfp423 promoter was lower in OB compared with Con. Correspondingly, repressive histone methylation (H3K27me3) was lower in the Zfp423 promoter of OB fetal tissue, accompanied by reduced binding of enhancer of zeste 2 (EZH2). Gain- and loss-of-function analysis showed that Zfp423 regulates early adipogenic differentiation in fetal progenitor cells. In summary, MO enhanced Zfp423 expression and adipogenic differentiation during fetal development, at least partially through reducing DNA methylation in the Zfp423 promoter, which is expected to durably elevate adipogenic differentiation of progenitor cells in adult tissue, programming adiposity and metabolic dysfunction later in life.

  2. DBD: a transcription factor prediction database.

    PubMed

    Kummerfeld, Sarah K; Teichmann, Sarah A

    2006-01-01

    Regulation of gene expression influences almost all biological processes in an organism; sequence-specific DNA-binding transcription factors are critical to this control. For most genomes, the repertoire of transcription factors is only partially known. Hitherto transcription factor identification has been largely based on genome annotation pipelines that use pairwise sequence comparisons, which detect only those factors similar to known genes, or on functional classification schemes that amalgamate many types of proteins into the category of 'transcription factor'. Using a novel transcription factor identification method, the DBD transcription factor database fills this void, providing genome-wide transcription factor predictions for organisms from across the tree of life. The prediction method behind DBD identifies sequence-specific DNA-binding transcription factors through homology using profile hidden Markov models (HMMs) of domains. Thus, it is limited to factors that are homologus to those HMMs. The collection of HMMs is taken from two existing databases (Pfam and SUPERFAMILY), and is limited to models that exclusively detect transcription factors that specifically recognize DNA sequences. It does not include basal transcription factors or chromatin-associated proteins, for instance. Based on comparison with experimentally verified annotation, the prediction procedure is between 95% and 99% accurate. Between one quarter and one-half of our genome-wide predicted transcription factors represent previously uncharacterized proteins. The DBD (www.transcriptionfactor.org) consists of predicted transcription factor repertoires for 150 completely sequenced genomes, their domain assignments and the hand curated list of DNA-binding domain HMMs. Users can browse, search or download the predictions by genome, domain family or sequence identifier, view families of transcription factors based on domain architecture and receive predictions for a protein sequence.

  3. Transcriptional Regulation by Hypoxia Inducible Factors

    PubMed Central

    Espinosa, Joaquín M.

    2015-01-01

    The cellular response to oxygen deprivation is governed largely by a family of transcription factors known as Hypoxia Inducible Factors (HIFs). This review focuses on the molecular mechanisms by which HIFs regulate the transcriptional apparatus to enable the cellular and organismal response to hypoxia. We discuss here how the various HIF polypeptides, their post-translational modifications, binding partners and transcriptional cofactors affect RNA polymerase II activity to drive context-dependent transcriptional programs during hypoxia. PMID:24099156

  4. Effects of proposed adipogenic factors in fetal swine sera upon preadipocyte development

    SciTech Connect

    Ramsay, T.G.; Hausman, G.J.; Martin, R.J.

    1986-03-01

    Genetic obesity has been detected in fetal pigs which suggests primary factors that cause the obesity develop prenatally. Growth hormone and thyroid hormones have been implicated as regulatory factors in fetal serum for preadipocyte differentiation. This experiment examined effects of growth hormone (GH) and thyroxine (T4) addition upon preadipocyte proliferation and differentiation when supplemented to deficient fetal pig sea. Hormones were added to decapitated fetal pig (Decap) sera to concentrations present in intact littermate (Reference) sera. Primary stromal-vascular cell cultures were prepared from rat inguinal adipose tissue. Cells were incubated with 5% decap or reference sera and hormones in media 199 during: days 1 to 5 for a /sup 3/H-thymidine incorporation assay; days 1 to 15 for assay of ..cap alpha..-glycerol phosphate dehydrogenase; days 5 to 14 for a complete differentiation assay. Decap sera promoted less proliferation and enzyme differentiation than reference sera with no effect of GH addition. GH reduced detection of lipid accumulating cells on percol density gradients by 81%. T4 addition stimulated preadipocyte multiplication and produced a 30% increase in completely differentiated preadipocytes. These results indicate thyroid hormones are important components of fetal sera for regulation of preadipocyte development, whereas GH may only affect cellular metabolism.

  5. Fox transcription factors: from development to disease.

    PubMed

    Golson, Maria L; Kaestner, Klaus H

    2016-12-15

    Forkhead box (Fox) transcription factors are evolutionarily conserved in organisms ranging from yeast to humans. They regulate diverse biological processes both during development and throughout adult life. Mutations in many Fox genes are associated with human disease and, as such, various animal models have been generated to study the function of these transcription factors in mechanistic detail. In many cases, the absence of even a single Fox transcription factor is lethal. In this Primer, we provide an overview of the Fox family, highlighting several key Fox transcription factor families that are important for mammalian development.

  6. INSIGHTS FROM GENOMIC PROFILING OF TRANSCRIPTION FACTORS

    PubMed Central

    Farnham, Peggy

    2010-01-01

    A crucial question in the field of gene regulation is whether the location at which a transcription factor binds influences its effectiveness or the mechanism by which it regulates transcription. Comprehensive transcription factor binding maps are needed to address these issues, and genome-wide mapping is now possible thanks to the technological advances of ChIP-chip and ChIP-Seq. This review discusses how recent genomic profiling of transcription factors gives insight into how binding specificity is achieved and what features of chromatin influence the ability of transcription factors to interact with the genome, and also suggests future experiments to further our understanding of the causes and consequences of transcription factor-genome interactions. PMID:19668247

  7. Agouti regulates adipocyte transcription factors.

    PubMed

    Mynatt, R L; Stephens, J M

    2001-04-01

    Agouti is a secreted paracrine factor that regulates pigmentation in hair follicle melanocytes. Several dominant mutations cause ectopic expression of agouti, resulting in a phenotype characterized by yellow fur, adult-onset obesity and diabetes, increased linear growth and skeletal mass, and increased susceptibility to tumors. Humans also produce agouti protein, but the highest levels of agouti in humans are found in adipose tissue. To mimic the human agouti expression pattern in mice, transgenic mice (aP2-agouti) that express agouti in adipose tissue were generated. The transgenic mice develop a mild form of obesity, and they are sensitized to the action of insulin. We correlated the levels of specific regulators of insulin signaling and adipocyte differentiation with these phenotypic changes in adipose tissue. Signal transducers and activators of transcription (STAT)1, STAT3, and peroxisome proliferator-activated receptor (PPAR)-gamma protein levels were elevated in the transgenic mice. Treatment of mature 3T3-L1 adipocytes recapitulated these effects. These data demonstrate that agouti has potent effects on adipose tissue. We hypothesize that agouti increases adiposity and promotes insulin sensitivity by acting directly on adipocytes via PPAR-gamma.

  8. Purification & Characterization of Transcription Factors

    PubMed Central

    Nagore, LI; Nadeau, RJ; Guo, Q; Jadhav, YLA; Jarrett, HW; Haskins, WE

    2013-01-01

    Transcription factors (TFs) are essential for the expression of all proteins, including those involved in human health and disease. However, TFs are resistant to proteomic characterization because they are frequently masked by more abundant proteins due to the limited dynamic range of capillary liquid chromatography-tandem mass spectrometry and protein database searching. Purification methods, particularly strategies that exploit the high affinity of TFs for DNA response elements on gene promoters, can enrich TFs prior to proteomic analysis to improve dynamic range and penetrance of the TF proteome. For example, trapping of TF complexes specific for particular response elements has been achieved by recovering the element DNA-protein complex on solid supports. Additional methods for improving dynamic range include two- and three-dimensional gel electrophoresis incorporating electrophoretic mobility shift assays and Southwestern blotting for detection. Here we review methods for TF purification and characterization. We fully expect that future investigations will apply these and other methods to illuminate this important but challenging proteome. PMID:23832591

  9. Tributyltin affects adipogenic cell fate commitment in mesenchymal stem cells by a PPARγ independent mechanism.

    PubMed

    Biemann, Ronald; Fischer, Bernd; Blüher, Matthias; Navarrete Santos, Anne

    2014-05-05

    The food contaminant tributyltin (TBT) is an endocrine disrupting compound (EDC) promoting adipogenic differentiation in vitro and in vivo. Although prenatal TBT exposure has been shown to induce obesity, the underlying mechanisms and the role of the transcription factor PPARγ are not clarified yet. At different stages of adipogenesis, multipotent murine mesenchymal stem cells (MSC), C3H10T1/2, were exposed to TBT and analyzed for adipogenic differentiation, PPARγ promoter activation and PPARγ1, PPARγ2, Pref-1 and SOX9 expression. Depending on the exposure window, TBT promoted subsequent adipogenesis independently and dependently from PPARγ. In undifferentiated MSC, TBT exposure induced a transcriptional PPARγ-independent repression of Pref-1 and SOX9, which are both suppressors of adipogenic cell fate commitment. During hormonal induction TBT additionally enhanced adipogenic differentiation by PPARγ signaling. The impact of TBT on early cell fate development documents a novel mechanistic insight in the development of adipocytes derived from MSC and its susceptibility to EDC.

  10. Activation of an adipogenic program in adult myoblasts with age.

    PubMed

    Taylor-Jones, Jane M; McGehee, Robert E; Rando, Thomas A; Lecka-Czernik, Beata; Lipschitz, David A; Peterson, Charlotte A

    2002-03-31

    Myoblasts isolated from mouse hindlimb skeletal muscle demonstrated increased adipogenic potential as a function of age. Whereas myoblasts from 8-month-old adult mice did not significantly accumulate terminal markers of adipogenesis regardless of culture conditions, myoblasts from 23-month-old mice accumulated fat and expressed genes characteristic of differentiated adipocytes, such as the fatty acid binding protein aP2. This change in differentiation potential was associated with a change in the abundance of the mRNA encoding the transcription factor C/EBPalpha, and in the relative abundance of PPARgamma2 to PPARgamma1 mRNAs. Furthermore, PPARgamma activity appeared to be regulated at the level of phosphorylation, being more highly phosphorylated in myoblasts isolated from younger animals. Although adipogenic gene expression in myoblasts from aged animals was activated, presumably in response to PPARgamma and C/EBPalpha, unexpectedly, myogenic gene expression was not effectively repressed. The Wnt signaling pathway may also alter differentiation potential in muscle with age. Wnt-10b mRNA was more abundantly expressed in muscle tissue and cultured myoblasts from adult compared with aged mice, resulting in stabilization of cytosolic beta-catenin, that may potentially contribute to inhibition of adipogenic gene expression in adult myoblasts. The changes reported here, together with those reported in bone marrow stroma with age, suggest that a default program may be activated in mesenchymal cells with increasing age resulting in a more adipogenic-like phenotype. Whether this change in differentiation potential contributes to the increased adiposity in muscle with age remains to be determined.

  11. Scaling factors: transcription factors regulating subcellular domains.

    PubMed

    Mills, Jason C; Taghert, Paul H

    2012-01-01

    Developing cells acquire mature fates in part by selective (i.e. qualitatively different) expression of a few cell-specific genes. However, all cells share the same basic repertoire of molecular and subcellular building blocks. Therefore, cells must also specialize according to quantitative differences in cell-specific distributions of those common molecular resources. Here we propose the novel hypothesis that evolutionarily-conserved transcription factors called scaling factors (SFs) regulate quantitative differences among mature cell types. SFs: (1) are induced during late stages of cell maturation; (2) are dedicated to specific subcellular domains; and, thus, (3) allow cells to emphasize specific subcellular features. We identify candidate SFs and discuss one in detail: MIST1 (BHLHA15, vertebrates)/DIMM (CG8667, Drosophila); professional secretory cells use this SF to scale up regulated secretion. Because cells use SFs to develop their mature properties and also to adapt them to ever-changing environmental conditions, SF aberrations likely contribute to diseases of adult onset.

  12. Prunus transcription factors: breeding perspectives

    PubMed Central

    Bianchi, Valmor J.; Rubio, Manuel; Trainotti, Livio; Verde, Ignazio; Bonghi, Claudio; Martínez-Gómez, Pedro

    2015-01-01

    Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs). In peach, 1533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA, and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq) and RNA sequencing (RNA-Seq). New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing) may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci) map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome. PMID:26124770

  13. Creating cellular diversity through transcription factor competition

    PubMed Central

    Göttgens, Berthold

    2015-01-01

    The development of blood cells has long served as a model system to study the generation of diverse mature cells from multipotent progenitors. The article by Org et al (2015) reveals how transcription factor competition on primed DNA templates may contribute to embryonic blood cell specification during the early stages of mesoderm development. The study not only provides new insights into the functionality of the key haematopoietic transcription factor Scl/Tal1, but also provides a potentially widely applicable framework for transcription factor-mediated cell fate specification. PMID:25680687

  14. "The preadipocyte factor" DLK1 marks adult mouse adipose tissue residing vascular cells that lack in vitro adipogenic differentiation potential.

    PubMed

    Andersen, Ditte Caroline; Jensen, Line; Schrøder, Henrik Daa; Jensen, Charlotte Harken

    2009-09-03

    Delta-like 1 (Dlk1) is expressed in 3T3-L1 preadipocytes and has frequently been referred to as "the" preadipocyte marker, yet the phenotype of DLK1(+) cells in adipose tissue remains undetermined. Herein, we demonstrate that DLK1(+) cells encompass around 1-2% of the adult mouse adipose stromal vascular fraction (SVF). Unexpectedly, the DLK1(+)SVF population was enriched for cells expressing genes generally ascribed to the vascular lineage and did not possess any adipogenic differentiation potential in vitro. Instead, DLK1(+) cells comprised an immediate ability for cobblestone formation, generation of tube-like structures on matrigel, and uptake of Acetylated Low Density-Lipoprotein, all characteristics of endothelial cells. We therefore suggest that DLK1(+)SVF cells are of a vascular origin and not them-selves committed preadipocytes as assumed hitherto.

  15. Learning, memory, and transcription factors.

    PubMed

    Johnston, Michael V; Alemi, Lily; Harum, Karen H

    2003-03-01

    Cognitive disorders in children have traditionally been described in terms of clinical phenotypes or syndromes, chromosomal lesions, metabolic disorders, or neuropathology. Relatively little is known about how these disorders affect the chemical reactions involved in learning and memory. Experiments in fruit flies, snails, and mice have revealed some highly conserved pathways that are involved in learning, memory, and synaptic plasticity, which is the primary substrate for memory storage. These can be divided into short-term memory storage through local changes in synapses, and long-term storage mediated by activation of transcription to translate new proteins that modify synaptic function. This review summarizes evidence that disruptions in these pathways are involved in human cognitive disorders, including neurofibromatosis type I, Coffin-Lowry syndrome, Rubinstein-Taybi syndrome, Rett syndrome, tuberous sclerosis-2, Down syndrome, X-linked alpha-thalassemia/mental retardation, cretinism, Huntington disease, and lead poisoning.

  16. Sox9 modulates cell survival and adipogenic differentiation of multipotent adult rat mesenchymal stem cells.

    PubMed

    Stöckl, Sabine; Bauer, Richard J; Bosserhoff, Anja K; Göttl, Claudia; Grifka, Joachim; Grässel, Susanne

    2013-07-01

    Sox9 is a key transcription factor in early chondrogenesis with distinct roles in differentiation processes and during embryonic development. Here, we report that Sox9 modulates cell survival and contributes to the commitment of mesenchymal stem cells (MSC) to adipogenic or osteogenic differentiation lineages. We found that the Sox9 activity level affects the expression of the key transcription factor in adipogenic differentiation, C/EBPβ, and that cyclin D1 mediates the expression of the osteogenic marker osteocalcin in undifferentiated adult bone-marrow-derived rat MSC. Introducing a stable Sox9 knockdown into undifferentiated rat MSC resulted in a marked decrease in proliferation rate and an increase in apoptotic activity. This was linked to a profound upregulation of p21 and cyclin D1 gene and protein expression accompanied by an induction of caspase 3/7 activity and an inhibition of Bcl-2. We observed that Sox9 silencing provoked a delayed S-phase progression and an increased nuclear localization of p21. The protein stability of cyclin D1 was induced in the absence of Sox9 presumably as a function of altered p38 signalling. In addition, the major transcription factor for adipogenic differentiation, C/EBPβ, was repressed after silencing Sox9. The nearly complete absence of C/EBPβ protein as a result of increased destabilization of the C/EBPβ mRNA and the impact on osteocalcin gene expression and protein synthesis, suggests that a delicate balance of Sox9 level is not only imperative for proper chondrogenic differentiation of progenitor cells, but also affects the adipogenic and probably osteogenic differentiation pathways of MSC. Our results identified Sox9 as an important link between differentiation, proliferation and apoptosis in undifferentiated adult rat mesenchymal stem cells, emphasizing the importance of the delicate balance of a precisely regulated Sox9 activity in MSC not only for proper skeletal development during embryogenesis but probably also

  17. Pioneer transcription factors in cell reprogramming.

    PubMed

    Iwafuchi-Doi, Makiko; Zaret, Kenneth S

    2014-12-15

    A subset of eukaryotic transcription factors possesses the remarkable ability to reprogram one type of cell into another. The transcription factors that reprogram cell fate are invariably those that are crucial for the initial cell programming in embryonic development. To elicit cell programming or reprogramming, transcription factors must be able to engage genes that are developmentally silenced and inappropriate for expression in the original cell. Developmentally silenced genes are typically embedded in "closed" chromatin that is covered by nucleosomes and not hypersensitive to nuclease probes such as DNase I. Biochemical and genomic studies have shown that transcription factors with the highest reprogramming activity often have the special ability to engage their target sites on nucleosomal DNA, thus behaving as "pioneer factors" to initiate events in closed chromatin. Other reprogramming factors appear dependent on pioneer factors for engaging nucleosomes and closed chromatin. However, certain genomic domains in which nucleosomes are occluded by higher-order chromatin structures, such as in heterochromatin, are resistant to pioneer factor binding. Understanding the means by which pioneer factors can engage closed chromatin and how heterochromatin can prevent such binding promises to advance our ability to reprogram cell fates at will and is the topic of this review.

  18. Interactions of transcription factors with chromatin.

    PubMed

    van Bakel, Harm

    2011-01-01

    Sequence-specific transcription factors (TFs) play a central role in regulating transcription initiation by directing the recruitment and activity of the general transcription machinery and accessory factors. It is now well established that many of the effects exerted by TFs in eukaryotes are mediated through interactions with a host of coregulators that modify the chromatin state, resulting in a more open (in case of activation) or closed conformation (in case of repression). The relationship between TFs and chromatin is a two-way street, however, as chromatin can in turn influence the recognition and binding of target sequences by TFs. The aim of this chapter is to highlight how this dynamic interplay between TF-directed remodelling of chromatin and chromatin-adjusted targeting of TF binding determines where and how transcription is initiated, and to what degree it is productive.

  19. Transcription Factors in Xylem Development. Final report

    SciTech Connect

    Sederoff, Ronald; Whetten, Ross; O'Malley, David; Campbell, Malcolm

    1999-07-01

    Answers to the following questions are answered in this report. do the two pine Byb proteins previously identified as candidate transcription factors bind to DNA and activate transcription? In what cell types are tehse Myb proteins expressed? Are these proteins localized to the nucleus? Do other proteins in pine xylem interact with these Myb proteins? Does altered expression of these genes have an impact on xylogenesis, specifically the expression of monolignol biosynthetic genes?

  20. Transcription factors make a turn into migration

    PubMed Central

    2009-01-01

    The formation of the brain depends on a tightly regulated process of proliferation, neuronal fate specification and migration which eventually leads to the final architecture of the cerebral cortex. The specification of different neuronal subtypes depends on a complex developmental program mastered by several transcription factors. Besides, it was shown that the same transcription factors can subsequently control neural migration. However, the mechanisms of this regulation are still unclear. Two papers recently published by Heng et al.1 and Nóbrega-Pereira et al.2 confirm that these transcription factors are involved in controlling neural migration. In addition, these studies show that these transcription factors can control neural migration via different molecular mechanisms: Heng and coworkers show that Neurogenin 2 controls neural migration by directly regulating the expression of the small GTPase Rnd2 (a modulator of cytoskeletal dynamics); whereas Nóbrega-Pereira and colleagues demonstrate that Nkx2-1 establishes the response to guidance cues, in migrating interneurons, by directly regulating the expression of the semaphorin receptor Neuropilin 2. Taken together, these findings support the idea that transcription factors are reused during development to control neural migration and they shed light on the molecular mechanisms underlying this regulation. PMID:19262164

  1. Onecut transcription factors in development and disease

    PubMed Central

    Kropp, Peter A.; Gannon, Maureen

    2016-01-01

    Developmental processes are remarkably well conserved among species, and among the most highly conserved developmental regulators are transcription factor families. The Onecut transcription factor family consists of three members known for their single “cut” DNA-binding domain and an aberrant homeodomain. The three members of the Onecut family are highly conserved from Drosophila to humans and have significant roles in regulating the development of diverse tissues derived from the ectoderm or endoderm, where they activate a number of gene families. Of note, the genetic interaction between Onecut family members and Neurogenin genes appears to be essential in multiple tissues for proper specification and development of unique cell types. This review highlights the importance of the Onecut factors in cell fate specification and organogenesis, highlighting their role in vertebrates, and discusses their role in the maintenance of cell fate and prevention of disease. We cover the essential spatial and temporal control of Onecut factor expression and how this tight regulation is required for proper specification and subsequent terminal differentiation of multiple tissue types including those within the retina, central nervous system, liver and pancreas. Beyond development, Onecut factors perform necessary functions in mature cell types; their misregulation can contribute to diseases such as pancreatic cancer. Given the importance of this family of transcription factors in development and disease, their consideration in essential transcription factor networks is underappreciated. PMID:28018056

  2. Notch Signaling Rescues Loss of Satellite Cells Lacking Pax7 and Promotes Brown Adipogenic Differentiation

    PubMed Central

    Pasut, Alessandra; Chang, Natasha C.; Rodriguez, Uxia Gurriaran; Faulkes, Sharlene; Yin, Hang; Lacaria, Melanie; Ming, Hong; Rudnicki, Michael A.

    2016-01-01

    Summary Pax7 is a nodal transcription factor that is essential for regulating the maintenance, expansion, and myogenic identity of satellite cells during both neonatal and adult myogenesis. Deletion of Pax7 results in loss of satellite cells and impaired muscle regeneration. Here we show that ectopic expression of the constitutively active intracellular domain of Notch1 (NICD1) rescues the loss of Pax7-deficient satellite cells and restores their proliferative potential. Strikingly NICD1-expressing satellite cells do not undergo myogenic differentiation and instead acquire a brown adipogenic fate both in vivo and in vitro. NICD-expressing Pax7-/- satellite cells fail to upregulate MyoD and instead express the brown adipogenic marker PRDM16. Overall these results show that Notch1 activation compensates for the loss of Pax7 in the quiescent state and acts as a molecular switch to promote brown adipogenesis in adult skeletal muscle. PMID:27346341

  3. Notch Signaling Rescues Loss of Satellite Cells Lacking Pax7 and Promotes Brown Adipogenic Differentiation.

    PubMed

    Pasut, Alessandra; Chang, Natasha C; Rodriguez, Uxia Gurriaran; Faulkes, Sharlene; Yin, Hang; Lacaria, Melanie; Ming, Hong; Rudnicki, Michael A

    2016-07-12

    Pax7 is a nodal transcription factor that is essential for regulating the maintenance, expansion, and myogenic identity of satellite cells during both neonatal and adult myogenesis. Deletion of Pax7 results in loss of satellite cells and impaired muscle regeneration. Here, we show that ectopic expression of the constitutively active intracellular domain of Notch1 (NICD1) rescues the loss of Pax7-deficient satellite cells and restores their proliferative potential. Strikingly NICD1-expressing satellite cells do not undergo myogenic differentiation and instead acquire a brown adipogenic fate both in vivo and in vitro. NICD-expressing Pax7(-/-) satellite cells fail to upregulate MyoD and instead express the brown adipogenic marker PRDM16. Overall, these results show that Notch1 activation compensates for the loss of Pax7 in the quiescent state and acts as a molecular switch to promote brown adipogenesis in adult skeletal muscle.

  4. Hey bHLH transcription factors.

    PubMed

    Weber, David; Wiese, Cornelia; Gessler, Manfred

    2014-01-01

    Hey bHLH transcription factors are direct targets of canonical Notch signaling. The three mammalian Hey proteins are closely related to Hes proteins and they primarily repress target genes by either directly binding to core promoters or by inhibiting other transcriptional activators. Individual candidate gene approaches and systematic screens identified a number of Hey target genes, which often encode other transcription factors involved in various developmental processes. Here, we review data on interaction partners and target genes and conclude with a model for Hey target gene regulation. Furthermore, we discuss how expression of Hey proteins affects processes like cell fate decisions and differentiation, e.g., in cardiovascular, skeletal, and neural development or oncogenesis and how this relates to the observed developmental defects and phenotypes observed in various knockout mice.

  5. TCP transcription factors: architectures of plant form.

    PubMed

    Manassero, Nora G Uberti; Viola, Ivana L; Welchen, Elina; Gonzalez, Daniel H

    2013-04-01

    After its initial definition in 1999, the TCP family of transcription factors has become the focus of a multiplicity of studies related with plant development at the cellular, organ, and tissue levels. Evidence has accumulated indicating that TCP transcription factors are the main regulators of plant form and architecture and constitute a tool through which evolution shapes plant diversity. The TCP transcription factors act in a multiplicity of pathways related with cell proliferation and hormone responses. In recent years, the molecular pathways of TCP protein action and biochemical studies on their mode of interaction with DNA have begun to shed light on their mechanism of action. However, the available information is fragmented and a unifying view of TCP protein action is lacking, as well as detailed structural studies of the TCP-DNA complex. Also important, the possible role of TCP proteins as integrators of plant developmental responses to the environment has deserved little attention. In this review, we summarize the current knowledge about the structure and functions of TCP transcription factors and analyze future perspectives for the study of the role of these proteins and their use to modify plant development.

  6. Polyphenol Compound as a Transcription Factor Inhibitor

    PubMed Central

    Park, Seyeon

    2015-01-01

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)). PMID:26529010

  7. Mechanism of osteogenic and adipogenic differentiation of tendon stem cells induced by sirtuin 1.

    PubMed

    Liu, Junpeng; Han, Weifeng; Chen, Lei; Tang, Kanglai

    2016-08-01

    The aim of the present study was to assess the expression of sirtuin (Sirt)1 in tendon stem cells (TSCs) and to elucidate its association with osteogenic and adipogenic differentiation of TSCs. Reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analyses were performed to detect Sirt1 mRNA and protein levels in TSCs, respectively. TSCs were positive for Sirt1 expression, which was elevated by Sirt1 activator SRT1720 in a time- and concentration- dependent manner, and decreased by Sirt1 inhibitor EX527. TSCs were treated with SRT1720 and EX527 for various time periods and resulting changes in osteogenic and adipogenic protein markers were analyzed using alizarin red and oil red O staining. According to RT-qPCR and western blot analyses, the associated factors β‑catenin, Runt-related transcription factor 2 (Runx2) and bone morphogenetic protein 2 were elevated following increases of Sirt1 levels, while CCAAT/enhancer binding protein (CEBP)α and peroxisome proliferator-activated receptor (PPAR)γ were decreased. These results suggested that osteogenic differentiation capacity was enhanced, while adipogenic differentiation capacity declined. Further mechanistic study revealed that phosphoinositide‑3 kinase (PI3K) and AKT were decreased following activation of Sirt1. In conclusion, the present study suggested that Sirt1 promotes the osteogenic differentiation of TSCs through upregulating β‑catenin and Runx2 and inhibits the adipogenic differentiation of TSCs through the PI3K/AKT pathway with downregulation of CEBPα and PPARγ.

  8. GOLDEN 2-LIKE Transcription Factors of Plants

    PubMed Central

    Chen, Min; Ji, Meiling; Wen, Binbin; Liu, Li; Li, Shaoxuan; Chen, Xiude; Gao, Dongsheng; Li, Ling

    2016-01-01

    Golden2-like (GLK) transcription factors are members of the GARP family of Myb transcription factors with an established relationship to chloroplast development in the plant kingdom. In the last century, Golden2 was proposed as a second golden producing factor and identified as controlling cellular differentiation in maize leaves. Then, GLKs were also found to play roles in disease defense and their function is conserved in regulating chloroplast development. Recently, research on GLKs has rapidly increased and shown that GLKs control chloroplast development in green and non-green tissues. Moreover, links between phytohormones and GLKs were verified. In this mini-review, we summarize the history, conservation, function, potential targets and degradation of GLKs. PMID:27757121

  9. Zfp423 promotes adipogenic differentiation of bovine stromal vascular cells.

    PubMed

    Huang, Yan; Das, Arun Kr; Yang, Qi-Yuan; Zhu, Mei-Jun; Du, Min

    2012-01-01

    Intramuscular fat or marbling is critical for the palatability of beef. In mice, very recent studies show that adipocytes and fibroblasts share a common pool of progenitor cells, with Zinc finger protein 423 (Zfp423) as a key initiator of adipogenic differentiation. To evaluate the role of Zfp423 in intramuscular adipogenesis and marbling in beef cattle, we sampled beef muscle for separation of stromal vascular cells. These cells were immortalized with pCI neo-hEST2 and individual clones were selected by G418. A total of 288 clones (3×96 well plates) were isolated and induced to adipogenesis. The presence of adipocytes was assessed by Oil-Red-O staining. Three clones with high and low adipogenic potential respectively were selected for further analyses. In addition, fibro/adipogenic progenitor cells were selected using a surface marker, platelet derived growth factor receptor (PDGFR) α. The expression of Zfp423 was much higher (307.4±61.9%, P<0.05) in high adipogenic cells, while transforming growth factor (TGF)-β was higher (156.1±48.7%, P<0.05) in low adipogenic cells. Following adipogenic differentiation, the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein α (C/EBPα) were much higher (239.4±84.1% and 310.7±138.4%, respectively, P<0.05) in high adipogenic cells. Over-expression of Zfp423 in stromal vascular cells and cloned low adipogenic cells dramatically increased their adipogenic differentiation, accompanied with the inhibition of TGF-β expression. Zfp423 knockdown by shRNA in high adipogenic cells largely prevented their adipogenic differentiation. The differential regulation of Zfp423 and TGF-β between low and high adipogenic cells is associated with the DNA methylation in their promoters. In conclusion, data show that Zfp423 is a critical regulator of adipogenesis in stromal vascular cells of bovine muscle, and Zfp423 may provide a molecular target for enhancing intramuscular adipogenesis

  10. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression.

    PubMed

    Huang, Shan; Wang, Shihua; Bian, Chunjing; Yang, Zhuo; Zhou, Hong; Zeng, Yang; Li, Hongling; Han, Qin; Zhao, Robert Chunhua

    2012-09-01

    Mesenchmal stem cells (MSCs) can be differentiated into either adipocytes or osteoblasts, and a reciprocal relationship exists between adipogenesis and osteogenesis. Multiple transcription factors and signaling pathways have been reported to regulate adipogenic or osteogenic differentiation, respectively, yet the molecular mechanism underlying the cell fate alteration between adipogenesis and osteogenesis still remains to be illustrated. MicroRNAs are important regulators in diverse biological processes by repressing protein expression of their targets. Here, miR-22 was found to regulate adipogenic and osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hADMSCs) in opposite directions. Our data showed that miR-22 decreased during the process of adipogenic differentiation but increased during osteogenic differentiation. On one hand, overexpression of miR-22 in hADMSCs could inhibit lipid droplets accumulation and repress the expression of adipogenic transcription factors and adipogenic-specific genes. On the other hand, enhanced alkaline phosphatase activity and matrix mineralization, as well as increased expression of osteo-specific genes, indicated a positive role of miR-22 in regulating osteogenic differentiation. Target databases prediction and validation by Dual Luciferase Reporter Assay, western blot, and real-time polymerase chain reaction identified histone deacetylase 6 (HDAC6) as a direct downstream target of miR-22 in hADMSCs. Inhibition of endogenous HDAC6 by small-interfering RNAs suppressed adipogenesis and stimulated osteogenesis, consistent with the effect of miR-22 overexpression in hADMSCs. Together, our results suggested that miR-22 acted as a critical regulator of balance between adipogenic and osteogenic differentiation of hADMSCs by repressing its target HDAC6.

  11. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology

    PubMed Central

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-01-01

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated. PMID:26986509

  12. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology.

    PubMed

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-03-17

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated.

  13. The scaffold protein Tks4 is required for the differentiation of mesenchymal stromal cells (MSCs) into adipogenic and osteogenic lineages

    PubMed Central

    Dülk, Metta; Kudlik, Gyöngyi; Fekete, Anna; Ernszt, Dávid; Kvell, Krisztián; Pongrácz, Judit E.; Merő, Balázs L.; Szeder, Bálint; Radnai, László; Geiszt, Miklós; Csécsy, Dalma E.; Kovács, Tamás; Uher, Ferenc; Lányi, Árpád; Vas, Virag; Buday, László

    2016-01-01

    The commitment steps of mesenchymal stromal cells (MSCs) to adipogenic and other lineages have been widely studied but not fully understood. Therefore, it is critical to understand which molecules contribute to the conversion of stem cells into differentiated cells. The scaffold protein Tks4 plays a role in podosome formation, EGFR signaling and ROS production. Dysfunction of Tks4 causes a hereditary disease called Frank-ter Haar syndrome with a variety of defects concerning certain mesenchymal tissues (bone, fat and cartilage) throughout embryogenic and postnatal development. In this study, we aimed to analyze how the mutation of Tks4 affects the differentiation potential of multipotent bone marrow MSCs (BM-MSCs). We generated a Tks4 knock-out mouse strain on C57Bl/6 background, and characterized BM-MSCs isolated from wild type and Tks4−/− mice to evaluate their differentiation. Tks4−/− BM-MSCs had reduced ability to differentiate into osteogenic and adipogenic lineages compared to wild type. Studying the expression profile of a panel of lipid-regulated genes during adipogenic induction revealed that the expression of adipogenic transcription factors, genes responsible for lipid droplet formation, sterol and fatty acid metabolism was delayed or reduced in Tks4−/− BM-MSCs. Taken together, these results establish a novel function for Tks4 in the regulation of MSC differentiation. PMID:27711054

  14. Adipogenic cascade can be induced without adipogenic media by a human adenovirus.

    PubMed

    Rathod, Miloni A; Rogers, Pamela M; Vangipuram, Sharada D; McAllister, Emily J; Dhurandhar, Nikhil V

    2009-04-01

    Several metabolic abnormalities are associated with relative excess or deficiency of adipose tissue. Identifying the regulators of adipogenic differentiation is critical for its successful manipulation. Ad36, a human adenovirus, is a novel factor that promotes adipogenesis. We exploited the adipogenic potential of Ad36 to reveal exogenous modifiers of adipogenesis in rodent preadipocyte cell line in the presence or absence of differentiation inducers methyl-isobutyl-xanthine, dexamethasone, and insulin (M, D, and I; MDI). A nonadipogenic human adenovirus Ad2 was used as a negative control for viral infection. First, we confirmed that, Ad36, but not Ad2, increases lipid accumulation in the presence or absence of MDI. Time-course studies for expression of key genes of adipogenic cascade showed that it is Ad36, but not Ad2, which downregulated preadipocyte marker gene Wnt10b, and upregulated expression of early (C/EBPDelta and C/EBPbeta), intermediate (PPARgamma2), and late genes (aP2 and G3PDH) of adipogenic cascade even in the absence of MDI. In the presence of MDI, onset of expression of adipogenic genes coincided for Ad36 and control groups, but the expressions were significantly greater for the Ad36 group. Next, we observed that attenuation of Ad36 mRNA expression by an antiadenoviral agent reduced 3T3-L1 differentiation, indicating that viral mRNA expression is required for the process. Furthermore, with or without MDI or its components, Ad36 significantly increased lipid accumulation in 3T3-L1 cells. Cell confluency at the time of Ad36 infection positively influenced lipid accumulation. The results reveal that Ad36 is an MDI-independent exogenous regulator of the adipogenic process. Elucidating the molecular pathways involved may reveal novel regulatory controls of adipogenesis.

  15. Modulation of transcription factors by curcumin.

    PubMed

    Shishodia, Shishir; Singh, Tulika; Chaturvedi, Madan M

    2007-01-01

    Curcumin is the active ingredient of turmeric that has been consumed as a dietary spice for ages. Turmeric is widely used in traditional Indian medicine to cure biliary disorders, anorexia, cough, diabetic wounds, hepatic disorders, rheumatism, and sinusitis. Extensive investigation over the last five decades has indicated that curcumin reduces blood cholesterol, prevents low-density lipoprotein oxidation, inhibits platelet aggregation, suppresses thrombosis and myocardial infarction, suppresses symptoms associated with type II diabetes, rheumatoid arthritis, multiple sclerosis, and Alzheimer's disease, inhibits HIV replication, enhances wound healing, protects from liver injury, increases bile secretion, protects from cataract formation, and protects from pulmonary toxicity and fibrosis. Evidence indicates that the divergent effects of curcumin are dependent on its pleiotropic molecular effects. These include the regulation of signal transduction pathways and direct modulation of several enzymatic activities. Most of these signaling cascades lead to the activation of transcription factors. Curcumin has been found to modulate the activity of several key transcription factors and, in turn, the cellular expression profiles. Curcumin has been shown to elicit vital cellular responses such as cell cycle arrest, apoptosis, and differentiation by activating a cascade of molecular events. In this chapter, we briefly review the effects of curcumin on transcription factors NF-KB, AP-1, Egr-1, STATs, PPAR-gamma, beta-catenin, nrf2, EpRE, p53, CBP, and androgen receptor (AR) and AR-related cofactors giving major emphasis to the molecular mechanisms of its action.

  16. Systematic genetic analysis of transcription factors to map the fission yeast transcription-regulatory network.

    PubMed

    Chua, Gordon

    2013-12-01

    Mapping transcriptional-regulatory networks requires the identification of target genes, binding specificities and signalling pathways of transcription factors. However, the characterization of each transcription factor sufficiently for deciphering such networks remains laborious. The recent availability of overexpression and deletion strains for almost all of the transcription factor genes in the fission yeast Schizosaccharomyces pombe provides a valuable resource to better investigate transcription factors using systematic genetics. In the present paper, I review and discuss the utility of these strain collections combined with transcriptome profiling and genome-wide chromatin immunoprecipitation to identify the target genes of transcription factors.

  17. Predicting tissue specific transcription factor binding sites

    PubMed Central

    2013-01-01

    Background Studies of gene regulation often utilize genome-wide predictions of transcription factor (TF) binding sites. Most existing prediction methods are based on sequence information alone, ignoring biological contexts such as developmental stages and tissue types. Experimental methods to study in vivo binding, including ChIP-chip and ChIP-seq, can only study one transcription factor in a single cell type and under a specific condition in each experiment, and therefore cannot scale to determine the full set of regulatory interactions in mammalian transcriptional regulatory networks. Results We developed a new computational approach, PIPES, for predicting tissue-specific TF binding. PIPES integrates in vitro protein binding microarrays (PBMs), sequence conservation and tissue-specific epigenetic (DNase I hypersensitivity) information. We demonstrate that PIPES improves over existing methods on distinguishing between in vivo bound and unbound sequences using ChIP-seq data for 11 mouse TFs. In addition, our predictions are in good agreement with current knowledge of tissue-specific TF regulation. Conclusions We provide a systematic map of computationally predicted tissue-specific binding targets for 284 mouse TFs across 55 tissue/cell types. Such comprehensive resource is useful for researchers studying gene regulation. PMID:24238150

  18. Forkhead transcription factors regulate mosquito reproduction

    PubMed Central

    Hansen, Immo A.; Sieglaff, Douglas H.; Munro, James B.; Shiao, Shin-Hong; Cruz, Josefa; Lee, Iris W.; Heraty, John M.; Raikhel, Alexander S.

    2007-01-01

    Forkhead box (Fox) genes encode a family of transcription factors defined by a ‘winged helix’ DNA-binding domain. In this study we aimed to identify Fox factors that are expressed within the fat body of the yellow fever mosquito Aedes aegypti, and determine whether any of these are involved in the regulation of mosquito yolk protein gene expression. The Ae. aegypti genome contains eighteen loci that encode putative Fox factors. Our stringent cladistic analysis has profound implications for the use of Fox genes as phylogenetic markers. Twelve Ae. aegypti Fox genes are expressed within various tissues of adult females, six of which are expressed within the fat body. All six Fox genes expressed in the fat body displayed dynamic expression profiles following a blood meal. We knocked down the ’fat body Foxes’ through RNAi to determine whether these “knockdowns” hindered amino acid-induced vitellogenin gene expression. We also determined the effect of these knockdowns on the number of eggs deposited following a blood meal. Knockdown of FoxN1, FoxN2, FoxL, and FoxO, had a negative effect on amino acid- induced vitellogenin gene expression and resulted in significantly fewer eggs laid. Our analysis stresses the importance of Fox transcription factors in regulating mosquito reproduction. PMID:17681238

  19. Ellagic acid suppresses lipid accumulation by suppressing early adipogenic events and cell cycle arrest.

    PubMed

    Woo, Mi-Seon; Choi, Hyeon-Son; Seo, Min-Jung; Jeon, Hui-Jeon; Lee, Boo-Yong

    2015-03-01

    Ellagic acid (EA) is a natural polyphenol found in various fruits and vegetables. In this study, we examined the inhibitory effect of EA on fat accumulation in 3T3-L1 cells during adipogenesis. Our data showed that EA reduced fat accumulation by down-regulating adipogenic markers such as peroxisome proliferator activated receptor γ (PPARγ) and the CCAAT/enhancer binding protein α (C/EBPα) at the mRNA and protein levels in a dose-dependent manner. We found that the decrease in adipogenic markers resulted from reduced expression of some early adipogenic transcription factors such as KLF4, KLF5, Krox20, and C/EBPβ within 24 h. Also, these inhibitions were correlated with down-regulation of TG synthetic enzymes, causing inhibition of triglyceride (TG) levels in 3T3-L1 cells investigated by ORO staining and in zebrafish investigated by TG assay. Additionally, the cell cycle analysis showed that EA inhibited cell cycle progression by arresting cells at the G0/G1 phase.

  20. HIF transcription factors, inflammation, and immunity.

    PubMed

    Palazon, Asis; Goldrath, Ananda W; Nizet, Victor; Johnson, Randall S

    2014-10-16

    The hypoxic response in cells and tissues is mediated by the family of hypoxia-inducible factor (HIF) transcription factors; these play an integral role in the metabolic changes that drive cellular adaptation to low oxygen availability. HIF expression and stabilization in immune cells can be triggered by hypoxia, but also by other factors associated with pathological stress: e.g., inflammation, infectious microorganisms, and cancer. HIF induces a number of aspects of host immune function, from boosting phagocyte microbicidal capacity to driving T cell differentiation and cytotoxic activity. Cellular metabolism is emerging as a key regulator of immunity, and it constitutes another layer of fine-tuned immune control by HIF that can dictate myeloid cell and lymphocyte development, fate, and function. Here we discuss how oxygen sensing in the immune microenvironment shapes immunological response and examine how HIF and the hypoxia pathway control innate and adaptive immunity.

  1. Transcription factor repertoire of homeostatic eosinophilopoiesis

    PubMed Central

    Bouffi, Carine; Kartashov, Andrey V.; Schollaert, Kaila L.; Chen, Xiaoting; Bacon, W. Clark; Weirauch, Matthew T.; Barski, Artem; Fulkerson, Patricia C.

    2015-01-01

    The production of mature eosinophils is a tightly orchestrated process with the aim to sustain normal eosinophil levels in tissues while also maintaining low numbers of these complex and sensitive cells in the blood. To identify regulators of homeostatic eosinophilopoiesis in mice, we took a global approach to identify genome-wide transcriptome and epigenome changes that occur during homeostasis at critical developmental stages, including eosinophil-lineage commitment and lineage maturation. Our analyses revealed a markedly greater number of transcriptome alterations associated with eosinophil maturation (1199 genes) than with eosinophil-lineage commitment (490 genes), highlighting the greater transcriptional investment necessary for differentiation. Eosinophil progenitors (EoPs) were noted to express high levels of granule proteins and contain granules with an ultrastructure distinct from that of mature resting eosinophils. Our analyses also delineated a 976-gene eosinophil-lineage transcriptome that included a repertoire of 56 transcription factors, many of which have never previously been associated with eosinophils. EoPs and eosinophils, but not granulocyte-monocyte progenitors (GMPs) or neutrophils, expressed Helios and Aiolos, members of the Ikaros family of transcription factors, which regulate gene expression via modulation of chromatin structure and DNA accessibility. Epigenetic studies revealed a distinct distribution of active chromatin marks between genes induced with lineage commitment and genes induced with cell maturation during eosinophil development. In addition, Aiolos and Helios binding sites were significantly enriched in genes expressed by EoPs and eosinophils with active chromatin, highlighting a potential novel role for Helios and Aiolos in regulating gene expression during eosinophil development. PMID:26268651

  2. Transcription factor binding energy vs. biological function

    NASA Astrophysics Data System (ADS)

    Djordjevic, M.; Grotewold, E.

    2007-03-01

    Transcription factors (TFs) are proteins that bind to DNA and regulate expression of genes. Identification of transcription factor binding sites within the regulatory segments of genomic DNA is an important step towards understanding of gene regulatory networks. Recent theoretical advances that we developed [1,2], allow us to infer TF-DNA interaction parameters from in-vitro selection experiments [3]. We use more than 6000 binding sequences [3], assembled under controlled conditions, to obtain protein-DNA interaction parameters for a mammalian TF with up to now unprecedented accuracy. Can one accurately identify biologically functional TF binding sites (i.e. the binding sites that regulate gene expression), even with the best possible protein-DNA interaction parameters? To address this issue we i) compare our prediction of protein binding with gene expression data, ii) use evolutionary comparison between related mammalian genomes. Our results strongly suggest that in a genome there exists a large number of randomly occurring high energy binding sites that are not biologically functional. [1] M Djordjevic, submitted to Biomol. Eng. [2] M. Djordjevic and A. M. Sengupta, Phys. Biol. 3: 13, 2006. [3] E. Roulet et al., Nature Biotech. 20: 831, 2002.

  3. From tissue mechanics to transcription factors

    PubMed Central

    Janmey, Paul A.; Wells, Rebecca G.; Assoian, Richard K.; McCulloch, Christopher A.

    2015-01-01

    Changes in tissue stiffness are frequently associated with diseases such as cancer, fibrosis, and atherosclerosis. Several recent studies suggest that, in addition to resulting from pathology, mechanical changes may play a role akin to soluble factors in causing the progression of disease, and similar mechanical control might be essential for normal tissue development and homeostasis. Many cell types alter their structure and function in response to exogenous forces or as a function of the mechanical properties of the materials to which they adhere. This review summarizes recent progress in identifying intracellular signaling pathways, and especially transcriptional programs, that are differentially activated when cells adhere to materials with different mechanical properties or when they are subject to tension arising from external forces. Several cytoplasmic or cytoskeletal signaling pathways involving small GTPases, focal adhesion kinase and transforming growth factor beta as well as the transcriptional regulators MRTF-A, NFκB, and Yap/Taz have emerged as important mediators of mechanical signaling. PMID:23969122

  4. Mitochondrial nucleoid and transcription factor A.

    PubMed

    Kanki, Tomotake; Nakayama, Hiroshi; Sasaki, Narie; Takio, Koji; Alam, Tanfis Istiaq; Hamasaki, Naotaka; Kang, Dongchon

    2004-04-01

    Nuclear DNA is tightly packed into nucleosomal structure. In contrast, human mitochondrial DNA (mtDNA) had long been believed to be rather naked because mitochondria lack histone. Mitochondrial transcription factor A (TFAM), a member of a high mobility group (HMG) protein family and a first-identified mitochondrial transcription factor, is essential for maintenance of mitochondrial DNA. Abf2, a yeast counterpart of human TFAM, is abundant enough to cover the whole region of mtDNA and to play a histone-like role in mitochondria. Human TFAM is indeed as abundant as Abf2, suggesting that TFAM also has a histone-like architectural role for maintenance of mtDNA. When human mitochondria are solubilized with non-ionic detergent Nonidet-P40 and then separated into soluble and particulate fractions, most TFAM is recovered from the particulate fraction together with mtDNA, suggesting that human mtDNA forms a nucleoid structure. TFAM is tightly associated with mtDNA as a main component of the nucleoid.

  5. Pleiotropic Functions for Transcription Factor Zscan10

    PubMed Central

    Kraus, Petra; V, Sivakamasundari; Yu, Hong Bing; Xing, Xing; Lim, Siew Lan; Adler, Thure; Pimentel, Juan Antonio Aguilar; Becker, Lore; Bohla, Alexander; Garrett, Lillian; Hans, Wolfgang; Hölter, Sabine M.; Janas, Eva; Moreth, Kristin; Prehn, Cornelia; Puk, Oliver; Rathkolb, Birgit; Rozman, Jan; Adamski, Jerzy; Bekeredjian, Raffi; Busch, Dirk H.; Graw, Jochen; Klingenspor, Martin; Klopstock, Thomas; Neff, Frauke; Ollert, Markus; Stoeger, Tobias; Yildrim, Ali Önder; Eickelberg, Oliver; Wolf, Eckhard; Wurst, Wolfgang; Fuchs, Helmut; Gailus-Durner, Valérie; de Angelis, Martin Hrabě; Lufkin, Thomas; Stanton, Lawrence W.

    2014-01-01

    The transcription factor Zscan10 had been attributed a role as a pluripotency factor in embryonic stem cells based on its interaction with Oct4 and Sox2 in in vitro assays. Here we suggest a potential role of Zscan10 in controlling progenitor cell populations in vivo. Mice homozygous for a Zscan10 mutation exhibit reduced weight, mild hypoplasia in the spleen, heart and long bones and phenocopy an eye malformation previously described for Sox2 hypomorphs. Phenotypic abnormalities are supported by the nature of Zscan10 expression in midgestation embryos and adults suggesting a role for Zscan10 in either maintaining progenitor cell subpopulation or impacting on fate choice decisions thereof. PMID:25111779

  6. Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell lineages

    SciTech Connect

    Caiazzo, Massimiliano; Colucci-D'Amato, Luca; Esposito, Maria T.; Parisi, Silvia; Stifani, Stefano; Ramirez, Francesco; Porzio, Umberto di

    2010-08-15

    Previous gene targeting studies in mice have implicated the nuclear protein Krueppel-like factor 7 (KLF7) in nervous system development while cell culture assays have documented its involvement in cell cycle regulation. By employing short hairpin RNA (shRNA)-mediated gene silencing, here we demonstrate that murine Klf7 gene expression is required for in vitro differentiation of neuroectodermal and mesodermal cells. Specifically, we show a correlation of Klf7 silencing with down-regulation of the neuronal marker microtubule-associated protein 2 (Map2) and the nerve growth factor (NGF) tyrosine kinase receptor A (TrkA) using the PC12 neuronal cell line. Similarly, KLF7 inactivation in Klf7-null mice decreases the expression of the neurogenic marker brain lipid-binding protein/fatty acid-binding protein 7 (BLBP/FABP7) in neural stem cells (NSCs). We also report that Klf7 silencing is detrimental to neuronal and cardiomyocytic differentiation of embryonic stem cells (ESCs), in addition to altering the adipogenic and osteogenic potential of mouse embryonic fibroblasts (MEFs). Finally, our results suggest that genes that are key for self-renewal of undifferentiated ESCs repress Klf7 expression in ESCs. Together with previous findings, these results provide evidence that KLF7 has a broad spectrum of regulatory functions, which reflect the discrete cellular and molecular contexts in which this transcription factor operates.

  7. Nucleotides of transcription factor binding sites exert interdependent effects on the binding affinities of transcription factors

    PubMed Central

    Bulyk, Martha L.; Johnson, Philip L. F.; Church, George M.

    2002-01-01

    We can determine the effects of many possible sequence variations in transcription factor binding sites using microarray binding experiments. Analysis of wild-type and mutant Zif268 (Egr1) zinc fingers bound to microarrays containing all possible central 3 bp triplet binding sites indicates that the nucleotides of transcription factor binding sites cannot be treated independently. This indicates that the current practice of characterizing transcription factor binding sites by mutating individual positions of binding sites one base pair at a time does not provide a true picture of the sequence specificity. Similarly, current bioinformatic practices using either just a consensus sequence, or even mononucleotide frequency weight matrices to provide more complete descriptions of transcription factor binding sites, are not accurate in depicting the true binding site specificities, since these methods rely upon the assumption that the nucleotides of binding sites exert independent effects on binding affinity. Our results stress the importance of complete reference tables of all possible binding sites for comparing protein binding preferences for various DNA sequences. We also show results suggesting that microarray binding data using particular subsets of all possible binding sites can be used to extrapolate the relative binding affinities of all possible full-length binding sites, given a known binding site for use as a starting sequence for site preference refinement. PMID:11861919

  8. Functional specialization of transcription elongation factors

    PubMed Central

    Belogurov, Georgiy A; Mooney, Rachel A; Svetlov, Vladimir; Landick, Robert; Artsimovitch, Irina

    2009-01-01

    Elongation factors NusG and RfaH evolved from a common ancestor and utilize the same binding site on RNA polymerase (RNAP) to modulate transcription. However, although NusG associates with RNAP transcribing most Escherichia coli genes, RfaH regulates just a few operons containing ops, a DNA sequence that mediates RfaH recruitment. Here, we describe the mechanism by which this specificity is maintained. We observe that RfaH action is indeed restricted to those several operons that are devoid of NusG in vivo. We also show that RfaH and NusG compete for their effects on transcript elongation and termination in vitro. Our data argue that RfaH recognizes its DNA target even in the presence of NusG. Once recruited, RfaH remains stably associated with RNAP, thereby precluding NusG binding. We envision a pathway by which a specialized regulator has evolved in the background of its ubiquitous paralogue. We propose that RfaH and NusG may have opposite regulatory functions: although NusG appears to function in concert with Rho, RfaH inhibits Rho action and activates the expression of poorly translated, frequently foreign genes. PMID:19096362

  9. Protein inhibitor of activated STAT3 inhibits adipogenic gene expression

    SciTech Connect

    Deng Jianbei; Hua Kunjie; Caveney, Erica J.; Takahashi, Nobuyuki; Harp, Joyce B. . E-mail: jharp@unc.edu

    2006-01-20

    Protein inhibitor of activated STAT3 (PIAS3), a cytokine-induced repressor of signal transducer and activator of transcription 3 (STAT3) and a modulator of a broad array of nuclear proteins, is expressed in white adipose tissue, but its role in adipogenesis is not known. Here, we determined that PIAS3 was constitutively expressed in 3T3-L1 cells at all stages of adipogenesis. However, it translocated from the nucleus to the cytoplasm 4 days after induction of differentiation by isobutylmethylxanthine, dexamethasone, and insulin (MDI). In ob/ob mice, PIAS3 expression was increased in white adipose tissue depots compared to lean mice and was found in the cytoplasm of adipocytes. Overexpression of PIAS3 in differentiating preadipocytes, which localized primarily to the nucleus, inhibited mRNA level gene expression of adipogenic transcription factors C/EBP{alpha} and PPAR{gamma}, as well as their downstream target genes aP2 and adiponectin. PIAS3 also inhibited C/EBP{alpha} promoter activation mediated specifically by insulin, but not dexamethasone or isobutylmethylxanthine. Taken together, these data suggest that PIAS3 may play an inhibitory role in adipogenesis by modulating insulin-activated transcriptional activation events. Increased PIAS3 expression in adipose tissue may play a role in the metabolic disturbances of obesity.

  10. Dissecting the brown adipogenic regulatory network using integrative genomics

    PubMed Central

    Pradhan, Rachana N.; Bues, Johannes J.; Gardeux, Vincent; Schwalie, Petra C.; Alpern, Daniel; Chen, Wanze; Russeil, Julie; Raghav, Sunil K.; Deplancke, Bart

    2017-01-01

    Brown adipocytes regulate energy expenditure via mitochondrial uncoupling, which makes them attractive therapeutic targets to tackle obesity. However, the regulatory mechanisms underlying brown adipogenesis are still poorly understood. To address this, we profiled the transcriptome and chromatin state during mouse brown fat cell differentiation, revealing extensive gene expression changes and chromatin remodeling, especially during the first day post-differentiation. To identify putatively causal regulators, we performed transcription factor binding site overrepresentation analyses in active chromatin regions and prioritized factors based on their expression correlation with the bona-fide brown adipogenic marker Ucp1 across multiple mouse and human datasets. Using loss-of-function assays, we evaluated both the phenotypic effect as well as the transcriptomic impact of several putative regulators on the differentiation process, uncovering ZFP467, HOXA4 and Nuclear Factor I A (NFIA) as novel transcriptional regulators. Of these, NFIA emerged as the regulator yielding the strongest molecular and cellular phenotypes. To examine its regulatory function, we profiled the genomic localization of NFIA, identifying it as a key early regulator of terminal brown fat cell differentiation. PMID:28181539

  11. [Molecular Mechanisms of Early-stage Adipocyte Differentiation and Multi-functional Roles of Newly Isolated Adipogenic Factors].

    PubMed

    Imagawa, Masayoshi

    2016-01-01

    Obesity is a major risk factor for diabetes, hypertension, hyperlipidemia, and arteriosclerosis. Although the middle and late stages of adipocyte differentiation are well characterized, the earliest step in the differentiation process has remained largely unknown. We isolated 102 genes expressed at the beginning of the differentiation of a mouse preadipocyte cell line, 3T3-L1 cells. Because approximately half of these genes were unknown, we named them factor for adipocyte differentiation (fad) genes. I first show how these genes regulate the early stage of adipocyte differentiation. We next generated fad104-deficient mice, and demonstrated that fad104-deficient mice died due to cyanosis-associated lung dysplasia with atelectasis. We also found that fad104 positively regulated adipocyte differentiation and negatively regulated osteoblast differentiation. We then demonstrated that fad24-knockdown inhibited mitotic clonal expansion (MCE) and that FAD24 contributed to the regulation of DNA replication by recruiting histone acetyltransferase binding to ORC1 (HBO1) to DNA replication origins. In vitro culture experiments revealed that fad24-null embryos developed normally to the morula stage, but acquired growth defects in subsequent stages. These results strongly suggest that fad24 is essential for pre-implantation in embryonic development, particularly for progression to the blastocyst stage. These findings together indicate that both fad104 and fad24 contribute not only to adipogenesis but also to other physiological events. The multi-functional roles of these genes are discussed.

  12. The anti-adipogenic effect of PGRN on porcine preadipocytes involves ERK1,2 mediated PPARγ phosphorylation.

    PubMed

    Yang, Hao; Cheng, Jia; Song, Ziyi; Li, Xinjian; Zhang, Zhenyu; Mai, Yin; Pang, Weijun; Shi, Xin'e; Yang, Gongshe

    2013-12-01

    Recent researches indicate that PGRN is closely related to diabetes and is regarded as a novel adipokine associated with obesity development, affecting adipocyte biology. In the present study, we investigated the effects and mechanisms of PGRN on porcine preadipocytes differentiation. Porcine preadipocytes were induced to differentiation with the addition of lentivirius-expressed PGRN shRNA at the early or late stage of induction period, and in the presence or absence of recombinant PGRN protein. The effects of PGRN on adipogenic genes expression and ERK activation were investigated. At the early stage of induction, knockdown of PGRN promoted differentiation, evidenced by enhanced lipid accumulation, upregulation of adipocyte markers, as well as master adipogenic transcription factors, PPARγ and C/EBPα. While, decreasing PGRN expression at the late stage of induction (day 3) had no effect on differentiation. These results suggested that PGRN functions in the early adipogenic events. Conversely, porcine preadipocytes differentiation was impaired by MDI and recombinant PGRN protein induction, the expressions of adipocyte markers were decreased. Further studies revealed that PGRN can specifically facilitate ERK1,2 activation, and this activation can be abolished by U0126. Moreover, PPARγ phosphorylation at serine 112 site was increased by PGRN treatment, which could reduce the transcriptional activity of PPARγ. We conclude that PGRN inhibits adipogenesis in porcine preadipocytes partially through ERK activation mediated PPARγ phosphorylation.

  13. Green tea extracts reduce adipogenesis by decreasing expression of transcription factors C/EBPα and PPARγ

    PubMed Central

    Yang, Xiuling; Yin, Lei; Li, Tang; Chen, Zhihong

    2014-01-01

    Objectives: This study is to determine if green tea (Camellia sinensis) extracts (GTE) affects adipogenesis and further investigate the related molecular mechanisms. Methods: Patients with metabolic syndrome were recruited in this study. Of them, 70 patients received GTE and 64 received water to serve as the control group. The human serum adiponectin, visfatin, and leptin concentrations were determined by enzyme-linked immunosorbent assay. Adipogenesis of 3T3-L1 preadipocytes was induced with reagents and then the cells were treated with GTE. The lipids were stained with Oil Red O for analysis of adipogenesis of 3T3-L1 preadipocytes. The 3T3-L1 preadipocytes were treated with increasing concentrations (0.2-0.5%, w/v) of GTE for 2 days and the cell viability was determined by MTT assay. Reverse transcription real-time PCR and immunoblotting assays were performed to determine RNA and protein levels of relative molecules. Results: GTE increases the serum concentrations of adiponectin but decreases visfatin levels in patients received GTE. The leptin concentrations in serum were not significantly affected. The GTE reduces the adipogenesis-induced lipid accumulation in 3T3-L1 preadipocytes. GTE decreases the mRNA and protein expression of adipogenic transcription factors C/EBPα and PPARγ in 3T3-L1 cells. Expression levels of the adipocyte-specific genes encoding adipocyte protein 2, lipoprotein lipase, and glucose transporter 4 were also decreased by GTE. Furthermore, it was found that GTE reduces phosphorylation of Akt during adipocyte differentiation. Conclusions: GTE reduces adipogenesis by decreasing expression of transcription factors C/EBPα and PPARγ by reduction of phosphorylation of Akt during adipocyte differentiation. PMID:25663987

  14. Germinated brown rice extract inhibits adipogenesis through the down-regulation of adipogenic genes in 3T3-L1 adipocytes.

    PubMed

    Ho, Jin-Nyoung; Son, Mi-Eun; Lim, Won-Chul; Lim, Seung-Taik; Cho, Hong-Yon

    2013-09-01

    The aim of this study was to examine the anti-adipogenic effect of germinated brown rice methanol extract (GBR) in 3T3-L1 adipocytes. The GBR inhibited adipocyte differentiation was measured by Oil Red O staining and glycerol-3-phosphate dehydrogenase (GPDH) activity in a dose-dependent manner without initiating any cytotoxicity. The mRNA levels of adipogenic transcription factors such as CCAAT/enhancer binding protein (C/EBPα), proliferator-activated receptorγ (PPARγ), and sterol regulatory element-binding protein-1c (SREBP-1c), and adipogenic genes, such as fatty acid synthase (FAS), adipocyte fatty acid-binding protein (aP2), and lipoprotein lipase (LPL), were significantly down-regulated by treatment with GBR when compared to that of untreated control cells. Moreover, tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) mRNA expressions were attenuated by GBR in mature adipocytes. These data suggest that GBR exhibits an anti-adipogenic effect through the suppression of adipogenesis in 3T3-L1 adipocytes.

  15. Transcriptional interference by RNA polymerase pausing and dislodgement of transcription factors.

    PubMed

    Palmer, Adam C; Egan, J Barry; Shearwin, Keith E

    2011-01-01

    Transcriptional interference is the in cis suppression of one transcriptional process by another. Mathematical modeling shows that promoter occlusion by elongating RNA polymerases cannot produce strong interference. Interference may instead be generated by (1) dislodgement of slow-to-assemble pre-initiation complexes and transcription factors and (2) prolonged occlusion by paused RNA polymerases.

  16. TOBFAC: the database of tobacco transcription factors

    PubMed Central

    Rushton, Paul J; Bokowiec, Marta T; Laudeman, Thomas W; Brannock, Jennifer F; Chen, Xianfeng; Timko, Michael P

    2008-01-01

    Background Regulation of gene expression at the level of transcription is a major control point in many biological processes. Transcription factors (TFs) can activate and/or repress the transcriptional rate of target genes and vascular plant genomes devote approximately 7% of their coding capacity to TFs. Global analysis of TFs has only been performed for three complete higher plant genomes – Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa) and rice (Oryza sativa). Presently, no large-scale analysis of TFs has been made from a member of the Solanaceae, one of the most important families of vascular plants. To fill this void, we have analysed tobacco (Nicotiana tabacum) TFs using a dataset of 1,159,022 gene-space sequence reads (GSRs) obtained by methylation filtering of the tobacco genome. An analytical pipeline was developed to isolate TF sequences from the GSR data set. This involved multiple (typically 10–15) independent searches with different versions of the TF family-defining domain(s) (normally the DNA-binding domain) followed by assembly into contigs and verification. Our analysis revealed that tobacco contains a minimum of 2,513 TFs representing all of the 64 well-characterised plant TF families. The number of TFs in tobacco is higher than previously reported for Arabidopsis and rice. Results TOBFAC: the database of tobacco transcription factors, is an integrative database that provides a portal to sequence and phylogeny data for the identified TFs, together with a large quantity of other data concerning TFs in tobacco. The database contains an individual page dedicated to each of the 64 TF families. These contain background information, domain architecture via Pfam links, a list of all sequences and an assessment of the minimum number of TFs in this family in tobacco. Downloadable phylogenetic trees of the major families are provided along with detailed information on the bioinformatic pipeline that was used to find all family members

  17. Angiotensin II directly impairs adipogenic differentiation of human preadipose cells.

    PubMed

    Palominos, Marisol M; Dünner, Natalia H; Wabitsch, Martin; Rojas, Cecilia V

    2015-10-01

    Angiotensin II reduces adipogenic differentiation of preadipose cells present in the stroma-vascular fraction of human adipose tissue, which also includes several cell types. Because of the ability of non-adipose lineage cells in the stroma-vascular fraction to respond to angiotensin II, it is not possible to unequivocally ascribe the anti-adipogenic response to a direct effect of this hormone on preadipose cells. Therefore, we used the human Simpson-Golabi-Behmel syndrome (SGBS) preadipocyte cell strain to investigate the consequences of angiotensin II treatment on adipogenic differentiation under serum-free conditions, by assessing expression of typical adipocyte markers perilipin and fatty acid-binding protein 4 (FABP4), at the transcript and protein level. Reverse transcription-polymerase chain reaction showed that perilipin and FABP4 transcripts were, respectively, reduced to 0.33 ± 0.07 (P < 0.05) and 0.41 ± 0.19-fold (P < 0.05) in SGBS cells induced to adipogenic differentiation in the presence of angiotensin II. Western Blot analysis corroborated reduction of the corresponding proteins to 0.23 ± 0.21 (P < 0.01) and 0.46 ± 0.30-fold (P < 0.01) the respective controls without angiotensin II. Angiotensin II also impaired morphological changes associated with early adipogenesis. Hence, we demonstrated that angiotensin II is able to directly reduce adipogenic differentiation of SGBS preadipose cells.

  18. Lupenone isolated from Adenophora triphylla var. japonica extract inhibits adipogenic differentiation through the downregulation of PPARγ in 3T3-L1 cells.

    PubMed

    Ahn, Eun-Kyung; Oh, Joa Sub

    2013-05-01

    Adenophora triphylla var. japonica (Campanulaceae) is known to have anti-inflammatory and anti-tussive effects. Dysfunction of adipocytes and adipose tissue in obesity is related to various inflammatory cytokines or adipokines. In this study, we investigated whether lupenone isolated from A. triphylla var. japonica extract inhibits adipocyte differentiation and expression of adipogenic marker genes in 3T3-L1 preadipocytes. We demonstrated that lupenone resulted in a significant reduction in lipid accumulation and expression of adipogenic marker genes in a dose-dependent manner. In addition, lupenone decreased the transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ) induced by troglitazone, and we also demonstrated that lupenone suppressed the PPARγ and CCAAT-enhancer-binding protein α (C/EBPα) protein levels. These findings demonstrated that lupenone isolated from A. triphylla var. japonica extract effectively inhibited adipocyte differentiation through downregulation of related transcription factor, particularly the PPARγ gene.

  19. Human skeletal muscle fibroblasts, but not myogenic cells, readily undergo adipogenic differentiation.

    PubMed

    Agley, Chibeza C; Rowlerson, Anthea M; Velloso, Cristiana P; Lazarus, Norman R; Harridge, Stephen D R

    2013-12-15

    We characterised the adherent cell types isolated from human skeletal muscle by enzymatic digestion, and demonstrated that even at 72 hours after isolation these cultures consisted predominantly of myogenic cells (CD56(+), desmin(+)) and fibroblasts (TE-7(+), collagen VI(+), PDGFRα(+), vimentin(+), fibronectin(+)). To evaluate the behaviour of the cell types obtained, we optimised a double immuno-magnetic cell-sorting method for the separation of myogenic cells from fibroblasts. This procedure gave purities of >96% for myogenic (CD56(+), desmin(+)) cells. The CD56(-) fraction obtained from the first sort was highly enriched in TE-7(+) fibroblasts. Using quantitative analysis of immunofluorescent staining for lipid content, lineage markers and transcription factors, we tested if the purified cell populations could differentiate into adipocytes in response to treatment with either fatty acids or adipocyte-inducing medium. Both treatments caused the fibroblasts to differentiate into adipocytes, as shown by loss of intracellular TE-7, upregulation of the adipogenic transcription factors PPARγ and C/EBPα, and adoption of a lipid-laden adipocyte morphology. By contrast, myogenic cells did not undergo adipogenesis and showed differential regulation of PPARγ and C/EBPα in response to these adipogenic treatments. Our results show that human skeletal muscle fibroblasts are at least bipotent progenitors that can remain as extracellular-matrix-producing cells or differentiate into adipocytes.

  20. Genome-Wide Chromosomal Targets of Oncogenic Transcription Factors

    DTIC Science & Technology

    2005-04-01

    cancer. Cancer involves, at least in part, aberrant programs of gene expression often mediated by oncogenic transcription factors activating downstream...networks that underlie complex gene expression programs that are activated in cancer. Indeed, transcription factors have been proposed as targets of...some of the limitations of ChIP-chip analysis and can be applied to transcription factors important in breast cancer such as c-myc and ER ( estrogen

  1. Multiple functions of nucleosomes and regulatory factors in transcription.

    PubMed

    Workman, J L; Buchman, A R

    1993-03-01

    The in vivo packaging of DNA with histone proteins to form chromatin makes its transcription a difficult process. Biochemical and genetic studies are beginning to reveal mechanistic details of how transcriptional regulatory factors confront at least two hurdles created by nucleosomes, the primary structural unit of chromatin. Regulatory factors must gain access to their respective binding sites and activate the formation of transcription complexes at core promoter elements. Distinct regulatory factors may be specialized to perform these functions.

  2. In vivo delivery of transcription factors with multifunctional oligonucleotides

    NASA Astrophysics Data System (ADS)

    Lee, Kunwoo; Rafi, Mohammad; Wang, Xiaojian; Aran, Kiana; Feng, Xuli; Lo Sterzo, Carlo; Tang, Richard; Lingampalli, Nithya; Kim, Hyun Jin; Murthy, Niren

    2015-07-01

    Therapeutics based on transcription factors have the potential to revolutionize medicine but have had limited clinical success as a consequence of delivery problems. The delivery of transcription factors is challenging because it requires the development of a delivery vehicle that can complex transcription factors, target cells and stimulate endosomal disruption, with minimal toxicity. Here, we present a multifunctional oligonucleotide, termed DARTs (DNA assembled recombinant transcription factors), which can deliver transcription factors with high efficiency in vivo. DARTs are composed of an oligonucleotide that contains a transcription-factor-binding sequence and hydrophobic membrane-disruptive chains that are masked by acid-cleavable galactose residues. DARTs have a unique molecular architecture, which allows them to bind transcription factors, trigger endocytosis in hepatocytes, and stimulate endosomal disruption. The DARTs have enhanced uptake in hepatocytes as a result of their galactose residues and can disrupt endosomes efficiently with minimal toxicity, because unmasking of their hydrophobic domains selectively occurs in the acidic environment of the endosome. We show that DARTs can deliver the transcription factor nuclear erythroid 2-related factor 2 (Nrf2) to the liver, catalyse the transcription of Nrf2 downstream genes, and rescue mice from acetaminophen-induced liver injury.

  3. Crif1 Promotes Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells After Irradiation by Modulating the PKA/CREB Signaling Pathway.

    PubMed

    Zhang, Xi; Xiang, Lixin; Ran, Qian; Liu, Yao; Xiang, Yang; Xiao, Yanni; Chen, Li; Li, Fengjie; Zhong, Jiang F; Li, Zhongjun

    2015-06-01

    Dysfunction of the hematopoietic microenvironment is the main obstacle encountered during hematopoiesis reconstruction in patients with acute hematopoietic radiation syndrome. Bone marrow mesenchymal stem cells (BM-MSCs) play a crucial supporting role in hematopoiesis by maintaining the balance between adipogenic and osteogenic differentiation. In this study, we found that irradiation decreased the colony-forming efficiency of BM-MSCs and impaired the balance between adipogenic and osteogenic differentiation. Following irradiation, BM-MCSs became strongly predisposed to adipogenesis, as evidenced by increased oil red O staining and elevated mRNA and protein levels of the adipogenic markers and transcription factors PPARγ and AP2. Overexpression of the essential adipogenesis regulator Crif1 in BM-MSCs promoted adipogenesis after irradiation exposure by upregulating adipogenesis-related genes, including C/EBPβ, PPARγ, and AP2. We found that Crif1 promoted the phosphorylation of cAMP response element binding protein (CREB) through direct interaction with protein kinase A (PKA)-α. Phosphorylation of CREB was inhibited in Crif1-knockdown BM-MSCs even in the presence of a PKA agonist (db-cAMP) and could be suppressed in Crif1-overexpressing BM-MSCs by a PKAα inhibitor (H-89). These results suggest that Crif1 is an indispensable regulator of PKAα cat that modulates the PKA/CREB signaling pathway to promote adipogenic differentiation of BM-MSCs after irradiation.

  4. Activation of the PI3K/Akt pathway by oxidative stress mediates high glucose-induced increase of adipogenic differentiation in primary rat osteoblasts.

    PubMed

    Zhang, Yu; Yang, Jian-Hong

    2013-11-01

    Diabetes mellitus is associated with increased risk of osteopenia and bone fracture that may be related to hyperglycemia. However, the mechanisms accounting for diabetic bone disorder are unclear. Here, we showed that high glucose significantly promoted the production of reactive oxygen species (ROS) in rat primary osteoblasts. Most importantly, we reported for the first time that ROS induced by high glucose increased alkaline phosphatase activity, inhibited type I collagen (collagen I) protein level and cell mineralization, as well as gene expression of osteogenic markers including runt-related transcription factor 2 (Runx2), collagen I, and osteocalcin, but promoted lipid droplet formation and gene expression of adipogenic markers including peroxisome proliferator-activated receptor gamma, adipocyte fatty acid binding protein (aP2), and adipsin, which were restored by pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger. Moreover, high glucose-induced oxidative stress activated PI3K/Akt pathway to inhibited osteogenic differentiation but stimulated adipogenic differentiation. In contrast, NAC and a PI3K inhibitor, LY-294002, reversed the down-regulation of osteogenic markers and the up-regulation of adipogenic markers as well as the activation of Akt under high glucose. These results indicated that oxidative stress played a key role in high glucose-induced increase of adipogenic differentiation, which contributed to the inhibition of osteogenic differentiation. This process was mediated by PI3K/Akt pathway in rat primary osteoblasts. Hence, suppression of oxidative stress could be a potential therapeutic approach for diabetic osteopenia.

  5. Mechanisms of transcription factor evolution in Metazoa

    PubMed Central

    Schmitz, Jonathan F.; Zimmer, Fabian; Bornberg-Bauer, Erich

    2016-01-01

    Transcriptions factors (TFs) are pivotal for the regulation of virtually all cellular processes, including growth and development. Expansions of TF families are causally linked to increases in organismal complexity. Here we study the evolutionary dynamics, genetic causes and functional implications of the five largest metazoan TF families. We find that family expansions dominate across the whole metazoan tree; however, some branches experience exceptional family-specific accelerated expansions. Additionally, we find that such expansions are often predated by modular domain rearrangements, which spur the expansion of a new sub-family by separating it from the rest of the TF family in terms of protein–protein interactions. This separation allows for radical shifts in the functional spectrum of a duplicated TF. We also find functional differentiation inside TF sub-families as changes in expression specificity. Furthermore, accelerated family expansions are facilitated by repeats of sequence motifs such as C2H2 zinc fingers. We quantify whole genome duplications and single gene duplications as sources of TF family expansions, implying that some, but not all, TF duplicates are preferentially retained. We conclude that trans-regulatory changes (domain rearrangements) are instrumental for fundamental functional innovations, that cis-regulatory changes (affecting expression) accomplish wide-spread fine tuning and both jointly contribute to the functional diversification of TFs. PMID:27288445

  6. Quantitatively predictable control of Drosophila transcriptional enhancers in vivo with engineered transcription factors.

    PubMed

    Crocker, Justin; Ilsley, Garth R; Stern, David L

    2016-03-01

    Genes are regulated by transcription factors that bind to regions of genomic DNA called enhancers. Considerable effort is focused on identifying transcription factor binding sites, with the goal of predicting gene expression from DNA sequence. Despite this effort, general, predictive models of enhancer function are currently lacking. Here we combine quantitative models of enhancer function with manipulations using engineered transcription factors to examine the extent to which enhancer function can be controlled in a quantitatively predictable manner. Our models, which incorporate few free parameters, can accurately predict the contributions of ectopic transcription factor inputs. These models allow the predictable 'tuning' of enhancers, providing a framework for the quantitative control of enhancers with engineered transcription factors.

  7. Adipogenic signaling in rat white adipose tissue: modulation by aging and calorie restriction.

    PubMed

    Zhu, Min; Lee, Garrick D; Ding, Liusong; Hu, Jingping; Qiu, Guang; de Cabo, Rafa; Bernier, Michel; Ingram, Donald K; Zou, Sige

    2007-08-01

    Alterations in adipogenesis could have significant impact on several aging processes. We previously reported that calorie restriction (CR) in rats significantly increases the level of circulating adiponectin, a distinctive marker of differentiated adipocytes, leading to a concerted modulation in the expression of key transcription target genes and, as a result, to increased fatty acid oxidation and reduced deleterious lipid accumulation in other tissues. These findings led us to investigate further the effects of aging on adipocytes and to determine how CR modulates adipogenic signaling in vivo. CR for 2 and 25 months, significantly increased the expression of PPARgamma, C/EBPbeta and Cdk-4, and partially attenuated age-related decline in C/EBPalpha expression relative to rats fed ad libitum (AL). As a result, adiponectin was upregulated at both mRNA and protein levels, resulting in activation of target genes involved in fatty acid oxidation and fatty acid synthesis, and greater responsiveness of adipose tissue to insulin. Moreover, CR significantly decreased the ratio of C/EBPbeta isoforms LAP/LIP, suggesting the suppression of gene transcription associated with terminal differentiation while facilitating preadipocytes proliferation. Morphometric analysis revealed a greater number of small adipocytes in CR relative to AL feeding. Immunostaining confirmed that small adipocytes were more strongly positive for adiponectin than the large ones. Overall these results suggest that CR increased the expression of adipogenic factors, and maintained the differentiated state of adipocytes, which is critically important for adiponectin biosynthesis and insulin sensitivity.

  8. The WRKY transcription factor family in Brachypodium distachyon

    PubMed Central

    2012-01-01

    Background A complete assembled genome sequence of wheat is not yet available. Therefore, model plant systems for wheat are very valuable. Brachypodium distachyon (Brachypodium) is such a system. The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating important agronomic traits. Studies of WRKY transcription factors in Brachypodium and wheat therefore promise to lead to new strategies for wheat improvement. Results We have identified and manually curated the WRKY transcription factor family from Brachypodium using a pipeline designed to identify all potential WRKY genes. 86 WRKY transcription factors were found, a total higher than all other current databases. We therefore propose that our numbering system (BdWRKY1-BdWRKY86) becomes the standard nomenclature. In the JGI v1.0 assembly of Brachypodium with the MIPS/JGI v1.0 annotation, nine of the transcription factors have no gene model and eleven gene models are probably incorrectly predicted. In total, twenty WRKY transcription factors (23.3%) do not appear to have accurate gene models. To facilitate use of our data, we have produced The Database of Brachypodium distachyon WRKY Transcription Factors. Each WRKY transcription factor has a gene page that includes predicted protein domains from MEME analyses. These conserved protein domains reflect possible input and output domains in signaling. The database also contains a BLAST search function where a large dataset of WRKY transcription factors, published genes, and an extensive set of wheat ESTs can be searched. We also produced a phylogram containing the WRKY transcription factor families from Brachypodium, rice, Arabidopsis, soybean, and Physcomitrella patens, together with published WRKY transcription factors from wheat. This phylogenetic tree provides evidence for orthologues, co-orthologues, and paralogues of Brachypodium WRKY transcription factors. Conclusions The description

  9. In vitro myogenic and adipogenic differentiation model of genetically engineered bovine embryonic fibroblast cell lines.

    PubMed

    Yin, Jinlong; Jin, Xun; Beck, Samuel; Kang, Dong Ho; Hong, Zhongshan; Li, Zhehu; Jin, Yongcheng; Zhang, Qiankun; Choi, Yun-Jaie; Kim, Sung-Chan; Kim, Hyunggee

    2010-02-01

    Our current understanding of muscle and adipose tissue development has been largely restricted to the study of murine myogenic and adipogenic cell lines, since attempts to establish these cell lines from other species have met with only limited success. Here we report that a spontaneously immortalized bovine embryonic fibroblast cell line (BEFS) undergoes differentiation into adipogenic or myogenic lineages when ectopically transduced with PPARgamma2 (an adipogenic lineage determinant) or MyoD (a myogenic lineage determinant) and grown in adipogenic and myogenic differentiation culture media (ADCM and MDCM, respectively). We also found that PPARgamma2-overexpressing BEFS cells (BEFS-PPARgamma2) grown in ADCM with or without the PPARgamma2 ligand, troglitazone, preferentially differentiate into adipogenic cells in the presence of ectopic MyoD expression. Ectopic expression of PPARgamma2 in the inducible MyoD-overepxressing BEFS cells (BEFS-TetOn-MyoD) completely suppresses myogenic differentiation and leads to a significant increase in adipogenic differentiation, suggesting that the adipogenic differentiation program might be dominant. Therefore, BEFS, BEFS-PPARgamma2, and BEFS-TetOn-MyoD would be a valuable biological model for understanding a fundamental principle underlying myogenic and adipogenic development, and for isolating various genetic and chemical factors that enable muscle and adipocyte differentiation.

  10. Transcriptional repression of BODENLOS by HD-ZIP transcription factor HB5 in Arabidopsis thaliana

    PubMed Central

    De Smet, Ive; Lau, Steffen; Ehrismann, Jasmin S.; Axiotis, Ioannis; Kolb, Martina; Kientz, Marika; Weijers, Dolf; Jürgens, Gerd

    2013-01-01

    In Arabidopsis thaliana, the phytohormone auxin is an important patterning agent during embryogenesis and post-embryonic development, exerting effects through transcriptional regulation. The main determinants of the transcriptional auxin response machinery are AUXIN RESPONSE FACTOR (ARF) transcription factors and AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) inhibitors. Although members of these two protein families are major developmental regulators, the transcriptional regulation of the genes encoding them has not been well explored. For example, apart from auxin-linked regulatory inputs, factors regulating the expression of the AUX/IAA BODENLOS (BDL)/IAA12 are not known. Here, it was shown that the HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP) transcription factor HOMEOBOX PROTEIN 5 (HB5) negatively regulates BDL expression, which may contribute to the spatial control of BDL expression. As such, HB5 and probably other class I HD-ZIP proteins, appear to modulate BDL-dependent auxin response. PMID:23682118

  11. IFATS collection: Stem cell antigen-1-positive ear mesenchymal stem cells display enhanced adipogenic potential.

    PubMed

    Staszkiewicz, Jaroslaw; Gimble, Jeffrey M; Manuel, Jessica A; Gawronska-Kozak, Barbara

    2008-10-01

    Hyperplasia is a major contributor to the increase in adipose tissue mass that is characteristic of obesity. However, the identity and characteristics of cells that can be committed into adipocyte lineage remain unclear. Stem cell antigen 1 (Sca-1) has been used recently as a candidate marker in the search for tissue-resident stem cells. In our quest for biomarkers of cells that can become adipocytes, we analyzed ear mesenchymal stem cells (EMSC), which can differentiate into adipocytes, osteocytes, chondrocytes, and myocytes. Our previous studies have demonstrated that EMSC abundantly expressed Sca-1. In the present study, we have analyzed the expression of adipogenic transcription factors and adipocyte-specific genes in Sca-1-enriched and Sca-1-depleted EMSC fractions. Sca-1-enriched EMSC accumulated more lipid droplets during adipogenic differentiation than Sca-1-depleted. Similarly, EMSC isolated from Sca-1(-/-) mice displayed reduced lipid accumulation relative to EMSC from wild-type controls (p < .01). Comparative analysis of the adipogenic differentiation process between Sca-1-enriched and Sca-1-depleted populations of EMSC revealed substantial differences in the gene expression. Preadipocyte factor 1, CCAAT enhancer-binding protein (C/EBP) beta, C/EBPalpha, peroxisome proliferator-activated receptor gamma2, lipoprotein lipase, and adipocyte fatty acid binding protein were expressed at significantly higher levels in the Sca-1-enriched EMSC fraction. However, the most striking observation was that leptin was detected only in the conditioned medium of Sca-1-enriched EMSC. In addition, we performed loss-of-function (Sca-1 morpholino oligonucleotide) experiments. The data presented here suggest that Sca-1 is a biomarker for EMSC with the potential to become functionally active adipocytes. Disclosure of potential conflicts of interest is found at the end of this article.

  12. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    PubMed

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  13. Temperature, template topology, and factor requirements of archaeal transcription

    PubMed Central

    Bell, Stephen D.; Jaxel, Christine; Nadal, Marc; Kosa, Peter F.; Jackson, Stephen P.

    1998-01-01

    Although Archaea are prokaryotic and resemble Bacteria morphologically, their transcription apparatus is remarkably similar to those of eukaryotic cell nuclei. Because some Archaea exist in environments with temperatures of around 100°C, they are likely to have evolved unique strategies for transcriptional control. Here, we investigate the effects of temperature and DNA template topology in a thermophilic archaeal transcription system. Significantly, and in marked contrast with characterized eucaryal systems, archaeal DNA template topology has negligible effect on transcription levels at physiological temperatures using highly purified polymerase and recombinant transcription factors. Furthermore, archaeal transcription does not require hydrolysis of the β-γ phosphoanhydride bond of ATP. However, at lower temperatures, negatively supercoiled templates are transcribed more highly than those that are positively supercoiled. Notably, the block to transcription on positively supercoiled templates at lowered temperatures is at the level of polymerase binding and promoter opening. These data imply that Archaea do not possess a functional homologue of transcription factor TFIIH, and that for the promoters studied, transcription is mediated by TATA box-binding protein, transcription factor TFB, and RNA polymerase alone. Furthermore, they suggest that the reduction of plasmid linking number by hyperthermophilic Archaea in vivo in response to cold shock is a mechanism to maintain gene expression under these adverse circumstances. PMID:9860949

  14. The physical size of transcription factors is key to transcriptional regulation in chromatin domains

    NASA Astrophysics Data System (ADS)

    Maeshima, Kazuhiro; Kaizu, Kazunari; Tamura, Sachiko; Nozaki, Tadasu; Kokubo, Tetsuro; Takahashi, Koichi

    2015-02-01

    Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (˜50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a ‘buoy’ to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.

  15. 18{beta}-Glycyrrhetinic acid inhibits adipogenic differentiation and stimulates lipolysis

    SciTech Connect

    Moon, Myung-Hee; Jeong, Jae-Kyo; Lee, You-Jin; Seol, Jae-Won; Ahn, Dong-Choon; Kim, In-Shik; Park, Sang-Youel

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer 18{beta}-GA inhibits adipogenic differentiation in 3T3-L1 preadipocytes and stimulates lipolysis in differentiated adipocytes. Black-Right-Pointing-Pointer Anti-adipogenic effect of 18{beta}-GA is caused by down-regulation of PPAR{gamma} and inactivation of Akt signalling. Black-Right-Pointing-Pointer Lipolytic effect of 18{beta}-GA is mediated by up-regulation of HSL, ATGL and perilipin and activation of HSL. -- Abstract: 18{beta}-Glycyrrhetinic acid (18{beta}-GA) obtained from the herb liquorice has various pharmacological properties including anti-inflammatory and anti-bacterial activities. However, potential biological anti-obesity activities are unclear. In this study, novel biological activities of 18{beta}-GA in the adipogenesis of 3T3-L1 preadipocytes and in lipolysis of differentiated adipocytes were identified. Mouse 3T3-L1 cells were used as an in vitro model of adipogenesis and lipolysis, using a mixture of insulin/dexamethasone/3-isobutyl-1-methylxanthine (IBMX) to induce differentiation. The amount of lipid droplet accumulation was determined by an AdipoRed assay. The expression of several adipogenic transcription factors and enzymes was investigated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. 18{beta}-GA dose-dependently (1-40 {mu}M) significantly decreased lipid accumulation in maturing preadipocytes. In 3T3-L1 preadipocytes, 10 {mu}M of 18{beta}-GA down-regulated the transcriptional levels of the peroxisome proliferator-activated receptor {gamma}, CCAAT/enhancer-binding protein {alpha} and adiponectin, which are markers of adipogenic differentiation via Akt phosphorylation. Also, in differentiated adipocytes, 18{beta}-GA increased the level of glycerol release and up-regulated the mRNA of hormone-sensitive lipase, adipose TG lipase and perilipin, as well as the phosphorylation of hormone-sensitive lipase at Serine 563. The results indicate that 18{beta

  16. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis.

    PubMed

    Roczniak-Ferguson, Agnes; Petit, Constance S; Froehlich, Florian; Qian, Sharon; Ky, Jennifer; Angarola, Brittany; Walther, Tobias C; Ferguson, Shawn M

    2012-06-12

    Lysosomes are the major cellular site for clearance of defective organelles and digestion of internalized material. Demand on lysosomal capacity can vary greatly, and lysosomal function must be adjusted to maintain cellular homeostasis. Here, we identified an interaction between the lysosome-localized mechanistic target of rapamycin complex 1 (mTORC1) and the transcription factor TFEB (transcription factor EB), which promotes lysosome biogenesis. When lysosomal activity was adequate, mTOR-dependent phosphorylation of TFEB on Ser(211) triggered the binding of 14-3-3 proteins to TFEB, resulting in retention of the transcription factor in the cytoplasm. Inhibition of lysosomal function reduced the mTOR-dependent phosphorylation of TFEB, resulting in diminished interactions between TFEB and 14-3-3 proteins and the translocation of TFEB into the nucleus, where it could stimulate genes involved in lysosomal biogenesis. These results identify TFEB as a target of mTOR and suggest a mechanism for matching the transcriptional regulation of genes encoding proteins of autophagosomes and lysosomes to cellular need. The closely related transcription factors MITF (microphthalmia transcription factor) and TFE3 (transcription factor E3) also localized to lysosomes and accumulated in the nucleus when lysosome function was inhibited, thus broadening the range of physiological contexts under which this regulatory mechanism may prove important.

  17. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1.

    PubMed

    Yang, Zhuo; Bian, Chunjing; Zhou, Hong; Huang, Shan; Wang, Shihua; Liao, Lianming; Zhao, Robert Chunhua

    2011-02-01

    A better understanding of the molecular mechanisms underlying the differentiation of human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) could provide new insights into the pathogenesis of a number of diseases, such as obesity and diabetes, and broaden the spectrum of potential hAD-MSCs-based cell therapy. In this study, we reported that a human microRNA, hsa-miR-138, could inhibit the adipogenic differentiation of hAD-MSCs. Our results showed that miR-138 was significantly down-regulated during adipogenic differentiation. Overexpression of miR-138 in hAD-MSCs could effectively reduce lipid droplets accumulation, inhibit expression of key adipogenic transcription factors cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT) enhancer binding protein alpha and peroxisome proliferator-activated receptor gamma 2 as well as several other adipogenic marker genes, such as fatty acid binding protein 4 and lipoprotein lipase. Further studies showed that the expression of adenovirus early region 1-A-like inhibitor of differentiation 1 (EID-1), a nuclear receptor coregulator, was inversely correlated with that of miR-138 when hAD-MSCs were differentiated into adipocytes. Knockdown of EID-1 by RNA interference inhibited adipocyte differentiation of hAD-MSCs. In addition, luciferase reporter assays demonstrated that miR-138 directly targeted the 3' untranslated region of EID-1, implying that the negative role of miR-138 in the adipocyte differentiation of hAD-MSCs is at least partially mediated via repressing EID-1. Taken together, this study shows that miR-138 plays a negative role in adipogenic differentiation and sheds light on the role of miRNAs during differentiation of hAD-MSCs toward adipocytes.

  18. The Arabidopsis thaliana Nuclear Factor Y Transcription Factors

    PubMed Central

    Zhao, Hang; Wu, Di; Kong, Fanying; Lin, Ke; Zhang, Haishen; Li, Gang

    2017-01-01

    Nuclear factor Y (NF-Y) is an evolutionarily conserved trimeric transcription factor complex present in nearly all eukaryotes. The heterotrimeric NF-Y complex consists of three subunits, NF-YA, NF-YB, and NF-YC, and binds to the CCAAT box in the promoter regions of its target genes to regulate their expression. Yeast and mammal genomes generally have single genes with multiple splicing isoforms that encode each NF-Y subunit. By contrast, plant genomes generally have multi-gene families encoding each subunit and these genes are differentially expressed in various tissues or stages. Therefore, different subunit combinations can lead to a wide variety of NF-Y complexes in various tissues, stages, and growth conditions, indicating the potentially diverse functions of this complex in plants. Indeed, many recent studies have proved that the NF-Y complex plays multiple essential roles in plant growth, development, and stress responses. In this review, we highlight recent progress on NF-Y in Arabidopsis thaliana, including NF-Y protein structure, heterotrimeric complex formation, and the molecular mechanism by which NF-Y regulates downstream target gene expression. We then focus on its biological functions and underlying molecular mechanisms. Finally, possible directions for future research on NF-Y are also presented. PMID:28119722

  19. The Arabidopsis thaliana Nuclear Factor Y Transcription Factors.

    PubMed

    Zhao, Hang; Wu, Di; Kong, Fanying; Lin, Ke; Zhang, Haishen; Li, Gang

    2016-01-01

    Nuclear factor Y (NF-Y) is an evolutionarily conserved trimeric transcription factor complex present in nearly all eukaryotes. The heterotrimeric NF-Y complex consists of three subunits, NF-YA, NF-YB, and NF-YC, and binds to the CCAAT box in the promoter regions of its target genes to regulate their expression. Yeast and mammal genomes generally have single genes with multiple splicing isoforms that encode each NF-Y subunit. By contrast, plant genomes generally have multi-gene families encoding each subunit and these genes are differentially expressed in various tissues or stages. Therefore, different subunit combinations can lead to a wide variety of NF-Y complexes in various tissues, stages, and growth conditions, indicating the potentially diverse functions of this complex in plants. Indeed, many recent studies have proved that the NF-Y complex plays multiple essential roles in plant growth, development, and stress responses. In this review, we highlight recent progress on NF-Y in Arabidopsis thaliana, including NF-Y protein structure, heterotrimeric complex formation, and the molecular mechanism by which NF-Y regulates downstream target gene expression. We then focus on its biological functions and underlying molecular mechanisms. Finally, possible directions for future research on NF-Y are also presented.

  20. Transcriptional elongation factor ENL phosphorylated by ATM recruits polycomb and switches off transcription for DSB repair.

    PubMed

    Ui, Ayako; Nagaura, Yuko; Yasui, Akira

    2015-05-07

    Transcription is repressed if a DNA double-strand break (DSB) is introduced in close proximity to a transcriptional activation site at least in part by H2A-ubiquitination. While ATM signaling is involved, how it controls H2A-ubiquitination remains unclear. Here, we identify that, in response to DSBs, a transcriptional elongation factor, ENL (MLLT1), is phosphorylated by ATM at conserved SQ sites. This phosphorylation increases the interaction between ENL and the E3-ubiquitin-ligase complex of Polycomb Repressive Complex 1 (PRC1) via BMI1. This interaction promotes enrichment of PRC1 at transcription elongation sites near DSBs to ubiquitinate H2A leading to transcriptional repression. ENL SQ sites and BMI1 are necessary for KU70 accumulation at DSBs near active transcription sites and cellular resistance to DSBs. Our data suggest that ATM-dependent phosphorylation of ENL functions as switch from elongation to Polycomb-mediated repression to preserve genome integrity.

  1. Identification of human autoantibodies to transcription factor IIB.

    PubMed Central

    Abendroth, F D; Peterson, S R; Galman, M; Suwa, A; Hardin, J A; Dynan, W S

    1995-01-01

    We have characterized the ability of various human autoimmune sera to react with RNA polymerase II transcription factors. One serum, which strongly inhibited transcription in a cell-free system, was shown to contain antibodies directed against human TFIIB. The serum did not show reactivity against the other general transcription factors, including human TBP, TFIIE and TFIIF. The inhibition of transcription was directly attributable to depletion of TFIIB activity, as demonstrated by reconstitution of activity with recombinant TFIIB. It has long been recognized that components of the RNA processing machinery are major human autoantigens. The present results show that at least one general transcription factor required for messenger RNA synthesis is an autoantigen as well. Images PMID:7651839

  2. Experimental determination of the evolvability of a transcription factor.

    PubMed

    Maerkl, Sebastian J; Quake, Stephen R

    2009-11-03

    Sequence-specific binding of a transcription factor to DNA is the central event in any transcriptional regulatory network. However, relatively little is known about the evolutionary plasticity of transcription factors. For example, the exact functional consequence of an amino acid substitution on the DNA-binding specificity of most transcription factors is currently not predictable. Furthermore, although the major structural families of transcription factors have been identified, the detailed DNA-binding repertoires within most families have not been characterized. We studied the sequence recognition code and evolvability of the basic helix-loop-helix transcription factor family by creating all possible 95 single-point mutations of five DNA-contacting residues of Max, a human helix-loop-helix transcription factor and measured the detailed DNA-binding repertoire of each mutant. Our results show that the sequence-specific repertoire of Max accessible through single-point mutations is extremely limited, and we are able to predict 92% of the naturally occurring diversity at these positions. All naturally occurring basic regions were also found to be accessible through functional intermediates. Finally, we observed a set of amino acids that are functional in vitro but are not found to be used naturally, indicating that functionality alone is not sufficient for selection.

  3. Yin Yang 1: a multifaceted protein beyond a transcription factor.

    PubMed

    Deng, Zhiyong; Cao, Paul; Wan, Mei Mei; Sui, Guangchao

    2010-01-01

    As a transcription factor, Yin Yang 1 (YY1) regulates the transcription of a dazzling list of genes and the number of its targets still mounts. Recent studies revealed that YY1 possesses functions independent of its DNA binding activity and its regulatory role in tumorigenesis has started to emerge.

  4. Maintenance of Transcription-Translation Coupling by Elongation Factor P

    PubMed Central

    Elgamal, Sara

    2016-01-01

    ABSTRACT Under conditions of tight coupling between translation and transcription, the ribosome enables synthesis of full-length mRNAs by preventing both formation of intrinsic terminator hairpins and loading of the transcription termination factor Rho. While previous studies have focused on transcription factors, we investigated the role of Escherichia coli elongation factor P (EF-P), an elongation factor required for efficient translation of mRNAs containing consecutive proline codons, in maintaining coupled translation and transcription. In the absence of EF-P, the presence of Rho utilization (rut) sites led to an ~30-fold decrease in translation of polyproline-encoding mRNAs. Coexpression of the Rho inhibitor Psu fully restored translation. EF-P was also shown to inhibit premature termination during synthesis and translation of mRNAs encoding intrinsic terminators. The effects of EF-P loss on expression of polyproline mRNAs were augmented by a substitution in RNA polymerase that accelerates transcription. Analyses of previously reported ribosome profiling and global proteomic data identified several candidate gene clusters where EF-P could act to prevent premature transcription termination. In vivo probing allowed detection of some predicted premature termination products in the absence of EF-P. Our findings support a model in which EF-P maintains coupling of translation and transcription by decreasing ribosome stalling at polyproline motifs. Other regulators that facilitate ribosome translocation through roadblocks to prevent premature transcription termination upon uncoupling remain to be identified. PMID:27624127

  5. ETS transcription factors in hematopoietic stem cell development.

    PubMed

    Ciau-Uitz, Aldo; Wang, Lu; Patient, Roger; Liu, Feng

    2013-12-01

    Hematopoietic stem cells (HSCs) are essential for the maintenance of the hematopoietic system. However, these cells cannot be maintained or created in vitro, and very little is known about their generation during embryogenesis. Many transcription factors and signaling pathways play essential roles at various stages of HSC development. Members of the ETS ('E twenty-six') family of transcription factors are recognized as key regulators within the gene regulatory networks governing hematopoiesis, including the ontogeny of HSCs. Remarkably, although all ETS transcription factors bind the same DNA consensus sequence and overlapping tissue expression is observed, individual ETS transcription factors play unique roles in the development of HSCs. Also, these transcription factors are recurrently used throughout development and their functions are context-dependent, increasing the challenge of studying their mechanism of action. Critically, ETS factors also play roles under pathological conditions, such as leukemia and, therefore, deciphering their mechanism of action will not only enhance our knowledge of normal hematopoiesis, but also inform protocols for their creation in vitro from pluripotent stem cells and the design of new therapeutic approaches for the treatment of malignant blood cell diseases. In this review, we summarize the key findings on the roles of ETS transcription factors in HSC development and discuss novel mechanisms by which they could control hematopoiesis.

  6. Transcriptional Control of Synaptic Plasticity by Transcription Factor NF-κB.

    PubMed

    Engelmann, Christian; Haenold, Ronny

    2016-01-01

    Activation of nuclear factor kappa B (NF-κB) transcription factors is required for the induction of synaptic plasticity and memory formation. All components of this signaling pathway are localized at synapses, and transcriptionally active NF-κB dimers move to the nucleus to translate synaptic signals into altered gene expression. Neuron-specific inhibition results in altered connectivity of excitatory and inhibitory synapses and functionally in selective learning deficits. Recent research on transgenic mice with impaired or hyperactivated NF-κB gave important insights into plasticity-related target gene expression that is regulated by NF-κB. In this minireview, we update the available data on the role of this transcription factor for learning and memory formation and comment on cross-sectional activation of NF-κB in the aged and diseased brain that may directly or indirectly affect κB-dependent transcription of synaptic genes.

  7. Antisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor

    PubMed Central

    Wang, Zhi-Wei; Wu, Zhe; Raitskin, Oleg; Sun, Qianwen; Dean, Caroline

    2014-01-01

    The functional significance of noncoding transcripts is currently a major question in biology. We have been studying the function of a set of antisense transcripts called COOLAIR that encompass the whole transcription unit of the Arabidopsis floral repressor FLOWERING LOCUS C (FLC). Alternative polyadenylation of COOLAIR transcripts correlates with different FLC sense expression states. Suppressor mutagenesis aimed at understanding the importance of this sense–antisense transcriptional circuitry has identified a role for Arabidopsis cyclin-dependent kinase C (CDKC;2) in FLC repression. CDKC;2 functions in an Arabidopsis positive transcription elongation factor b (P-TEFb) complex and influences global RNA polymerase II (Pol II) Ser2 phosphorylation levels. CDKC;2 activity directly promotes COOLAIR transcription but does not affect an FLC transgene missing the COOLAIR promoter. In the endogenous gene context, however, the reduction of COOLAIR transcription by cdkc;2 disrupts a COOLAIR-mediated repression mechanism that increases FLC expression. This disruption then feeds back to indirectly increase COOLAIR expression. This tight interconnection between sense and antisense transcription, together with differential promoter sensitivity to P-TEFb, is central to quantitative regulation of this important floral repressor gene. PMID:24799695

  8. Anti-adipogenic effect of epiberberine is mediated by regulation of the Raf/MEK1/2/ERK1/2 and AMPKα/Akt pathways.

    PubMed

    Choi, Jae Sue; Kim, Ji-Hye; Ali, Md Yousof; Jung, Hee Jin; Min, Byung-Sun; Choi, Ran Joo; Kim, Gun-Do; Jung, Hyun Ah

    2015-12-01

    It has been reported that alkaloids derived from Coptis chinensis exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating peroxisome proliferation-activity receptor-γ (PPAR-γ) and CCAAT/enhancer binding protein-α (C/EBP-α). However, the signaling-based mechanism of the inhibitory role of epiberberine in the early stages of 3T3-L1 adipocyte differentiation is uncharacterized. Here, we show that epiberberine had inhibitory effects on adipocyte differentiation and significantly decreased lipid accumulation by downregulating an adipocyte-specific transcription factor, sterol regulatory element-binding protein-1 (SREBP-1). Furthermore, we observed that epiberberine markedly suppressed the differentiation-mediated phosphorylation of components of both the Raf/mitogen-activated protein kinase 1 (MEK1)/extracellular signal-regulated protein kinase 1/2 (ERK1/2) and AMP-activated protein kinase-α1 (AMPKα)/Akt pathways. In addition, gene expression of fatty acid synthase (FAS) was significantly inhibited by treatment with epiberberine during adipogenesis. These results indicate that the anti-adipogenic mechanism of epiberberine is associated with inhibition of phosphorylation of Raf/MEK1/ERK1/2 and AMPKα/Akt, followed by downregulation of the major transcription factors of adipogenesis, such as PPAR-γ, C/EBP-α, and SREBP-1, and FAS. Taken together, this study suggests that the anti-adipogenic effect of epiberberine is mediated by downregulation of the Raf/MEK1/ERK1/2 and AMPKα/Akt pathways during 3T3-L1 adipocyte differentiation. Moreover, the anti-adipogenic effects of epiberberine were not accompanied by modulation of β-catenin.

  9. The transcription factor nuclear factor-kappa B and cancer.

    PubMed

    Escárcega, R O; Fuentes-Alexandro, S; García-Carrasco, M; Gatica, A; Zamora, A

    2007-03-01

    Since the discovery of nuclear factor-kappa B (NF-kappaB) in 1986, many studies have been conducted showing the link between the NF-kappaB signalling pathway and control of the inflammatory response. Today it is well known that control of the inflammatory response and apoptosis is closely related to the activation of NF-kappaB. Three NF-kappaB activation pathways exist. The first (the classical pathway) is normally triggered in response to microbial and viral infections or exposure to pro-inflammatory cytokines that activate the tripartite IKK complex, leading to phosphorylation-induced IkappaB degradation and depends mainly on IKKbeta activity. The second (the alternative pathway), leads to selective activation of p52:RelB dimers by inducing the processing of the NF-kappaB2/p100 precursor protein, which mostly occurs as a heterodimer with RelB in the cytoplasm. This pathway is triggered by certain members of the tumour necrosis factor cytokine family, through selective activation of IKKalpha homodimers by the upstream kinase NIK. The third pathway is named CK2 and is IKK independent. NF-kappaB acts through the transcription of anti-apoptotic proteins, leading to increased proliferation of cells and tumour growth. It is also known that some drugs act directly in the inhibition of NF-kappaB, thus producing regulation of apoptosis; some examples are aspirin and corticosteroids. Here we review the role of NF-kappaB in the control of apoptosis, its link to oncogenesis, the evidence of several studies that show that NF-kappaB activation is closely related to different cancers, and finally the potential target of NF-kappaB as cancer therapy.

  10. Regulatory coding of lymphoid lineage choice by hematopoietic transcription factors

    NASA Technical Reports Server (NTRS)

    Warren, Luigi A.; Rothenberg, Ellen V.

    2003-01-01

    During lymphopoiesis, precursor cells negotiate a complex regulatory space, defined by the levels of several competing and cross-regulating transcription factors, before arriving at stable states of commitment to the B-, T- and NK-specific developmental programs. Recent perturbation experiments provide evidence that this space has three major axes, corresponding to the PU.1 versus GATA-1 balance, the intensity of Notch signaling through the CSL pathway, and the ratio of E-box transcription factors to their Id protein antagonists.

  11. Cooperative activation of Xenopus rhodopsin transcription by paired-like transcription factors

    PubMed Central

    2014-01-01

    Background In vertebrates, rod photoreceptor-specific gene expression is regulated by the large Maf and Pax-like transcription factors, Nrl/LNrl and Crx/Otx5. The ubiquitous occurrence of their target DNA binding sites throughout rod-specific gene promoters suggests that multiple transcription factor interactions within the promoter are functionally important. Cooperative action by these transcription factors activates rod-specific genes such as rhodopsin. However, a quantitative mechanistic explanation of transcriptional rate determinants is lacking. Results We investigated the contributions of various paired-like transcription factors and their cognate cis-elements to rhodopsin gene activation using cultured cells to quantify activity. The Xenopus rhodopsin promoter (XOP) has a bipartite structure, with ~200 bp proximal to the start site (RPP) coordinating cooperative activation by Nrl/LNrl-Crx/Otx5 and the adjacent 5300 bp upstream sequence increasing the overall expression level. The synergistic activation by Nrl/LNrl-Crx/Otx5 also occurred when XOP was stably integrated into the genome. We determined that Crx/Otx5 synergistically activated transcription independently and additively through the two Pax-like cis-elements, BAT1 and Ret4, but not through Ret1. Other Pax-like family members, Rax1 and Rax2, do not synergistically activate XOP transcription with Nrl/LNrl and/or Crx/Otx5; rather they act as co-activators via the Ret1 cis-element. Conclusions We have provided a quantitative model of cooperative transcriptional activation of the rhodopsin promoter through interaction of Crx/Otx5 with Nrl/LNrl at two paired-like cis-elements proximal to the NRE and TATA binding site. Further, we have shown that Rax genes act in cooperation with Crx/Otx5 with Nrl/LNrl as co-activators of rhodopsin transcription. PMID:24499263

  12. Networks of WRKY transcription factors in defense signaling.

    PubMed

    Eulgem, Thomas; Somssich, Imre E

    2007-08-01

    Members of the complex family of WRKY transcription factors have been implicated in the regulation of transcriptional reprogramming associated with plant immune responses. Recently genetic evidence directly proving their significance as positive and negative regulators of disease resistance has accumulated. WRKY genes were shown to be functionally connected forming a transcriptional network composed of positive and negative feedback loops and feed-forward modules. Within a web of partially redundant elements some WRKY factors hold central positions mediating fast and efficient activation of defense programs. A key mechanism triggering strong immune responses appears to be based on the inactivation of defense-suppressing WRKY proteins.

  13. Retroactivity effects dependency on the transcription factors binding mechanisms.

    PubMed

    Pantoja-Hernández, Libertad; Álvarez-Buylla, Elena; Aguilar-Ibáñez, Carlos F; Garay-Arroyo, Adriana; Soria-López, Alberto; Martínez-García, Juan Carlos

    2016-12-07

    Downstream connection effects on transcription are caused by retroactivity. When biomolecular dynamical systems interconnect retroactivity is a property that becomes important. The biological functional meaning of these effects is increasingly becoming an area of interest. Downstream targets, which are operator binding sites in transcriptional networks, may induce behaviors such as ultrasensitive responses or even represent an undesired issue in regulation. To the best of our knowledge, the role of the binding mechanisms of transcription factors in relation to minimizing - or enhancing - retroactivity effects has not been previously addressed. Our aim is to evaluate retroactivity effects considering how the binding mechanism impacts the number of free functional transcription factor (FFTF) molecules using a simple model via deterministic and stochastic simulations. We study four transcription factor binding mechanisms (BM): simple monomer binding (SMB), dimer binding (DB), cooperative sequential binding (CSB) and cooperative sequential binding with dimerization (CSB_D). We consider weak and strong binding regimes for each mechanism, where we contrast the cases when the FFTF is bound or unbound to the downstream loads. Upon interconnection, the number of FFTF molecules changed less for the SMB mechanism while for DB they changed the most. Our results show that for the chosen mechanisms (in terms of the corresponding described dynamics), retroactivity effects depend on transcription binding mechanisms. This contributes to the understanding of how the transcription factor regulatory function-such as decision making-and its dynamic needs for the response, may determine the nature of the selected binding mechanism.

  14. Multilayered Control of Alternative Splicing Regulatory Networks by Transcription Factors.

    PubMed

    Han, Hong; Braunschweig, Ulrich; Gonatopoulos-Pournatzis, Thomas; Weatheritt, Robert J; Hirsch, Calley L; Ha, Kevin C H; Radovani, Ernest; Nabeel-Shah, Syed; Sterne-Weiler, Tim; Wang, Juli; O'Hanlon, Dave; Pan, Qun; Ray, Debashish; Zheng, Hong; Vizeacoumar, Frederick; Datti, Alessandro; Magomedova, Lilia; Cummins, Carolyn L; Hughes, Timothy R; Greenblatt, Jack F; Wrana, Jeffrey L; Moffat, Jason; Blencowe, Benjamin J

    2017-02-02

    Networks of coordinated alternative splicing (AS) events play critical roles in development and disease. However, a comprehensive knowledge of the factors that regulate these networks is lacking. We describe a high-throughput system for systematically linking trans-acting factors to endogenous RNA regulatory events. Using this system, we identify hundreds of factors associated with diverse regulatory layers that positively or negatively control AS events linked to cell fate. Remarkably, more than one-third of the regulators are transcription factors. Further analyses of the zinc finger protein Zfp871 and BTB/POZ domain transcription factor Nacc1, which regulate neural and stem cell AS programs, respectively, reveal roles in controlling the expression of specific splicing regulators. Surprisingly, these proteins also appear to regulate target AS programs via binding RNA. Our results thus uncover a large "missing cache" of splicing regulators among annotated transcription factors, some of which dually regulate AS through direct and indirect mechanisms.

  15. A non-bacterial transcription factor inhibits bacterial transcription by a multipronged mechanism.

    PubMed

    Sheppard, Carol; James, Ellen; Barton, Geraint; Matthews, Stephen; Severinov, Konstantin; Wigneshweraraj, Sivaramesh

    2013-04-01

    The process of transcription initiation is the major target for regulation of gene expression in bacteria and is performed by a multi-subunit RNA polymerase enzyme (RNAp). A complex network of regulatory elements controls the activity of the RNAp to fine-tune transcriptional output. Thus, RNAp is a nexus for controlling bacterial gene expression at the transcription level. Many bacteriophages, viruses that infect bacteria, encode transcription factors that specifically target and modulate the activity of the host RNAp and, thereby, facilitate the acquisition of the host bacteria by the phage. Here, we describe the modus operandi of a T7 bacteriophage-encoded small protein called Gp2 and define Gp2 as a non-bacterial regulator of bacterial transcription.

  16. Idesolide inhibits the adipogenic differentiation of mesenchymal cells through the suppression of nitric oxide production.

    PubMed

    Hwang, Jun-Ha; Moon, Sung Ah; Lee, Cham Han; Byun, Mi Ran; Kim, A Rum; Sung, Mi Kyung; Park, Hyun-Jin; Hwang, Eun Sook; Sung, Sang Hyun; Hong, Jeong-Ho

    2012-06-15

    Obesity is a major health problem worldwide and can increase the risk for several chronic diseases, including diabetes and cardiovascular disease. In this study, we screened small compounds isolated from natural products for the development of an anti-obesity drug. Among them, idesolide, a spiro compound isolated from the fruits of Idesia polycarpa Maxim, showed a significant suppression of the adipogenic differentiation in mesenchymal cells, as indicated by the decrease in fat droplets and expression of adipogenic marker genes such as aP2 and adiponectin. Idesolide inhibits the PPARγ-mediated gene transcription in a dose-dependent manner, revealed by luciferase reporter gene assay. During adipogenic differentiation, idesolide inhibits nitric oxide production through the suppression of iNOS expression, and the increased adipogenic differentiation by arginine, the substrate for NOS, is significantly inhibited by idesolide, suggesting that the inhibition of nitric oxide production plays a major role in idesolide-induced adipogenic suppression. Taken together, the results reveal that idesolide has anti-adipogenic activity and highlight its potential in the prevention and treatment of obesity.

  17. Depleting Mycobacterium tuberculosis of the transcription termination factor Rho causes pervasive transcription and rapid death.

    PubMed

    Botella, Laure; Vaubourgeix, Julien; Livny, Jonathan; Schnappinger, Dirk

    2017-03-28

    Rifampicin, which inhibits bacterial RNA polymerase, provides one of the most effective treatments for tuberculosis. Inhibition of the transcription termination factor Rho is used to treat some bacterial infections, but its importance varies across bacteria. Here we show that Rho of Mycobacterium tuberculosis functions to both define the 3' ends of mRNAs and silence substantial fragments of the genome. Brief inactivation of Rho affects over 500 transcripts enriched for genes of foreign DNA elements and bacterial virulence factors. Prolonged inactivation of Rho causes extensive pervasive transcription, a genome-wide increase in antisense transcripts, and a rapid loss of viability of replicating and non-replicating M. tuberculosis in vitro and during acute and chronic infection in mice. Collectively, these data suggest that inhibition of Rho may provide an alternative strategy to treat tuberculosis with an efficacy similar to inhibition of RNA polymerase.

  18. Depleting Mycobacterium tuberculosis of the transcription termination factor Rho causes pervasive transcription and rapid death

    PubMed Central

    Botella, Laure; Vaubourgeix, Julien; Livny, Jonathan; Schnappinger, Dirk

    2017-01-01

    Rifampicin, which inhibits bacterial RNA polymerase, provides one of the most effective treatments for tuberculosis. Inhibition of the transcription termination factor Rho is used to treat some bacterial infections, but its importance varies across bacteria. Here we show that Rho of Mycobacterium tuberculosis functions to both define the 3′ ends of mRNAs and silence substantial fragments of the genome. Brief inactivation of Rho affects over 500 transcripts enriched for genes of foreign DNA elements and bacterial virulence factors. Prolonged inactivation of Rho causes extensive pervasive transcription, a genome-wide increase in antisense transcripts, and a rapid loss of viability of replicating and non-replicating M. tuberculosis in vitro and during acute and chronic infection in mice. Collectively, these data suggest that inhibition of Rho may provide an alternative strategy to treat tuberculosis with an efficacy similar to inhibition of RNA polymerase. PMID:28348398

  19. Epigenetic program and transcription factor circuitry of dendritic cell development

    PubMed Central

    Lin, Qiong; Chauvistré, Heike; Costa, Ivan G.; Gusmao, Eduardo G.; Mitzka, Saskia; Hänzelmann, Sonja; Baying, Bianka; Klisch, Theresa; Moriggl, Richard; Hennuy, Benoit; Smeets, Hubert; Hoffmann, Kurt; Benes, Vladimir; Seré, Kristin; Zenke, Martin

    2015-01-01

    Dendritic cells (DC) are professional antigen presenting cells that develop from hematopoietic stem cells through successive steps of lineage commitment and differentiation. Multipotent progenitors (MPP) are committed to DC restricted common DC progenitors (CDP), which differentiate into specific DC subsets, classical DC (cDC) and plasmacytoid DC (pDC). To determine epigenetic states and regulatory circuitries during DC differentiation, we measured consecutive changes of genome-wide gene expression, histone modification and transcription factor occupancy during the sequel MPP-CDP-cDC/pDC. Specific histone marks in CDP reveal a DC-primed epigenetic signature, which is maintained and reinforced during DC differentiation. Epigenetic marks and transcription factor PU.1 occupancy increasingly coincide upon DC differentiation. By integrating PU.1 occupancy and gene expression we devised a transcription factor regulatory circuitry for DC commitment and subset specification. The circuitry provides the transcription factor hierarchy that drives the sequel MPP-CDP-cDC/pDC, including Irf4, Irf8, Tcf4, Spib and Stat factors. The circuitry also includes feedback loops inferred for individual or multiple factors, which stabilize distinct stages of DC development and DC subsets. In summary, here we describe the basic regulatory circuitry of transcription factors that drives DC development. PMID:26476451

  20. Functional Characterization of Fission Yeast Transcription Factors by Overexpression Analysis

    PubMed Central

    Vachon, Lianne; Wood, Justin; Kwon, Eun-Joo Gina; Laderoute, Amy; Chatfield-Reed, Kate; Karagiannis, Jim; Chua, Gordon

    2013-01-01

    In Schizosaccharomyces pombe, over 90% of transcription factor genes are nonessential. Moreover, the majority do not exhibit significant growth defects under optimal conditions when deleted, complicating their functional characterization and target gene identification. Here, we systematically overexpressed 99 transcription factor genes with the nmt1 promoter and found that 64 transcription factor genes exhibited reduced fitness when ectopically expressed. Cell cycle defects were also often observed. We further investigated three uncharacterized transcription factor genes (toe1+–toe3+) that displayed cell elongation when overexpressed. Ectopic expression of toe1+ resulted in a G1 delay while toe2+ and toe3+ overexpression produced an accumulation of septated cells with abnormalities in septum formation and nuclear segregation, respectively. Transcriptome profiling and ChIP-chip analysis of the transcription factor overexpression strains indicated that Toe1 activates target genes of the pyrimidine-salvage pathway, while Toe3 regulates target genes involved in polyamine synthesis. We also found that ectopic expression of the putative target genes SPBC3H7.05c, and dad5+ and SPAC11D3.06 could recapitulate the cell cycle phenotypes of toe2+ and toe3+ overexpression, respectively. Furthermore, single deletions of the putative target genes urg2+ and SPAC1399.04c, and SPBC3H7.05c, SPACUNK4.15, and rds1+, could suppress the phenotypes of toe1+ and toe2+ overexpression, respectively. This study implicates new transcription factors and metabolism genes in cell cycle regulation and demonstrates the potential of systematic overexpression analysis to elucidate the function and target genes of transcription factors in S. pombe. PMID:23695302

  1. Transcription factor network reconstruction using the living cell array.

    PubMed

    Yang, Eric; Yarmush, Martin L; Androulakis, Ioannis P

    2009-02-07

    The objective of identifying transcriptional regulatory networks is to provide insights as to what governs an organism's long term response to external stimuli. We explore the coupling of the living cell array (LCA), a novel microfluidics device which utilizes fluorescence levels as a surrogate for transcription factor activity with reverse Euler deconvolution (RED) a computational technique proposed in this work to decipher the dynamics of the interactions. It is hypothesized that these two methods will allow us to first assess the underlying network architecture associated with the transcription factor network as well as specific mechanistic consequences of transcription factor activation such as receptor dimerization or tolerance. The overall approach identifies evidence of time-lagged response which may be indicative of mechanisms such as receptor dimerization, tolerance mechanisms which are evidence of various receptor mediated dynamics, and feedback loops which regulate the response of an organism to changing environmental conditions. Furthermore, through the exploration of multiple network architectures, we were able to obtain insights as to the role each transcription factor plays in the overall response and their overall redundancy in the organism's response to external perturbations. Thus, the LCA along with the proposed analysis technique is a valuable tool for identifying the possible architectures and mechanisms underlying the transcriptional response.

  2. A heteromeric transcription factor required for mammalian RNA polymerase II.

    PubMed Central

    Kitajima, S; Tanaka, Y; Kawaguchi, T; Nagaoka, T; Weissman, S M; Yasukochi, Y

    1990-01-01

    A general transcription factor, FC, essential for specific initiation of in vitro transcription by mammalian RNA polymerase II was identified and a procedure developed to purify it to near homogeneity from HeLa cell nuclei. Purified FC is composed of two polypeptides of apparent molecular masses 80 kDa and 30 kDa, on SDS-PAGE, and has a native size of 280 kDa estimated by gel filtration column. Both polypeptides were shown to be essential for reconstituting in vitro transcription activity. Biochemical analysis showed that the 80 kDa and 30 kDa components were present in a 1:1 molar ratio. FC was also demonstrated to interact directly or indirectly with purified RNA polymerase II. Similarities between FC and transcription factors reported by others from human, rat or Drosophila cells are discussed. Images PMID:2395645

  3. Function of transcription factors at DNA lesions in DNA repair.

    PubMed

    Malewicz, Michal; Perlmann, Thomas

    2014-11-15

    Cellular systems for DNA repair ensure prompt removal of DNA lesions that threaten the genomic stability of the cell. Transcription factors (TFs) have long been known to facilitate DNA repair via transcriptional regulation of specific target genes encoding key DNA repair proteins. However, recent findings identified TFs as DNA repair components acting directly at the DNA lesions in a transcription-independent fashion. Together this recent progress is consistent with the hypothesis that TFs have acquired the ability to localize DNA lesions and function by facilitating chromatin remodeling at sites of damaged DNA. Here we review these recent findings and discuss how TFs may function in DNA repair.

  4. Depletion of histone demethylase KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of stem cells from apical papilla

    SciTech Connect

    Dong, Rui; Yao, Rui; Du, Juan; Wang, Songlin; Fan, Zhipeng

    2013-11-01

    Mesenchymal stem cells (MSCs) are a reliable resource for tissue regeneration, but the molecular mechanism underlying directed differentiation remains unclear; this has restricted potential MSC applications. The histone demethylase, lysine (K)-specific demethylase 2A (KDM2A), is evolutionarily conserved and ubiquitously expressed members of the JmjC-domain-containing histone demethylase family. A previous study determined that KDM2A can regulate the cell proliferation and osteo/dentinogenic differentiation of MSCs. It is not known whether KDM2A is involved in the other cell lineages differentiation of MSCs. Here, we show that depletion of KDM2A by short hairpin RNAs can enhance adipogenic and chondrogenic differentiation potentials in human stem cells from apical papilla (SCAPs). We found that the stemness-related genes, SOX2, and the embryonic stem cell master transcription factor, NANOG were significantly increased after silence of KDM2A in SCAPs. Moreover, we found that knock-down of the KDM2A co-factor, BCOR also up-regulated the mRNA levels of SOX2 and NANOG. Furthermore, Chromatin immunoprecipitation assays demonstrate that silence of KDM2A increased the histone H3 Lysine 4 (H3K4) trimethylation in the SOX2 and NANOG locus and regulates its expression. In conclusion, our results suggested that depletion of KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of SCAPs by up-regulated SOX2 and NANOG, BCOR also involved in this regulation as co-factor, and provided useful information to understand the molecular mechanism underlying directed differentiation in MSCs. - Highlights: • Depletion of KDM2A enhances adipogenic/chondrogenic differentiation in SCAPs. • Depletion of KDM2A enhances the differentiation of SCAPs by activate SOX2 and NANOG. • Silence of KDM2A increases histone H3 Lysine 4 trimethylation in SOX2 and NANOG. • BCOR is co-factor of KDM2A involved in the differentiation regulation.

  5. Mechanistic duality of transcription factor function in phytochrome signaling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The phytochrome (phy) family of sensory photoreceptors (phyA–E in Arabidopsis) elicit changes in gene expression after light-induced migration to the nucleus, where they interact with basic helix–loop–helix transcription factors, such as phytochrome-interacting factor 3 (PIF3). The mechanism by whic...

  6. Emerging functions of transcription factors in malaria parasite.

    PubMed

    Tuteja, Renu; Ansari, Abulaish; Chauhan, Virander Singh

    2011-01-01

    Transcription is a process by which the genetic information stored in DNA is converted into mRNA by enzymes known as RNA polymerase. Bacteria use only one RNA polymerase to transcribe all of its genes while eukaryotes contain three RNA polymerases to transcribe the variety of eukaryotic genes. RNA polymerase also requires other factors/proteins to produce the transcript. These factors generally termed as transcription factors (TFs) are either associated directly with RNA polymerase or add in building the actual transcription apparatus. TFs are the most common tools that our cells use to control gene expression. Plasmodium falciparum is responsible for causing the most lethal form of malaria in humans. It shows most of its characteristics common to eukaryotic transcription but it is assumed that mechanisms of transcriptional control in P. falciparum somehow differ from those of other eukaryotes. In this article we describe the studies on the main TFs such as myb protein, high mobility group protein and ApiA2 family proteins from malaria parasite. These studies show that these TFs are slowly emerging to have defined roles in the regulation of gene expression in the parasite.

  7. Homeodomain transcription factors regulate BMP-2-induced osteoactivin transcription in osteoblasts.

    PubMed

    Singh, Maneet; Del Carpio-Cano, Fabiola E; Monroy, M Alexandra; Popoff, Steven N; Safadi, Fayez F

    2012-01-01

    Osteoactivin (OA) is required for the differentiation of osteoblast cells. OA expression is stimulated by bone morphogenetic protein-2 (BMP-2). BMP-2 recruits homeodomain transcription factors Dlx3, Dlx5, and Msx2 to selectively activate or repress transcription of osteogenic genes and hence tightly regulate their transcription during osteoblast differentiation. Considering the key roles of Dlx3, Dlx5, and Msx2 in osteoblast differentiation, here we hypothesize that homeodomain proteins regulate BMP-2-induced OA transcription during osteoblast differentiation. Four classical homeodomain binding sites were identified in the proximal 0.96 kb region of rat OA promoter. Deletions and mutagenesis studies of the OA promoter region indicated that all four homeodomain binding sites are crucial for BMP-2-induced OA promoter activity. Simultaneous disruption of homeodomain binding sites at -852 and -843 of the transcription start site of OA gene significantly decreased the BMP-2-induced OA transcription and inhibited binding of Dlx3, Dlx5, and Msx2 proteins to the OA promoter. Dlx3 and Dlx5 proteins were found to activate the OA transcription, whereas, Msx2 suppressed BMP-2-induced OA transcription. Using chromatin immunoprecipitation assays, we demonstrated that the OA promoter is predominantly occupied by Dlx3 and Dlx5 during the proliferation and matrix maturation stages of osteoblast differentiation, respectively. During the matrix mineralization stage, BMP-2 robustly enhanced the recruitment of Dlx5 and to a lesser extent of Dlx3 and Msx2 to the OA promoter region. Collectively, our results show that the BMP-2-induced OA transcription is differentially regulated by Dlx3, Dlx5, and Msx2 during osteoblast differentiation.

  8. Sumoylation delays the ATF7 transcription factor subcellular localization and inhibits its transcriptional activity.

    PubMed

    Hamard, Pierre-Jacques; Boyer-Guittaut, Michaël; Camuzeaux, Barbara; Dujardin, Denis; Hauss, Charlotte; Oelgeschläger, Thomas; Vigneron, Marc; Kedinger, Claude; Chatton, Bruno

    2007-01-01

    Over the past few years, small ubiquitin-like modifier (SUMO) modification has emerged as an important regulator of diverse pathways and activities including protein localization and transcriptional regulation. We identified a consensus sumoylation motif (IKEE), located within the N-terminal activation domain of the ATF7 transcription factor and thus investigated the role of this modification. ATF7 is a ubiquitously expressed transcription factor, homologous to ATF2, that binds to CRE elements within specific promoters. This protein is able to heterodimerize with Jun or Fos proteins and its transcriptional activity is mediated by interaction with TAF12, a subunit of the general transcription factor TFIID. In the present article, we demonstrate that ATF7 is sumoylated in vitro (using RanBP2 as a E3-specific ligase) and in vivo. Moreover, we show that ATF7 sumoylation affects its intranuclear localization by delaying its entry into the nucleus. Furthermore, SUMO conjugation inhibits ATF7 transactivation activity by (i) impairing its association with TAF12 and (ii) blocking its binding-to-specific sequences within target promoters.

  9. Theory on the dynamic memory in the transcription-factor-mediated transcription activation

    NASA Astrophysics Data System (ADS)

    Murugan, R.

    2011-04-01

    We develop a theory to explain the origin of the static and dynamical memory effects in transcription-factor-mediated transcription activation. Our results suggest that the following inequality conditions should be satisfied to observe such memory effects: (a) τL≫max(τR,τE), (b) τLT≫τT, and (c) τI⩾(τEL+τTR) where τL is the average time required for the looping-mediated spatial interactions of enhancer—transcription-factor complex with the corresponding promoter—RNA-polymerase or eukaryotic RNA polymerase type II (PolII in eukaryotes) complex that is located L base pairs away from the cis-acting element, (τR,τE) are respectively the search times required for the site-specific binding of the RNA polymerase and the transcription factor with the respective promoter and the cis-regulatory module, τLT is the time associated with the relaxation of the looped-out segment of DNA that connects the cis-acting site and promoter, τT is the time required to generate a complete transcript, τI is the transcription initiation time, τEL is the elongation time, and τTR is the termination time. We have theoretically derived the expressions for the various searching, looping, and loop-relaxation time components. Using the experimentally determined values of various time components we further show that the dynamical memory effects cannot be experimentally observed whenever the segment of DNA that connects the cis-regulatory element with the promoter is not loaded with bulky histone bodies. Our analysis suggests that the presence of histone-mediated compaction of the connecting segment of DNA can result in higher values of looping and loop-relaxation times, which is the origin of the static memory in the transcription activation that is mediated by the memory gene loops in eukaryotes.

  10. Theory on the dynamic memory in the transcription-factor-mediated transcription activation.

    PubMed

    Murugan, R

    2011-04-01

    We develop a theory to explain the origin of the static and dynamical memory effects in transcription-factor-mediated transcription activation. Our results suggest that the following inequality conditions should be satisfied to observe such memory effects: (a) τ(L)≫max(τ(R),τ(E)), (b) τ(LT)≫τ(T), and (c) τ(I)≥(τ(EL)+τ(TR)) where τ(L) is the average time required for the looping-mediated spatial interactions of enhancer-transcription-factor complex with the corresponding promoter--RNA-polymerase or eukaryotic RNA polymerase type II (PolII in eukaryotes) complex that is located L base pairs away from the cis-acting element, (τ(R),τ(E)) are respectively the search times required for the site-specific binding of the RNA polymerase and the transcription factor with the respective promoter and the cis-regulatory module, τ(LT) is the time associated with the relaxation of the looped-out segment of DNA that connects the cis-acting site and promoter, τ(T) is the time required to generate a complete transcript, τ(I) is the transcription initiation time, τ(EL) is the elongation time, and τ(TR) is the termination time. We have theoretically derived the expressions for the various searching, looping, and loop-relaxation time components. Using the experimentally determined values of various time components we further show that the dynamical memory effects cannot be experimentally observed whenever the segment of DNA that connects the cis-regulatory element with the promoter is not loaded with bulky histone bodies. Our analysis suggests that the presence of histone-mediated compaction of the connecting segment of DNA can result in higher values of looping and loop-relaxation times, which is the origin of the static memory in the transcription activation that is mediated by the memory gene loops in eukaryotes.

  11. Identifying genetic modulators of the connectivity between transcription factors and their transcriptional targets.

    PubMed

    Fazlollahi, Mina; Muroff, Ivor; Lee, Eunjee; Causton, Helen C; Bussemaker, Harmen J

    2016-03-29

    Regulation of gene expression by transcription factors (TFs) is highly dependent on genetic background and interactions with cofactors. Identifying specific context factors is a major challenge that requires new approaches. Here we show that exploiting natural variation is a potent strategy for probing functional interactions within gene regulatory networks. We developed an algorithm to identify genetic polymorphisms that modulate the regulatory connectivity between specific transcription factors and their target genes in vivo. As a proof of principle, we mapped connectivity quantitative trait loci (cQTLs) using parallel genotype and gene expression data for segregants from a cross between two strains of the yeast Saccharomyces cerevisiae We identified a nonsynonymous mutation in the DIG2 gene as a cQTL for the transcription factor Ste12p and confirmed this prediction empirically. We also identified three polymorphisms in TAF13 as putative modulators of regulation by Gcn4p. Our method has potential for revealing how genetic differences among individuals influence gene regulatory networks in any organism for which gene expression and genotype data are available along with information on binding preferences for transcription factors.

  12. Role of non-coding RNA transcription around gene regulatory elements in transcription factor recruitment

    PubMed Central

    Ohta, Kunihiro

    2017-01-01

    ABSTRACT Eukaryotic cells produce a variety of non-coding RNAs (ncRNAs), many of which have been shown to play pivotal roles in biological processes such as differentiation, maintenance of pluripotency of stem cells, and cellular response to various stresses. Genome-wide analyses have revealed that many ncRNAs are transcribed around regulatory DNA elements located proximal or distal to gene promoters, but their biological functions are largely unknown. Recently, it has been demonstrated in yeast and mouse that ncRNA transcription around gene promoters and enhancers facilitates DNA binding of transcription factors to their target sites. These results suggest universal roles of promoter/enhancer-associated ncRNAs in the recruitment of transcription factors to their binding sites. PMID:27763805

  13. Roles of chondroitin sulfate proteoglycan 4 in fibrogenic/adipogenic differentiation in skeletal muscle tissues.

    PubMed

    Takeuchi, Shiho; Nakano, Shin-Ichi; Nakamura, Katsuyuki; Ozoe, Atsufumi; Chien, Peggie; Yoshihara, Hidehito; Hakuno, Fumihiko; Matsuwaki, Takashi; Saeki, Yasushi; Takahashi, Shin-Ichiro; Yamanouchi, Keitaro; Nishihara, Masugi

    2016-10-01

    Intramuscular adipose tissue and fibrous tissue are observed in some skeletal muscle pathologies such as Duchenne muscular dystrophy and sarcopenia, and affect muscle strength and myogenesis. They originate from common fibrogenic/adipogenic cells in the skeletal muscle. Thus, elucidating the regulatory mechanisms underlying fibrogenic/adipogenic cell differentiation is an important step toward the mediation of these disorders. Previously, we established a highly adipogenic progenitor clone, 2G11, from rat skeletal muscle and showed that basic fibroblast growth factor (bFGF) is pro-adipogenic in these cells. Here, we demonstrated that 2G11 cells give rise to fibroblasts upon transforming growth factor (TGF)-β1 stimulation, indicating that they possess mesenchymal progenitor cells (MPC)-like characteristics. The previously reported MPC marker PDGFRα is expressed in other cell populations. Accordingly, we produced monoclonal antibodies that specifically bind to 2G11 cell surface antigens and identified chondroitin sulfate proteoglycan 4 (CSPG4) as a potential MPC marker. Based on an RNA interference analysis, we found that CSPG4 is involved in both the pro-adipogenic effect of bFGF and in TGF-β-induced alpha smooth muscle actin expression and stress fiber formation. By establishing an additional marker for MPC detection and characterizing its role in fibrogenic/adipogenic differentiation, these results will facilitate the development of effective treatments for skeletal muscle pathologies.

  14. Split personality of transcription factors inside and outside the nuclear border.

    PubMed

    Naranjo, José R; Mellström, Britt

    2007-01-30

    Growing evidence indicates that transcription factors may have functions entirely distinct from the regulation of gene transcription. Here we describe three transcription factors that, when outside the nucleus, regulate calcium homeostasis by three independent but convergent mechanisms.

  15. Identification of Transcriptional Targets of the Dual Function Transcription Factor/Phosphatase Eyes Absent

    PubMed Central

    Jemc, Jennifer; Rebay, Ilaria

    2007-01-01

    Drosophila eye specification and development relies on a collection of transcription factors termed the retinal determination gene network (RDGN). Two members of this network, Eyes absent (EYA) and Sine oculis (SO), form a transcriptional complex in which EYA provides the transactivation function while SO provides the DNA binding activity. EYA also functions as a protein tyrosine phosphatase, raising the question of whether transcriptional output is dependent or independent of phosphatase activity. To explore this, we used microarrays together with binding site analysis, quantitative real-time PCR, chromatin immunoprecipitation, genetics and in vivo expression analysis to identify new EYA-SO targets. In parallel, we examined the expression profiles of tissue expressing phosphatase mutant eya and found that reducing phosphatase activity did not globally impair transcriptional output. Among the targets identified by our analysis was the cell cycle regulatory gene, string (stg), suggesting that EYA and SO may influence cell proliferation through transcriptional regulation of stg. Future investigation into the regulation of stg and other EYA-SO targets identified in this study will help elucidate the transcriptional circuitries whereby output from the RDGN integrates with other signaling inputs to coordinate retinal development. PMID:17714699

  16. CRTR-1, a developmentally regulated transcriptional repressor related to the CP2 family of transcription factors.

    PubMed

    Rodda, S; Sharma, S; Scherer, M; Chapman, G; Rathjen, P

    2001-02-02

    CP2-related proteins comprise a family of DNA-binding transcription factors that are generally activators of transcription and expressed ubiquitously. We reported a differential display polymerase chain reaction fragment, Psc2, which was expressed in a regulated fashion in mouse pluripotent cells in vitro and in vivo. Here, we report further characterization of the Psc2 cDNA and function. The Psc2 cDNA contained an open reading frame homologous to CP2 family proteins. Regions implicated in DNA binding and oligomeric complex formation, but not transcription activation, were conserved. Psc2 expression in vivo during embryogenesis and in the adult mouse demonstrated tight spatial and temporal regulation, with the highest levels of expression in the epithelial lining of distal convoluted tubules in embryonic and adult kidneys. Functional analysis demonstrated that PSC2 repressed transcription 2.5-15-fold when bound to a heterologous promoter in ES, 293T, and COS-1 cells. The N-terminal 52 amino acids of PSC2 were shown to be necessary and sufficient for this activity and did not share obvious homology with reported repressor motifs. These results represent the first report of a CP2 family member that is expressed in a developmentally regulated fashion in vivo and that acts as a direct repressor of transcription. Accordingly, the protein has been named CP2-Related Transcriptional Repressor-1 (CRTR-1).

  17. Transcriptional Profiling of Intrinsic PNS Factors in the Postnatal Mouse

    PubMed Central

    Smith, Robin P.; Lerch-Haner, Jessica K.; Pardinas, Jose R.; Buchser, William J.; Bixby, John L.; Lemmon, Vance P.

    2010-01-01

    Neurons in the peripheral nervous system (PNS) display a higher capacity to regenerate after injury than those in the central nervous system, suggesting cell specific transcriptional modules underlying axon growth and inhibition. We report a systems biology based search for PNS specific transcription factors (TFs). Messenger RNAs enriched in dorsal root ganglion (DRG) neurons compared to cerebellar granule neurons (CGNs) were identified using subtractive hybridization and DNA microarray approaches. Network and transcription factor binding site enrichment analyses were used to further identify TFs that may be differentially active. Combining these techniques, we identified 32 TFs likely to be enriched and/or active in the PNS. Twenty-five of these TFs were then tested for an ability to promote CNS neurite outgrowth in an overexpression screen. Real-time PCR and immunohistochemical studies confirmed that one representative TF, STAT3, is intrinsic to PNS neurons, and that constitutively active STAT3 is sufficient to promote CGN neurite outgrowth. PMID:20696251

  18. Transcriptional profiling of intrinsic PNS factors in the postnatal mouse.

    PubMed

    Smith, Robin P; Lerch-Haner, Jessica K; Pardinas, Jose R; Buchser, William J; Bixby, John L; Lemmon, Vance P

    2011-01-01

    Neurons in the peripheral nervous system (PNS) display a higher capacity to regenerate after injury than those in the central nervous system, suggesting cell specific transcriptional modules underlying axon growth and inhibition. We report a systems biology based search for PNS specific transcription factors (TFs). Messenger RNAs enriched in dorsal root ganglion (DRG) neurons compared to cerebellar granule neurons (CGNs) were identified using subtractive hybridization and DNA microarray approaches. Network and transcription factor binding site enrichment analyses were used to further identify TFs that may be differentially active. Combining these techniques, we identified 32 TFs likely to be enriched and/or active in the PNS. Twenty-five of these TFs were then tested for an ability to promote CNS neurite outgrowth in an overexpression screen. Real-time PCR and immunohistochemical studies confirmed that one representative TF, STAT3, is intrinsic to PNS neurons, and that constitutively active STAT3 is sufficient to promote CGN neurite outgrowth.

  19. LT175 Is a Novel PPARα/γ Ligand with Potent Insulin-sensitizing Effects and Reduced Adipogenic Properties*

    PubMed Central

    Gilardi, Federica; Giudici, Marco; Mitro, Nico; Maschi, Omar; Guerrini, Uliano; Rando, Gianpaolo; Maggi, Adriana; Cermenati, Gaia; Laghezza, Antonio; Loiodice, Fulvio; Pochetti, Giorgio; Lavecchia, Antonio; Caruso, Donatella; De Fabiani, Emma; Bamberg, Krister; Crestani, Maurizio

    2014-01-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors regulating lipid and glucose metabolism. Ongoing drug discovery programs aim to develop dual PPARα/γ agonists devoid of the side effects of the marketed antidiabetic agents thiazolidinediones and the dual agonists glitazars. Recently, we described a new dual PPARα/γ ligand, LT175, with a partial agonist profile against PPARγ and interacting with a newly identified region of the PPARγ-ligand binding domain (1). Here we show that LT175 differentially activated PPARγ target genes involved in fatty acid esterification and storage in 3T3-L1-derived adipocytes. This resulted in a less severe lipid accumulation compared with that triggered by rosiglitazone, suggesting that LT175 may have a lower adipogenic activity. Consistent with this hypothesis, in vivo administration of LT175 to mice fed a high-fat diet decreased body weight, adipocyte size, and white adipose tissue mass, as assessed by magnetic resonance imaging. Furthermore, LT175 significantly reduced plasma glucose, insulin, non-esterified fatty acids, triglycerides, and cholesterol and increased circulating adiponectin and fibroblast growth factor 21 levels. Oral glucose and insulin tolerance tests showed that the compound improves glucose homeostasis and insulin sensitivity. Moreover, we demonstrate that the peculiar interaction of LT175 with PPARγ affected the recruitment of the coregulators cyclic-AMP response element-binding protein-binding protein and nuclear corepressor 1 (NCoR1), fundamentals for the PPARγ-mediated adipogenic program. In conclusion, our results describe a new PPAR ligand, modulating lipid and glucose metabolism with reduced adipogenic activity, that may be used as a model for a series of novel molecules with an improved pharmacological profile for the treatment of dyslipidemia and type 2 diabetes. PMID:24451380

  20. Post-natal myogenic and adipogenic developmental

    PubMed Central

    Konings, Gonda; van Weeghel, Michel; van den Hoogenhof, Maarten MG; Gijbels, Marion; van Erk, Arie; Schoonderwoerd, Kees; van den Bosch, Bianca; Dahlmans, Vivian; Calis, Chantal; Houten, Sander M; Misteli, Tom

    2011-01-01

    A-type lamins are a major component of the nuclear lamina. Mutations in the LMNA gene, which encodes the A-type lamins A and C, cause a set of phenotypically diverse diseases collectively called laminopathies. While adult LMNA null mice show various symptoms typically associated with laminopathies, the effect of loss of lamin A/C on early post-natal development is poorly understood. Here we developed a novel LMNA null mouse (LMNAGT−/−) based on genetrap technology and analyzed its early post-natal development. We detect LMNA transcripts in heart, the outflow tract, dorsal aorta, liver and somites during early embryonic development. Loss of A-type lamins results in severe growth retardation and developmental defects of the heart, including impaired myocyte hypertrophy, skeletal muscle hypotrophy, decreased amounts of subcutaneous adipose tissue and impaired ex vivo adipogenic differentiation. These defects cause death at 2 to 3 weeks post partum associated with muscle weakness and metabolic complications, but without the occurrence of dilated cardiomyopathy or an obvious progeroid phenotype. Our results indicate that defective early post-natal development critically contributes to the disease phenotypes in adult laminopathies. PMID:21818413

  1. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor.

    PubMed

    Paonessa, Francesco; Criscuolo, Stefania; Sacchetti, Silvio; Amoroso, Davide; Scarongella, Helena; Pecoraro Bisogni, Federico; Carminati, Emanuele; Pruzzo, Giacomo; Maragliano, Luca; Cesca, Fabrizia; Benfenati, Fabio

    2016-01-05

    Optogenetics provides new ways to activate gene transcription; however, no attempts have been made as yet to modulate mammalian transcription factors. We report the light-mediated regulation of the repressor element 1 (RE1)-silencing transcription factor (REST), a master regulator of neural genes. To tune REST activity, we selected two protein domains that impair REST-DNA binding or recruitment of the cofactor mSin3a. Computational modeling guided the fusion of the inhibitory domains to the light-sensitive Avena sativa light-oxygen-voltage-sensing (LOV) 2-phototrophin 1 (AsLOV2). By expressing AsLOV2 chimeras in Neuro2a cells, we achieved light-dependent modulation of REST target genes that was associated with an improved neural differentiation. In primary neurons, light-mediated REST inhibition increased Na(+)-channel 1.2 and brain-derived neurotrophic factor transcription and boosted Na(+) currents and neuronal firing. This optogenetic approach allows the coordinated expression of a cluster of genes impinging on neuronal activity, providing a tool for studying neuronal physiology and correcting gene expression changes taking place in brain diseases.

  2. Resveratrol regulates gene transcription via activation of stimulus-responsive transcription factors.

    PubMed

    Thiel, Gerald; Rössler, Oliver G

    2017-03-01

    Resveratrol (trans-3,4',5-trihydroxystilbene), a polyphenolic phytoalexin of grapes and other fruits and plants, is a common constituent of our diet and of dietary supplements. Many health-promoting benefits have been connected with resveratrol in the treatment of cardiovascular diseases, cancer, diabetes, inflammation, neurodegeneration, and diseases connected with aging. To explain the pleiotropic effects of resveratrol, the molecular targets of this compound have to be identified on the cellular level. Resveratrol induces intracellular signal transduction pathways which ultimately lead to changes in the gene expression pattern of the cells. Here, we review the effect of resveratrol on the activation of the stimulus-responsive transcription factors CREB, AP-1, Egr-1, Elk-1, and Nrf2. Following activation, these transcription factors induce transcription of delayed response genes. The gene products of these delayed response genes are ultimately responsible for the changes in the biochemistry and physiology of resveratrol-treated cells. The activation of stimulus-responsive transcription factors may explain many of the intracellular activities of resveratrol. However, results obtained in vitro may not easily be transferred to in vivo systems.

  3. In vitro squelching of activated transcription by serum response factor: evidence for a common coactivator used by multiple transcriptional activators.

    PubMed Central

    Prywes, R; Zhu, H

    1992-01-01

    Low amounts of serum response factor (SRF) activate transcription in vitro from a fos promoter construct containing an SRF binding site. Using this human HeLa cell-derived in vitro transcription system, we have found that high amounts of SRF inhibited, or 'squelched', transcription from this construct. Transcription from several other promoters activated by different gene-specific factors, including CREB and the acidic activator VP16, was also inhibited by high amounts of SRF. Basal transcription, from TATA-only promoters, however, was not inhibited. These results suggest that SRF binds to a common factor(s) (termed coactivator) required for activated transcription by a diverse group of transcriptional activators. Inhibition of transcription by SRF could be blocked by a double stranded oligonucleotide containing an SRF binding site. Mutations in SRF which abolished its DNA binding activity also reduced its ability to inhibit transcription. In addition, a C-terminal truncation of SRF which reduced its ability to activate transcription also reduced SRF's ability to inhibit transcription. These results suggest that activation and inhibition of transcription may be mediated by SRF binding to the same factor and that SRF can only bind to this factor when SRF is bound to plasmid DNA. Images PMID:1531519

  4. The Effects of High Glucose on Adipogenic and Osteogenic Differentiation of Gestational Tissue-Derived MSCs.

    PubMed

    Hankamolsiri, Weerawan; Manochantr, Sirikul; Tantrawatpan, Chairat; Tantikanlayaporn, Duangrat; Tapanadechopone, Pairath; Kheolamai, Pakpoom

    2016-01-01

    Most type 2 diabetic patients are obese who have increased number of visceral adipocytes. Those visceral adipocytes release several factors that enhance insulin resistance making diabetic treatment ineffective. It is known that significant percentages of visceral adipocytes are derived from mesenchymal stem cells and high glucose enhances adipogenic differentiation of mouse bone marrow-derived MSCs (BM-MSCs). However, the effect of high glucose on adipogenic differentiation of human bone marrow and gestational tissue-derived MSCs is still poorly characterized. This study aims to investigate the effects of high glucose on proliferation as well as adipogenic and osteogenic differentiation of human MSCs derived from bone marrow and several gestational tissues including chorion, placenta, and umbilical cord. We found that high glucose reduced proliferation but enhanced adipogenic differentiation of all MSCs examined. The expression levels of some adipogenic genes were also upregulated when MSCs were cultured in high glucose. Although high glucose transiently downregulated the expression levels of some osteogenic genes examined, its effect on the osteogenic differentiation levels of the MSCs is not clearly demonstrated. The knowledge gained from this study will increase our understanding about the effect of high glucose on adipogenic differentiation of MSCs and might lead to an improvement in the diabetic treatment in the future.

  5. Metastatic Bone Disease: Role of Transcription Factors and Future Targets

    PubMed Central

    Pratap, Jitesh; Lian, Jane B.; Stein, Gary S.

    2010-01-01

    Progression of cancer from the earliest event of cell transformation through stages of tumor growth and metastasis at a distal site involves many complex biological processes. Underlying the numerous responses of cancer cells to the tumor microenvironment which support their survival, migration and metastasis are transcription factors that regulate the expression of genes reflecting properties of the tumor cell. A number of transcription factors have been identified that play key roles in promoting oncogenesis, tumor growth, metastasis and tissue destruction. Relevant to solid tumors and leukemias, tissue specific transcription factors that are deregulated resulting from mutations, being silenced or aberrantly expressed, have been well characterized. These are the master transcription factors of the Runx family of genes, the focus of this review, with emphasis placed on Runx2 that is abnormally expressed at very high levels in cancer cell lines that are metastatic to bone. Recent evidence has identified a correlation of Runx2 levels in advanced stages of prostate and breast cancer and demonstrated that effective depletion of Runx2 by RNA interference inhibits migration and invasive properties of the cells prevents metastatic bone disease. This striking effect is consistent with the broad spectrum of Runx2 properties in activating many genes in tumor cells that have already been established as indicators of bone metastasis in poor prognosis. Potential strategies to translate these findings for therapeutic applications are discussed. PMID:20561908

  6. The WRKY transcription factor family and senescence in switchgrass

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Early aerial senescence in switchgrass (Panicum virgatum) can significantly limit biomass yields. WRKY transcription factors that can regulate senescence could be used to reprogram senescence and enhance biomass yields. Methods: All potential WRKY genes present in the version 1.0 of the...

  7. A Recommendation for Naming Transcription Factor Proteins in the Grasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription factors are central for the exquisite temporal and spatial expression patterns of many genes. These proteins are characterized by their ability to be tethered to particular regulatory sequences in the genes that they control. While many other proteins participate in the regulation of g...

  8. Why Transcription Factor Binding Sites Are Ten Nucleotides Long

    PubMed Central

    Stewart, Alexander J.; Hannenhalli, Sridhar; Plotkin, Joshua B.

    2012-01-01

    Gene expression is controlled primarily by transcription factors, whose DNA binding sites are typically 10 nt long. We develop a population-genetic model to understand how the length and information content of such binding sites evolve. Our analysis is based on an inherent trade-off between specificity, which is greater in long binding sites, and robustness to mutation, which is greater in short binding sites. The evolutionary stable distribution of binding site lengths predicted by the model agrees with the empirical distribution (5–31 nt, with mean 9.9 nt for eukaryotes), and it is remarkably robust to variation in the underlying parameters of population size, mutation rate, number of transcription factor targets, and strength of selection for proper binding and selection against improper binding. In a systematic data set of eukaryotic and prokaryotic transcription factors we also uncover strong relationships between the length of a binding site and its information content per nucleotide, as well as between the number of targets a transcription factor regulates and the information content in its binding sites. Our analysis explains these features as well as the remarkable conservation of binding site characteristics across diverse taxa. PMID:22887818

  9. Epistatic relationships reveal the functional organization of yeast transcription factors.

    PubMed

    Zheng, Jiashun; Benschop, Joris J; Shales, Michael; Kemmeren, Patrick; Greenblatt, Jack; Cagney, Gerard; Holstege, Frank; Li, Hao; Krogan, Nevan J

    2010-10-05

    The regulation of gene expression is, in large part, mediated by interplay between the general transcription factors (GTFs) that function to bring about the expression of many genes and site-specific DNA-binding transcription factors (STFs). Here, quantitative genetic profiling using the epistatic miniarray profile (E-MAP) approach allowed us to measure 48 391 pairwise genetic interactions, both negative (aggravating) and positive (alleviating), between and among genes encoding STFs and GTFs in Saccharomyces cerevisiae. This allowed us to both reconstruct regulatory models for specific subsets of transcription factors and identify global epistatic patterns. Overall, there was a much stronger preference for negative relative to positive genetic interactions among STFs than there was among GTFs. Negative genetic interactions, which often identify factors working in non-essential, redundant pathways, were also enriched for pairs of STFs that co-regulate similar sets of genes. Microarray analysis demonstrated that pairs of STFs that display negative genetic interactions regulate gene expression in an independent rather than coordinated manner. Collectively, these data suggest that parallel/compensating relationships between regulators, rather than linear pathways, often characterize transcriptional circuits.

  10. Adipogenic and myogenic gene expression in rotator cuff muscle of the sheep after tendon tear.

    PubMed

    Frey, Eric; Regenfelder, Felix; Sussmann, Patrick; Zumstein, Matthias; Gerber, Christian; Born, Walter; Fuchs, Bruno

    2009-04-01

    Chronic rotator cuff tendon tears lead to fatty infiltration and muscle atrophy with impaired physiological functions of the affected muscles. However, the cellular and molecular mechanisms of corresponding pathophysiological processes remain unknown. The purpose of this study was to characterize the expression pattern of adipogenic (PPARgamma, C/EBPbeta) and myogenic (myostatin, myogenin, Myf-5) transcription factors in infraspinatus muscle of sheep after tenotomy, implantation of a tension device, refixation of the tendon, and rehabilitation, reflecting a model of chronic rotator cuff tears. In contrast to human patients, the presented sheep model allows a temporal evaluation of the expression of a given marker in the same individual over time. Semiquantitative RT/PCR analysis of PPARgammaã, myostatin, myogenin, Myf-5, and C/EBPbeta transcript levels was carried out with sheep muscle biopsy-derived total RNA. We found a significantly increased expression of Myf-5 and PPARgamma after tenotomy and a significant change for Myf-5 and C/EBPbeta after continuous traction and refixation. This experimental sheep model allows the molecular analysis of pathomechanisms of muscular changes after rotator cuff tear. The results point to a crucial role of the transcription factors PPARgamma, C/EBPbeta, and Myf-5 in impairment and regeneration of rotator cuff muscles after tendon tears in sheep.

  11. Hydrogen peroxide sensing, signaling and regulation of transcription factors

    PubMed Central

    Marinho, H. Susana; Real, Carla; Cyrne, Luísa; Soares, Helena; Antunes, Fernando

    2014-01-01

    The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly

  12. PDGFR-β (+) perivascular cells from infantile hemangioma display the features of mesenchymal stem cells and show stronger adipogenic potential in vitro and in vivo.

    PubMed

    Yuan, Si-Ming; Guo, Yao; Zhou, Xiao-Jun; Shen, Wei-Min; Chen, Hai-Ni

    2014-01-01

    Infantile hemangioma, a common benign tumor of infancy, grows quickly in the first year of life, and then regresses slowly to fibrofatty tissue in childhood. The accumulation of fibrofatty tissue in hemangioma involution indicates adipogenesis during this period. Perivascular cells (PCs) from multiple organs display multi-lineage differentiation, including adipogenesis. So we supposed that PCs in hemangioma may contribute to the adipogenesis in the involution. In this study, PDGFR-β (+) PCs was isolated from hemangioma tissue (hemangioma-derived perivascular cells, Hem-PCs) by fluorescence-activated cell sorter. In vitro, Hem-PCs showed fibroblast-like morphology. Immunofluorescence staining and flow cytometry showed Hem-PCs expressed MSCs markers CD105, CD90, CD29 and vimentin, pericyte markers α-SMA and PDGFR-β, stem cell marker CD133, and the adipogenic transcription factor PPAR-γ, but not hematopoietic/endothelial markers CD45, CD34, CD31, and flt-1. In vitro inductions confirmed multi-lineage differentiation of Hem-PCs, especially strong adipogenic potential. Then a murine model was established to observe in vivo differentiation of Hem-PCs by subcutaneous injection of cells/Matrigel compound into nude mice. The results showed Hem-PCs differentiated into adipocytes in vivo. To the best of our knowledge, this is the first study reporting the isolation of multipotential PDGFR-β (+) PCs from hemangioma, and observing their adipogenic differentiation in vivo. PCs may be the cellular basis of adipogenesis in hemangioma involution, and may be the target cells of adipogenic induction to promote hemangioma involution.

  13. Determination of osteogenic or adipogenic lineages in muscle-derived stem cells (MDSCs) by a collagen-binding peptide (CBP) derived from bone sialoprotein (BSP)

    SciTech Connect

    Choi, Yoon Jung; Lee, Jue Yeon; Lee, Seung Jin; Chung, Chong-Pyoung; Park, Yoon Jeong

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer CBP sequence is identified from BSP and has collagen binding activity. Black-Right-Pointing-Pointer CBP directly activates the MAPK signaling, especially ERK1/2. Black-Right-Pointing-Pointer CBP increase osteoblastic differentiation by the activation of Runx2. Black-Right-Pointing-Pointer CBP decrease adipogenic differentiation by the inhibition of PPAR{gamma}. -- Abstract: Bone sialoprotein (BSP) is a mineralized, tissue-specific, non-collagenous protein that is normally expressed only in mineralized tissues such as bone, dentin, cementum, and calcified cartilage, and at sites of new mineral formation. The binding of BSP to collagen is thought to be important for initiating bone mineralization and bone cell adhesion to the mineralized matrix. Several recent studies have isolated stem cells from muscle tissue, but their functional properties are still unclear. In this study, we examined the effects of a synthetic collagen-binding peptide (CBP) on the differentiation efficiency of muscle-derived stem cells (MDSCs). The CBP sequence (NGVFKYRPRYYLYKHAYFYPHLKRFPVQ) corresponds to residues 35-62 of bone sialoprotein (BSP), which are located within the collagen-binding domain in BSP. Interestingly, this synthetic CBP inhibited adipogenic differentiation but increased osteogenic differentiation in MDSCs. The CBP also induced expression of osteoblastic marker proteins, including alkaline phosphatase (ALP), type I collagen, Runt-related transcription factor 2 (Runx2), and osteocalcin; prevented adipogenic differentiation in MDSCs; and down-regulated adipose-specific mRNAs, such as adipocyte protein 2 (aP2) and peroxisome proliferator-activated receptor {gamma}. The CBP increased Extracellular signal-regulated kinases (ERK) 1/2 protein phosphorylation, which is important in lineage determination. These observations suggest that this CBP determines the osteogenic or adipogenic lineage in MDSCs by activating ERK1/2. Taken together, a

  14. Analysis of Genomic Sequence Motifs for Deciphering Transcription Factor Binding and Transcriptional Regulation in Eukaryotic Cells

    PubMed Central

    Boeva, Valentina

    2016-01-01

    Eukaryotic genomes contain a variety of structured patterns: repetitive elements, binding sites of DNA and RNA associated proteins, splice sites, and so on. Often, these structured patterns can be formalized as motifs and described using a proper mathematical model such as position weight matrix and IUPAC consensus. Two key tasks are typically carried out for motifs in the context of the analysis of genomic sequences. These are: identification in a set of DNA regions of over-represented motifs from a particular motif database, and de novo discovery of over-represented motifs. Here we describe existing methodology to perform these two tasks for motifs characterizing transcription factor binding. When applied to the output of ChIP-seq and ChIP-exo experiments, or to promoter regions of co-modulated genes, motif analysis techniques allow for the prediction of transcription factor binding events and enable identification of transcriptional regulators and co-regulators. The usefulness of motif analysis is further exemplified in this review by how motif discovery improves peak calling in ChIP-seq and ChIP-exo experiments and, when coupled with information on gene expression, allows insights into physical mechanisms of transcriptional modulation. PMID:26941778

  15. Repression of chimeric transcripts emanating from endogenous retrotransposons by a sequence-specific transcription factor

    PubMed Central

    2014-01-01

    Background Retroviral elements are pervasively transcribed and dynamically regulated during development. While multiple histone- and DNA-modifying enzymes have broadly been associated with their global silencing, little is known about how the many diverse retroviral families are each selectively recognized. Results Here we show that the zinc finger protein Krüppel-like Factor 3 (KLF3) specifically silences transcription from the ORR1A0 long terminal repeat in murine fetal and adult erythroid cells. In the absence of KLF3, we detect widespread transcription from ORR1A0 elements driven by the master erythroid regulator KLF1. In several instances these aberrant transcripts are spliced to downstream genic exons. One such chimeric transcript produces a novel, dominant negative isoform of PU.1 that can induce erythroid differentiation. Conclusions We propose that KLF3 ensures the integrity of the murine erythroid transcriptome through the selective repression of a particular retroelement and is likely one of multiple sequence-specific factors that cooperate to achieve global silencing. PMID:24946810

  16. The EDLL motif: a potent plant transcriptional activation domain from AP2/ERF transcription factors.

    PubMed

    Tiwari, Shiv B; Belachew, Alemu; Ma, Siu Fong; Young, Melinda; Ade, Jules; Shen, Yu; Marion, Colleen M; Holtan, Hans E; Bailey, Adina; Stone, Jeffrey K; Edwards, Leslie; Wallace, Andreah D; Canales, Roger D; Adam, Luc; Ratcliffe, Oliver J; Repetti, Peter P

    2012-06-01

    In plants, the ERF/EREBP family of transcriptional regulators plays a key role in adaptation to various biotic and abiotic stresses. These proteins contain a conserved AP2 DNA-binding domain and several uncharacterized motifs. Here, we describe a short motif, termed 'EDLL', that is present in AtERF98/TDR1 and other clade members from the same AP2 sub-family. We show that the EDLL motif, which has a unique arrangement of acidic amino acids and hydrophobic leucines, functions as a strong activation domain. The motif is transferable to other proteins, and is active at both proximal and distal positions of target promoters. As such, the EDLL motif is able to partly overcome the repression conferred by the AtHB2 transcription factor, which contains an ERF-associated amphiphilic repression (EAR) motif. We further examined the activation potential of EDLL by analysis of the regulation of flowering time by NF-Y (nuclear factor Y) proteins. Genetic evidence indicates that NF-Y protein complexes potentiate the action of CONSTANS in regulation of flowering in Arabidopsis; we show that the transcriptional activation function of CONSTANS can be substituted by direct fusion of the EDLL activation motif to NF-YB subunits. The EDLL motif represents a potent plant activation domain that can be used as a tool to confer transcriptional activation potential to heterologous DNA-binding proteins.

  17. MYB89 Transcription Factor Represses Seed Oil Accumulation1[OPEN

    PubMed Central

    Li, Dong; Jin, Changyu; Duan, Shaowei; Zhu, Yana; Qi, Shuanghui; Liu, Kaige; Gao, Chenhao; Ma, Haoli; Liao, Yuncheng

    2017-01-01

    In many higher plants, seed oil accumulation is precisely controlled by intricate multilevel regulatory networks, among which transcriptional regulation mainly influences oil biosynthesis. In Arabidopsis (Arabidopsis thaliana), the master positive transcription factors, WRINKLED1 (WRI1) and LEAFY COTYLEDON1-LIKE (L1L), are important for seed oil accumulation. We found that an R2R3-MYB transcription factor, MYB89, was expressed predominantly in developing seeds during maturation. Oil and major fatty acid biosynthesis in seeds was significantly promoted by myb89-1 mutation and MYB89 knockdown; thus, MYB89 was an important repressor during seed oil accumulation. RNA sequencing revealed remarkable up-regulation of numerous genes involved in seed oil accumulation in myb89 seeds at 12 d after pollination. Posttranslational activation of a MYB89-glucocorticoid receptor fusion protein and chromatin immunoprecipitation assays demonstrated that MYB89 inhibited seed oil accumulation by directly repressing WRI1 and five key genes and by indirectly suppressing L1L and 11 key genes involved in oil biosynthesis during seed maturation. These results help us to understand the novel function of MYB89 and provide new insights into the regulatory network of transcriptional factors controlling seed oil accumulation in Arabidopsis. PMID:27932421

  18. TFClass: an expandable hierarchical classification of human transcription factors

    PubMed Central

    Wingender, Edgar; Schoeps, Torsten; Dönitz, Jürgen

    2013-01-01

    TFClass (http://tfclass.bioinf.med.uni-goettingen.de/) provides a comprehensive classification of human transcription factors based on their DNA-binding domains. Transcription factors constitute a large functional family of proteins directly regulating the activity of genes. Most of them are sequence-specific DNA-binding proteins, thus reading out the information encoded in cis-regulatory DNA elements of promoters, enhancers and other regulatory regions of a genome. TFClass is a database that classifies human transcription factors by a six-level classification schema, four of which are abstractions according to different criteria, while the fifth level represents TF genes and the sixth individual gene products. Altogether, nine superclasses have been identified, comprising 40 classes and 111 families. Counted by genes, 1558 human TFs have been classified so far or >2900 different TFs when including their isoforms generated by alternative splicing or protein processing events. With this classification, we hope to provide a basis for deciphering protein–DNA recognition codes; moreover, it can be used for constructing expanded transcriptional networks by inferring additional TF-target gene relations. PMID:23180794

  19. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors

    PubMed Central

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-01-01

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, ‘Transcription Profile of Escherichia coli’ (www.shigen.nig.ac.jp/ecoli/tec/). PMID:26843427

  20. Phenamil enhances the adipogenic differentiation of hen preadipocytes.

    PubMed

    Regassa, Alemu; Park, Kye Won; Kim, Woo Kyun

    2016-10-01

    A study was conducted to examine the effect of phenamil on adipogenic differentiation and expression of key adipogenic transcripts in hen preadipocytes. Preadipocytes were isolated from 20-week old Single Comb White Leghorn hens (Gallas gallus, Lohman strain). The experiment lasted for 48 h and had six treatments. Non-treated control (C) cells, cells treated with dexamethasone, 3-isobutyl-1-methylxanthine, insulin, and oleic acid (DMIOA) (T1), DMIOA + 15 μM phenamil (T2), DMIOA + 30 μM phenamil (T3), 15 μM phenamil alone (T4), and 30 μM phenamil alone (T5). Neutral lipid accumulation and the mRNA expression of key adipogenic transcripts were measured in all treatments and compared. Lipid accumulation was detected in T1, T2, and T3 only. Expression of peroxisome proliferator receptor-activator gamma 2 (PPARγ2), the core enhancer binding protein α (C/EBPα), C/EBPβ, fatty acid binding protein 4 (FABP4), and lipoprotein lipase (LPL) as well as ETS variant 4 (ETV4) and 5 was higher (P < 0.05) in T2, T3, T4, and T5 compared to C. Expression of these transcripts was higher (P < 0.05) in T2 and T3 compared to T4 and T5. The core enhancer binding protein α, C/EBPβ, and FABP4 were highly expressed (P < 0.05) in T1 compared to C. However, the expression of PPARγ2, LPL, and ETV4 and ETV5 was not significantly different. Expression of C/EBPα, C/EBPβ, and FABP4 was higher (P < 0.05) in T2 and T3 compared to T1. Expression of sterol regulatory element binding protein 1 (SREBP1) and leptin receptor (LEPR) was not significantly different among the treatments. In conclusion, phenamil enhances DMIOA-induced adipogenic differentiation of hen preadipocytes but does not induce adipogenesis by itself.

  1. Human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by AMP-activated protein kinase.

    PubMed

    Kim, Eung-Kyun; Lim, Seyoung; Park, Ji-Man; Seo, Jeong Kon; Kim, Jae Ho; Kim, Kyong Tai; Ryu, Sung Ho; Suh, Pann-Ghill

    2012-04-01

    AMP-activated protein kinase (AMPK) is an energy-sensing kinase that has recently been shown to regulate the differentiation of preadipocytes and osteoblasts. However, the role of AMPK in stem cell differentiation is largely unknown. Using in vitro culture models, the present study demonstrates that AMPK is a critical regulatory factor for osteogenic differentiation. We observed that expression and phosphorylation of AMPK were increased during osteogenesis in human adipose tissue-derived mesenchymal stem cells (hAMSC). To elucidate the role of AMPK in osteogenic differentiation, we investigated the effect of AMPK inhibition or knockdown on mineralization of hAMSC. Compound C, an AMPK inhibitor, reduced mineralized matrix deposition and suppressed the expression of osteoblast-specific genes, including alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), and osteocalcin (OCN). Knockdown of AMPK by shRNA-lentivirus infection also reduced osteogenesis. In addition, inhibition or knockdown of AMPK during osteogenesis inhibited ERK phosphorylation, which is required for osteogenesis. Interestingly, inhibition of AMPK induced adipogenic differentiation of hAMSC, even in osteogenic induction medium (OIM). These results provide a potential mechanism involving AMPK activation in osteogenic differentiation of hAMSC and suggest that commitment of hAMSC to osteogenic or adipogenic lineage is governed by activation or inhibition of AMPK, respectively.

  2. Determination and inference of eukaryotic transcription factor sequence specificity.

    PubMed

    Weirauch, Matthew T; Yang, Ally; Albu, Mihai; Cote, Atina G; Montenegro-Montero, Alejandro; Drewe, Philipp; Najafabadi, Hamed S; Lambert, Samuel A; Mann, Ishminder; Cook, Kate; Zheng, Hong; Goity, Alejandra; van Bakel, Harm; Lozano, Jean-Claude; Galli, Mary; Lewsey, Mathew G; Huang, Eryong; Mukherjee, Tuhin; Chen, Xiaoting; Reece-Hoyes, John S; Govindarajan, Sridhar; Shaulsky, Gad; Walhout, Albertha J M; Bouget, François-Yves; Ratsch, Gunnar; Larrondo, Luis F; Ecker, Joseph R; Hughes, Timothy R

    2014-09-11

    Transcription factor (TF) DNA sequence preferences direct their regulatory activity, but are currently known for only ∼1% of eukaryotic TFs. Broadly sampling DNA-binding domain (DBD) types from multiple eukaryotic clades, we determined DNA sequence preferences for >1,000 TFs encompassing 54 different DBD classes from 131 diverse eukaryotes. We find that closely related DBDs almost always have very similar DNA sequence preferences, enabling inference of motifs for ∼34% of the ∼170,000 known or predicted eukaryotic TFs. Sequences matching both measured and inferred motifs are enriched in chromatin immunoprecipitation sequencing (ChIP-seq) peaks and upstream of transcription start sites in diverse eukaryotic lineages. SNPs defining expression quantitative trait loci in Arabidopsis promoters are also enriched for predicted TF binding sites. Importantly, our motif "library" can be used to identify specific TFs whose binding may be altered by human disease risk alleles. These data present a powerful resource for mapping transcriptional networks across eukaryotes.

  3. Direct inhibition of the NOTCH transcription factor complex.

    PubMed

    Moellering, Raymond E; Cornejo, Melanie; Davis, Tina N; Del Bianco, Cristina; Aster, Jon C; Blacklow, Stephen C; Kung, Andrew L; Gilliland, D Gary; Verdine, Gregory L; Bradner, James E

    2009-11-12

    Direct inhibition of transcription factor complexes remains a central challenge in the discipline of ligand discovery. In general, these proteins lack surface involutions suitable for high-affinity binding by small molecules. Here we report the design of synthetic, cell-permeable, stabilized alpha-helical peptides that target a critical protein-protein interface in the NOTCH transactivation complex. We demonstrate that direct, high-affinity binding of the hydrocarbon-stapled peptide SAHM1 prevents assembly of the active transcriptional complex. Inappropriate NOTCH activation is directly implicated in the pathogenesis of several disease states, including T-cell acute lymphoblastic leukaemia (T-ALL). The treatment of leukaemic cells with SAHM1 results in genome-wide suppression of NOTCH-activated genes. Direct antagonism of the NOTCH transcriptional program causes potent, NOTCH-specific anti-proliferative effects in cultured cells and in a mouse model of NOTCH1-driven T-ALL.

  4. Direct inhibition of the NOTCH transcription factor complex

    PubMed Central

    Moellering, Raymond E.; Cornejo, Melanie; Davis, Tina N.; Del Bianco, Cristina; Aster, Jon C.; Blacklow, Stephen C.; Kung, Andrew L.; Gilliland, D. Gary; Verdine, Gregory L.; Bradner, James E.

    2010-01-01

    Direct inhibition of transcription factor complexes remains a central challenge in the discipline of ligand discovery. In general, these proteins lack surface involutions suitable for high-affinity binding by small molecules. Here we report the design of synthetic, cell-permeable, stabilized α-helical peptides that target a critical protein–protein interface in the NOTCH transactivation complex. We demonstrate that direct, high-affinity binding of the hydrocarbon-stapled peptide SAHM1 prevents assembly of the active transcriptional complex. Inappropriate NOTCH activation is directly implicated in the pathogenesis of several disease states, including T-cell acute lymphoblastic leukaemia (T-ALL). The treatment of leukaemic cells with SAHM1 results in genome-wide suppression of NOTCH-activated genes. Direct antagonism of the NOTCH transcriptional program causes potent, NOTCH-specific anti-proliferative effects in cultured cells and in a mouse model of NOTCH1-driven T-ALL. PMID:19907488

  5. Molecular mechanisms of ETS transcription factor-mediated tumorigenesis.

    PubMed

    Kar, Adwitiya; Gutierrez-Hartmann, Arthur

    2013-01-01

    The E26 transformation-specific (ETS) family of transcription factors is critical for development, differentiation, proliferation and also has a role in apoptosis and tissue remodeling. Changes in expression of ETS proteins therefore have a significant impact on normal physiology of the cell. Transcriptional consequences of ETS protein deregulation by overexpression, gene fusion, and modulation by RAS/MAPK signaling are linked to alterations in normal cell functions, and lead to unlimited increased proliferation, sustained angiogenesis, invasion and metastasis. Existing data show that ETS proteins control pathways in epithelial cells as well as stromal compartments, and the crosstalk between the two is essential for normal development and cancer. In this review, we have focused on ETS factors with a known contribution in cancer development. Instead of focusing on a prototype, we address cancer associated ETS proteins and have highlighted the diverse mechanisms by which they affect carcinogenesis. Finally, we discuss strategies for ETS factor targeting as a potential means for cancer therapeutics.

  6. Molecular mechanisms of ETS transcription factor mediated tumorigenesis

    PubMed Central

    Kar, Adwitiya; Gutierrez-Hartmann, Arthur

    2014-01-01

    The ETS family of transcription factors is critical for development, differentiation, proliferation and also has a role in apoptosis and tissue remodeling. Changes in expression of ETS proteins therefore have a significant impact on normal physiology of the cell. Transcriptional consequences of ETS protein deregulation by overexpression, gene fusion, and modulation by RAS/MAPK signaling are linked to alterations in normal cell functions, and lead to unlimited increased proliferation, sustained angiogenesis, invasion and metastasis. Existing data show that ETS proteins control pathways in epithelial cells as well as stromal compartments, and the crosstalk between the two is essential for normal development and cancer. In this review we have focused on ETS factors with a known contribution in cancer development. Instead of focusing on a prototype, we address cancer associated ETS proteins and have highlighted the diverse mechanisms by which they affect carcinogenesis. Finally, we discuss strategies for ETS factor targeting as a potential means for cancer therapeutics. PMID:24066765

  7. A dynamic mode of mitotic bookmarking by transcription factors

    PubMed Central

    Teves, Sheila S; An, Luye; Hansen, Anders S; Xie, Liangqi; Darzacq, Xavier; Tjian, Robert

    2016-01-01

    During mitosis, transcription is shut off, chromatin condenses, and most transcription factors (TFs) are reported to be excluded from chromosomes. How do daughter cells re-establish the original transcription program? Recent discoveries that a select set of TFs remain bound on mitotic chromosomes suggest a potential mechanism for maintaining transcriptional programs through the cell cycle termed mitotic bookmarking. Here we report instead that many TFs remain associated with chromosomes in mouse embryonic stem cells, and that the exclusion previously described is largely a fixation artifact. In particular, most TFs we tested are significantly enriched on mitotic chromosomes. Studies with Sox2 reveal that this mitotic interaction is more dynamic than in interphase and is facilitated by both DNA binding and nuclear import. Furthermore, this dynamic mode results from lack of transcriptional activation rather than decreased accessibility of underlying DNA sequences in mitosis. The nature of the cross-linking artifact prompts careful re-examination of the role of TFs in mitotic bookmarking. DOI: http://dx.doi.org/10.7554/eLife.22280.001 PMID:27855781

  8. Functionality of soybean CBF/DREB1 transcription factors.

    PubMed

    Yamasaki, Yuji; Randall, Stephen K

    2016-05-01

    Soybean (Glycine max) is considered to be cold intolerant and is not able to significantly acclimate to cold/freezing stress. In most cold tolerant plants, the C-repeat/DRE Binding Factors (CBF/DREBs) are critical contributors to successful cold-responses; rapidly increasing following cold treatment and regulating the induction of many cold responsive genes. In soybean vegetative tissue, we found strong, transient accumulation of CBF transcripts in response to cold stress; however, the soybean transcripts of typical cold responsive genes (homologues to Arabidopsis genes such as dehydrins, ADH1, RAP2.1, and LEA14) were not significantly altered. Soybean CBFs were found to be functional, as when expressed constitutively in Arabidopsis they increased the levels of AtCOR47 and AtRD29a transcripts and increased freezing tolerance as measured by a decrease in leaf freezing damage and ion leakage. Furthermore the constitutive expression of GmDREB1A;2 and GmDREB1B;1 in Arabidopsis led to stronger up-regulation of downstream genes and more freezing tolerance than GmDREB1A;1, the gene whose transcript is the major contributor to total CBF/DREB1 transcripts in soybean. The inability for the soybean CBFs to significantly up regulate the soybean genes that contribute to cold tolerance is consistent with poor acclimation capability and the cold intolerance of soybean.

  9. A transcription factor active on the epidermal growth factor receptor gene.

    PubMed Central

    Kageyama, R; Merlino, G T; Pastan, I

    1988-01-01

    We have developed an in vitro transcription system for the epidermal growth factor receptor (EGFR) oncogene by using nuclear extracts of A431 human epidermoid carcinoma cells, which overproduce EGFR. We found that a nuclear factor, termed EGFR-specific transcription factor (ETF), specifically stimulated EGFR transcription by 5- to 10-fold. In this report, ETF, purified by using sequence-specific oligonucleotide affinity chromatography, is shown by renaturing material eluted from a NaDodSO4/polyacrylamide gel to be a protein with a molecular mass of 120 kDa. ETF binds to the promoter region, as measured by DNase I "footprinting" and gel-mobility-shift assays, and specifically stimulates the transcription of the EGFR gene in a reconstituted in vitro transcription system. These results suggest that ETF could play a role in the overexpression of the cellular oncogene EGFR. Images PMID:3393529

  10. Mesothelial cell autoantibodies upregulate transcription factors associated with fibrosis.

    PubMed

    Gilmer, John; Harding, Tanner; Woods, Linda; Black, Brad; Flores, Raja; Pfau, Jean

    2017-01-01

    Amphibole asbestos exposure is associated with the production of mesothelial cell autoantibodies (MCAA). These MCAA have been linked with pleural fibrotic disease in the asbestos exposed community of Libby, Montana, and induce collagen deposition by cultured mesothelial cells. However, the exact intracellular mechanism by which these autoantibodies cause an increase in collagen deposition remains unknown. This study sought to gain insight into the transcription factors involved in the collagen production after human mesothelial cells are exposed to MCAA. In this study, transcription factor activation profiles were generated from human mesothelial cells (Met5A) treated with serum from Libby subjects, and were compared to cells treated with serum cleared of IgG, and therefore containing no MCAA. Analysis of those profiles indicated C/EBP-beta and hypoxia inducible factor 1 alpha (HIF-1α) are significantly increased in the nucleus, indicating activation, due to MCAA exposure compared to controls. Inhibition of either of these transcription factors significantly reduced collagen 1 deposition by these cells following exposure to MCAA. These data suggest autoantibodies are directly involved in type I collagen deposition and may elucidate potential therapeutic targets for autoantibody mediated fibrosis.

  11. FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells

    NASA Astrophysics Data System (ADS)

    Fournier, Michèle; Bourriquen, Gaëlle; Lamaze, Fabien C.; Côté, Maxime C.; Fournier, Éric; Joly-Beauparlant, Charles; Caron, Vicky; Gobeil, Stéphane; Droit, Arnaud; Bilodeau, Steve

    2016-10-01

    Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOXA and master transcription factors are part of the core transcriptional regulatory circuitry of cancer cells and are essential to recruit M ediator and Cohesin. Indeed, Mediator and Cohesin occupied the enhancer and promoter regions of actively transcribed genes and maintained the proliferation and colony forming potential. Through integration of publically available ChIP-Seq datasets, we predicted the core transcriptional regulatory circuitry of each cancer cell. Unexpectedly, for all cells investigated, the pioneer transcription factors FOXA1 and/or FOXA2 were identified in addition to cell-specific master transcription factors. Loss of both types of transcription factors phenocopied the loss of Mediator and Cohesin. Lastly, the master and pioneer transcription factors were essential to recruit Mediator and Cohesin to regulatory regions of actively transcribed genes. Our study proposes that maintenance of the cancer cell state is dependent on recruitment of Mediator and Cohesin through FOXA and master transcription factors.

  12. FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells.

    PubMed

    Fournier, Michèle; Bourriquen, Gaëlle; Lamaze, Fabien C; Côté, Maxime C; Fournier, Éric; Joly-Beauparlant, Charles; Caron, Vicky; Gobeil, Stéphane; Droit, Arnaud; Bilodeau, Steve

    2016-10-14

    Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOXA and master transcription factors are part of the core transcriptional regulatory circuitry of cancer cells and are essential to recruit M ediator and Cohesin. Indeed, Mediator and Cohesin occupied the enhancer and promoter regions of actively transcribed genes and maintained the proliferation and colony forming potential. Through integration of publically available ChIP-Seq datasets, we predicted the core transcriptional regulatory circuitry of each cancer cell. Unexpectedly, for all cells investigated, the pioneer transcription factors FOXA1 and/or FOXA2 were identified in addition to cell-specific master transcription factors. Loss of both types of transcription factors phenocopied the loss of Mediator and Cohesin. Lastly, the master and pioneer transcription factors were essential to recruit Mediator and Cohesin to regulatory regions of actively transcribed genes. Our study proposes that maintenance of the cancer cell state is dependent on recruitment of Mediator and Cohesin through FOXA and master transcription factors.

  13. FOXA and master transcription factors recruit Mediator and Cohesin to the core transcriptional regulatory circuitry of cancer cells

    PubMed Central

    Fournier, Michèle; Bourriquen, Gaëlle; Lamaze, Fabien C.; Côté, Maxime C.; Fournier, Éric; Joly-Beauparlant, Charles; Caron, Vicky; Gobeil, Stéphane; Droit, Arnaud; Bilodeau, Steve

    2016-01-01

    Controlling the transcriptional program is essential to maintain the identity and the biological functions of a cell. The Mediator and Cohesin complexes have been established as central cofactors controlling the transcriptional program in normal cells. However, the distribution, recruitment and importance of these complexes in cancer cells have not been fully investigated. Here we show that FOXA and master transcription factors are part of the core transcriptional regulatory circuitry of cancer cells and are essential to recruit M ediator and Cohesin. Indeed, Mediator and Cohesin occupied the enhancer and promoter regions of actively transcribed genes and maintained the proliferation and colony forming potential. Through integration of publically available ChIP-Seq datasets, we predicted the core transcriptional regulatory circuitry of each cancer cell. Unexpectedly, for all cells investigated, the pioneer transcription factors FOXA1 and/or FOXA2 were identified in addition to cell-specific master transcription factors. Loss of both types of transcription factors phenocopied the loss of Mediator and Cohesin. Lastly, the master and pioneer transcription factors were essential to recruit Mediator and Cohesin to regulatory regions of actively transcribed genes. Our study proposes that maintenance of the cancer cell state is dependent on recruitment of Mediator and Cohesin through FOXA and master transcription factors. PMID:27739523

  14. Identification of Arabidopsis Transcriptional Regulators by Yeast One-Hybrid Screens Using a Transcription Factor ORFeome.

    PubMed

    Breton, Ghislain; Kay, Steve A; Pruneda-Paz, José L

    2016-01-01

    Genetic and molecular approaches revealed that the circadian clock network structure is comprised of several interlocked positive and negative transcriptional feedback loops. The network evolved to sense and integrate inputs from environmental cues to adjust daily rhythms in physiological processes. Compiling evidence indicates that part of this regulation happens at the transcriptional level through subtle adjustments in the expression of core clock genes. Thus, to better understand the network and identify the molecular mechanisms of clock input pathways, it is imperative to determine how core clock genes are regulated. For this purpose we developed reagents for an unbiased approach to identify transcription factors (TFs) interacting with the promoters of core clock genes. At the center of this approach lies the yeast one-hybrid (Y1H) assay in which a pool of proteins fused to the GAL4 transcriptional activation domain are tested for their ability to interact with a selected promoter fragment in yeast cells. Taking advantage of the fact that Arabidopsis TF genes are well annotated, we generated a comprehensive TF clone collection (TF ORFeome) and used it to replace the standard cDNA pool strategy traditionally used in Y1H screens. The use of this TF clone collection substantially accelerates the comprehensive discovery of promoter-specific DNA binding activities among all Arabidopsis TFs. Considering that this strategy can be extended to the study of the promoter interactome of any Arabidopsis gene, we developed a low throughput protocol that can be universally implemented to screen the ~2000 TF clone library.

  15. Interferon-stimulated gene ISG12b1 inhibits adipogenic differentiation and mitochondrial biogenesis in 3T3-L1 cells.

    PubMed

    Li, Bing; Shin, Jonghyun; Lee, Kichoon

    2009-03-01

    Microarray analysis was performed to find a new group of genes or pathways that might be important in adipocyte development and metabolism. Among them, a mouse interferon-stimulated gene 12b1 (ISG12b1) is expressed at a 400-fold higher level in adipocytes compared with stromal-vascular cells. It is predominantly expressed in adipose tissue among other tissues we tested. Developmentally, ISG12b1 mRNA expression was initially inhibited followed by a dramatic induction during both in vivo and in vitro adipogenic differentiation. Adenovirus-mediated overexpression of ISG12b1 inhibited adipogenic differentiation in 3T3-L1 cells as shown by decreased lipid staining with Oil-Red-O and reduction in adipogenic marker proteins including peroxisome proliferator-activated receptor-gamma (PPARgamma), and CCAAT/enhancer-binding protein-alpha (C/EBPalpha). Our bioinformatics analysis for the predicted localization of ISG12b1 protein suggested the mitochondrial localization, which was confirmed by the colocalization of hemagglutinin-tagged ISG12b1 protein with mitochondrial marker MitoTracker. In addition, ISG12b1 protein was exclusively detected in protein extract from the fractionated mitochondria by Western blot analysis. Furthermore, overexpression of ISG12b1 in adipocytes reduced mitochondrial DNA content and gene expression of mitochondrial transcription factor A (mtTFA), nuclear respiratory factor 1 (NRF1), and cytochrome oxidase II, suggesting an inhibitory role of ISG12b1 in mitochondrial biogenesis and function. Activation of mitochondrial biogenesis and function by treatment with PPARgamma and PPARalpha agonists in 3T3-L1 cells and cold exposure in mice induced mitochondrial transcription factors and reduced ISG12 expression. These data demonstrated that mitochondrial-localized ISG12b1 protein inhibits adipocyte differentiation and mitochondrial biogenesis and function, implying the important role of mitochondrial function in adipocyte development and associated

  16. Drosophila factor 2, an RNA polymerase II transcript release factor, has DNA-dependent ATPase activity.

    PubMed

    Xie, Z; Price, D

    1997-12-12

    Drosophila factor 2 has been identified as a component of negative transcription elongation factor (N-TEF) that causes the release of RNA polymerase II transcripts in an ATP-dependent manner (Xie, Z. and Price D. H. (1996) J. Biol. Chem. 271, 11043-11046). We show here that the transcript release activity of factor 2 requires ATP or dATP and that adenosine 5'-O-(thiotriphosphate) (ATPgammaS), adenosine 5'-(beta,gamma-imino)triphosphate (AMP-PNP), or other NTPs do not support the activity. Factor 2 demonstrated a strong DNA-dependent ATPase activity that correlated with its transcript release activity. At 20 microg/ml DNA, the ATPase activity of factor 2 had an apparent Km(ATP) of 28 microM and an estimated Kcat of 140 min-1. Factor 2 caused the release of nascent transcripts associated with elongation complexes generated by RNA polymerase II on a dC-tailed template. Therefore, no other protein cofactors are required for the transcript release activity of factor 2. Using the dC-tailed template assay, it was found that renaturation of the template was required for factor 2 function.

  17. Enhanceosomes as integrators of hypoxia inducible factor (HIF) and other transcription factors in the hypoxic transcriptional response.

    PubMed

    Pawlus, Matthew R; Hu, Cheng-Jun

    2013-09-01

    Hypoxia is a prevalent attribute of the solid tumor microenvironment that promotes the expression of genes through posttranslational modifications and stabilization of alpha subunits (HIF1α and HIF2α) of hypoxia-inducible factors (HIFs). Despite significant similarities, HIF1 (HIF1α/ARNT) and HIF2 (HIF2α/ARNT) activate common as well as unique target genes and exhibit different functions in cancer biology. More surprisingly, accumulating data indicates that the HIF1- and/or HIF2-mediated hypoxia responses can be oncogenic as well as tumor suppressive. While the role of HIF in the hypoxia response is well established, recent data support the concept that HIF is necessary, but not sufficient for the hypoxic response. Other transcription factors that are activated by hypoxia are also required for the HIF-mediated hypoxia response. HIFs, other transcription factors, co-factors and RNA poll II recruited by HIF and other transcription factors form multifactorial enhanceosome complexes on the promoters of HIF target genes to activate hypoxia inducible genes. Importantly, HIF1 or HIF2 requires distinct partners in activating HIF1 or HIF2 target genes. Because HIF enhanceosome formation is required for the gene activation and distinct functions of HIF1 and HIF2 in tumor biology, disruption of the HIF1 or HIF2 specific enhanceosome complex may prove to be a beneficial strategy in tumor treatment in which tumor growth is specifically dependent upon HIF1 or HIF2 activity.

  18. Distinct adipogenic differentiation phenotypes of human umbilical cord mesenchymal cells dependent on adipogenic conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The umbilical cord (UC) matrix is a source of multipotent mesenchymal stem cells (MSCs) that have adipogenic potential and thus can be a model to study adipogenesis. However, existing variability in adipocytic differentiation outcomes may be due to discrepancies in methods utilized for adipogenic d...

  19. Regulation of basophil and mast cell development by transcription factors.

    PubMed

    Sasaki, Haruka; Kurotaki, Daisuke; Tamura, Tomohiko

    2016-04-01

    Basophils and mast cells play important roles in host defense against parasitic infections and allergic responses. Several progenitor populations, either shared or specific, for basophils and/or mast cells have been identified, thus elucidating the developmental pathways of these cells. Multiple transcription factors essential for their development and the relationships between them have been also revealed. For example, IRF8 induces GATA2 expression to promote the generation of both basophils and mast cells. The STAT5-GATA2 axis induces C/EBPα and MITF expression, facilitating the differentiation into basophils and mast cells, respectively. In addition, C/EBPα and MITF mutually suppress each other's expression. This review provides an overview of recent advances in our understanding of how transcription factors regulate the development of basophils and mast cells.

  20. Does transcription factor induced pluripotency accurately mimic embryo derived pluripotency?

    PubMed

    Lowry, William E

    2012-10-01

    When Takahashi and Yamanaka first demonstrated that just four transcription factors could reprogram a fibroblast to a pluripotent state, the first wave of data to emerge focused on how similar these induced pluripotent stem cells (iPSCs) were to embryo-derived pluripotent stem cells (ESCs) [1]. The next wave of data focused on determining the degree of difference between iPSCs and ESCs [2]. Now the focus is on tweaking the process to generate iPSCs that are more similar to ESCs [3,4]. Because transcription factor based reprogramming allows for nearly any type of cell to be created from any donor cell, there is obviously enormous interest in this technique as a tool for both basic developmental biology and for clinical applications. In this review, I will attempt to summarize the data that serve to distinguish these types of pluripotent stem cells and speculate on the ramifications of any differences.

  1. Transcription factors regulating B cell fate in the germinal centre.

    PubMed

    Recaldin, T; Fear, D J

    2016-01-01

    Diversification of the antibody repertoire is essential for the normal operation of the vertebrate adaptive immune system. Following antigen encounter, B cells are activated, proliferate rapidly and undergo two diversification events; somatic hypermutation (followed by selection), which enhances the affinity of the antibody for its cognate antigen, and class-switch recombination, which alters the effector functions of the antibody to adapt the response to the challenge faced. B cells must then differentiate into antibody-secreting plasma cells or long-lived memory B cells. These activities take place in specialized immunological environments called germinal centres, usually located in the secondary lymphoid organs. To complete the germinal centre activities successfully, a B cell adopts a transcriptional programme that allows it to migrate to specific sites within the germinal centre, proliferate, modify its DNA recombination and repair pathways, alter its apoptotic potential and finally undergo terminal differentiation. To co-ordinate these processes, B cells employ a number of 'master regulator' transcription factors which mediate wholesale transcriptomic changes. These master transcription factors are mutually antagonistic and form a complex regulatory network to maintain distinct gene expression programs. Within this network, multiple points of positive and negative feedback ensure the expression of the 'master regulators', augmented by a number of 'secondary' factors that reinforce these networks and sense the progress of the immune response. In this review we will discuss the different activities B cells must undertake to mount a successful T cell-dependent immune response and describe how a regulatory network of transcription factors controls these processes.

  2. Involvement of E2F transcription factor family in cancer.

    PubMed

    Tsantoulis, P K; Gorgoulis, V G

    2005-11-01

    The E2F family of transcription factors is a central modulator of important cellular events, including cell cycle progression, apoptosis and DNA damage response. The role of E2F family members in various human malignancies is yet unclear and may provide vital clues to the diagnosis, prognosis and therapy of cancer patients. In this review we provide a brief but concise overview of E2F function and its putative role in the most common human tumour types.

  3. Transcription factors for modification of lignin content in plants

    DOEpatents

    Wang, Huanzhong; Chen, Fang; Dixon, Richard A.

    2015-06-02

    The invention provides methods for modifying lignin, cellulose, xylan, and hemicellulose content in plants, and for achieving ectopic lignification and, for instance, secondary cell wall synthesis in pith cells, by altered regulation of a WRKY transcription factor. Nucleic acid constructs for altered WRKY-TF expression are described. Transgenic plants are provided that comprise modified pith cell walls, and lignin, cellulose, and hemicellulose content. Plants described herein may be used, for example, as improved biofuel feedstock and as highly digestible forage crops.

  4. The Role of the Ubiquitously Expressed Transcription Factor Sp1 in Tissue-specific Transcriptional Regulation and in Disease

    PubMed Central

    O’Connor, Leigh; Gilmour, Jane; Bonifer, Constanze

    2016-01-01

    Sp1 belongs to the 26 member strong Sp/KLF family of transcription factors. It is a paradigm for a ubiquitously expressed transcription factor and is involved in regulating the expression of genes associated with a wide range of cellular processes in mammalian cells. Sp1 can interact with a range of proteins, including other transcription factors, members of the transcription initiation complex and epigenetic regulators, enabling tight regulation of its target genes. In this review, we discuss the mechanisms involved in Sp1-mediated transcriptional regulation, as well as how a ubiquitous transcription factor can be involved in establishing a tissue-specific pattern of gene expression and mechanisms by which its activity may be regulated. We also consider the role of Sp1 in human diseases, such as cancer. PMID:28018142

  5. Transcription factor NF-kappa B represses ANT1 transcription and leads to mitochondrial dysfunctions

    PubMed Central

    Zhang, Chen; Jiang, Hui; Wang, Pin; Liu, Heng; Sun, Xiulian

    2017-01-01

    Mitochondria are intracellular organelles involved in cell survival and death, and dysfunctions of mitochondria are related to neurodegenerative diseases. As the most abundant protein in the mitochondrial inner membrane, adenine nucleotide translocator 1 (ANT1) plays a critical role in mitochondrial function, including the exchange of adenosine triphosphate/adenosine diphosphate (ATP/ADP) in mitochondria, basal proton leak and mitochondrial permeability transition pore (mPTP). Here, we show that ANT1 transcription is regulated by transcription factor NF-kappa B (NF-κB). NF-κB is bound to two NF-κB responsive elements (NREs) located at +1 to +20 bp and +41 to +61 bp in the ANT1 promoter. An NF-κB signalling stimulator, tumour necrosis factor alpha (TNFα), suppresses ANT1 mRNA and protein expression. Activation of NF-κB by TNFα impairs ATP/ADP exchange and decreases ATP production in mitochondria. Activation of NF-κB by TNFα decreases calcium induced mPTP opening, elevates mitochondrial potential and increases reactive oxygen species (ROS) production in both T98G human glioblastoma cells and rat cortical neurons. These results demonstrate that NF-κB signalling may repress ANT1 gene transcription and impair mitochondrial functions. PMID:28317877

  6. Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots

    PubMed Central

    Lee, Ji-Young; Colinas, Juliette; Wang, Jean Y.; Mace, Daniel; Ohler, Uwe; Benfey, Philip N.

    2006-01-01

    Understanding how the expression of transcription factor (TF) genes is modulated is essential for reconstructing gene regulatory networks. There is increasing evidence that sequences other than upstream noncoding can contribute to modulating gene expression, but how frequently they do so remains unclear. Here, we investigated the regulation of TFs expressed in a tissue-enriched manner in Arabidopsis roots. For 61 TFs, we created GFP reporter constructs driven by each TF’s upstream noncoding sequence (including the 5′UTR) fused to the GFP reporter gene alone or together with the TF’s coding sequence. We compared the visually detectable GFP patterns with endogenous mRNA expression patterns, as defined by a genome-wide microarray root expression map. An automated image analysis method for quantifying GFP signals in different tissues was developed and used to validate our visual comparison method. From these combined analyses, we found that (i) the upstream noncoding sequence was sufficient to recapitulate the mRNA expression pattern for 80% (35/44) of the TFs, and (ii) 25% of the TFs undergo posttranscriptional regulation via microRNA-mediated mRNA degradation (2/24) or via intercellular protein movement (6/24). The results suggest that, for Arabidopsis TFs, upstream noncoding sequences are major contributors to mRNA expression pattern establishment, but modulation of transcription factor protein expression pattern after transcription is relatively frequent. This study provides a systematic overview of regulation of TF expression at a cellular level. PMID:16581911

  7. Tubby-like protein superfamily member PLSCR3 functions as a negative regulator of adipogenesis in mouse 3T3-L1 preadipocytes by suppressing induction of late differentiation stage transcription factors

    PubMed Central

    Inokawa, Akira; Inuzuka, Tatsutoshi; Takahara, Terunao; Shibata, Hideki; Maki, Masatoshi

    2015-01-01

    PLSCR3 (phospholipid scramblase 3, Scr3) belongs to the superfamily of membrane-associated transcription regulators named Tubby-like proteins (TULPs). Physiological phospholipid scrambling activities of PLSCRs in vivo have been skeptically argued, and knowledge of the biological functions of Scr3 is limited. We investigated the expression of Scr3 during differentiation of mouse 3T3-L1 preadipocytes by Western blotting (WB) and by reverse-transcription and real-time quantitative PCR (RT-qPCR). The Scr3 protein decreased during 3T3-L1 differentiation accompanied by a reduction in the mRNA level, and there was a significant increase in the amount of Scr3 protein secreted into the culture medium in the form of extracellular microvesicles (exosomes). On the other hand, Scr3 expression did not significantly decrease, and the secretion of Scr3 in 3T3 Swiss-albino fibroblasts (a parental cell-line of 3T3-L1) was not increased by differentiation treatment. Overexpression of human Scr3 during 3T3-L1 differentiation suppressed triacylglycerol accumulation and inhibited induction of the mRNAs of late stage pro-adipogenic transcription factors [CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ)] and X-box-binding protein 1 (XBP1). Expression of early stage pro-adipogenic transcription factors (C/EBPβ and C/EBPδ) was not significantly affected. These results suggest that Scr3 functions as a negative regulator of adipogenesis in 3T3-L1 cells at a specific differentiation stage and that decrease in the intracellular amount of Scr3 protein caused by reduction in Scr3 mRNA expression and enhanced secretion of Scr3 protein appears to be important for appropriate adipocyte differentiation. PMID:26677203

  8. Transcriptional Regulation in Saccharomyces cerevisiae: Transcription Factor Regulation and Function, Mechanisms of Initiation, and Roles of Activators and Coactivators

    PubMed Central

    Hahn, Steven; Young, Elton T.

    2011-01-01

    Here we review recent advances in understanding the regulation of mRNA synthesis in Saccharomyces cerevisiae. Many fundamental gene regulatory mechanisms have been conserved in all eukaryotes, and budding yeast has been at the forefront in the discovery and dissection of these conserved mechanisms. Topics covered include upstream activation sequence and promoter structure, transcription factor classification, and examples of regulated transcription factor activity. We also examine advances in understanding the RNA polymerase II transcription machinery, conserved coactivator complexes, transcription activation domains, and the cooperation of these factors in gene regulatory mechanisms. PMID:22084422

  9. Clever cancer strategies with FoxO transcription factors.

    PubMed

    Maiese, Kenneth; Chong, Zhao Zhong; Shang, Yan Chen; Hou, Jinling

    2008-12-15

    Given that cancer and related disorders affect a wide spectrum of the world's population, and in most cases are progressive in nature, it is essential that future care must overcome the present limitations of existing therapies in the absence of toxic side effects. Mammalian forkhead transcription factors of the O class (FoxOs) may fill this niche since these proteins are increasingly considered to represent unique cellular targets directed against human cancer in light of their pro-apoptotic effects and ability to lead to cell cycle arrest. Yet, FoxOs also can significantly affect normal cell survival and longevity, requiring new treatments for neoplastic growth to modulate novel pathways that integrate cell proliferation, metabolism, inflammation and survival. In this respect, members of the FoxO family are extremely compelling to consider since these transcription factors have emerged as versatile proteins that can control angiogenesis, stem cell proliferation, cell adhesion and autoimmune disease. Further elucidation of FoxO protein function during neoplastic growth should continue to lay the foundation for the successful translation of these transcription factors into novel and robust clinical therapies for cancer.

  10. Regeneration of the aged thymus by a single transcription factor.

    PubMed

    Bredenkamp, Nicholas; Nowell, Craig S; Blackburn, C Clare

    2014-04-01

    Thymic involution is central to the decline in immune system function that occurs with age. By regenerating the thymus, it may therefore be possible to improve the ability of the aged immune system to respond to novel antigens. Recently, diminished expression of the thymic epithelial cell (TEC)-specific transcription factor Forkhead box N1 (FOXN1) has been implicated as a component of the mechanism regulating age-related involution. The effects of upregulating FOXN1 function in the aged thymus are, however, unknown. Here, we show that forced, TEC-specific upregulation of FOXN1 in the fully involuted thymus of aged mice results in robust thymus regeneration characterized by increased thymopoiesis and increased naive T cell output. We demonstrate that the regenerated organ closely resembles the juvenile thymus in terms of architecture and gene expression profile, and further show that this FOXN1-mediated regeneration stems from an enlarged TEC compartment, rebuilt from progenitor TECs. Collectively, our data establish that upregulation of a single transcription factor can substantially reverse age-related thymic involution, identifying FOXN1 as a specific target for improving thymus function and, thus, immune competence in patients. More widely, they demonstrate that organ regeneration in an aged mammal can be directed by manipulation of a single transcription factor, providing a provocative paradigm that may be of broad impact for regenerative biology.

  11. Specification of jaw identity by the Hand2 transcription factor

    PubMed Central

    Funato, Noriko; Kokubo, Hiroki; Nakamura, Masataka; Yanagisawa, Hiromi; Saga, Yumiko

    2016-01-01

    Acquisition of the lower jaw (mandible) was evolutionarily important for jawed vertebrates. In humans, syndromic craniofacial malformations often accompany jaw anomalies. The basic helix-loop-helix transcription factor Hand2, which is conserved among jawed vertebrates, is expressed in the neural crest in the mandibular process but not in the maxillary process of the first branchial arch. Here, we provide evidence that Hand2 is sufficient for upper jaw (maxilla)-to-mandible transformation by regulating the expression of homeobox transcription factors in mice. Altered Hand2 expression in the neural crest transformed the maxillae into mandibles with duplicated Meckel’s cartilage, which resulted in an absence of the secondary palate. In Hand2-overexpressing mutants, non-Hox homeobox transcription factors were dysregulated. These results suggest that Hand2 regulates mandibular development through downstream genes of Hand2 and is therefore a major determinant of jaw identity. Hand2 may have influenced the evolutionary acquisition of the mandible and secondary palate. PMID:27329940

  12. Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms

    PubMed Central

    Baldoni, Elena; Genga, Annamaria; Cominelli, Eleonora

    2015-01-01

    Water scarcity is one of the major causes of poor plant performance and limited crop yields worldwide and it is the single most common cause of severe food shortage in developing countries. Several molecular networks involved in stress perception, signal transduction and stress responses in plants have been elucidated so far. Transcription factors are major players in water stress signaling. In recent years, different MYB transcription factors, mainly in Arabidopsis thaliana (L.) Heynh. but also in some crops, have been characterized for their involvement in drought response. For some of them there is evidence supporting a specific role in response to water stress, such as the regulation of stomatal movement, the control of suberin and cuticular waxes synthesis and the regulation of flower development. Moreover, some of these genes have also been characterized for their involvement in other abiotic or biotic stresses, an important feature considering that in nature, plants are often simultaneously subjected to multiple rather than single environmental perturbations. This review summarizes recent studies highlighting the role of the MYB family of transcription factors in the adaptive responses to drought stress. The practical application value of MYBs in crop improvement, such as stress tolerance engineering, is also discussed. PMID:26184177

  13. Plant MYB Transcription Factors: Their Role in Drought Response Mechanisms.

    PubMed

    Baldoni, Elena; Genga, Annamaria; Cominelli, Eleonora

    2015-07-13

    Water scarcity is one of the major causes of poor plant performance and limited crop yields worldwide and it is the single most common cause of severe food shortage in developing countries. Several molecular networks involved in stress perception, signal transduction and stress responses in plants have been elucidated so far. Transcription factors are major players in water stress signaling. In recent years, different MYB transcription factors, mainly in Arabidopsis thaliana (L.) Heynh. but also in some crops, have been characterized for their involvement in drought response. For some of them there is evidence supporting a specific role in response to water stress, such as the regulation of stomatal movement, the control of suberin and cuticular waxes synthesis and the regulation of flower development. Moreover, some of these genes have also been characterized for their involvement in other abiotic or biotic stresses, an important feature considering that in nature, plants are often simultaneously subjected to multiple rather than single environmental perturbations. This review summarizes recent studies highlighting the role of the MYB family of transcription factors in the adaptive responses to drought stress. The practical application value of MYBs in crop improvement, such as stress tolerance engineering, is also discussed.

  14. Effects of canola proteins and hydrolysates on adipogenic differentiation of C3H10T/2 mesenchymal stem cells.

    PubMed

    Alashi, Adeola M; Blanchard, Christopher L; Mailer, Rodney J; Agboola, Samson O; Mawson, A John; Aluko, Rotimi E; Strappe, Padraig

    2015-10-15

    This study assessed the ability of canola protein isolate (CPI) and enzymatic hydrolysates (CPHs) to inhibit adipogenic differentiation of C3H10T1/2 murine mesenchymal stem cells in vitro. Cell viability was maintained at concentrations of 60 μg/ml of sample. Cells treated with Alcalase hydrolysate demonstrated a higher reduction in anti-adipogenic differentiation through quantitation by oil-red O staining. qPCR analysis showed that CPI and CPH-treated cells significantly inhibited PPARγ expression, a key transcription factor involved in adipocyte differentiation, as evident in an ∼ 60-80% fold reduction of PPARγ mRNA. Immunofluorescence staining for PPARγ protein also showed a reduced expression in some treated cells when compared to differentiated untreated cells. The 50% inhibition concentration (IC50) of CPI, CPHs and their membrane ultrafiltration fractions on pancreatic lipase (PL) activity ranged between 0.75 and 2.5 mg/ml, (p < 0.05) for the hydrolysed and unhydrolysed samples. These findings demonstrate that CPI and CPHs contain bioactive components which can modulate in vitro adipocyte differentiation.

  15. Inferring transcription factor collaborations in gene regulatory networks

    PubMed Central

    2014-01-01

    Background Living cells are realized by complex gene expression programs that are moderated by regulatory proteins called transcription factors (TFs). The TFs control the differential expression of target genes in the context of transcriptional regulatory networks (TRNs), either individually or in groups. Deciphering the mechanisms of how the TFs control the expression of target genes is a challenging task, especially when multiple TFs collaboratively participate in the transcriptional regulation. Results We model the underlying regulatory interactions in terms of the directions (activation or repression) and their logical roles (necessary and/or sufficient) with a modified association rule mining approach, called mTRIM. The experiment on Yeast discovered 670 regulatory interactions, in which multiple TFs express their functions on common target genes collaboratively. The evaluation on yeast genetic interactions, TF knockouts and a synthetic dataset shows that our algorithm is significantly better than the existing ones. Conclusions mTRIM is a novel method to infer TF collaborations in transcriptional regulation networks. mTRIM is available at http://www.msu.edu/~jinchen/mTRIM. PMID:24565025

  16. Snail Family Transcription Factors Are Implicated in Thyroid Carcinogenesis

    PubMed Central

    Hardy, Robert G.; Vicente-Dueñas, Carolina; González-Herrero, Ines; Anderson, Catriona; Flores, Teresa; Hughes, Sharon; Tselepis, Chris; Ross, James A.; Sánchez-García, Isidro

    2007-01-01

    E-Cadherin (CDH1) expression is reduced in thyroid carcinomas by primarily unknown mechanisms. In several tissues, SNAIL (SNAI1) and SLUG (SNAI2) induce epithelial-mesenchymal transition by altering target gene transcription, including CDH1 repression, but these transcription factors have not been studied in thyroid carcinoma. Recently, our group has provided direct evidence that ectopic SNAI1 expression induces epithelial and mesenchymal mouse tumors. SNAI1, SNAI2, and CDH1 expression were analyzed in thyroid-derived cell lines and samples of human follicular and papillary thyroid carcinoma by reverse transcriptase-polymerase chain reaction, Western blotting, and immunohistochemistry. The effect of SNAI1 expression on CDH1 transcription was analyzed by reverse transcriptase-polymerase chain reaction and Western blotting in ori-3 cells. Thyroid carcinoma development was analyzed in CombitTA-Snail mice, in which SNAI1 levels are up-regulated. SNAI1 and SNAI2 were not expressed in cells derived from normal thyroid tissue, or in normal human thyroid samples, but were highly expressed in cell lines derived from thyroid carcinomas, in human thyroid carcinoma samples, and their metastases. SNAI1 expression in ori-3 cells repressed CDH1 transcription. Combi-TA mice developed papillary thyroid carcinomas, the incidence of which was increased by concomitant radiotherapy. In conclusion, SNAI1 and SNAI2 are ectopically expressed in thyroid carcinomas, and aberrant expression in mice is associated with papillary carcinoma development. PMID:17724139

  17. Identification and Transcript Analysis of the TCP Transcription Factors in the Diploid Woodland Strawberry Fragaria vesca

    PubMed Central

    Wei, Wei; Hu, Yang; Cui, Meng-Yuan; Han, Yong-Tao; Gao, Kuan; Feng, Jia-Yue

    2016-01-01

    Plant-specific TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) transcription factors play versatile functions in multiple processes of plant growth and development. However, no systematic study has been performed in strawberry. In this study, 19 FvTCP genes were identified in the diploid woodland strawberry (Fragaria vesca) accession Heilongjiang-3. Phylogenetic analysis suggested that the FvTCP genes were classified into two main classes, with the second class further divided into two subclasses, which was supported by the exon-intron organizations and the conserved motif structures. Promoter analysis revealed various cis-acting elements related to growth and development, hormone and/or stress responses. We analyzed FvTCP gene transcript accumulation patterns in different tissues and fruit developmental stages. Among them, 12 FvTCP genes exhibited distinct tissue-specific transcript accumulation patterns. Eleven FvTCP genes were down-regulated in different fruit developmental stages, while five FvTCP genes were up-regulated. Transcripts of FvTCP genes also varied with different subcultural propagation periods and were induced by hormone treatments and biotic and abiotic stresses. Subcellular localization analysis showed that six FvTCP-GFP fusion proteins showed distinct localizations in Arabidopsis mesophyll protoplasts. Notably, transient over-expression of FvTCP9 in strawberry fruits dramatically affected the expression of a series of genes implicated in fruit development and ripening. Taken together, the present study may provide the basis for functional studies to reveal the role of this gene family in strawberry growth and development. PMID:28066489

  18. Identification and Transcript Analysis of the TCP Transcription Factors in the Diploid Woodland Strawberry Fragaria vesca.

    PubMed

    Wei, Wei; Hu, Yang; Cui, Meng-Yuan; Han, Yong-Tao; Gao, Kuan; Feng, Jia-Yue

    2016-01-01

    Plant-specific TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) transcription factors play versatile functions in multiple processes of plant growth and development. However, no systematic study has been performed in strawberry. In this study, 19 FvTCP genes were identified in the diploid woodland strawberry (Fragaria vesca) accession Heilongjiang-3. Phylogenetic analysis suggested that the FvTCP genes were classified into two main classes, with the second class further divided into two subclasses, which was supported by the exon-intron organizations and the conserved motif structures. Promoter analysis revealed various cis-acting elements related to growth and development, hormone and/or stress responses. We analyzed FvTCP gene transcript accumulation patterns in different tissues and fruit developmental stages. Among them, 12 FvTCP genes exhibited distinct tissue-specific transcript accumulation patterns. Eleven FvTCP genes were down-regulated in different fruit developmental stages, while five FvTCP genes were up-regulated. Transcripts of FvTCP genes also varied with different subcultural propagation periods and were induced by hormone treatments and biotic and abiotic stresses. Subcellular localization analysis showed that six FvTCP-GFP fusion proteins showed distinct localizations in Arabidopsis mesophyll protoplasts. Notably, transient over-expression of FvTCP9 in strawberry fruits dramatically affected the expression of a series of genes implicated in fruit development and ripening. Taken together, the present study may provide the basis for functional studies to reveal the role of this gene family in strawberry growth and development.

  19. The transcriptional factor Osterix directly interacts with RNA helicase A.

    PubMed

    Amorim, Bruna Rabelo; Okamura, Hirohiko; Yoshida, Kaya; Qiu, Lihong; Morimoto, Hiroyuki; Haneji, Tatsuji

    2007-04-06

    Osterix is an osteoblast-specific transcriptional factor, required for bone formation and osteoblast differentiation. Here, we identified new Osterix interacting factors by using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Among the candidates, RNA helicase A was identified to interact with Osterix. To determine the interaction of Osterix with RNA helicase A, immunoprecipitation assay was performed. Western analysis confirmed the association between Osterix and RNA helicase A. Immunocytochemical analysis also showed that Osterix and RNA helicase A were co-localized in HEK 293 cells. Our data suggest that RNA helicase A might be a component of Osterix regulation.

  20. Regulation of Myocyte Enhancer Factor-2 Transcription Factors by Neurotoxins

    PubMed Central

    She, Hua; Mao, Zixu

    2011-01-01

    Various isoforms of myocyte enhancer factor-2 (MEF2) constitute a group of nuclear proteins found to play important roles in increasing types of cells. In neurons, MEF2s are required to regulate neuronal development, synaptic plasticity, as well as survival. MEF2s promote the survival of several types of neurons under different conditions. In cellular models, negative regulation of MEF2s by stress and toxic signals contributes to neuronal death. In contrast, enhancing MEF2 activity not only protects cultured primary neurons from death in vitro but also attenuates the loss of dopaminergic neurons in substantia nigra pars compacta in a 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. In this work, the mechanisms of regulation of MEF2 function by several well-known neurotoxins and their implications in various neurodegenerative diseases are reviewed. PMID:21741404

  1. Inhibition of host cell RNA polymerase III-mediated transcription by poliovirus: Inactivation of specific transcription factors

    SciTech Connect

    Fradkin, L.G.; Yoshinaga, S.K.; Berk, A.J.; Dasgupta, A.

    1987-11-01

    The inhibition of transcription by RNA polymerase III in poliovirus-infected cells was studied. Experiments utilizing two different cell lines showed that the initiation step of transcription by RNA polymerase III was impaired by infection of these cells with the virus. The observed inhibition of transcription was not due to shut-off of host cell protein synthesis by poliovirus. Among four distinct components required for accurate transcription in vitro from cloned DNA templates, activities of RNA polymerase III and transcription factor TFIIIA were not significantly affected by virus infection. The activity of transcription factor TFIIIC, the limiting component required for transcription of RNA polymerase III genes, was severely inhibited in infected cells, whereas that of transcription factor TFIIIB was inhibited to a lesser extent. The sequence-specific DNA-binding of TFIIIC to the adenovirus VA1 gene internal promoted, however, was not altered by infection of cells with the virus. The authors conclude that (i) at least two transcription factors, TFIIIB and TFIIIC, are inhibited by infection of cells with poliovirtus, (ii) inactivation of TFIIIC does not involve destruction of its DNA-binding domain, and (iii) sequence-specific DNA binding by TFIIIC may be necessary but is not sufficient for the formation of productive transcription complexes.

  2. Inhibition of Viability, Proliferation, Cytokines Secretion, Surface Antigen Expression, and Adipogenic and Osteogenic Differentiation of Adipose-Derived Stem Cells by Seven-Day Exposure to 0.5 T Static Magnetic Fields.

    PubMed

    Wang, Jian; Xiang, Bo; Deng, Jixian; Freed, Darren H; Arora, Rakesh C; Tian, Ganghong

    2016-01-01

    After seven-day exposure to 0.5-Tesla Static Magnetic Field (SMF), Adipose-derived Stem Cells (ASCs) and those labeled by superparamagnetic iron oxide (SPIO) nanoparticles were examined for viability by methyl thiazol tetrazolium (MTT) assay, proliferation by cell counting and bromodeoxyuridine (BrdU) incorporation, DNA integrity by single cell gel electrophoresis, surface antigen by flow cytometry analysis, and the expression of cytokines and genetic markers by reverse transcription-PCR and underwent adipogenic and osteogenic differentiation assessed by quantifying related specific genes expression. The SMF slightly reduced cell viability and proliferation and inhibited the expression of CD49d, CD54, and CD73 but did not damage DNA integrity. The SMF slightly downregulated the expression of cytokines including Vascular Endothelial Growth Factor (VEGF), Insulin-like Growth Factor-1 (IGF-1), Transforming Growth Factor Beta 1 (TGF-β1), genetic markers comprising Stem Cell Antigen-1 (Sca1), Octamer-4 (Oct-4), ATP-binding Cassette Subfamily B Member 1 (ABCB1), adipogenic marker genes containing Lipoprotein Lipase (LPL), Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ), and osteogenic marker genes including Secreted Phosphor-protein 1 (SPP1) and Osterix (OSX). Exposure to 0.5 T SMF for seven days inhibited viability, proliferation, surface antigen expression, cytokine secretion, stem cell genetic marker expression, and adipogenic and osteogenic differentiation but did not affect the DNA integrity in ASCs with or without SPIO labeling.

  3. Inhibition of Viability, Proliferation, Cytokines Secretion, Surface Antigen Expression, and Adipogenic and Osteogenic Differentiation of Adipose-Derived Stem Cells by Seven-Day Exposure to 0.5 T Static Magnetic Fields

    PubMed Central

    Wang, Jian; Xiang, Bo; Deng, Jixian; Freed, Darren H.; Arora, Rakesh C.; Tian, Ganghong

    2016-01-01

    After seven-day exposure to 0.5-Tesla Static Magnetic Field (SMF), Adipose-derived Stem Cells (ASCs) and those labeled by superparamagnetic iron oxide (SPIO) nanoparticles were examined for viability by methyl thiazol tetrazolium (MTT) assay, proliferation by cell counting and bromodeoxyuridine (BrdU) incorporation, DNA integrity by single cell gel electrophoresis, surface antigen by flow cytometry analysis, and the expression of cytokines and genetic markers by reverse transcription-PCR and underwent adipogenic and osteogenic differentiation assessed by quantifying related specific genes expression. The SMF slightly reduced cell viability and proliferation and inhibited the expression of CD49d, CD54, and CD73 but did not damage DNA integrity. The SMF slightly downregulated the expression of cytokines including Vascular Endothelial Growth Factor (VEGF), Insulin-like Growth Factor-1 (IGF-1), Transforming Growth Factor Beta 1 (TGF-β1), genetic markers comprising Stem Cell Antigen-1 (Sca1), Octamer-4 (Oct-4), ATP-binding Cassette Subfamily B Member 1 (ABCB1), adipogenic marker genes containing Lipoprotein Lipase (LPL), Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ), and osteogenic marker genes including Secreted Phosphor-protein 1 (SPP1) and Osterix (OSX). Exposure to 0.5 T SMF for seven days inhibited viability, proliferation, surface antigen expression, cytokine secretion, stem cell genetic marker expression, and adipogenic and osteogenic differentiation but did not affect the DNA integrity in ASCs with or without SPIO labeling. PMID:26880984

  4. Transcription factor LSF (TFCP2) inhibits melanoma growth

    PubMed Central

    Goto, Yuji; Yajima, Ichiro; Kumasaka, Mayuko; Ohgami, Nobutaka; Tanaka, Asami; Tsuzuki, Toyonori; Inoue, Yuji; Fukushima, Satoshi; Ihn, Hironobu; Kyoya, Mikiko; Ohashi, Hiroyuki; Kawakami, Tamihiro; Bennett, Dorothy C.; Kato, Masashi

    2016-01-01

    Late SV40 factor 3 (LSF), a transcription factor, contributes to human hepatocellular carcinoma (HCC). However, decreased expression level of LSF in skin melanoma compared to that in benign melanocytic tumors and nevi in mice and humans was found in this study. Anchorage-dependent and -independent growth of melanoma cells was suppressed by LSF overexpression through an increased percentage of G1 phase cells and an increased p21CIP1 expression level in vitro and in vivo. Anchorage-dependent growth in LSF-overexpressed melanoma cells was promoted by depletion of LSF in the LSF-overexpressed cells. Integrated results of our EMSA and chromatin immunoprecipitation assays showed binding of LSF within a 150-bp upstream region of the transcription start site of p21CIP1 in melanoma cells. Taken together, our results suggest potential roles of LSF as a growth regulator through control of the transcription of p21CIP1 in melanocytes and melanoma cells as well as a biomarker for nevus. PMID:26506241

  5. Myogenic regulatory transcription factors regulate growth in rhabdomyosarcoma

    PubMed Central

    Tenente, Inês M; Hayes, Madeline N; Ignatius, Myron S; McCarthy, Karin; Yohe, Marielle; Sindiri, Sivasish; Gryder, Berkley; Oliveira, Mariana L; Ramakrishnan, Ashwin; Tang, Qin; Chen, Eleanor Y; Petur Nielsen, G; Khan, Javed; Langenau, David M

    2017-01-01

    Rhabdomyosarcoma (RMS) is a pediatric malignacy of muscle with myogenic regulatory transcription factors MYOD and MYF5 being expressed in this disease. Consensus in the field has been that expression of these factors likely reflects the target cell of transformation rather than being required for continued tumor growth. Here, we used a transgenic zebrafish model to show that Myf5 is sufficient to confer tumor-propagating potential to RMS cells and caused tumors to initiate earlier and have higher penetrance. Analysis of human RMS revealed that MYF5 and MYOD are mutually-exclusively expressed and each is required for sustained tumor growth. ChIP-seq and mechanistic studies in human RMS uncovered that MYF5 and MYOD bind common DNA regulatory elements to alter transcription of genes that regulate muscle development and cell cycle progression. Our data support unappreciated and dominant oncogenic roles for MYF5 and MYOD convergence on common transcriptional targets to regulate human RMS growth. DOI: http://dx.doi.org/10.7554/eLife.19214.001 PMID:28080960

  6. Sp1- and Krüppel-like transcription factors

    PubMed Central

    Kaczynski, Joanna; Cook, Tiffany; Urrutia, Raul

    2003-01-01

    Sp1-like proteins and Krüppel-like factors (KLFs) are highly related zinc-finger proteins that are important components of the eukaryotic cellular transcriptional machinery. By regulating the expression of a large number of genes that have GC-rich promoters, Sp1-like/KLF transcription regulators may take part in virtually all facets of cellular function, including cell proliferation, apoptosis, differentiation, and neoplastic transformation. Individual members of the Sp1-like/KLF family can function as activators or repressors depending on which promoter they bind and the coregulators with which they interact. A long-standing research aim has been to define the mechanisms by which Sp1-like factors and KLFs regulate gene expression and cellular function in a cell- and promoter-specific manner. Most members of this family have been identified in mammals, with at least 21 Sp1-like/KLF proteins encoded in the human genome, and members are also found in frogs, worms and flies. Sp1-like/KLF proteins have highly conserved carboxy-terminal zinc-finger domains that function in DNA binding. The amino terminus, containing the transcription activation domain, can vary significantly between family members. PMID:12620113

  7. Cellular dynamics of the negative transcription elongation factor NELF

    SciTech Connect

    Yung, Tetsu M.C.; Narita, Takashi; Komori, Toshiharu; Yamaguchi, Yuki; Handa, Hiroshi

    2009-06-10

    Negative Elongation Factor (NELF) is a transcription factor discovered based on its biochemical activity to suppress transcription elongation, and has since been implicated in various diseases ranging from neurological disorders to cancer. Besides its role in promoter-proximal pausing of RNA polymerase II during early stages of transcription, recently we found that it also plays important roles in the 3'-end processing of histone mRNA. Furthermore, NELF has been found to form a distinct subnuclear structure, which we named NELF bodies. These recent developments point to a wide range of potential functions for NELF, and, as most studies on NELF thus far had been carried out in vitro, here, we prepared a complete set of fusion protein constructs of NELF subunits and carried out a general cell biological study of the intracellular dynamics of NELF. Our data show that NELF subunits exhibit highly specific subcellular localizations, such as in NELF bodies or in midbodies, and some shuttle actively between the nucleus and cytoplasm. We further show that loss of NELF from cells can lead to enlarged and/or multiple nuclei. This work serves as a foundation and starting point for further cell biological investigations of NELF in the future.

  8. A Computational Drug Repositioning Approach for Targeting Oncogenic Transcription Factors

    PubMed Central

    Gayvert, Kaitlyn; Dardenne, Etienne; Cheung, Cynthia; Boland, Mary Regina; Lorberbaum, Tal; Wanjala, Jackline; Chen, Yu; Rubin, Mark; Tatonetti, Nicholas P.; Rickman, David; Elemento, Olivier

    2016-01-01

    Summary Mutations in transcription factors (TFs) genes are frequently observed in tumors, often leading to aberrant transcriptional activity. Unfortunately, TFs are often considered undruggable due to the absence of targetable enzymatic activity. To address this problem, we developed CRAFTT, a Computational drug-Repositioning Approach For Targeting Transcription factor activity. CRAFTT combines ChIP-seq with drug-induced expression profiling to identify small molecules that can specifically perturb TF activity. Application to ENCODE ChIP-seq datasets revealed known drug-TF interactions and a global drug-protein network analysis further supported these predictions. Application of CRAFTT to ERG, a pro-invasive, frequently over-expressed oncogenic TF predicted that dexamethasone would inhibit ERG activity. Indeed, dexamethasone significantly decreased cell invasion and migration in an ERG-dependent manner. Furthermore, analysis of Electronic Medical Record data indicates a protective role for dexamethasone against prostate cancer. Altogether, our method provides a broadly applicable strategy to identify drugs that specifically modulate TF activity. PMID:27264179

  9. The BEL1-like family of transcription factors in potato

    PubMed Central

    Hannapel, David J.

    2014-01-01

    BEL1-type proteins are ubiquitous plant transcription factors in the three-amino-acid-loop-extension superfamily. They interact with KNOTTED1-like proteins, and function as heterodimers in both floral and vegetative development. Using the yeast two-hybrid system with POTATO HOMEOBOX1 (POTH1) as the bait, seven BEL1-type proteins were originally identified. One of these genes, designated StBEL5, has transcripts that move long distances in the plant and enhance tuberization and root growth. Using the potato genome database, 13 active BEL1-like genes were identified that contain the conserved homeobox domain and the BELL domain, both of which are essential for the function of BEL1-type proteins. Phylogenetic analysis of the StBEL family demonstrated a degree of orthology with the 13 BEL1-like genes of Arabidopsis. A profile of the gene structure of the family revealed conservation of the length and splicing patterns of internal exons that encode key functional domains. Yeast two-hybrid experiments with KNOTTED1-like proteins and the new StBELs confirmed the interactive network between these two families. Analyses of RNA abundance patterns clearly showed that three StBEL genes, BEL5, -11, and -29, make up approximately two-thirds of the total transcript values for the entire family. Among the 10 organs evaluated here, these three genes exhibited the 12 greatest transcript abundance values. Using a phloem-transport induction system and gel-shift assays, transcriptional cross-regulation within the StBEL family was confirmed. Making use of the potato genome and current experimental data, a comprehensive profile of the StBEL family is presented in this study. PMID:24474812

  10. T-box transcription factors in cancer biology.

    PubMed

    Wansleben, Sabina; Peres, Jade; Hare, Shannagh; Goding, Colin R; Prince, Sharon

    2014-12-01

    The evolutionarily conserved T-box family of transcription factors have critical and well-established roles in embryonic development. More recently, T-box factors have also gained increasing prominence in the field of cancer biology where a wide range of cancers exhibit deregulated expression of T-box factors that possess tumour suppressor and/or tumour promoter functions. Of these the best characterised is TBX2, whose expression is upregulated in cancers including breast, pancreatic, ovarian, liver, endometrial adenocarcinoma, glioblastomas, gastric, uterine cervical and melanoma. Understanding the role and regulation of TBX2, as well as other T-box factors, in contributing directly to tumour progression, and especially in suppression of senescence and control of invasiveness suggests that targeting TBX2 expression or function alone or in combination with currently available chemotherapeutic agents may represent a therapeutic strategy for cancer.

  11. Isl1 is a direct transcriptional target of Forkhead transcription factors in second heart field-derived mesoderm

    PubMed Central

    Kang, Jione; Nathan, Elisha; Xu, Shan-Mei; Tzahor, Eldad; Black, Brian L.

    2009-01-01

    The cells of the second heart field (SHF) contribute to the outflow tract and right ventricle, as well as to parts of the left ventricle and atria. Isl1, a member of the LIM-homeodomain transcription factor family, is expressed early in this cardiac progenitor population and functions near the top of a transcriptional pathway essential for heart development. Isl1 is required for the survival and migration of SHF-derived cells into the early developing heart at the inflow and outflow poles. Despite this important role for Isl1 in early heart formation, the transcriptional regulation of Isl1 has remained largely undefined. Therefore, to identify transcription factors that regulate Isl1 expression in vivo, we screened the conserved noncoding sequences from the mouse Isl1 locus for enhancer activity in transgenic mouse embryos. Here, we report the identification of an enhancer from the mouse Isl1 gene that is sufficient to direct expression to the SHF and its derivatives. The Isl1 SHF enhancer contains three consensus Forkhead transcription factor binding sites that are efficiently and specifically bound by Forkhead transcription factors. Importantly, the activity of the enhancer is dependent on these three Forkhead binding sites in transgenic mouse embryos. Thus, these studies demonstrate that Isl1 is a direct transcriptional target of Forkhead transcription factors in the SHF and establish a transcriptional pathway upstream of Isl1 in the SHF. PMID:19580802

  12. Gene duplication of type-B ARR transcription factors systematically extends transcriptional regulatory structures in Arabidopsis

    PubMed Central

    Choi, Seung Hee; Hyeon, Do Young; Lee, ll Hwan; Park, Su Jin; Han, Seungmin; Lee, In Chul; Hwang, Daehee; Nam, Hong Gil

    2014-01-01

    Many of duplicated genes are enriched in signaling pathways. Recently, gene duplication of kinases has been shown to provide genetic buffering and functional diversification in cellular signaling. Transcription factors (TFs) are also often duplicated. However, how duplication of TFs affects their regulatory structures and functions of target genes has not been explored at the systems level. Here, we examined regulatory and functional roles of duplication of three major ARR TFs (ARR1, 10, and 12) in Arabidopsis cytokinin signaling using wild-type and single, double, and triple deletion mutants of the TFs. Comparative analysis of gene expression profiles obtained from Arabidopsis roots in wild-type and these mutants showed that duplication of ARR TFs systematically extended their transcriptional regulatory structures, leading to enhanced robustness and diversification in functions of target genes, as well as in regulation of cellular networks of target genes. Therefore, our results suggest that duplication of TFs contributes to robustness and diversification in functions of target genes by extending transcriptional regulatory structures. PMID:25425016

  13. Statistical mechanical model of coupled transcription from multiple promoters due to transcription factor titration

    NASA Astrophysics Data System (ADS)

    Rydenfelt, Mattias; Cox, Robert Sidney, III; Garcia, Hernan; Phillips, Rob

    2014-01-01

    Transcription factors (TFs) with regulatory action at multiple promoter targets is the rule rather than the exception, with examples ranging from the cAMP receptor protein (CRP) in E. coli that regulates hundreds of different genes simultaneously to situations involving multiple copies of the same gene, such as plasmids, retrotransposons, or highly replicated viral DNA. When the number of TFs heavily exceeds the number of binding sites, TF binding to each promoter can be regarded as independent. However, when the number of TF molecules is comparable to the number of binding sites, TF titration will result in correlation (“promoter entanglement”) between transcription of different genes. We develop a statistical mechanical model which takes the TF titration effect into account and use it to predict both the level of gene expression for a general set of promoters and the resulting correlation in transcription rates of different genes. Our results show that the TF titration effect could be important for understanding gene expression in many regulatory settings.

  14. Isolation, classification and transcription profiles of the AP2/ERF transcription factor superfamily in citrus.

    PubMed

    Xie, Xiu-lan; Shen, Shu-ling; Yin, Xue-ren; Xu, Qian; Sun, Chong-de; Grierson, Donald; Ferguson, Ian; Chen, Kun-song

    2014-07-01

    The AP2/ERF gene family encodes plant-specific transcription factors. In model plants, AP2/ERF genes have been shown to be expressed in response to developmental and environmental stimuli, and many function downstream of the ethylene, biotic, and abiotic stress signaling pathways. In citrus, ethylene is effective in regulation citrus fruit quality, such as degreening and aroma. However, information about the citrus AP2/ERF family is limited, and would enhance our understanding of fruit responses to environmental stress, fruit development and quality. CitAP2/ERF genes were isolated using the citrus genome database, and their expression patterns analyzed by real-time PCR using various orange organs and samples from a fruit developmental series. 126 sequences with homologies to AP2/ERF proteins were identified from the citrus genome, and, on the basis of their structure and sequence, assigned to the ERF family (102), AP2 family (18), RAV family (4) and Soloist (2). MEME motif analysis predicted the defining AP2/ERF domain and EAR repressor domains. Analysis of transcript accumulation in Citrus sinensis cv. 'Newhall' indicated that CitAP2/ERF genes show organ-specific and temporal expression, and provided a framework for understanding the transcriptional regulatory roles of AP2/ERF gene family members in citrus. Hierarchical cluster analysis and t tests identified regulators that potentially function during orange fruit growth and development.

  15. Gene duplication of type-B ARR transcription factors systematically extends transcriptional regulatory structures in Arabidopsis.

    PubMed

    Choi, Seung Hee; Hyeon, Do Young; Lee, Ll Hwan; Park, Su Jin; Han, Seungmin; Lee, In Chul; Hwang, Daehee; Nam, Hong Gil

    2014-11-26

    Many of duplicated genes are enriched in signaling pathways. Recently, gene duplication of kinases has been shown to provide genetic buffering and functional diversification in cellular signaling. Transcription factors (TFs) are also often duplicated. However, how duplication of TFs affects their regulatory structures and functions of target genes has not been explored at the systems level. Here, we examined regulatory and functional roles of duplication of three major ARR TFs (ARR1, 10, and 12) in Arabidopsis cytokinin signaling using wild-type and single, double, and triple deletion mutants of the TFs. Comparative analysis of gene expression profiles obtained from Arabidopsis roots in wild-type and these mutants showed that duplication of ARR TFs systematically extended their transcriptional regulatory structures, leading to enhanced robustness and diversification in functions of target genes, as well as in regulation of cellular networks of target genes. Therefore, our results suggest that duplication of TFs contributes to robustness and diversification in functions of target genes by extending transcriptional regulatory structures.

  16. Transcription factor-mediated reprogramming toward hematopoietic stem cells

    PubMed Central

    Ebina, Wataru; Rossi, Derrick J

    2015-01-01

    De novo generation of human hematopoietic stem cells (HSCs) from renewable cell types has been a long sought-after but elusive goal in regenerative medicine. Paralleling efforts to guide pluripotent stem cell differentiation by manipulating developmental cues, substantial progress has been made recently toward HSC generation via combinatorial transcription factor (TF)-mediated fate conversion, a paradigm established by Yamanaka's induction of pluripotency in somatic cells by mere four TFs. This review will integrate the recently reported strategies to directly convert a variety of starting cell types toward HSCs in the context of hematopoietic transcriptional regulation and discuss how these findings could be further developed toward the ultimate generation of therapeutic human HSCs. PMID:25712209

  17. Engineering phenolics metabolism in the grasses using transcription factors

    SciTech Connect

    Grotewold, Erich

    2013-07-26

    The economical competitiveness of agriculture-derived biofuels can be significantly enhanced by increasing biomass/acre yields and by furnishing the desired carbon balance for facilitating liquid fuel production (e.g., ethanol) or for high-energy solid waste availability to be used as biopower (e.g., for electricity production). Biomass production and carbon balance are tightly linked to the biosynthesis of phenolic compounds, which are found in crops and in agricultural residues either as lignins, as part of the cell wall, or as soluble phenolics which play a variety of functions in the biology of plants. The grasses, in particular maize, provide the single major source of agricultural biomass, offering significant opportunities for increasing renewable fuel production. Our laboratory has pioneered the use of transcription factors for manipulating plant metabolic pathways, an approach that will be applied here towards altering the composition of phenolic compounds in maize. Previously, we identified a small group of ten maize R2R3-MYB transcription factors with all the characteristics of regulators of different aspects of phenolic biosynthesis. Here, we propose to investigate the participation of these R2R3-MYB factors in the regulation of soluble and insoluble maize phenolics, using a combination of over-expression and down-regulation of these transcription factors in transgenic maize cultured cells and in maize plants. Maize cells and plants altered in the activity of these regulatory proteins will be analyzed for phenolic composition by targeted metabolic profiling. Specifically, we will I) Investigate the effect of gain- and loss-of-function of a select group of R2R3-MYB transcription factors on the phenolic composition of maize plants and II) Identify the biosynthetic genes regulated by each of the selected R2R3-MYB factors. While a likely outcome of these studies are transgenic maize plants with altered phenolic composition, this research will significantly

  18. Antiviral response dictated by choreographed cascade of transcription factors

    PubMed Central

    Zaslavsky, Elena; Hershberg, Uri; Seto, Jeremy; Pham, Alissa M.; Marquez, Susanna; Duke, Jamie L.; Wetmur, James G.; tenOever, Benjamin R.; Sealfon, Stuart C.; Kleinstein, Steven H.

    2010-01-01

    The dendritic cell (DC) is a master regulator of immune responses. Pathogenic viruses subvert normal immune function in DCs through the expression of immune antagonists. Understanding how these antagonists interact with the host immune system requires knowledge of the underlying genetic regulatory network that operates during an uninhibited antiviral response. In order to isolate and identify this network, we studied DCs infected with Newcastle Disease Virus (NDV), which is able to stimulate innate immunity and DC maturation through activation of RIG-I signaling, but lacks the ability to evade the human interferon response. To analyze this experimental model, we developed a new approach integrating genome-wide expression kinetics and time-dependent promoter analysis. We found that the genetic program underlying the antiviral cell-state transition during the first 18-hours post-infection could be explained by a single convergent regulatory network. Gene expression changes were driven by a step-wise multi-factor cascading control mechanism, where the specific transcription factors controlling expression changed over time. Within this network, most individual genes are regulated by multiple factors, indicating robustness against virus-encoded immune evasion genes. In addition to effectively recapitulating current biological knowledge, we predicted, and validated experimentally, antiviral roles for several novel transcription factors. More generally, our results show how a genetic program can be temporally controlled through a single regulatory network to achieve the large-scale genetic reprogramming characteristic of cell state transitions. PMID:20164420

  19. Transcription factor FOXA2-centered transcriptional regulation network in non-small cell lung cancer

    SciTech Connect

    Jang, Sang-Min; An, Joo-Hee; Kim, Chul-Hong; Kim, Jung-Woong Choi, Kyung-Hee

    2015-08-07

    Lung cancer is the leading cause of cancer-mediated death. Although various therapeutic approaches are used for lung cancer treatment, these mainly target the tumor suppressor p53 transcription factor, which is involved in apoptosis and cell cycle arrest. However, p53-targeted therapies have limited application in lung cancer, since p53 is found to be mutated in more than half of lung cancers. In this study, we propose tumor suppressor FOXA2 as an alternative target protein for therapies against lung cancer and reveal a possible FOXA2-centered transcriptional regulation network by identifying new target genes and binding partners of FOXA2 by using various screening techniques. The genes encoding Glu/Asp-rich carboxy-terminal domain 2 (CITED2), nuclear receptor subfamily 0, group B, member 2 (NR0B2), cell adhesion molecule 1 (CADM1) and BCL2-associated X protein (BAX) were identified as putative target genes of FOXA2. Additionally, the proteins including highly similar to heat shock protein HSP 90-beta (HSP90A), heat shock 70 kDa protein 1A variant (HSPA1A), histone deacetylase 1 (HDAC1) and HDAC3 were identified as novel interacting partners of FOXA2. Moreover, we showed that FOXA2-dependent promoter activation of BAX and p21 genes is significantly reduced via physical interactions between the identified binding partners and FOXA2. These results provide opportunities to understand the FOXA2-centered transcriptional regulation network and novel therapeutic targets to modulate this network in p53-deficient lung cancer. - Highlights: • Identification of new target genes of FOXA2. • Identifications of novel interaction proteins of FOXA2. • Construction of FOXA2-centered transcriptional regulatory network in non-small cell lung cancer.

  20. Metabolic gatekeeper function of B-lymphoid transcription factors.

    PubMed

    Chan, Lai N; Chen, Zhengshan; Braas, Daniel; Lee, Jae-Woong; Xiao, Gang; Geng, Huimin; Cosgun, Kadriye Nehir; Hurtz, Christian; Shojaee, Seyedmehdi; Cazzaniga, Valeria; Schjerven, Hilde; Ernst, Thomas; Hochhaus, Andreas; Kornblau, Steven M; Konopleva, Marina; Pufall, Miles A; Cazzaniga, Giovanni; Liu, Grace J; Milne, Thomas A; Koeffler, H Phillip; Ross, Theodora S; Sánchez-García, Isidro; Borkhardt, Arndt; Yamamoto, Keith R; Dickins, Ross A; Graeber, Thomas G; Müschen, Markus

    2017-02-23

    B-lymphoid transcription factors, such as PAX5 and IKZF1, are critical for early B-cell development, yet lesions of the genes encoding these transcription factors occur in over 80% of cases of pre-B-cell acute lymphoblastic leukaemia (ALL). The importance of these lesions in ALL has, until now, remained unclear. Here, by combining studies using chromatin immunoprecipitation with sequencing and RNA sequencing, we identify a novel B-lymphoid program for transcriptional repression of glucose and energy supply. Our metabolic analyses revealed that PAX5 and IKZF1 enforce a state of chronic energy deprivation, resulting in constitutive activation of the energy-stress sensor AMPK. Dominant-negative mutants of PAX5 and IKZF1, however, relieved this glucose and energy restriction. In a transgenic pre-B ALL mouse model, the heterozygous deletion of Pax5 increased glucose uptake and ATP levels by more than 25-fold. Reconstitution of PAX5 and IKZF1 in samples from patients with pre-B ALL restored a non-permissive state and induced energy crisis and cell death. A CRISPR/Cas9-based screen of PAX5 and IKZF1 transcriptional targets identified the products of NR3C1 (encoding the glucocorticoid receptor), TXNIP (encoding a glucose-feedback sensor) and CNR2 (encoding a cannabinoid receptor) as central effectors of B-lymphoid restriction of glucose and energy supply. Notably, transport-independent lipophilic methyl-conjugates of pyruvate and tricarboxylic acid cycle metabolites bypassed the gatekeeper function of PAX5 and IKZF1 and readily enabled leukaemic transformation. Conversely, pharmacological TXNIP and CNR2 agonists and a small-molecule AMPK inhibitor strongly synergized with glucocorticoids, identifying TXNIP, CNR2 and AMPK as potential therapeutic targets. Furthermore, our results provide a mechanistic explanation for the empirical finding that glucocorticoids are effective in the treatment of B-lymphoid but not myeloid malignancies. Thus, B-lymphoid transcription factors

  1. Identifying combinatorial regulation of transcription factors and binding motifs

    PubMed Central

    Kato, Mamoru; Hata, Naoya; Banerjee, Nilanjana; Futcher, Bruce; Zhang, Michael Q

    2004-01-01

    Background Combinatorial interaction of transcription factors (TFs) is important for gene regulation. Although various genomic datasets are relevant to this issue, each dataset provides relatively weak evidence on its own. Developing methods that can integrate different sequence, expression and localization data have become important. Results Here we use a novel method that integrates chromatin immunoprecipitation (ChIP) data with microarray expression data and with combinatorial TF-motif analysis. We systematically identify combinations of transcription factors and of motifs. The various combinations of TFs involved multiple binding mechanisms. We reconstruct a new combinatorial regulatory map of the yeast cell cycle in which cell-cycle regulation can be drawn as a chain of extended TF modules. We find that the pairwise combination of a TF for an early cell-cycle phase and a TF for a later phase is often used to control gene expression at intermediate times. Thus the number of distinct times of gene expression is greater than the number of transcription factors. We also see that some TF modules control branch points (cell-cycle entry and exit), and in the presence of appropriate signals they can allow progress along alternative pathways. Conclusions Combining different data sources can increase statistical power as demonstrated by detecting TF interactions and composite TF-binding motifs. The original picture of a chain of simple cell-cycle regulators can be extended to a chain of composite regulatory modules: different modules may share a common TF component in the same pathway or a TF component cross-talking to other pathways. PMID:15287978

  2. Negative transcriptional regulation of mitochondrial transcription factor A (TFAM) by nuclear TFAM

    SciTech Connect

    Lee, Eun Jin; Kang, Young Cheol; Park, Wook-Ha; Jeong, Jae Hoon; Pak, Youngmi Kim

    2014-07-18

    Highlights: • TFAM localizes in nuclei and mitochondria of neuronal cells. • Nuclear TFAM does not bind the Tfam promoter. • Nuclear TFAM reduced the Tfam promoter activity via suppressing NRF-1 activity. • A novel self-negative feedback regulation of Tfam gene expression is explored. • FAM may play different roles depending on its subcellular localizations. - Abstract: The nuclear DNA-encoded mitochondrial transcription factor A (TFAM) is synthesized in cytoplasm and transported into mitochondria. TFAM enhances both transcription and replication of mitochondrial DNA. It is unclear, however, whether TFAM plays a role in regulating nuclear gene expression. Here, we demonstrated that TFAM was localized to the nucleus and mitochondria by immunostaining, subcellular fractionation, and TFAM-green fluorescent protein hybrid protein studies. In HT22 hippocampal neuronal cells, human TFAM (hTFAM) overexpression suppressed human Tfam promoter-mediated luciferase activity in a dose-dependent manner. The mitochondria targeting sequence-deficient hTFAM also repressed Tfam promoter activity to the same degree as hTFAM. It indicated that nuclear hTFAM suppressed Tfam expression without modulating mitochondrial activity. The repression required for nuclear respiratory factor-1 (NRF-1), but hTFAM did not bind to the NRF-1 binding site of its promoter. TFAM was co-immunoprecipitated with NRF-1. Taken together, we suggest that nuclear TFAM down-regulate its own gene expression as a NRF-1 repressor, showing that TFAM may play different roles depending on its subcellular localizations.

  3. Redox regulation of FoxO transcription factors

    PubMed Central

    Klotz, Lars-Oliver; Sánchez-Ramos, Cristina; Prieto-Arroyo, Ignacio; Urbánek, Pavel; Steinbrenner, Holger; Monsalve, Maria

    2015-01-01

    Transcription factors of the forkhead box, class O (FoxO) family are important regulators of the cellular stress response and promote the cellular antioxidant defense. On one hand, FoxOs stimulate the transcription of genes coding for antioxidant proteins located in different subcellular compartments, such as in mitochondria (i.e. superoxide dismutase-2, peroxiredoxins 3 and 5) and peroxisomes (catalase), as well as for antioxidant proteins found extracellularly in plasma (e.g., selenoprotein P and ceruloplasmin). On the other hand, reactive oxygen species (ROS) as well as other stressful stimuli that elicit the formation of ROS, may modulate FoxO activity at multiple levels, including posttranslational modifications of FoxOs (such as phosphorylation and acetylation), interaction with coregulators, alterations in FoxO subcellular localization, protein synthesis and stability. Moreover, transcriptional and posttranscriptional control of the expression of genes coding for FoxOs is sensitive to ROS. Here, we review these aspects of FoxO biology focusing on redox regulation of FoxO signaling, and with emphasis on the interplay between ROS and FoxOs under various physiological and pathophysiological conditions. Of particular interest are the dual role played by FoxOs in cancer development and their key role in whole body nutrient homeostasis, modulating metabolic adaptations and/or disturbances in response to low vs. high nutrient intake. Examples discussed here include calorie restriction and starvation as well as adipogenesis, obesity and type 2 diabetes. PMID:26184557

  4. Functional analysis of Thermus thermophilus transcription factor NusG

    PubMed Central

    Sevostyanova, Anastasiya; Artsimovitch, Irina

    2010-01-01

    Transcription elongation factors from the NusG family are ubiquitous from bacteria to humans and play diverse roles in the regulation of gene expression. These proteins consist of at least two domains. The N-terminal domains directly bind to the largest, β′ in bacteria, subunit of RNA polymerase (RNAP), whereas the C-terminal domains interact with other cellular components and serve as platforms for the assembly of large nucleoprotein complexes. Escherichia coli NusG and its paralog RfaH modify RNAP into a fast, pause-resistant state but the detailed molecular mechanism of this modification remains unclear since no high-resolution structural data are available for the E. coli system. We wanted to investigate whether Thermus thermophilus (Tth) NusG can be used as a model for structural studies of this family of regulators. Here, we show that Tth NusG slows down rather than facilitates transcript elongation by its cognate RNAP. On the other hand, similarly to the E. coli regulators, Tth NusG apparently binds near the upstream end of the transcription bubble, competes with σA, and favors forward translocation by RNAP. Our data suggest that the mechanism of NusG recruitment to RNAP is universally conserved even though the regulatory outcomes among its homologs may appear distinct. PMID:20639538

  5. Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity

    PubMed Central

    Albu, Mihai; Cote, Atina; Montenegro-Montero, Alejandro; Drewe, Philipp; Najafabadi, Hamed S.; Lambert, Samuel A.; Mann, Ishminder; Cook, Kate; Zheng, Hong; Goity, Alejandra; van Bakel, Harm; Lozano, Jean-Claude; Galli, Mary; Lewsey, Mathew; Huang, Eryong; Mukherjee, Tuhin; Chen, Xiaoting; Reece-Hoyes, John S.; Govindarajan, Sridhar; Shaulsky, Gad; Walhout, Albertha J.M.; Bouget, François-Yves; Ratsch, Gunnar; Larrondo, Luis F.; Ecker, Joseph R.; Hughes, Timothy R.

    2014-01-01

    SUMMARY Transcription factor (TF) DNA sequence preferences direct their regulatory activity, but are currently known for only ~1% of all eukaryotic TFs. Broadly sampling DNA-binding domain (DBD) types from multiple eukaryotic clades, we determined DNA sequence preferences for >1,000 TFs encompassing 54 different DBD classes from 131 diverse eukaryotes. We find that closely related DBDs almost always have very similar DNA sequence preferences, enabling inference of motifs for ~34% of the ~170,000 known or predicted eukaryotic TFs. Sequences matching both measured and inferred motifs are enriched in ChIP-seq peaks and upstream of transcription start sites in diverse eukaryotic lineages. SNPs defining expression quantitative trait loci in Arabidopsis promoters are also enriched for predicted TF binding sites. Importantly, our motif “library” (http://cisbp.ccbr.utoronto.ca) can be used to identify specific TFs whose binding may be altered by human disease risk alleles. These data present a powerful resource for mapping transcriptional networks across eukaryotes. PMID:25215497

  6. Glutamine Metabolism Regulates the Pluripotency Transcription Factor OCT4

    PubMed Central

    Marsboom, Glenn; Zhang, Guo-Fang; Pohl-Avila, Nicole; Zhang, Yanmin; Yuan, Yang; Kang, Hojin; Hao, Bo; Brunengraber, Henri; Malik, Asrar B.; Rehman, Jalees

    2016-01-01

    SUMMARY The molecular mechanisms underlying the regulation of pluripotency by cellular metabolism in human embryonic stem cells (hESCs) are not fully understood. We found that high levels of glutamine metabolism are essential to prevent degradation of OCT4, a key transcription factor regulating hESC pluripotency. Glutamine withdrawal depletes the endogenous anti-oxidant glutathione, which results in the oxidation of OCT4 cysteine residues required for its DNA binding and enhanced OCT4 degradation. The emergence of the OCT4lo cell population following glutamine withdrawal did not result in greater propensity for cell death. Instead, glutamine withdrawal during vascular differentiation of hESCs generated cells with greater angiogenic capacity, thus indicating that modulating glutamine metabolism enhances the differentiation and functional maturation of cells. These findings demonstrate that the pluripotency transcription factor OCT4 can serve as a metabolic-redox sensor in hESCs and that metabolic cues can act in concert with growth factor signaling to orchestrate stem cell differentiation. PMID:27346346

  7. Transcription factor TBX4 regulates myofibroblast accumulation and lung fibrosis

    PubMed Central

    Xie, Ting; Liang, Jiurong; Liu, Ningshan; Huan, Caijuan; Zhang, Yanli; Liu, Weijia; Kumar, Maya; Xiao, Rui; D’Armiento, Jeanine; Metzger, Daniel; Chambon, Pierre; Papaioannou, Virginia E.; Stripp, Barry R.; Jiang, Dianhua

    2016-01-01

    Progressive tissue fibrosis is a major cause of the morbidity and mortality associated with repeated epithelial injuries and accumulation of myofibroblasts. Successful treatment options are limited by an incomplete understanding of the molecular mechanisms that regulate myofibroblast accumulation. Here, we employed in vivo lineage tracing and real-time gene expression transgenic reporting methods to analyze the early embryonic transcription factor T-box gene 4 (TBX4), and determined that TBX4-lineage mesenchymal progenitors are the predominant source of myofibroblasts in injured adult lung. In a murine model, ablation of TBX4-expressing cells or disruption of TBX4 signaling attenuated lung fibrosis after bleomycin-induced injury. Furthermore, TBX4 regulated hyaluronan synthase 2 production to enable fibroblast invasion of matrix both in murine models and in fibroblasts from patients with severe pulmonary fibrosis. These data identify TBX4 as a mesenchymal transcription factor that drives accumulation of myofibroblasts and the development of lung fibrosis. Targeting TBX4 and downstream factors that regulate fibroblast invasiveness could lead to therapeutic approaches in lung fibrosis. PMID:27400124

  8. Prevalence of transcription factors in ascomycete and basidiomycete fungi

    PubMed Central

    2014-01-01

    Background Gene regulation underlies fungal physiology and therefore is a major factor in fungal biodiversity. Analysis of genome sequences has revealed a large number of putative transcription factors in most fungal genomes. The presence of fungal orthologs for individual regulators has been analysed and appears to be highly variable with some regulators widely conserved and others showing narrow distribution. Although genome-scale transcription factor surveys have been performed before, no global study into the prevalence of specific regulators across the fungal kingdom has been presented. Results In this study we have analysed the number of members for 37 regulator classes in 77 ascomycete and 31 basidiomycete fungal genomes and revealed significant differences between ascomycetes and basidiomycetes. In addition, we determined the presence of 64 regulators characterised in ascomycetes across these 108 genomes. This demonstrated that overall the highest presence of orthologs is in the filamentous ascomycetes. A significant number of regulators lacked orthologs in the ascomycete yeasts and the basidiomycetes. Conversely, of seven basidiomycete regulators included in the study, only one had orthologs in ascomycetes. Conclusions This study demonstrates a significant difference in the regulatory repertoire of ascomycete and basidiomycete fungi, at the level of both regulator class and individual regulator. This suggests that the current regulatory systems of these fungi have been mainly developed after the two phyla diverged. Most regulators detected in both phyla are involved in central functions of fungal physiology and therefore were likely already present in the ancestor of the two phyla. PMID:24650355

  9. Signatures of DNA target selectivity by ETS transcription factors.

    PubMed

    Poon, Gregory M K; Kim, Hye Mi

    2017-03-16

    The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation.

  10. Sequence analysis of chromatin immunoprecipitation data for transcription factors

    PubMed Central

    Fraenkel, Ernest

    2013-01-01

    Chromatin immunoprecipitation (ChIP) experiments allow the location of transcription factors to be determined across the genome. Subsequent analysis of the sequences of the identified regions allows binding to be localized at a higher resolution than can be achieved by current high-throughput experiments without sequence analysis, and may provide important insight into the regulatory programs enacted by the protein of interest. In this chapter we review the tools, workflow, and common pitfalls of such analyses, and recommend strategies for effective motif discovery from these data. PMID:20827592

  11. Transcription factor TFII-I conducts a cytoplasmic orchestra.

    PubMed

    Roy, Ananda L

    2006-11-21

    In response to extracellular ligands, surface receptor tyrosine kinases and G-protein-coupled receptors activate isoforms of phospholipase C (PLC) and initiate calcium signaling. PLC can activate expression of surface transient receptor potential channels (TRPC) such as TRPC3, which modulate calcium entry through the plasma membrane. A recent paper shows that competitive binding of cytoplasmic TFII-I, a transcription factor, to PLC-gamma results in inhibition of TRPC3-mediated agonist-induced Ca(2+) entry. These results establish a novel cytoplasmic function for TFII-I.

  12. Regulation of Specialized Metabolism by WRKY Transcription Factors

    PubMed Central

    Schluttenhofer, Craig; Yuan, Ling

    2015-01-01

    WRKY transcription factors (TFs) are well known for regulating plant abiotic and biotic stress tolerance. However, much less is known about how WRKY TFs affect plant-specialized metabolism. Analysis of WRKY TFs regulating the production of specialized metabolites emphasizes the values of the family outside of traditionally accepted roles in stress tolerance. WRKYs with conserved roles across plant species seem to be essential in regulating specialized metabolism. Overall, the WRKY family plays an essential role in regulating the biosynthesis of important pharmaceutical, aromatherapy, biofuel, and industrial components, warranting considerable attention in the forthcoming years. PMID:25501946

  13. CBP/p300 as a co-factor for the Microphthalmia transcription factor.

    PubMed

    Sato, S; Roberts, K; Gambino, G; Cook, A; Kouzarides, T; Goding, C R

    1997-06-26

    The Microphthalmia basic-Helix-Loop-Helix-Leucine Zipper (bHLH-LZ) transcription factor (Mi) plays a crucial role in the genesis of melanocytes; mice deficient for a functional (Microphthalmia) gene product lack all pigment cells. We show here that the Mi activation domain resides N-terminal to the DNA-binding domain and that as little as 18 amino acids are sufficient to mediate transcription activation. The minimal activation region of Mi is highly conserved in the related transcription factor TFE3 and is predicted to adopt an amphipathic alpha-helical conformation. This region of Mi is also highly conserved with a region of E1A known to be essential for binding the CBP/p300 transcription cofactor. Consistent with these observations, the Mi activation domain can interact in vitro with CBP specifically through a region of CBP required for complex formation with E1A, P/CAF and c-Fos, and anti p300 antibodies can co-immunoprecipitate Mi from both melanocyte and melanoma cell lines. In addition, co-transfection of a vector expressing CBP2 (aas 1621-1891) fused to the VP16 activation domain potentiated the ability of Mi to activate transcription, confirming the significance of the CBP-Mi interaction observed in vitro. These data suggest that transcription activation by Mi is achieved at least in part by recruitment of CBP. The parallels between transcription regulation by Microphthalmia in melanocytes and MyoD in muscle cells are discussed.

  14. The Role of Multiple Transcription Factors In Archaeal Gene Expression

    SciTech Connect

    Charles J. Daniels

    2008-09-23

    Since the inception of this research program, the project has focused on two central questions: What is the relationship between the 'eukaryal-like' transcription machinery of archaeal cells and its counterparts in eukaryal cells? And, how does the archaeal cell control gene expression using its mosaic of eukaryal core transcription machinery and its bacterial-like transcription regulatory proteins? During the grant period we have addressed these questions using a variety of in vivo approaches and have sought to specifically define the roles of the multiple TATA binding protein (TBP) and TFIIB-like (TFB) proteins in controlling gene expression in Haloferax volcanii. H. volcanii was initially chosen as a model for the Archaea based on the availability of suitable genetic tools; however, later studies showed that all haloarchaea possessed multiple tbp and tfb genes, which led to the proposal that multiple TBP and TFB proteins may function in a manner similar to alternative sigma factors in bacterial cells. In vivo transcription and promoter analysis established a clear relationship between the promoter requirements of haloarchaeal genes and those of the eukaryal RNA polymerase II promoter. Studies on heat shock gene promoters, and the demonstration that specific tfb genes were induced by heat shock, provided the first indication that TFB proteins may direct expression of specific gene families. The construction of strains lacking tbp or tfb genes, coupled with the finding that many of these genes are differentially expressed under varying growth conditions, provided further support for this model. Genetic tools were also developed that led to the construction of insertion and deletion mutants, and a novel gene expression scheme was designed that allowed the controlled expression of these genes in vivo. More recent studies have used a whole genome array to examine the expression of these genes and we have established a linkage between the expression of specific tfb

  15. Structural characterization of human general transcription factor TFIIF in solution

    PubMed Central

    Akashi, Satoko; Nagakura, Shinjiro; Yamamoto, Seiji; Okuda, Masahiko; Ohkuma, Yoshiaki; Nishimura, Yoshifumi

    2008-01-01

    Human general transcription factor IIF (TFIIF), a component of the transcription pre-initiation complex (PIC) associated with RNA polymerase II (Pol II), was characterized by size-exclusion chromatography (SEC), electrospray ionization mass spectrometry (ESI-MS), and chemical cross-linking. Recombinant TFIIF, composed of an equimolar ratio of α and β subunits, was bacterially expressed, purified to homogeneity, and found to have a transcription activity similar to a natural one in the human in vitro transcription system. SEC of purified TFIIF, as previously reported, suggested that this protein has a size >200 kDa. In contrast, ESI-MS of the purified sample gave a molecular size of 87 kDa, indicating that TFIIF is an αβ heterodimer, which was confirmed by matrix-assisted laser desorption/ionization (MALDI) MS of the cross-linked TFIIF components. Recent electron microscopy (EM) and photo-cross-linking studies showed that the yeast TFIIF homolog containing Tfg1 and Tfg2, corresponding to the human α and β subunits, exists as a heterodimer in the PIC, so the human TFIIF is also likely to exist as a heterodimer even in the PIC. In the yeast PIC, EM and photo-cross-linking studies showed different results for the mutual location of TFIIE and TFIIF along DNA. We have examined the direct interaction between human TFIIF and TFIIE by ESI-MS, SEC, and chemical cross-linking; however, no direct interaction was observed, at least in solution. This is consistent with the previous photo-cross-linking observation that TFIIF and TFIIE flank DNA separately on both sides of the Pol II central cleft in the yeast PIC. PMID:18218714

  16. Transcription Factors in the Cellular Response to Charged Particle Exposure

    PubMed Central

    Hellweg, Christine E.; Spitta, Luis F.; Henschenmacher, Bernd; Diegeler, Sebastian; Baumstark-Khan, Christa

    2016-01-01

    Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor’s p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles’ LET, with a maximal activation in the LET range of 90–300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also

  17. SHARP1/DEC2 inhibits adipogenic differentiation by regulating the activity of C/EBP.

    PubMed

    Gulbagci, Neriman Tuba; Li, Li; Ling, Belinda; Gopinadhan, Suma; Walsh, Martin; Rossner, Moritz; Nave, Klaus-Armin; Taneja, Reshma

    2009-01-01

    SHARP1, a basic helix-loop-helix transcription factor, is expressed in many cell types; however, the mechanisms by which it regulates cellular differentiation remain largely unknown. Here, we show that SHARP1 negatively regulates adipogenesis. Although expression of the early marker CCAAT/enhancer binding protein beta (C/EBPbeta) is not altered, its crucial downstream targets C/EBPalpha and peroxisome proliferator-activated receptor gamma (PPARgamma) are downregulated by SHARP1. Protein interaction studies confirm that SHARP1 interacts with and inhibits the transcriptional activity of both C/EBPbeta and C/EBPalpha, and enhances the association of C/EBPbeta with histone deacetylase 1 (HDAC1). Consistently, in SHARP1-expressing cells, HDAC1 and the histone methyltransferase G9a are retained at the C/EBP regulatory sites on the C/EBPalpha and PPARgamma2 promoters during differentiation, resulting in inhibition of their expression. Interestingly, treatment with troglitazone results in displacement of HDAC1 and G9a, and rescues the differentiation defect of SHARP1-overexpressing cells. Our data indicate that SHARP1 inhibits adipogenesis through the regulation of C/EBP activity, which is essential for PPARgamma-ligand-dependent displacement of co-repressors from adipogenic promoters.

  18. TEMPLE: analysing population genetic variation at transcription factor binding sites.

    PubMed

    Litovchenko, Maria; Laurent, Stefan

    2016-11-01

    Genetic variation occurring at the level of regulatory sequences can affect phenotypes and fitness in natural populations. This variation can be analysed in a population genetic framework to study how genetic drift and selection affect the evolution of these functional elements. However, doing this requires a good understanding of the location and nature of regulatory regions and has long been a major hurdle. The current proliferation of genomewide profiling experiments of transcription factor occupancies greatly improves our ability to identify genomic regions involved in specific DNA-protein interactions. Although software exists for predicting transcription factor binding sites (TFBS), and the effects of genetic variants on TFBS specificity, there are no tools currently available for inferring this information jointly with the genetic variation at TFBS in natural populations. We developed the software Transcription Elements Mapping at the Population LEvel (TEMPLE), which predicts TFBS, evaluates the effects of genetic variants on TFBS specificity and summarizes the genetic variation occurring at TFBS in intraspecific sequence alignments. We demonstrate that TEMPLE's TFBS prediction algorithms gives identical results to PATSER, a software distribution commonly used in the field. We also illustrate the unique features of TEMPLE by analysing TFBS diversity for the TF Senseless (SENS) in one ancestral and one cosmopolitan population of the fruit fly Drosophila melanogaster. TEMPLE can be used to localize TFBS that are characterized by strong genetic differentiation across natural populations. This will be particularly useful for studies aiming to identify adaptive mutations. TEMPLE is a java-based cross-platform software that easily maps the genetic diversity at predicted TFBSs using a graphical interface, or from the Unix command line.

  19. Imputation for transcription factor binding predictions based on deep learning

    PubMed Central

    Qin, Qian

    2017-01-01

    Understanding the cell-specific binding patterns of transcription factors (TFs) is fundamental to studying gene regulatory networks in biological systems, for which ChIP-seq not only provides valuable data but is also considered as the gold standard. Despite tremendous efforts from the scientific community to conduct TF ChIP-seq experiments, the available data represent only a limited percentage of ChIP-seq experiments, considering all possible combinations of TFs and cell lines. In this study, we demonstrate a method for accurately predicting cell-specific TF binding for TF-cell line combinations based on only a small fraction (4%) of the combinations using available ChIP-seq data. The proposed model, termed TFImpute, is based on a deep neural network with a multi-task learning setting to borrow information across transcription factors and cell lines. Compared with existing methods, TFImpute achieves comparable accuracy on TF-cell line combinations with ChIP-seq data; moreover, TFImpute achieves better accuracy on TF-cell line combinations without ChIP-seq data. This approach can predict cell line specific enhancer activities in K562 and HepG2 cell lines, as measured by massively parallel reporter assays, and predicts the impact of SNPs on TF binding. PMID:28234893

  20. Gibbs Recursive Sampler: finding transcription factor binding sites.

    PubMed

    Thompson, William; Rouchka, Eric C; Lawrence, Charles E

    2003-07-01

    The Gibbs Motif Sampler is a software package for locating common elements in collections of biopolymer sequences. In this paper we describe a new variation of the Gibbs Motif Sampler, the Gibbs Recursive Sampler, which has been developed specifically for locating multiple transcription factor binding sites for multiple transcription factors simultaneously in unaligned DNA sequences that may be heterogeneous in DNA composition. Here we describe the basic operation of the web-based version of this sampler. The sampler may be acces-sed at http://bayesweb.wadsworth.org/gibbs/gibbs.html and at http://www.bioinfo.rpi.edu/applications/bayesian/gibbs/gibbs.html. An online user guide is available at http://bayesweb.wadsworth.org/gibbs/bernoulli.html and at http://www.bioinfo.rpi.edu/applications/bayesian/gibbs/manual/bernoulli.html. Solaris, Solaris.x86 and Linux versions of the sampler are available as stand-alone programs for academic and not-for-profit users. Commercial licenses are also available. The Gibbs Recursive Sampler is distributed in accordance with the ISCB level 0 guidelines and a requirement for citation of use in scientific publications.

  1. Mutations and Binding Sites of Human Transcription Factors

    PubMed Central

    Kamanu, Frederick Kinyua; Medvedeva, Yulia A.; Schaefer, Ulf; Jankovic, Boris R.; Archer, John A. C.; Bajic, Vladimir B.

    2012-01-01

    Mutations in any genome may lead to phenotype characteristics that determine ability of an individual to cope with adaptation to environmental challenges. In studies of human biology, among the most interesting ones are phenotype characteristics that determine responses to drug treatments, response to infections, or predisposition to specific inherited diseases. Most of the research in this field has been focused on the studies of mutation effects on the final gene products, peptides, and their alterations. Considerably less attention was given to the mutations that may affect regulatory mechanism(s) of gene expression, although these may also affect the phenotype characteristics. In this study we make a pilot analysis of mutations observed in the regulatory regions of 24,667 human RefSeq genes. Our study reveals that out of eight studied mutation types, “insertions” are the only one that in a statistically significant manner alters predicted transcription factor binding sites (TFBSs). We also find that 25 families of TFBSs have been altered by mutations in a statistically significant manner in the promoter regions we considered. Moreover, we find that the related transcription factors are, for example, prominent in processes related to intracellular signaling; cell fate; morphogenesis of organs and epithelium; development of urogenital system, epithelium, and tube; neuron fate commitment. Our study highlights the significance of studying mutations within the genes regulatory regions and opens way for further detailed investigations on this topic, particularly on the downstream affected pathways. PMID:22670148

  2. Transcription factor induction of human oligodendrocyte progenitor fate and differentiation

    PubMed Central

    Wang, Jing; Pol, Suyog U.; Haberman, Alexa K.; Wang, Chunming; O’Bara, Melanie A.; Sim, Fraser J.

    2014-01-01

    Human oligodendrocyte progenitor cell (OPC) specification and differentiation occurs slowly and limits the potential for cell-based treatment of demyelinating disease. In this study, using FACS-based isolation and microarray analysis, we identified a set of transcription factors expressed by human primary CD140a+O4+ OPCs relative to CD133+CD140a− neural stem/progenitor cells (NPCs). Among these, lentiviral overexpression of transcription factors ASCL1, SOX10, and NKX2.2 in NPCs was sufficient to induce Sox10 enhancer activity, OPC mRNA, and protein expression consistent with OPC fate; however, unlike ASCL1 and NKX2.2, only the transcriptome of SOX10-infected NPCs was induced to a human OPC gene expression signature. Furthermore, only SOX10 promoted oligodendrocyte commitment, and did so at quantitatively equivalent levels to native OPCs. In xenografts of shiverer/rag2 animals, SOX10 increased the rate of mature oligodendrocyte differentiation and axon ensheathment. Thus, SOX10 appears to be the principle and rate-limiting regulator of myelinogenic fate from human NPCs. PMID:24982138

  3. Fission Yeast CSL Proteins Function as Transcription Factors

    PubMed Central

    Oravcová, Martina; Teska, Mikoláš; Půta, František; Folk, Petr; Převorovský, Martin

    2013-01-01

    Background Transcription factors of the CSL (CBF1/RBP-Jk/Suppressor of Hairless/LAG-1) family are key regulators of metazoan development and function as the effector components of the Notch receptor signalling pathway implicated in various cell fate decisions. CSL proteins recognize specifically the GTG[G/A]AA sequence motif and several mutants compromised in their ability to bind DNA have been reported. In our previous studies we have identified a number of novel putative CSL family members in fungi, organisms lacking the Notch pathway. It is not clear whether these represent genuine CSL family members. Methodology/Principal Findings Using a combination of in vitro and in vivo approaches we characterized the DNA binding properties of Cbf11 and Cbf12, the antagonistic CSL paralogs from the fission yeast, important for the proper coordination of cell cycle events and the regulation of cell adhesion. We have shown that a mutation of a conserved arginine residue abolishes DNA binding in both CSL paralogs, similar to the situation in mouse. We have also demonstrated the ability of Cbf11 and Cbf12 to activate gene expression in an autologous fission yeast reporter system. Conclusions/Significance Our results indicate that the fission yeast CSL proteins are indeed genuine family members capable of functioning as transcription factors, and provide support for the ancient evolutionary origin of this important protein family. PMID:23555033

  4. Transcription Factor GFI1B in Health and Disease

    PubMed Central

    Anguita, Eduardo; Candel, Francisco J.; Chaparro, Alberto; Roldán-Etcheverry, Juan J.

    2017-01-01

    Many human diseases arise through dysregulation of genes that control key cell fate pathways. Transcription factors (TFs) are major cell fate regulators frequently involved in cancer, particularly in leukemia. The GFI1B gene, coding a TF, was identified by sequence homology with the oncogene growth factor independence 1 (GFI1). Both GFI1 and GFI1B have six C-terminal C2H2 zinc fingers and an N-terminal SNAG (SNAIL/GFI1) transcriptional repression domain. Gfi1 is essential for neutrophil differentiation in mice. In humans, GFI1 mutations are associated with severe congenital neutropenia. Gfi1 is also required for B and T lymphopoiesis. However, knockout mice have demonstrated that Gfi1b is required for development of both erythroid and megakaryocytic lineages. Consistent with this, human mutations of GFI1B produce bleeding disorders with low platelet count and abnormal function. Loss of Gfi1b in adult mice increases the absolute numbers of hematopoietic stem cells (HSCs) that are less quiescent than wild-type HSCs. In keeping with this key role in cell fate, GFI1B is emerging as a gene involved in cancer, which also includes solid tumors. In fact, abnormal activation of GFI1B and GFI1 has been related to human medulloblastoma and is also likely to be relevant in blood malignancies. Several pieces of evidence supporting this statement will be detailed in this mini review.

  5. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease.

    PubMed

    Naranjo, José R; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C; Arrabal, María D; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-02-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD.

  6. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease

    PubMed Central

    Naranjo, José R.; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M.; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C.; Arrabal, María D.; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-01-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  7. Imputation for transcription factor binding predictions based on deep learning.

    PubMed

    Qin, Qian; Feng, Jianxing

    2017-02-01

    Understanding the cell-specific binding patterns of transcription factors (TFs) is fundamental to studying gene regulatory networks in biological systems, for which ChIP-seq not only provides valuable data but is also considered as the gold standard. Despite tremendous efforts from the scientific community to conduct TF ChIP-seq experiments, the available data represent only a limited percentage of ChIP-seq experiments, considering all possible combinations of TFs and cell lines. In this study, we demonstrate a method for accurately predicting cell-specific TF binding for TF-cell line combinations based on only a small fraction (4%) of the combinations using available ChIP-seq data. The proposed model, termed TFImpute, is based on a deep neural network with a multi-task learning setting to borrow information across transcription factors and cell lines. Compared with existing methods, TFImpute achieves comparable accuracy on TF-cell line combinations with ChIP-seq data; moreover, TFImpute achieves better accuracy on TF-cell line combinations without ChIP-seq data. This approach can predict cell line specific enhancer activities in K562 and HepG2 cell lines, as measured by massively parallel reporter assays, and predicts the impact of SNPs on TF binding.

  8. SP and KLF Transcription Factors in Digestive Physiology and Diseases.

    PubMed

    Kim, Chang-Kyung; He, Ping; Bialkowska, Agnieszka B; Yang, Vincent W

    2017-03-30

    Specificity proteins (SPs) and Krüppel-like factors (KLFs) belong to the family of transcription factors that contain conserved zinc finger domains involved in binding to target DNA sequences. Many of these proteins are expressed in different tissues and have distinct tissue-specific activities and functions. Studies demonstrate that SPs and KLFs regulate not only physiological processes such as growth, development, differentiation, proliferation, and embryogenesis, but pathogenesis of many diseases, including cancer and inflammatory disorders. Consistently, these proteins have been shown to regulate normal functions and pathobiology in the digestive system. We review recent findings on the tissue- and organ-specific functions of SPs and KLFs in the digestive system including the oral cavity, esophagus, stomach, small and large intestines, pancreas, and liver. We provide a list of agents under development to target these proteins.

  9. Compartmentalization of vertebrate optic neuroephithelium: external cues and transcription factors.

    PubMed

    Kim, Hyoung-Tai; Kim, Jin Woo

    2012-04-01

    The vertebrate eye is a laterally extended structure of the forebrain. It develops through a series of events, including specification and regionalization of the anterior neural plate, evagination of the optic vesicle (OV), and development of three distinct optic structures: the neural retina (NR), optic stalk (OS), and retinal pigment epithelium (RPE). Various external signals that act on the optic neuroepithelium in a spatial- and temporal-specific manner control the fates of OV subdomains by inducing localized expression of key transcription factors. Investigating the mechanisms underlying compartmentalization of these distinct optic neuroepithelium-derived tissues is therefore not only important from the standpoint of accounting for vertebrate eye morphogenesis, it is also helpful for understanding the fundamental basis of fate determination of other neuroectoderm- derived tissues. This review focuses on the molecular signatures of OV subdomains and the external factors that direct the development of tissues originating from the OV.

  10. Differential induction of HNF-3 transcription factors during neuronal differentiation.

    PubMed

    Jacob, A; Budhiraja, S; Reichel, R R

    1997-08-01

    We have investigated the regulation of transcription factors HNF-3alpha and HNF-3beta during the retinoic acid-mediated differentiation of mouse P19 cells. Retinoic acid treatment converts P19 stem cells into neurons and astrocytes and we have clearly shown that gene expression of both HNF-3alpha and HNF-3beta is activated during this process. HNF-3alpha transcription was detected 2 h after addition of retinoic acid and took place in the absence of de novo protein synthesis. This suggests that HNF-3alpha is a primary target for retinoic acid action. HNF-3alpha induction displays a biphasic profile and HNF-3alpha mRNA reaches maximal levels at 2 and 6 days postdifferentiation. Additional experiments strongly suggest that the second peak is due to HNF-3alpha induction in postmitotic neurons. P19 stem cells, on the other hand, do not contain any detectable HNF-3alpha mRNA. According to our studies, the retinoic acid-mediated induction of HNF-3alpha occurs at the level of transcriptional initiation and is conferred by distal promoter sequences. In comparison to HNF-3alpha, HNF-3beta induction is a subsequent event and detectable levels of HNF-3beta mRNA materialize approximately 1 day after addition of retinoic acid to P19 stem cells. Time course studies firmly demonstrate that HNF-3beta mRNA peaks at about 2 days postdifferentiation and then declines to virtually unreadable levels. This temporal pattern is consistent with HNF-3beta being a secondary target for retinoic acid. In analogy to HNF-3alpha, HNF-3beta activation also takes place at the level of transcriptional initiation. Recent studies implicate HNF-3alpha and HNF-3beta in early mammalian neurogenesis. The detection of HNF-3alpha/beta activation during P19 cell differentiation provides us with a convenient cell culture system to elucidate the induction mechanism and the precise role of both transcriptional regulators in the formation of neuronal cells.

  11. Zinc regulates a key transcriptional pathway for epileptogenesis via metal-regulatory transcription factor 1

    PubMed Central

    van Loo, Karen M. J.; Schaub, Christina; Pitsch, Julika; Kulbida, Rebecca; Opitz, Thoralf; Ekstein, Dana; Dalal, Adam; Urbach, Horst; Beck, Heinz; Yaari, Yoel; Schoch, Susanne; Becker, Albert J.

    2015-01-01

    Temporal lobe epilepsy (TLE) is the most common focal seizure disorder in adults. In many patients, transient brain insults, including status epilepticus (SE), are followed by a latent period of epileptogenesis, preceding the emergence of clinical seizures. In experimental animals, transcriptional upregulation of CaV3.2 T-type Ca2+-channels, resulting in an increased propensity for burst discharges of hippocampal neurons, is an important trigger for epileptogenesis. Here we provide evidence that the metal-regulatory transcription factor 1 (MTF1) mediates the increase of CaV3.2 mRNA and intrinsic excitability consequent to a rise in intracellular Zn2+ that is associated with SE. Adeno-associated viral (rAAV) transfer of MTF1 into murine hippocampi leads to increased CaV3.2 mRNA. Conversely, rAAV-mediated expression of a dominant-negative MTF1 abolishes SE-induced CaV3.2 mRNA upregulation and attenuates epileptogenesis. Finally, data from resected human hippocampi surgically treated for pharmacoresistant TLE support the Zn2+-MTF1-CaV3.2 cascade, thus providing new vistas for preventing and treating TLE. PMID:26498180

  12. Distal-less homeobox 5 inhibits adipogenic differentiation through the down-regulation of peroxisome proliferator-activated receptor γ expression.

    PubMed

    Lee, Hye-Lim; Woo, Kyung Mi; Ryoo, Hyun-Mo; Baek, Jeong-Hwa

    2013-01-01

    Distal-less homeobox 5 (Dlx5) is a positive regulator of osteoblast differentiation that contains a homeobox domain. Because there are possible reciprocal relationships between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells (MSCs), we examined the regulatory role of Dlx5 in adipogenic differentiation in this study. Adipogenic stimuli suppressed the expression levels of Dlx5 mRNA in mouse bone marrow stromal cells. Over-expression of Dlx5 inhibited adipogenic differentiation in human bone marrow MSCs and 3T3-L1 preadipocytic cells whereas knockdown of Dlx5 enhanced adipogenic differentiation in 3T3-L1 cells. Over-expression of Dlx5 suppressed the expression of adipogenic marker genes, including CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ). Dlx5-mediated suppression of adipogenic differentiation was overcome by over-expression of PPARγ but not by that of cAMP response element binding protein (CREB) or C/EBPα. Dlx5 decreased the transcriptional activity of CREB and C/EBPα in a dose-dependent manner. Dlx5 directly bound to CREB and C/EBPα and prevented them from binding to and subsequently transactivating the PPARγ promoter. These results suggest that Dlx5 plays an important regulatory role in fate determination of bone marrow MSCs toward the osteoblast lineage through the inhibition of adipocyte differentiation as well as the direct stimulation of osteoblast differentiation.

  13. Effects of substrate stiffness on adipogenic and osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Zhao, Wen; Li, Xiaowei; Liu, Xiaoyan; Zhang, Ning; Wen, Xuejun

    2014-07-01

    Substrate mechanical properties, in addition to biochemical signals, have been shown to modulate cell phenotype. In this study, we inspected the effects of substrate stiffness on human mesenchymal stem cells (hMSCs) derived from adult human bone marrow differentiation into adipogenic and osteogenic cells. A chemically modified extracellular matrix derived and highly biocompatible hydrogel, based on thiol functionalized hyaluronic acid (HA-SH) and thiol functionalized recombinant human gelatin (Gtn-SH), which can be crosslinked by poly (ethylene glycol) tetra-acrylate (PEGTA), was used as a model system. The stiffness of the hydrogel was controlled by adjusting the crosslinking density. Human bone marrow MSCs were cultured on the hydrogels with different stiffness under adipogenic and osteogenic conditions. Oil Red O staining and F-actin staining were applied to assess the change of cell morphologies under adipogenic and osteogenic differentiation, respectively. Gene expression of cells was determined with reverse transcription polymerase chain reaction (RT-PCR) as a function of hydrogel stiffness. Results support the hypothesis that adipogenic and osteogenic differentiation of hMSCs are inclined to occur on substrate with stiffness similar to their in vivo microenvironments.

  14. Triphenyl phosphate enhances adipogenic differentiation, glucose uptake and lipolysis via endocrine and noradrenergic mechanisms.

    PubMed

    Cano-Sancho, German; Smith, Anna; La Merrill, Michele A

    2017-04-01

    The use of triphenyl phosphate (TPhP) as a flame retardant or plasticizer has increased during the last decade, resulting in widespread human exposure without commensurate toxicity assessment. The main objectives of this study were to assess the in vitro effect of TPhP and its metabolite diphenyl phosphate (DPhP) on the adipogenic differentiation of 3T3-L1 cells, as well as glucose uptake and lipolysis in differentiated 3T3-L1 adipocytes. TPhP increased pre-adipocyte proliferation and subsequent adipogenic differentiation of 3T3-L1 cells, coinciding with increased transcription in the CEBP and PPARG pathway. Treatment of mature adipocytes with TPhP increased the basal- and insulin stimulated- uptake of the glucose analog 2-[N (-7-nitrobenz-2-oxa1, 3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG). This effect was ablated by inhibition of PI3K, a member of the insulin signaling pathway. DPhP had no significant effect on cell proliferation and, compared to TPhP, a weaker effect on adipogenic differentiation and on 2-NBDG uptake. Both TPhP and DPhT significantly enhanced the isoproterenol-induced lipolysis, most likely by increasing the expression of lipolytic genes during and after differentiation. This study suggests that TPhP increases adipogenic differentiation, glucose uptake, and lipolysis in 3T3-L1 cells through endocrine and noradrenergic mechanisms.

  15. Identification of Post-Transcriptional Modulators of Breast Cancer Transcription Factor Activity Using MINDy

    PubMed Central

    Campbell, Thomas M.; Castro, Mauro A. A.; Ponder, Bruce A. J.

    2016-01-01

    We have recently identified transcription factors (TFs) that are key drivers of breast cancer risk. To better understand the pathways or sub-networks in which these TFs mediate their function we sought to identify upstream modulators of their activity. We applied the MINDy (Modulator Inference by Network Dynamics) algorithm to four TFs (ESR1, FOXA1, GATA3 and SPDEF) that are key drivers of estrogen receptor-positive (ER+) breast cancer risk, as well as cancer progression. Our computational analysis identified over 500 potential modulators. We assayed 189 of these and identified 55 genes with functional characteristics that were consistent with a role as TF modulators. In the future, the identified modulators may be tested as potential therapeutic targets, able to alter the activity of TFs that are critical in the development of breast cancer. PMID:27997592

  16. Expression of microphthalmia-associated transcription factor (MITF), which is critical for melanoma progression, is inhibited by both transcription factor GLI2 and transforming growth factor-β.

    PubMed

    Pierrat, Marie-Jeanne; Marsaud, Véronique; Mauviel, Alain; Javelaud, Delphine

    2012-05-25

    The melanocyte-specific transcription factor M-MITF is involved in numerous aspects of melanoblast lineage biology including pigmentation, survival, and migration. It plays complex roles at all stages of melanoma progression and metastasis. We established previously that GLI2, a Kruppel-like transcription factor that acts downstream of Hedgehog signaling, is a direct transcriptional target of the TGF-β/SMAD pathway and contributes to melanoma progression, exerting antagonistic activities against M-MITF to control melanoma cell invasiveness. Herein, we dissected the molecular mechanisms underlying both TGF-β and GLI2-driven M-MITF gene repression. Using transient cell transfection experiments with M-MITF promoter constructs, chromatin immunoprecipitation, site-directed mutagenesis, and electrophoretic mobility shift assays, we identified a GLI2 binding site within the -334/-296 region of the M-MITF promoter, critical for GLI2-driven transcriptional repression. This region is, however, not needed for inhibition of M-MITF promoter activity by TGF-β. We determined that TGF-β rapidly repressed protein kinase A activity, thus reducing both phospho-cAMP-response element-binding protein (CREB) levels and CREB-dependent transcription of the M-MITF promoter. Increased GLI2 binding to its cognate cis-element, associated with reduced CREB-dependent transcription, allowed maximal inhibition of the M-MITF promoter via two distinct mechanisms.

  17. Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism.

    PubMed

    Garapati, Prashanth; Feil, Regina; Lunn, John Edward; Van Dijck, Patrick; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-09-01

    Plants respond to low carbon supply by massive reprogramming of the transcriptome and metabolome. We show here that the carbon starvation-induced NAC (for NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON) transcription factor Arabidopsis (Arabidopsis thaliana) Transcription Activation Factor1 (ATAF1) plays an important role in this physiological process. We identified TREHALASE1, the only trehalase-encoding gene in Arabidopsis, as a direct downstream target of ATAF1. Overexpression of ATAF1 activates TREHALASE1 expression and leads to reduced trehalose-6-phosphate levels and a sugar starvation metabolome. In accordance with changes in expression of starch biosynthesis- and breakdown-related genes, starch levels are generally reduced in ATAF1 overexpressors but elevated in ataf1 knockout plants. At the global transcriptome level, genes affected by ATAF1 are broadly associated with energy and carbon starvation responses. Furthermore, transcriptional responses triggered by ATAF1 largely overlap with expression patterns observed in plants starved for carbon or energy supply. Collectively, our data highlight the existence of a positively acting feedforward loop between ATAF1 expression, which is induced by carbon starvation, and the depletion of cellular carbon/energy pools that is triggered by the transcriptional regulation of downstream gene regulatory networks by ATAF1.

  18. The transcription factor NF-E2-related Factor 2 (Nrf2): a protooncogene?

    PubMed Central

    Shelton, Phillip; Jaiswal, Anil K.

    2013-01-01

    The transcription factor Nrf2 is responsible for regulating a battery of antioxidant and cellular protective genes, primarily in response to oxidative stress. A member of the cap 'n' collar family of transcription factors, Nrf2 activation is tightly controlled by a series of signaling events. These events can be separated into the basal state, a preinduction response, gene induction, and finally a postinduction response, culminating in the restoration of redox homeostasis. However, despite the immensely intricate level of control the cellular environment imposes on Nrf2 activity, there are many opportunities for perturbations to arise in the signaling events that favor carcinogenesis and, therefore, implicate Nrf2 as both a tumor suppressor and a protooncogene. Herein, we highlight the ways in which Nrf2 is regulated, and discuss some of the Nrf2-inducible antioxidant (NQO1, NQO2, HO-1, GCLC), antiapoptotic (Bcl-2), metabolic (G6PD, TKT, PPARγ), and drug efflux transporter (ABCG2, MRP3, MRP4) genes. In addition, we focus on how Nrf2 functions as a tumor suppressor under normal conditions and how its ability to detoxify the cellular environment makes it an attractive target for other oncogenes either via stabilization or degradation of the transcription factor. Finally, we discuss some of the ways in which Nrf2 is being considered as a therapeutic target for cancer treatment.—Shelton, P., Jaiswal, A. K. The transcription factor NF-E2-related factor 2 (Nrf2): a protooncogene? PMID:23109674

  19. WRKY Transcription Factors: Molecular Regulation and Stress Responses in Plants

    PubMed Central

    Phukan, Ujjal J.; Jeena, Gajendra S.; Shukla, Rakesh K.

    2016-01-01

    Plants in their natural habitat have to face multiple stresses simultaneously. Evolutionary adaptation of developmental, physiological, and biochemical parameters give advantage over a single window of stress but not multiple. On the other hand transcription factors like WRKY can regulate diverse responses through a complicated network of genes. So molecular orchestration of WRKYs in plant may provide the most anticipated outcome of simultaneous multiple responses. Activation or repression through W-box and W-box like sequences is regulated at transcriptional, translational, and domain level. Because of the tight regulation involved in specific recognition and binding of WRKYs to downstream promoters, they have become promising candidate for crop improvement. Epigenetic, retrograde and proteasome mediated regulation enable WRKYs to attain the dynamic cellular homeostatic reprograming. Overexpression of several WRKYs face the paradox of having several beneficial affects but with some unwanted traits. These overexpression-associated undesirable phenotypes need to be identified and removed for proper growth, development and yeild. Taken together, we have highlighted the diverse regulation and multiple stress response of WRKYs in plants along with the future prospects in this field of research. PMID:27375634

  20. The effects of cytosine methylation on general transcription factors

    NASA Astrophysics Data System (ADS)

    Jin, Jianshi; Lian, Tengfei; Gu, Chan; Yu, Kai; Gao, Yi Qin; Su, Xiao-Dong

    2016-07-01

    DNA methylation on CpG sites is the most common epigenetic modification. Recently, methylation in a non-CpG context was found to occur widely on genomic DNA. Moreover, methylation of non-CpG sites is a highly controlled process, and its level may vary during cellular development. To study non-CpG methylation effects on DNA/protein interactions, we have chosen three human transcription factors (TFs): glucocorticoid receptor (GR), brain and muscle ARNT-like 1 (BMAL1) - circadian locomotor output cycles kaput (CLOCK) and estrogen receptor (ER) with methylated or unmethylated DNA binding sequences, using single-molecule and isothermal titration calorimetry assays. The results demonstrated that these TFs interact with methylated DNA with different effects compared with their cognate DNA sequences. The effects of non-CpG methylation on transcriptional regulation were validated by cell-based luciferase assay at protein level. The mechanisms of non-CpG methylation influencing DNA-protein interactions were investigated by crystallographic analyses and molecular dynamics simulation. With BisChIP-seq assays in HEK-293T cells, we found that GR can recognize highly methylated sites within chromatin in cells. Therefore, we conclude that non-CpG methylation of DNA can provide a mechanism for regulating gene expression through directly affecting the binding of TFs.

  1. The MYB107 Transcription Factor Positively Regulates Suberin Biosynthesis

    SciTech Connect

    Gou, Mingyue; Hou, Guichuan; Yang, Huijun; Zhang, Xuebin; Cai, Yuanheng; Kai, Guoyin; Liu, Chang-Jun

    2016-12-13

    Suberin, a lipophilic polymer deposited in the outer integument of the Arabidopsis (Arabidopsis thaliana) seed coat, represents an essential sealing component controlling water and solute movement and protecting seed from pathogenic infection. Although many genes responsible for suberin synthesis are identified, the regulatory components controlling its biosynthesis have not been definitively determined. Here, we show that the Arabidopsis MYB107 transcription factor acts as a positive regulator controlling suberin biosynthetic gene expression in the seed coat. MYB107 coexpresses with suberin biosynthetic genes in a temporal manner during seed development. Disrupting MYB107 particularly suppresses the expression of genes involved in suberin but not cutin biosynthesis, lowers seed coat suberin accumulation, alters suberin lamellar structure, and consequently renders higher seed coat permeability and susceptibility to abiotic stresses. Furthermore, MYB107 directly binds to the promoters of suberin biosynthetic genes, verifying its primary role in regulating their expression. Identifying MYB107 as a positive regulator for seed coat suberin synthesis offers a basis for discovering the potential transcriptional network behind one of the most abundant lipid-based polymers in nature.

  2. The roles of mitochondrial transcription termination factors (MTERFs) in plants.

    PubMed

    Quesada, Víctor

    2016-07-01

    Stress such as salinity, cold, heat or drought affect plant growth and development, and frequently result in diminished productivity. Unlike animals, plants are sedentary organisms that must withstand and cope with environmental stresses. During evolution, plants have developed strategies to successfully adapt to or tolerate such stresses, which might have led to the expansion and functional diversification of gene families. Some new genes may have acquired functions that could differ from those of their animal homologues, e.g. in response to abiotic stress. The mitochondrial transcription termination factor (MTERF) family could be a good example of this. Originally identified and characterized in metazoans, MTERFs regulate transcription, translation and DNA replication in vertebrate mitochondria. Plant genomes harbor a considerably larger number of MTERFs than animals. Nonetheless, only eight plant MTERFs have been characterized, which encode chloroplast or mitochondrial proteins. Mutations in MTERFs alter the expression of organelle genes and impair chloroplast or mitochondria development. This information is transmitted to the nucleus, probably through retrograde signaling, because mterf plants often exhibit changes in nuclear gene expression. This study summarizes the recent findings, mainly from the analysis of mterf mutants, which support an emerging role for plant MTERFs in response to abiotic stress.

  3. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans

    PubMed Central

    Jung, Kwang-Woo; Yang, Dong-Hoon; Maeng, Shinae; Lee, Kyung-Tae; So, Yee-Seul; Hong, Joohyeon; Choi, Jaeyoung; Byun, Hyo-Jeong; Kim, Hyelim; Bang, Soohyun; Song, Min-Hee; Lee, Jang-Won; Kim, Min Su; Kim, Seo-Young; Ji, Je-Hyun; Park, Goun; Kwon, Hyojeong; Cha, Suyeon; Meyers, Gena Lee; Wang, Li Li; Jang, Jooyoung; Janbon, Guilhem; Adedoyin, Gloria; Kim, Taeyup; Averette, Anna K.; Heitman, Joseph; Cheong, Eunji; Lee, Yong-Hwan; Lee, Yin-Won; Bahn, Yong-Sun

    2015-01-01

    Cryptococcus neoformans causes life-threatening meningoencephalitis in humans, but its overall biological and pathogenic regulatory circuits remain elusive, particularly due to the presence of an evolutionarily divergent set of transcription factors (TFs). Here, we report the construction of a high-quality library of 322 signature-tagged gene-deletion strains for 155 putative TF genes previously predicted using the DNA-binding domain TF database, and examine their in vitro and in vivo phenotypic traits under 32 distinct growth conditions. At least one phenotypic trait is exhibited by 145 out of 155 TF mutants (93%) and ∼85% of them (132/155) are functionally characterized for the first time in this study. The genotypic and phenotypic data for each TF are available in the C. neoformans TF phenome database (http://tf.cryptococcus.org). In conclusion, our phenome-based functional analysis of the C. neoformans TF mutant library provides key insights into transcriptional networks of basidiomycetous fungi and human fungal pathogens. PMID:25849373

  4. Xenopus transcription factor IIIA-dependent DNA renaturation.

    PubMed

    Fiser-Littell, R M; Hanas, J S

    1988-11-15

    Kinetic and titration analyses are used to elucidate the mechanism by which Xenopus transcription factor IIIA (TFIIIA), a protein required for 5 S RNA synthesis by RNA polymerase III, promotes DNA renaturation. TFIIIA promotes 50% renaturation of complementary strands (303 bases) in 45 s. Analyses of the renaturation kinetics indicate the rate-limiting step in this TFIIIA-dependent reaction is first order. TFIIIA-dependent DNA renaturation is a stoichiometric rather than a catalytic process. The renaturation rates for specific and nonspecific DNA are very similar, indicating lack of sequence specificity in this TFIIIA-dependent process. In the nanomolar concentration range of protein and DNA, renaturation occurs at a ratio of about one TFIIIA molecule/single strand (303 bases). Elevated reaction temperatures strongly stimulate TFIIIA-dependent DNA renaturation; at 45 degrees C, renaturation of the 303-base pair fragment nears completion in about 5 s. The ability of TFIIIA to rapidly promote DNA renaturation is unique when compared with Escherichia coli recA protein, single-stranded DNA binding protein, or bacteriophage T4 gene 32 protein. This mechanism by which TFIIIA promotes DNA renaturation is compatible with features of 5 S RNA gene transcription.

  5. Expression of Drosophila forkhead transcription factors during kidney development.

    PubMed

    Baek, Jeong-In; Choi, Soo Young; Chacon-Heszele, Maria F; Zuo, Xiaofeng; Lipschutz, Joshua H

    2014-03-28

    The Drosophila forkhead (Dfkh) family of transcription factors has over 40 family members. One Dfkh family member, BF2 (aka FoxD1), has been shown, by targeted disruption, to be essential for kidney development. In order to determine if other Dfkh family members were involved in kidney development and to search for new members of this family, reverse transcriptase polymerase chain reaction (RT-PCR) was performed using degenerate primers of the consensus sequence of the DNA binding domain of this family and developing rat kidney RNA. The RT-PCR product was used to probe RNA from a developing rat kidney (neonatal), from a 20-day old kidney, and from an adult kidney. The RT-PCR product hybridized only to a developing kidney RNA transcript of ∼2.3 kb (the size of BF2). A lambda gt10 mouse neonatal kidney library was then screened, using the above-described RT-PCR product as a probe. Three lambda phage clones were isolated that strongly hybridized to the RT-PCR probe. Sequencing of the RT-PCR product and the lambda phage clones isolated from the developing kidney library revealed Dfkh BF2. In summary, only Dfkh family member BF2, which has already been shown to be essential for nephrogenesis, was identified in our screen and no other candidate Dfkh family members were identified.

  6. Tackling Cancer Stem Cells via Inhibition of EMT Transcription Factors

    PubMed Central

    Mladinich, Megan; Ruan, Diane

    2016-01-01

    Cancer stem cell (CSC) has become recognized for its role in both tumorigenesis and poor patient prognosis in recent years. Traditional therapeutics are unable to effectively eliminate this group of cells from the bulk population of cancer cells, allowing CSCs to persist posttreatment and thus propagate into secondary tumors. The therapeutic potential of eliminating CSCs, to decrease tumor relapse, has created a demand for identifying mechanisms that directly target and eliminate cancer stem cells. Molecular profiling has shown that cancer cells and tumors that exhibit the CSC phenotype also express genes associated with the epithelial-to-mesenchymal transition (EMT) feature. Ample evidence has demonstrated that upregulation of master transcription factors (TFs) accounting for the EMT process such as Snail/Slug and Twist can reprogram cancer cells from differentiated to stem-like status. Despite being appealing therapeutic targets for tackling CSCs, pharmacological approaches that directly target EMT-TFs remain impossible. In this review, we will summarize recent advances in the regulation of Snail/Slug and Twist at transcriptional, translational, and posttranslational levels and discuss the clinical implication and application for EMT blockade as a promising strategy for CSC targeting. PMID:27840647

  7. The MYB107 Transcription Factor Positively Regulates Suberin Biosynthesis

    DOE PAGES

    Gou, Mingyue; Hou, Guichuan; Yang, Huijun; ...

    2016-12-13

    Suberin, a lipophilic polymer deposited in the outer integument of the Arabidopsis (Arabidopsis thaliana) seed coat, represents an essential sealing component controlling water and solute movement and protecting seed from pathogenic infection. Although many genes responsible for suberin synthesis are identified, the regulatory components controlling its biosynthesis have not been definitively determined. Here, we show that the Arabidopsis MYB107 transcription factor acts as a positive regulator controlling suberin biosynthetic gene expression in the seed coat. MYB107 coexpresses with suberin biosynthetic genes in a temporal manner during seed development. Disrupting MYB107 particularly suppresses the expression of genes involved in suberin butmore » not cutin biosynthesis, lowers seed coat suberin accumulation, alters suberin lamellar structure, and consequently renders higher seed coat permeability and susceptibility to abiotic stresses. Furthermore, MYB107 directly binds to the promoters of suberin biosynthetic genes, verifying its primary role in regulating their expression. Identifying MYB107 as a positive regulator for seed coat suberin synthesis offers a basis for discovering the potential transcriptional network behind one of the most abundant lipid-based polymers in nature.« less

  8. RFX transcription factors are essential for hearing in mice

    PubMed Central

    Elkon, Ran; Milon, Beatrice; Morrison, Laura; Shah, Manan; Vijayakumar, Sarath; Racherla, Manoj; Leitch, Carmen C.; Silipino, Lorna; Hadi, Shadan; Weiss-Gayet, Michèle; Barras, Emmanuèle; Schmid, Christoph D.; Ait-Lounis, Aouatef; Barnes, Ashley; Song, Yang; Eisenman, David J.; Eliyahu, Efrat; Frolenkov, Gregory I.; Strome, Scott E.; Durand, Bénédicte; Zaghloul, Norann A.; Jones, Sherri M.; Reith, Walter; Hertzano, Ronna

    2015-01-01

    Sensorineural hearing loss is a common and currently irreversible disorder, because mammalian hair cells (HCs) do not regenerate and current stem cell and gene delivery protocols result only in immature HC-like cells. Importantly, although the transcriptional regulators of embryonic HC development have been described, little is known about the postnatal regulators of maturating HCs. Here we apply a cell type-specific functional genomic analysis to the transcriptomes of auditory and vestibular sensory epithelia from early postnatal mice. We identify RFX transcription factors as essential and evolutionarily conserved regulators of the HC-specific transcriptomes, and detect Rfx1,2,3,5 and 7 in the developing HCs. To understand the role of RFX in hearing, we generate Rfx1/3 conditional knockout mice. We show that these mice are deaf secondary to rapid loss of initially well-formed outer HCs. These data identify an essential role for RFX in hearing and survival of the terminally differentiating outer HCs. PMID:26469318

  9. Genistein induces adipogenic differentiation in human bone marrow mesenchymal stem cells and suppresses their osteogenic potential by upregulating PPARγ

    PubMed Central

    ZHANG, LI-YAN; XUE, HAO-GANG; CHEN, JI-YING; CHAI, WEI; NI, MING

    2016-01-01

    Genistein is a soy isoflavone that exists in the form of an aglycone. It is the primary active component in soy isoflavone and has a number of biological activities (anti-inflammatory and anti-oxidative). However, the specific effect of genistein on human bone marrow mesenchymal stem cells (BMSCs) remains unclear. In the present study, the mechanism underlying the effect of genistein on the suppression of BMSC adipogenic differentiation and the enhancement of osteogenic potential was investigated using an MTT assay. It was observed that genistein significantly increased BMSC cell proliferation in a time- and dose-dependent manner (P<0.01). In addition, reverse transcription-quantitative polymerase chain reaction revealed that genistein significantly inhibited the expression of runt-related transcription factor 2 (Runx2), type I collagen (Col I) and osteocalcin (OC; P<0.01). Furthermore, 20 µm genistein significantly inhibited the activity of alkaline phosphatase (ALP) and increased the activity of triglycerides (TGs) increased (P<0.01) as determined by an enzyme-linked immunosorbent assay. Finally, western blotting revealed that BMSC pretreatment with 20 µm genistein significantly increased peroxisome proliferator-activated receptor γ (PPARγ) protein expression (P<0.01). This suggests that the downregulation of PPARγ may significantly reduce the effect of genistein on cell proliferation, suppress the expression of Runx2, Col I and OC mRNA, and reduce ALP and promote TG activity in BMSCs. Thus, the results of the present study conclude that genistein induces adipogenic differentiation in human BMSCs and suppresses their osteogenic potential by upregulating the expression of PPARγ. In conclusion, genistein may be a promising candidate drug for treatment against osteogenesis. PMID:27168816

  10. Long non-coding RNA ADNCR suppresses adipogenic differentiation by targeting miR-204

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adiposeness is a complex and precisely orchestrated process mediated by a network of adipogenic regulatory factors. Several studies have highlighted the relevance of lncRNAs in adipocyte differentiation, but the precise molecular mechanism has largely remained elusive. In the present study, we perfo...

  11. Water deficit-induced changes in transcription factor expression in maize seedlings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants tolerate water deficits by regulating gene networks controlling cellular and physiological traits to modify growth and development. Transcription factor (TFs) directed regulation of transcription within these gene networks is key to eliciting appropriate responses. In this study, reverse tran...

  12. Calcineurin regulates phosphorylation status of transcription factor osterix.

    PubMed

    Okamura, Hirohiko; Amorim, Bruna Rabelo; Wang, Jie; Yoshida, Kaya; Haneji, Tatsuji

    2009-02-06

    Osterix is an osteoblast-specific transcriptional factor that is essential for osteoblast differentiation and bone formation. Calcineurin regulates bone formation through modulating osteoblast differentiation. However, post-translational modification of osterix such as phosphorylation and interactions between osterix and calcineurin remains unclear. In the present study, we demonstrated that calcineurin interacted with osterix determined by immunoprecipitation assay and Western analysis. Immunocytochemical study also revealed that osterix and calcineurin were co-localized in nucleus. Deletion of calcineurin binding motif on osterix molecule disrupted osterix-calcineurin interaction. Phosphorylation status of osterix was augmented by treatment with phosphatase inhibitors, FK506 and calyculin A. In contrast, treatment of recombinant calcineurin reduced phosphorylation status of osterix. Our present study suggests that calcineurin has an important role in the function of osterix through its modification of phosphorylation.

  13. Activating transcription factor 3 regulates immune and metabolic homeostasis.

    PubMed

    Rynes, Jan; Donohoe, Colin D; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek; Uhlirova, Mirka

    2012-10-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins.

  14. Isolation and mass spectrometry of transcription factor complexes.

    PubMed

    Sebastiaan Winkler, G; Lacomis, Lynne; Philip, John; Erdjument-Bromage, Hediye; Svejstrup, Jesper Q; Tempst, Paul

    2002-03-01

    Protocols are described that enable the isolation of novel proteins associated with a known protein and the subsequent identification of these proteins by mass spectrometry. We review the basics of nanosample handling and of two complementary approaches to mass analysis, and provide protocols for the entire process. The protein isolation procedure is rapid and based on two high-affinity chromatography steps. The method does not require previous knowledge of complex composition or activity and permits subsequent biochemical characterization of the isolated factor. As an example, we provide the procedures used to isolate and analyze yeast Elongator, a histone acetyltransferase complex important for transcript elongation, which led to the identification of three novel subunits.

  15. Transcription factor-mediated reprogramming: epigenetics and therapeutic potential.

    PubMed

    Firas, Jaber; Liu, Xiaodong; Lim, Sue Mei; Polo, Jose M

    2015-03-01

    Cellular reprogramming refers to the conversion of one cell type into another by altering its epigenetic marks. This can be achieved by three different methods: somatic cell nuclear transfer, cell fusion and transcription factor (TF)-mediated reprogramming. TF-mediated reprogramming can occur through several means, either reverting backwards to a pluripotent state before redifferentiating to a new cell type (otherwise known as induced pluripotency), by transdifferentiating directly into a new cell type (bypassing the intermediate pluripotent stage), or, by using the induced pluripotency pathway without reaching the pluripotent state. The possibility of reprogramming any cell type of interest not only sheds new insights on cellular plasticity, but also provides a novel use of this technology across several platforms, most notably in cellular replacement therapies, disease modelling and drug screening. This review will focus on the different ways of implementing TF-mediated reprogramming, their associated epigenetic changes and its therapeutic potential.

  16. Transcription factors and target genes of pre-TCR signaling.

    PubMed

    López-Rodríguez, Cristina; Aramburu, Jose; Berga-Bolaños, Rosa

    2015-06-01

    Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.

  17. Dynamic regulation of transcription factors by nucleosome remodeling.

    PubMed

    Li, Ming; Hada, Arjan; Sen, Payel; Olufemi, Lola; Hall, Michael A; Smith, Benjamin Y; Forth, Scott; McKnight, Jeffrey N; Patel, Ashok; Bowman, Gregory D; Bartholomew, Blaine; Wang, Michelle D

    2015-06-05

    The chromatin landscape and promoter architecture are dominated by the interplay of nucleosome and transcription factor (TF) binding to crucial DNA sequence elements. However, it remains unclear whether nucleosomes mobilized by chromatin remodelers can influence TFs that are already present on the DNA template. In this study, we investigated the interplay between nucleosome remodeling, by either yeast ISW1a or SWI/SNF, and a bound TF. We found that a TF serves as a major barrier to ISW1a remodeling, and acts as a boundary for nucleosome repositioning. In contrast, SWI/SNF was able to slide a nucleosome past a TF, with concurrent eviction of the TF from the DNA, and the TF did not significantly impact the nucleosome positioning. Our results provide direct evidence for a novel mechanism for both nucleosome positioning regulation by bound TFs and TF regulation via dynamic repositioning of nucleosomes.

  18. Tunable signal processing through modular control of transcription factor translocation.

    PubMed

    Hao, Nan; Budnik, Bogdan A; Gunawardena, Jeremy; O'Shea, Erin K

    2013-01-25

    Signaling pathways can induce different dynamics of transcription factor (TF) activation. We explored how TFs process signaling inputs to generate diverse dynamic responses. The budding yeast general stress-responsive TF Msn2 acted as a tunable signal processor that could track, filter, or integrate signals in an input-dependent manner. This tunable signal processing appears to originate from dual regulation of both nuclear import and export by phosphorylation, as mutants with one form of regulation sustained only one signal-processing function. Versatile signal processing by Msn2 is crucial for generating distinct dynamic responses to different natural stresses. Our findings reveal how complex signal-processing functions are integrated into a single molecule and provide a guide for the design of TFs with "programmable" signal-processing functions.

  19. Evaluation of methods for modeling transcription-factor sequence specificity

    PubMed Central

    Weirauch, Matthew T.; Cote, Atina; Norel, Raquel; Annala, Matti; Zhao, Yue; Riley, Todd R.; Saez-Rodriguez, Julio; Cokelaer, Thomas; Vedenko, Anastasia; Talukder, Shaheynoor; Bussemaker, Harmen J.; Morris, Quaid D.; Bulyk, Martha L.; Stolovitzky, Gustavo

    2013-01-01

    Genomic analyses often involve scanning for potential transcription-factor (TF) binding sites using models of the sequence specificity of DNA binding proteins. Many approaches have been developed to model and learn a protein’s binding specificity, but these methods have not been systematically compared. Here we applied 26 such approaches to in vitro protein binding microarray data for 66 mouse TFs belonging to various families. For 9 TFs, we also scored the resulting motif models on in vivo data, and found that the best in vitro–derived motifs performed similarly to motifs derived from in vivo data. Our results indicate that simple models based on mononucleotide position weight matrices learned by the best methods perform similarly to more complex models for most TFs examined, but fall short in specific cases (<10%). In addition, the best-performing motifs typically have relatively low information content, consistent with widespread degeneracy in eukaryotic TF sequence preferences. PMID:23354101

  20. Object oriented Transcription Factors Database (ooTFD).

    PubMed

    Ghosh, D

    1999-01-01

    ooTFD is an object-oriented database for the representation of information pertaining to transcription factors, the proteins and biochemical entities which play a central role in the regulation of gene expression. Given the recent explosion of genome sequence information, and that a large percentage of proteins encoded by fully sequenced genomes fall into this category, information pertaining to this class of molecules may become an essential aspect of biology and of genomics in the 21st century. In the past year, there was a small increase in the size of this database, and a number of new tools to facilitate data access and analysis have been added at the MIRAGE (Molecular Informatics Resource for the Analysis of Gene Expression) web site. ooTFD and associated tools and resources can be accessed at http://www.ifti.org/

  1. Engineering an allosteric transcription factor to respond to new ligands.

    PubMed

    Taylor, Noah D; Garruss, Alexander S; Moretti, Rocco; Chan, Sum; Arbing, Mark A; Cascio, Duilio; Rogers, Jameson K; Isaacs, Farren J; Kosuri, Sriram; Baker, David; Fields, Stanley; Church, George M; Raman, Srivatsan

    2016-02-01

    Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol and sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits.

  2. Evolutionary Analyses of GRAS Transcription Factors in Angiosperms

    PubMed Central

    Cenci, Alberto; Rouard, Mathieu

    2017-01-01

    GRAS transcription factors (TFs) play critical roles in plant growth and development such as gibberellin and mycorrhizal signaling. Proteins belonging to this gene family contain a typical GRAS domain in the C-terminal sequence, whereas the N-terminal region is highly variable. Although, GRAS genes have been characterized in a number of plant species, their classification is still not completely resolved. Based on a panel of eight representative species of angiosperms, we identified 29 orthologous groups or orthogroups (OGs) for the GRAS gene family, suggesting that at least 29 ancestor genes were present in the angiosperm lineage before the “Amborella” evolutionary split. Interestingly, some taxonomic groups were missing members of one or more OGs. The gene number expansion usually observed in transcription factors was not observed in GRAS while the genome triplication ancestral to the eudicots (γ hexaploidization event) was detectable in a limited number of GRAS orthogroups. We also found conserved OG-specific motifs in the variable N-terminal region. Finally, we could regroup OGs in 17 subfamilies for which names were homogenized based on a literature review and described 5 new subfamilies (DLT, RAD1, RAM1, SCLA, and SCLB). This study establishes a consistent framework for the classification of GRAS members in angiosperm species, and thereby a tool to correctly establish the orthologous relationships of GRAS genes in most of the food crops in order to facilitate any subsequent functional analyses in the GRAS gene family. The multi-fasta file containing all the sequences used in our study could be used as database to perform diagnostic BLASTp to classify GRAS genes from other non-model species. PMID:28303145

  3. The transcription factor GATA-6 regulates pathological cardiac hypertrophy

    PubMed Central

    van Berlo, Jop H.; Elrod, John W.; van den Hoogenhof, Maarten M.G.; York, Allen J.; Aronow, Bruce J.; Duncan, Stephen A.; Molkentin, Jeffery D.

    2010-01-01

    Rationale The transcriptional code that programs maladaptive cardiac hypertrophy involves the zinc finger-containing DNA binding factor GATA-4. The highly related transcription factor GATA-6 is also expressed in the adult heart, although its role in controlling the hypertrophic program is unknown. Objective To determine the role of GATA-6 in cardiac hypertrophy and homeostasis. Methods and Results Here we performed a cardiomyocyte-specific conditional gene targeting approach for Gata6, as well as a transgenic approach to overexpress GATA-6 in the mouse heart. Deletion of Gata6-loxP with Nkx2.5-cre produced late embryonic lethality with heart defects, while deletion with β-myosin heavy chain-cre (βMHC-cre) produced viable adults with greater than 95% loss of GATA-6 protein in the heart. These later mice were subjected to pressure overload induced hypertrophy for 2 and 6 weeks, which showed a significant reduction in cardiac hypertrophy similar to that observed Gata4 heart-specific deleted mice. Gata6-deleted mice subjected to pressure overload also developed heart failure while control mice maintained proper cardiac function. Gata6-deleted mice also developed less cardiac hypertrophy following 2 weeks of angiotensin II/phenylephrine infusion. Controlled GATA-6 overexpression in the heart induced hypertrophy with aging and predisposed to greater hypertrophy with pressure overload stimulation. Combinatorial deletion of Gata4 and Gata6 from the adult heart resulted in dilated cardiomyopathy and lethality by 16 weeks of age. Mechanistically, deletion of Gata6 from the heart resulted in fundamental changes in the levels of key regulatory genes and myocyte differentiation-specific genes. Conclusions These results indicate that GATA-6 is both necessary and sufficient for regulating the cardiac hypertrophic response and differentiated gene expression, both alone and in coordination with GATA-4. PMID:20705924

  4. Identifying differential transcription factor binding in ChIP-seq

    PubMed Central

    Wu, Dai-Ying; Bittencourt, Danielle; Stallcup, Michael R.; Siegmund, Kimberly D.

    2015-01-01

    ChIP seq is a widely used assay to measure genome-wide protein binding. The decrease in costs associated with sequencing has led to a rise in the number of studies that investigate protein binding across treatment conditions or cell lines. In addition to the identification of binding sites, new studies evaluate the variation in protein binding between conditions. A number of approaches to study differential transcription factor binding have recently been developed. Several of these methods build upon established methods from RNA-seq to quantify differences in read counts. We compare how these new approaches perform on different data sets from the ENCODE project to illustrate the impact of data processing pipelines under different study designs. The performance of normalization methods for differential ChIP-seq depends strongly on the variation in total amount of protein bound between conditions, with total read count outperforming effective library size, or variants thereof, when a large variation in binding was studied. Use of input subtraction to correct for non-specific binding showed a relatively modest impact on the number of differential peaks found and the fold change accuracy to biological validation, however a larger impact might be expected for samples with more extreme copy number variations between them. Still, it did identify a small subset of novel differential regions while excluding some differential peaks in regions with high background signal. These results highlight proper scaling for between-sample data normalization as critical for differential transcription factor binding analysis and suggest bioinformaticians need to know about the variation in level of total protein binding between conditions to select the best analysis method. At the same time, validation using fold-change estimates from qRT-PCR suggests there is still room for further method improvement. PMID:25972895

  5. Molecular mechanisms of OLIG2 transcription factor in brain cancer

    PubMed Central

    Lian, Nathan; Kesari, Santosh

    2016-01-01

    Oligodendrocyte lineage transcription factor 2 (OLIG2) plays a pivotal role in glioma development. Here we conducted a comprehensive study of the critical gene regulatory networks involving OLIG2. These include the networks responsible for OLIG2 expression, its translocation to nucleus, cell cycle, epigenetic regulation, and Rho-pathway interactions. We described positive feedback loops including OLIG2: loops of epigenetic regulation and loops involving receptor tyrosine kinases. These loops may be responsible for the prolonged oncogenic activity of OLIG2. The proposed schemes for epigenetic regulation of the gene networks involving OLIG2 are confirmed by patient survival (Kaplan–Meier) curves based on the cancer genome atlas (TCGA) datasets. Finally, we elucidate the Coherent-Gene Modules (CGMs) networks—framework of OLIG2 involvement in cancer. We showed that genes interacting with OLIG2 formed eight CGMs having a set of intermodular connections. We showed also that among the genes involved in these modules the most connected hub is EGFR, then, on lower level, HSP90 and CALM1, followed by three lower levels including epigenetic genes KDM1A and NCOR1. The genes on the six upper levels of the hierarchy are involved in interconnections of all eight CGMs and organize functionally defined gene-signaling subnetworks having specific functions. For example, CGM1 is involved in epigenetic control. CGM2 is significantly related to cell proliferation and differentiation. CGM3 includes a number of interconnected helix–loop–helix transcription factors (bHLH) including OLIG2. Many of these TFs are partially controlled by OLIG2. The CGM4 is involved in PDGF-related: angiogenesis, tumor cell proliferation and differentiation. These analyses provide testable hypotheses and approaches to inhibit OLIG2 pathway and relevant feed-forward and feedback loops to be interrogated. This broad approach can be applied to other TFs. PMID:27447975

  6. Inhibition of enterovirus 71 entry by transcription factor XBP1

    SciTech Connect

    Jheng, Jia-Rong; Lin, Chiou-Yan; Horng, Jim-Tong; Lau, Kean Seng

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer IRE1 was activated but no XBP1 splicing was detected during enterovirus 71 infection. Black-Right-Pointing-Pointer XBP1 was subject to translational shutoff by enterovirus 71-induced eIF4G cleavage. Black-Right-Pointing-Pointer The uptake of UV-irradiated virus was decreased in XBP1-overexpressing cells. -- Abstract: Inositol-requiring enzyme 1 (IRE1) plays an important role in the endoplasmic reticulum (ER), or unfolded protein, stress response by activating its downstream transcription factor X-box-binding protein 1 (XBP1). We demonstrated previously that enterovirus 71 (EV71) upregulated XBP1 mRNA levels but did not activate spliced XBP1 (XBP1s) mRNA or its downstream target genes, EDEM and chaperones. In this study, we investigated further this regulatory mechanism and found that IRE1 was phosphorylated and activated after EV71 infection, whereas its downstream XBP1s protein level decreased. We also found that XBP1s was not cleaved directly by 2A{sup pro}, but that cleavage of eukaryotic translation initiation factor 4G by the EV71 2A{sup pro} protein may contribute to the decrease in XBP1s expression. Knockdown of XBP1 increased viral protein expression, and the synthesis of EV71 viral protein and the production of EV71 viral particles were inhibited in XBP1-overexpressing RD cells. When incubated with replication-deficient and UV-irradiated EV71, XBP1-overexpressing RD cells exhibited reduced viral RNA levels, suggesting that the inhibition of XBP1s by viral infection may underlie viral entry, which is required for viral replication. Our findings are the first indication of the ability of XBP1 to inhibit viral entry, possibly via its transcriptional activity in regulating molecules in the endocytic machinery.

  7. Evolutionary Analyses of GRAS Transcription Factors in Angiosperms.

    PubMed

    Cenci, Alberto; Rouard, Mathieu

    2017-01-01

    GRAS transcription factors (TFs) play critical roles in plant growth and development such as gibberellin and mycorrhizal signaling. Proteins belonging to this gene family contain a typical GRAS domain in the C-terminal sequence, whereas the N-terminal region is highly variable. Although, GRAS genes have been characterized in a number of plant species, their classification is still not completely resolved. Based on a panel of eight representative species of angiosperms, we identified 29 orthologous groups or orthogroups (OGs) for the GRAS gene family, suggesting that at least 29 ancestor genes were present in the angiosperm lineage before the "Amborella" evolutionary split. Interestingly, some taxonomic groups were missing members of one or more OGs. The gene number expansion usually observed in transcription factors was not observed in GRAS while the genome triplication ancestral to the eudicots (γ hexaploidization event) was detectable in a limited number of GRAS orthogroups. We also found conserved OG-specific motifs in the variable N-terminal region. Finally, we could regroup OGs in 17 subfamilies for which names were homogenized based on a literature review and described 5 new subfamilies (DLT, RAD1, RAM1, SCLA, and SCLB). This study establishes a consistent framework for the classification of GRAS members in angiosperm species, and thereby a tool to correctly establish the orthologous relationships of GRAS genes in most of the food crops in order to facilitate any subsequent functional analyses in the GRAS gene family. The multi-fasta file containing all the sequences used in our study could be used as database to perform diagnostic BLASTp to classify GRAS genes from other non-model species.

  8. Transcriptional regulation of gilthead seabream bone morphogenetic protein (BMP) 2 gene by bone- and cartilage-related transcription factors.

    PubMed

    Marques, Cátia L; Cancela, M Leonor; Laizé, Vincent

    2016-01-15

    Bone morphogenetic protein (BMP) 2 belongs to the transforming growth factor β (TGFβ) superfamily of cytokines and growth factors. While it plays important roles in embryo morphogenesis and organogenesis, BMP2 is also critical to bone and cartilage formation. Protein structure and function have been remarkably conserved throughout evolution and BMP2 transcription has been proposed to be tightly regulated, although few data is available. In this work we report the cloning and functional analysis of gilthead seabream BMP2 promoter. As in other vertebrates, seabream BMP2 gene has a 5′ non-coding exon, a feature already present in DPP gene, the fruit fly ortholog of vertebrate BMP2 gene, and maintained throughout evolution. In silico analysis of seabream BMP2 promoter revealed several binding sites for bone and cartilage related transcription factors (TFs) and their functionality was evaluated using promoter-luciferase constructions and TF-expressing vectors. Runt-related transcription factor 3 (RUNX3) was shown to negatively regulate BMP2 transcription and combination with the core binding factor β (CBFβ) further reduced transcriptional activity of the promoter. Although to a lesser extent, myocyte enhancer factor 2C (MEF2C) had also a negative effect on the regulation of BMP2 gene transcription, when associated with SRY (sex determining region Y)-box 9 (SOX9b). Finally, v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS1) was able to slightly enhance BMP2 transcription. Data reported here provides new insights toward the better understanding of the transcriptional regulation of BMP2 gene in a bone and cartilage context.

  9. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro

    SciTech Connect

    Sárvári, Anitta K.; Veréb, Zoltán; Uray, Iván P.; Fésüs, László; Balajthy, Zoltán

    2014-08-08

    Highlights: • Antipsychotics modulate the expression of adipogenic genes in human adipocytes. • Secretion of proinflammatory cytokine IL8 and MCP-1 is induced by antipsychotics. • Adipocyte-dependent inflammatory abnormality could develop during chronic treatment. • Infiltrated macrophages would further enhance proinflammatory cytokine production. - Abstract: Schizophrenia requires lifelong treatment, potentially causing systemic changes in metabolic homeostasis. In the clinical setting, antipsychotic treatment may differentially lead to weight gain among individual patients, although the molecular determinants of such adverse effects are currently unknown. In this study, we investigated changes in the expression levels of critical regulatory genes of adipogenesis, lipid metabolism and proinflammatory genes during the differentiation of primary human adipose-derived stem cells (ADSCs). These cells were isolated from patients with body mass indices <25 and treated with the second-generation antipsychotics olanzapine, ziprasidone, clozapine, quetiapine, aripiprazole and risperidone and the first-generation antipsychotic haloperidol. We found that antipsychotics exhibited a marked effect on key genes involved in the regulation of cell cycle, signal transduction, transcription factors, nuclear receptors, differentiation markers and metabolic enzymes. In particular, we observed an induction of the transcription factor NF-KB1 and NF-KB1 target genes in adipocytes in response to these drugs, including the proinflammatory cytokines TNF-α, IL-1β, IL-8 and MCP-1. In addition, enhanced secretion of both IL8 and MCP-1 was observed in the supernatant of these cell cultures. In addition to their remarkable stimulatory effects on proinflammatory gene transcription, three of the most frequently prescribed antipsychotic drugs, clozapine, quetiapine and aripiprazole, also induced the expression of essential adipocyte differentiation genes and the adipocyte hormones leptin

  10. Human Lineage-Specific Transcriptional Regulation through GA-Binding Protein Transcription Factor Alpha (GABPa)

    PubMed Central

    Perdomo-Sabogal, Alvaro; Nowick, Katja; Piccini, Ilaria; Sudbrak, Ralf; Lehrach, Hans; Yaspo, Marie-Laure; Warnatz, Hans-Jörg; Querfurth, Robert

    2016-01-01

    A substantial fraction of phenotypic differences between closely related species are likely caused by differences in gene regulation. While this has already been postulated over 30 years ago, only few examples of evolutionary changes in gene regulation have been verified. Here, we identified and investigated binding sites of the transcription factor GA-binding protein alpha (GABPa) aiming to discover cis-regulatory adaptations on the human lineage. By performing chromatin immunoprecipitation-sequencing experiments in a human cell line, we found 11,619 putative GABPa binding sites. Through sequence comparisons of the human GABPa binding regions with orthologous sequences from 34 mammals, we identified substitutions that have resulted in 224 putative human-specific GABPa binding sites. To experimentally assess the transcriptional impact of those substitutions, we selected four promoters for promoter-reporter gene assays using human and African green monkey cells. We compared the activities of wild-type promoters to mutated forms, where we have introduced one or more substitutions to mimic the ancestral state devoid of the GABPa consensus binding sequence. Similarly, we introduced the human-specific substitutions into chimpanzee and macaque promoter backgrounds. Our results demonstrate that the identified substitutions are functional, both in human and nonhuman promoters. In addition, we performed GABPa knock-down experiments and found 1,215 genes as strong candidates for primary targets. Further analyses of our data sets link GABPa to cognitive disorders, diabetes, KRAB zinc finger (KRAB-ZNF), and human-specific genes. Thus, we propose that differences in GABPa binding sites played important roles in the evolution of human-specific phenotypes. PMID:26814189

  11. Regulation of Memory Formation by the Transcription Factor XBP1.

    PubMed

    Martínez, Gabriela; Vidal, René L; Mardones, Pablo; Serrano, Felipe G; Ardiles, Alvaro O; Wirth, Craig; Valdés, Pamela; Thielen, Peter; Schneider, Bernard L; Kerr, Bredford; Valdés, Jose L; Palacios, Adrian G; Inestrosa, Nibaldo C; Glimcher, Laurie H; Hetz, Claudio

    2016-02-16

    Contextual memory formation relies on the induction of new genes in the hippocampus. A polymorphism in the promoter of the transcription factor XBP1 was identified as a risk factor for Alzheimer's disease and bipolar disorders. XBP1 is a major regulator of the unfolded protein response (UPR), mediating adaptation to endoplasmic reticulum (ER) stress. Using a phenotypic screen, we uncovered an unexpected function of XBP1 in cognition and behavior. Mice lacking XBP1 in the nervous system showed specific impairment of contextual memory formation and long-term potentiation (LTP), whereas neuronal XBP1s overexpression improved performance in memory tasks. Gene expression analysis revealed that XBP1 regulates a group of memory-related genes, highlighting brain-derived neurotrophic factor (BDNF), a key component in memory consolidation. Overexpression of BDNF in the hippocampus reversed the XBP1-deficient phenotype. Our study revealed an unanticipated function of XBP1 in cognitive processes that is apparently unrelated to its role in ER stress.

  12. OCTAMER-BINDING TRANSCRIPTION FACTORS: GENOMICS AND FUNCTIONS

    PubMed Central

    Zhao, Feng-Qi

    2015-01-01

    The Octamer-binding proteins (Oct) are a group of highly conserved transcription factors that specifically bind to the octamer motif (ATGCAAAT) and closely related sequences that are found in promoters and enhancers of a wide variety of both ubiquitously expressed and cell type-specific genes. Oct factors belong to the larger family of POU domain factors that are characterized by the presence of a highly conserved bipartite DNA binding domain, consisting of an amino-terminal specific subdomain (POUS) and a carboxyl-terminal homeo-subdomain (POUH). Eleven Oct proteins have been named (Oct1-11), and currently, eight genes encoding Oct proteins (Oct1, Oct2, Oct3/4, Oct6, Oct7, Oct8, Oct9, and Oct11) have been cloned and characterized. Oct1 and Oct2 are widely expressed in adult tissues, while other Oct proteins are much more restricted in their expression patterns. Oct proteins are implicated in crucial and versatile biological events, such as embryogenesis, neurogenesis, immunity, and body glucose and amino acid metabolism. The aberrant expression and null function of Oct proteins have also been linked to various diseases, including deafness, diabetes and cancer. In this review, I will report both the genomic structure and major functions of individual Oct proteins in physiological and pathological processes. PMID:23747866

  13. Anti-adipogenic effect of mulberry leaf ethanol extract in 3T3-L1 adipocytes

    PubMed Central

    Yang, Soo Jin; Park, Na-Young

    2014-01-01

    BACKGROUND/OBJECTIVES Adipogenesis is part of the cell differentiation process in which undifferentiated fibroblasts (pre-adipocytes) become mature adipocytes with the accumulation of lipid droplets and subsequent cell morphological changes. Several transcription factors and food components have been suggested to be involved in adipogenesis. The aim of this study was to determine whether mulberry leaf ethanol extract (MLEE) affects adipogenesis in 3T3-L1 adipocytes. MATERIALS/METHODS The 3T3-L1 adipocytes were treated with different doses of MLEE for 8 days starting 2 days post-confluence. Cell viability, fat accumulation, and adipogenesis-related factors including CCAAT-enhancer-binding protein alpha (C/EBPα), peroxisome proliferator-activated receptor gamma (PPARγ), PPARγ coactivator 1 alpha (PGC-1α), fatty acid synthase (FAS), and adiponectin were analyzed. RESULTS Results showed that MLEE treatments at 10, 25, 50, and 100 µg/ml had no effect on cell morphology and viability. Without evident toxicity, all MLEE treated cells had lower fat accumulation compared with control as shown by lower absorbances of Oil Red O stain. MLEE at 50 and 100 µg/ml significantly reduced protein levels of PPARγ, PGC-1α, FAS, and adiponectin in differentiated adipocytes. Furthermore, protein level of C/EBPα was significantly decreased by the treatment of 100 µg/ml MLEE. CONCLUSION These results demonstrate that MLEE treatment has an anti-adipogenic effect in differentiated adipocytes without toxicity, suggesting its potential as an anti-obesity therapeutic. PMID:25489399

  14. Depletion of histone demethylase KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of stem cells from apical papilla.

    PubMed

    Dong, Rui; Yao, Rui; Du, Juan; Wang, Songlin; Fan, Zhipeng

    2013-11-01

    Mesenchymal stem cells (MSCs) are a reliable resource for tissue regeneration, but the molecular mechanism underlying directed differentiation remains unclear; this has restricted potential MSC applications. The histone demethylase, lysine (K)-specific demethylase 2A (KDM2A), is evolutionarily conserved and ubiquitously expressed members of the JmjC-domain-containing histone demethylase family. A previous study determined that KDM2A can regulate the cell proliferation and osteo/dentinogenic differentiation of MSCs. It is not known whether KDM2A is involved in the other cell lineages differentiation of MSCs. Here, we show that depletion of KDM2A by short hairpin RNAs can enhance adipogenic and chondrogenic differentiation potentials in human stem cells from apical papilla (SCAPs). We found that the stemness-related genes, SOX2, and the embryonic stem cell master transcription factor, NANOG were significantly increased after silence of KDM2A in SCAPs. Moreover, we found that knock-down of the KDM2A co-factor, BCOR also up-regulated the mRNA levels of SOX2 and NANOG. Furthermore, Chromatin immunoprecipitation assays demonstrate that silence of KDM2A increased the histone H3 Lysine 4 (H3K4) trimethylation in the SOX2 and NANOG locus and regulates its expression. In conclusion, our results suggested that depletion of KDM2A enhanced the adipogenic and chondrogenic differentiation potentials of SCAPs by up-regulated SOX2 and NANOG, BCOR also involved in this regulation as co-factor, and provided useful information to understand the molecular mechanism underlying directed differentiation in MSCs.

  15. Genome-wide identification of transcription factors and transcription-factor binding sites in oleaginous microalgae Nannochloropsis

    PubMed Central

    Hu, Jianqiang; Wang, Dongmei; Li, Jing; Jing, Gongchao; Ning, Kang; Xu, Jian

    2014-01-01

    Nannochloropsis spp. are a group of oleaginous microalgae that harbor an expanded array of lipid-synthesis related genes, yet how they are transcriptionally regulated remains unknown. Here a phylogenomic approach was employed to identify and functionally annotate the transcriptional factors (TFs) and TF binding-sites (TFBSs) in N. oceanica IMET1. Among 36 microalgae and higher plants genomes, a two-fold reduction in the number of TF families plus a seven-fold decrease of average family-size in Nannochloropsis, Rhodophyta and Chlorophyta were observed. The degree of similarity in TF-family profiles is indicative of the phylogenetic relationship among the species, suggesting co-evolution of TF-family profiles and species. Furthermore, comparative analysis of six Nannochloropsis genomes revealed 68 “most-conserved” TFBS motifs, with 11 of which predicted to be related to lipid accumulation or photosynthesis. Mapping the IMET1 TFs and TFBS motifs to the reference plant TF-“TFBS motif” relationships in TRANSFAC enabled the prediction of 78 TF-“TFBS motif” interaction pairs, which consisted of 34 TFs (with 11 TFs potentially involved in the TAG biosynthesis pathway), 30 TFBS motifs and 2,368 regulatory connections between TFs and target genes. Our results form the basis of further experiments to validate and engineer the regulatory network of Nannochloropsis spp. for enhanced biofuel production. PMID:24965723

  16. Two recently duplicated maize NAC transcription factor paralogs are induced in response to Colletotrichum graminicola infection

    PubMed Central

    2013-01-01

    Background NAC transcription factors belong to a large family of plant-specific transcription factors with more than 100 family members in monocot and dicot species. To date, the majority of the studied NAC proteins are involved in the response to abiotic stress, to biotic stress and in the regulation of developmental processes. Maize NAC transcription factors involved in the biotic stress response have not yet been identified. Results We have found that two NAC transcription factors, ZmNAC41 and ZmNAC100, are transcriptionally induced both during the initial biotrophic as well as the ensuing necrotrophic colonization of maize leaves by the hemibiotrophic ascomycete fungus C. graminicola. ZmNAC41 transcripts were also induced upon infection with C. graminicola mutants that are defective in host penetration, while the induction of ZmNAC100 did not occur in such interactions. While ZmNAC41 transcripts accumulated specifically in response to jasmonate (JA), ZmNAC100 transcripts were also induced by the salicylic acid analog 2,6-dichloroisonicotinic acid (INA). To assess the phylogenetic relation of ZmNAC41 and ZmNAC100, we studied the family of maize NAC transcription factors based on the recently annotated B73 genome information. We identified 116 maize NAC transcription factor genes that clustered into 12 clades. ZmNAC41 and ZmNAC100 both belong to clade G and appear to have arisen by a recent gene duplication event. Including four other defence-related NAC transcription factors of maize and functionally characterized Arabidopsis and rice NAC transcription factors, we observed an enrichment of NAC transcription factors involved in host defense regulation in clade G. In silico analyses identified putative binding elements for the defence-induced ERF, Myc2, TGA and WRKY transcription factors in the promoters of four out of the six defence-related maize NAC transcription factors, while one of the analysed maize NAC did not contain any of these potential binding sites

  17. Temporal heterogeneity in single-cell gene expression and mechanical properties during adipogenic differentiation.

    PubMed

    Labriola, Nicholas R; Darling, Eric M

    2015-04-13

    Adipose-derived stem/stromal cells (ASCs) respond heterogeneously when exposed to lineage-specific induction medium. Variable responses at the single-cell level can be observed in the production of lineage-specific metabolites, expression of mRNA transcripts, and adoption of mechanical phenotypes. Understanding the relationship between the biological and mechanical characteristics for individual ASCs is crucial for interpreting how cellular heterogeneity affects the differentiation process. The goal of the current study was to monitor the gene expression of peroxisome proliferator receptor gamma (PPARG) in adipogenically differentiating ASC populations over two weeks, while also characterizing the expression-associated mechanical properties of individual cells using atomic force microscopy (AFM). Results showed that ASC mechanical properties did not change significantly over time in either adipogenic or control medium; however, cells expressing PPARG exhibited significantly greater compliance and fluidity compared to those lacking expression in both adipogenic and control media environments. The percent of PPARG+ cells in adipogenic samples increased over time but stayed relatively constant in controls. Previous reports of a slow, gradual change in cellular mechanical properties are explained by the increase in the number of positively differentiating cells in a sample rather than being reflective of actual, single-cell mechanical property changes. Cytoskeletal remodeling was more prevalent in adipogenic samples than controls, likely driving the adoption of a more compliant mechanical phenotype and upregulation of PPARG. The combined results reinforce the importance of understanding single-cell characteristics, in the context of heterogeneity, to provide more accurate interpretations of biological phenomena such as stem cell differentiation.

  18. E2F1 transcription factor and its impact on growth factor and cytokine signaling.

    PubMed

    Ertosun, Mustafa Gokhan; Hapil, Fatma Zehra; Osman Nidai, Ozes

    2016-10-01

    E2F1 is a transcription factor involved in cell cycle regulation and apoptosis. The transactivation capacity of E2F1 is regulated by pRb. In its hypophosphorylated form, pRb binds and inactivates DNA binding and transactivating functions of E2F1. The growth factor stimulation of cells leads to activation of CDKs (cyclin dependent kinases), which in turn phosphorylate Rb and hyperphosphorylated Rb is released from E2F1 or E2F1/DP complex, and free E2F1 can induce transcription of several genes involved in cell cycle entry, induction or inhibition of apoptosis. Thus, growth factors and cytokines generally utilize E2F1 to direct cells to either fate. Furthermore, E2F1 regulates expressions of various cytokines and growth factor receptors, establishing positive or negative feedback mechanisms. This review focuses on the relationship between E2F1 transcription factor and cytokines (IL-1, IL-2, IL-3, IL-6, TGF-beta, G-CSF, LIF), growth factors (EGF, KGF, VEGF, IGF, FGF, PDGF, HGF, NGF), and interferons (IFN-α, IFN-β and IFN-γ).

  19. The role of PIN1 on odontogenic and adipogenic differentiation in human dental pulp stem cells.

    PubMed

    Lee, Young-Man; Shin, Seung-Yun; Jue, Seong-Suk; Kwon, Il-Keun; Cho, Eun-Hee; Cho, Eui-Sic; Park, Sang-Hyuk; Kim, Eun-Cheol

    2014-03-15

    Recently, the involvement of PIN1, a peptidyl-prolyl cis/trans isomerase, has been reported in age-related bone homeostasis and adipogenesis. However, the role of PIN1 during odontogenic and adipogenic differentiation remains to be fully understood, particularly regarding human dental pulp stem cells (HDPSCs). Thus, in the present study, we have investigated the role of PIN1 in odontogenic and adipogenic differentiation of HDPSCs and signaling pathways possibly involved. PIN1 mRNA and protein level were upregulated in a time-dependent manner during adipogenic differentiation, increasing until 1 day of odontogenic induction and then steadily declined during odontogenic differentiation. Treatment of a known PIN1 inhibitor, juglone, significantly increased odontogenic differentiation as confirmed by alkaline phosphatase (ALP) activity, calcium deposition, and mRNAs induction of odontogenic markers [ALP, osteopontin (OPN), osteocalcin (OCN), dentin sialophosphoprotein (DSPP), and dentin matrix protein 1 (DMP-1)]. On the contrary, adipogenic differentiation was dramatically reduced upon juglone treatment, with concomitant downregulation of lipid droplet accumulation and adipogenic marker genes [peroxisome proliferation-activated receptor gamma (PPARγ), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein (AP2)]. In contrast to PIN1 inhibition, the overexpression of PIN1 via adenoviral infection (Ad-PIN1) in HDPSCs inhibited odontogenic differentiation but increased adipogenic differentiation, in which stem cell property markers such as stage-specific embryonic antigen-4 (SSEA-4) and STRO-1 were upregulated during odontogenic differentiation but downregulated in adiopogenic differentiation. Consistently, juglone-mediated inhibition of PIN1 augmented the osteogenic medium (OM)-induced activation of bone morphogenetic protein (BMP), Wnt/β-catenin, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and nuclear factor-kappa B (NF

  20. Ubiquitin signals proteolysis-independent stripping of transcription factors.

    PubMed

    Ndoja, Ada; Cohen, Robert E; Yao, Tingting

    2014-03-20

    Ubiquitination of transcription activators has been reported to regulate transcription via both proteolytic and nonproteolytic routes, yet the function of the ubiquitin (Ub) signal in the nonproteolytic process is poorly understood. By use of the heterologous transcription activator LexA-VP16 in Saccharomyces cerevisiae, we show that monoubiquitin fusion of the activator prevents stable interactions between the activator and DNA, leading to transcription inhibition without activator degradation. We identify the AAA(+) ATPase Cdc48 and its cofactors as the Ub receptor responsible for extracting the monoubiquitinated activator from DNA. Our results suggest that deubiquitination of the activator is critical for transcription activation. These findings with LexA-VP16 extend in both yeast and mammalian cells to native transcription activators Met4 and R-Smads, respectively, that are known to be oligo-ubiquitinated. The results illustrate a role for Ub and Cdc48 in transcriptional regulation and gene expression that is independent of proteolysis.

  1. O-GlcNAc inhibits interaction between Sp1 and Elf-1 transcription factors

    SciTech Connect

    Lim, Kihong; Chang, Hyo-Ihl

    2009-03-13

    The novel protein modification, O-linked N-acetylglucosamine (O-GlcNAc), plays an important role in various aspects of cell regulation. Although most of nuclear transcription regulatory factors are modified by O-GlcNAc, O-GlcNAc effects on transcription remain largely undefined yet. In this study, we show that O-GlcNAc inhibits a physical interaction between Sp1 and Elf-1 transcription factors, and negatively regulates transcription of placenta and embryonic expression oncofetal protein gene (Pem). These findings suggest that O-GlcNAc inhibits Sp1-mediated gene transcription possibly by interrupting Sp1 interaction with its cooperative factor.

  2. The Transcription Factor p53 Influences Microglial Activation Phenotype

    PubMed Central

    Jayadev, Suman; Nesser, Nicole K.; Hopkins, Stephanie; Myers, Scott J.; Case, Amanda; Lee, Rona J.; Seaburg, Luke A.; Uo, Takuma; Murphy, Sean P.; Morrison, Richard S.; Garden, Gwenn A.

    2011-01-01

    Several neurodegenerative diseases are influenced by the innate immune response in the central nervous system (CNS). Microglia, have pro-inflammatory and subsequently neurotoxic actions as well as anti-inflammatory functions that promote recovery and repair. Very little is known about the transcriptional control of these specific microglial behaviors. We have previously shown that in HIV associated neurocognitive disorders (HAND), the transcription factor p53 accumulates in microglia and that microglial p53 expression is required for the in vitro neurotoxicity of the HIV coat glycoprotein gp120. These findings suggested a novel function for p53 in regulating microglial activation. Here we report that in the absence of p53, microglia demonstrate a blunted response to interferon-γ, failing to increase expression of genes associated with classical macrophage activation or secrete pro-inflammatory cytokines. Microarray analysis of global gene expression profiles revealed increased expression of genes associated with anti-inflammatory functions, phagocytosis and tissue repair in p53 knockout (p53−/−) microglia compared with those cultured from strain matched p53 expressing (p53+/+) mice. We further observed that p53−/− microglia demonstrate increased phagocytic activity in vitro and expression of markers for alternative macrophage activation both in vitro and in vivo. In HAND brain tissue, the alternative activation marker CD163 was expressed in a separate subset of microglia than those demonstrating p53 accumulation. These data suggest that p53 influences microglial behavior, supporting the adoption of a pro-inflammatory phenotype, while p53 deficiency promotes phagocytosis and gene expression associated with alternative activation and anti-inflammatory functions. PMID:21598312

  3. Involvement of CBF transcription factors in winter hardiness in birch.

    PubMed

    Welling, Annikki; Palva, E Tapio

    2008-07-01

    Cold acclimation of plants involves extensive reprogramming of gene expression. In Arabidopsis (Arabidopsis thaliana), three cold-inducible transcriptional activators designated CBF1 to -3/DREB1a to -c have been shown to play an important regulatory role in this acclimation process. Similarly to Arabidopsis, boreal zone trees can increase their freezing tolerance (FT) in response to low temperature during the growing season. However, maximal FT of these trees requires short daylength-induced dormancy development followed by exposure to both low and freezing temperatures. To elucidate the molecular basis of FT in overwintering trees, we characterized the role of birch (Betula pendula) CBF transcription factors in the cold acclimation process. We identified four putative CBF orthologs in a birch expressed sequence tag collection designated BpCBF1 to -4. Ectopic expression of birch CBFs in Arabidopsis resulted in constitutive expression of endogenous CBF target genes and increased FT of nonacclimated transgenic plants. In addition, these plants showed stunted growth and delayed flowering, typical features for CBF-overexpressing plants. Expression analysis in birch showed that BpCBF1 to -4 are low temperature responsive but differentially regulated in dormant and growing plants, the expression being delayed in dormant tissues. Freeze-thaw treatment, simulating wintertime conditions in nature, resulted in strong induction of BpCBF genes during thawing, followed by induction of a CBF target gene, BpLTI36. These results suggest that in addition to their role in cold acclimation during the growing season, birch CBFs appear to contribute to control of winter hardiness in birch.

  4. BMP7 promotes adipogenic but not osteo-/chondrogenic differentiation of adult human bone marrow-derived stem cells in high-density micro-mass culture.

    PubMed

    Neumann, Katja; Endres, Michaela; Ringe, Jochen; Flath, Bernd; Manz, Rudi; Häupl, Thomas; Sittinger, Michael; Kaps, Christian

    2007-10-15

    The objective of our study was to elucidate the potential of bone morphogenetic protein-7 (BMP7) to initiate distinct mesenchymal lineage development of human adult mesenchymal stem cells (MSC) in three-dimensional micro-mass culture. Expanded MSC were cultured in high-density micro-masses under serum-free conditions that favor chondrogenic differentiation and were stimulated with 50-200 ng/ml BMP7 or 10 ng/ml transforming growth factor-beta3 (TGFbeta3) as control. Histological staining of proteoglycan with alcian blue, mineralized matrix according to von Kossa, and lipids with Oil Red O, immunostaining of type II collagen as well as real-time gene expression analysis of typical chondrogenic, adipogenic, and osteogenic marker genes showed that BMP7 promoted adipogenic differentiation of MSC. Micro-masses stimulated with BMP7 developed adipocytic cells filled with lipid droplets and showed an enhanced expression of the adipocyte marker genes fatty acid binding protein 4 (FABP4) and the adipose most abundant transcript 1 (apM1). Development along the chondrogenic lineage or stimulation of osteogenic differentiation were not evident upon stimulation with BMP7 in different concentrations. In contrast, TGFbeta3 directed MSC to form a cartilaginous matrix that is rich in proteoglycan and type II collagen. Gene expression analysis of typical chondrocyte marker genes like cartilage oligomeric matrix protein (COMP), link protein, aggrecan, and types IIalpha1 and IXalpha3 collagen confirmed chondrogenic differentiation of MSC treated with TGFbeta3. These results suggest that BMP7 promotes the adipogenic and not the osteogenic or chondrogenic lineage development of human stem cells when assembled three-dimensionally in micro-masses.

  5. Transcription factor motif quality assessment requires systematic comparative analysis

    PubMed Central

    Kibet, Caleb Kipkurui; Machanick, Philip

    2016-01-01

    Transcription factor (TF) binding site prediction remains a challenge in gene regulatory research due to degeneracy and potential variability in binding sites in the genome. Dozens of algorithms designed to learn binding models (motifs) have generated many motifs available in research papers with a subset making it to databases like JASPAR, UniPROBE and Transfac. The presence of many versions of motifs from the various databases for a single TF and the lack of a standardized assessment technique makes it difficult for biologists to make an appropriate choice of binding model and for algorithm developers to benchmark, test and improve on their models. In this study, we review and evaluate the approaches in use, highlight differences and demonstrate the difficulty of defining a standardized motif assessment approach. We review scoring functions, motif length, test data and the type of performance metrics used in prior studies as some of the factors that influence the outcome of a motif assessment. We show that the scoring functions and statistics used in motif assessment influence ranking of motifs in a TF-specific manner. We also show that TF binding specificity can vary by source of genomic binding data. We also demonstrate that information content of a motif is not in isolation a measure of motif quality but is influenced by TF binding behaviour. We conclude that there is a need for an easy-to-use tool that presents all available evidence for a comparative analysis. PMID:27092243

  6. Wood reinforcement of poplar by rice NAC transcription factor.

    PubMed

    Sakamoto, Shingo; Takata, Naoki; Oshima, Yoshimi; Yoshida, Kouki; Taniguchi, Toru; Mitsuda, Nobutaka

    2016-01-27

    Lignocellulose, composed of cellulose, hemicellulose, and lignin, in the secondary cell wall constitutes wood and is the most abundant form of biomass on Earth. Enhancement of wood accumulation may be an effective strategy to increase biomass as well as wood strength, but currently only limited research has been undertaken. Here, we demonstrated that OsSWN1, the orthologue of the rice NAC Secondary-wall Thickening factor (NST) transcription factor, effectively enhanced secondary cell wall formation in the Arabidopsis inflorescence stem and poplar (Populus tremula×Populus tremuloides) stem when expressed by the Arabidopsis NST3 promoter. Interestingly, in transgenic Arabidopsis and poplar, ectopic secondary cell wall deposition in the pith area was observed in addition to densification of the secondary cell wall in fiber cells. The cell wall content or density of the stem increased on average by up to 38% and 39% in Arabidopsis and poplar, respectively, without causing growth inhibition. As a result, physical strength of the stem increased by up to 57% in poplar. Collectively, these data suggest that the reinforcement of wood by NST3pro:OsSWN1 is a promising strategy to enhance wood-biomass production in dicotyledonous plant species.

  7. Wood reinforcement of poplar by rice NAC transcription factor

    PubMed Central

    Sakamoto, Shingo; Takata, Naoki; Oshima, Yoshimi; Yoshida, Kouki; Taniguchi, Toru; Mitsuda, Nobutaka

    2016-01-01

    Lignocellulose, composed of cellulose, hemicellulose, and lignin, in the secondary cell wall constitutes wood and is the most abundant form of biomass on Earth. Enhancement of wood accumulation may be an effective strategy to increase biomass as well as wood strength, but currently only limited research has been undertaken. Here, we demonstrated that OsSWN1, the orthologue of the rice NAC Secondary-wall Thickening factor (NST) transcription factor, effectively enhanced secondary cell wall formation in the Arabidopsis inflorescence stem and poplar (Populus tremula×Populus tremuloides) stem when expressed by the Arabidopsis NST3 promoter. Interestingly, in transgenic Arabidopsis and poplar, ectopic secondary cell wall deposition in the pith area was observed in addition to densification of the secondary cell wall in fiber cells. The cell wall content or density of the stem increased on average by up to 38% and 39% in Arabidopsis and poplar, respectively, without causing growth inhibition. As a result, physical strength of the stem increased by up to 57% in poplar. Collectively, these data suggest that the reinforcement of wood by NST3pro:OsSWN1 is a promising strategy to enhance wood-biomass production in dicotyledonous plant species. PMID:26812961

  8. [Association of schizophrenia with variations in genes encoding transcription factors].

    PubMed

    Boyajyan, A S; Atshemyan, S A; Zakharyan, R V

    2015-01-01

    Alterations in neuronal plasticity and immune system play a key role in pathogenesis of schizophrenia. Identification of genetic factors contributing to these alterations will significantly encourage elucidation of molecular etiopathomechanisms of this disorder. Transcription factors c-Fos, c-Jun, and Ier5 are the important regulators of neuronal plasticity and immune response. In the present work we investigated a potential association of schizophrenia with a number of single nucleotide polymorphisms of c-Fos-,c-Jun and Ier5 encoding genes (FOS, JUN, and IER5 respectively). Genotyping of DNA samples of patients with schizophrenia and healthy individuals was performed using polymerase chain reaction with allele specific primers. The results obtained demonstrated association between schizophrenia and FOS rs1063169, FOS rs7101, JUN rs11688, and IER5 rs6425663 polymorphisms. Namely, it was found that the inheritance of FOS rs1063169*T, JUN rs11688*A, and IER5 rs6425663*T minor variants decreases risk for development of schizophrenia whereas the inheritance of FOS rs7101*T minor variant, especially its homozygous form, increases risk for development of this disorder.

  9. The transcription factor SOX17 is involved in the transcriptional control of the uteroglobin gene in rabbit endometrium.

    PubMed

    Garcia, Carlos; Calvo, Enrique; Nieto, Antonio

    2007-10-15

    The transcription of the uteroglobin gene (ug) is induced by progesterone in the rabbit endometrium, primarily through the binding of the progesterone receptor to the distal region of the ug promoter. However, other transcription factors participate in the progesterone action. The proximal ug promoter contains several putative consensus sequences for the binding of various progesterone-dependent endometrial nuclear factors (Perez Martinez et al. [1996] Arch Biochem Biophys 333: 12-18), suggesting that several transcription factors might be implicated in the hormonal induction of ug. We report here that one of these progesterone-dependent factors specifically binds to the sequence CACAATG (-183/-177) of the rabbit ug promoter. This sequence (hereafter called element G') is very similar to the consensus sequence for binding of the SOX family of transcription factors. Mutation of the element G' reduced transcription from the ug promoter in transient expression experiments. The endometrial factor was purified and analyzed by nano-liquid chromatography and ion trap coupled mass spectrometry yielding two partial amino acid sequences corresponding to a region of SOX17 that is highly conserved inter-species. This identification was confirmed by immunological techniques using a specific anti-SOX17 antibody. In agreement with the above findings, overexpression of SOX17 in transfected endometrial cells increased transcription from the ug promoter. SOX17 gradually accumulated in the nucleus in vivo concomitant with the induction of ug expression by progesterone in the endometrium. Thus, these findings implicate, for the first time, SOX17 in the transcriptional control of rabbit ug.

  10. Chromatin-dependent transcription factor accessibility rather than nucleosome remodeling predominates during global transcriptional restructuring in Saccharomyces cerevisiae.

    PubMed

    Zawadzki, Karl A; Morozov, Alexandre V; Broach, James R

    2009-08-01

    Several well-studied promoters in yeast lose nucleosomes upon transcriptional activation and gain them upon repression, an observation that has prompted the model that transcriptional activation and repression requires nucleosome remodeling of regulated promoters. We have examined global nucleosome positioning before and after glucose-induced transcriptional reprogramming, a condition under which more than half of all yeast genes significantly change expression. The majority of induced and repressed genes exhibit no change in promoter nucleosome arrangement, although promoters that do undergo nucleosome remodeling tend to contain a TATA box. Rather, we found multiple examples where the pre-existing accessibility of putative transcription factor binding sites before glucose addition determined whether the corresponding gene would change expression in response to glucose addition. These results suggest that selection of appropriate transcription factor binding sites may be dictated to a large extent by nucleosome prepositioning but that regulation of expression through these sites is dictated not by nucleosome repositioning but by changes in transcription factor activity.

  11. Beyond Transcription Factors: The Role of Chromatin Modifying Enzymes in Regulating Transcription Required for Memory

    ERIC Educational Resources Information Center

    Barrett, Ruth M.; Wood, Marcelo A.

    2008-01-01

    One of the alluring aspects of examining chromatin modifications in the role of modulating transcription required for long-term memory processes is that these modifications may provide transient and potentially stable epigenetic marks in the service of activating and/or maintaining transcriptional processes. These, in turn, may ultimately…

  12. Identification of the Transformational Properties and Transcriptional Targets of the Oncogenic SRY Transcription Factor SOX4

    DTIC Science & Technology

    2008-01-01

    Scharer, C.D. McCabe, M. Ali-Seyed, M.F. Berger, M.L. Bulyk, and C.S. Moreno. Genome-wide Location Analysis of the SOX4 Transcriptional Network in...analysis showing the biological function of SOX4 target genes. (B) Ingenuity Pathway Assist analysis showing SOX4�s transcriptional network . Christopher

  13. Disruption of the Fgf2 Gene Activates the Adipogenic and Suppresses the Osteogenic Program in Mesenchymal Marrow Stromal Stem Cells

    PubMed Central

    Xiao, Liping; Sobue, Takanori; Eisliger, Alycia; Kronenberg, Mark. S; Coffin, J. Douglas; Doetschman, Thomas; Hurley, Marja M.

    2010-01-01

    Here we determine the Fibroblast Growth Factor-2 (FGF2) dependency of the time course of changes in bone mass in female mice. This study extends our earlier reports that knockout of the FGF2 gene (Fgf2) caused low turnover bone loss in Fgf2−/− male mice by examining bone loss with age in Fgf2−/− female mice, and by assessing whether reduced bone formation is associated with differentiation of bone marrow stromal cells (BMSCs) towards the adipocyte lineage. Bone mineral density (BMD) was similar in 3 month old female Fgf2+/+ and Fgf2−/− mice but was significantly reduced as early as 5 months of age in Fgf2−/− mice. In vivo studies showed that there was a greater accumulation of marrow fat in long bones of 14 and 20 month old Fgf2−/− mice compared with Fgf2+/+ littermates. To study the effect of disruption of FGF2 on osteoblastogenesis and adipogenesis, BMSCs from both genotypes were cultured in osteogenic or adipogenic media. Reduced alkaline phosphatase positive (ALP), mineralized colonies and a marked increase in adipocytes were observed in Fgf2−/− BMSC cultures. These cultures also showed an increase in the mRNA of the adipogenic transcription factor PPARγ2 as well as the downstream target genes aP2 and adiponectin. Treatment with exogenous FGF2 blocked adipocyte formation and increased ALP colony formation and ALP activity in BMSC cultures of both genotypes. These results support an important role for endogenous FGF2 in osteoblast (OB) lineage determination. Alteration in FGF2 signaling may contribute to impaired OB bone formation capacity and to increased bone marrow fat accumulation both of which are characteristics of aged bone. PMID:20510392

  14. Transcription factor AP2 beta involved in severe female alcoholism.

    PubMed

    Nordquist, Niklas; Göktürk, Camilla; Comasco, Erika; Nilsson, Kent W; Oreland, Lars; Hallman, Jarmila

    2009-12-11

    Susceptibility to alcoholism and antisocial behavior exhibits an evident link to monoaminergic neurotransmission. The serotonin system in particular, which is associated with regulation of mood and behavior, has an influence on personality characters that are firmly connected to risk of developing alcoholism and antisocial behavior, such as impulsiveness, and aggression. The transcription factor TFAP2b has repeatedly been shown to be involved in monoaminergic transmission, likely due to a regulatory effect on genes that are fundamental to this system, e.g. monoamine oxidase type A, and the serotonin transporter. Recent research has identified a functional polymorphism in the gene encoding TFAP2B that regulates its level of expression. In the present study we have compared a sample of female alcoholics (n=107), sentenced to institutional care for their severe addiction, contrasted against a control sample of adolescent females (n=875). The results showed that parental alcohol misuse was significantly more common among the alcoholic females, and also that parental alcohol misuse was associated with a reduction in age of alcohol debut. We also addressed the question of whether a functional TFAP2b polymorphism was associated with alcoholism. Results showed that the high-functioning allele was significantly more common among the female alcoholics, compared to the non-alcoholic controls. Furthermore, the results also indicated that psychosocial factors, in terms of parental alcohol misuse, depression or psychiatric disorder, had an influence on the association. It was observed that the genetic association was restricted to the subset of cases that had not experienced these negative psychosocial factors.

  15. Problem-Solving Test: The Mechanism of Transcription Termination by the Rho Factor

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2012-01-01

    Transcription termination comes in two forms in "E. coli" cells. Rho-dependent termination requires the binding of a termination protein called Rho factor to the transcriptional machinery at the terminator region, whereas Rho-independent termination is achieved by conformational changes in the transcript itself. This article presents a test…

  16. Transcription Factors PvERF15 and PvMTF-1 Form a Cadmium Stress Transcriptional Pathway1[OPEN

    PubMed Central

    Lin, Tingting; Yang, Wanning; Lu, Wen; Wang, Ying

    2017-01-01

    In plants, cadmium (Cd)-responsive transcription factors are key downstream effectors of Cd stress transcriptional pathways, which are capable of converging Cd stress signals through triggering the expression of Cd detoxification genes. However, the upstream transcriptional regulatory pathways that modulate their responses to Cd are less clear. Previously, we identified the bean (Phaseolus vulgaris) METAL RESPONSE ELEMENT-BINDING TRANSCRIPTION FACTOR1 (PvMTF-1) that responds to Cd and confers Cd tolerance in planta. Here, we demonstrate an upstream transcriptional regulation of the PvMTF-1 response to Cd. Using a yeast one-hybrid system, we cloned the bean ETHYLENE RESPONSE FACTOR15 (PvERF15) that binds to the PvMTF-1 promoter. PvERF15 was strongly induced by Cd stress, and its overexpression resulted in the up-regulation of PvMTF-1. DNA-protein interaction assays further revealed that PvERF15 binds directly to a 19-bp AC-rich element in the PvMTF-1 promoter. The AC-rich element serves as a positive element bound by PvERF15 to activate gene expression. More importantly, knockdown of PvERF15 by RNA interference resulted in reduced Cd-induced expression of PvMTF-1. PvERF15 seems to be involved in Cd tolerance, since knockdown of PvERF15 by RNA interference in bean leaf discs decreased Cd tolerance in a transient assay. Since PvERF15 is a component of the Cd stress transcriptional pathway in beans and PvMTF-1 is one of its downstream targets, our findings provide a PvERF15/PvMTF-1 transcriptional pathway and thereby contribute to the understanding of Cd stress transcriptional regulatory pathways in plants. PMID:28073984

  17. Arabidopsis chromatin remodeling factor PICKLE interacts with transcription factor HY5 to regulate hypocotyl cell elongation.

    PubMed

    Jing, Yanjun; Zhang, Dong; Wang, Xin; Tang, Weijiang; Wang, Wanqing; Huai, Junling; Xu, Gang; Chen, Dongqin; Li, Yunliang; Lin, Rongcheng

    2013-01-01

    Photomorphogenesis is a critical plant developmental process that involves light-mediated transcriptome changes, histone modifications, and inhibition of hypocotyl growth. However, the chromatin-based regulatory mechanism underlying this process remains largely unknown. Here, we identify ENHANCED PHOTOMORPHOGENIC1 (EPP1), previously known as PICKLE (PKL), an ATP-dependent chromatin remodeling factor of the chromodomain/helicase/DNA binding family, as a repressor of photomorphogenesis in Arabidopsis thaliana. We show that PKL/EPP1 expression is repressed by light in the hypocotyls in a photoreceptor-dependent manner. Furthermore, we reveal that the transcription factor ELONGATED HYPOCOTYL5 (HY5) binds to the promoters of cell elongation-related genes and recruits PKL/EPP1 through their physical interaction. PKL/EPP1 in turn negatively regulates HY5 by repressing trimethylation of histone H3 Lys 27 at the target loci, thereby regulating the expression of these genes and, thus, hypocotyl elongation. We also show that HY5 possesses transcriptional repression activity. Our study reveals a crucial role for a chromatin remodeling factor in repressing photomorphogenesis and demonstrates that transcription factor-mediated recruitment of chromatin-remodeling machinery is important for plant development in response to changing light environments.

  18. ATF2, a paradigm of the multifaceted regulation of transcription factors in biology and disease.

    PubMed

    Watson, Gregory; Ronai, Ze'ev; Lau, Eric

    2017-02-15

    Stringent transcriptional regulation is crucial for normal cellular biology and organismal development. Perturbations in the proper regulation of transcription factors can result in numerous pathologies, including cancer. Thus, understanding how transcription factors are regulated and how they are dysregulated in disease states is key to the therapeutic targeting of these factors and/or the pathways that they regulate. Activating transcription factor 2 (ATF2) has been studied in a number of developmental and pathological conditions. Recent findings have shed light on the transcriptional, post-transcriptional, and post-translational regulatory mechanisms that influence ATF2 function, and thus, the transcriptional programs coordinated by ATF2. Given our current knowledge of its multiple levels of regulation and function, ATF2 represents a paradigm for the mechanistic complexity that can regulate transcription factor function. Thus, increasing our understanding of the regulation and function of ATF2 will provide insights into fundamental regulatory mechanisms that influence how cells integrate extracellular and intracellular signals into a genomic response through transcription factors. Characterization of ATF2 dysfunction in the context of pathological conditions, particularly in cancer biology and response to therapy, will be important in understanding how pathways controlled by ATF2 or other transcription factors might be therapeutically exploited. In this review, we provide an overview of the currently known upstream regulators and downstream targets of ATF2.

  19. [Transcription Factors in Developmental Genetics and the Evolution of Higher Plants].

    PubMed

    Lutova, L A; Dodueva, I E; Lebedeva, M A; Tvorogova, V E

    2015-05-01

    Transcription factors play an essential role in controlling various developmental programs in plants, coordinating the action of any genetic network. Among the most important groups of plant transcription factors are the homeodomain-containing transcription factors, in particular, those belonging to the KNOX and WOX families, the functions of which are associated with regulation of the meristem activity, development of the aboveground and underground parts of plants, and control of embryogenesis. This review examines the role of KNOX and WOX transcription factors in various developmental programs, as well as in the evolutionary complication of the body plan in terrestrial plants.

  20. [Identification and analysis of the NAC transcription factor family in Triticum urartu].

    PubMed

    Jianhui, Ma; Doudou, Tong; Wenli, Zhang; Daijing, Zhang; Yun, Shao; Yun, Yang; Lina, Jiang

    2016-03-01

    NAC transcription factors are one of plant-specific gene families with diverse functions, and they regulate plant development, organ formation and stress responses. Currently, the researches about NAC transcription factors mainly focus on model plants, Arabidopsis and rice, whereas such studies are hardly reported in wheat and other plants. In this study, the full-length coding sequences (CDS) of NAC transcription factors from Triticum urartu (TuNAC) were identified through bioinformatic analysis. Their biological function, evolutionary relationship, gene duplication and chromosomal locations were further predicted and analyzed. The quantitative real-time PCR (qRT-PCR) assay was used to verify the expression pattern of abiotic-related TuNAC transcription factors. A total of 87 TuNAC transcription factors with full-length CDS were identified, which were divided into seven subgroups through phylogenetic analysis. Thirty-nine TuNAC transcription factors were located on seven chromosomes, and five pairs of TuNAC transcription factors were duplicated. The expression of four TuNAC transcription factors was consistently increased under diverse abiotic stress by qRT-PCR assay. Our study thus provides basis for further functional investigations of TuNAC transcription factors.

  1. Building gene expression signatures indicative of transcription factor activation to predict AOP modulation

    EPA Science Inventory

    Building gene expression signatures indicative of transcription factor activation to predict AOP modulation Adverse outcome pathways (AOPs) are a framework for predicting quantitative relationships between molecular initiatin...

  2. CXCL3 positively regulates adipogenic differentiation.

    PubMed

    Kusuyama, Joji; Komorizono, Anna; Bandow, Kenjiro; Ohnishi, Tomokazu; Matsuguchi, Tetsuya

    2016-10-01

    Chemokines are a family of cytokines inducing cell migration and inflammation. Recent reports have implicated the roles of chemokines in cell differentiation. However, little is known about the functional roles of chemokines in adipocytes. Here, we explored gene expression levels of chemokines and chemokine receptors during adipogenic differentiation. We have found that two chemokines, chemokine (C-X-C motif) ligand 3 (CXCL3) and CXCL13, as well as CXC chemokine receptor 2 (CXCR2), a CXCL3 receptor, are highly expressed in mature adipocytes. When 3T3-L1 cells and ST2 cells were induced to differentiate, both the number of lipid droplets and the expression levels of adipogenic markers were significantly promoted by the addition of CXCL3, but not CXCL13. Conversely, gene knockdown of either CXCL3 or CXCR2 by specific siRNA effectively inhibited the course of adipogenic differentiation. CXCL3 treatment of 3T3-L1 cells significantly induced the phosphorylation of ERK and c-jun N-terminal kinase (JNK). Furthermore, CXCL3-induced CCAAT-enhancer binding protein (C/EBP)β and δ expression was suppressed by both ERK and JNK-specific inhibitors. Furthermore, chromatin immunoprecipitation assay revealed functional binding of PPARγ2 within the cxcl3 promoter region. Taken together, these results have indicated that CXCL3 is a novel adipokine that facilitates adipogenesis in an autocrine and/or a paracrine manner through induction of c/ebpb and c/ebpd.

  3. Biochanin a promotes osteogenic but inhibits adipogenic differentiation: evidence with primary adipose-derived stem cells.

    PubMed

    Su, Shu-Jem; Yeh, Yao-Tsung; Su, Shu-Hui; Chang, Kee-Lung; Shyu, Huey-Wen; Chen, Kuan-Ming; Yeh, Hua

    2013-01-01

    Biochanin A has promising effects on bone formation in vivo, although the underlying mechanism remains unclear yet. This study therefore aimed to investigate whether biochanin A regulates osteogenic and adipogenic differentiation using primary adipose-derived stem cells. The effects of biochanin A (at a physiologically relevant concentration of 0.1-1 μM) were assessed in vitro using various approaches, including Oil red O staining, Nile red staining, alizarin red S staining, alkaline phosphatase (ALP) activity, flow cytometry, RT-PCR, and western blotting. The results showed that biochanin A significantly suppressed adipocyte differentiation, as demonstrated by the inhibition of cytoplasmic lipid droplet accumulation, along with the inhibition of peroxisome proliferator-activated receptor gamma (PPAR γ ), lipoprotein lipase (LPL), and leptin and osteopontin (OPN) mRNA expression, in a dose-dependent manner. On the other hand, treatment of cells with 0.3 μM biochanin A increased the mineralization and ALP activity, and stimulated the expression of the osteogenic marker genes ALP and osteocalcin (OCN). Furthermore, biochanin A induced the expression of runt-related transcription factor 2 (Runx2), osteoprotegerin (OPG), and Ras homolog gene family, member A (RhoA) proteins. These observations suggest that biochanin A prevents adipogenesis, enhances osteoblast differentiation in mesenchymal stem cells, and has beneficial regulatory effects in bone formation.

  4. Sequence analysis of bovine C/EBPδ gene and its adipogenic effects on fibroblasts.

    PubMed

    Wang, Hong; Cheng, Gong; Fu, Changzhen; Wang, Hongbao; Yang, Wucai; Wang, Hongcheng; Zan, Linsen

    2014-01-01

    CCAAT/enhancer binding protein delta (C/EBPδ), an important transcriptional factor, regulates cell growth, differentiation and adipogenesis in humans and mice. However, we lack of directive information on the effects of C/EBPδ gene in bovine cells. In the present study, we cloned the CDS areas of bovine C/EBPδ gene and predicted its sequence characteristics. Moreover, we constructed the recombinant adenovirus plasmids of bovine C/EBPδ gene and harvested the subsequent adenoviruses to infect bovine primary fibroblasts. Oil Red O staining results showed lipid droplets accumulated gradually in the adenoviruses treated fibroblasts. Time course real-time PCR results indicated that over-expression of exogenous C/EBPδ regulated the mRNA expression levels of some key adipogenic genes, herein, activated the C/EBPα expression, increased lipoprotein lipase and fatty acid binding protein 4 mRNA expression levels, whereas inhibited leptin receptor gene. In conclusion, the present study demonstrates that the elevated C/EBPδ can induce the adipogenesis in the fibroblasts of cattle.

  5. Heat shock factor-4 (HSF-4a) represses basal transcription through interaction with TFIIF.

    PubMed

    Frejtag, W; Zhang, Y; Dai, R; Anderson, M G; Mivechi, N F

    2001-05-04

    The heat shock transcription factors (HSFs) regulate the expression of heat shock proteins (hsps), which are critical for normal cellular proliferation and differentiation. One of the HSFs, HSF-4, contains two alternative splice variants, one of which possesses transcriptional repressor properties in vivo. This repressor isoform inhibits basal transcription of hsps 27 and 90 in tissue culture cells. The molecular mechanisms of HSF-4a isoform-mediated transcriptional repression is unknown. Here, we present evidence that HSF-4a inhibits basal transcription in vivo when it is artificially targeted to basal promoters via the DNA-binding domain of the yeast transcription factor, GAL4. By using a highly purified, reconstituted in vitro transcription system, we show that HSF-4a represses basal transcription at an early step during preinitiation complex assembly, as pre-assembled preinitiation complexes are refractory to the inhibitory effect on transcription. This repression occurs by the HSF-4a isoform, but not by the HSF-4b isoform, which we show is capable of activating transcription from a heat shock element-driven promoter in vitro. The repression of basal transcription by HSF-4a occurs through interaction with the basal transcription factor TFIIF. TFIIF interacts with a segment of HSF-4a that is required for the trimerization of HSF-4a, and deletion of this segment no longer inhibits basal transcription. These studies suggest that HSF-4a inhibits basal transcription both in vivo and in vitro. Furthermore, this is the first report identifying an interaction between a transcriptional repressor with the basal transcription factor TFIIF.

  6. Transcription Factor Networks as Targets for Therapeutic Intervention of Cancer: The Breast Cancer Paradigm

    PubMed Central

    Karamouzis, Michalis V; Papavassiliou, Athanasios G

    2011-01-01

    It has long been shown that many of the presently used anticancer drugs exert their effects partly through modulating the activity of vital transcription factors. The intricacy of transcriptional regulation still represents the main obstacle for the design of transcription factor–directed agents. Systematic mapping of tumor-specific transcriptional networks and application of new molecular tools have reinforced research interest and efforts in this venue. The case of breast cancer is discussed as a representative example. PMID:21912809

  7. Erythro-megakaryocytic transcription factors associated with hereditary anemia.

    PubMed

    Crispino, John D; Weiss, Mitchell J

    2014-05-15

    Most heritable anemias are caused by mutations in genes encoding globins, red blood cell (RBC) membrane proteins, or enzymes in the glycolytic and hexose monophosphate shunt pathways. A less common class of genetic anemia is caused by mutations that alter the functions of erythroid transcription factors (TFs). Many TF mutations associated with heritable anemia cause truncations or amino acid substitutions, resulting in the production of functionally altered proteins. Characterization of these mutant proteins has provided insights into mechanisms of gene expression, hematopoietic development, and human disease. Mutations within promoter or enhancer regions that disrupt TF binding to essential erythroid genes also cause anemia and heritable variations in RBC traits, such as fetal hemoglobin content. Defining the latter may have important clinical implications for de-repressing fetal hemoglobin synthesis to treat sickle cell anemia and β thalassemia. Functionally important alterations in genes encoding TFs or their cognate cis elements are likely to occur more frequently than currently appreciated, a hypothesis that will soon be tested through ongoing genome-wide association studies and the rapidly expanding use of global genome sequencing for human diagnostics. Findings obtained through such studies of RBCs and associated diseases are likely generalizable to many human diseases and quantitative traits.

  8. WRKY transcription factor genes in wild rice Oryza nivara.

    PubMed

    Xu, Hengjian; Watanabe, Kenneth A; Zhang, Liyuan; Shen, Qingxi J

    2016-08-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara.

  9. The NTT transcription factor promotes replum development in Arabidopsis fruits.

    PubMed

    Marsch-Martínez, Nayelli; Zúñiga-Mayo, Víctor M; Herrera-Ubaldo, Humberto; Ouwerkerk, Pieter B F; Pablo-Villa, Jeanneth; Lozano-Sotomayor, Paulina; Greco, Raffaella; Ballester, Patricia; Balanzá, Vicente; Kuijt, Suzanne J H; Meijer, Annemarie H; Pereira, Andy; Ferrándiz, Cristina; de Folter, Stefan

    2014-10-01

    Fruits are complex plant structures that nurture seeds and facilitate their dispersal. The Arabidopsis fruit is termed silique. It develops from the gynoecium, which has a stigma, a style, an ovary containing the ovules, and a gynophore. Externally, the ovary consists of two valves, and their margins lay adjacent to the replum, which is connected to the septum that internally divides the ovary. In this work we describe the role for the zinc-finger transcription factor NO TRANSMITTING TRACT (NTT) in replum development. NTT loss of function leads to reduced replum width and cell number, whereas increased expression promotes replum enlargement. NTT activates the homeobox gene BP, which, together with RPL, is important for replum development. In addition, the NTT protein is able to bind the BP promoter in yeast, and when this binding region is not present, NTT fails to activate BP in the replum. Furthermore, NTT interacts with itself and different proteins involved in fruit development: RPL, STM, FUL, SHP1 and SHP2 in yeast and in planta. Moreover, its genetic interactions provide further evidence about its biological relevance in replum development.

  10. Predicting DNA-Binding Specificities of Eukaryotic Transcription Factors

    PubMed Central

    Schröder, Adrian; Eichner, Johannes; Supper, Jochen; Eichner, Jonas; Wanke, Dierk; Henneges, Carsten; Zell, Andreas

    2010-01-01

    Today, annotated amino acid sequences of more and more transcription factors (TFs) are readily available. Quantitative information about their DNA-binding specificities, however, are hard to obtain. Position frequency matrices (PFMs), the most widely used models to represent binding specificities, are experimentally characterized only for a small fraction of all TFs. Even for some of the most intensively studied eukaryotic organisms (i.e., human, rat and mouse), roughly one-sixth of all proteins with annotated DNA-binding domain have been characterized experimentally. Here, we present a new method based on support vector regression for predicting quantitative DNA-binding specificities of TFs in different eukaryotic species. This approach estimates a quantitative measure for the PFM similarity of two proteins, based on various features derived from their protein sequences. The method is trained and tested on a dataset containing 1 239 TFs with known DNA-binding specificity, and used to predict specific DNA target motifs for 645 TFs with high accuracy. PMID:21152420

  11. Transcription factors that defend bacteria against reactive oxygen species

    PubMed Central

    Imlay, James A.

    2015-01-01

    Bacteria live in a toxic world in which their competitors excrete hydrogen peroxide or superoxide-generating redox-cycling compounds. They protect themselves by activating regulons controlled by the OxyR, PerR, and SoxR transcription factors. OxyR and PerR sense peroxide when it oxidizes key thiolate or iron moieties, respectively; they then induce overlapping sets of proteins that defend their vulnerable metalloenzymes. An additional role for OxyR in detecting electrophilic compounds is possible. In some non-enteric bacteria SoxR appears to control the synthesis and export of redox-cycling compounds, whereas in the enteric bacteria it defends the cell against the same agents. When these compounds oxidize its iron-sulfur cluster, SoxR induces proteins that exclude, excrete, or modify them. It also induces enzymes that defend the cell against the superoxide that such compounds make. Recent work has brought new insight to the biochemistry and physiology of these responses, and comparative studies have clarified their evolutionary histories. PMID:26070785

  12. The transcription factor FOXL2 in ovarian function and dysfunction.

    PubMed

    De Baere, Elfride; Fellous, Marc; Veitia, Reiner A

    2009-01-01

    The Blepharophimosis Ptosis Epicanthus-inversus Syndrome is a genetic disease characterized by complex eyelid malformations often associated with premature ovarian failure (POF). BPES is basically an autosomal dominant disease, due to mutations in the FOXL2 gene, which encodes a forkhead transcription factor. More than one hundred mutations of FOXL2 have been described to date. In agreement with the BPES phenotype, FOXL2 is expressed (though not exclusively) in the developing eyelids and in fetal and adult ovaries. Two mouse knock-out models have been produced. They recapitulate the BPES phenotype and have provided insights into the pathology. Loss-of-function mutations in FOXL2 are predicted to lead to BPES and POF, while hypomorphic mutations might lead to BPES without ovarian dysfunction. However, exceptions to the genotype-phenotype correlation have been described. To better understand the pathogenic effect of these mutations it is crucial to study the normal regulation of FOXL2 and its targets. We briefly address these aspects in this review and hope that basic research around FOXL2 will eventually lead to uncover new therapeutic avenues.

  13. Endothelial Gata5 transcription factor regulates blood pressure

    PubMed Central

    Messaoudi, Smail; He, Ying; Gutsol, Alex; Wight, Andrew; Hébert, Richard L.; Vilmundarson, Ragnar O.; Makrigiannis, Andrew P.; Chalmers, John; Hamet, Pavel; Tremblay, Johanne; McPherson, Ruth; Stewart, Alexandre F. R.; Touyz, Rhian M.; Nemer, Mona

    2015-01-01

    Despite its high prevalence and economic burden, the aetiology of human hypertension remains incompletely understood. Here we identify the transcription factor GATA5, as a new regulator of blood pressure (BP). GATA5 is expressed in microvascular endothelial cells and its genetic inactivation in mice (Gata5-null) leads to vascular endothelial dysfunction and hypertension. Endothelial-specific inactivation of Gata5 mimics the hypertensive phenotype of the Gata5-null mice, suggestive of an important role for GATA5 in endothelial homeostasis. Transcriptomic analysis of human microvascular endothelial cells with GATA5 knockdown reveals that GATA5 affects several genes and pathways critical for proper endothelial function, such as PKA and nitric oxide pathways. Consistent with a role in human hypertension, we report genetic association of variants at the GATA5 locus with hypertension traits in two large independent cohorts. Our results unveil an unsuspected link between GATA5 and a prominent human condition, and provide a new animal model for hypertension. PMID:26617239

  14. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis

    PubMed Central

    Rynes, Jan; Donohoe, Colin D.; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek

    2012-01-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins. PMID:22851689

  15. Transcription factor-based biosensors enlightened by the analyte

    PubMed Central

    Fernandez-López, Raul; Ruiz, Raul; de la Cruz, Fernando; Moncalián, Gabriel

    2015-01-01

    Whole cell biosensors (WCBs) have multiple applications for environmental monitoring, detecting a wide range of pollutants. WCBs depend critically on the sensitivity and specificity of the transcription factor (TF) used to detect the analyte. We describe the mechanism of regulation and the structural and biochemical properties of TF families that are used, or could be used, for the development of environmental WCBs. Focusing on the chemical nature of the analyte, we review TFs that respond to aromatic compounds (XylS-AraC, XylR-NtrC, and LysR), metal ions (MerR, ArsR, DtxR, Fur, and NikR) or antibiotics (TetR and MarR). Analyzing the structural domains involved in DNA recognition, we highlight the similitudes in the DNA binding domains (DBDs) of these TF families. Opposite to DBDs, the wide range of analytes detected by TFs results in a diversity of structures at the effector binding domain. The modular architecture of TFs opens the possibility of engineering TFs with hybrid DNA and effector specificities. Yet, the lack of a crisp correlation between structural domains and specific functions makes this a challenging task. PMID:26191047

  16. Nuclear import of a lipid-modified transcription factor

    PubMed Central

    Eisenhaber, Birgit; Sammer, Michaela; Lua, Wai Heng; Benetka, Wolfgang; Liew, Lai Ling; Yu, Weimiao; Lee, Hwee Kuan; Koranda, Manfred; Adhikari, Sharmila

    2011-01-01

    Lipid-modified transcription factors (TFs) are biomolecular oddities, since their reduced mobility and membrane attachment appear to contradict nuclear import required for their gene-regulatory function. NFAT5 isoform a (selected from an in silico screen for predicted lipid-modified TFs) is shown to contribute about half of all endogenous expression of human NFAT5 isoforms in the isotonic state. Wild-type NFAT5a protein is, indeed, myristoylated and palmitoylated on its transport to the plasmalemma via the endoplasmic reticulum and the Golgi. In contrast, its lipid anchor-deficient mutants as well as isoforms NFAT5b/c are diffusely localized in the cytoplasm without preference to vesicular structures. Quantitative/live microscopy shows the plasma membrane-bound fraction of NFAT5a moving into the nucleus upon osmotic stress despite the lipid anchoring. The mobilization mechanism is not based on proteolytic processing of the lipid-anchored N terminus but appears to involve reversible palmitoylation. Thus, NFAT5a is an example of TFs immobilized with lipid anchors at cyotoplasmic membranes in the resting state and that, nevertheless, can translocate into the nucleus upon signal induction. PMID:22071693

  17. Identification of Transcription Factors for Lineage-Specific ESC Differentiation

    PubMed Central

    Yamamizu, Kohei; Piao, Yulan; Sharov, Alexei A.; Zsiros, Veronika; Yu, Hong; Nakazawa, Kazu; Schlessinger, David; Ko, Minoru S.H.

    2013-01-01

    Summary A network of transcription factors (TFs) determines cell identity, but identity can be altered by overexpressing a combination of TFs. However, choosing and verifying combinations of TFs for specific cell differentiation have been daunting due to the large number of possible combinations of ∼2,000 TFs. Here, we report the identification of individual TFs for lineage-specific cell differentiation based on the correlation matrix of global gene expression profiles. The overexpression of identified TFs—Myod1, Mef2c, Esx1, Foxa1, Hnf4a, Gata2, Gata3, Myc, Elf5, Irf2, Elf1, Sfpi1, Ets1, Smad7, Nr2f1, Sox11, Dmrt1, Sox9, Foxg1, Sox2, or Ascl1—can direct efficient, specific, and rapid differentiation into myocytes, hepatocytes, blood cells, and neurons. Furthermore, transfection of synthetic mRNAs of TFs generates their appropriate target cells. These results demonstrate both the utility of this approach to identify potent TFs for cell differentiation, and the unanticipated capacity of single TFs directly guides differentiation to specific lineage fates. PMID:24371809

  18. Nanopore sensing of individual transcription factors bound to DNA

    NASA Astrophysics Data System (ADS)

    Squires, Allison; Atas, Evrim; Meller, Amit

    2015-06-01

    Transcription factor (TF)-DNA interactions are the primary control point in regulation of gene expression. Characterization of these interactions is essential for understanding genetic regulation of biological systems and developing novel therapies to treat cellular malfunctions. Solid-state nanopores are a highly versatile class of single-molecule sensors that can provide rich information about local properties of long charged biopolymers using the current blockage patterns generated during analyte translocation, and provide a novel platform for characterization of TF-DNA interactions. The DNA-binding domain of the TF Early Growth Response Protein 1 (EGR1), a prototypical zinc finger protein known as zif268, is used as a model system for this study. zif268 adopts two distinct bound conformations corresponding to specific and nonspecific binding, according to the local DNA sequence. Here we implement a solid-state nanopore platform for direct, label- and tether-free single-molecule detection of zif268 bound to DNA. We demonstrate detection of single zif268 TFs bound to DNA according to current blockage sublevels and duration of translocation through the nanopore. We further show that the nanopore can detect and discriminate both specific and nonspecific binding conformations of zif268 on DNA via the distinct current blockage patterns corresponding to each of these two known binding modes.

  19. Computational discovery of transcription factors associated with drug response

    PubMed Central

    Hanson, C; Cairns, J; Wang, L; Sinha, S

    2016-01-01

    This study integrates gene expression, genotype and drug response data in lymphoblastoid cell lines with transcription factor (TF)-binding sites from ENCODE (Encyclopedia of Genomic Elements) in a novel methodology that elucidates regulatory contexts associated with cytotoxicity. The method, GENMi (Gene Expression iN the Middle), postulates that single-nucleotide polymorphisms within TF-binding sites putatively modulate its regulatory activity, and the resulting variation in gene expression leads to variation in drug response. Analysis of 161 TFs and 24 treatments revealed 334 significantly associated TF–treatment pairs. Investigation of 20 selected pairs yielded literature support for 13 of these associations, often from studies where perturbation of the TF expression changes drug response. Experimental validation of significant GENMi associations in taxanes and anthracyclines across two triple-negative breast cancer cell lines corroborates our findings. The method is shown to be more sensitive than an alternative, genome-wide association study-based approach that does not use gene expression. These results demonstrate the utility of GENMi in identifying TFs that influence drug response and provide a number of candidates for further testing. PMID:26503816

  20. WRKY transcription factor genes in wild rice Oryza nivara

    PubMed Central

    Xu, Hengjian; Watanabe, Kenneth A.; Zhang, Liyuan; Shen, Qingxi J.

    2016-01-01

    The WRKY transcription factor family is one of the largest gene families involved in plant development and stress response. Although many WRKY genes have been studied in cultivated rice (Oryza sativa), the WRKY genes in the wild rice species Oryza nivara, the direct progenitor of O. sativa, have not been studied. O. nivara shows abundant genetic diversity and elite drought and disease resistance features. Herein, a total of 97 O. nivara WRKY (OnWRKY) genes were identified. RNA-sequencing demonstrates that OnWRKY genes were generally expressed at higher levels in the roots of 30-day-old plants. Bioinformatic analyses suggest that most of OnWRKY genes could be induced by salicylic acid, abscisic acid, and drought. Abundant potential MAPK phosphorylation sites in OnWRKYs suggest that activities of most OnWRKYs can be regulated by phosphorylation. Phylogenetic analyses of OnWRKYs support a novel hypothesis that ancient group IIc OnWRKYs were the original ancestors of only some group IIc and group III WRKYs. The analyses also offer strong support that group IIc OnWRKYs containing the HVE sequence in their zinc finger motifs were derived from group Ia WRKYs. This study provides a solid foundation for the study of the evolution and functions of WRKY genes in O. nivara. PMID:27345721

  1. Stochastic model of transcription factor-regulated gene expression

    NASA Astrophysics Data System (ADS)

    Karmakar, Rajesh; Bose, Indrani

    2006-09-01

    We consider a stochastic model of transcription factor (TF)-regulated gene expression. The model describes two genes, gene A and gene B, which synthesize the TFs and the target gene proteins, respectively. We show through analytic calculations that the TF fluctuations have a significant effect on the distribution of the target gene protein levels when the mean TF level falls in the highest sensitive region of the dose-response curve. We further study the effect of reducing the copy number of gene A from two to one. The enhanced TF fluctuations yield results different from those in the deterministic case. The probability that the target gene protein level exceeds a threshold value is calculated with the knowledge of the probability density functions associated with the TF and target gene protein levels. Numerical simulation results for a more detailed stochastic model are shown to be in agreement with those obtained through analytic calculations. The relevance of these results in the context of the genetic disorder haploinsufficiency is pointed out. Some experimental observations on the haploinsufficiency of the tumour suppressor gene, Nkx 3.1, are explained with the help of the stochastic model of TF-regulated gene expression.

  2. FOXL2: a central transcription factor of the ovary.

    PubMed

    Georges, Adrien; Auguste, Aurelie; Bessière, Laurianne; Vanet, Anne; Todeschini, Anne-Laure; Veitia, Reiner A

    2014-02-01

    Forkhead box L2 (FOXL2) is a gene encoding a forkhead transcription factor preferentially expressed in the ovary, the eyelids and the pituitary gland. Its germline mutations are responsible for the blepharophimosis ptosis epicanthus inversus syndrome, which includes eyelid and mild craniofacial defects associated with primary ovarian insufficiency. Recent studies have shown the involvement of FOXL2 in virtually all stages of ovarian development and function, as well as in granulosa cell (GC)-related pathologies. A central role of FOXL2 is the lifetime maintenance of GC identity through the repression of testis-specific genes. Recently, a highly recurrent somatic FOXL2 mutation leading to the p.C134W subtitution has been linked to the development of GC tumours in the adult, which account for up to 5% of ovarian malignancies. In this review, we summarise data on FOXL2 modulators, targets, partners and post-translational modifications. Despite the progresses made thus far, a better understanding of the impact of FOXL2 mutations and of the molecular aspects of its function is required to rationalise its implication in various pathophysiological processes.

  3. Sugarcane transgenics expressing MYB transcription factors show improved glucose release

    DOE PAGES

    Poovaiah, Charleson R.; Bewg, William P.; Lan, Wu; ...

    2016-07-15

    In this study, sugarcane, a tropical C4 perennial crop, is capable of producing 30-100 tons or more of biomass per hectare annually. The lignocellulosic residue remaining after sugar extraction is currently underutilized and can provide a significant source of biomass for the production of second-generation bioethanol. As a result, MYB31 and MYB42 were cloned from maize and expressed in sugarcane with and without the UTR sequences. The cloned sequences were 98 and 99 % identical to the published nucleotide sequences. The inclusion of the UTR sequences did not affect any of the parameters tested. There was little difference in plantmore » height and the number of internodes of the MYB-overexpressing sugarcane plants when compared with controls. MYB transgene expression determined by qPCR exhibited continued expression in young and maturing internodes. MYB31 downregulated more genes within the lignin biosynthetic pathway than MYB42. MYB31 and MYB42 expression resulted in decreased lignin content in some lines. All MYB42 plants further analyzed showed significant increases in glucose release by enzymatic hydrolysis in 72 h, whereas only two MYB31 plants released more glucose than control plants. This correlated directly with a significant decrease in acid-insoluble lignin. Soluble sucrose content of the MYB42 transgenic plants did not vary compared to control plants. In conclusion, this study demonstrates the use of MYB transcription factors to improve the production of bioethanol from sugarcane bagasse remaining after sugar extraction.« less

  4. Oncogenicity of the developmental transcription factor Sox9

    PubMed Central

    Matheu, Ander; Collado, Manuel; Wise, Clare; Manterola, Lorea; Cekaite, Lina; Tye, Angela J.; Canamero, Marta; Bujanda, Luis; Schedl, Andreas; Cheah, Kathryn S.E.; Skotheim, Rolf I.; Lothe, Ragnhild A.; de Munain, Adolfo López; Briscoe, James; Serrano, Manuel; Lovell-Badge, Robin

    2012-01-01

    SOX9, a high mobility group (HMG) box transcription factor, plays critical roles during embryogenesis and its activity is required for development, differentiation and lineage commitment in various tissues including the intestinal epithelium. Here, we present functional and clinical data of a broadly important role for SOX9 in tumorigenesis. SOX9 was overexpressed in a wide range of human cancers, where its expression correlated with malignant character and progression. Gain of SOX9 copy number is detected in some primary colorectal cancers. SOX9 exhibited several pro-oncogenic properties, including the ability to promote proliferation, inhibit senescence and collaborate with other oncogenes in neoplastic transformation. In primary MEFs and colorectal cancer cells, SOX9 expression facilitated tumor growth and progression whilst its inactivation reduced tumorigenicity. Mechanistically, we have found that Sox9 directly binds and activates the promoter of the polycomb protein Bmi1, whose upregulation represses the tumor suppressor Ink4a/Arf locus. In agreement with this, human colorectal cancers showed a positive correlation between expression levels of SOX9 and BMI1 and a negative correlation between SOX9 and ARF in clinical samples. Taken together, our findings provide direct mechanistic evidence of the involvement of SOX9 in neoplastic pathobiology, particularly in colorectal cancer. PMID:22246670

  5. Resurrecting the role of transcription factor change in developmental evolution.

    PubMed

    Lynch, Vincent J; Wagner, Günter P

    2008-09-01

    A long-standing question in evolutionary and developmental biology concerns the relative contribution of cis-regulatory and protein changes to developmental evolution. Central to this argument is which mutations generate evolutionarily relevant phenotypic variation? A review of the growing body of evolutionary and developmental literature supports the notion that many developmentally relevant differences occur in the cis-regulatory regions of protein-coding genes, generally to the exclusion of changes in the protein-coding region of genes. However, accumulating experimental evidence demonstrates that many of the arguments against a role for proteins in the evolution of gene regulation, and the developmental evolution in general, are no longer supported and there is an increasing number of cases in which transcription factor protein changes have been demonstrated in evolution. Here, we review the evidence that cis-regulatory evolution is an important driver of phenotypic evolution and provide examples of protein-mediated developmental evolution. Finally, we present an argument that the evolution of proteins may play a more substantial, but thus far underestimated, role in developmental evolution.

  6. Regulation of transcription factors on sexual dimorphism of fig wasps.

    PubMed

    Sun, Bao-Fa; Li, Yong-Xing; Jia, Ling-Yi; Niu, Li-Hua; Murphy, Robert W; Zhang, Peng; He, Shunmin; Huang, Da-Wei

    2015-06-02

    Fig wasps exhibit extreme intraspecific morphological divergence in the wings, compound eyes, antennae, body color, and size. Corresponding to this, behaviors and lifestyles between two sexes are also different: females can emerge from fig and fly to other fig tree to oviposit and pollinate, while males live inside fig for all their lifetime. Genetic regulation may drive these extreme intraspecific morphological and behavioral divergence. Transcription factors (TFs) involved in morphological development and physiological activity may exhibit sex-specific expressions. Herein, we detect 865 TFs by using genomic and transcriptomic data of the fig wasp Ceratosolen solmsi. Analyses of transcriptomic data indicated that up-regulated TFs in females show significant enrichment in development of the wing, eye and antenna in all stages, from larva to adult. Meanwhile, TFs related to the development of a variety of organs display sex-specific patterns of expression in the adults and these may contribute significantly to their sexual dimorphism. In addition, up-regulated TFs in adult males exhibit enrichment in genitalia development and circadian rhythm, which correspond with mating and protandry. This finding is consistent with their sex-specific behaviors. In conclusion, our results strongly indicate that TFs play important roles in the sexual dimorphism of fig wasps.

  7. VEGF promotes the transcription of the human PRL-3 gene in HUVEC through transcription factor MEF2C.

    PubMed

    Xu, Jianliang; Cao, Shaoxian; Wang, Lu; Xu, Rui; Chen, Gong; Xu, Qiang

    2011-01-01

    Phosphatase of regenerating liver 3 (PRL-3) is known to be overexpressed in many tumors, and its transcript level is high in the vasculature and endothelial cells of malignant tumor tissue. However, the mechanism(s) underlying its enhanced expression and its function in endothelial cells remain unknown. Here, we report that vascular endothelial growth factor (VEGF) can induce PRL-3 transcription in human umbilical vein endothelial cells (HUVEC). An analysis of its 5'UTR revealed that PRL-3 transcription is initiated from two distinct sites, which results in the formation of the two transcripts, PRL-3-iso1 and PRL-3-iso2, but only the latter is up-regulated in HUVEC by VEGF. The PRL-3-iso2 promoter region includes two functional MEF2 (myocyte enhancer factor2) binding sites. The over-expression of the constitutively active form of MEF2C promotes the abundance of the PRL-3-iso2 transcript in a number of human cell lines. The siRNA-induced knockdown of MEF2C abolished the stimulative effect of VEGF on PRL-3 transcript in HUVEC, indicating that the VEGF-induced promotion of PRL-3 expression requires the presence of MEF2C. Finally, blocking PRL-3 activity or expression suppresses tube formation by HUVEC. We suggest that PRL-3 functions downstream of the VEGF/MEF2C pathway in endothelial cells and may play an important role in tumor angiogenesis.

  8. Coexpression of osteogenic and adipogenic differentiation markers in selected subpopulations of primary human mesenchymal progenitor cells.

    PubMed

    Ponce, M L; Koelling, S; Kluever, A; Heinemann, D E H; Miosge, N; Wulf, G; Frosch, K-H; Schütze, N; Hufner, M; Siggelkow, H

    2008-07-01

    Knowledge of the basic mechanisms controlling osteogenesis and adipogenesis might provide new insights into the prevention of osteoporosis and age-related osteopenia. With the help of magnetic cell sorting and fluorescence activated cell sorting (FACS), osteoblastic subpopulations of mesenchymal progenitor cells were characterized. Alkaline phosphatase (AP) negative cells expressed low levels of osteoblastic and adipocytic markers. AP positive cells expressed adipocytic markers more strongly than the AP negative cell populations, thus suggesting that committed osteoblasts exhibit a greater adipogenic potential. AP negative cells differentiated to the mature osteoblastic phenotype, as demonstrated by increased AP-activity and osteocalcin secretion under standard osteogenic culture conditions. Surprisingly, this was accompanied by increased expression of adipocytic gene markers such as peroxisome proliferator-activated receptor-gamma2, lipoprotein lipase and fatty acid binding protein. The induction of adipogenic markers was suppressed by transforming growth factor-beta1 (TGF-beta1) and promoted by bone morphogenetic protein 2 (BMP-2). Osteogenic culture conditions including BMP-2 induced both the formation of mineralized nodules and cytoplasmic lipid vacuoles. Upon immunogold electron microscopic analysis, osteoblastic and adipogenic marker proteins were detectable in the same cell. Our results suggest that osteogenic and adipogenic differentiation in human mesenchymal progenitor cells might not be exclusively reciprocal, but rather, a parallel event until late during osteoblast development.

  9. Arsenic trioxide and microRNA-204 display contrary effects on regulating adipogenic and osteogenic differentiation of mesenchymal stem cells in aplastic anemia.

    PubMed

    Zhao, Junmei; Wang, Chao; Song, Yongping; Fang, Baijun

    2014-10-01

    Our previous studies have demonstrated that arsenic trioxide (ATO) had the clinical efficacy in treating patients with aplastic anemia (AA). However, the mechanisms remain to be elucidated. The important components of the bone marrow hematopoietic microenvironment, bone marrow mesenchymal stem cells (BMSCs), are often altered in AA patients. In this study, it was found that AA BMSCs were prone to be induced into adipocytes rather than osteoblasts. ATO treatment can at least partially restore the differentiation imbalance of AA BMSCs. We further identified miR-204 as a key regulator in AA BMSC differentiation. Luciferase reporter assay showed that miR-204 could directly bind to the 3'-untranslated region of Runx2 mRNA, a key transcription factor regulating osteogenesis. Moreover, adipogenic differentiation was promoted and osteogenic differentiation was inhibited in miR-204 over-expressed cells, whereas osteogenesis was enhanced and adipocyte formation was inhibited in cells that lost miR-204 function, which suggested its endogenous function. Together we showed that ATO could inhibit adipogenic differentiation, but promote osteogenic differentiation in AA BMSCs, providing a possible explanation for ATO clinical efficacy in AA patients. MiR-204 plays a key role in regulating BMSCs differentiation, and down-regulating miR-204 expression might be a novel strategy to treat AA.

  10. Positional cloning of zinc finger domain transcription factor Zfp69, a candidate gene for obesity-associated diabetes contributed by mouse locus Nidd/SJL.

    PubMed

    Scherneck, Stephan; Nestler, Matthias; Vogel, Heike; Blüher, Matthias; Block, Marcel-Dominique; Berriel Diaz, Mauricio; Herzig, Stephan; Schulz, Nadja; Teichert, Marko; Tischer, Sina; Al-Hasani, Hadi; Kluge, Reinhart; Schürmann, Annette; Joost, Hans-Georg

    2009-07-01

    Polygenic type 2 diabetes in mouse models is associated with obesity and results from a combination of adipogenic and diabetogenic alleles. Here we report the identification of a candidate gene for the diabetogenic effect of a QTL (Nidd/SJL, Nidd1) contributed by the SJL, NON, and NZB strains in outcross populations with New Zealand Obese (NZO) mice. A critical interval of distal chromosome 4 (2.1 Mbp) conferring the diabetic phenotype was identified by interval-specific congenic introgression of SJL into diabetes-resistant C57BL/6J, and subsequent reporter cross with NZO. Analysis of the 10 genes in the critical interval by sequencing, qRT-PCR, and RACE-PCR revealed a striking allelic variance of Zfp69 encoding zinc finger domain transcription factor 69. In NZO and C57BL/6J, a retrotransposon (IAPLTR1a) in intron 3 disrupted the gene by formation of a truncated mRNA that lacked the coding sequence for the KRAB (Krüppel-associated box) and Znf-C2H2 domains of Zfp69, whereas the diabetogenic SJL, NON, and NZB alleles generated a normal mRNA. When combined with the B6.V-Lep(ob) background, the diabetogenic Zfp69(SJL) allele produced hyperglycaemia, reduced gonadal fat, and increased plasma and liver triglycerides. mRNA levels of the human orthologue of Zfp69, ZNF642, were significantly increased in adipose tissue from patients with type 2 diabetes. We conclude that Zfp69 is the most likely candidate for the diabetogenic effect of Nidd/SJL, and that retrotransposon IAPLTR1a contributes substantially to the genetic heterogeneity of mouse strains. Expression of the transcription factor in adipose tissue may play a role in the pathogenesis of type 2 diabetes.

  11. Transcription factor profiling shows new ways towards new treatment options of cutaneous T cell lymphomas.

    PubMed

    Döbbeling, Udo

    2007-06-01

    Most oncogenes encode activators of transcription factors or transcription factors themselves. Transcription factors that are induced by growth stimuli are, in contrast to transcription factors that regulate house keeping genes, tightly regulated and only active, when a stimulus (e.g. cytokines or other growth factors) is given. Examples of such transcription factors are members of the jun, fos, myc, NFkB and STAT gene families. In cancer cells this regulation is interrupted, resulting in constitutive activities of transcription factors that are normally silent. This in turn results in the increased expression of target genes that are necessary for growth and protection from apoptosis. Since inducible transcription factors are activated by specific pathways, the identification of unusual constitutively active transcription factors also identifies the involved signal transduction pathway. Inhibitors of the components of these pathways may be effective anti-cancer agents, as they interrupt the abnormal signalling and in cancer cells. We applied this strategy for two forms of cutaneous T cell lymphomas and identified several groups of agents that may be the prototypes of new drugs to fight these diseases.

  12. Unusually Situated Binding Sites for Bacterial Transcription Factors Can Have Hidden Functionality

    PubMed Central

    Haycocks, James R. J.; Grainger, David C.

    2016-01-01

    A commonly accepted paradigm of molecular biology is that transcription factors control gene expression by binding sites at the 5' end of a gene. However, there is growing evidence that transcription factor targets can occur within genes or between convergent genes. In this work, we have investigated one such target for the cyclic AMP receptor protein (CRP) of enterotoxigenic Escherichia coli. We show that CRP binds between two convergent genes. When bound, CRP regulates transcription of a small open reading frame, which we term aatS, embedded within one of the adjacent genes. Our work demonstrates that non-canonical sites of transcription factor binding can have hidden functionality. PMID:27258043

  13. Modulation of keratin in adhesion, proliferation, adipogenic, and osteogenic differentiation of porcine adipose-derived stem cells.

    PubMed

    Wu, Yen-Lin; Lin, Che-Wei; Cheng, Nai-Chen; Yang, Kai-Chiang; Yu, Jiashing

    2017-01-01

    Recently, keratin attracts tremendous interest because of its intrinsic ability to interact with different cells. It has the potential to serve as a controllable extracellular matrix protein that can be used to demonstrate cell mechanism and cell-matrix interaction. However, there have been relatively few studies on the effects of keratin on stem cells. In the present work, we study the effects of human keratin on porcine adipose-derived stem cells (pASCs) and a series of selective cell lines: 3T3 fibroblasts, Madin-Darby canine kidney (MDCK) cells, and MG63 osteoblasts. Relative to un-treated culture plate, our results showed that keratin coating substrates promote cell adhesion and proliferation to above cell lines. Keratin also improved pASCs adhesion, proliferation, and enhanced cell viability. Evaluation of genetic markers showed that adipogenic and osteogenic differentiations of pASCs can be successfully induced, thus demonstrating that keratin did not influence the stemness of pASCs. Furthermore, keratin improved adipogenic differentiations of pASCs in terms of up-regulations in lipoprotein lipase, peroxisome proliferator-activated receptor gamma, and CCAAT-enhancer-binding protein alpha. The osteogenic markers type I collagen, runt-related transcription factor 2, and vitamin D receptor were also upregulated when pASCs cultured on keratin substrates. Therefore, keratin can serve as a biological derived material for surface modification and scaffold fabrication for biomedical purpose. The combination of keratin with stem cells may be a potential candidate for tissue repair in the field of regenerative medicine. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 180-192, 2017.

  14. Ets transcription factors bind and transactivate the core promoter of the von Willebrand factor gene.

    PubMed

    Schwachtgen, J L; Janel, N; Barek, L; Duterque-Coquillaud, M; Ghysdael, J; Meyer, D; Kerbiriou-Nabias, D

    1997-12-18

    von Willebrand factor (vWF) gene expression is restricted to endothelial cells and megakaryocytes. Previous results demonstrated that basal transcription of the human vWF gene is mediated through a promoter located between base pairs -89 and +19 (cap site: +1) which is functional in endothelial and non endothelial cells. Two DNA repeats TTTCCTTT correlating with inverted consensus binding sites for the Ets family of transcription factors are present in the -56/-36 sequence. In order to analyse whether these DNA elements are involved in transcription, human umbilical vein endothelial cells (HUVEC), bovine calf pulmonary endothelial cell line (CPAE), HeLa and COS cells were transfected with constructs containing deletions of the -89/+19 fragment, linked to the chloramphenicol acetyl transferase (CAT) reporter gene. The -60/+19 region exhibits significant promoter activity in HUVEC and CPAE cells only. The -42/+19 fragment is not active. Mutations of the -60/+19 promoter fragment in the 5' (-56/-49) Ets binding site abolish transcription in endothelial cells whereas mutations in the 3' (-43/-36) site does not. The -60/-33 fragment forms three complexes with proteins from HUVEC nuclear extracts in electrophoretic mobility shift assay which are dependent on the presence of the 5' Ets binding site. Binding of recombinant Ets-1 protein to the -60/-33 fragment gives a complex which also depends on the 5' site. The -60/+19 vWF gene core promoter is transactivated in HeLa cells by cotransfecting with Ets-1 or Erg (Ets-related gene) expression plasmids. In contrast to the wild type construct, transcription of the 5' site mutants is not increased by these expressed proteins. The results indicate that the promoter activity of the -60/+19 region of the vWF gene depends on transcription factors of the Ets family of which several members like Ets-1, Ets-2 and Erg are expressed in endothelium. Cotransfection of Ets-1 and Erg expression plasmids is sufficient to induce the -60/+19 v

  15. Developmental expression patterns of candidate co-factors for vertebrate Six family transcription factors

    PubMed Central

    Neilson, Karen M.; Pignoni, Francesca; Yan, Bo; Moody, Sally A.

    2010-01-01

    Six family transcription factors play important roles in craniofacial development. Their transcriptional activity can be modified by co-factor proteins. Two Six genes and one co-factor gene (Eya1) are involved in the human Branchio-otic (BO) and Branchio-otic-renal (BOR) syndromes. However, mutations in Six and Eya genes only account for about half of these patients. To discover potential new causative genes, we searched the Xenopus genome for orthologues of Drosophila co-factor proteins that interact with the fly Six-related factor, SO. We identified 33 Xenopus genes with high sequence identity to 20 of the 25 fly SO-interacting proteins. We provide the developmental expression patterns of the Xenopus orthologues for 11 of the fly genes, and demonstrate that all are expressed in developing craniofacial tissues with at least partial overlap with Six1/Six2. We speculate that these genes may function as Six-interacting partners with important roles in vertebrate craniofacial development and perhaps congenital syndromes. PMID:21089078

  16. Complex Patterns of Association between Pleiotropy and Transcription Factor Evolution

    PubMed Central

    Chesmore, Kevin N.; Bartlett, Jacquelaine; Cheng, Chao; Williams, Scott M.

    2016-01-01

    Pleiotropy has been claimed to constrain gene evolution but specific mechanisms and extent of these constraints have been difficult to demonstrate. The expansion of molecular data makes it possible to investigate these pleiotropic effects. Few classes of genes have been characterized as intensely as human transcription factors (TFs). We therefore analyzed the evolutionary rates of full TF proteins, along with their DNA binding domains and protein-protein interacting domains (PID) in light of the degree of pleiotropy, measured by the number of TF–TF interactions, or the number of DNA-binding targets. Data were extracted from the ENCODE Chip-Seq dataset, the String v 9.2 database, and the NHGRI GWAS catalog. Evolutionary rates of proteins and domains were calculated using the PAML CodeML package. Our analysis shows that the numbers of TF-TF interactions and DNA binding targets associated with constrained gene evolution; however, the constraint caused by the number of DNA binding targets was restricted to the DNA binding domains, whereas the number of TF-TF interactions constrained the full protein and did so more strongly. Additionally, we found a positive correlation between the number of protein–PIDs and the evolutionary rates of the protein–PIDs. These findings show that not only does pleiotropy associate with constrained protein evolution but the constraint differs by domain function. Finally, we show that GWAS associated TF genes are more highly pleiotropic. The GWAS data illustrates that mutations in highly pleiotropic genes are more likely to be associated with disease phenotypes. PMID:27635052

  17. A MYB transcription factor controls flower color in soybean.

    PubMed

    Takahashi, Ryoji; Yamagishi, Noriko; Yoshikawa, Nobuyuki

    2013-01-01

    Purple-blue flower of soybean (Glycine max [L.] Merr.) is controlled by the W2 locus. Previous studies revealed that a MYB transcription factor gene GmMYB-G20-1 was located at a position similar to the W2 gene and that a base substitution generated a stop codon in the MYB domains of 2 soybean lines with purple-blue flowers. This study was conducted to confirm the relationship between GmMYB-G20-1 and the W2 gene. Cleaved amplified polymorphic sequence analysis to detect the base substitution suggested that a similar mutation occurred in 2 other soybean lines having purple-blue flowers, 037-E-8, and Yogetsu 1-blue. Thus, all genotypes having purple-blue flowers had identical base substitutions. To verify the function of GmMYB-G20-1, apple latent spherical virus (ALSV) vectors were constructed to perform virus-induced gene silencing of GmMYB-G20-1. A cultivar Harosoy with purple flowers (W2W2) was infected by the empty ALSV vector (wtALSV) or the GmMYB-G20-1-ALSV vector containing a fragment (nucleotide position 685-885) of GmMYB-G20-1. Plants infected by empty vectors had only purple flowers. In contrast, most flowers of plants infected with GmMYB-G20-1-ALSV had irregular gray/blue sectors in flower petals and some of the flowers had almost gray/blue petals. These results strongly suggest that silencing of GmMYB-G20-1 can alter flower color and that it may correspond to the W2 gene.

  18. Prediction of synergistic transcription factors by function conservation

    PubMed Central

    Hu, Zihua; Hu, Boyu; Collins, James F

    2007-01-01

    Background Previous methods employed for the identification of synergistic transcription factors (TFs) are based on either TF enrichment from co-regulated genes or phylogenetic footprinting. Despite the success of these methods, both have limitations. Results We propose a new strategy to identify synergistic TFs by function conservation. Rather than aligning the regulatory sequences from orthologous genes and then identifying conserved TF binding sites (TFBSs) in the alignment, we developed computational approaches to implement the novel strategy. These methods include combinatorial TFBS enrichment utilizing distance constraints followed by enrichment of overlapping orthologous genes from human and mouse, whose regulatory sequences contain the enriched TFBS combinations. Subsequently, integration of function conservation from both TFBS and overlapping orthologous genes was achieved by correlation analyses. These techniques have been used for genome-wide promoter analyses, which have led to the identification of 51 homotypic TF combinations; the validity of these approaches has been exemplified by both known TF-TF interactions and function coherence analyses. We further provide computational evidence that our novel methods were able to identify synergistic TFs to a much greater extent than phylogenetic footprinting. Conclusion Function conservation based on the concordance of combinatorial TFBS enrichment along with enrichment of overlapping orthologous genes has been proven to be a successful means for the identification of synergistic TFs. This approach avoids the limitations of phylogenetic footprinting as it does not depend upon sequence alignment. It utilizes existing gene annotation data, such as those available in GO, thus providing an alternative method for functional TF discovery and annotation. PMID:18053230

  19. Analysis of mitochondrial transcription factor A SNPs in alcoholic cirrhosis

    PubMed Central

    TANG, CHUN; LIU, HONGMING; TANG, YONGLIANG; GUO, YONG; LIANG, XIANCHUN; GUO, LIPING; PI, RUXIAN; YANG, JUNTAO

    2014-01-01

    Genetic susceptibility to alcoholic cirrhosis (AC) exists. We previously demonstrated hepatic mitochondrial DNA (mtDNA) damage in patients with AC compared with chronic alcoholics without cirrhosis. Mitochondrial transcription factor A (mtTFA) is central to mtDNA expression regulation and repair; however, it is unclear whether there are specific mtTFA single nucleotide polymorphisms (SNPs) in patients with AC and whether they affect mtDNA repair. In the present study, we screened mtTFA SNPs in patients with AC and analyzed their impact on the copy number of mtDNA in AC. A total of 50 patients with AC, 50 alcoholics without AC and 50 normal subjects were enrolled in the study. SNPs of full-length mtTFA were analyzed using the polymerase chain reaction (PCR) combined with gene sequencing. The hepatic mtTFA mRNA and mtDNA copy numbers were measured using quantitative PCR (qPCR), and mtTFA protein was measured using western blot analysis. A total of 18 mtTFA SNPs specific to patients with AC with frequencies >10% were identified. Two were located in the coding region and 16 were identified in non-coding regions. Conversely, there were five SNPs that were only present in patients with AC and normal subjects and had a frequency >10%. In the AC group, the hepatic mtTFA mRNA and protein levels were significantly lower than those in the other two groups. Moreover, the hepatic mtDNA copy number was significantly lower in the AC group than in the controls and alcoholics without AC. Based on these data, we conclude that AC-specific mtTFA SNPs may be responsible for the observed reductions in mtTFA mRNA, protein levels and mtDNA copy number and they may also increase the susceptibility to AC. PMID:24348767

  20. Sugarcane transgenics expressing MYB transcription factors show improved glucose release

    SciTech Connect

    Poovaiah, Charleson R.; Bewg, William P.; Lan, Wu; Ralph, John; Coleman, Heather D.

    2016-07-15

    In this study, sugarcane, a tropical C4 perennial crop, is capable of producing 30-100 tons or more of biomass per hectare annually. The lignocellulosic residue remaining after sugar extraction is currently underutilized and can provide a significant source of biomass for the production of second-generation bioethanol. As a result, MYB31 and MYB42 were cloned from maize and expressed in sugarcane with and without the UTR sequences. The cloned sequences were 98 and 99 % identical to the published nucleotide sequences. The inclusion of the UTR sequences did not affect any of the parameters tested. There was little difference in plant height and the number of internodes of the MYB-overexpressing sugarcane plants when compared with controls. MYB transgene expression determined by qPCR exhibited continued expression in young and maturing internodes. MYB31 downregulated more genes within the lignin biosynthetic pathway than MYB42. MYB31 and MYB42 expression resulted in decreased lignin content in some lines. All MYB42 plants further analyzed showed significant increases in glucose release by enzymatic hydrolysis in 72 h, whereas only two MYB31 plants released more glucose than control plants. This correlated directly with a significant decrease in acid-insoluble lignin. Soluble sucrose content of the MYB42 transgenic plants did not vary compared to control plants. In conclusion, this study demonstrates the use of MYB transcription factors to improve the production of bioethanol from sugarcane bagasse remaining after sugar extraction.

  1. Facilitated diffusion framework for transcription factor search with conformational changes

    NASA Astrophysics Data System (ADS)

    Cartailler, Jérôme; Reingruber, Jürgen

    2015-07-01

    Cellular responses often require the fast activation or repression of specific genes, which depends on transcription factors (TFs) that have to quickly find the promoters of these genes within a large genome. TFs search for their DNA promoter target by alternating between bulk diffusion and sliding along the DNA, a mechanism known as facilitated diffusion. We study a facilitated diffusion framework with switching between three search modes: a bulk mode and two sliding modes triggered by conformational changes between two protein conformations. In one conformation (search mode) the TF interacts unspecifically with the DNA backbone resulting in fast sliding. In the other conformation (recognition mode) it interacts specifically and strongly with DNA base pairs leading to slow displacement. From the bulk, a TF associates with the DNA at a random position that is correlated with the previous dissociation point, which implicitly is a function of the DNA structure. The target affinity depends on the conformation. We derive exact expressions for the mean first passage time (MFPT) to bind to the promoter and the conditional probability to bind before detaching when arriving at the promoter site. We systematically explore the parameter space and compare various search scenarios. We compare our results with experimental data for the dimeric Lac repressor search in E. coli bacteria. We find that a coiled DNA conformation is absolutely necessary for a fast MFPT. With frequent spontaneous conformational changes, a fast search time is achieved even when a TF becomes immobilized in the recognition state due to the specific bindings. We find a MFPT compatible with experimental data in presence of a specific TF-DNA interaction energy that has a Gaussian distribution with a large variance.

  2. Microbiota regulate intestinal epithelial gene expression by suppressing the transcription factor Hepatocyte nuclear factor 4 alpha.

    PubMed

    Davison, James M; Lickwar, Colin R; Song, Lingyun; Breton, Ghislain; Crawford, Gregory E; Rawls, John F

    2017-04-06

    Microbiota influence diverse aspects of intestinal physiology and disease in part by controlling tissue-specific transcription of host genes. However, host genomic mechanisms mediating microbial control of intestinal gene expression are poorly understood. Hepatocyte nuclear factor 4 (HNF4) is the most ancient family of nuclear receptor transcription factors with important roles in human metabolic and inflammatory bowel diseases, but a role in host response to microbes is unknown. Using an unbiased screening strategy, we found that zebrafish Hnf4a specifically binds and activates a microbiota-suppressed intestinal epithelial transcriptional enhancer. Genetic analysis revealed that zebrafish hnf4a activates nearly half of the genes that are suppressed by microbiota, suggesting microbiota negatively regulate Hnf4a. In support, analysis of genomic architecture in mouse intestinal epithelial cells disclosed that microbiota colonization leads to activation or inactivation of hundreds of enhancers along with drastic genome-wide reduction of HNF4A and HNF4G occupancy. Interspecies meta-analysis suggested interactions between HNF4A and microbiota promote gene expression patterns associated with human inflammatory bowel diseases. These results indicate a critical and conserved role for HNF4A in maintaining intestinal homeostasis in response to microbiota.

  3. Transcription factor-mediated cell-to-cell signalling in plants.

    PubMed

    Han, Xiao; Kumar, Dhinesh; Chen, Huan; Wu, Shuwei; Kim, Jae-Yean

    2014-04-01

    Plant cells utilize mobile transcription factors to transmit intercellular signals when they perceive environmental stimuli or initiate developmental programmes. Studies on these novel cell-to-cell signals have accumulated multiple pieces of evidence showing that non-cell-autonomous transcription factors play pivotal roles in most processes related to the formation and development of plant organs. Recent studies have explored the evolution of mobile transcription factors and proposed mechanisms for their trafficking through plasmodesmata, where a selective system exists to facilitate this process. Mobile transcription factors contribute to the diversity of the intercellular signalling network, which is also established by peptides, hormones, and RNAs. Crosstalk between mobile transcription factors and other intercellular molecules leads to the development of complex biological signalling networks in plants. The regulation of plasmodesmata appears to have been another major step in controlling the intercellular trafficking of transcription factors based on studies of many plasmodesmal components. Furthermore, diverse omics approaches are being successfully applied to explore a large number of candidate transcription factors as mobile signals in plants. Here, we review these fascinating discoveries to integrate current knowledge of non-cell-autonomous transcription factors.

  4. Proteopedia: 3D Visualization and Annotation of Transcription Factor-DNA Readout Modes

    ERIC Educational Resources Information Center

    Dantas Machado, Ana Carolina; Saleebyan, Skyler B.; Holmes, Bailey T.; Karelina, Maria; Tam, Julia; Kim, Sharon Y.; Kim, Keziah H.; Dror, Iris; Hodis, Eran; Martz, Eric; Compeau, Patricia A.; Rohs, Remo

    2012-01-01

    3D visualization assists in identifying diverse mechanisms of protein-DNA recognition that can be observed for transcription factors and other DNA binding proteins. We used Proteopedia to illustrate transcription factor-DNA readout modes with a focus on DNA shape, which can be a function of either nucleotide sequence (Hox proteins) or base pairing…

  5. MicroRNA-27a regulates basal transcription by targeting the p44 subunit of general transcription factor IIH

    PubMed Central

    Portal, Maximiliano M.

    2011-01-01

    General transcription factor IIH (TFIIH) is a complex RNA polymerase II basal transcription factor comprising 10 different polypeptides that display activities involved in transcription and DNA repair processes. Although biochemical studies have uncovered TFIIH importance, little is known about how the mRNAs that code for TFIIH subunits are regulated. Here it is shown that mRNAs encoding seven of the TFIIH subunits (p34, p44, p52, p62, XPB, CDK7, and p8) are regulated at the posttranscriptional level in a Dicer-dependent manner. Indeed, abolition of the miRNA pathway induces abnormal accumulation, stabilization, and translational activation of these seven mRNAs. Herein, miR-27a was identified as a key regulator of p44 mRNA. Moreover, miR-27a was shown to destabilize the p44 subunit of the TFIIH complex during the G2-M phase, thereby modulating the transcriptional shutdown observed during this transition. This work is unique in providing a demonstration of global transcriptional regulation through the action of a single miRNA. PMID:21558443

  6. Prediction of Pathway Activation by Xenobiotic-Responsive Transcription Factors in the Mouse Liver

    EPA Science Inventory

    Many drugs and environmentally-relevant chemicals activate xenobioticresponsive transcription factors (TF). Identification of target genes of these factors would be useful in predicting pathway activation in in vitro chemical screening. Starting with a large compendium of Affymet...

  7. The Transcriptional Cascade in the Heat Stress Response of Arabidopsis Is Strictly Regulated at the Level of Transcription Factor Expression.

    PubMed

    Ohama, Naohiko; Kusakabe, Kazuya; Mizoi, Junya; Zhao, Huimei; Kidokoro, Satoshi; Koizumi, Shinya; Takahashi, Fuminori; Ishida, Tetsuya; Yanagisawa, Shuichi; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2016-01-01

    Group A1 heat shock transcription factors (HsfA1s) are the master regulators of the heat stress response (HSR) in plants. Upon heat shock, HsfA1s trigger a transcriptional cascade that is composed of many transcription factors. Despite the importance of HsfA1s and their downstream transcriptional cascade in the acquisition of thermotolerance in plants, the molecular basis of their activation remains poorly understood. Here, domain analysis of HsfA1d, one of several HsfA1s in Arabidopsis thaliana, demonstrated that the central region of HsfA1d is a key regulatory domain that represses HsfA1d transactivation activity through interaction with HEAT SHOCK PROTEIN70 (HSP70) and HSP90. We designated this region as the temperature-dependent repression (TDR) domain. We found that HSP70 dissociates from HsfA1d in response to heat shock and that the dissociation is likely regulated by an as yet unknown activation mechanism, such as HsfA1d phosphorylation. Overexpression of constitutively active HsfA1d that lacked the TDR domain induced expression of heat shock proteins in the absence of heat stress, thereby conferring potent thermotolerance on the overexpressors. However, transcriptome analysis of the overexpressors demonstrated that the constitutively active HsfA1d could not trigger the complete transcriptional cascade under normal conditions, thereby indicating that other factors are necessary to fully induce the HSR. These complex regulatory mechanisms related to the transcriptional cascade may enable plants to respond resiliently to various heat stress conditions.

  8. Transcription Factor Binding Site Positioning in Yeast: Proximal Promoter Motifs Characterize TATA-Less Promoters

    PubMed Central

    Erb, Ionas; van Nimwegen, Erik

    2011-01-01

    The availability of sequence specificities for a substantial fraction of yeast's transcription factors and comparative genomic algorithms for binding site prediction has made it possible to comprehensively annotate transcription factor binding sites genome-wide. Here we use such a genome-wide annotation for comprehensively studying promoter architecture in yeast, focusing on the distribution of transcription factor binding sites relative to transcription start sites, and the architecture of TATA and TATA-less promoters. For most transcription factors, binding sites are positioned further upstream and vary over a wider range in TATA promoters than in TATA-less promoters. In contrast, a group of ‘proximal promoter motifs’ (GAT1/GLN3/DAL80, FKH1/2, PBF1/2, RPN4, NDT80, and ROX1) occur preferentially in TATA-less promoters and show a strong preference for binding close to the transcription start site in these promoters. We provide evidence that suggests that pre-initiation complexes are recruited at TATA sites in TATA promoters and at the sites of the other proximal promoter motifs in TATA-less promoters. TATA-less promoters can generally be classified by the proximal promoter motif they contain, with different classes of TATA-less promoters showing different patterns of transcription factor binding site positioning and nucleosome coverage. These observations suggest that different modes of regulation of transcription initiation may be operating in the different promoter classes. In addition we show that, across all promoter classes, there is a close match between nucleosome free regions and regions of highest transcription factor binding site density. This close agreement between transcription factor binding site density and nucleosome depletion suggests a direct and general competition between transcription factors and nucleosomes for binding to promoters. PMID:21931670

  9. Transcription factor binding site positioning in yeast: proximal promoter motifs characterize TATA-less promoters.

    PubMed

    Erb, Ionas; van Nimwegen, Erik

    2011-01-01

    The availability of sequence specificities for a substantial fraction of yeast's transcription factors and comparative genomic algorithms for binding site prediction has made it possible to comprehensively annotate transcription factor binding sites genome-wide. Here we use such a genome-wide annotation for comprehensively studying promoter architecture in yeast, focusing on the distribution of transcription factor binding sites relative to transcription start sites, and the architecture of TATA and TATA-less promoters. For most transcription factors, binding sites are positioned further upstream and vary over a wider range in TATA promoters than in TATA-less promoters. In contrast, a group of 6 'proximal promoter motifs' (GAT1/GLN3/DAL80, FKH1/2, PBF1/2, RPN4, NDT80, and ROX1) occur preferentially in TATA-less promoters and show a strong preference for binding close to the transcription start site in these promoters. We provide evidence that suggests that pre-initiation complexes are recruited at TATA sites in TATA promoters and at the sites of the other proximal promoter motifs in TATA-less promoters. TATA-less promoters can generally be classified by the proximal promoter motif they contain, with different classes of TATA-less promoters showing different patterns of transcription factor binding site positioning and nucleosome coverage. These observations suggest that different modes of regulation of transcription initiation may be operating in the different promoter classes. In addition we show that, across all promoter classes, there is a close match between nucleosome free regions and regions of highest transcription factor binding site density. This close agreement between transcription factor binding site density and nucleosome depletion suggests a direct and general competition between transcription factors and nucleosomes for binding to promoters.

  10. Exploring the utility of organo-polyoxometalate hybrids to inhibit SOX transcription factors

    PubMed Central

    2014-01-01

    Background SOX transcription factors constitute an attractive target class for intervention with small molecules as they play a prominent role in the field of regenerative biomedicine and cancer biology. However, rationally engineering specific inhibitors that interfere with transcription factor DNA interfaces continues to be a monumental challenge in the field of transcription factor chemical biology. Polyoxometalates (POMs) are inorganic compounds that were previously shown to target the high-mobility group (HMG) of SOX proteins at nanomolar concentrations. In continuation of this work, we carried out an assessment of the selectivity of a panel of newly synthesized organo-polyoxometalate hybrids in targeting different transcription factor families to enable the usage of polyoxometalates as specific SOX transcription factor drugs. Results The residual DNA-binding activities of 15 different transcription factors were measured after treatment with a panel of diverse polyoxometalates. Polyoxometalates belonging to the Dawson structural class were found to be more potent inhibitors than the Keggin class. Further, organically modified Dawson polyoxometalates were found to be the most potent in inhibiting transcription factor DNA binding activity. The size of the polyoxometalates and its derivitization were found to be the key determinants of their potency. Conclusion Polyoxometalates are highly potent, nanomolar range inhibitors of the DNA binding activity of the Sox-HMG family. However, binding assays involving a limited subset of structurally diverse polyoxometalates revealed a low selectivity profile against different transcription factor families. Further progress in achieving selectivity and deciphering structure-activity relationship of POMs require the identification of POM binding sites on transcription factors using elaborate approaches like X-ray crystallography and multidimensional NMR. In summary, our report reaffirms that transcription factors are

  11. Coordinate post-transcriptional repression of Dpp-dependent transcription factors attenuates signal range during development.

    PubMed

    Newton, Fay G; Harris, Robin E; Sutcliffe, Catherine; Ashe, Hilary L

    2015-10-01

    Precise control of the range of signalling molecule action is crucial for correct cell fate patterning during development. For example, Drosophila ovarian germline stem cells (GSCs) are maintained by exquisitely short-range BMP signalling from the niche. In the absence of BMP signalling, one GSC daughter differentiates into a cystoblast (CB) and this fate is stabilised by Brain tumour (Brat) and Pumilio (Pum)-mediated post-transcriptional repression of mRNAs, including that encoding the Dpp transducer, Mad. However, the identity of other repressed mRNAs and the mechanism of post-transcriptional repression are currently unknown. Here, we identify the Medea and schnurri mRNAs, which encode transcriptional regulators required for activation and/or repression of Dpp target genes, as additional Pum-Brat targets, suggesting that tripartite repression of the transducers is deployed to desensitise the CB to Dpp. In addition, we show that repression by Pum-Brat requires recruitment of the CCR4 and Pop2 deadenylases, with knockdown of deadenylases in vivo giving rise to ectopic GSCs. Consistent with this, Pum-Brat repression leads to poly(A) tail shortening and mRNA degradation in tissue culture cells, and we detect a reduced number of Mad and shn transcripts in the CB relative to the GSC based on single molecule mRNA quantitation. Finally, we show generality of the mechanism by demonstrating that Brat also attenuates pMad and Dpp signalling range in the early embryo. Together our data serve as a platform for understanding how post-transcriptional repression restricts interpretation of BMPs and other cell signals in order to allow robust cell fate patterning during development.

  12. Anti-adipogenic and anti-diabetic effects of cis-3',4'-diisovalerylkhellactone isolated from Peucedanum japonicum Thunb leaves in vitro.

    PubMed

    Choi, Ra-Yeong; Nam, Sang-Jip; Ham, Ju Ri; Lee, Hae-In; Yee, Sung-Tae; Kang, Kyung-Yun; Seo, Kwon-Il; Lee, Ju-Hye; Kim, Myung-Joo; Lee, Mi-Kyung

    2016-10-01

    Peucedanum japonicum Thunb is a medicinal plant belonging to the family Umbelliferae. This study evaluated the anti-diabetic and anti-obesity effects of cis-3',4'-diisovalerylkhellactone (cDIVK) isolated from Peucedanum japonicum Thunb leaves. cDIVK (30 and 50μM) effectively inhibited adipocyte differentiation and fat accumulation, whereas it stimulated glucose uptake compared with the control in 3T3-L1 cells. cDIVK significantly increased AMPK activation and suppressed protein and mRNA expression of major adipogenic transcriptional factors such as C/EBPα, PPARγ and SREBP-1c in 3T3-L1 cells. In addition, cDIVK had potential α-glucosidase inhibitory activity. These results indicated that cDIVK may act as a natural dual therapeutic agent for diabetes and obesity.

  13. The interaction between bacterial transcription factors and RNA polymerase during the transition from initiation to elongation.

    PubMed

    Yang, Xiao; Lewis, Peter J

    2010-01-01

    There are three stages of transcription: initiation, elongation and termination, and traditionally there has been a clear distinction between the stages. The specificity factor sigma is completely released from bacterial RNA polymerase after initiation, and then recycled for another round of transcription. Elongation factors then associate with the polymerase followed by termination factors (where necessary). These factors dissociate prior to initiation of a new round of transcription. However, there is growing evidence suggesting that sigma factors can be retained in the elongation complex. The structure of bacterial RNAP in complex with an essential elongation factor NusA has recently been published, which suggested rather than competing for the major σ binding site, NusA binds to a discrete region on RNAP. A model was proposed to help explain the way in which both factors could be associated with RNAP during the transition from transcription initiation to elongation.

  14. Intracellular delivery of cell-penetrating peptide-transcriptional factor fusion protein and its role in selective osteogenesis

    PubMed Central

    Suh, Jin Sook; Lee, Jue Yeon; Choi, Yoon Jung; You, Hyung Keun; Hong, Seong-Doo; Chung, Chong Pyoung; Park, Yoon Jeong

    2014-01-01

    Protein-transduction technology has been attempted to deliver macromolecular materials, including protein, nucleic acids, and polymeric drugs, for either diagnosis or therapeutic purposes. Herein, fusion protein composed of an arginine-rich cell-penetrating peptide, termed low-molecular-weight protamine (LMWP), and a transcriptional coactivator with a PDZ-binding motif (TAZ) protein was prepared and applied in combination with biomaterials to increase bone-forming capacity. TAZ has been recently identified as a specific osteogenic stimulating transcriptional coactivator in human mesenchymal stem cell (hMSC) differentiation, while simultaneously blocking adipogenic differentiation. However, TAZ by itself cannot penetrate the cells, and thus needs a transfection tool for translocalization. The LMWP-TAZ fusion proteins were efficiently translocalized into the cytosol of hMSCs. The hMSCs treated with cell-penetrating LMWP-TAZ exhibited increased expression of osteoblastic genes and protein, producing significantly higher quantities of mineralized matrix compared to free TAZ. In contrast, adipogenic differentiation of the hMSCs was blocked by treatment of LMWP-TAZ fusion protein, as reflected by reduced marker-protein expression, adipocyte fatty acid-binding protein 2, and peroxisome proliferator-activated receptor-γ messenger ribonucleic acid levels. LMWP-TAZ was applied in alginate gel for the purpose of localization and controlled release. The LMWP-TAZ fusion protein-loaded alginate gel matrix significantly increased bone formation in rabbit calvarial defects compared with alginate gel matrix mixed with free TAZ protein. The protein transduction of TAZ fused with cell-penetrating LMWP peptide was able selectively to stimulate osteogenesis in vitro and in vivo. Taken together, this fusion protein-transduction technology for osteogenic protein can thus be applied in combination with biomaterials for tissue regeneration and controlled release for tissue

  15. Plant Aurora kinases interact with and phosphorylate transcription factors.

    PubMed

    Takagi, Mai; Sakamoto, Takuya; Suzuki, Ritsuko; Nemoto, Keiichirou; Obayashi, Takeshi; Hirakawa, Takeshi; Matsunaga, Tomoko M; Kurihara, Daisuke; Nariai, Yuko; Urano, Takeshi; Sawasaki, Tatsuya; Matsunaga, Sachihiro

    2016-11-01

    Aurora kinase (AUR) is a well-known mitotic serine/threonine kinase that regulates centromere formation, chromosome segregation, and cytokinesis in eukaryotes. In addition to regulating mitotic events, AUR has been shown to regulate protein dynamics during interphase in animal cells. In contrast, there has been no identification and characterization of substrates and/or interacting proteins during interphase in plants. The Arabidopsis thaliana genome encodes three AUR paralogues, AtAUR1, AtAUR2, and AtAUR3. Among them, AtAUR1 and AtAUR2 are considered to function redundantly. Here, we confirmed that both AtAUR1 and AtAUR3 are localized in the nucleus and cytoplasm during interphase, suggesting that they have functions during interphase. To identify novel interacting proteins, we used AlphaScreen to target 580 transcription factors (TFs) that are mainly functional during interphase, using recombinant A. thaliana TFs and AtAUR1 or AtAUR3. We found 133 and 32 TFs had high potential for interaction with AtAUR1 and AtAUR3, respectively. The highly AtAUR-interacting TFs were involved in various biological processes, suggesting the functions of the AtAURs during interphase. We found that AtAUR1 and AtAUR3 showed similar interaction affinity to almost all TFs. However, in some cases, the interaction affinity differed substantially between the two AtAUR homologues. These results suggest that AtAUR1 and AtAUR3 have both redundant and distinct functions through interactions with TFs. In addition, database analysis revealed that most of the highly AtAUR-interacting TFs contained a detectable phosphopeptide that was consistent with the consensus motifs for human AURs, suggesting that these TFs are substrates of the AtAURs. The AtAURs phosphorylated several highly interacting TFs in the AlphaScreen in vitro. Overall, in line with the regulation of TFs through interaction, our results indicate the possibility of phosphoregulation of several TFs by the AtAURs (280/300).

  16. NCoR negatively regulates adipogenic differentiation of mesenchymal stem cells.

    PubMed

    Hong-Wei, Gao; Lan, Liu; De-Guo, Xing; Zhong-Hao, Liu; Peng, Ren; Zhi-Qiang, Li; Guo-Qiang, Shan; Ming-Zhi, Gong

    2015-08-01

    The nuclear receptor corepressor (NCoR) regulates the activities of gene transcription. Mesenchymal stem cells (MSCs) derived from bone marrow are multipotent cells which can differentiate into osteoblasts and adipocytes. This study was conducted to investigate the effects of NCoR on adipogenic differentiation of MSCs isolated from the rats. The results suggested that rat MSCs could differentiate into adipocytes successfully after cultured in adipogenic medium. NCoR protein determined by Western blot showed a lower expression in MSC-derived adipocytes, indicating that NCoR was involved in adipocyte differentiation of rat MSCs. It further proved that small interfering RNA (siRNA)-mediated knockdown of NCoR could promote cell viability and differentiation and enhance messenger RNA (mRNA) expression of lipoprotein lipase (LPL) and protein expression of CCAAT/enhancer binding protein-α (C/EBPα) and peroxisome proliferator-activated receptor-γ (PPARγ). However, over-expression of NCoR exerted its functions in contrary to NCoR knockdown. It indicated that NCoR could negatively regulate adipogenic differentiation of rat MSCs.

  17. Interaction between the GROWTH-REGULATING FACTOR and KNOTTED1-LIKE HOMEOBOX families of transcription factors.

    PubMed

    Kuijt, Suzanne J H; Greco, Raffaella; Agalou, Adamantia; Shao, Jingxia; 't Hoen, Corine C J; Overnäs, Elin; Osnato, Michela; Curiale, Serena; Meynard, Donaldo; van Gulik, Robert; de Faria Maraschin, Simone; Atallah, Mirna; de Kam, Rolf J; Lamers, Gerda E M; Guiderdoni, Emmanuel; Rossini, Laura; Meijer, Annemarie H; Ouwerkerk, Pieter B F

    2014-04-01

    KNOTTED1-LIKE HOMEOBOX (KNOX) genes are important regulators of meristem function, and a complex network of transcription factors ensures tight control of their expression. Here, we show that members of the GROWTH-REGULATING FACTOR (GRF) family act as players in this network. A yeast (Saccharomyces cerevisiae) one-hybrid screen with the upstream sequence of the KNOX gene Oskn2 from rice (Oryza sativa) resulted in isolation of OsGRF3 and OsGRF10. Specific binding to a region in the untranslated leader sequence of Oskn2 was confirmed by yeast and in vitro binding assays. ProOskn2:β-glucuronidase reporter expression was down-regulated by OsGRF3 and OsGRF10 in vivo, suggesting that these proteins function as transcriptional repressors. Likewise, we found that the GRF protein BGRF1 from barley (Hordeum vulgare) could act as a repressor on an intron sequence in the KNOX gene Hooded/Barley Knotted3 (Bkn3) and that AtGRF4, AtGRF5, and AtGRF6 from Arabidopsis (Arabidopsis thaliana) could repress KNOTTED-LIKE FROM ARABIDOPSIS THALIANA2 (KNAT2) promoter activity. OsGRF overexpression phenotypes in rice were consistent with aberrant meristematic activity, showing reduced formation of tillers and internodes and extensive adventitious root/shoot formation on nodes. These effects were associated with down-regulation of endogenous Oskn2 expression by OsGRF3. Conversely, RNA interference silencing of OsGRF3, OsGRF4, and OsGRF5 resulted in dwarfism, delayed growth and inflorescence formation, and up-regulation of Oskn2. These data demonstrate conserved interactions between the GRF and KNOX families of transcription factors in both monocot and dicot plants.

  18. The transcription factor FOXM1 is a cellular target of the natural product thiostrepton

    NASA Astrophysics Data System (ADS)

    Hegde, Nagaratna S.; Sanders, Deborah A.; Rodriguez, Raphaël; Balasubramanian, Shankar

    2011-09-01

    Transcription factors are proteins that bind specifically to defined DNA sequences to promote gene expression. Targeting transcription factors with small molecules to modulate the expression of certain genes has been notoriously difficult to achieve. The natural product thiostrepton is known to reduce the transcriptional activity of FOXM1, a transcription factor involved in tumorigenesis and cancer progression. Herein we demonstrate that thiostrepton interacts directly with FOXM1 protein in the human breast cancer cells MCF-7. Biophysical analyses of the thiostrepton-FOXM1 interaction provide additional insights on the molecular mode of action of thiostrepton. In cellular experiments, we show that thiostrepton can inhibit the binding of FOXM1 to genomic target sites. These findings illustrate the potential druggability of transcription factors and provide a molecular basis for targeting the FOXM1 family with small molecules.

  19. Nuclear Factor of Activated T Cells Transcription Factor Nfatp Controls Superantigen-Induced Lethal Shock

    PubMed Central

    Tsytsykova, Alla V.; Goldfeld, Anne E.

    2000-01-01

    Tumor necrosis factor α (TNF-α) is the key mediator of superantigen-induced T cell lethal shock. Here, we show that nuclear factor of activated T cells transcription factor, NFATp, controls susceptibility to superantigen-induced lethal shock in mice through its activation of TNF-α gene transcription. In NFATp-deficient mice, T cell stimulation leads to delayed induction and attenuation of TNF-α mRNA levels, decreased TNF-α serum levels, and resistance to superantigen-induced lethal shock. By contrast, after lipopolysaccharide (LPS) challenge, serum levels of TNF-α and susceptibility to shock are unaffected. These results demonstrate that NFATp is an essential activator of immediate early TNF-α gene expression in T cells and they present in vivo evidence of the inducer- and cell type–specific regulation of TNF-α gene expression. Furthermore, they suggest NFATp as a potential selective target in the treatment of superantigen-induced lethal shock. PMID:10952728

  20. NF-κB Transcription Factor p50 Critically Regulates Tissue Factor in Deep Vein Thrombosis*

    PubMed Central

    Li, Yi-Dan; Ye, Bu-Qing; Zheng, Sheng-Xi; Wang, Jin-Tao; Wang, Jian-Guo; Chen, Ming; Liu, Ji-Guo; Pei, Xin-Hui; Wang, Li-Jing; Lin, Zhi-Xin; Gupta, Kalpna; Mackman, Nigel; Slungaard, Arne; Key, Nigel S.; Geng, Jian-Guo

    2009-01-01

    NF-κB transcription factors regulate the expression of tissue factor (TF), a principal initiator of the coagulation cascade. Dominant among them is the p50/p65 heterodimer. Here we report that Andrographolide (Andro; a p50 inhibitor) and genetic deletion of p50 attenuated TF activity in stimulated endothelial cells and monocytes/macrophages. Results of the electrophoretic mobility “supershift” assay and chromatin immunoprecipitation demonstrated the direct interaction of the p50/p65 heterodimer with the NF-κB site of the human TF promoter. Andro-treated and p50 null mice both exhibited blunted TF expression and reduced venous thrombosis, which were recapitulated by an anti-murine TF antibody in vivo. Our findings thus indicate that regulation of TF by NF-κB transcription factor p50 is essential for the pathogenesis of deep vein thrombosis and suggest that specific inhibitors of p50, such as Andro, may be therapeutically valuable for preventing and perhaps treating venous thrombosis. PMID:19095643

  1. NF-kappaB transcription factor p50 critically regulates tissue factor in deep vein thrombosis.

    PubMed

    Li, Yi-Dan; Ye, Bu-Qing; Zheng, Sheng-Xi; Wang, Jin-Tao; Wang, Jian-Guo; Chen, Ming; Liu, Ji-Guo; Pei, Xin-Hui; Wang, Li-Jing; Lin, Zhi-Xin; Gupta, Kalpna; Mackman, Nigel; Slungaard, Arne; Key, Nigel S; Geng, Jian-Guo

    2009-02-13

    NF-kappaB transcription factors regulate the expression of tissue factor (TF), a principal initiator of the coagulation cascade. Dominant among them is the p50/p65 heterodimer. Here we report that Andrographolide (Andro; a p50 inhibitor) and genetic deletion of p50 attenuated TF activity in stimulated endothelial cells and monocytes/macrophages. Results of the electrophoretic mobility "supershift" assay and chromatin immunoprecipitation demonstrated the direct interaction of the p50/p65 heterodimer with the NF-kappaB site of the human TF promoter. Andro-treated and p50 null mice both exhibited blunted TF expression and reduced venous thrombosis, which were recapitulated by an anti-murine TF antibody in vivo. Our findings thus indicate that regulation of TF by NF-kappaB transcription factor p50 is essential for the pathogenesis of deep vein thrombosis and suggest that specific inhibitors of p50, such as Andro, may be therapeutically valuable for preventing and perhaps treating venous thrombosis.

  2. Repression of vascular endothelial growth factor A in glioblastoma cells using engineered zinc finger transcription factors.

    PubMed

    Snowden, Andrew W; Zhang, Lei; Urnov, Fyodor; Dent, Carolyn; Jouvenot, Yann; Zhong, Xiaohong; Rebar, Edward J; Jamieson, Andrew C; Zhang, H Steven; Tan, Siyuan; Case, Casey C; Pabo, Carl O; Wolffe, Alan P; Gregory, Philip D

    2003-12-15

    Angiogenic factors are necessary for tumor proliferation and thus are attractive therapeutic targets. In this study, we have used engineered zinc finger protein (ZFP) transcription factors (TFs) to repress expression of vascular endothelial growth factor (VEGF)-A in human cancer cell lines. We create potent transcriptional repressors by fusing a designed ZFP targeted to the VEGF-A promoter with either the ligand-binding domain of thyroid hormone receptor alpha or its viral relative, vErbA. Moreover, this ZFP-vErbA repressor binds its intended target site in vivo and mediates the specific deacetylation of histones H3 and H4 at the targeted promoter, a result that emulates the natural repression mechanism of these domains. The potential therapeutic relevance of ZFP-mediated VEGF-A repression was addressed using the highly tumorigenic glioblastoma cell line U87MG. Despite the aberrant overexpression of VEGF-A in this cell line, engineered ZFP TFs were able to repress the expression of VEGF-A by >20-fold. The VEGF-A levels observed after ZFP TF-mediated repression were comparable to those of a nonangiogenic cancer line (U251MG), suggesting that the degree of repression obtained with the ZFP TF would be sufficient to suppress tumor angiogenesis. Thus, engineered ZFP TFs are shown to be potent regulators of gene expression with therapeutic promise in the treatment of disease.

  3. Screening of Transcription Factors Involved in Fetal Hemoglobin Regulation Using Phylogenetic Footprinting

    PubMed Central

    de Souza Carrocini, Gisele Cristine; Venancio, Larissa Paola Rodrigues; Bonini-Domingos, Claudia Regina

    2015-01-01

    Fetal hemoglobin (Hb F) is an important genetic modulator of the beta-hemoglobinopathies. The regulation of Hb F levels is influenced by transcription factors. We used phylogenetic footprinting to screen transcription factors that have binding sites in HBG1 and HBG2 genes’ noncoding regions in order to know the genetic determinants of the Hb F expression. Our analysis showed 354 conserved motifs in the noncoding regions of HBG1 gene and 231 motifs in the HBG2 gene between the analyzed species. Of these motifs, 13 showed relation to Hb F regulation: cell division cycle-5 (CDC5), myelo-blastosis viral oncogene homolog (c-MYB), transcription factor CP2 (TFCP2), GATA binding protein 1 (GATA-1), GATA binding protein 2 (GATA-2), nuclear factor erythroid 2 (NF-E2), nuclear transcription factor Y (NF-Y), runt-related transcription factor 1 (RUNX-1), T-cell acute lymphocytic leukemia 1 (TAL-1), YY1 transcription factor (YY1), beta protein 1 (BP1), chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII), and paired box 1 (PAX-1). The last three motifs were conserved only in the noncoding regions of the HBG1 gene. The understanding of genetic elements involved in the maintenance of high Hb F levels may provide new efficient therapeutic strategies in the beta-hemoglobinopathies treatment, promoting reduction in clinical complications of these genetic disorders. PMID:26543346

  4. Transcription factor TFIID is a direct functional target of the adenovirus E1A transcription-repression domain.

    PubMed Central

    Song, C Z; Loewenstein, P M; Toth, K; Green, M

    1995-01-01

    The 243-amino acid adenovirus E1A oncoprotein both positively and negatively modulates the expression of cellular genes involved in the regulation of cell growth. The E1A transcription repression function appears to be linked with its ability to induce cellular DNA synthesis, cell proliferation, and cell transformation, as well as to inhibit cell differentiation. The mechanism by which E1A represses the transcription of various promoters has proven enigmatic. Here we provide several lines of evidence that the "TATA-box" binding protein (TBP) component of transcription factor TFIID is a cellular target of the E1A repression function encoded within the E1A N-terminal 80 amino acids. (i) The E1A N-terminal 80 amino acids [E1A-(1-80)protein] efficiently represses basal transcription from TATA-containing core promoters in vitro. (ii) TBP reverses completely E1A repression in vitro. (iii) TBP restores transcriptional activity to E1A-(1-80) protein affinity-depleted nuclear extracts. (iv) The N-terminal repression domain of E1A interacts directly and specifically with TBP in vitro. These results may help explain how E1A represses a set of genes that lack common upstream promoter elements. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7479778

  5. Feedback regulation of PRL secretion is mediated by the transcription factor, signal transducer, and activator of transcription 5b.

    PubMed

    Grattan, D R; Xu, J; McLachlan, M J; Kokay, I C; Bunn, S J; Hovey, R C; Davey, H W

    2001-09-01

    PRL secretion from the anterior pituitary gland is inhibited by dopamine produced in the tuberoinfundibular dopamine neurons of the hypothalamus. The activity of tuberoinfundibular dopamine neurons is stimulated by PRL; thus, PRL regulates its own secretion by a negative feedback mechanism. PRL receptors are expressed on tuberoinfundibular dopamine neurons, but the intracellular signaling pathway is not known. We have observed that mice with a disrupted signal transducer and activator of transcription 5b gene have grossly elevated serum PRL concentrations. Despite this hyperprolactinemia, mRNA levels and immunoreactivity of tyrosine hydroxylase, the key enzyme in dopamine synthesis, were significantly lower in the tuberoinfundibular dopamine neurons of these signal transducer and activator of transcription 5b-deficient mice. Concentrations of the dopamine metabolite dihydroxyphenylacetic acid in the median eminence were also significantly lower in signal transducer and activator of transcription 5b-deficient mice than in wild-type mice. No changes were observed in nonhypothalamic dopaminergic neuronal populations, indicating that the effects were selective to tuberoinfundibular dopamine neurons. These data indicate that in the absence of signal transducer and activator of transcription 5b, PRL signal transduction in tuberoinfundibular dopamine neurons is impaired, and they demonstrate that this transcription factor plays an obligatory and nonredundant role in mediating the negative feedback action of PRL on tuberoinfundibular dopamine neurons.

  6. Beyond transcription factors: The role of chromatin modifying enzymes in regulating transcription required for memory

    PubMed Central

    Barrett, Ruth M.; Wood, Marcelo A.

    2008-01-01

    One of the alluring aspects of examining chromatin modifications in the role of modulating transcription required for long-term memory processes is that these modifications may provide transient and potentially stable epigenetic marks in the service of activating and/or maintaining transcriptional processes. These, in turn, may ultimately participate in the molecular mechanisms required for neuronal changes subserving long-lasting changes in behavior. As an epigenetic mechanism of transcriptional control, chromatin modification has been shown to participate in maintaining cellular memory (e.g., cell fate) and may underlie the strengthening and maintenance of synaptic connections required for long-term changes in behavior. Epigenetics has become central to several fields of neurobiology, where researchers have found that regulation of chromatin modification has a significant role in epilepsy, drug addiction, depression, neurodegenerative diseases, and memory. In this review, we will discuss the role of chromatin modifying enzymes in memory processes, as well as how recent studies in yeast genetics and cancer biology may impact the way we think about how chromatin modification and chromatin remodeling regulate neuronal function. PMID:18583646

  7. Genome-Wide Association between Transcription Factor Expression and Chromatin Accessibility Reveals Regulators of Chromatin Accessibility

    PubMed Central

    Rueedi, Rico

    2017-01-01

    To better understand genome regulation, it is important to uncover the role of transcription factors in the process of chromatin structure establishment and maintenance. Here we present a data-driven approach to systematically characterise transcription factors that are relevant for this process. Our method uses a linear mixed modelling approach to combine datasets of transcription factor binding motif enrichments in open chromatin and gene expression across the same set of cell lines. Applying this approach to the ENCODE dataset, we confirm already known and imply numerous novel transcription factors that play a role in the establishment or maintenance of open chromatin. In particular, our approach rediscovers many factors that have been annotated as pioneer factors. PMID:28118358

  8. Genome-Wide Association between Transcription Factor Expression and Chromatin Accessibility Reveals Regulators of Chromatin Accessibility.

    PubMed

    Lamparter, David; Marbach, Daniel; Rueedi, Rico; Bergmann, Sven; Kutalik, Zoltán

    2017-01-01

    To better understand genome regulation, it is important to uncover the role of transcription factors in the process of chromatin structure establishment and maintenance. Here we present a data-driven approach to systematically characterise transcription factors that are relevant for this process. Our method uses a linear mixed modelling approach to combine datasets of transcription factor binding motif enrichments in open chromatin and gene expression across the same set of cell lines. Applying this approach to the ENCODE dataset, we confirm already known and imply numerous novel transcription factors that play a role in the establishment or maintenance of open chromatin. In particular, our approach rediscovers many factors that have been annotated as pioneer factors.

  9. The WRKY Transcription Factor WRKY71/EXB1 Controls Shoot Branching by Transcriptionally Regulating RAX Genes in Arabidopsis

    PubMed Central

    Guo, Dongshu; Zhang, Jinzhe; Wang, Xinlei; Han, Xiang; Wei, Baoye; Yu, Hao; Huang, Qingpei

    2015-01-01

    Plant shoot branching is pivotal for developmental plasticity and crop yield. The formation of branch meristems is regulated by several key transcription factors including REGULATOR OF AXILLARY MERISTEMS1 (RAX1), RAX2, and RAX3. However, the regulatory network of shoot branching is still largely unknown. Here, we report the identification of EXCESSIVE BRANCHES1 (EXB1), which affects axillary meristem (AM) initiation and bud activity. Overexpression of EXB1 in the gain-of-function mutant exb1-D leads to severe bushy and dwarf phenotypes, which result from excessive AM initiation and elevated bud activities. EXB1 encodes the WRKY transcription factor WRKY71, which has demonstrated transactivation activities. Disruption of WRKY71/EXB1 by chimeric repressor silencing technology leads to fewer branches, indicating that EXB1 plays important roles in the control of shoot branching. We demonstrate that EXB1 controls AM initiation by positively regulating the transcription of RAX1, RAX2, and RAX3. Disruption of the RAX genes partially rescues the branching phenotype caused by EXB1 overexpression. We further show that EXB1 also regulates auxin homeostasis in control of shoot branching. Our data demonstrate that EXB1 plays pivotal roles in shoot branching by regulating both transcription of RAX genes and auxin pathways. PMID:26578700

  10. DNA methylation profiling of transcription factor genes in normal lymphocyte development and lymphomas.

    PubMed

    Ivascu, Claudia; Wasserkort, Reinhold; Lesche, Ralf; Dong, Jun; Stein, Harald; Thiel, Andreas; Eckhardt, Florian

    2007-01-01

    Transcription factors play a crucial role during hematopoiesis by orchestrating lineage commitment and determining cellular fate. Although tight regulation of transcription factor expression appears to be essential, little is known about the epigenetic mechanisms involved in transcription factor gene regulation. We have analyzed DNA methylation profiles of 13 key transcription factor genes in primary cells of the hematopoietic cascade, lymphoma cell lines and lymph node biopsies of diffuse large B-cell- and T-cell-non-Hodgkin lymphoma patients. Several of the transcription factor genes (SPI1, GATA3, TCF-7, Etv5, c-maf and TBX21) are differentially methylated in specific cell lineages and stages of the hematopoietic cascade. For some genes, such as SPI1, Etv5 and Eomes, we found an inverse correlation between the methylation of the 5' untranslated region and expression of the associated gene suggesting that these genes are regulated by DNA methylation. Differential methylation is not limited to cells of the healthy hematopoietic cascade, as we observed aberrant methylation of c-maf, TCF7, Eomes and SPI1 in diffuse large B-cell lymphomas. Our results suggest that epigenetic remodelling of transcription factor genes is a frequent mechanism during hematopoietic development. Aberrant methylation of transcription factor genes is frequently observed in diffuse large B-cell lymphomas and might have a functional role during tumorigenesis.

  11. Interplay between Transcription Factors and the Epigenome: Insight from the Role of RUNX1 in Leukemia

    PubMed Central

    Brettingham-Moore, Kate H.; Taberlay, Phillippa C.; Holloway, Adele F.

    2015-01-01

    The genome has the ability to respond in a precise and co-ordinated manner to cellular signals. It achieves this through the concerted actions of transcription factors and the chromatin platform, which are targets of the signaling pathways. Our understanding of the molecular mechanisms through which transcription factors and the chromatin landscape each control gene activity has expanded dramatically over recent years, and attention has now turned to understanding the complex, multifaceted interplay between these regulatory layers in normal and disease states. It has become apparent that transcription factors as well as the components and modifiers of the epigenetic machinery are frequent targets of genomic alterations in cancer cells. Through the study of these factors, we can gain unique insight into the dynamic interplay between transcription factors and the epigenome, and how their dysregulation leads to aberrant gene expression programs in cancer. Here, we will highlight how these factors normally co-operate to establish and maintain the transcriptional and epigenetic landscape of cells, and how this is reprogramed in cancer, focusing on the RUNX1 transcription factor and oncogenic derivative RUNX1–ETO in leukemia as paradigms of transcriptional and epigenetic reprograming. PMID:26483790

  12. Transcription Factor Functional Protein-Protein Interactions in Plant Defense Responses

    PubMed Central

    Alves, Murilo S.; Dadalto, Silvana P.; Gonçalves, Amanda B.; de Souza, Gilza B.; Barros, Vanessa A.; Fietto, Luciano G.

    2014-01-01

    Responses to biotic stress in plants lead to dramatic reprogramming of gene expression, favoring stress responses at the expense of normal cellular functions. Transcription factors are master regulators of gene expression at the transcriptional level, and controlling the activity of these factors alters the transcriptome of the plant, leading to metabolic and phenotypic changes in response to stress. The functional analysis of interactions between transcription factors and other proteins is very important for elucidating the role of these transcriptional regulators in different signaling cascades. In this review, we present an overview of protein-protein interactions for the six major families of transcription factors involved in plant defense: basic leucine zipper containing domain proteins (bZIP), amino-acid sequence WRKYGQK (WRKY), myelocytomatosis related proteins (MYC), myeloblastosis related proteins (MYB), APETALA2/ ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS (AP2/EREBP) and no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF), and cup-shaped cotyledon (CUC) (NAC). We describe the interaction partners of these transcription factors as molecular responses during pathogen attack and the key components of signal transduction pathways that take place during plant defense responses. These interactions determine the activation or repression of response pathways and are crucial to understanding the regulatory networks that modulate plant defense responses. PMID:28250372

  13. Genome-wide analysis of transcription factors involved in maize embryonic callus formation.

    PubMed

    Ge, Fei; Luo, Xu; Huang, Xing; Zhang, Yanling; He, Xiujing; Liu, Min; Lin, Haijian; Peng, Huanwei; Li, Lujiang; Zhang, Zhiming; Pan, Guangtang; Shen, Yaou

    2016-12-01

    In this study, a maize inbred line with a strong capacity to induce embryonic callus, 18-599R, was used to analyze the transcription factors expressed during embryonic callus formation. A total of 1180 transcription factors were found to be expressed during three key stages of callus induction. Of these, compared with control, 361, 346 and 328 transcription factors were significantly downregulated during stages I, II and III, respectively. In contrast, 355, 372 and 401 transcription factors (TFs) were upregulated during the respective stages. We constructed a transcription factor-mediated regulatory network and found that plant hormone signal transduction was the pathway most significantly enriched among TFs. This pathway includes 48 TFs regulating cell enlargement, cell differentiation, cell division and cell dedifferentiation via the response to plant hormones. Through real-time polymerase chain reaction (PCR) and degradome sequencing, we identified 23 transcription factors that are regulated by miRNA. Through further analysis, ZmMYB138, a member of the MYB transcription factor family localized in the nucleus, was verified to promote embryonic callus formation in the maize embryo through GA signal transduction.

  14. Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells

    PubMed Central

    Joshi, Anagha; Pooley, Christopher; Freeman, Tom C.; Lennartsson, Andreas; Babina, Magda; Schmidl, Christian; Geijtenbeek, Teunis; Michoel, Tom; Severin, Jessica; Itoh, Masayoshi; Lassmann, Timo; Kawaji, Hideya; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R. R.; Rehli, Michael; Hume, David A.

    2015-01-01

    The generation of myeloid cells from their progenitors is regulated at the level of transcription by combinatorial control of key transcription factors influencing cell-fate choice. To unravel the global dynamics of this process at the transcript level, we generated transcription profiles for 91 human cell types of myeloid origin by use of CAGE profiling. The CAGE sequencing of these samples has allowed us to investigate diverse aspects of transcription control during myelopoiesis, such as identification of novel transcription factors, miRNAs, and noncoding RNAs specific to the myeloid lineage. We further reconstructed a transcription regulatory network by clustering coexpressed transcripts and associating them with enriched cis-regulatory motifs. With the use of the bidirectional expression as a proxy for enhancers, we predicted over 2000 novel enhancers, including an enhancer 38 kb downstream of IRF8 and an intronic enhancer in the KIT gene locus. Finally, we highlighted relevance of these data to dissect transcription dynamics during progressive maturation of granulocyte precursors. A multifaceted analysis of the myeloid transcriptome is made available (www.myeloidome.roslin.ed.ac.uk). This high-quality dataset provides a powerful resource to study transcriptional regulation during myelopoiesis and to infer the likely functions of unannotated genes in human innate immunity. PMID:25717144

  15. Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells.

    PubMed

    Joshi, Anagha; Pooley, Christopher; Freeman, Tom C; Lennartsson, Andreas; Babina, Magda; Schmidl, Christian; Geijtenbeek, Teunis; Michoel, Tom; Severin, Jessica; Itoh, Masayoshi; Lassmann, Timo; Kawaji, Hideya; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R; Rehli, Michael; Hume, David A

    2015-05-01

    The generation of myeloid cells from their progenitors is regulated at the level of transcription by combinatorial control of key transcription factors influencing cell-fate choice. To unravel the global dynamics of this process at the transcript level, we generated transcription profiles for 91 human cell types of myeloid origin by use of CAGE profiling. The CAGE sequencing of these samples has allowed us to investigate diverse aspects of transcription control during myelopoiesis, such as identification of novel transcription factors, miRNAs, and noncoding RNAs specific to the myeloid lineage. We further reconstructed a transcription regulatory network by clustering coexpressed transcripts and associating them with enriched cis-regulatory motifs. With the use of the bidirectional expression as a proxy for enhancers, we predicted over 2000 novel enhancers, including an enhancer 38 kb downstream of IRF8 and an intronic enhancer in the KIT gene locus. Finally, we highlighted relevance of these data to dissect transcription dynamics during progressive maturation of granulocyte precursors. A multifaceted analysis of the myeloid transcriptome is made available (www.myeloidome.roslin.ed.ac.uk). This high-quality dataset provides a powerful resource to study transcriptional regulation during myelopoiesis and to infer the likely functions of unannotated genes in human innate immunity.

  16. Horse serum reduces expression of membrane-bound and soluble isoforms of the preadipocyte marker Delta-like 1 homolog (Dlk1), but is inefficient for adipogenic differentiation of mouse preadipocytes.

    PubMed

    Andersen, Ditte C; Nielsen, Charlotte; Jensen, Charlotte H; Sheikh, Søren P

    2013-05-01

    Downregulation of the preadipocyte marker Delta-like 1 homologue (Dlk1), an inhibitor of adipogenesis, has been suggested to be a prerequisite for adipogenic differentiation to occur, and low Dlk1 levels are often used to verify adipogenesis. Mouse preadipocytic cell lines such as 3T3-L1, as well as primary derived preadipocytes, are important models to study adipogenic differentiation and obesity. However, in vitro adipogenic differentiation of primary derived preadipocytes remains incomplete, and identification of factors that will improve the adipogenic differentiation process is thus of high value. In this study we show that horse serum fails to improve adipogenic differentiation of mouse preadipocytes (both 3T3-L1 cells and primary derived mouse preadipocytes) as otherwise reported for bone marrow derived adipogenic precursors. Unexpectedly, while Dlk1 levels were indeed decreased using horse serum, this did not correlate with a high degree of adipogenic differentiation. In conclusion, our novel results thus reveal that horse serum clearly is insufficient for adipogenic differentiation of mouse preadipocytes and that low levels of Dlk1 alone are a poor marker of mouse in vitro adipogenesis. We would also like to emphasize that it is very important for the field of cellular differentiation that researchers thoroughly investigate the effect of individual reagents in their protocols. Such data will increase understanding of the limitations and possibilities of individual systems.

  17. TcoF-DB v2: update of the database of human and mouse transcription co-factors and transcription factor interactions

    PubMed Central

    Schmeier, Sebastian; Alam, Tanvir; Essack, Magbubah; Bajic, Vladimir B.

    2017-01-01

    Transcription factors (TFs) play a pivotal role in transcriptional regulation, making them crucial for cell survival and important biological functions. For the regulation of transcription, interactions of different regulatory proteins known as transcription co-factors (TcoFs) and TFs are essential in forming necessary protein complexes. Although TcoFs themselves do not bind DNA directly, their influence on transcriptional regulation and initiation, although indirect, has been shown to be significant, with the functionality of TFs strongly influenced by the presence of TcoFs. In the TcoF-DB v2 database, we collect information on TcoFs. In this article, we describe updates and improvements implemented in TcoF-DB v2. TcoF-DB v2 provides several new features that enables exploration of the roles of TcoFs. The content of the database has significantly expanded, and is enriched with information from Gene Ontology, biological pathways, diseases and molecular signatures. TcoF-DB v2 now includes many more TFs; has substantially increased the number of human TcoFs to 958, and now includes information on mouse (418 new TcoFs). TcoF-DB v2 enables the exploration of information on TcoFs and allows investigations into their influence on transcriptional regulation in humans and mice. TcoF-DB v2 can be accessed at http://tcofdb.org/. PMID:27789689

  18. Functional Analyses of Transcription Factor Binding Sites that Differ between Present-Day and Archaic Humans

    PubMed Central

    Weyer, Sven; Pääbo, Svante

    2016-01-01

    We analyze 25 previously identified transcription factor binding sites that carry DNA sequence changes that are present in all or nearly all present-day humans, yet occur in the ancestral state in Neandertals and Denisovans, the closest evolutionary relatives of humans. When the ancestral and derived forms of the transcription factor binding sites are tested using reporter constructs in 3 neuronal cell lines, the activity of 12 of the derived versions of transcription factor binding sites differ from the respective ancestral variants. This suggests that the majority of this class of evolutionary differences between modern humans and Neandertals may affect gene expression in at least some tissue or cell type. PMID:26454764

  19. Quantification of transcription factor binding in cell extracts using an electrochemical, structure-switching biosensor

    PubMed Central

    Bonham, Andrew J.; Hsieh, Kuangwen; Ferguson, B. Scott; Vallée-Bélisle, Alexis; Ricci, Francesco; Soh, H. Tom; Plaxco, Kevin W.

    2012-01-01

    Transcription factor expression levels, which sensitively reflect cellular development and disease state, are typically monitored via cumbersome, reagent-intensive assays that require relatively large quantities of cells. Here we demonstrate a simple, quantitative approach to their detection based on a simple, electrochemical sensing platform. This sensor sensitively and quantitatively detects its target transcription factor in complex media (e.g., 250 μg/ml crude nuclear extracts) in a convenient, low-reagent process requiring only 10 μl of sample. Our approach thus appears a promising means of monitoring transcription factor levels. PMID:22313286

  20. Re-employment of developmental transcription factors in adult heart disease

    PubMed Central

    Oka, Toru; Xu, Jian; Molkentin, Jeffery D.

    2007-01-01

    A finite number of transcription factors constitute a combinatorial code that orchestrates cardiac development and the specification and differentiation of myocytes. Many, if not all of these same transcription factors are re-employed in the adult heart in response to disease stimuli that promote hypertrophic enlargement and/or dilated cardiomyopathy, as part of the so called “fetal gene program”. This review will discuss the transcription factors that regulate the hypertrophic growth response of the adult heart, with a special emphasis on those regulators that participate in cardiac development. PMID:17161634

  1. A complex task? Direct modulation of transcription factors with small molecules

    PubMed Central

    Koehler, Angela N.

    2010-01-01

    Transcription factors with aberrant activity in disease are promising yet untested targets for therapeutic development, particularly in oncology. Directly inhibiting or activating the function of a transcription factor requires specific disruption or recruitment of protein-protein or protein-DNA interactions. The discovery or design of small molecules that specifically modulate these interactions has thus far proven to be a significant challenge and the protein class is often perceived to be ‘undruggable.’ This review will summarize recent progress in the development of small-molecule probes of transcription factors and provide evidence to challenge the notion that this important protein class is chemically intractable. PMID:20395165

  2. Human transcription factor USF stimulates transcription through the initiator elements of the HIV-1 and the Ad-ML promoters.

    PubMed Central

    Du, H; Roy, A L; Roeder, R G

    1993-01-01

    Earlier in vitro studies identified USF as a cellular factor which activates the adenovirus major late (Ad-ML) promoter by binding to an E-box motif located at position -60 with respect to the cap site. Purified USF contains 44 and 43 kDa polypeptides, and the latter was found (by cDNA cloning) to be a helix-loop-helix protein. In this report, we demonstrate a 25-to 30-fold stimulation of transcription via an upstream binding site by ectopic expression of the 43 kDa form of USF (USF43) in transient transfection assays. More recent data have also revealed alternate interactions of USF43 at pyrimidine-rich (consensus YYAYTCYY) initiator (Inr) elements present in a variety of core promoters. In agreement with this observation, we show here that USF43 can recognize the initiator elements of the HIV-1 promoter, as well as those in the Ad-ML promoter, and that ectopic expression of USF43 can stimulate markedly the corresponding core promoters (TATA and initiator elements) when analyzed in transient co-transfection assays. Mutations in either Inr 1 or Inr 2 reduced the USF43-dependent transcription activity in vivo. In addition, in vitro transcription assays showed that mutations in either or both of the Inr 1 and Inr 2 sequences of the HIV-1 and Ad-ML promoters could affect transcription efficiency, but not the position of the transcriptional start site. These results indicate that USF43 can stimulate transcription through initiator elements in two viral promoters, although the exact mechanism and physiological significance of this effect remain unclear. Images PMID:8440240

  3. Insight into transcription factor gene duplication from Caenorhabditis elegans Promoterome-driven expression patterns

    PubMed Central

    Reece-Hoyes, John S; Shingles, Jane; Dupuy, Denis; Grove, Christian A; Walhout, Albertha JM; Vidal, Marc; Hope, Ian A

    2007-01-01

    Background The C. elegans Promoterome is a powerful resource for revealing the regulatory mechanisms by which transcription is controlled pan-genomically. Transcription factors will form the core of any systems biology model of genome control and therefore the promoter activity of Promoterome inserts for C. elegans transcription factor genes was examined, in vivo, with a reporter gene approach. Results Transgenic C. elegans strains were generated for 366 transcription factor promoter/gfp reporter gene fusions. GFP distributions were determined, and then summarized with reference to developmental stage and cell type. Reliability of these data was demonstrated by comparison to previously described gene product distributions. A detailed consideration of the results for one C. elegans transcription factor gene family, the Six family, comprising ceh-32, ceh-33, ceh-34 and unc-39 illustrates the value of these analyses. The high proportion of Promoterome reporter fusions that drove GFP expression, compared to previous studies, led to the hypothesis that transcription factor genes might be involved in local gene duplication events less frequently than other genes. Comparison of transcription factor genes of C. elegans and Caenorhabditis briggsae was therefore carried out and revealed very few examples of functional gene duplication since the divergence of these species for most, but not all, transcription factor gene families. Conclusion Examining reporter expression patterns for hundreds of promoters informs, and thereby improves, interpretation of this data type. Genes encoding transcription factors involved in intrinsic developmental control processes appear acutely sensitive to changes in gene dosage through local gene duplication, on an evolutionary time scale. PMID:17244357

  4. Transcription factor co-repressors in cancer biology: roles and targeting.

    PubMed

    Battaglia, Sebastiano; Maguire, Orla; Campbell, Moray J

    2010-06-01

    Normal transcription displays a high degree of flexibility over the choice, timing and magnitude of mRNA expression levels that tend to oscillate and cycle. These processes allow for combinatorial actions, feedback control and fine-tuning. A central role has emerged for the transcriptional co-repressor proteins such as NCOR1, NCOR2/SMRT, CoREST and CTBPs, to control the actions of many transcriptional factors, in large part, by recruitment and activation of a range of chromatin remodeling enzymes. Thus, co-repressors and chromatin remodeling factors are recruited to transcription factors at specific promoter/enhancer regions and execute changes in the chromatin structure. The specificity of this recruitment is controlled in a spatial-temporal manner. By playing a central role in transcriptional control, as they move and target transcription factors, co-repressors act as a key driver in the epigenetic economy of the nucleus. Co-repressor functions are selectively distorted in malignancy, by both loss and gain of function and contribute to the generation of transcriptional rigidity. Features of transcriptional rigidity apparent in cancer cells include the distorted signaling of nuclear receptors and the WNTs/beta-catenin axis. Understanding and predicting the consequences of altered co-repressor expression patterns in cancer cells has diagnostic and prognostic significance, and also have the capacity to be targeted through selective epigenetic therapies.

  5. Identification of candidate transcription factor binding sites in the cattle genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A resource that provides candidate transcription factor binding sites does not currently exist for cattle. Such data is necessary, as predicted sites may serve as excellent starting locations for future 'omics studies to develop transcriptional regulation hypotheses. In order to generate this resour...

  6. Binding of the transcription factor Atf1 to promoters serves as a barrier to phase nucleosome arrays and avoid cryptic transcription

    PubMed Central

    García, Patricia; Paulo, Esther; Gao, Jun; Wahls, Wayne P.; Ayté, José; Lowy, Ernesto; Hidalgo, Elena

    2014-01-01

    Schizosaccharomyces pombe displays a large transcriptional response common to several stress conditions, regulated primarily by the transcription factor Atf1. Atf1-dependent promoters contain especially broad nucleosome depleted regions (NDRs) prior to stress imposition. We show here that basal binding of Atf1 to these promoters competes with histones to create wider NDRs at stress genes. Moreover, deletion of atf1 results in nucleosome disorganization specifically at stress coding regions and derepresses antisense transcription. Our data indicate that the transcription factor binding to promoters acts as an effective barrier to fix the +1 nucleosome and phase downstream nucleosome arrays to prevent cryptic transcription. PMID:25122751

  7. Transcription factor co-localization patterns affect human cell type-specific gene expression

    PubMed Central

    2012-01-01

    Background Cellular development requires the precise control of gene expression states. Transcription factors are involved in this regulatory process through their combinatorial binding with DNA. Information about transcription factor binding sites can help determine which combinations of factors work together to regulate a gene, but it is unclear how far the binding data from one cell type can inform about regulation in other cell types. Results By integrating data on co-localized transcription factor binding sites in the K562 cell line with expression data across 38 distinct hematopoietic cell types, we developed regression models to describe the relationship between the expression of target genes and the transcription factors that co-localize nearby. With K562 binding sites identifying the predictors, the proportion of expression explained by the models is statistically significant only for monocytic cells (p-value< 0.001), which are closely related to K562. That is, cell type specific binding patterns are crucial for choosing the correct transcription factors for the model. Comparison of predictors obtained from binding sites in the GM12878 cell line with those from K562 shows that the amount of difference between binding patterns is directly related to the quality of the prediction. By identifying individual genes whose expression is predicted accurately by the binding sites, we are able to link transcription factors FOS, TAF1 and YY1 to a sparsely studied gene LRIG2. We also find that the activity of a transcription factor may be different depending on the cell type and the identity of other co-localized factors. Conclusion Our approach shows that gene expression can be explained by a modest number of co-localized transcription factors, however, information on cell-type specific binding is crucial for understanding combinatorial gene regulation. PMID:22721266

  8. Identification of Mouse Mesenteric and Subcutaneous in vitro Adipogenic Cells.

    PubMed

    Miyata, Yugo; Otsuki, Michio; Kita, Shunbun; Shimomura, Iichiro

    2016-02-17

    Fat accumulation and the dysfunction of visceral white adipose tissue (WAT), but not subcutaneous WAT, cause abnormalities in whole body metabolic homeostasis. However, no current drugs specifically target visceral WAT. The primary reason for this is that a practical in vitro culture system for mesenteric adipocytes has not been established. To resolve this issue, we sought to identify in vitro adipogenic cells in mesenteric and subcutaneous WATs. First, we examined the expression pattern of surface antigens in stromal-vascular fraction (SVF) cells from mouse mesenteric and subcutaneous WATs, and found the expression of 30 stem cell-related surface antigens. Then, to evaluate the adipogenic ability of each fraction, we performed in vitro screening, and identified five candidate markers for mesenteric adipogenic cells and one candidate marker for subcutaneous adipogenic cells. To investigate whether in vitro adipogenic ability accurately reflects the conditions in vivo, we performed transplantation experiments, and identified CD9(-) CD201(+) Sca-1(-) cells and CD90(+) cells as mesenteric and subcutaneous in vitro adipogenic cells, respectively. Furthermore, mature adipocytes derived from mesenteric and subcutaneous adipogenic cells maintained each characteristic phenotype in vitro. Thus, our study should contribute to the development of a useful culture system for visceral adipocytes.

  9. Identification of Mouse Mesenteric and Subcutaneous in vitro Adipogenic Cells

    PubMed Central

    Miyata, Yugo; Otsuki, Michio; Kita, Shunbun; Shimomura, Iichiro

    2016-01-01

    Fat accumulation and the dysfunction of visceral white adipose tissue (WAT), but not subcutaneous WAT, cause abnormalities in whole body metabolic homeostasis. However, no current drugs specifically target visceral WAT. The primary reason for this is that a practical in vitro culture system for mesenteric adipocytes has not been established. To resolve this issue, we sought to identify in vitro adipogenic cells in mesenteric and subcutaneous WATs. First, we examined the expression pattern of surface antigens in stromal-vascular fraction (SVF) cells from mouse mesenteric and subcutaneous WATs, and found the expression of 30 stem cell-related surface antigens. Then, to evaluate the adipogenic ability of each fraction, we performed in vitro screening, and identified five candidate markers for mesenteric adipogenic cells and one candidate marker for subcutaneous adipogenic cells. To investigate whether in vitro adipogenic ability accurately reflects the conditions in vivo, we performed transplantation experiments, and identified CD9− CD201+ Sca-1− cells and CD90+ cells as mesenteric and subcutaneous in vitro adipogenic cells, respectively. Furthermore, mature adipocytes derived from mesenteric and subcutaneous adipogenic cells maintained each characteristic phenotype in vitro. Thus, our study should contribute to the development of a useful culture system for visceral adipocytes. PMID:26884347

  10. Search for regulatory factors of the pituitary-specific transcription factor PROP1 gene

    PubMed Central

    NISHIMURA, Naoto; UEHARU, Hiroki; NISHIHARA, Hiroto; SHIBUYA, Shiori; YOSHIDA, Saishu; HIGUCHI, Masashi; KANNO, Naoko; HORIGUCHI, Kotaro; KATO, Takako; KATO, Yukio

    2015-01-01

    Pituitary-specific transcription factor PROP1, a factor important for pituitary organogenesis, appears on rat embryonic day 11.5 (E11.5) in SOX2-expressing stem/progenitor cells and always coexists with SOX2 throughout life. PROP1-positive cells at one point occupy all cells in Rathke’s pouch, followed by a rapid decrease in their number. Their regulatory factors, except for RBP-J, have not yet been clarified. This study aimed to use the 3 kb upstream region and 1st intron of mouse prop1 to pinpoint a group of factors selected on the basis of expression in the early pituitary gland for expression of Prop1. Reporter assays for SOX2 and RBP-J showed that the stem/progenitor marker SOX2 has cell type-dependent inhibitory and activating functions through the proximal and distal upstream regions of Prop1, respectively, while RBP-J had small regulatory activity in some cell lines. Reporter assays for another 39 factors using the 3 kb upstream regions in CHO cells ultimately revealed that 8 factors, MSX2, PAX6, PIT1, PITX1, PITX2, RPF1, SOX8 and SOX11, but not RBP-J, regulate Prop1 expression. Furthermore, a synergy effect with SOX2 was observed for an additional 10 factors, FOXJ1, HES1, HEY1, HEY2, KLF6, MSX1, RUNX1, TEAD2, YBX2 and ZFP36Ll, which did not show substantial independent action. Thus, we demonstrated 19 candidates, including SOX2, to be regulatory factors of Prop1 expression. PMID:26640231

  11. Conversion of adipogenic to osteogenic phenotype using crystalline porous biomatrices of marine origin.

    PubMed

    Birk, Ruth Z; Abramovitch-Gottlib, Liat; Margalit, Iris; Aviv, Moran; Forti, Efrat; Geresh, Shimona; Vago, Razi

    2006-01-01

    Adipogenic and osteogenic cells share part of the early differentiation cascade of mesenchymal stem cells (MSCs). The choice of a mesenchymal precursor cell to differentiate into a particular cell type is dictated by many spatial and temporal cues, including growth factors, neighboring mature cells, and the extracellular matrix (ECM), which plays an important role in bone formation. Whether adipocytes that have initiated differentiation along one lineage can convert into osteogenic lineage by merely interacting with materials having specific surface parameters is unknown. Using crystalline three-dimensional (3D) biomatrices of marine origin (CaCO(3)), we explored whether preadipocytes can convert into osteoblasts. Cells (3T3F442A) were seeded on 3D biomatrices of marine origin (Porites lutea). Analyses were made at different time intervals-1, 2, 5, 7, 14, 21, and 28 days post-seeding. Cell characterizations were done using morphological (light microscopy and scanning electron microscopy), histological (Alizarin red, von Kossa and Oil red O staining), enzymatic (alkaline phosphatase activity, and quantitative PCR testing transcript levels of osteocalcin, alkaline phosphatase, core binding factor- 1 (Cbfa1), and fatty acid binding protein (aP2). We demonstrated 3T3F442A preadipocyte modulation and differentiation into bone-forming cells when grown on biomatrix of marine origin without addition of other bone morphogenesis inducers. We found an active ossification process typical of osteogenic phenotype as early as 2 days after seeding. It is suggested that this crystalline biomatrix having a particular 3D topology or surface parameters supports fast cellular adhesion, proliferation, and differentiation of preadipocytes to osteogenic phenotype.

  12. Transcriptional control of fungal cell cycle and cellular events by Fkh2, a forkhead transcription factor in an insect pathogen

    PubMed Central

    Wang, Juan-Juan; Qiu, Lei; Cai, Qing; Ying, Sheng-Hua; Feng, Ming-Guang

    2015-01-01

    Transcriptional control of the cell cycle by forkhead (Fkh) transcription factors is likely associated with fungal adaptation to host and environment. Here we show that Fkh2, an ortholog of yeast Fkh1/2, orchestrates cell cycle and many cellular events of Beauveria bassiana, a filamentous fungal insect pathogen. Deletion of Fkh2 in B. bassiana resulted in dramatic down-regulation of the cyclin-B gene cluster and hence altered cell cycle (longer G2/M and S, but shorter G0/G1, phases) in unicellular blastospores. Consequently, ΔFkh2 produced twice as many, but smaller, blastospores than wild-type under submerged conditions, and formed denser septa and shorter/broader cells in aberrantly branched hyphae. In these hyphae, clustered genes required for septation and conidiation were remarkedly up-regulated, followed by higher yield and slower germination of aerial conidia. Moreover, ΔFkh2 displayed attenuated virulence and decreased tolerance to chemical and environmental stresses, accompanied with altered transcripts and activities of phenotype-influencing proteins or enzymes. All the changes in ΔFkh2 were restored by Fkh2 complementation. All together, Fkh2-dependent transcriptional control is vital for the adaptation of B. bassiana to diverse habitats of host insects and hence contributes to its biological control potential against arthropod pests. PMID:25955538

  13. The thumb subdomain of yeast mitochondrial RNA polymerase is involved in processivity, transcript fidelity and mitochondrial transcription factor binding.

    PubMed

    Velazquez, Gilberto; Sousa, Rui; Brieba, Luis G

    2015-01-01

    Single subunit RNA polymerases have evolved 2 mechanisms to synthesize long transcripts without falling off a DNA template: binding of nascent RNA and interactions with an RNA:DNA hybrid. Mitochondrial RNA polymerases share a common ancestor with T-odd bacteriophage single subunit RNA polymerases. Herein we characterized the role of the thumb subdomain of the yeast mtRNA polymerase gene (RPO41) in complex stability, processivity, and fidelity. We found that deletion and point mutants of the thumb subdomain of yeast mtRNA polymerase increase the synthesis of abortive transcripts and the probability that the polymerase will disengage from the template during the formation of the late initial transcription and elongation complexes. Mutations in the thumb subdomain increase the amount of slippage products from a homopolymeric template and, unexpectedly, thumb subdomain deletions decrease the binding affinity for mitochondrial transcription factor (Mtf1). The latter suggests that the thumb subdomain is part of an extended binding surface area involved in binding Mtf1.

  14. Large-scale screening of transcription factor-promoter interactions in spruce reveals a transcriptional network involved in vascular development.

    PubMed

    Duval, Isabelle; Lachance, Denis; Giguère, Isabelle; Bomal, Claude; Morency, Marie-Josée; Pelletier, Gervais; Boyle, Brian; MacKay, John J; Séguin, Armand

    2014-06-01

    This research aimed to investigate the role of diverse transcription factors (TFs) and to delineate gene regulatory networks directly in conifers at a relatively high-throughput level. The approach integrated sequence analyses, transcript profiling, and development of a conifer-specific activation assay. Transcript accumulation profiles of 102 TFs and potential target genes were clustered to identify groups of coordinately expressed genes. Several different patterns of transcript accumulation were observed by profiling in nine different organs and tissues: 27 genes were preferential to secondary xylem both in stems and roots, and other genes were preferential to phelloderm and periderm or were more ubiquitous. A robust system has been established as a screening approach to define which TFs have the ability to regulate a given promoter in planta. Trans-activation or repression effects were observed in 30% of TF-candidate gene promoter combinations. As a proof of concept, phylogenetic analysis and expression and trans-activation data were used to demonstrate that two spruce NAC-domain proteins most likely play key roles in secondary vascular growth as observed in other plant species. This study tested many TFs from diverse families in a conifer tree species, which broadens the knowledge of promoter-TF interactions in wood development and enables comparisons of gene regulatory networks found in angiosperms and gymnosperms.

  15. Stress-Mediated cis-Element Transcription Factor Interactions Interconnecting Primary and Specialized Metabolism in planta

    PubMed Central

    Sheshadri, S. A.; Nishanth, M. J.; Simon, Bindu

    2016-01-01

    Plant specialized metabolites are being used worldwide as therapeutic agents against several diseases. Since the precursors for specialized metabolites come through primary metabolism, extensive investigations have been carried out to understand the detailed connection between primary and specialized metabolism at various levels. Stress regulates the expression of primary and specialized metabolism genes at the transcriptional level via transcription factors binding to specific cis-elements. The presence of varied cis-element signatures upstream to different stress-responsive genes and their transcription factor binding patterns provide a prospective molecular link among diverse metabolic pathways. The pattern of occurrence of these cis-elements (overrepresentation/common) decipher the mechanism of stress-responsive upregulation of downstream genes, simultaneously forming a molecular bridge between primary and specialized metabolisms. Though many studies have been conducted on the transcriptional regulation of stress-mediated primary or specialized metabolism genes, but not much data is available with regard to cis-element signatures and transcription factors that simultaneously modulate both pathway genes. Hence, our major focus would be to present a comprehensive analysis of the stress-mediated interconnection between primary and specialized metabolism genes via the interaction between different transcription factors and their corresponding cis-elements. In future, this study could be further utilized for the overexpression of the specific transcription factors that upregulate both primary and specialized metabolism, thereby simultaneously improving the yield and therapeutic content of plants. PMID:27933071

  16. The Chromatin Landscape and Transcription Factors in T-Cell Programming

    PubMed Central

    Rothenberg, Ellen V.

    2014-01-01

    T-cell development from multipotent progenitors to specialized effector subsets of mature T cells is guided by the iterative action of transcription factors. At each stage, not only do transcription factors interact with an existing landscape of histone modifications and nucleosome packing, but they also interact with other bound factors and modify the landscape for later-arriving factors, in ways that fundamentally affect the control of gene expression. This review covers insights from genome-wide analyses of transcription factor binding and resulting chromatin conformation changes that reveal roles of cytokine signaling in effector T-cell programming, the ways one factor can completely transform the impacts of previously bound factors, and the ways that the baseline chromatin landscape is established during early T-cell lineage commitment. PMID:24703587

  17. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants.

    PubMed

    Noguero, Mélanie; Atif, Rana Muhammad; Ochatt, Sergio; Thompson, Richard D

    2013-08-01

    The DOF (DNA-binding One Zinc Finger) family of transcription factors is involved in many fundamental processes in higher plants, including responses to light and phytohormones as well as roles in seed maturation and germination. DOF transcription factor genes are restricted in their distribution to plants, where they are in many copies in both gymnosperms and angiosperms and also present in lower plants such as the moss Physcomitrella patens and in the alga Chlamydomonas reinhardtii which possesses a single DOF gene. DOF transcription factors bind to their promoter targets at the consensus sequence AAAG. This binding depends upon the presence of the highly conserved DOF domain in the protein. Depending on the target gene, DOF factor binding may activate or repress transcription. DOF factors are expressed in most if not all tissues of higher plants, but frequently appear to be functionally redundant. Recent next-generation sequencing data provide a more comprehensive survey of the distribution of DOF sequence classes among plant species and within tissue types, and clues as to the evolution of functions assumed by this transcription factor family. DOFs do not appear to be implicated in the initial differentiation of the plant body plan into organs via the resolution of meristematic zones, in contrast to MADS-box and homeobox transcription factors, which are found in other non-plant eukaryotes, and this may reflect a more recent evolutionary origin.

  18. The Unicellular Ancestry of Groucho-Mediated Repression and the Origins of Metazoan Transcription Factors.

    PubMed

    Copley, Richard R

    2016-06-27

    Groucho is a co-repressor that interacts with many transcription factors playing a crucial role in animal development. The evolutionary origins of Groucho are not clear. It is generally regarded as being a distinct animal-specific protein, although with similarities to the yeast Tup-like proteins. Here, it is shown that Groucho has true orthologs in unicellular relatives of animals. Based on their phylogenetic distribution, and an analysis of ligand-binding residues, these genes are unlikely to be orthologs of the fungal Tup-like genes. By identifying conserved candidate Groucho interaction motifs (GIMs) in nonmetazoan transcription factors, it is demonstrated that the details of molecular interactions between Groucho and transcription factors are likely to have been established prior to the origin of animals, but that the association of GIMs with many transcription factor types can be regarded as a metazoan innovation.

  19. Signaling Proteins and Transcription Factors in Normal and Malignant Early B Cell Development

    PubMed Central

    Pérez-Vera, Patricia; Reyes-León, Adriana; Fuentes-Pananá, Ezequiel M.

    2011-01-01

    B cell development starts in bone marrow with the commitment of hematopoietic progenitors to the B cell lineage. In murine models, the IL-7 and preBCR receptors, and the signaling pathways and transcription factors that they regulate, control commitment and maintenance along the B cell pathway. E2A, EBF1, PAX5, and Ikaros are among the most important transcription factors controlling early development and thereby conditioning mice homeostatic B cell lymphopoiesis. Importantly, their gain or loss of function often results in malignant development in humans, supporting conserved roles for these transcription factors. B cell acute lymphoblastic leukemia is the most common cause of pediatric cancer, and it is characterized by unpaired early B cell development resulting from genetic lesions in these critical signaling pathways and transcription factors. Fine mapping of these genetic abnormalities is allowing more specific treatments, more accurately predicting risk profiles for this disease, and improving survival rates. PMID:22046564

  20. Signaling proteins and transcription factors in normal and malignant early B cell development.

    PubMed

    Pérez-Vera, Patricia; Reyes-León, Adriana; Fuentes-Pananá, Ezequiel M

    2011-01-01

    B cell development starts in bone marrow with the commitment of hematopoietic progenitors to the B cell lineage. In murine models, the IL-7 and preBCR receptors, and the signaling pathways and transcription factors that they regulate, control commitment and maintenance along the B cell pathway. E2A, EBF1, PAX5, and Ikaros are among the most important transcription factors controlling early development and thereby conditioning mice homeostatic B cell lymphopoiesis. Importantly, their gain or loss of function often results in malignant development in humans, supporting conserved roles for these transcription factors. B cell acute lymphoblastic leukemia is the most common cause of pediatric cancer, and it is characterized by unpaired early B cell development resulting from genetic lesions in these critical signaling pathways and transcription factors. Fine mapping of these genetic abnormalities is allowing more specific treatments, more accurately predicting risk profiles for this disease, and improving survival rates.

  1. Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression.

    EPA Science Inventory

    Building predictive gene signatures through simultaneous assessment of transcription factor activation and gene expression Exposure to many drugs and environmentally-relevant chemicals can cause adverse outcomes. These adverse outcomes, such as cancer, have been linked to mol...

  2. Signal transduction pathways and transcription factors triggered by arsenic trioxide in leukemia cells

    SciTech Connect

    Sumi, Daigo; Shinkai, Yasuhiro; Kumagai, Yoshito

    2010-05-01

    Arsenic trioxide (As{sub 2}O{sub 3}) is widely used to treat acute promyelocytic leukemia (APL). Several lines of evidence have indicated that As{sub 2}O{sub 3} affects signal transduction and transactivation of transcription factors, resulting in the stimulation of apoptosis in leukemia cells, because some transcription factors are reported to associate with the redox condition of the cells, and arsenicals cause oxidative stress. Thus, the disturbance and activation of the cellular signaling pathway and transcription factors due to reactive oxygen species (ROS) generation during arsenic exposure may explain the ability of As{sub 2}O{sub 3} to induce a complete remission in relapsed APL patients. In this report, we review recent findings on ROS generation and alterations in signal transduction and in transactivation of transcription factors during As{sub 2}O{sub 3} exposure in leukemia cells.

  3. ULTRAPETALA trxG genes interact with KANADI transcription factor genes to regulate Aradopsis Gynoecium patterning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organ formation relies upon precise patterns of gene expression that are under tight spatial and temporal regulation. Transcription patterns are specified by several cellular processes during development, including chromatin remodeling, but little is known about how chromatin remodeling factors cont...

  4. The Unicellular Ancestry of Groucho-Mediated Repression and the Origins of Metazoan Transcription Factors

    PubMed Central

    Copley, Richard R.

    2016-01-01

    Groucho is a co-repressor that interacts with many transcription factors playing a crucial role in animal development. The evolutionary origins of Groucho are not clear. It is generally regarded as being a distinct animal-specific protein, although with similarities to the yeast Tup-like proteins. Here, it is shown that Groucho has true orthologs in unicellular relatives of animals. Based on their phylogenetic distribution, and an analysis of ligand-binding residues, these genes are unlikely to be orthologs of the fungal Tup-like genes. By identifying conserved candidate Groucho interaction motifs (GIMs) in nonmetazoan transcription factors, it is demonstrated that the details of molecular interactions between Groucho and transcription factors are likely to have been established prior to the origin of animals, but that the association of GIMs with many transcription factor types can be regarded as a metazoan innovation. PMID:27189982

  5. The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology.

    PubMed

    Kawakami, Akinori; Fisher, David E

    2017-03-06

    Certain transcription factors have vital roles in lineage development, including specification of cell types and control of differentiation. Microphthalmia-associated transcription factor (MITF) is a key transcription factor for melanocyte development and differentiation. MITF regulates expression of numerous pigmentation genes to promote melanocyte differentiation, as well as fundamental genes for maintaining cell homeostasis, including genes encoding proteins involved in apoptosis (eg, BCL2) and the cell cycle (eg, CDK2). Loss-of-function mutations of MITF cause Waardenburg syndrome type IIA, whose phenotypes include depigmentation due to melanocyte loss, whereas amplification or specific mutation of MITF can be an oncogenic event that is seen in a subset of familial or sporadic melanomas. In this article, we review basic features of MITF biological function and highlight key unresolved questions regarding this remarkable transcription factor.Laboratory Investigation advance online publication, 6 March 2017; doi:10.1038/labinvest.2017.9.

  6. Distinct adipogenic differentiation phenotypes of human umbilical cord mesenchymal cells dependent on adipogenic conditions.

    PubMed

    Saben, Jessica; Thakali, Keshari M; Lindsey, Forrest E; Zhong, Ying; Badger, Thomas M; Andres, Aline; Shankar, Kartik

    2014-10-01

    The umbilical cord (UC) matrix is a source of multipotent mesenchymal stem cells (MSCs) that have adipogenic potential and thus can be a model to study adipogenesis. However, existing variability in adipocytic differentiation outcomes may be due to discrepancies in methods utilized for adipogenic differentiation. Additionally, functional characterization of UCMSCs as adipocytes has not been described. We tested the potential of three well-established adipogenic cocktails containing IBMX, dexamethasone, and insulin (MDI) plus indomethacin (MDI-I) or rosiglitazone (MDI-R) to stimulate adipocyte differentiation in UCMSCs. MDI, MDI-I, and MDI-R treatment significantly increased peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT-enhancer binding protein alpha (C/EBPα) mRNA and induced lipid droplet formation. However, MDI-I had the greatest impact on mRNA expression of PPARγ, C/EBPα, FABP4, GPD1, PLIN1, PLIN2, and ADIPOQ and lipid accumulation, whereas MDI showed the least. Interestingly, there were no treatment group differences in the amount of PPARγ protein. However, MDI-I treated cells had significantly more C/EBPα protein compared to MDI or MDI-R, suggesting that indomethacin-dependent increased C/EBPα may contribute to the adipogenesis-inducing potency of MDI-I. Additionally, bone morphogenetic protein 4 (BMP4) treatment of UCMSCs did not enhance responsiveness to MDI-induced differentiation. Finally to characterize adipocyte function, differentiated UCMSCs were stimulated with insulin and downstream signaling was assessed. Differentiated UCMSCs were responsive to insulin at two weeks but showed decreased sensitivity by five weeks following differentiation, suggesting that long-term differentiation may induce insulin resistance. Together, these data indicate that UCMSCs undergo adipogenesis when differentiated in MDI, MDI-I, and MDI-R, however the presence of indomethacin greatly enhances their adipogenic potential beyond that of

  7. Transcription factors relevant to auxin signalling coordinate broad-spectrum metabolic shifts including sulphur metabolism

    PubMed Central

    Falkenberg, Bettina; Witt, Isabell; Zanor, Maria Inés; Steinhauser, Dirk; Mueller-Roeber, Bernd; Hesse, Holger; Hoefgen, Rainer

    2008-01-01

    A systems approach has previously been used to follow the response behaviour of Arabidopsis thaliana plants upon sulphur limitation. A response network was reconstructed from a time series of transcript and metabolite profiles, integrating complex metabolic and transcript data in order to investigate a potential causal relationship. The resulting scale-free network allowed potential transcriptional regulators of sulphur metabolism to be identified. Here, three sulphur-starvation responsive transcription factors, IAA13, IAA28, and ARF-2 (ARF1-Binding Protein), all of which are related to auxin signalling, were selected for further investigation. IAA28 overexpressing and knock-down lines showed no major morphological changes, whereas IAA13- and ARF1-BP-overexpressing plants grew more slowly than the wild type. Steady-state metabolite levels and expression of pathway-relevant genes were monitored under normal and sulphate-depleted conditions. For all lines, changes in transcript and metabolite levels were observed, yet none of these changes could exclusively be linked to sulphur stress. Instead, up- or down-regulation of the transcription factors caused metabolic changes which in turn affected sulphur metabolism. Auxin-relevant transcription factors are thus part of a complex response pattern to nutrient starvation that serve as coordinators of the metabolic shifts driving sulphur homeostasis rather then as direct effectors of the sulphate assimilation pathway. This study provides the first evidence ever presented that correlates auxin-related transcriptional regulators with primary plant metabolism. PMID:18596113

  8. Transcription factors relevant to auxin signalling coordinate broad-spectrum metabolic shifts including sulphur metabolism.

    PubMed

    Falkenberg, Bettina; Witt, Isabell; Zanor, Maria Inés; Steinhauser, Dirk; Mueller-Roeber, Bernd; Hesse, Holger; Hoefgen, Rainer

    2008-01-01

    A systems approach has previously been used to follow the response behaviour of Arabidopsis thaliana plants upon sulphur limitation. A response network was reconstructed from a time series of transcript and metabolite profiles, integrating complex metabolic and transcript data in order to investigate a potential causal relationship. The resulting scale-free network allowed potential transcriptional regulators of sulphur metabolism to be identified. Here, three sulphur-starvation responsive transcription factors, IAA13, IAA28, and ARF-2 (ARF1-Binding Protein), all of which are related to auxin signalling, were selected for further investigation. IAA28 overexpressing and knock-down lines showed no major morphological changes, whereas IAA13- and ARF1-BP-overexpressing plants grew more slowly than the wild type. Steady-state metabolite levels and expression of pathway-relevant genes were monitored under normal and sulphate-depleted conditions. For all lines, changes in transcript and metabolite levels were observed, yet none of these changes could exclusively be linked to sulphur stress. Instead, up- or down-regulation of the transcription factors caused metabolic changes which in turn affected sulphur metabolism. Auxin-relevant transcription factors are thus part of a complex response pattern to nutrient starvation that serve as coordinators of the metabolic shifts driving sulphur homeostasis rather then as direct effectors of the sulphate assimilation pathway. This study provides the first evidence ever presented that correlates auxin-related transcriptional regulators with primary plant metabolism.

  9. Involvement of nuclear factor I transcription/replication factor in the early stage of chondrocytic differentiation.

    PubMed

    Uchihashi, Takayuki; Kimata, Masaaki; Tachikawa, Kanako; Koshimizu, Takao; Okada, Tomoko; Ihara-Watanabe, Miyuki; Sakai, Norio; Kogo, Mikihiko; Ozono, Keiichi; Michigami, Toshimi

    2007-12-01

    Gene-trap mutagenesis is based on the notion that the random insertion of a trapping vector may disturb the function of inserted genes. To identify the genes involved in chondrocytic differentiation, we applied this method to a murine mesenchymal cell line, ATDC5, which differentiate into mature chondrocytes in the presence of insulin, and isolated a clone in which the gene encoding a transcription/replication factor, nuclear factor I-B (NFIB), was trapped. In this particular clone, named #7-57, the trap vector pPT1-geo was inserted into intron 6 of the NFIB gene in one of the alleles. As a result, both wild-type NFIB and a mutant protein lacking the carboxyl-terminal transactivation/repression domain were expressed in the clone. Immunoprecipitation/Western blotting confirmed the interaction between wild-type NFIB and the truncated protein derived from the trapped allele, suggesting that the mutant protein formed a heterodimer with wild-type NFI proteins. When cultured in the differentiation medium, #7-57 exhibited impaired nodule formation and less accumulation of cartilageous matrices compared with the parental ATDC5 cells. In addition, the expression of marker genes for proliferating chondrocytes, including type II collagen (Col2a1), matrillin-1, and PTHrP, was reduced in the clone. The expression of SOX9 was also slightly decreased in the clone #7-57 compared with the parental cells. The overexpression of wild-type NFIB in parental ATDC5 cells resulted in the increased expression of Col2a1, and a series of reporter assays using a Col2a1 promoter/enhancer-luciferase construct demonstrated the transcriptional regulation of the gene by NFIB and the dominant-negative effect of the truncated mutant derived from the trapped allele. Interestingly, mutation in the SOX9-binding site in the 48-bp cis-element located in intron 1 failed to abolish the transactivation of Col2a1 gene by NFIB, suggesting that NFI regulates the transactivation of Col2a1, at least in part

  10. A novel tumor necrosis factor-responsive transcription factor which recognizes a regulatory element in hemopoietic growth factor genes

    SciTech Connect

    Shannon, M.F.; Pell, L.M.; Kuczek, E.S.; Occhiodoro, F.S.; Dunn, S.M.; Vadas, M.A. ); Lenardo, M.J. )

    1990-06-01

    A conserved DNA sequence element, termed cytokine 1 (CK-1), is found in the promoter regions of many hemopoietic growth factor (HGF) genes. Mutational analyses and modification interference experiments show that this sequence specifically binds a nuclear transcription factor, NF-GMa, which is a protein with a molecular mass of 43 kilodaltons. It interacts with different affinities with the CK-1-like sequence from a number of HGF genes, including granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte (G)-CSF, interleukin 3 (IL-3), and IL-5. The authors show that the level of NF-GMa binding is induced in embryonic fibroblasts by tumor necrosis factor {alpha} (TNF-{alpha}) treatment and that the CK-1 sequence from the G-CSF gene is a TNF-{alpha}-responsive enhancer in these cells.

  11. In silico mining and PCR-based approaches to transcription factor discovery in non-model plants: gene discovery of the WRKY transcription factors in conifers.

    PubMed

    Liu, Jun-Jun; Xiang, Yu

    2011-01-01

    WRKY transcription factors are key regulators of numerous biological processes in plant growth and development, as well as plant responses to abiotic and biotic stresses. Research on biological functions of plant WRKY genes has focused in the past on model plant species or species with largely characterized transcriptomes. However, a variety of non-model plants, such as forest conifers, are essential as feed, biofuel, and wood or for sustainable ecosystems. Identification of WRKY genes in these non-model plants is equally important for understanding the evolutionary and function-adaptive processes of this transcription factor family. Because of limited genomic information, the rarity of regulatory gene mRNAs in transcriptomes, and the sequence divergence to model organism genes, identification of transcription factors in non-model plants using methods similar to those generally used for model plants is difficult. This chapter describes a gene family discovery strategy for identification of WRKY transcription factors in conifers by a combination of in silico-based prediction and PCR-based experimental approaches. Compared to traditional cDNA library screening or EST sequencing at transcriptome scales, this integrated gene discovery strategy provides fast, simple, reliable, and specific methods to unveil the WRKY gene family at both genome and transcriptome levels in non-model plants.

  12. Novel plant-GARP-like transcription factors in Giardia lamblia.

    PubMed

    Sun, Chin-Hung; Su, Li-Hsin; Gillin, Frances D

    2006-03-01

    GARP homologues constitute a large family of DNA-binding proteins in plants that may be needed for a variety of key cellular functions including regulation of transcription, phosphotransfer signaling, and differentiation. However, no member of this gene family has been reported to date in yeast, animals, or protozoan parasites. We have identified four genes with putative GARP domains in the Giardia lamblia genome (GARP-like protein or GLP). The glp1 mRNA levels increased slightly during encystation. Epitope-tagged GLP1 localized to both nuclei and the proportion of stained Giardia cells increased by 10-fold during encystation. Recombinant GLP1 specifically bound to both the regulated cwp1 and constitutive ran gene promoters in their double-stranded configurations. The C-terminal region of GLP1 containing the GARP-like domain encoded the DNA binding activity. Mutation analysis revealed that an (A/G)ATCN sequence was required for binding of GLP1 to these promoters. We also found that GLP2 recognized similar binding sites. Using mutated plasmids and transfection assays, we demonstrated that the GLP1/2 binding sites are positive cis-acting elements of the cwp1 and ran gene promoters in both trophozoites and encysting cells. GLP1 is the first GARP family gene found in protozoan parasites. Our results suggest that GLP1 may be an important transcriptional activator and that its binding sites are positive promoter elements for certain Giardia genes.

  13. AMKL chimeric transcription factors are potent inducers of leukemia.

    PubMed

    Dang, J; Nance, S; Ma, J; Cheng, J; Walsh, M P; Vogel, P; Easton, J; Song, G; Rusch, M; Gedman, A L; Koss, C; Downing, J R; Gruber, T A

    2017-03-10

    Acute megakaryoblastic leukemia in patients without Down syndrome is a rare malignancy with a poor prognosis. RNA sequencing of fourteen pediatric cases previously identified novel fusion transcripts that are predicted to be pathological including CBFA2T3-GLIS2, GATA2-HOXA9, MN1-FLI and NIPBL-HOXB9. In contrast to CBFA2T3-GLIS2, which is insufficient to induce leukemia, we demonstrate that the introduction of GATA2-HOXA9, MN1-FLI1 or NIPBL-HOXB9 into murine bone marrow induces overt disease in syngeneic transplant models. With the exception of MN1, full penetrance was not achieved through the introduction of fusion partner genes alone, suggesting that the chimeric transcripts possess a unique gain-of-function phenotype. Leukemias were found to exhibit elements of the megakaryocyte erythroid progenitor gene expression program, as well as unique leukemia-specific signatures that contribute to transformation. Comprehensive genomic analyses of resultant murine tumors revealed few cooperating mutations confirming the strength of the fusion genes and their role as pathological drivers. These models are critical for both the understanding of the biology of disease as well as providing a tool for the identification of effective therapeutic agents in preclinical studies.Leukemia advance online publication, 10 March 2017; doi:10.1038/leu.2017.51.

  14. The transcription factor, the Cdk, its cyclin and their regulator: directing the transcriptional response to a nutritional signal.

    PubMed Central

    Hirst, K; Fisher, F; McAndrew, P C; Goding, C R

    1994-01-01

    The Pho80-Pho85 cyclin-cdk complex prevents transcription of PHO5 by inhibiting the ability of the basic-helix-loop-helix transcription factor Pho4 to activate transcription in response to high phosphate conditions. In low phosphate the Pho80-Pho85 complex is inactivated and Pho4 is then able to activate the acid phosphatase gene PHO5. We show here that Pho4 and the homeobox protein Pho2 interact in vivo and act cooperatively to activate the PHO5 UAS, with interaction being regulated by the phosphate switch. In addition, we also demonstrate that an additional factor, Pho81, interacts in high phosphate with both the Pho80 cyclin and with Pho4. In low phosphate, Pho80 and Pho81 dissociate from Pho4, but retain the ability to interact with each other. The evidence presented here supports the idea that Pho81 acts as a phosphate-sensitive trigger that regulates the ability of the Pho80-Pho85 cyclin-cdk complex to bind Pho4, while DNA binding by Pho4 is dependent on the phosphate-sensitive interaction with Pho2. Images PMID:7957107

  15. Dual roles of lineage restricted transcription factors: the case of MITF in melanocytes.

    PubMed

    Levy, Carmit; Fisher, David E

    2011-01-01

    Microphthalmia-associated Transcription Factor, MITF, is a master regulator of melanocyte development, differentiation, migration, and survival.(1) A broad collection of studies have indicated that MITF directly regulates the transcription of genes involved in pigmentation, which are selective to the melanocyte lineage. In addition, MITF controls expression of genes which are expressed in multiple cell lineages, and may also play differential roles in activating vs. maintaining gene expression patterns. In this Point of View article, we discuss lineage restricted transcription factor activation of both tissue-specific and ubiquitously expressed genes using melanocytes and MITF as a model system that may eventually provide insights into such processes in multiple cell lineages.