Science.gov

Sample records for adipokinetic hormone system

  1. New insights into adipokinetic hormone signaling.

    PubMed

    Vroemen, S F; Van der Horst, D J; Van Marrewijk, W J

    1998-06-25

    Flight activity of insects comprises one of the most intense biochemical processes known in nature, and therefore provides an attractive model system to study the hormonal regulation of metabolism during physical exercise. In long-distance flying insects, such as the migratory locust, both carbohydrate and lipid reserves are utilized as fuels for sustained flight activity. The mobilization of these energy stores in Locusta migratoria is mediated by three structurally related adipokinetic hormones (AKHs), which are all capable of stimulating the release of both carbohydrates and lipids from the fat body. To exert their effects intracellularly, these hormones induce a variety of signal transduction events, involving the activation of AKH receptors, GTP-binding proteins, cyclic AMP, inositol phosphates and Ca2+. In this review, we discuss recent advances in the research into AKH signaling. This not only includes the effects of the three AKHs on each of the signaling molecules, but also crosstalk between signaling cascades and the degradation rates of the hormones in the hemolymph. On the basis of the observed differences between the three AKHs, we have tried to construct a physiological model for their action in locusts, in order to answer a fundamental question in endocrinology: why do several structurally and functionally related peptide hormones co-exist in locusts (and animals in general), when apparently one single hormone would be sufficient to exert the desired effects? We suggest that the success of the migratory locust in performing long-distance flights is in part based on this neuropeptide multiplicity, with AKH-I being the strongest lipid-mobilizing hormone, AKH-II the most powerful carbohydrate mobilizer and AKH-III, a modulatory entity that predominantly serves to provide the animal with energy at rest. PMID:9723879

  2. Locust adipokinetic hormones mobilize diacylglycerols selectively.

    PubMed

    Tomcala, Ales; Bártů, Iva; Simek, Petr; Kodrík, Dalibor

    2010-05-01

    The diacylglycerols (DG) molecular species and their fatty acid (FA) composition were investigated by electrospray mass spectrometry (ESI-MS) and by gas chromatography with flame ionisation detection (GC-FID) in haemolymph of Locusta migratoria after application of adipokinetic hormones Locmi-AKH-I, -II and -III. The analyses showed (1) a heterogeneous distribution of individual DGs in haemolymph after the hormone application. The results revealed that mobilization of the DGs is molecular species-specific with the highest proportion of 34:1 DG (16:0/18:1 - mw 594Da) for all Locmi-AKHs bearing palmitic acid (C16:0) and oleic acid (C18:1) residues, and forming about 20% of the total mobilized DG content. (2) Analysis of fat body triacylglycerols revealed that all Locmi-AKHs mobilize the DGs selectively with the preference of those possessing the C18 and C16 FAs. The fat body FAs with carbon chain longer than 18 did not participate in the mobilization. (3) A distribution of FAs in the DG structures obtained by LC/ESI-MS, and FA analysis by GC-FID after transmethylation indicated a certain degree of Locmi-AKH selectivity toward the mobilized DGs and hence the FAs. The Locmi-AKH-I significantly prefers mobilization of DGs containing unsaturated FAs, while Locmi-AKH-II and -III prefer mobilization of saturated FAs. PMID:20139028

  3. Energy Homeostasis Control in Drosophila Adipokinetic Hormone Mutants.

    PubMed

    Gáliková, Martina; Diesner, Max; Klepsatel, Peter; Hehlert, Philip; Xu, Yanjun; Bickmeyer, Iris; Predel, Reinhard; Kühnlein, Ronald P

    2015-10-01

    Maintenance of biological functions under negative energy balance depends on mobilization of storage lipids and carbohydrates in animals. In mammals, glucagon and glucocorticoid signaling mobilizes energy reserves, whereas adipokinetic hormones (AKHs) play a homologous role in insects. Numerous studies based on AKH injections and correlative studies in a broad range of insect species established the view that AKH acts as master regulator of energy mobilization during development, reproduction, and stress. In contrast to AKH, the second peptide, which is processed from the Akh encoded prohormone [termed "adipokinetic hormone precursor-related peptide" (APRP)] is functionally orphan. APRP is discussed as ecdysiotropic hormone or as scaffold peptide during AKH prohormone processing. However, as in the case of AKH, final evidence for APRP functions requires genetic mutant analysis. Here we employed CRISPR/Cas9-mediated genome engineering to create AKH and AKH plus APRP-specific mutants in the model insect Drosophila melanogaster. Lack of APRP did not affect any of the tested steroid-dependent processes. Similarly, Drosophila AKH signaling is dispensable for ontogenesis, locomotion, oogenesis, and homeostasis of lipid or carbohydrate storage until up to the end of metamorphosis. During adulthood, however, AKH regulates body fat content and the hemolymph sugar level as well as nutritional and oxidative stress responses. Finally, we provide evidence for a negative autoregulatory loop in Akh gene regulation. PMID:26275422

  4. Energy Homeostasis Control in Drosophila Adipokinetic Hormone Mutants

    PubMed Central

    Gáliková, Martina; Diesner, Max; Klepsatel, Peter; Hehlert, Philip; Xu, Yanjun; Bickmeyer, Iris; Predel, Reinhard; Kühnlein, Ronald P.

    2015-01-01

    Maintenance of biological functions under negative energy balance depends on mobilization of storage lipids and carbohydrates in animals. In mammals, glucagon and glucocorticoid signaling mobilizes energy reserves, whereas adipokinetic hormones (AKHs) play a homologous role in insects. Numerous studies based on AKH injections and correlative studies in a broad range of insect species established the view that AKH acts as master regulator of energy mobilization during development, reproduction, and stress. In contrast to AKH, the second peptide, which is processed from the Akh encoded prohormone [termed “adipokinetic hormone precursor-related peptide” (APRP)] is functionally orphan. APRP is discussed as ecdysiotropic hormone or as scaffold peptide during AKH prohormone processing. However, as in the case of AKH, final evidence for APRP functions requires genetic mutant analysis. Here we employed CRISPR/Cas9-mediated genome engineering to create AKH and AKH plus APRP-specific mutants in the model insect Drosophila melanogaster. Lack of APRP did not affect any of the tested steroid-dependent processes. Similarly, Drosophila AKH signaling is dispensable for ontogenesis, locomotion, oogenesis, and homeostasis of lipid or carbohydrate storage until up to the end of metamorphosis. During adulthood, however, AKH regulates body fat content and the hemolymph sugar level as well as nutritional and oxidative stress responses. Finally, we provide evidence for a negative autoregulatory loop in Akh gene regulation. PMID:26275422

  5. The adipokinetic hormone family in Chrysomeloidea: structural and functional considerations *

    PubMed Central

    Gäde, Gerd; Marco, Heather G.

    2011-01-01

    Abstract The presented work is a hybrid of an overview and an original research paper on peptides belonging to the adipokinetic hormone (AKH) family that are present in the corpora cardiaca of Chrysomeloidea. First, we introduce the AKH/red pigment-concentrating hormone (RPCH) peptide family. Second, we collate the available primary sequence data on AKH peptides in Cerambycidae and Chrysomelidae, and we present new sequencing data (from previously unstudied species) obtained by liquid-chromatography coupled with ion trap electrospray ionisation mass spectrometry. Our expanded data set encompasses the primary structure of AKHs from seven species of Cerambycidae and three species of Chrysomelidae. All of these species synthesise the octapeptide code-named Peram-CAH-I (pGlu-Val-Asn-Phe-Ser-Pro-Asn-Trp amide). Whereas this is the sole AKH peptide in Cerambycidae, Chrysomelidae demonstrate a probable event of AKH gene duplication, thereby giving rise to an additional AKH. This second AKH peptide may be either Emppe-AKH (pGlu-Val-Asn-Phe-Thr-Pro-Asn-Trp amide) or Peram-CAH-II (pGlu-Leu-Thr-Phe-Thr-Pro-Asn-Trp amide). The peptide distribution and structural data suggest that both families are closely related and that Peram-CAH-I is the ancestral peptide. We hypothesise on the molecular evolution of Emppe-AKH and Peram-CAH-II from the ancestral peptide due to nonsynonymous missense single nucleotide polymorphism in the nucleotide coding sequence of prepro-AKH. Finally, we review the biological significance of the AKH peptides as hyperprolinaemic hormones in Chrysomeloidea, i.e. they cause an increase in the circulating concentration of proline. The mobilisation of proline has been demonstrated during flight in both cerambycid and chrysomelid beetles. PMID:22303105

  6. Adipokinetic hormones and their G protein-coupled receptors emerged in Lophotrochozoa

    PubMed Central

    Li, Shizhong; Hauser, Frank; Skadborg, Signe K.; Nielsen, Stine V.; Kirketerp-Møller, Nikolaj; Grimmelikhuijzen, Cornelis J. P.

    2016-01-01

    Most multicellular animals belong to two evolutionary lineages, the Proto– and Deuterostomia, which diverged 640–760 million years (MYR) ago. Neuropeptide signaling is abundant in animals belonging to both lineages, but it is often unclear whether there exist evolutionary relationships between the neuropeptide systems used by proto- or deuterostomes. An exception, however, are members of the gonadotropin-releasing hormone (GnRH) receptor superfamily, which occur in both evolutionary lineages, where GnRHs are the ligands in Deuterostomia and GnRH-like peptides, adipokinetic hormone (AKH), corazonin, and AKH/corazonin-related peptide (ACP) are the ligands in Protostomia. AKH is a well-studied insect neuropeptide that mobilizes lipids and carbohydrates from the insect fat body during flight. In our present paper, we show that AKH is not only widespread in insects, but also in other Ecdysozoa and in Lophotrochozoa. Furthermore, we have cloned and deorphanized two G protein-coupled receptors (GPCRs) from the oyster Crassostrea gigas (Mollusca) that are activated by low nanomolar concentrations of oyster AKH (pQVSFSTNWGSamide). Our discovery of functional AKH receptors in molluscs is especially significant, because it traces the emergence of AKH signaling back to about 550 MYR ago and brings us closer to a more complete understanding of the evolutionary origins of the GnRH receptor superfamily. PMID:27628442

  7. Adipokinetic hormones and their G protein-coupled receptors emerged in Lophotrochozoa.

    PubMed

    Li, Shizhong; Hauser, Frank; Skadborg, Signe K; Nielsen, Stine V; Kirketerp-Møller, Nikolaj; Grimmelikhuijzen, Cornelis J P

    2016-01-01

    Most multicellular animals belong to two evolutionary lineages, the Proto- and Deuterostomia, which diverged 640-760 million years (MYR) ago. Neuropeptide signaling is abundant in animals belonging to both lineages, but it is often unclear whether there exist evolutionary relationships between the neuropeptide systems used by proto- or deuterostomes. An exception, however, are members of the gonadotropin-releasing hormone (GnRH) receptor superfamily, which occur in both evolutionary lineages, where GnRHs are the ligands in Deuterostomia and GnRH-like peptides, adipokinetic hormone (AKH), corazonin, and AKH/corazonin-related peptide (ACP) are the ligands in Protostomia. AKH is a well-studied insect neuropeptide that mobilizes lipids and carbohydrates from the insect fat body during flight. In our present paper, we show that AKH is not only widespread in insects, but also in other Ecdysozoa and in Lophotrochozoa. Furthermore, we have cloned and deorphanized two G protein-coupled receptors (GPCRs) from the oyster Crassostrea gigas (Mollusca) that are activated by low nanomolar concentrations of oyster AKH (pQVSFSTNWGSamide). Our discovery of functional AKH receptors in molluscs is especially significant, because it traces the emergence of AKH signaling back to about 550 MYR ago and brings us closer to a more complete understanding of the evolutionary origins of the GnRH receptor superfamily. PMID:27628442

  8. Trehalose inhibits the release of adipokinetic hormones from the corpus cardiacum in the African migratory locust, Locusta migratoria, at the level of the adipokinetic cells.

    PubMed

    Passier, P C; Vullings, H G; Diederen, J H; Van der Horst, D J

    1997-05-01

    The effect of trehalose at various concentrations on the release of adipokinetic hormones (AKHs) from the adipokinetic cells in the glandular part of the corpus cardiacum of Locusta migratoria was studied in vitro. Pools of five corpora cardiaca or pools of five glandular parts of corpora cardiaca were incubated in a medium containing different concentrations of trehalose in the absence or presence of AKH-release-inducing agents. It was demonstrated that trehalose inhibits spontaneous release of AKH I in a dose-dependent manner. At a concentration of 80 mM, which is the concentration found in the hemolymph at rest, trehalose significantly decreased the release of AKH I induced by 100 microM locustatachykinin 1, 10 microM 3-isobutyl-1-methylxanthine (IBMX) or high potassium concentrations. The specificity of the effect of trehalose was studied by incubating pools of corpora cardiaca with the non-hydrolyzable disaccharide sucrose or with glucose, the degradation product of trehalose, both in the presence and absence of 10 microM IBMX. Sucrose had no effect at all on the release of AKH I, whereas glucose strongly inhibited its release. The results point to the inhibitory effect of trehalose on the release of AKH I being exerted, at least partly, at the level of the adipokinetic cells, possibly after its conversion into glucose. The data presented in this study support the hypothesis that in vivo the relatively high concentration of trehalose (80 mM) at rest strongly inhibits the release of AKHs. At the onset of flight, the demand for energy substrates exceeds the amount of trehalose that can be mobilized from the fat body and consequently the trehalose concentration in the hemolymph decreases. This relieves the inhibitory effect of trehalose on the release of AKHs, which in turn mobilize lipids from the fat body. PMID:9166120

  9. Structure-activity relationship of adipokinetic hormone analogs in the striped hawk moth, Hippotion eson.

    PubMed

    Marco, Heather G; Gäde, Gerd

    2015-06-01

    We showed previously that the sphingid moth Hippotion eson synthesizes the highest number of adipokinetic hormones (AKHs) ever recorded, viz. five, in its corpus cardiacum: two octa-, two nona- and one decapeptide. Further, the endogenous decapeptide (Manse-AKH-II) and the other four AKHs are all active in lipid mobilization, whereas a non-lepidopteran decapeptide (Lacsp-AKH, five amino acid substitutions compared with Manse-AKH-II), was inactive in H. eson. We tested the decapeptide, Lacol-AKH, from a noctuid moth for the first time in a bioassay and it shows a maximal AKH effect in H. eson. Lacol-AKH differs from Manse-AKH-II in three places and from Lacsp-AKH in four places. We, thus, used Lacol-AKH as a lead peptide on which a series of AKH analogs are based to represent: (a) single amino acid replacements (according to the substitutions in Lacsp-AKH), (b) shorter chain lengths, (c) modified termini, and (d) a replacement of Trp in position 8. These analogs, as well as a few naturally occurring AKHs from other lepidopterans were tested in in vivo adipokinetic assays to gain insight into the ligand-receptor interaction in H. eson. Our results show that the second and third amino acids are important for biological activity in the sphingid moth. Analogs with an N-[acetylated]Glu(1) (instead of a pyroGlu), or a free C-terminus, or Ala(8) were not active in the bioassays, while shortened Lacol-AKH analogs and the undecapeptide, non-amidated Vanca-AKH showed very reduced activity (below 25%). This information is important for the consideration of peptide mimetics to combat specific lepidopteran pest insects.

  10. Characterization of the adipokinetic hormone receptor of the anautogenous flesh fly, Sarcophaga crassipalpis.

    PubMed

    Bil, Magdalena; Timmermans, Iris; Verlinden, Heleen; Huybrechts, Roger

    2016-06-01

    Adipokinetic hormone (AKH) is an insect neuropeptide mainly involved in fat body energy mobilization. In flies (Phormia regina, Sarcophaga crassipalpis), bugs (Pyrrhocoris apterus) and cockroaches (Periplaneta americana) AKH was also demonstrated to be involved in the regulation of digestion. This makes AKH an important peptide for anautogenous female flies that need to feed on a supplementary protein meal to initiate vitellogenesis, the large scale synthesis of yolk proteins and their uptake by the developing oocytes. Flesh fly AKH, originally identified as Phormia terraenovae hypertrehalosemic hormone (PhoteHrTH), functions through activation of the AKH receptor (AKHR). This is a G protein-coupled receptor that is the orthologue of the human gonadotropin-releasing hormone receptor. Pharmacological characterization indicated that the receptor can be activated by two related dipteran AKH ligands with an EC50 value in the low nanomolar range, whereas micromolar concentrations of the Tribolium castaneum AKH were needed. Consistent with the energy mobilizing function of AKH, the receptor transcript levels were most abundant in the fat body tissue. Nonetheless, Sarcophaga crassipalpis AKHR transcript levels were also high in the brain, the foregut and the hindgut. Interestingly, the receptor transcript numbers were reduced in almost all measured tissues after protein feeding. These changes may enforce the use of ingested energy carrying molecules prior to stored energy mobilization.

  11. Effects of chronic administration of adipokinetic and hypertrehalosemic hormone on animal behavior, BDNF, and CREB expression in the hippocampus and neurogenesis in mice.

    PubMed

    Mutlu, Oguz; Gumuslu, Esen; Kokturk, Sibel; Ulak, Guner; Akar, Furuzan; Erden, Faruk; Kaya, Havva; Tanyeri, Pelin

    2016-02-01

    Neurosecretory cells in corpus cardiacum of insects synthesize a set of hormones that are called adipokinetic, hypertrehalosaemic or hyperprolinaemic, depending on insect in question. This study investigated effects of chronic administration of Anax imperator adipokinetic hormone (Ani-AKH), Libellula auripennis adipokinetic hormone (Lia-AKH), and Phormia-Terra hypertrehalosaemic hormone (Pht-HrTH) on depression, anxiety, analgesy, locomotion in forced swimming (FST), elevated plus-maze (EPM), hot plate, and locomotor activity tests. Ani-AKH (1 and 2 mg/kg), Lia-AKH (1 and 2 mg/kg), and Pht-HrTH (1 and 2 mg/kg) had antidepressant effects in forced swimming test. Lia-AKH (2 mg/kg) and Pht-HrTH (1 and 2 mg/kg) had anxiolytic effects when given chronically in elevated plus-maze test. Ani-AKH (1 and 2 mg/kg) and Pht-HrTH (2 mg/kg) had antinociceptive effects in hot plate test in male balb-c mice. Ani-AKH (2 mg/kg), Lia-AKH (1 and 2 mg/kg), and Pht-HrTH had locomotion-enhancing effects in locomotor activity test in male balb-c mice. Drug treatment significantly increased brain-derived neurotrophic factor (BDNF) and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) gene expression levels compared to control levels. Pht-HrTH and Ani-AKH groups had significantly increased numbers of BrdU-labeled cells, while neurodegeneration was lower in the Pht-HrTH group. Our study showed that AKH/RPCH family peptides may be used in treatment of psychiatric illness such as depression and anxiety, in treatment of pain and in diseases related to locomotion system. AKH/RPCH family peptides increase neurotrophic factors in brain and have potential proliferative and neuroprotective effects in hippocampal neurogenesis and neurodegeneration.

  12. Localization and Functional Characterization of a Novel Adipokinetic Hormone in the Mollusk, Aplysia californica

    PubMed Central

    Johnson, Joshua I.; Kavanaugh, Scott I.; Nguyen, Cindy; Tsai, Pei-San

    2014-01-01

    Increasing evidence suggests that gonadotropin-releasing hormone (GnRH), corazonin, adipokinetic hormone (AKH), and red pigment-concentrating hormone all share common ancestry to form a GnRH superfamily. Despite the wide presence of these peptides in protostomes, their biological effects remain poorly characterized in many taxa. This study had three goals. First, we cloned the full-length sequence of a novel AKH, termed Aplysia-AKH, and examined its distribution in an opisthobranch mollusk, Aplysia californica. Second, we investigated in vivo biological effects of Aplysia-AKH. Lastly, we compared the effects of Aplysia-AKH to a related A. californica peptide, Aplysia-GnRH. Results suggest that Aplysia-AKH mRNA and peptide are localized exclusively in central tissues, with abdominal, cerebral, and pleural ganglia being the primary sites of Aplysia-AKH production. However, Aplysia-AKH-positive fibers were found in all central ganglia, suggesting diverse neuromodulatory roles. Injections of A. californica with Aplysia-AKH significantly inhibited feeding, reduced body mass, increased excretion of feces, and reduced gonadal mass and oocyte diameter. The in vivo effects of Aplysia-AKH differed substantially from Aplysia-GnRH. Overall, the distribution and biological effects of Aplysia-AKH suggest it has diverged functionally from Aplysia-GnRH over the course of evolution. Further, that both Aplysia-AKH and Aplysia-GnRH failed to activate reproduction suggest the critical role of GnRH as a reproductive activator may be a phenomenon unique to vertebrates. PMID:25162698

  13. Two novel tyrosine-containing peptides (Tyr(4)) of the adipokinetic hormone family in beetles of the families Coccinellidae and Silphidae.

    PubMed

    Gäde, Gerd; Šimek, Petr; Marco, Heather G

    2015-11-01

    Novel members of the adipokinetic hormone family of peptides have been identified from the corpora cardiaca (CC) of two species of beetles representing two families, the Silphidae and the Coccinellidae. A crude CC extract (0.3 gland equivalents) of the burying beetle, Nicrophorus vespilloides, was active in mobilizing trehalose in a heterologous assay using the cockroach Periplaneta americana, whereas the CC extract (0.5 gland equivalents) of the ladybird beetle, Harmonia axyridis, exhibited no hypertrehalosemic activity. Primary sequences of one adipokinetic hormone from each species were elucidated by liquid chromatography coupled to electrospray mass spectrometry (LC-MS). The multiple MS(N) electrospray mass data revealed an octapeptide with an unusual tyrosine residue at position 4 for each species: pGlu-Leu-Thr-Tyr-Ser-Thr-Gly-Trp amide for N. vespilloides (code-named Nicve-AKH) and pGlu-Ile-Asn-Tyr-Ser-Thr-Gly-Trp amide for H. axyridis (code-named Harax-AKH). Assignment of the correct sequences was confirmed by synthesis of the peptides and co-elution in reversed-phase high-performance liquid chromatography with fluorescence detection or by LC-MS. Moreover, synthetic peptides were shown to be active in the heterologous cockroach assay system, but Harax-AKH only at a dose of 30 pmol, which explains the negative result with the crude CC extract. It appears that the tyrosine residue at position 4 can be used as a diagnostic feature for certain beetle adipokinetic peptides, because this feature has not been found in another order other than Coleoptera. PMID:26031827

  14. Two novel tyrosine-containing peptides (Tyr(4)) of the adipokinetic hormone family in beetles of the families Coccinellidae and Silphidae.

    PubMed

    Gäde, Gerd; Šimek, Petr; Marco, Heather G

    2015-11-01

    Novel members of the adipokinetic hormone family of peptides have been identified from the corpora cardiaca (CC) of two species of beetles representing two families, the Silphidae and the Coccinellidae. A crude CC extract (0.3 gland equivalents) of the burying beetle, Nicrophorus vespilloides, was active in mobilizing trehalose in a heterologous assay using the cockroach Periplaneta americana, whereas the CC extract (0.5 gland equivalents) of the ladybird beetle, Harmonia axyridis, exhibited no hypertrehalosemic activity. Primary sequences of one adipokinetic hormone from each species were elucidated by liquid chromatography coupled to electrospray mass spectrometry (LC-MS). The multiple MS(N) electrospray mass data revealed an octapeptide with an unusual tyrosine residue at position 4 for each species: pGlu-Leu-Thr-Tyr-Ser-Thr-Gly-Trp amide for N. vespilloides (code-named Nicve-AKH) and pGlu-Ile-Asn-Tyr-Ser-Thr-Gly-Trp amide for H. axyridis (code-named Harax-AKH). Assignment of the correct sequences was confirmed by synthesis of the peptides and co-elution in reversed-phase high-performance liquid chromatography with fluorescence detection or by LC-MS. Moreover, synthetic peptides were shown to be active in the heterologous cockroach assay system, but Harax-AKH only at a dose of 30 pmol, which explains the negative result with the crude CC extract. It appears that the tyrosine residue at position 4 can be used as a diagnostic feature for certain beetle adipokinetic peptides, because this feature has not been found in another order other than Coleoptera.

  15. Unique translational modification of an invertebrate neuropeptide: a phosphorylated member of the adipokinetic hormone peptide family

    PubMed Central

    2005-01-01

    Separation of an extract of corpora cardiaca from the protea beetle, Trichostetha fascicularis, by single-step RP (reverse-phase)-HPLC and monitoring of tryptophan fluorescence resulted in two distinctive peaks, the material of which mobilized proline and carbohydrates in a bioassay performed using the beetle. Material from one of these peaks was; however, inactive in the classical bioassays of locusts and cockroaches that are used for detecting peptides belonging to the AKH (adipokinetic hormone) family. After enzymatically deblocking the N-terminal pyroglutamic acid (pGlu) residue in the peptide material and sequencing by Edman degradation, a partial sequence was obtained: (pGlu)-Ile-Asn-Met-Thr-Xaa-Gly-Trp. The complete sequence was deduced from ESI-MSn (electrospray ionization multi-stage-MS); position six was identified as a phosphothreonine residue and the C-terminus is amidated. The peptide, code-named Trifa-CC, was chemically synthesized and used in confirmatory experiments to show that the primary structure had been correctly assigned. To our knowledge, this is the first report of a phosphorylated invertebrate neuropeptide. Synthetic Trifa-CC co-elutes with the natural peptide, found in the gland of the protea beetle, after RP-HPLC. Moreover, the natural peptide can be dephosphorylated by alkaline phosphatase and the product of that reaction has the same retention time as a synthetic nonphosphorylated octapeptide which has the same sequence as Trifa-CC. Finally, synthetic Trifa-CC has hypertrehalosaemic and hyperprolinaemic biological activity in the protea beetle, but even high concentrations of synthetic Trifa-CC are inactive in locusts and cockroaches. Hence, the correct peptide structure has been assigned. Trifa-CC of the protea beetle is an unusual member of the AKH family that is unique in its post-translational modification. Since it increases the concentration of carbohydrates and proline in the haemolymph when injected into the protea beetle, and

  16. Role of adipokinetic hormone and adenosine in the anti-stress response in Drosophila melanogaster.

    PubMed

    Zemanová, Milada; Stašková, Tereza; Kodrík, Dalibor

    2016-01-01

    The role of adipokinetic hormone (AKH) and adenosine in the anti-stress response was studied in Drosophila melanogaster larvae and adults carrying a mutation in the Akh gene (Akh(1)), the adenosine receptor gene (AdoR(1)), or in both of these genes (Akh(1) AdoR(1) double mutant). Stress was induced by starvation or by the addition of an oxidative stressor paraquat (PQ) to food. Mortality tests revealed that the Akh(1) mutant was the most resistant to starvation, while the AdoR(1) mutant was the most sensitive. Conversely, the Akh(1) AdoR(1) double mutant was more sensitive to PQ toxicity than either of the single mutants. Administration of PQ significantly increased the Drome-AKH level in w(1118) and AdoR(1) larvae; however, this was not accompanied by a simultaneous increase in Akh gene expression. In contrast, PQ significantly increased the expression of the glutathione S-transferase D1 (GstD1) gene. The presence of both a functional adenosine receptor and AKH seem to be important for the proper control of GstD1 gene expression under oxidative stress, however, the latter appears to play more dominant role. On the other hand, differences in glutathione S-transferase (GST) activity among the strains, and between untreated and PQ-treated groups were minimal. In addition, the glutathione level was significantly lower in all untreated AKH- or AdoR-deficient mutant flies as compared with the untreated control w(1118) flies and further declined following treatment with PQ. All oxidative stress characteristics modified by mutations in Akh gene were restored or even improved by 'rescue' mutation in flies which ectopically express Akh. Thus, the results of the present study demonstrate the important roles of AKH and adenosine in the anti-stress response elicited by PQ in a D. melanogaster model, and provide the first evidence for the involvement of adenosine in the anti-oxidative stress response in insects. PMID:27374982

  17. Locust adipokinetic hormones: carrier-independent transport and differential inactivation at physiological concentrations during rest and flight.

    PubMed Central

    Oudejans, R C; Vroemen, S F; Jansen, R F; Van der Horst, D J

    1996-01-01

    Since concomitant release of structurally related peptide hormones with apparently similar functions seems to be a general concept in endocrinology, we have studied the dynamics of the lifetime of the three known adipokinetic hormones (AKHs) of the migratory locust, which control flight-directed mobilization of carbohydrate and lipid from fat body stores. Although the structure of the first member of the AKHs has been known for 20 years, until now, reliable data on their inactivation and removal from the hemolymph are lacking, because measurement requires AKHs with high specific radioactivity. Employing tritiated AKHs with high specific radioactivity, obtained by catalytic reduction with tritium gas of the dehydroLeu2 analogues of the AKHs synthesized by the solid-phase procedure, studies with physiological doses of as low as 1.0 pmol per locust could be conducted. The AKHs appear to be transported in the hemolymph in their free forms and not associated with a carrier protein, despite their strong hydrophobicity. Application of AKHs in their free form in in vivo and in vitro studies therefore now has been justified. We have studied the degradation of the three AKHs during rest and flight. The first cleavage step by an endopeptidase is crucial, since the resulting degradation products lack any adipokinetic activity. Half-lives for AKH-I, -II and -III were 51, 40, and 5 min, respectively, for rest conditions and 35, 37, and 3 min, respectively, during flight. The rapid and differential degradation of structurally related hormones leads to changes in the ratio in which they are released and therefore will have important consequences for concerted hormone action at the level of the target organ or organs, suggesting that each of the known AKHs may play its own biological role in the overall syndrome of insect flight. PMID:8710926

  18. Molecular characterization, tissue distribution, and ultrastructural localization of adipokinetic hormones in the CNS of the firebug Pyrrhocoris apterus (Heteroptera, Insecta).

    PubMed

    Kodrík, Dalibor; Stašková, Tereza; Jedličková, Veronika; Weyda, František; Závodská, Radka; Pflegerová, Jitka

    2015-01-01

    Adipokinetic hormones (AKHs) are a group of insect metabolic neurohormones, synthesized and released from an endocrine retrocerebral gland, the corpus cardiacum (CC). Small amounts of AKH have also been identified in the brain, although their role in this organ is not clear. To address this gap in the knowledge about insect brain biology, we studied the nucleotide sequence, tissue distribution, and subcellular localization of AKHs in the brain and CC of the firebug Pyrrhocoris apterus. This insect expresses two AKHs; the octapeptides Pyrap-AKH and Peram-CAH-II, the presence of which was documented in the both studied organs. In situ hybridization and quantitative reverse-transcription (q-RT)-PCR revealed the expression of the genes encoding for both AKHs not only in the CC, but also in brain. Electron microscopy analysis of the brain revealed the presence of these hormones in specialized secretory granules localized predominantly in the cellular bodies of neurons. The hormones might be transported from the granules into the axons, where they could play a role in neuronal signaling. Under acute stress induced by the injection of 3μmol KCl, the level of AKHs in the brain increased to a greater extent than that in the CC. These results might indicate an enhanced role of brain-derived AKHs in defence reaction under acute stress situations. PMID:25449136

  19. A unique charged tyrosine-containing member of the adipokinetic hormone/red-pigment-concentrating hormone peptide family isolated and sequenced from two beetle species.

    PubMed

    Gäde, G

    1991-05-01

    An identical neuropeptide was isolated from the corpora cardiaca of two beetle species, Melolontha melolontha and Geotrupes stercorosus. Its primary structure was determined by pulsed-liquid-phase sequencing employing Edman chemistry after enzymically deblocking the N-terminal pyroglutamate residue. The C-terminus was also blocked, as indicated by the lack of digestion when the peptide was incubated with carboxypeptidase A. The sequence of this peptide, which is designated Mem-CC, is pGlu-Leu-Asn-Tyr-Ser-Pro-Asp-Trp-NH2. It is a new member of the adipokinetic hormone/red-pigment-concentrating hormone (AKH/RPCH) family of peptides with two unusual structural features: it is charged and contains a tyrosine residue at position 4, where all other family members have a phenylalanine residue. Structure-activity studies in the migratory locust (Locusta migratoria) and the American cockroach (Periplaneta americana) revealed that the peptide was poorly active, owing to its structural uniqueness. PMID:2039445

  20. Identification of distinct c-terminal domains of the Bombyx adipokinetic hormone receptor that are essential for receptor export, phosphorylation and internalization.

    PubMed

    Huang, Haishan; Deng, Xiaoyan; He, Xiaobai; Yang, Wen; Li, Guo; Shi, Ying; Shi, Liangen; Mei, Lijuan; Gao, Jimin; Zhou, Naiming

    2011-09-01

    Neuropeptides of the adipokinetic hormone (AKH) family play important roles in insect hemolymph sugar homeostasis, larval lipolysis and storage-fat mobilization. Our previous studies have shown that the adipokinetic hormone receptor (AKHR), a Gs-coupled receptor, induces intracellular cAMP accumulation, calcium mobilization and ERK1/2 phosphorylation upon agonist stimulation. However, the underlying molecular mechanisms that regulate the internalization and desensitization of AKHR remain largely unknown. In the current study we made a construct to express AKHR fused with enhanced green fluorescent protein (EGFP) at its C-terminal end to further characterize AKHR internalization. In stable AKHR-EGFP-expressing HEK-293 cells, AKHR-EGFP was mainly localized at the plasma membrane and was rapidly internalized in a dose- and time-dependent manner via the clathrin-coated pit pathway upon agonist stimulation, and internalized receptors were slowly recovered to the cell surface after the removal of AKH peptides. The results derived from RNA interference and arrestin translocation demonstrated that G protein-coupled receptor kinase 2 and 5 (GRK2/5) and β-arrestin2 were involved in receptor phosphorylation and internalization. Furthermore, experiments using deletion and site-directed mutagenesis strategies identified the three residues (Thr356, Ser359 and Thr362) responsible for GRK-mediated phosphorylation and internalization and the C-terminal domain from residue-322 to residue-342 responsible for receptor export from ER. This is the first detailed investigation of the internalization and trafficking of insect G protein-coupled receptors.

  1. Isolation and structure of a novel charged member of the red-pigment-concentrating hormone-adipokinetic hormone family of peptides isolated from the corpora cardiaca of the blowfly Phormia terraenovae (Diptera).

    PubMed

    Gäde, G; Wilps, H; Kellner, R

    1990-07-15

    A hypertrehalosaemic neuropeptide from the corpora cardiaca of the blowfly Phormia terraenovae has been isolated by reversed-phase h.p.l.c., and its primary structure was determined by pulsed-liquid phase sequencing employing Edman chemistry after enzymically deblocking the N-terminal pyroglutamate residue. The C-terminus was also blocked, as indicated by the lack of digestion when the peptide was incubated with carboxypeptidase A. The octapeptide has the sequence pGlu-Leu-Thr-Phe-Ser-Pro-Asp-Trp-NH2 and is clearly defined as a novel member of the RPCH/AKH (red-pigment-concentrating hormone/adipokinetic hormone) family of peptides. It is the first charged member of this family to be found. The synthetic peptide causes an increase in the haemolymph carbohydrate concentration in a dose-dependent fashion in blowflies and therefore is named 'Phormia terraenovae hypertrehalosaemic hormone' (Pht-HrTH). In addition, receptors in the fat-body of the American cockroach (Periplaneta americana) recognize the peptide, resulting in carbohydrate elevation in the blood. However, fat-body receptors of the migratory locust (Locusta migratoria) do not recognize this charged molecule, and thus no lipid mobilization is observed in this species. PMID:2386478

  2. The adipokinetic neuropeptide of Mantodea. Sequence elucidation and evolutionary relationships.

    PubMed

    Gäde, G

    1991-03-01

    A neuropeptide with adipokinetic activity in Locusta migratoria and the mantid Empusa pennata, and hypertrehalosaemic activity in Periplaneta americana, was isolated by reversed-phase high performance liquid chromatography from corpora cardiaca of the mantids E. pennata and Sphodromantis sp. After brief enzymatic digestion by 5-oxoprolylpeptidase the primary structure of the peptide of each species was determined by pulsed-liquid phase sequencing employing Edman degradation. The C-terminus of both peptides was blocked, as indicated by the lack of digestion with carboxypeptidase A. The peptides of both species were identical: a blocked, uncharged octapeptide with the sequence L-Glu-Val-Asn-Phe-Thr-Pro-Asn-Trp-NH2. The peptide is now called mantid adipokinetic hormone (Emp-AKH). The synthetic peptide was chromatographically indistinguishable from the natural compound and increased blood lipids in locusts and blood carbohydrates in cockroaches when administered in low doses. The structural features clearly define the peptide as a novel member of the large AKH/RPCH-family of peptides. Seven amino-acid residues are at identical positions in Emp-AKH when compared with the adipokinetic hormone of a dragonfly (Lia-AKH) and the hypertrehalosaemic hormone I from the American cockroach (Pea-CAH-I). Evolutionary relationships to other insect orders are discussed.

  3. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Human growth hormone test system. 862.1370 Section... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test system is a device intended to measure the levels of human growth hormone in plasma. Human growth...

  4. 21 CFR 862.1485 - Luteinizing hormone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Luteinizing hormone test system. 862.1485 Section... Systems § 862.1485 Luteinizing hormone test system. (a) Identification. A luteinizing hormone test system is a device intended to measure luteinizing hormone in serum and urine. Luteinizing...

  5. 21 CFR 862.1025 - Adrenocorticotropic hormone (ACTH) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Adrenocorticotropic hormone (ACTH) test system... Test Systems § 862.1025 Adrenocorticotropic hormone (ACTH) test system. (a) Identification. An adrenocorticotropic hormone (ACTH) test system is a device intended to measure adrenocorticotropic hormone in...

  6. 21 CFR 862.1485 - Luteinizing hormone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Luteinizing hormone test system. 862.1485 Section... Systems § 862.1485 Luteinizing hormone test system. (a) Identification. A luteinizing hormone test system is a device intended to measure luteinizing hormone in serum and urine. Luteinizing...

  7. 21 CFR 862.1545 - Parathyroid hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Parathyroid hormone test system. 862.1545 Section... Systems § 862.1545 Parathyroid hormone test system. (a) Identification. A parathyroid hormone test system is a device intended to measure the levels of parathyroid hormone in serum and plasma....

  8. 21 CFR 862.1485 - Luteinizing hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Luteinizing hormone test system. 862.1485 Section... Systems § 862.1485 Luteinizing hormone test system. (a) Identification. A luteinizing hormone test system is a device intended to measure luteinizing hormone in serum and urine. Luteinizing...

  9. 21 CFR 862.1025 - Adrenocorticotropic hormone (ACTH) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Adrenocorticotropic hormone (ACTH) test system... Test Systems § 862.1025 Adrenocorticotropic hormone (ACTH) test system. (a) Identification. An adrenocorticotropic hormone (ACTH) test system is a device intended to measure adrenocorticotropic hormone in...

  10. 21 CFR 862.1025 - Adrenocorticotropic hormone (ACTH) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Adrenocorticotropic hormone (ACTH) test system... Test Systems § 862.1025 Adrenocorticotropic hormone (ACTH) test system. (a) Identification. An adrenocorticotropic hormone (ACTH) test system is a device intended to measure adrenocorticotropic hormone in...

  11. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  12. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  13. 21 CFR 862.1025 - Adrenocorticotropic hormone (ACTH) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Adrenocorticotropic hormone (ACTH) test system... Test Systems § 862.1025 Adrenocorticotropic hormone (ACTH) test system. (a) Identification. An adrenocorticotropic hormone (ACTH) test system is a device intended to measure adrenocorticotropic hormone in...

  14. 21 CFR 862.1545 - Parathyroid hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Parathyroid hormone test system. 862.1545 Section... Systems § 862.1545 Parathyroid hormone test system. (a) Identification. A parathyroid hormone test system is a device intended to measure the levels of parathyroid hormone in serum and plasma....

  15. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  16. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Human growth hormone test system. 862.1370 Section... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test system is a device intended to measure the levels of human growth hormone in plasma. Human growth...

  17. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Human growth hormone test system. 862.1370 Section... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test system is a device intended to measure the levels of human growth hormone in plasma. Human growth...

  18. 21 CFR 862.1025 - Adrenocorticotropic hormone (ACTH) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Adrenocorticotropic hormone (ACTH) test system... Test Systems § 862.1025 Adrenocorticotropic hormone (ACTH) test system. (a) Identification. An adrenocorticotropic hormone (ACTH) test system is a device intended to measure adrenocorticotropic hormone in...

  19. 21 CFR 862.1545 - Parathyroid hormone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Parathyroid hormone test system. 862.1545 Section... Systems § 862.1545 Parathyroid hormone test system. (a) Identification. A parathyroid hormone test system is a device intended to measure the levels of parathyroid hormone in serum and plasma....

  20. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Human growth hormone test system. 862.1370 Section... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test system is a device intended to measure the levels of human growth hormone in plasma. Human growth...

  1. 21 CFR 862.1485 - Luteinizing hormone test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Luteinizing hormone test system. 862.1485 Section... Systems § 862.1485 Luteinizing hormone test system. (a) Identification. A luteinizing hormone test system is a device intended to measure luteinizing hormone in serum and urine. Luteinizing...

  2. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  3. 21 CFR 862.1485 - Luteinizing hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Luteinizing hormone test system. 862.1485 Section... Systems § 862.1485 Luteinizing hormone test system. (a) Identification. A luteinizing hormone test system is a device intended to measure luteinizing hormone in serum and urine. Luteinizing...

  4. 21 CFR 862.1545 - Parathyroid hormone test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Parathyroid hormone test system. 862.1545 Section... Systems § 862.1545 Parathyroid hormone test system. (a) Identification. A parathyroid hormone test system is a device intended to measure the levels of parathyroid hormone in serum and plasma....

  5. 21 CFR 862.1545 - Parathyroid hormone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Parathyroid hormone test system. 862.1545 Section... Systems § 862.1545 Parathyroid hormone test system. (a) Identification. A parathyroid hormone test system is a device intended to measure the levels of parathyroid hormone in serum and plasma....

  6. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Human growth hormone test system. 862.1370 Section... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test system is a device intended to measure the levels of human growth hormone in plasma. Human growth...

  7. 21 CFR 862.1690 - Thyroid stimulating hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Thyroid stimulating hormone test system. 862.1690... Systems § 862.1690 Thyroid stimulating hormone test system. (a) Identification. A thyroid stimulating hormone test system is a device intended to measure thyroid stimulating hormone, also known...

  8. Sex hormones in the cardiovascular system.

    PubMed

    dos Santos, Roger Lyrio; da Silva, Fabrício Bragança; Ribeiro, Rogério Faustino; Stefanon, Ivanita

    2014-05-01

    Gender-associated differences in the development of cardiovascular diseases have been described in humans and animals. These differences could explain the low incidence of cardiovascular disease in women in the reproductive period, such as stroke, hypertension, and atherosclerosis. The cardiovascular protection observed in females has been attributed to the beneficial effects of estrogen on endothelial function. Besides estrogen, sex hormones are able to modulate blood pressure by acting on important systems as cardiovascular, renal, and neural. They can have complementary or antagonistic actions. For example, testosterone can raise blood pressure by stimulating the renin-angiotensin-aldosterone system, whereas estrogen alone or combined with progesterone has been associated with decreased blood pressure. The effects of testosterone in the development of cardiovascular disease are contradictory. Although some researchers suggest a positive effect, others indicate negative actions of testosterone. Estrogens physiologically stimulate the release of endothelium-derived vasodilator factors and inhibit the renin-angiotensin system. Although the cardioprotective effects of estrogen are widely appreciated, little is known about the effects of progesterone, which is commonly used in hormone replacement therapy. Progesterone has both vasodilatory and vasoconstrictive effects in the vasculature, depending on the location of the vessel and the level of exposure. Nevertheless, the mechanisms through which sex hormones modulate blood pressure have not been fully elucidated. Therefore, the characterization of those could lead to a better understanding of hypertension in women and men and perhaps to improved forms of therapy.

  9. Hormones

    MedlinePlus

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  10. Clinical implications of thyroid hormones effects on nervous system development.

    PubMed

    Carreón-Rodríguez, Alfonso; Pérez-Martínez, Leonor

    2012-03-01

    Thyroid hormones have an important role throughout prenatal and postnatal nervous system development. They are involved in several processes such as neurogenesis, gliogenesis, myelination, synaptogenesis, etc., as shown in many cases of deficiency like congenital hypothyroidism or hypothyroxinemia. Those pathologies if untreated could lead to severe damages in cognitive, motor, neudoendocrine functions among other effects. Some could be reversed after adequate supplementation of thyroid hormones at birth, however there are other cellular processes highly sensitive to low levels of thyroid hormones and lasting a limited period of time during which if thyroid hormone action is lacking or deficient, the functional and structural damages would produce permanent defects. PMID:22523832

  11. Histological organization of the central nervous system and distribution of a gonadotropin-releasing hormone-like peptide in the blue crab, Portunus pelagicus.

    PubMed

    Saetan, Jirawat; Senarai, Thanyaporn; Tamtin, Montakan; Weerachatyanukul, Wattana; Chavadej, Jittipan; Hanna, Peter J; Parhar, Ishwar; Sobhon, Prasert; Sretarugsa, Prapee

    2013-09-01

    We present a detailed histological description of the central nervous system (CNS: brain, subesophageal ganglion, thoracic ganglia, abdominal ganglia) of the blue crab, Portunus pelagicus. Because the presence of gonadotropin-releasing hormone (GnRH) in crustaceans has been disputed, we examine the presence and localization of a GnRH-like peptide in the CNS of the blue crab by using antibodies against lamprey GnRH (lGnRH)-III, octopus GnRH (octGnRH) and tunicate GnRH (tGnRH)-I. These antibodies showed no cross-reactivity with red-pigment-concentrating hormone, adipokinetic hormone, or corazonin. In the brain, strong lGnRH-III immunoreactivity (-ir) was detected in small (7-17 μm diameter) neurons of clusters 8, 9 and 10, in medium-sized (21-36 μm diameter) neurons of clusters 6, 7 and 11 and in the anterior and posterior median protocerebral neuropils, olfactory neuropil, median and lateral antenna I neuropils, tegumentary neuropil and antenna II neuropil. In the subesophageal ganglion, lGnRH-III-ir was detected in medium-sized neurons and in the subesophageal neuropil. In the thoracic and abdominal ganglia, lGnRH-III-ir was detected in medium-sized and small neurons and in the neuropils. OctGnRH-ir was observed in neurons of the same clusters with moderate staining, particularly in the deutocerebrum, whereas tGnRH-I-ir was only detected in medium-sized neurons of cluster 11 in the brain. Thus, anti-lGnRH-III shows greater immunoreactivity in the crab CNS than anti-octGnRH and anti-tGnRH-I. Moreover, our functional bioassay demonstrates that only lGnRH-III has significant stimulatory effects on ovarian growth and maturation. We therefore conclude that, although the true identity of the crab GnRH eludes us, crabs possess a putative GnRH hormone similar to lGnRH-III. The identification and characterization of this molecule is part of our ongoing research.

  12. Immunoendocrinology: faulty hormonal imprinting in the immune system.

    PubMed

    Csaba, György

    2014-06-01

    Hormonal imprinting is an epigenetic process which is taking place perinatally at the first encounter between the developing hormone receptors and their target hormones. The hormonal imprinting influences the binding capacity of receptors, the hormone synthesis of the cells, and other hormonally regulated functions, as sexual behavior, aggressivity, empathy, etc. However, during the critical period, when the window for imprinting is open, molecules similar to the physiological imprinters as synthetic hormone analogs, other members of the hormone families, environmental pollutants, etc. can cause faulty imprinting with life-long consequences. The developing immune system, the cells of which also have receptors for hormones, is very sensitive to faulty imprinting, which causes alterations in the antibody and cytokine production, in the ratio of immune cells, in the defense against bacterial and viral infections as well as against malignant tumors. Immune cells (lymphocytes, monocytes, granulocytes and mast cells) are also producing hormones which are secreted into the blood circulation as well as are transported locally (packed transport). This process is also disturbed by faulty imprinting. As immune cells are differentiating during the whole life, faulty imprinting could develop any time, however, the most decisive is the perinatal imprinting. The faulty imprinting is inherited to the progenies in general and especially in the case of immune system. In our modern world the number and amount of artificial imprinters (e.g. endocrine disruptors and drugs) are enormously increasing. The effects of the faulty imprinters most dangerous to the immune system are shown in the paper. The present and future consequences of the flood of faulty imprintings are unpredictable however, it is discussed.

  13. The ubiquitin-proteasome system regulates plant hormone signaling

    PubMed Central

    Santner, Aaron; Estelle, Mark

    2011-01-01

    SUMMARY Plants utilize the ubiquitin-proteasome system (UPS) to modulate nearly every aspect of growth and development. Ubiquitin is covalently attached to target proteins through the action of three enzymes known as E1, E2, and E3. The ultimate outcome of this post-translational modification depends on the nature of the ubiquitin linkage and the extent of polyubiquitination. In most cases, ubiquitination results in degradation of the target protein in the 26S proteasome. During the last 10 years it has become clear that the UPS plays a prominent regulatory role in hormone biology. E3 ubiquitin ligases in particular actively participate in hormone perception, de-repression of hormone signaling pathways, degradation of hormone specific transcription factors, and regulation of hormone biosynthesis. It is certain that additional functions will be discovered as more of the nearly 1200 potential E3s in plants are elucidated. PMID:20409276

  14. The Endocannabinoid System and Sex Steroid Hormone-Dependent Cancers

    PubMed Central

    Taylor, Anthony H.; Marczylo, Timothy H.; Willets, Jonathon M.; Konje, Justin C.

    2013-01-01

    The “endocannabinoid system (ECS)” comprises the endocannabinoids, the enzymes that regulate their synthesis and degradation, the prototypical cannabinoid receptors (CB1 and CB2), some noncannabinoid receptors, and an, as yet, uncharacterised transport system. Recent evidence suggests that both cannabinoid receptors are present in sex steroid hormone-dependent cancer tissues and potentially play an important role in those malignancies. Sex steroid hormones regulate the endocannabinoid system and the endocannabinoids prevent tumour development through putative protective mechanisms that prevent cell growth and migration, suggesting an important role for endocannabinoids in the regulation of sex hormone-dependent tumours and metastasis. Here, the role of the endocannabinoid system in sex steroid hormone-dependent cancers is described and the potential for novel therapies assessed. PMID:24369462

  15. 21 CFR 862.1300 - Follicle-stimulating hormone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Follicle-stimulating hormone test system. 862.1300... Systems § 862.1300 Follicle-stimulating hormone test system. (a) Identification. A follicle-stimulating hormone test system is a device intended to measure follicle-stimulating hormone (FSH) in plasma,...

  16. 21 CFR 862.1300 - Follicle-stimulating hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Follicle-stimulating hormone test system. 862.1300... Systems § 862.1300 Follicle-stimulating hormone test system. (a) Identification. A follicle-stimulating hormone test system is a device intended to measure follicle-stimulating hormone (FSH) in plasma,...

  17. 21 CFR 862.1300 - Follicle-stimulating hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Follicle-stimulating hormone test system. 862.1300... Systems § 862.1300 Follicle-stimulating hormone test system. (a) Identification. A follicle-stimulating hormone test system is a device intended to measure follicle-stimulating hormone (FSH) in plasma,...

  18. 21 CFR 862.1300 - Follicle-stimulating hormone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Follicle-stimulating hormone test system. 862.1300... Systems § 862.1300 Follicle-stimulating hormone test system. (a) Identification. A follicle-stimulating hormone test system is a device intended to measure follicle-stimulating hormone (FSH) in plasma,...

  19. 21 CFR 862.1300 - Follicle-stimulating hormone test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Follicle-stimulating hormone test system. 862.1300... Systems § 862.1300 Follicle-stimulating hormone test system. (a) Identification. A follicle-stimulating hormone test system is a device intended to measure follicle-stimulating hormone (FSH) in plasma,...

  20. Gustatory perception and fat body energy metabolism are jointly affected by vitellogenin and juvenile hormone in honey bees.

    PubMed

    Wang, Ying; Brent, Colin S; Fennern, Erin; Amdam, Gro V

    2012-06-01

    Honey bees (Apis mellifera) provide a system for studying social and food-related behavior. A caste of workers performs age-related tasks: young bees (nurses) usually feed the brood and other adult bees inside the nest, while older bees (foragers) forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers' transition from nursing to foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and endocrine physiology including the endocrine factors vitellogenin (Vg) and juvenile hormone (JH). However, the understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used RNA interference (RNAi) to perturb the gene network of Vg and JH to learn more about these connections through effects on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of the genes ultraspiracle (usp) and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional responses in insulin like peptide 1 (ilp1), the adipokinetic hormone receptor (AKHR), and cGMP-dependent protein kinase (PKG, or "foraging gene" Amfor). Our study demonstrates that the Vg-JH regulatory module controls changes in carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH), and PKG pathways influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus, perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders.

  1. Male sex hormones and systemic inflammation in Alzheimer disease.

    PubMed

    Butchart, Joe; Birch, Brian; Bassily, Ramy; Wolfe, Laura; Holmes, Clive

    2013-01-01

    Several studies have shown that the levels of sex hormones in men with Alzheimer disease (AD) differ from men without AD. Therefore, male sex hormones have been postulated as risk modifiers in AD, possibly through immunomodulatory effects on known inflammatory AD risk factors, such as tumor necrosis factor α (TNF-α). We conducted a cross-sectional study of sex hormones and TNF-α levels in 94 community-dwelling men with AD. Comparisons were made with normal values derived from the literature. Men with AD had lower free testosterone levels than non-AD men (1-sample t test: age <80, P=0.0002; age ≥80, P<0.0001), and higher luteinizing hormone (LH) levels (Wilcoxon signed rank test: age <80, P=0.001; age ≥80, P<0.0001). Within the cohort of men with AD, there was a positive correlation between LH and TNF-α (Spearman r=0.25, P=0.019), and this remained significant after correcting for age (partial r=0.21, P=0.05). These data support the hypothesis that sex hormones and the immune system influence each other in AD. Furthermore, modulatory effects between LH and TNF-α may provide a mechanism for an effect of male sex hormones on AD risk.

  2. Role of abnormal anterior pituitary hormones-growth hormone and prolactin in active systemic lupus erythematosus

    PubMed Central

    Zhu, Xiaohua; Xu, Jinhua; Li, Shujuan; Huang, Wen; Li, Feng

    2015-01-01

    Background: The role of anterior pituitary hormones in systemic lupus erythematosus (SLE) remains controversial. Aims and Objectives: We determined the expression levels of human growth hormone (GH), prolactin (PRL), and their receptors in subjects presenting with SLE, and modulation of disease severity. Materials and methods: Forty-seven subjects and ten healthy controls were assessed for possible association between SLE disease activity and levels of serum PRL, GH and thyrotropin-releasing hormone (TRH). In peripheral blood mononuclear cells (PBMC), specific binding and mRNA expression of receptors for GH (GHR), and PRL (PRLR) were determined by receptor-ligand binding assay (RLBA) and RT-PCR. PBMC of recruited subjects were treated with hPRL and rhGH to assess IgG production and antibodies against dsDNA. Results: In active SLE subjects we found elevated PRL and GH levels. Study subject PBMCs displayed augmented GHR and PRLR protein and mRNA expression. Study subjects also showed a positive correlation in serum PRL levels and specific antibodies against dsDNA, SLE disease activity index (SLEDAI), and proteinuria. However, a negative correlation was found between serum PRL levels and complement component C3. We found a positive correlation between specific binding rates of PRLR and GHR and both SLE activity and dsDNA antibody titers. Enhanced IgG and anti-dsDNA secretion was observed in cultured PBMC stimulated by PRL or GH with/without PHA, PWM, IL-2 or IL-10. In active SLE, a close association was found between augmented PRL and GH levels, expression and specific binding activities of PRLR and GHR, and changes in the specific titer of anti-dsDNA. Conclusion: Anterior pituitary hormones play an important role in the pathogenesis of SLE. High levels of growth hormone (GH) and prolactin (PRL) play a role in pathogenesis of SLE, which is correlated with SLE disease activity and antibodies against dsDNA. The mechanism of GH and PRL in SLE was complicated and should

  3. [Effect of hormone replacement therapy on the cardiovascular system].

    PubMed

    Payer, J

    2001-02-15

    Hormonal replacement therapy becomes frequently used in peri- and postmenopausal women. It causally affects the climacteric syndrome, positively stimulates psychics, improves quality of the skin, decreases dryness of mucous membranes and frequency of recurrent inflammations of eyes and vagina. The positive influence on the bone metabolism and therefore on the incidence of osteoporosis highly dominates among its long-term effects. Long lasting hormonal replacement reduces also the incidence of Alzheimer disease, colorectal carcinoma and it has particularly favourable effect on the cardiovascular system. Estrogens positive affect the lipid spectrum, however, more than 50% of their beneficial influence comes from their direct vasodilatory effect. Estrogene replacement becomes in many countries indicated for the primary prevention of the ischemic heart disease. The question of its application for the secondary prevention remains still open.

  4. Intimate associations between the endogenous opiate systems and the growth hormone-releasing hormone system in the human hypothalamus.

    PubMed

    Olsen, J; Peroski, M; Kiczek, M; Grignol, G; Merchenthaler, I; Dudas, B

    2014-01-31

    Although it is a general consensus that opioids modulate growth, the mechanism of this phenomenon is largely unknown. Since endogenous opiates use the same receptor family as morphine, these peptides may be one of the key regulators of growth in humans by impacting growth hormone (GH) secretion, either directly, or indirectly, via growth hormone-releasing hormone (GHRH) release. However, the exact mechanism of this regulation has not been elucidated yet. In the present study we identified close juxtapositions between the enkephalinergic/endorphinergic/dynorphinergic axonal varicosities and GHRH-immunoreactive (IR) perikarya in the human hypothalamus. Due to the long post mortem period electron microscopy could not be utilized to detect the presence of synapses between the enkephalinergic/endorphinergic/dynorphinergic and GHRH neurons. Therefore, we used light microscopic double-label immunocytochemistry to identify putative juxtapositions between these systems. Our findings revealed that the majority of the GHRH-IR perikarya formed intimate associations with enkephalinergic axonal varicosities in the infundibular nucleus/median eminence, while endorphinergic-GHRH juxtapositions were much less frequent. In contrast, no significant dynorphinergic-GHRH associations were detected. The density of the abutting enkephalinergic fibers on the surface of the GHRH perikarya suggests that these juxtapositions may be functional synapses and may represent the morphological substrate of the impact of enkephalin on growth. The small number of GHRH neurons innervated by the endorphin and dynorphin systems indicates significant differences between the regulatory roles of endogenous opiates on growth in humans. PMID:24239719

  5. Systemic hormonal and physiological abnormalities in anxiety disorders.

    PubMed

    Cameron, O G; Nesse, R M

    1988-01-01

    Among the studies of systemic hormonal and physiological abnormalities associated with anxiety disorders, the most consistent and extensive findings suggest (a) peripheral adrenergic hyperactivity (including increases in norepinephrine but not epinephrine) and functional dysregulation, (b) increased incidence of mitral valve prolapse in panic patients, and (c) normal suppressibility of the hypothalamic-pituitary-adrenal cortical endocrine system with dexamethasone in panic patients. Other less-certain findings include (a) increased circulating concentrations of plasma ACTH and/or cortisol, and prolactin, in panic patients, (b) increased platelet monoamine oxidase activity in generalized anxiety and/or panic patients, (c) decreased gonadal axis activity in some anxious individuals, (d) decreased nighttime melatonin plasma concentrations in panic patients, and (e) peripheral alpha 2 and beta-adrenoreceptor down-regulation, with normal serotonin binding parameters. These findings, taken together, provide tentative support for dysfunction in adrenergic and GABAergic central nervous system mechanisms in people with anxiety disorders. Abnormal anxiety and normal stress both show evidence of adrenergic hyperactivity; however, there appear to be differences in hormonal profiles, especially the apparent lack of increase of epinephrine during panic attacks, as well as differences in the reactivity of the system, and in the "trigger" mechanisms which determine when the response occurs.

  6. Review. Do hormonal control systems produce evolutionary inertia?

    PubMed

    Adkins-Regan, Elizabeth

    2008-05-12

    Hormonal control systems are complex in design and well integrated. Concern has been raised that these systems might act as evolutionary constraints when animals are subject to anthropogenic environmental change. Three systems are examined in vertebrates, especially birds, that are important for assessing this possibility: (i) the hypothalamic-pituitary-gonadal (HPG) axis, (ii) the activational effects of sex steroids on mating effort behaviour, and (iii) sexual differentiation. Consideration of how these systems actually work that takes adequate account of the brain's role and mechanisms suggests that the first two are unlikely to be impediments to evolution. The neural and molecular networks that regulate the HPG provide both phenotypic and evolutionary flexibility, and rapid evolutionary responses to selection have been documented in several species. The neuroendocrine and molecular cascades for behaviour provide many avenues for evolutionary change without requiring a change in peripheral hormone levels. Sexual differentiation has some potential to be a source of evolutionary inertia in birds and could contribute to the lack of diversity in certain reproductive (including life history) traits. It is unclear, however, whether that lack of diversity would impede adaptation to rapid environmental change given the role of behavioural flexibility in avian reproduction.

  7. Sex hormones and glucocorticoids: interactions with the immune system.

    PubMed

    Da Silva, J A

    1999-06-22

    Gender and sex hormones exert powerful effects in the susceptibility and progression of numerous human and experimental autoimmune diseases. This has been attributed to direct immunological effects of sex hormones that impact a clear gender dimorphism on the immune system. Globally, estrogens depress T cell-dependent immune function and diseases, but enhance antibody production and aggravate B cell-dependent diseases. Androgens suppress both T-cell and B-cell immune responses and virtually always result in the suppression of disease expression. Defects in the hypothalamic-pituitary-adrenal (HPA) axis have been proposed to play an important role in the pathogenesis of autoimmune diseases. Glucocorticoid response to stress, including immune challenge, is strongly inhibited by androgens and enhanced by estrogens. Complex three-way interactions between these systems appear to be involved in gender dimorphism of the immune system. This paper reviews the mechanisms involved in interactions between sex steroids and the HPA axis, addresses the possibility of similar interactions on immunocompetent cells, and explores an integrated perspective of the impact of these interplays on the immune system.

  8. The hormonal system of the unicellular Tetrahymena: a review with evolutionary aspects.

    PubMed

    Csaba, György

    2012-06-01

    The unicellular ciliate, Tetrahymena has receptors for hormones of the higher ranked animals, these hormones (e.g. insulin, triiodothyronine, ACTH, histamine, etc.) are also produced by it and it has signal pathways and second messengers for signal transmission. These components are chemically and functionally very similar to that of mammalian ones. The exogenously given hormones regulate different functions, as movement, phagocytosis, chemotaxis, cell growth, secretion, excretion and the cells' own hormone production. The receptors are extremely sensitive, certain hormones are sensed (and response is provoked) at 10-21 M concentration, which makes likely that the function could work by the effect of hormones produced by the Tetrahymena itself. The signal reception is selective, it can differentiate between closely related hormones. The review is listing the hormones produced by the Tetrahymena, the receptors which can receive signals and the signal pathways and second messengers as well, as the known effects of mammalian hormones to the life functions of Tetrahymena. The possible and justified role of hormonal system in the Tetrahymena as a single cell and inside the Tetrahymena population, as a community is discussed. The unicellular hormonal system and mammalian endocrine system are compared and evolutionary conclusions are drawn.

  9. Contraceptive efficacy of the personal hormone monitoring system Persona.

    PubMed

    Trussell, J

    1999-07-01

    This is a commentary on the contraceptive effectiveness of the personal hormone-monitoring system Persona; it points out the various errors committed in computing method pregnancy rates. The modifications presented by Bonnar et al. on the incorrect procedure for computing method pregnancy rates are criticized as erroneous because the denominator includes cycles in which there is no risk of a method pregnancy according to the authors' algorithm for classifying pregnancy in an imperfect-use cycle. It is also claimed that the new exercise is a more complicated and less accurate way of computing for pregnancy rates by comparison with the simpler alternative. Since this new algorithm, used in the Persona system, is based on flawed logic, the annual risk of pregnancy is actually higher than the estimated 6% among women using Persona and having intercourse in each cycle except on red days.

  10. Mechanisms of crosstalk between endocrine systems: regulation of sex steroid hormone synthesis and action by thyroid hormones.

    PubMed

    Duarte-Guterman, Paula; Navarro-Martín, Laia; Trudeau, Vance L

    2014-07-01

    Thyroid hormones (THs) are well-known regulators of development and metabolism in vertebrates. There is increasing evidence that THs are also involved in gonadal differentiation and reproductive function. Changes in TH status affect sex ratios in developing fish and frogs and reproduction (e.g., fertility), hormone levels, and gonad morphology in adults of species of different vertebrates. In this review, we have summarized and compared the evidence for cross-talk between the steroid hormone and thyroid axes and present a comparative model. We gave special attention to TH regulation of sex steroid synthesis and action in both the brain and gonad, since these are important for gonad development and brain sexual differentiation and have been studied in many species. We also reviewed research showing that there is a TH system, including receptors and enzymes, in the brains and gonads in developing and adult vertebrates. Our analysis shows that THs influences sex steroid hormone synthesis in vertebrates, ranging from fish to pigs. This concept of crosstalk and conserved hormone interaction has implications for our understanding of the role of THs in reproduction, and how these processes may be dysregulated by environmental endocrine disruptors.

  11. Mechanisms of crosstalk between endocrine systems: regulation of sex steroid hormone synthesis and action by thyroid hormones.

    PubMed

    Duarte-Guterman, Paula; Navarro-Martín, Laia; Trudeau, Vance L

    2014-07-01

    Thyroid hormones (THs) are well-known regulators of development and metabolism in vertebrates. There is increasing evidence that THs are also involved in gonadal differentiation and reproductive function. Changes in TH status affect sex ratios in developing fish and frogs and reproduction (e.g., fertility), hormone levels, and gonad morphology in adults of species of different vertebrates. In this review, we have summarized and compared the evidence for cross-talk between the steroid hormone and thyroid axes and present a comparative model. We gave special attention to TH regulation of sex steroid synthesis and action in both the brain and gonad, since these are important for gonad development and brain sexual differentiation and have been studied in many species. We also reviewed research showing that there is a TH system, including receptors and enzymes, in the brains and gonads in developing and adult vertebrates. Our analysis shows that THs influences sex steroid hormone synthesis in vertebrates, ranging from fish to pigs. This concept of crosstalk and conserved hormone interaction has implications for our understanding of the role of THs in reproduction, and how these processes may be dysregulated by environmental endocrine disruptors. PMID:24685768

  12. The cardiovascular system in growth hormone excess and growth hormone deficiency.

    PubMed

    Lombardi, G; Di Somma, C; Grasso, L F S; Savanelli, M C; Colao, A; Pivonello, R

    2012-12-01

    The clinical conditions associated with GH excess and GH deficiency (GHD) are known to be associated with an increased risk for the cardiovascular morbidity and mortality, suggesting that either an excess or a deficiency in GH and/or IGF-I is deleterious for cardiovascular system. In patients with acromegaly, chronic GH and IGF-I excess commonly causes a specific cardiomyopathy characterized by a concentric cardiac hypertrophy associated with diastolic dysfunction and, in later stages, with systolic dysfunction ending in heart failure if GH/IGF-I excess is not controlled. Abnormalities of cardiac rhythm and anomalies of cardiac valves can also occur. Moreover, the increased prevalence of cardiovascular risk factors, such as hypertension, diabetes mellitus, and insulin resistance, as well as dyslipidemia, confer an increased risk for vascular atherosclerosis. Successful control of the disease is accompanied by a decrease of the cardiac mass and improvement of cardiac function and an improvement in cardiovascular risk factors. In patients with hypopituitarism, GHD has been considered the under- lying factor of the increased mortality when appropriate standard replacement of the pituitary hormones deficiencies is given. Either childhood-onset or adulthood-onset GHD are characterized by a cluster of abnormalities associated with an increased cardiovascular risk, including altered body composition, unfavorable lipid profile, insulin resistance, endothelial dysfunction and vascular atherosclerosis, a decrease in cardiac mass together with an impairment of systolic function mainly after exercise. Treatment with recombinant GH in patients with GHD is followed by an improvement of the cardiovascular risk factors and an increase in cardiac mass together with an improvement in cardiac performance. In conclusion, acromegaly and GHD are associated with an increased risk for cardiovascular morbidity and mortality, but the control of GH/IGF-I secretion reverses cardiovascular

  13. Water scorpions (Heteroptera, Nepidae) and giant water bugs (Heteroptera, Belostomatidae): sources of new members of the adipokinetic hormone/red pigment-concentrating hormone family.

    PubMed

    Gäde, Gerd; Simek, Petr; Marco, Heather G

    2007-07-01

    Two novel octapeptide members of the AKH/RPCH family have been identified from the corpora cardiaca (CC) of two species of water bugs. The giant water bug Lethocerus indicus (family: Belostomatidae) contains a peptide code-named Letin-AKH with the sequence pGlu-Val-Asn-Phe-Ser-Pro-Tyr-Trp amide, and the water scorpion Nepa cinerea (family: Nepidae) has the peptide code-named Nepci-AKH with the sequence pGlu-Leu/Ile-Asn-Phe-Ser-Ser-Gly-Trp amide. The sequences were deduced from the multiple MS(N) electrospray mass data from crude CC extracts. Synthetic peptides were made and co-elution on reversed-phase high performance liquid chromatography (RP-HPLC) with the natural peptide from crude gland extract confirmed the accuracy of the deduced sequence for Letin-AKH and demonstrated that Nepci-AKH contains a Leu residue at position 2 and not an Ile residue. A previously characterized member of the AKH/RPCH family was identified in the stick water scorpion Ranatra linearis by mass spectrometry: Grybi-AKH (pGlu-Val-Asn-Phe-Ser-Thr-Gly-Trp amide) has the same mass (919 Da) as Nepci-AKH and differs in two positions from Nepci-AKH (residues 2 and 6). The apparent function of the peptides is to achieve lipid mobilization in the species under investigation; indications for this came from conspecific bioassays using the appropriate synthetic peptides for injecting into the insects. This function is very likely linked to dispersal flight metabolism of water bugs. Swimming activity in N. cinerea also results in an increase in lipid concentration in the hemolymph.

  14. Comparative peptidomics of four related hemipteran species: Pyrokinins, myosuppressin, corazonin, adipokinetic hormone, sNPF, and periviscerokinins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We performed the first comprehensive peptidomic analysis of neurohormones from hemipteran insects by analyzing the neuropeptides of two major neurohemal organs, namely the corpora cardiaca and abdominal perisympathetic organs. For the experiments we selected four related species of polyphagous stin...

  15. Pesticide exposure: the hormonal function of the female reproductive system disrupted?

    PubMed Central

    Bretveld, Reini W; Thomas, Chris MG; Scheepers, Paul TJ; Zielhuis, Gerhard A; Roeleveld, Nel

    2006-01-01

    Some pesticides may interfere with the female hormonal function, which may lead to negative effects on the reproductive system through disruption of the hormonal balance necessary for proper functioning. Previous studies primarily focused on interference with the estrogen and/or androgen receptor, but the hormonal function may be disrupted in many more ways through pesticide exposure. The aim of this review is to give an overview of the various ways in which pesticides may disrupt the hormonal function of the female reproductive system and in particular the ovarian cycle. Disruption can occur in all stages of hormonal regulation: 1. hormone synthesis; 2. hormone release and storage; 3. hormone transport and clearance; 4. hormone receptor recognition and binding; 5. hormone postreceptor activation; 6. the thyroid function; and 7. the central nervous system. These mechanisms are described for effects of pesticide exposure in vitro and on experimental animals in vivo. For the latter, potential effects of endocrine disrupting pesticides on the female reproductive system, i.e. modulation of hormone concentrations, ovarian cycle irregularities, and impaired fertility, are also reviewed. In epidemiological studies, exposure to pesticides has been associated with menstrual cycle disturbances, reduced fertility, prolonged time-to-pregnancy, spontaneous abortion, stillbirths, and developmental defects, which may or may not be due to disruption of the female hormonal function. Because pesticides comprise a large number of distinct substances with dissimilar structures and diverse toxicity, it is most likely that several of the above-mentioned mechanisms are involved in the pathophysiological pathways explaining the role of pesticide exposure in ovarian cycle disturbances, ultimately leading to fertility problems and other reproductive effects. In future research, information on the ways in which pesticides may disrupt the hormonal function as described in this review, can be

  16. Growth hormone, insulin-like growth factor system and carcinogenesis.

    PubMed

    Boguszewski, Cesar Luiz; Boguszewski, Margaret Cristina da Silva; Kopchick, John J

    2016-01-01

    The growth hormone (GH) and insulin-like growth factor (IGF) system plays an important role in the regulation of cell proliferation, differentiation, apoptosis, and angiogenesis. In terms of cell cycle regulation, the GH-IGF system induces signalling pathways for cell growth that compete with other signalling systems that result in cell death; thus the final effect of these opposed forces is critical for normal and abnormal cell growth. The association of the GH-IGF system with carcinogenesis has long been hypothesised, mainly based on in vitro studies and the use of a variety of animal models of human cancer, and also on epidemiological and clinical evidence in humans. While ample experimental evidence supports a role of the GH-IGF system in tumour promotion and progression, with several of its components being currently tested as central targets for cancer therapy, the strength of evidence from patients with acromegaly, GH deficiency, or treated with GH is much weaker. In this review, we will attempt to consolidate this data. (Endokrynol Pol 2016; 67 (4): 414-426). PMID:27387246

  17. Sex hormones and the immune system--Part 2. Animal data.

    PubMed

    Ahmed, S A; Talal, N

    1990-04-01

    Sex hormones have physiological and pathological (autoimmune conditions) effects on the immune system. Studies in experimental animal models of human autoimmune diseases have clearly shown that sex hormones regulate the expression, severity and course of autoimmune diseases. Sex hormones affect the function of T, B and NK cells, and macrophages. Precisely how sex hormones affect lymphocytes is a highly complex question. Sex hormones can modulate the immune system, perhaps directly (e.g. thymic reticular tissue), or indirectly via host and many oestrogen target tissues, including the central nervous system hypothalamic-pituitary axis (the neuroendocrine tissues). The effects of sex hormones on the immune system (immunosuppression or immunopotentiation) may vary, even with the same hormone. For example, oestrogen can increase IgA levels in the uterus, but decrease IgA levels in the vagina or have no effect in lacrimal tissues (Sullivan, 1989). Therefore the effects of sex hormones on the immune system cannot be generalized but must be evaluated independently. Some of the reasons for variability in results have been reviewed in detail elsewhere (Steinberg et al, 1979; Ansar Ahmed et al, 1985b). These include, dose of hormones, age and sex-hormonal status of animals, route and time of administration, the immunocompetence of the host, stress, the metabolism of hormones (e.g. metabolism of testosterone to oestrogen) resulting in alteration of biological activity, and differential response to various antigens. The initial encounter of sex hormones with the type of target cells, the variability of secondary messengers and gene activation events are other important considerations. The effects of sex hormones on the immune system to modulate immune responses are unequivocal. The burgeoning advances in cellular immunology, endocrinology and molecular biology, should provide a better understanding of: (1) the interactions of hormones with the immune system; (2) how hormones

  18. Hormones in the immune system and their possible role. A critical review.

    PubMed

    Csaba, György

    2014-09-01

    Immune cells synthesize, store and secrete hormones, which are identical with the hormones of the endocrine glands. These are: the POMC hormones (ACTH, endorphin), the thyroid system hormones (TRH, TSH, T3), growth hormone (GH), prolactin, melatonin, histamine, serotonin, catecholamines, GnRH, LHRH, hCG, renin, VIP, ANG II. This means that the immune cells contain all of the hormones, which were searched at all and they also have receptors for these hormones. From this point of view the immune cells are similar to the unicells (Tetrahymena), so it can be supposed that these cells retained the properties characteristic at a low level of phylogeny while other cells during the evolution accumulated to form endocrine glands. In contrast to the glandular endocrine cells, immune cells are polyproducers and polyreceivers. As they are mobile cells, they are able to transport the stored hormone to different places (packed transport) or attracted by local factors, accumulate in the neighborhood of the target, synthesizing and secreting hormones locally. This is taking place, e.g. in the case of endorphin, where the accumulating immune cells calms pain caused by the inflammation. The targeted packed transport is more economical than the hormone-pouring to the blood circulation of glandular endocrines and the targeting also cares the other receptor-bearing cells timely not needed the effect. Mostly the immune-effects of immune-cell derived hormones were studied (except endorphin), however, it is not exactly cleared, while the system could have scarcely studied important roles in other cases. The evolutionary aspects and the known as well, as possible roles of immune-endocrine system and their hormones are listed and discussed.

  19. Locust flight activity as a model for hormonal regulation of lipid mobilization and transport.

    PubMed

    Van der Horst, Dick J; Rodenburg, Kees W

    2010-08-01

    Flight activity of insects provides a fascinating yet relatively simple model system for studying the regulation of processes involved in energy metabolism. This is particularly highlighted during long-distance flight, for which the locust constitutes a long-standing favored model insect, which as one of the most infamous agricultural pests additionally has considerable economical importance. Remarkably many aspects and processes pivotal to our understanding of (neuro)hormonal regulation of lipid mobilization and transport during insect flight activity have been discovered in the locust; among which are the peptide adipokinetic hormones (AKHs), synthesized and stored by the neurosecretory cells of the corpus cardiacum, that regulate and integrate lipid (diacylglycerol) mobilization and transport, the functioning of the reversible conversions of lipoproteins (lipophorins) in the hemolymph during flight activity, revealing novel concepts for the transport of lipids in the circulatory system, and the structure and functioning of the exchangeable apolipopotein, apolipophorin III, which exhibits a dual capacity to exist in both lipid-bound and lipid-free states that is essential to these lipophorin conversions. Besides, the lipophorin receptor (LpR) was identified and characterized in the locust. In an integrative approach, this short review aims at highlighting the locust as an unrivalled model for studying (neuro)hormonal regulation of lipid mobilization and transport during insect flight activity, that additionally has offered a broad and profound research model for integrative physiology and biochemistry, and particularly focuses on recent developments in the concept of AKH-induced changes in the lipophorin system during locust flight, that deviates fundamentally from the lipoprotein-based transport of lipids in the circulation of mammals. Current studies in this field employing the locust as a model continue to attribute to its role as a favored model organism, but

  20. 2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice.

    PubMed

    Lee, Dongoh; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae

    2016-07-12

    2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems.

  1. 2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice

    PubMed Central

    Lee, Dongoh; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae

    2016-01-01

    2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems PMID:27420076

  2. 2,4,6-Tribromophenol Interferes with the Thyroid Hormone System by Regulating Thyroid Hormones and the Responsible Genes in Mice.

    PubMed

    Lee, Dongoh; Ahn, Changhwan; Hong, Eui-Ju; An, Beum-Soo; Hyun, Sang-Hwan; Choi, Kyung-Chul; Jeung, Eui-Bae

    2016-01-01

    2,4,6-Tribromophenol (TBP) is a brominated flame retardant (BFR). Based on its affinity for transthyretin, TBP could compete with endogenous thyroid hormone. In this study, the effects of TBP on the thyroid hormone system were assessed in mice. Briefly, animals were exposed to 40 and 250 mg/kg TBP. Thyroid hormones were also administered with or without TBP. When mice were treated with TBP, deiodinase 1 (Dio1) and thyroid hormone receptor β isoform 2 (Thrβ2) decreased in the pituitary gland. The levels of deiodinase 2 (Dio2) and growth hormone (Gh) mRNA increased in response to 250 mg/kg of TBP, and the relative mRNA level of thyroid stimulating hormone β (Tshβ) increased in the pituitary gland. Dio1 and Thrβ1 expression in the liver were not altered, while Dio1 decreased in response to co-treatment with thyroid hormones. The thyroid gland activity decreased in response to TBP, as did the levels of free triiodothyronine and free thyroxine in serum. Taken together, these findings indicate that TBP can disrupt thyroid hormone homeostasis and the presence of TBP influenced thyroid actions as regulators of gene expression. These data suggest that TBP interferes with thyroid hormone systems. PMID:27420076

  3. Analysis of steroid hormones in a typical dairy waste disposal system.

    PubMed

    Zheng, Wei; Yates, Scott R; Bradford, Scott A

    2008-01-15

    The environmental loading of steroid hormones contained in dairy wastes may cause an adverse effect on aquatic species. To better assess the potential risks of hormone contamination resulting from land application of dairy wastes, various steroid hormones were determined in a typical dairy waste disposal system. Quantitative methods using gas chromatography/mass spectrometry (GC/MS) were developed to monitor low levels of steroid hormones in complex solid and liquid samples contaminated with dairy manure. The preparation method for wastewater analysis consisted of solid-phase extraction and purification steps, which minimized interference from the sample matrices and achieved low detection limits for the studied hormones. In the dairy wastewater and lagoon water, three endogenous hormones-17alpha-estradiol, 17beta-estradiol, and estrone-were detected. The concentration of 17alpha-estradiol in fresh milk parlor effluent rapidly decreased along the wastewater disposal route, whereas the concentration of estrone increased along this same pathway. This suggests that 17alpha-estradiol was readily oxidized to the metabolite estrone. Levels of total steroid hormones in the sequencing lagoon water were approximately 1-3 orders of magnitude lower than those in the fresh dairy wastewaters, indicating significant removal of these hormones during the transport of dairy wastewater from source to field. In solid dairy waste samples, four steroid hormones were identified and quantified. Increasing the piling time of solid wastes and increasing the residence time of wastewater in sequencing lagoons are suggested to be economical and efficient agriculture practices to extend the degradation time of hormone contaminants and thereby reduce the hormone load to the environment.

  4. The role of thyroid hormone signaling in the prevention of digestive system cancers.

    PubMed

    Brown, Adam R; Simmen, Rosalia C M; Simmen, Frank A

    2013-01-01

    Thyroid hormones play a critical role in the growth and development of the alimentary tract in vertebrates. Their effects are mediated by nuclear receptors as well as the cell surface receptor integrin αVβ3. Systemic thyroid hormone levels are controlled via activation and deactivation by iodothyronine deiodinases in the liver and other tissues. Given that thyroid hormone signaling has been characterized as a major effector of digestive system growth and homeostasis, numerous investigations have examined its role in the occurrence and progression of cancers in various tissues of this organ system. The present review summarizes current findings regarding the effects of thyroid hormone signaling on cancers of the esophagus, stomach, liver, pancreas, and colon. Particular attention is given to the roles of different thyroid hormone receptor isoforms, the novel integrin αVβ3 receptor, and thyroid hormone-related nutrients as possible protective agents and therapeutic targets. Future investigations geared towards a better understanding of thyroid hormone signaling in digestive system cancers may provide preventive or therapeutic strategies to diminish risk, improve outcome and avert recurrence in afflicted individuals.

  5. GABA and GAD expression in the X-organ sinus gland system of the Procambarus clarkii crayfish: inhibition mediated by GABA between X-organ neurons.

    PubMed

    Pérez-Polanco, Paola; Garduño, Julieta; Cebada, Jorge; Zarco, Natanael; Segovia, José; Lamas, Mónica; García, Ubaldo

    2011-09-01

    In crustaceans, the X-organ-sinus gland (XO-SG) neurosecretory system is formed of distinct populations of neurons that produce two families of neuropeptides: crustacean hyperglycemic hormone and adipokinetic hormone/red pigment-concentrating hormone. On the basis of electrophysiological evidence, it has been proposed that γ-aminobutyric acid (GABA) regulates both electrical and secretory activity of the XO-SG system. In this work we observed that depolarizing current pulses to neurons located in the external rim of the X-organ induced repetitive firing that suppressed the spontaneous firing of previously active X-organ neurons. Picrotoxin reversibly blocked this inhibitory effect suggesting that the GABA released from the stimulated neuron inhibited neighboring cells. Immunoperoxidase in X-organ serial sections showed co-localization of GABA and glutamic acid decarboxylase (GAD) including the aforementioned neurons. Immunofluorescence in whole mount preparations showed that two subpopulations of crustacean hyperglycemic hormone-containing neurons colocalized with GABA. The expression of GAD mRNA was determined in crayfish tissue and X-organ single cells by RT-PCR. Bioinformatics analysis shows, within the amplified region, 90.4% consensus and 41.9% identity at the amino acid level compared with Drosophila melanogaster and Caenorhabditis elegans. We suggest that crustacean hyperglycemic hormone-GABA-containing neurons can regulate the excitability of other X-organ neurons that produce different neurohormones. PMID:21626307

  6. Aging changes in hormone production

    MedlinePlus

    The endocrine system is made up of organs and tissues that produce hormones. Hormones are natural chemicals produced in one ... hormones that control the other structures in the endocrine system. The amount of these regulating hormones stays about ...

  7. Multiglandular Hormone Deficiency in a Patient with Systemic Capillary Leak Syndrome

    PubMed Central

    Then, Cornelia; Ritzel, Katrin; Seibold, Christa; Mann, Johannes F. E.; Reincke, Martin

    2015-01-01

    Systemic capillary leak syndrome (SCLS) is a rare but potentially fatal disorder characterized by a loss of fluid and proteins into the interstitial space leading to intravascular hypovolemia up to the point of hypovolemic shock. We report the case of a 64-year-old man with SCLS and multiple hormone abnormalities (primary hypothyroidism, hypoadrenalism, and hypogonadism), deficiency of hormone binding globulins, and hypogammaglobulinemia. The patient was successfully treated with intravenous immunoglobulins, theophylline, and terbutaline. Strikingly, with the dissolution of peripheral edema, hormone levels improved. To our knowledge, this is the first reported case of SCLS associated with polyglandular abnormalities. PMID:25685157

  8. Effects of spaceflight on hypothalamic peptide systems controlling pituitary growth hormone dynamics

    NASA Technical Reports Server (NTRS)

    Sawchenko, P. E.; Arias, C.; Krasnov, I.; Grindeland, R. E.; Vale, W.

    1992-01-01

    Possible effects of reduced gravity on central hypophysiotropic systems controlling growth hormone (GH) secretion were investigated in rats flown on Cosmos 1887 and 2044 biosatellites. Immunohistochemical (IHC)staining for the growth hormone-releasing factor (GRF), somatostatin (SS), and other hypothalamic hormones was performed on hypothalami obtained from rats. IHC analysis was complemented by quantitative in situ assessments of mRNAs encoding the precursors for these hormones. Data obtained suggest that exposure to microgravity causes a preferential reduction in GRF peptide and mRNA levels in hypophysiotropic neurons, which may contribute to impared GH secretion in animals subjected to spaceflight. Effects of weightlessness are not mimicked by hindlimb suspension in this system.

  9. [Hormonal activity of the hypophysis-gonadal system in male hamadryas baboons in relationship to their hierarchical position].

    PubMed

    Taranov, A G; Shashk-ogly, L K; Goncharov, N P

    1986-03-01

    Hierarchic status-dependent hormonal activity of pituitary-gonadal system was studied in an isolated group of hamadryas baboons. Testosterone level was higher in dominating males. The level of sex hormone was higher in aged animals with great muscle mass. No correlation was observed between hierarchic status of hamadryas baboon males and the blood level of luteinizing hormone.

  10. Growth hormone, insulin-like growth factor-1 and the aging cardiovascular system.

    PubMed

    Khan, Amir S; Sane, David C; Wannenburg, Thomas; Sonntag, William E

    2002-04-01

    There is a large body of evidence that biological aging is related to a series of long-term catabolic processes resulting in decreased function and structural integrity of several physiological systems, among which is the cardiovascular system. These changes in the aging phenotype are correlated with a decline in the amplitude of pulsatile growth hormone secretion and the resulting decrease in plasma levels of its anabolic mediator, insulin like growth factor-1 (IGF-1). The relationship between growth hormone and biological aging is supported by studies demonstrating that growth hormone administration to old animals and humans raises plasma IGF-1 and results in increases in skeletal muscle and lean body mass, a decrease in adiposity, increased immune function, improvements in learning and memory, and increases in cardiovascular function. Since growth hormone and IGF-1 exert potent effects on the heart and vasculature, the relationship between age-related changes in cardiovascular function and the decline in growth hormone levels with age have become of interest. Among the age-related changes in the cardiovascular system are decreases in myocyte number, accumulation of fibrosis and collagen, decreases in stress-induced cardiac function through deterioration of the myocardial conduction system and beta-adrenergic receptor function, decreases in exercise capacity, vessel rarefaction, decreased arterial compliance and endothelial dysfunction leading to alterations in blood flow. Growth hormone has been found to exert potent effects on cardiovascular function in young animals and reverses many of the deficits in cardiovascular function in aged animals and humans. Nevertheless, it has been difficult to separate the effects of growth hormone deficiency from age-related diseases and associated pathologies. The development of novel animal models and additional research are required in order to elucidate the specific effects of growth hormone deficiency and assess its

  11. Hormones and hibernation: possible links between hormone systems, winter energy balance and white-nose syndrome in bats.

    PubMed

    Willis, Craig K R; Wilcox, Alana

    2014-06-01

    This article is part of a Special Issue "Energy Balance". Hibernation allows mammals to survive in cold climates and during times of reduced food availability. Drastic physiological changes are required to maintain the energy savings that characterize hibernation. These changes presumably enable adjustments in endocrine activity that control metabolism and body temperature, and ultimately influence expression of torpor and periodic arousals. Despite challenges that exist when examining hormonal pathways in small-bodied hibernators, bats represent a potential model taxon for comparative neuroendocrinological studies of hibernation due to their diversity of species and the reliance of many species on heterothermy. Understanding physiological mechanisms underlying hibernation in bats is also important from a conservation physiology perspective due to white-nose syndrome, an emerging infectious disease causing catastrophic mortality among hibernating bats in eastern North America. Here we review the potential influence of three key hormonal mechanisms--leptin, melatonin and glucocorticoids--on hibernation in mammals with an emphasis on bats. We propose testable hypotheses about potential effects of WNS on these systems and their evolution.

  12. Hormones and hibernation: possible links between hormone systems, winter energy balance and white-nose syndrome in bats.

    PubMed

    Willis, Craig K R; Wilcox, Alana

    2014-06-01

    This article is part of a Special Issue "Energy Balance". Hibernation allows mammals to survive in cold climates and during times of reduced food availability. Drastic physiological changes are required to maintain the energy savings that characterize hibernation. These changes presumably enable adjustments in endocrine activity that control metabolism and body temperature, and ultimately influence expression of torpor and periodic arousals. Despite challenges that exist when examining hormonal pathways in small-bodied hibernators, bats represent a potential model taxon for comparative neuroendocrinological studies of hibernation due to their diversity of species and the reliance of many species on heterothermy. Understanding physiological mechanisms underlying hibernation in bats is also important from a conservation physiology perspective due to white-nose syndrome, an emerging infectious disease causing catastrophic mortality among hibernating bats in eastern North America. Here we review the potential influence of three key hormonal mechanisms--leptin, melatonin and glucocorticoids--on hibernation in mammals with an emphasis on bats. We propose testable hypotheses about potential effects of WNS on these systems and their evolution. PMID:24768718

  13. Hormone responsiveness of isolated catfish hepatocytes in perifusion system is higher than in flasks incubation.

    PubMed

    Ottolenghi, C; Puviani, A C; Fabbri, E; Capuzzo, A; Brighenti, L; Plisetskaya, E M

    1994-07-01

    Hepatocytes were isolated from catfish (lctalurus melas) by conventional collagenase digestion. Sensitivities of liver cells isolated from the same fish to the glycogenolytic action of epinephrine, mammalian glucagon, catfish glucagon, catfish glucagon-like peptide, synthetic fragment 19-29 of anglerfish glucagon I, fragment 19-29 of anglerfish glucagon II, and anglerfish glucagon II were compared in two different systems: perifusion in a Bio-Gel P4 column and flask incubation. Both experimental procedures were continued for a total of 100-120 min, while hormones were applied simultaneously to both preparations for 10 min. Effluent fractions from the columns and incubation media from the flasks were collected for glucose determination. The hormonal effects were clearly enhanced in perifused cells compared to those in cells incubated in flasks, the effect being especially evident at physiological concentrations of hormones. The hormonal effects in both systems were dose-dependent. Epinephrine and mammalian glucagon (10 nM), applied separately to the same column, produced two different peaks, glucagon causing more glucose production than epinephrine. In the presence of 0.4 mM glucose in the perifusion system, hormonal effects were diminished, implying that glucose accumulation during incubation of liver cells in flasks might affect hormonal effects. The results obtained in this study indicate that piscine hepatocytes suspended and perifused in a Bio-Gel column are more sensitive to physiological concentrations of glycogenolytic hormones and may represent a new tool for experimental studies of fish liver metabolism and its hormonal regulation. PMID:7926655

  14. Extrapituitary growth hormone in the chicken reproductive system.

    PubMed

    Luna, Maricela; Martínez-Moreno, Carlos G; Ahumada-Solórzano, Marisela S; Harvey, Steve; Carranza, Martha; Arámburo, Carlos

    2014-07-01

    Increasing evidence shows that growth hormone (GH) expression is not limited to the pituitary, as it can be produced in many other tissues. It is known that growth hormone (GH) plays a role in the control of reproductive tract development. Acting as an endocrine, paracrine and/or autocrine regulator, GH influences proliferation, differentiation and function of reproductive tissues. In this review we substantiate the local expression of GH mRNA and GH protein, as well as the GH receptor (GHR) in both male and female reproductive tract, mainly in the chicken. Locally expressed GH was found to be heterogeneous, with a 17 kDa variant being predominant. GH secretagogues, such as GHRH and TRH co-localize with GH expression in the chicken testis and induce GH release. In the ovarian follicular granulosa cells, GH and GHR are co-expressed and stimulate progesterone production, which was neutralized by a specific GH antibody. Both testicular and follicular cells in primary cultures were able to synthesize and release GH to the culture medium. We also characterized GH and GH mRNA expression in the hen's oviduct and showed that it had 99.6% sequence identity with pituitary GH. Data suggest local reproductive GH may have important autocrine/paracrine effects.

  15. [The role of disturbances in the hormonal signaling systems in etiology and pathogenesis of diabetes mellitus].

    PubMed

    Shpakov, A O

    2014-01-01

    The role of disturbances in the hormonal signaling systems of brain and peripheral tissues in etiology and pathogenesis of diabetes mellitus (DM) of the types 1 and 2 is discussed. Available data confirming the hypothesis of central genesis of some forms of DM caused by disturbances in the brain neurotransmitter systems are presented. It is concluded that the study of disturbances in the hormonal signaling systems is a promising approach for development of new strategies of DM treatment, based on correction of these disturbances in the CNS and the periphery.

  16. A lophotrochozoan-specific nuclear hormone receptor is required for reproductive system development in the planarian.

    PubMed

    Tharp, Marla E; Collins, James J; Newmark, Phillip A

    2014-12-01

    Germ cells of sexually reproducing organisms receive an array of cues from somatic tissues that instruct developmental processes. Although the nature of these signals differs amongst organisms, the importance of germline-soma interactions is a common theme. Recently, peptide hormones from the nervous system have been shown to regulate germ cell development in the planarian Schmidtea mediterranea; thus, we sought to investigate a second class of hormones with a conserved role in reproduction, the lipophilic hormones. In order to study these signals, we identified a set of putative lipophilic hormone receptors, known as nuclear hormone receptors, and analyzed their functions in reproductive development. We found one gene, nhr-1, belonging to a small class of functionally uncharacterized lophotrochozoan-specific receptors, to be essential for the development of differentiated germ cells. Upon nhr-1 knockdown, germ cells in the testes and ovaries fail to mature, and remain as undifferentiated germline stem cells. Further analysis revealed that nhr-1 mRNA is expressed in the accessory reproductive organs and is required for their development, suggesting that this transcription factor functions cell non-autonomously in regulating germ cell development. Our studies identify a role for nuclear hormone receptors in planarian reproductive maturation and reinforce the significance of germline-soma interactions in sexual reproduction across metazoans.

  17. A control system formulation of the mechanism that controls the secretions of serum group hormone in humans during sleep

    NASA Technical Reports Server (NTRS)

    Howard, J. C.; Young, D. R.

    1975-01-01

    Plasma growth hormone concentrations during sleep were determined experimentally. An elevated level of plasma growth hormone was observed during the initial phase of sleep and remained elevated for approximately 3 hr before returning to the steady-state level. Moreover, subsequent to a prolonged interruption of sleep, of the order of 2-3 hr, an elevated level of plasma growth hormone was again observed during the initial phase of resumed sleep. A control system formulation of the mechanism that controls the secretions of serum growth hormone in humans was used to account for the growth hormone responses observed.

  18. Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System.

    PubMed

    Huang, Wen; Xu, Fei; Qu, Tao; Zhang, Rui; Li, Li; Que, Huayong; Zhang, Guofan

    2015-01-01

    Thyroid hormones (THs) play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS) in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR), the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5) was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA). These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that l-thyroxine, 3,3',5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in mollusks contribute

  19. Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System.

    PubMed

    Huang, Wen; Xu, Fei; Qu, Tao; Zhang, Rui; Li, Li; Que, Huayong; Zhang, Guofan

    2015-01-01

    Thyroid hormones (THs) play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS) in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR), the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5) was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA). These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that l-thyroxine, 3,3',5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in mollusks contribute

  20. Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System

    PubMed Central

    Huang, Wen; Xu, Fei; Qu, Tao; Zhang, Rui; Li, Li; Que, Huayong; Zhang, Guofan

    2015-01-01

    Thyroid hormones (THs) play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS) in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR), the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5) was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA). These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that l-thyroxine, 3,3′,5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in mollusks

  1. Transport of steroid hormones, phytoestrogens, and estrogenic activity across a swine lagoon/sprayfield system.

    PubMed

    Yost, Erin E; Meyer, Michael T; Dietze, Julie E; Williams, C Michael; Worley-Davis, Lynn; Lee, Boknam; Kullman, Seth W

    2014-10-01

    The inflow, transformation, and attenuation of natural steroid hormones and phytoestrogens and estrogenic activity were assessed across the lagoon/sprayfield system of a prototypical commercial swine sow operation. Free and conjugated steroid hormones (estrogens, androgens, and progesterone) were detected in urine and feces of sows across reproductive stages, with progesterone being the most abundant steroid hormone. Excreta also contained phytoestrogens indicative of a soy-based diet, particularly, daidzein, genistein, and equol. During storage in barn pits and the anaerobic lagoon, conjugated hormones dissipated, and androgens and progesterone were attenuated. Estrone and equol persisted along the waste disposal route. Following application of lagoon slurry to agricultural soils, all analytes exhibited attenuation within 2 days. However, analytes including estrone, androstenedione, progesterone, and equol remained detectable in soil at 2 months postapplication. Estrogenic activity in the yeast estrogen screen and T47D-KBluc in vitro bioassays generally tracked well with analyte concentrations. Estrone was found to be the greatest contributor to estrogenic activity across all sample types. This investigation encompasses the most comprehensive suite of natural hormone and phytoestrogen analytes examined to date across a livestock lagoon/sprayfield and provides global insight into the fate of these analytes in this widely used waste management system.

  2. Topography and associations of leu-enkephalin and luteinizing hormone-releasing hormone neuronal systems in the human diencephalon.

    PubMed

    Dudás, Bertalan; Merchenthaler, István

    2003-04-01

    Although several studies indicated that leu-enkephalin controls gonadal function, the morphological substrate of this modulation is unknown. To reveal potential interaction sites between leu-enkephalin and LH-releasing hormone (LHRH) in the hypothalamus, the distribution and connections of leu-enkephalin-immunoreactive (IR) and LHRH-IR systems were examined in the human diencephalon using double-label immunohistochemistry. First the leu-enkephalin-IR and LHRH-IR neural elements were mapped, then the maps of the two different neurotransmitter systems were superimposed unveiling the overlapping areas. The putative juxtapositions between leu-enkephalin-IR and LHRH-IR structures were revealed with double label immunocytochemistry. Close contacts were detected in the medial preoptic area and in the infundibulum/median eminence. In these areas, diaminobenzidine-silver-intensified, black leu-enkephalin-IR fibers abutted fusiform, brown, diaminobenzidine-labeled LHRH neurons often forming multiple contacts. Examination of semithin sections of these close associations with the aid of oil immersion revealed no cleft between the contacting LHRH-IR and leu-enkephalin-IR elements. Our findings indicate that the juxtapositions between LHRH-IR and leu enkephalin-IR neurons may be functional synapses forming the morphological substrate of the leu-enkephalin-modulated LHRH secretion in the human diencephalon. Moreover, the wide distribution of leu-enkephalin-IR elements suggests leu-enkephalin control of other diencephalic functions as well.

  3. Neurotransmitter, opiodergic system, steroid-hormone interaction and involvement in the replacement therapy of sexual disorders.

    PubMed

    Frajese, G; Lazzari, R; Magnani, A; Moretti, C; Sforza, V; Nerozzi, D

    1990-11-20

    Dopamine (DA) and serotonin (5-HT) are the neurotransmitters most directly involved in sexual activity. DA plays a stimulatory role while 5-HT has an inhibitory effect. The two monoaminergic systems modulate the secretion of many hormones (GnRH, LH, testosterone, prolactin and endorphins) involved in sexual functional capacity. Furthermore, hormones influence synthesis and storage of brain neurotransmitters. Impotence can often be associated to clinical depression and altered neurotransmitter function. Moreover, stress represents an unbalance between various neurotransmitter systems and can induce impotence especially when disorders of the endorphinic system are present. Replacement therapy is based upon the understanding of these basic concepts. Impotence due to an underlying depressive illness must be treated with dopaminergic antidepressant drugs; while in stressful conditions a good response to the naloxone test is the preliminary criterion to subsequent naltrexone treatment. When a hormonal deficiency has been proved, the hormone replacement therapy is of course highly effective (gonadotropins in hypogonadotropic syndromes, testosterone in aging, etc.). Finally, idiopathic impotence could be treated by DA agonist and/or 5-HT antagonist drugs either alone or better yet in association with psychotherapy.

  4. Neurotransmitter, opiodergic system, steroid-hormone interaction and involvement in the replacement therapy of sexual disorders.

    PubMed

    Frajese, G; Lazzari, R; Magnani, A; Moretti, C; Sforza, V; Nerozzi, D

    1990-11-20

    Dopamine (DA) and serotonin (5-HT) are the neurotransmitters most directly involved in sexual activity. DA plays a stimulatory role while 5-HT has an inhibitory effect. The two monoaminergic systems modulate the secretion of many hormones (GnRH, LH, testosterone, prolactin and endorphins) involved in sexual functional capacity. Furthermore, hormones influence synthesis and storage of brain neurotransmitters. Impotence can often be associated to clinical depression and altered neurotransmitter function. Moreover, stress represents an unbalance between various neurotransmitter systems and can induce impotence especially when disorders of the endorphinic system are present. Replacement therapy is based upon the understanding of these basic concepts. Impotence due to an underlying depressive illness must be treated with dopaminergic antidepressant drugs; while in stressful conditions a good response to the naloxone test is the preliminary criterion to subsequent naltrexone treatment. When a hormonal deficiency has been proved, the hormone replacement therapy is of course highly effective (gonadotropins in hypogonadotropic syndromes, testosterone in aging, etc.). Finally, idiopathic impotence could be treated by DA agonist and/or 5-HT antagonist drugs either alone or better yet in association with psychotherapy. PMID:1979499

  5. Environmental stressors influencing hormones and systems physiology in cattle

    PubMed Central

    2014-01-01

    Environmental stressors undoubtedly influence organismal biology, specifically the endocrine system that, in turn, impact cattle at the systems physiology level. Despite the significant advances in understanding the genetic determinants of the ideal dairy or beef cow, there is a grave lack of understanding of the systems physiology and effects of the environmental stressors that interfere with the endocrine system. This is a major problem because the lack of such knowledge is preventing advances in understanding gene-environment interactions and developing science-based solutions to these challenges. In this review, we synthesize the current knowledge on the nature of the major environmental stressors, such as climate (heat, cold, wind, and humidity), nutrition (feeds, feeding systems, and endocrine disruptors) and management (housing density and conditions, transportation, weaning practices). We summarize the impact of each one of these factors on cattle at the systems level, and provide solutions for the challenges. PMID:24996419

  6. Environmental stressors influencing hormones and systems physiology in cattle.

    PubMed

    Bova, Toree L; Chiavaccini, Ludovica; Cline, Garrett F; Hart, Caitlin G; Matheny, Kelli; Muth, Ashleigh M; Voelz, Benjamin E; Kesler, Darrel; Memili, Erdoğan

    2014-07-04

    Environmental stressors undoubtedly influence organismal biology, specifically the endocrine system that, in turn, impact cattle at the systems physiology level. Despite the significant advances in understanding the genetic determinants of the ideal dairy or beef cow, there is a grave lack of understanding of the systems physiology and effects of the environmental stressors that interfere with the endocrine system. This is a major problem because the lack of such knowledge is preventing advances in understanding gene-environment interactions and developing science-based solutions to these challenges. In this review, we synthesize the current knowledge on the nature of the major environmental stressors, such as climate (heat, cold, wind, and humidity), nutrition (feeds, feeding systems, and endocrine disruptors) and management (housing density and conditions, transportation, weaning practices). We summarize the impact of each one of these factors on cattle at the systems level, and provide solutions for the challenges.

  7. Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato

    PubMed Central

    Martínez-Medina, Ainhoa; Fernández, Iván; Sánchez-Guzmán, María J.; Jung, Sabine C.; Pascual, Jose A.; Pozo, María J.

    2013-01-01

    Root colonization by selected Trichoderma isolates can activate in the plant a systemic defense response that is effective against a broad-spectrum of plant pathogens. Diverse plant hormones play pivotal roles in the regulation of the defense signaling network that leads to the induction of systemic resistance triggered by beneficial organisms [induced systemic resistance (ISR)]. Among them, jasmonic acid (JA) and ethylene (ET) signaling pathways are generally essential for ISR. However, Trichoderma ISR (TISR) is believed to involve a wider variety of signaling routes, interconnected in a complex network of cross-communicating hormone pathways. Using tomato as a model, an integrative analysis of the main mechanisms involved in the systemic resistance induced by Trichoderma harzianum against the necrotrophic leaf pathogen Botrytis cinerea was performed. Root colonization by T. harzianum rendered the leaves more resistant to B. cinerea independently of major effects on plant nutrition. The analysis of disease development in shoots of tomato mutant lines impaired in the synthesis of the key defense-related hormones JA, ET, salicylic acid (SA), and abscisic acid (ABA), and the peptide prosystemin (PS) evidenced the requirement of intact JA, SA, and ABA signaling pathways for a functional TISR. Expression analysis of several hormone-related marker genes point to the role of priming for enhanced JA-dependent defense responses upon pathogen infection. Together, our results indicate that although TISR induced in tomato against necrotrophs is mainly based on boosted JA-dependent responses, the pathways regulated by the plant hormones SA- and ABA are also required for successful TISR development. PMID:23805146

  8. Technical note: A portable on-chip assay system for absorbance and plasmonic detection of protein hormone in milk.

    PubMed

    Ozhikandathil, Jayan; Badilescu, Simona; Packirisamy, Muthukumaran

    2015-07-01

    This paper reports a portable device and method to extract and detect protein hormone in milk samples. Recombinant protein hormone spiked into milk samples was extracted by solid-phase extraction, and detection was carried out using the plasmonic property of gold nanoislands deposited on a glass substrate. Trace levels of hormone spiked in milk were analyzed by their optical absorbance property using a microfluidic chip. We built a portable assay system using disposable lab-on-chip devices. The proposed method is able to detect spiked recombinant protein hormone in milk at concentrations as low as 5ng/mL.

  9. Interactions between immune, stress-related hormonal and cardiovascular systems following strenuous physical exercise.

    PubMed

    Menicucci, Danilo; Piarulli, Andrea; Mastorci, Francesca; Sebastiani, Laura; Laurino, Marco; Garbella, Erika; Castagnini, Cinzia; Pellegrini, Silvia; Lubrano, Valter; Bernardi, Giulio; Metelli, Maria; Bedini, Remo; L'abbate, Antonio; Pingitore, Alessandro; Gemignani, Angelo

    2013-09-01

    Physical exercise represents a eustress condition that promotes rapid coordinated adjustments in the immune, stress-related hormonal and cardiovascular systems, for maintaining homeostasis in response to increased metabolic demands. Compared to the tight multisystem coordination during exercise, evidence of between-systems cross talk in the early post exercise is still lacking. This study was aimed at identifying possible interactions between multiple systems following strenuous physical exercise (Ironman race) performed by twenty well-trained triathletes. Cardiac hemodynamics, left ventricle systolic and diastolic function and heart rate variability were measured along with plasma concentrations of immune messengers (cytokines and C-reactive protein) and stress-related hormones (catecholamines and cortisol) both 24h before and within 20 min after the race. Observed changes in antiinflammatory pathways, stress-related hormones and cardiovascular function were in line with previous findings; moreover, correlating parameters' changes (post versus pre-race) highlighted a dependence of cardiovascular function on the post-race biohumoral milieu: in particular, individual post-race variations of heart rate and diastolic function were strongly correlated with individual variations of anti-inflammatory cytokines, while individual baroreflex sensitivity changes were linked to IL-8 increase. Multiple correlations between anti-inflammatory cytokines and catecholamines were also found according with the autonomic regulation of immune function. Observed post-race cytokine and hormone levels were presumptively representative of the increases reached at the effort end while the cardiovascular parameters after the race were measured during the cardiovascular recovery; thus, results suggest that sustained strenuous exercise produced a stereotyped cardiovascular early recovery, whose speed could be conditioned by the immune and stress-related hormonal milieu.

  10. Hormone levels

    MedlinePlus

    Blood or urine tests can determine the levels of various hormones in the body. This includes reproductive hormones, thyroid hormones, adrenal hormones, pituitary hormones, and many others. For more information, see: ...

  11. Hormone Health Network

    MedlinePlus

    ... Cuidadores Hormones and Health Journey Through the Endocrine System Endocrine Disrupting Chemicals (EDCs) Endocrine Glands and Types of ... Health Hormones and Health Journey Through the Endocrine System Endocrine Disrupting Chemicals (EDCs) Endocrine Glands and Types of ...

  12. Hormones and Obesity

    MedlinePlus

    ... y Cuidadores Hormones and Health Journey Through the Endocrine System Endocrine Disrupting Chemicals (EDCs) Endocrine Glands and Types ... Women's Health Hormones and Health Journey Through the Endocrine System Endocrine Disrupting Chemicals (EDCs) Endocrine Glands and Types ...

  13. Building a scientific framework for studying hormonal effects on behavior and on the development of the sexually dimorphic nervous system

    EPA Science Inventory

    There has been increasing concern that low-dose exposure to hormonally active chemicals disrupts sexual differentiation of the brain and peripheral nervous system. There also has been active drug development research on the therapeutic potential of hormone therapy on behaviors. T...

  14. Bifurcation analysis on a hybrid systems model of intermittent hormonal therapy for prostate cancer

    NASA Astrophysics Data System (ADS)

    Tanaka, Gouhei; Tsumoto, Kunichika; Tsuji, Shigeki; Aihara, Kazuyuki

    2008-10-01

    Hybrid systems are widely used to model dynamical phenomena that are characterized by interplay between continuous dynamics and discrete events. An example of biomedical application is modeling of disease progression of prostate cancer under intermittent hormonal therapy, where continuous tumor dynamics is switched by interruption and reinstitution of medication. In the present paper, we study a hybrid systems model representing intermittent androgen suppression (IAS) therapy for advanced prostate cancer. Intermittent medication with switching between on-treatment and off-treatment periods is intended to possibly prevent a prostatic tumor from developing into a hormone-refractory state and is anticipated as a possible strategy for delaying or hopefully averting a cancer relapse which most patients undergo as a result of long-term hormonal suppression. Clinical efficacy of IAS therapy for prostate cancer is still under investigation but at least worth considering in terms of reduction of side effects and economic costs during off-treatment periods. In the model of IAS therapy, it depends on some clinically controllable parameters whether a relapse of prostate cancer occurs or not. Therefore, we examine nonlinear dynamics and bifurcation structure of the model by exploiting a numerical method to clarify bifurcation sets in the hybrid system. Our results suggest that adjustment of the normal androgen level in combination with appropriate medication scheduling could enhance the possibility of relapse prevention. Moreover, a two-dimensional piecewise-linear system reduced from the original model highlights the origin of nonlinear phenomena specific to the hybrid system.

  15. Iodotyrosine deiodinase, a novel target of environmental halogenated chemicals for disruption of the thyroid hormone system in mammals.

    PubMed

    Shimizu, Ryo

    2014-01-01

    Many synthetic chemicals have been identified as environmental contaminants with activity to disrupt normal function of the thyroid hormone system. Thyroid hormones play important roles in growth, development, differentiation, and basal metabolic homeostasis, as well as in brain development in human fetus and children, and thyroid dysfunction can have very serious consequences, including mental retardation. Environmental chemicals may affect thyroid hormone action in multiple ways, including reduced thyroid hormone synthesis owing to direct toxicity at the thyroid gland, interaction with thyroid hormone receptors and transporters such as transthyretin, and disturbance of thyroid hormone metabolism (e.g., glucuronidation, sulfation and deiodination). In addition, iodotyrosine deiodinase, which is involved in iodide salvage by catalyzing deiodination of iodinated by-products of thyroid hormone production, was recently identified as a possible new target for disruption of thyroid hormone homeostasis by environmental halogenated chemicals. This topic, after briefly summarizing findings on the thyroid hormone-disrupting action of environmental chemicals in mammals, focuses on the effects of environmental halogenated chemicals on iodotyrosine deiodinase activity. PMID:25177024

  16. The renin-angiotensin-aldosterone system and calcium-regulatory hormones.

    PubMed

    Vaidya, A; Brown, J M; Williams, J S

    2015-09-01

    There is increasing evidence of a clinically relevant interplay between the renin-angiotensin-aldosterone system and calcium-regulatory systems. Classically, the former is considered a key regulator of sodium and volume homeostasis, while the latter is most often associated with skeletal health. However, emerging evidence suggests an overlap in regulatory control. Hyperaldosteronism and hyperparathyroidism represent pathophysiologic conditions that may contribute to or perpetuate each other; aldosterone regulates parathyroid hormone and associates with adverse skeletal complications, and parathyroid hormone regulates aldosterone and associates with adverse cardiovascular complications. As dysregulation in both systems is linked to poor cardiovascular and skeletal health, it is increasingly important to fully characterize how they interact to more precisely understand their impact on human health and potential therapies to modulate these interactions. This review describes the known clinical interactions between these two systems including observational and interventional studies. Specifically, we review studies describing the inhibition of renin activity by calcium and vitamin D, and a potentially bidirectional and stimulatory relationship between aldosterone and parathyroid hormone. Deciphering these relationships might clarify variability in outcomes research, inform the design of future intervention studies and provide insight into the results of prior and ongoing intervention studies. However, before these opportunities can be addressed, more effort must be placed on shifting observational data to the proof of concept phase. This will require reallocation of resources to conduct interventional studies and secure the necessary talent.

  17. Integrated Systems View on Networking by Hormones in Arabidopsis Immunity Reveals Multiple Crosstalk for Cytokinin[W

    PubMed Central

    Naseem, Muhammad; Philippi, Nicole; Hussain, Anwar; Wangorsch, Gaby; Ahmed, Nazeer; Dandekar, Thomas

    2012-01-01

    Phytohormones signal and combine to maintain the physiological equilibrium in the plant. Pathogens enhance host susceptibility by modulating the hormonal balance of the plant cell. Unlike other plant hormones, the detailed role of cytokinin in plant immunity remains to be fully elucidated. Here, extensive data mining, including of pathogenicity factors, host regulatory proteins, enzymes of hormone biosynthesis, and signaling components, established an integrated signaling network of 105 nodes and 163 edges. Dynamic modeling and system analysis identified multiple cytokinin-mediated regulatory interactions in plant disease networks. This includes specific synergism between cytokinin and salicylic acid pathways and previously undiscovered aspects of antagonism between cytokinin and auxin in plant immunity. Predicted interactions and hormonal effects on plant immunity are confirmed in subsequent experiments with Pseudomonas syringae pv tomato DC3000 and Arabidopsis thaliana. Our dynamic simulation is instrumental in predicting system effects of individual components in complex hormone disease networks and synergism or antagonism between pathways. PMID:22643121

  18. [LED LIGHTING AS A FACTOR FOR THE STIMULATION OF THE HORMONE SYSTEM].

    PubMed

    Deynego, V N; Kaptsov, V A

    2015-01-01

    There are considered questions of non-visual effects of blue LED light sources on hormonal systems (cortisol, glucose, insulin) providing the high human performance. In modern conditions hygiene strategy for child and adolescent health strategy was shown to be replaced by a strategy of light stimulation of the hormonal profile. There was performed a systematic analysis of the axis "light stimulus-hypothalamus-pituitary-adrenals-cortisol-glucose-insulin". The elevation of the content of cortisol leads to the increase of the glucose level in the blood and the stimulation of the production of insulin, which can, like excessive consumption of food, give rise to irreversible decline in the number of insulin receptors on the cell surface, and thus--to a steady reduction in the ability of cells to utilize glucose, i.e. to type 2 diabetes or its aggravation.

  19. The immune system in menopause: pros and cons of hormone therapy.

    PubMed

    Ghosh, Mimi; Rodriguez-Garcia, Marta; Wira, Charles R

    2014-07-01

    With aging, a general decline in immune function is observed leading to immune-senescence. Several of these changes are gender specific affecting postmenopausal women. Menopause is a normal part of a woman's lifecycle and consists of a series of body changes that can last from one to ten years. It is known that loss of sex hormones due to aging results in a reduction of immune functions. However, there remains a major gap in our understanding regarding the loss of immune functions particularly in the female reproductive tract (FRT) following menopause and the role of menopausal hormone therapy (MHT) in protecting against immune senescence. The current review presents an overview of changes in the immune system due to aging, focusing on genital tract immunity in menopausal women and the risks and benefits of using MHT. This article is part of a Special Issue entitled 'Menopause'.

  20. Transgenic mice expressing the human growth hormone gene provide a model system to study human growth hormone synthesis and secretion in non-tumor-derived pituitary cells: differential effects of dexamethasone and thyroid hormone.

    PubMed

    Vakili, Hana; Jin, Yan; Nagy, James I; Cattini, Peter A

    2011-10-15

    Growth hormone (GH) is regulated by pituitary and hypothalamic factors as well as peripheral endocrine factors including glucocorticoids and thyroid hormone. Studies on human GH are limited largely to the assessment of plasma levels in endocrine disorders. Thus, insight into the regulation of synthesis versus secretion has come mainly from studies done on non-human GH and/or pituitary tumor cells. However, primate and non-primate GH gene loci have differences in their structure and, by extension, regulation. We generated transgenic (171hGH/CS-TG) mice containing the intact hGH1 gene and locus control region, including sequences required for integration-independent and preferential pituitary expression. Here, we show hGH co-localizes with mouse (m) GH in somatotrophs in situ and in primary pituitary cells. Dexamethasone treatment increased hGH and mGH, as well as GH releasing hormone (GHRH) receptor RNA levels, and hGH release was stimulated by GHRH treatment. By contrast, triiodothyronine decreased or had no effect on hGH and mGH production, respectively, and the negative effect on hGH was also seen in the presence of dexamethasone. Thus, 171hGH/CS-TG mouse pituitary cultures represent a model system to investigate hormonal control of hGH synthesis and secretion.

  1. An ovarian cell microcapsule system simulating follicle structure for providing endogenous female hormones.

    PubMed

    Liu, Cong; Xia, Xiaoping; Miao, Wang; Luan, Xiaolu; Sun, Liangliang; Jin, Yi; Liu, Longxiao

    2013-10-15

    The aim of this study was to create a microcapsule system simulating native follicle structure by introducing microcarrier culture to microencapsulation for providing endogenous female hormones. Granulosa and theca cells of rat follicles were isolated. Granulosa cells were grown on microcarriers and enclosed together with theca cells in alginate-chitosan-alginate microcapsules. The cell viability and female hormone secretion were investigated in vitro. The microcapsules were transplanted to ovariectomized rats and the serum levels of estradiol and progesterone were measured for 60 days. The microencapsulated granulosa cells growing on microcarriers exhibited enhanced viability and promoted secreting ability of estradiol and progesterone compared with those without the microcarriers. Co-microencapsulation of granulosa cells and theca cells markedly elevated estradiol secretion in vitro. Transplantation of co-microencapsulated granulosa cells on microcarriers and theca cells maintained serum estradiol and progesterone at normal levels for 60 days. Microcarrier cell culture has been proved to be an effective method to enhance the viability of granulosa cells in microcapsules. Moreover, the transplantation of microcapsules enclosing granulosa cells on microcarriers and theca cells may be promising to provide endogenous female hormones for menopausal syndrome treatment.

  2. Thyroid Hormones and Antioxidant Systems: Focus on Oxidative Stress in Cardiovascular and Pulmonary Diseases

    PubMed Central

    Mancini, Antonio; Raimondo, Sebastiano; Di Segni, Chantal; Persano, Mariasara; Gadotti, Giovanni; Silvestrini, Andrea; Festa, Roberto; Tiano, Luca; Pontecorvi, Alfredo; Meucci, Elisabetta

    2013-01-01

    In previous works we demonstrated an inverse correlation between plasma Coenzyme Q10 (CoQ10) and thyroid hormones; in fact, CoQ10 levels in hyperthyroid patients were found among the lowest detected in human diseases. On the contrary, CoQ10 is elevated in hypothyroid subjects, also in subclinical conditions, suggesting the usefulness of this index in assessing metabolic status in thyroid disorders. A Low-T3 syndrome is a condition observed in several chronic diseases: it is considered an adaptation mechanism, where there is a reduction in pro-hormone T4 conversion. Low T3-Syndrome is not usually considered to be corrected with replacement therapy. We review the role of thyroid hormones in regulation of antioxidant systems, also presenting data on total antioxidant capacity and Coenzyme Q10. Published studies suggest that oxidative stress could be involved in the clinical course of different heart diseases; our data could support the rationale of replacement therapy in low-T3 conditions. PMID:24351864

  3. Hormone impostors

    SciTech Connect

    Colborn, T.; Dumanoski, D.; Myers, J.P.

    1997-01-01

    This article discusses the accumulating evidence that some synthetic chemicals disrupt hormones in one way or another. Some mimic estrogen and others interfere with other parts of the body`s control or endocrine system such as testosterone and thyroid metabolism. Included are PCBs, dioxins, furans, atrazine, DDT. Several short sidebars highlight areas where there are or have been particular problems.

  4. Hormone-dependent neural plasticity in the juvenile and adult song system: what makes a successful male?

    PubMed

    Gahr, Manfred

    2004-06-01

    The sexual quality of adult song is the result of genetic and epigenetic mechanisms shaping the neural song system throughout life. Genetic brain-intrinsic mechanisms determine the neuron pools that develop into forebrain song control areas independent of gonadal steroid hormones, androgens and estrogens. One fate of these neurons is the potential to express sex steroid receptors, such as androgen and estrogen receptors. Genetic brain-intrinsic mechanisms, too, determine the activity of hypothalamic-pituitary-gonad (HPG) axis, i.e., the working range and responsiveness of HPG axis to produce gonadal hormones. The epigenetic action of gonadal steroid hormones (androgens and estrogens) on determined vocal neurons is required to maintain and increase the pool of determined vocal neurons and to complete the connections of the vocal system, i.e., to make it function motorically. The subsequent influence of environmental information, including both external (socio-sexual and physical) and internal (body physiology) signals, specify the further neural phenotype of vocal areas either through acting on the HPG axis and differential release of gonadal hormones or through non-gonadal hormone systems, both of which have target neurons in the functional vocal system. Despite the clear evidence of hormone dependency of the development of both the adult song phenotype and song system phenotype, their causal relation is complex.

  5. Acute Effect of Manganese on Hypothalamic Luteinizing Hormone Releasing Hormone Secretion in Adult Male Rats: Involvement of Specific Neurotransmitter Systems

    PubMed Central

    Prestifilippo, Juan Pablo; Fernández-Solari, Javier; De Laurentiis, Andrea; Mohn, Claudia Ester; de la Cal, Carolina; Reynoso, Roxana; Dees, W. Les; Rettori, Valeria

    2008-01-01

    Manganese chloride (MnCl2) is capable of stimulating luteinizing hormone releasing hormone (LHRH) secretion in adult male Sprague-Dawley rats through the activation of the hypothalamic nitric oxide/cyclic guanosine monophosphate (cGMP)/protein kinase G pathway. The present study aimed to determine the involvement of specific neurotransmitters involved in this action. Our results indicate that dopamine, but not glutamic acid and prostaglandinds, mediates the MnCl2 stimulated secretion of LHRH from medial basal hypothalami in vitro, as well as increases the activity of nitric oxide synthase. Furthermore, a biphasic response was observed in that gamma aminobutyric acid (GABA) release was also increased, which acts to attenuate the MnCl2 action to stimulate LHRH secretion. Although it is clear that manganese (Mn+2) can acutely induce LHRH secretion in adult males, we suggest that the additional action of MnCl2 to release GABA, a LHRH inhibitor, may ultimately contribute to suppressed reproductive function observed in adult animals following exposure to high chromic levels of Mn+2. PMID:18603625

  6. [Reactivity of the adenylyl cyclase system in rat tissues to biogenic amines and peptide hormones under starvation condition].

    PubMed

    Shpakov, A O; Kuznetsova, L A; Plesneva, S A; Pertseva, M N

    2007-04-01

    Under starvation condition, sensitivity of the adenylyl cyclase system to regulatory action of biogenic amines and peptide hormones in rat tissues are changed. In the myocardium and skeletal muscles, after 2 and 4 days of starvation, the regulatory effects of isoproterenol and relaxin acting via G,-proteins on the adenylyl cyclase activity and the G-protein GTP-binding are significantly increased compared with control. At the same time, regulatory effects ofsomatostatin which are realized via Gi-proteins, on adenylyl cyclase system in the myocardium are decreased. Under prolonged starvation consisting of two consecutive 4-days periods, the effects of hormones acting via Gs-proteins on the adenylyl cyclase activity in muscle tissues are decreased to control value levels. The effects of hormones acting via Gi-proteins are largely reduced. In the brain, intensification of adenylyl cyclase stimulating hormonal effects was late and only observed after a 4-day starvation. Unlike muscle tissues, the increase of adenylyl cyclase stimulating effects in the brain is preserved after two-period starvation. The weakening of adenylyl cyclase inhibiting hormonal signals both in the brain and muscles is observed after a 2-day starvation and then the weakening is intensified. Possible role of glucose level and basal adenylyl cyclase activity in determination of the sensitivity of the adenylyl cyclase system to hormones under study is discussed. It is suggested that one of the key causes of physiological changes in animal organism under starvation involves alteration of hormonal signalling systems sensitivity, in particular that of the adenylyl cyclase system, to hormone regulatory action.

  7. Mechanistic studies of an autonomously pulsing hydrogel/enzyme system for rhythmic hormone delivery.

    PubMed

    Bhalla, Amardeep S; Siegel, Ronald A

    2014-12-28

    Numerous hormones are known to be endogenously secreted in a pulsatile manner. In particular, gonadotropin replacing hormone (GnRH) is released in rhythmic pulses, and disruption of this rhythm is associated with pathologies of reproduction and sexual development. In an effort to develop an implantable, rhythmic delivery system, a scheme has been demonstrated involving a negative feedback instability between a pH-sensitive membrane and enzymes that convert endogenous glucose to hydrogen ion. A bench prototype system based on this scheme was previously shown to produce near rhythmic oscillations in internal pH and in GnRH delivery over a period of one week. In the present work, a systematic study of conditions permitting such oscillations is presented, along with a study of factors causing period of oscillations to increase with time and ultimately cease. Membrane composition, glucose concentration, and surface area of marble (CaCO3), which is incorporated as a reactant, were found to affect the capacity of the system to oscillate, and the pH range over which oscillations occur. Accumulation of gluconate- and Ca2+ in the system over time correlated with lengthening of oscillation period, and possibly with cessation of oscillations. Enzyme degradation may also be a factor. These studies provide the groundwork for future improvements in device design. PMID:25450402

  8. Mechanistic studies of an autonomously pulsing hydrogel/enzyme system for rhythmic hormone delivery.

    PubMed

    Bhalla, Amardeep S; Siegel, Ronald A

    2014-12-28

    Numerous hormones are known to be endogenously secreted in a pulsatile manner. In particular, gonadotropin replacing hormone (GnRH) is released in rhythmic pulses, and disruption of this rhythm is associated with pathologies of reproduction and sexual development. In an effort to develop an implantable, rhythmic delivery system, a scheme has been demonstrated involving a negative feedback instability between a pH-sensitive membrane and enzymes that convert endogenous glucose to hydrogen ion. A bench prototype system based on this scheme was previously shown to produce near rhythmic oscillations in internal pH and in GnRH delivery over a period of one week. In the present work, a systematic study of conditions permitting such oscillations is presented, along with a study of factors causing period of oscillations to increase with time and ultimately cease. Membrane composition, glucose concentration, and surface area of marble (CaCO3), which is incorporated as a reactant, were found to affect the capacity of the system to oscillate, and the pH range over which oscillations occur. Accumulation of gluconate- and Ca2+ in the system over time correlated with lengthening of oscillation period, and possibly with cessation of oscillations. Enzyme degradation may also be a factor. These studies provide the groundwork for future improvements in device design.

  9. Mechanistic Studies of an Autonomously Pulsing Hydrogel/Enzyme System for Rhythmic Hormone Delivery

    PubMed Central

    Bhalla, Amardeep S.; Siegel, Ronald A.

    2014-01-01

    Numerous hormones are known to be endogenously secreted in a pulsatile manner. In particular, gonadotropin replacing hormone (GnRH) is released in rhythmic pulses, and disruption of this rhythm is associated with pathologies of reproduction and sexual development. In an effort to develop an implantable, rhythmic delivery system, a scheme has been demonstrated involving a negative feedback instability between a pH-sensitive membrane and enzymes that convert endogenous glucose to hydrogen ion. A bench prototype system based on this scheme was previously shown to produce near rhythmic oscillations in internal pH and in GnRH delivery over a period of one week. In the present work, a systematic study of conditions permitting such oscillations is presented, along with a study of factors causing period of oscillations to increase with time and ultimately cease. Membrane composition, glucose concentration, and surface area of marble (CaCO3), which is incorporated as a reactant, were found to affect the capacity of the system to oscillate, and the pH range over which oscillations occur. Accumulation of gluconate- and Ca2+ in the system over time correlated with lengthening of oscillation period, and possibly with cessation of oscillations. Enzyme degradation may also be a factor. These studies provide the groundwork for future improvements in device design. PMID:25450402

  10. Thyroid hormone receptor and IGF1/IGFR systems: possible relations in the human heart.

    PubMed

    Sabatino, Laura; Gliozheni, Enri; Molinaro, Sabrina; Bonotti, Alessandra; Azzolina, Sienne; Popoff, Georges; Carpi, Angelo; Iervasi, Giorgio

    2007-09-01

    Thyroid hormone (TH) and insulin growth factor 1 (IGF1) systems both play crucial roles in the regulation of cardiac remodeling and hypertrophy processes. The mediation of this regulation is attributed to specific thyroid hormone receptors (TRs) and to the IGF1 receptor (IGF1R). In humans, two TR genes are expressed in the heart, TRalpha and TRbeta. Each gene generates two isoforms: TRalpha1, TRalpha2 and TRbeta1, TRbeta2. The aim of the present work was to study the local thyroid hormone and IGF1 signaling in human myocardium through the evaluation of the gene expression of TRalpha1, TRalpha2, TRbeta1 and IGF1R among atrial and ventricular biopsies obtained from patients undergoing cardiac surgery. Moreover, we evaluated possible correlations between TR and IGF1/IGF1R systems. Eighteen clinically and biochemically euthyroid patients (aged 68.3+/-3.2years, mean+/-SEM) without overt heart failure (Ejection Fraction (EF), 46.4+/-2.8%; Left Ventricular End Diastolic Diameter (LVEDD), 54.3+/-1.2mm, mean+/-SEM; NYHA I-II) were enrolled in the study: 13 undergoing aorto-coronary bypass and 5 undergoing valve replacement (aortic/mitral valve). The examination of total RNA, using real time PCR (LightCycler Technology) confirmed the expression of specific mRNAs encoding TRalpha1, TRalpha2, TRbeta1 and both IGF1 and IGF1R. We found that the three TR genes are co-expressed in the human atrium and ventricle. The finding of a strong correlation among IGF1R and the three TR genes expressed in the atrium (p<0.001) and among the three TRs in the atrium (p<0.001) suggests the interesting possibility that the two systems, TRs and IGF1R could also be functionally associated. PMID:17560756

  11. Diversification and coevolution of the ghrelin/growth hormone secretagogue receptor system in vertebrates.

    PubMed

    Tine, Mbaye; Kuhl, Heiner; Teske, Peter R; Tschöp, Matthias H; Jastroch, Martin

    2016-04-01

    The gut hormone ghrelin is involved in numerous metabolic functions, such as the stimulation of growth hormone secretion, gastric motility, and food intake. Ghrelin is modified by ghrelin O-acyltransferase (GOAT) or membrane-bound O-acyltransferase domain-containing 4 (MBOAT4) enabling action through the growth hormone secretagogue receptors (GHS-R). During the course of evolution, initially strong ligand/receptor specificities can be disrupted by genomic changes, potentially modifying physiological roles of the ligand/receptor system. Here, we investigated the coevolution of ghrelin, GOAT, and GHS-R in vertebrates. We combined similarity search, conserved synteny analyses, phylogenetic reconstructions, and protein structure comparisons to reconstruct the evolutionary history of the ghrelin system. Ghrelin remained a single-gene locus in all vertebrate species, and accordingly, a single GHS-R isoform was identified in all tetrapods. Similar patterns of the nonsynonymous (dN) and synonymous (dS) ratio (dN/dS) in the vertebrate lineage strongly suggest coevolution of the ghrelin and GHS-R genes, supporting specific functional interactions and common physiological pathways. The selection profiles do not allow confirmation as to whether ghrelin binds specifically to GOAT, but the ghrelin dN/dS patterns are more similar to those of GOAT compared to MBOAT1 and MBOAT2 isoforms. Four GHS-R isoforms were identified in teleost genomes. This diversification of GHS-R resulted from successive rounds of duplications, some of which remained specific to the teleost lineage. Coevolution signals are lost in teleosts, presumably due to the diversification of GHS-R but not the ghrelin gene. The identification of the GHS-R diversity in teleosts provides a molecular basis for comparative studies on ghrelin's physiological roles and regulation, while the comparative sequence and structure analyses will assist translational medicine to determine structure-function relationships of the

  12. Imbalance between thyroid hormones and the dopaminergic system might be central to the pathophysiology of restless legs syndrome: a hypothesis.

    PubMed

    Pereira, Jose Carlos; Pradella-Hallinan, Marcia; Lins Pessoa, Hugo de

    2010-05-01

    Data collected from medical literature indicate that dopaminergic agonists alleviate Restless Legs Syndrome symptoms while dopaminergic agonists antagonists aggravate them. Dopaminergic agonists is a physiological regulator of thyroid-stimulating hormone. Dopaminergic agonists infusion diminishes the levels of thyroid hormones, which have the ability to provoke restlessness, hyperkinetic states, tremors, and insomnia. Conditions associated with higher levels of thyroid hormones, such as pregnancy or hyperthyroidism, have a higher prevalence of Restless Legs Syndrome symptoms. Low iron levels can cause secondary Restless Legs Syndrome or aggravate symptoms of primary disease as well as diminish enzymatic activities that are involved in dopaminergic agonists production and the degradation of thyroid hormones. Moreover, as a result of low iron levels, dopaminergic agonists diminishes and thyroid hormones increase. Iron therapy improves Restless Legs Syndrome symptoms in iron deprived patients. Medical hypothesis. To discuss the theory that thyroid hormones, when not counterbalanced by dopaminergic agonists, may precipitate the signs and symptoms underpinning Restless Legs Syndrome. The main cause of Restless Legs Syndrome might be an imbalance between the dopaminergic agonists system and thyroid hormones. PMID:20535374

  13. Prolactin and growth hormone responses to hypoglycemia in patients with systemic sclerosis and psoriatic arthritis.

    PubMed

    Rovensky, Jozef; Raffayova, Helena; Imrich, Richard; Radikova, Zofia; Penesova, Adela; Macho, Ladislav; Lukac, Jozef; Matucci-Cerinic, Marco; Vigas, Milan

    2006-06-01

    This study compared prolactin (PRL) and growth hormone (GH) responses to hypoglycemia in premenopausal females with systemic sclerosis (SSc) and psoriatic arthritis (PsA) with those in matched healthy controls. No differences were found in glucose and GH responses to hypoglycemia in both groups of patients compared to controls. SSc patients had lower PRL response (P < 0.05) to hypoglycemia compared to controls. PRL response tended to be lower also in PsA patients, however the difference did not reach level of statistical significance (P = 0.11). The present study showed decreased PRL response to hypoglycemia in premenopausal females with SSc. PMID:16855141

  14. Was sind hormone?

    NASA Astrophysics Data System (ADS)

    Karlson, P.

    1982-01-01

    Historically, the meaning of the term hormone has changed during the last decades. Morphological studies of secreting cells lead Feyrter to the concept of paracrine action of some hormones. While endocrine regulators are blood-borne, paracrine messengers reach their target cells through the diffusion in the intracellular space. Though it is rather difficult to draw a line between true hormones and hormone-like substances, valid definitions for endocrine and paracrine regulatory systems can be given. The term ‘hormonal control’ should be restricted to endocrine systems. For effectors acting by paracrine mechanisms, the term paramone is proposed in this article.

  15. Regulation of synaptic functions in central nervous system by endocrine hormones and the maintenance of energy homoeostasis.

    PubMed

    Pang, Zhiping P; Han, Weiping

    2012-10-01

    Energy homoeostasis, a co-ordinated balance of food intake and energy expenditure, is regulated by the CNS (central nervous system). The past decade has witnessed significant advances in our understanding of metabolic processes and brain circuitry which responds to a broad range of neural, nutrient and hormonal signals. Accumulating evidence demonstrates altered synaptic plasticity in the CNS in response to hormone signals. Moreover, emerging observations suggest that synaptic plasticity underlies all brain functions, including the physiological regulation of energy homoeostasis, and that impaired synaptic constellation and plasticity may lead to pathological development and conditions. Here, we summarize the current knowledge on the regulation of postsynaptic receptors such as AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid), NMDA (N-methyl-D-aspartate) and GABA (γ-aminobutyric acid) receptors, and the presynaptic components by hormone signals. A detailed understanding of the neurobiological mechanisms by which hormones regulate energy homoeostasis may lead to novel strategies in treating metabolic disorders.

  16. [The Integration and Regulation of Hormone-Sensitive Lipase in Reproductive System].

    PubMed

    Wang, Wei-yi; Xu, Guo-Heng

    2015-02-01

    Hormone-sensitive lipase (HSL) has long been considered as a classical rate-limiting enzyme during lipolysis since it was first described in 1960s. HSL is regulated mainly by catecholamine, including adrenalin. Studies in recent years indicated that the substrates for HSL are not only triglycerides, but also diacylglycerol with the catalytic activity is ten times that of triglycerides, glycerol esters and cholesterol esters, which overthrow the opinion that HSL is specific to triglyceride. The scientists have generated HSL gene knockout mice and confirmed HSL is widely located in the reproductive system, which indicates that HSL may play an important role in the regulation of physiological and pathophysiological process in the reproductive system. Here, we will focus on the features of the HSL gene, mRNA and its protein, and summarize the HSL functions in the reproductive system.

  17. Effect of different culture systems and 3, 5, 3'-triiodothyronine/follicle-stimulating hormone on preantral follicle development in mice.

    PubMed

    Zhang, Cheng; Wang, Xiaoxia; Wang, Zhengpin; Niu, Wanbao; Zhu, Baochang; Xia, Guoliang

    2013-01-01

    The mechanical method to isolate preantral follicle has been reported for many years. However, the culture systems in vitro are still unstable. The aim of this study was to analyze the effect of the culture system of mice preantral follicles on the follicular development in vitro. The results showed that the 96-well plate system was the most effective method for mice follicle development in vitro (volume change: 51.71%; survival rate: 89%, at day 4). Follicle-stimulating hormone (FSH) and Thyroid hormone (TH) are important for normal follicular development and dysregulation of hormones are related with impaired follicular development. To determine the effect of hormone on preantral follicular development, we cultured follicle with hormones in the 96-well plate culture system and found that FSH significantly increased preantral follicular growth on day 4. The FSH-induced growth action was markedly enhanced by T₃ although T₃ was ineffective alone. We also demonstrated by QRT-PCR that T₃ significantly enhanced FSH-induced up-regulation of Xiap mRNA level. Meanwhile, Bad, cell death inducer, was markedly down-regulated by the combination of hormones. Moreover, QRT-PCR results were also consistent with protein regulation which detected by Western Blotting analysis. Taken together, the findings of the present study demonstrate that 96-well plate system is an effective method for preantral follicle development in vitro. Moreover, these results provide insights on the role of thyroid hormone in increasing FSH-induced preantral follicular development, which mediated by up-regulating Xiap and down-regulating Bad.

  18. The flowering hormone florigen functions as a general systemic regulator of growth and termination.

    PubMed

    Shalit, Akiva; Rozman, Alexander; Goldshmidt, Alexander; Alvarez, John P; Bowman, John L; Eshed, Yuval; Lifschitz, Eliezer

    2009-05-19

    The florigen paradigm implies a universal flowering-inducing hormone that is common to all flowering plants. Recent work identified FT orthologues as originators of florigen and their polypeptides as the likely systemic agent. However, the developmental processes targeted by florigen remained unknown. Here we identify local balances between SINGLE FLOWER TRUSS (SFT), the tomato precursor of florigen, and SELF-PRUNING (SP), a potent SFT-dependent SFT inhibitor as prime targets of mobile florigen. The graft-transmissible impacts of florigen on organ-specific traits in perennial tomato show that in addition to import by shoot apical meristems, florigen is imported by organs in which SFT is already expressed. By modulating local SFT/SP balances, florigen confers differential flowering responses of primary and secondary apical meristems, regulates the reiterative growth and termination cycles typical of perennial plants, accelerates leaf maturation, and influences the complexity of compound leaves, the growth of stems and the formation of abscission zones. Florigen is thus established as a plant protein functioning as a general growth hormone. Developmental interactions and a phylogenetic analysis suggest that the SFT/SP regulatory hierarchy is a recent evolutionary innovation unique to flowering plants.

  19. Protective actions of melatonin and growth hormone on the aged cardiovascular system.

    PubMed

    Paredes, Sergio D; Forman, Katherine A; García, Cruz; Vara, Elena; Escames, Germaine; Tresguerres, Jesús A F

    2014-05-01

    Epidemiological studies indicate that certain aspects of lifestyle and genetics act as risk factors for a variety of cardiovascular disorders, including coronary disease, hypertension, heart failure and stroke. Aging, however, appears to be the major contributor for morbidity and mortality of the impaired cardiovascular system. Growth hormone (GH) and melatonin seem to prevent cardiac aging, as they contribute to the recovery of several physiological parameters affected by age. These hormones exhibit antioxidant properties and decrease oxidative stress and apoptosis. This paper summarizes a set of studies related to the potential role that therapy with GH and melatonin may play in the protection of the altered cardiac function due to aging, with a focus on experiments performed in our laboratory using the senescence-accelerated mouse as an aging model. In general, we observed significantly increased inflammation, oxidative stress and apoptosis markers in hearts from senescence-accelerated prone 10-month-old animals compared to 2-month-old controls, while anti-inflammatory and antiapoptotic markers as well as endothelial nitric oxide synthase were decreased. Senescence-accelerated resistant animals showed no significant changes with age. GH or melatonin treatment prevented the age-dependent cardiac alterations observed in the senescence-accelerated prone group. Combined administration of GH plus melatonin reduced the age-related changes in senescence-accelerated prone hearts in an additive fashion that was different to that displayed when administered alone. GH and melatonin may be potential agents for counteracting oxidative stress, apoptosis and inflammation in the aging heart.

  20. Changed sensitivity of adenylate cyclase signaling system to biogenic amines and peptide hormones in tissues of starving rats.

    PubMed

    Shpakov, A O; Kuznetsova, L A; Plesneva, S A; Pertseva, M N

    2007-07-01

    In the myocardium and skeletal muscles of rats deprived of food for 2 days, basal activity of adenylate cyclase decreased, while the sensitivity of adenylate cyclase signaling system to the stimulating effects of non-hormonal agents (guanine nucleotides and NaF) and beta-agonist isoproterinol modulating adenylate cyclase through stimulating G proteins increased. In starving organism, the regulatory effects of hormones realizing their effects through inhibitory G proteins (somatostatin in the myocardium and bromocryptin in the brain) weakened. Their inhibitory effects on forskolin-stimulated adenylate cyclase activity and stimulating effects on binding of guanosine triphosphate decreased. In the brain of starving rats, the differences in the sensitivity of the adenylate cyclase signaling system to hormones and nonhormonal agents were less pronounced than in the muscle tissues, which attested to tissue-specific changes in the functional state of this system under conditions of 2-day starvation.

  1. Growth hormone production and role in the reproductive system of female chicken.

    PubMed

    Hrabia, Anna

    2015-09-01

    The expression and role of growth hormone (GH) in the reproductive system of mammals is rather well established. In birds the limited information thus far available suggests that GH is an endocrine or paracrine/autocrine regulator of ovarian and oviductal functions too. GH and its receptors are expressed in all compartments of the ovary and oviduct and change accordingly to physiological state. The intra-ovarian role of GH likely includes the regulation of steroidogenesis, cell proliferation and apoptosis, the modulation of LH action and the synthesis of IGFs (insulin-like growth factors). In the oviduct, GH is also involved in the regulation of oviduct-specific protein expression. The present study provides a review of current knowledge on the presence and action of GH in the female reproduction, in which it is likely that act in endocrine, autocrine or paracrine mechanisms.

  2. Neural systems and hormones mediating attraction to infant and child faces

    PubMed Central

    Luo, Lizhu; Ma, Xiaole; Zheng, Xiaoxiao; Zhao, Weihua; Xu, Lei; Becker, Benjamin; Kendrick, Keith M.

    2015-01-01

    We find infant faces highly attractive as a result of specific features which Konrad Lorenz termed “Kindchenschema” or “baby schema,” and this is considered to be an important adaptive trait for promoting protective and caregiving behaviors in adults, thereby increasing the chances of infant survival. This review first examines the behavioral support for this effect and physical and behavioral factors which can influence it. It then provides details of the increasing number of neuroimaging and electrophysiological studies investigating the neural circuitry underlying this baby schema effect in parents and non-parents of both sexes. Next it considers potential hormonal contributions to the baby schema effect in both sexes and the neural effects associated with reduced responses to infant cues in post-partum depression, anxiety and drug taking. Overall the findings reviewed reveal a very extensive neural circuitry involved in our perception of cuteness in infant faces, with enhanced activation compared to adult faces being found in brain regions involved in face perception, attention, emotion, empathy, memory, reward and attachment, theory of mind and also control of motor responses. Both mothers and fathers also show evidence for enhanced responses in these same neural systems when viewing their own as opposed to another child. Furthermore, responses to infant cues in many of these neural systems are reduced in mothers with post-partum depression or anxiety or have taken addictive drugs throughout pregnancy. In general reproductively active women tend to rate infant faces as cuter than men, which may reflect both heightened attention to relevant cues and a stronger activation in their brain reward circuitry. Perception of infant cuteness may also be influenced by reproductive hormones with the hypothalamic neuropeptide oxytocin being most strongly associated to date with increased attention and attraction to infant cues in both sexes. PMID:26236256

  3. Neural systems and hormones mediating attraction to infant and child faces.

    PubMed

    Luo, Lizhu; Ma, Xiaole; Zheng, Xiaoxiao; Zhao, Weihua; Xu, Lei; Becker, Benjamin; Kendrick, Keith M

    2015-01-01

    We find infant faces highly attractive as a result of specific features which Konrad Lorenz termed "Kindchenschema" or "baby schema," and this is considered to be an important adaptive trait for promoting protective and caregiving behaviors in adults, thereby increasing the chances of infant survival. This review first examines the behavioral support for this effect and physical and behavioral factors which can influence it. It then provides details of the increasing number of neuroimaging and electrophysiological studies investigating the neural circuitry underlying this baby schema effect in parents and non-parents of both sexes. Next it considers potential hormonal contributions to the baby schema effect in both sexes and the neural effects associated with reduced responses to infant cues in post-partum depression, anxiety and drug taking. Overall the findings reviewed reveal a very extensive neural circuitry involved in our perception of cuteness in infant faces, with enhanced activation compared to adult faces being found in brain regions involved in face perception, attention, emotion, empathy, memory, reward and attachment, theory of mind and also control of motor responses. Both mothers and fathers also show evidence for enhanced responses in these same neural systems when viewing their own as opposed to another child. Furthermore, responses to infant cues in many of these neural systems are reduced in mothers with post-partum depression or anxiety or have taken addictive drugs throughout pregnancy. In general reproductively active women tend to rate infant faces as cuter than men, which may reflect both heightened attention to relevant cues and a stronger activation in their brain reward circuitry. Perception of infant cuteness may also be influenced by reproductive hormones with the hypothalamic neuropeptide oxytocin being most strongly associated to date with increased attention and attraction to infant cues in both sexes. PMID:26236256

  4. Cloning of the crustacean hyperglycemic hormone and evidence for molt-inhibiting hormone within the central nervous system of the blue crab Portunus pelagicus.

    PubMed

    Stewart, Michael J; Stewart, Praphaporn; Sroyraya, Morakot; Soonklang, Nantawan; Cummins, Scott F; Hanna, Peter J; Duan, Wei; Sobhon, Prasert

    2013-02-01

    The crustacean X-organ-sinus gland (XO-SG) complex controls molt-inhibiting hormone (MIH) production, although extra expression sites for MIH have been postulated. Therefore, to explore the expression of MIH and distinguish between the crustacean hyperglycemic hormone (CHH) superfamily, and MIH immunoreactive sites (ir) in the central nervous system (CNS), we cloned a CHH gene sequence for the crab Portunus pelagicus (Ppel-CHH), and compared it with crab CHH-type I and II peptides. Employing multiple sequence alignments and phylogenic analysis, the mature Ppel-CHH peptide exhibited residues common to both CHH-type I and II peptides, and a high degree of identity to the type-I group, but little homology between Ppel-CHH and Ppel-MIH (a type II peptide). This sequence identification then allowed for the use of MIH antisera to further confirm the identity and existence of a MIH-ir 9kDa protein in all neural organs tested by Western blotting, and through immunohistochemistry, MIH-ir in the XO, optic nerve, neuronal cluster 17 of the supraesophageal ganglion, the ventral nerve cord, and cell cluster 22 of the thoracic ganglion. The presence of MIH protein within such a diversity of sites in the CNS, and external to the XO-SG, raises new questions concerning the established mode of MIH action.

  5. [Osteoporosis in Rheumatoid Arthritis: role of the vitamin D/parathyroid hormone system].

    PubMed

    Bellan, Mattia; Pirisi, Mario; Sainaghi, Pier Paolo

    2015-01-01

    Osteoporosis is a well-established extra-articular feature of Rheumatoid Arthritis (RA). Systemic inflammation seems to play a crucial role in causing an alteration of multiple homeostatic systems implied in bone health, such as the RANK/RANKL/Osteoprotegerin and Wnt/β catenin pathways; several other causal factors have been called into question, including the chronic use of corticosteroids. Since vitamin D exerts important immune-regulatory roles, it has been claimed that derangement of the vitamin D/parathyroid hormone (PTH) system, a well-known determinant of bone health, may play a pathogenic role in autoimmunity; animal models and clinical data support this hypothesis. Furthermore, RA patients seem to be relatively refractory to vitamin D-induced PTH suppression. Therefore, the link between RA and osteoporosis might in part be due to alterations in the vitamin D/PTH system. A better understanding of the pathophysiology of this system may be crucial to prevent and cure osteoporosis in patients with inflammatory/autoimmune diseases. A major clinical correlate of the strict cooperation and interdependence between vitamin D and PTH is that correction of the vitamin D deficiency, at least in autoimmune diseases, should be targeted to PTH suppression.

  6. Changes in the ghrelin hormone pathway maybe part of an unusual gastric system in monotremes.

    PubMed

    He, Chuan; Tsend-Ayush, Enkhjargal; Myers, Mark A; Forbes, Briony E; Grützner, Frank

    2013-09-15

    Ghrelin is a growth hormone (GH)-releasing and appetite-regulating peptide predominately released from the stomach. Ghrelin is evolutionarily highly conserved and known to have a wide range of functions including the regulation of metabolism by maintaining an insulin-glucose balance. The peptide is produced as a single proprotein, which is later proteolytically cleaved. Ghrelin exerts its biological function after O-n-octanoylation at residue serine 3, which is catalyzed by ghrelin O-acyl transferase (GOAT) and allows binding to the growth hormone secretagogue receptor (GHS-R 1a). Genes involved in the ghrelin pathway have been identified in a broad range of vertebrate species, however, little is known about this pathway in the basal mammalian lineage of monotremes (platypus and echidna). Monotremes are particularly interesting in this context, as they have undergone massive changes in stomach anatomy and physiology, accompanied by a striking loss of genes involved in gastric function. In this study, we investigated genes in the ghrelin pathway in monotremes. Using degenerate PCR, database searches and synteny analysis we found that genes encoding ghrelin and GOAT are missing in the platypus genome, whilst, as has been reported in other species, the GHSR is present and expressed in brain, pancreas, kidney, intestine, heart and stomach. This is the first report suggesting the loss of ghrelin in a mammal. The loss of this gene may be related to changes to the platypus digestive system and raises questions about the control of blood glucose levels and insulin response in monotreme mammals. In addition, the conservation of the ghrelin receptor gene in platypus indicates that another ligand(s) maybe acting via this receptor in monotremes.

  7. Effects of hypergravity exposure on the developing central nervous system: possible involvement of thyroid hormone

    NASA Technical Reports Server (NTRS)

    Sajdel-Sulkowska, E. M.; Li, G. H.; Ronca, A. E.; Baer, L. A.; Sulkowski, G. M.; Koibuchi, N.; Wade, C. E.

    2001-01-01

    The present study examined the effects of hypergravity exposure on the developing brain and specifically explored the possibility that these effects are mediated by altered thyroid status. Thirty-four timed-pregnant Sprague-Dawley rats were exposed to continuous centrifugation at 1.5 G (HG) from gestational Day 11 until one of three key developmental points: postnatal Day (P) 6, P15, or P21 (10 pups/dam: 5 males/5 females). During the 32-day centrifugation, stationary controls (SC, n = 25 dams) were housed in the same room as HG animals. Neonatal body, forebrain, and cerebellum mass and neonatal and maternal thyroid status were assessed at each time point. The body mass of centrifuged neonates was comparatively lower at each time point. The mass of the forebrain and the mass of the cerebellum were maximally reduced in hypergravity-exposed neonates at P6 by 15.9% and 25.6%, respectively. Analysis of neonatal plasma suggested a transient hypothyroid status, as indicated by increased thyroid stimulating hormone (TSH) level (38.6%) at P6, while maternal plasma TSH levels were maximally elevated at P15 (38.9%). Neither neonatal nor maternal plasma TH levels were altered, suggesting a moderate hypothyroid condition. Thus, continuous exposure of the developing rats to hypergravity during the embryonic and neonatal periods has a highly significant effect on the developing forebrain and cerebellum and neonatal thyroid status (P < 0.05, Bonferroni corrected). These data are consistent with the hypothesized role of the thyroid hormone in mediating the effect of hypergravity in the developing central nervous system and begin to define the role of TH in the overall response of the developing organism to altered gravity.

  8. Changes in the ghrelin hormone pathway maybe part of an unusual gastric system in monotremes.

    PubMed

    He, Chuan; Tsend-Ayush, Enkhjargal; Myers, Mark A; Forbes, Briony E; Grützner, Frank

    2013-09-15

    Ghrelin is a growth hormone (GH)-releasing and appetite-regulating peptide predominately released from the stomach. Ghrelin is evolutionarily highly conserved and known to have a wide range of functions including the regulation of metabolism by maintaining an insulin-glucose balance. The peptide is produced as a single proprotein, which is later proteolytically cleaved. Ghrelin exerts its biological function after O-n-octanoylation at residue serine 3, which is catalyzed by ghrelin O-acyl transferase (GOAT) and allows binding to the growth hormone secretagogue receptor (GHS-R 1a). Genes involved in the ghrelin pathway have been identified in a broad range of vertebrate species, however, little is known about this pathway in the basal mammalian lineage of monotremes (platypus and echidna). Monotremes are particularly interesting in this context, as they have undergone massive changes in stomach anatomy and physiology, accompanied by a striking loss of genes involved in gastric function. In this study, we investigated genes in the ghrelin pathway in monotremes. Using degenerate PCR, database searches and synteny analysis we found that genes encoding ghrelin and GOAT are missing in the platypus genome, whilst, as has been reported in other species, the GHSR is present and expressed in brain, pancreas, kidney, intestine, heart and stomach. This is the first report suggesting the loss of ghrelin in a mammal. The loss of this gene may be related to changes to the platypus digestive system and raises questions about the control of blood glucose levels and insulin response in monotreme mammals. In addition, the conservation of the ghrelin receptor gene in platypus indicates that another ligand(s) maybe acting via this receptor in monotremes. PMID:23770219

  9. Systemic above- and belowground cross talk: hormone-based responses triggered by Heterodera schachtii and shoot herbivores in Arabidopsis thaliana

    PubMed Central

    Kammerhofer, Nina; Egger, Barbara; Dobrev, Petre; Vankova, Radomira; Hofmann, Julia; Schausberger, Peter; Wieczorek, Krzysztof

    2015-01-01

    Above- and belowground plant parts are simultaneously attacked by different pests and pathogens. The host mediates these interactions and physiologically reacts, e.g. with local and systemic alterations of endogenous hormone levels coupled with coordinated transcriptional changes. This in turn affects attractiveness and susceptibility of the plant to subsequent attackers. Here, the model plant Arabidopsis thaliana is used to study stress hormone-based systemic responses triggered by simultaneous root parasitism by the cyst nematode Heterodera schachtii and shoot herbivory by the thrips Frankliniella occidentalis and the spider mite Tetranychus urticae. First, HPLC/MS and quantitative reverse transcriptase PCR are used to show that nematode parasitism strongly affects stress hormone levels and expression of hormone marker genes in shoots. Previous nematode infection is then demonstrated to affect the behavioural and life history performance of both arthropods. While thrips explicitly avoid nematode-infected plants, spider mites prefer them. In addition, the life history performance of T. urticae is significantly enhanced by nematode infection. Finally, systemic changes triggered by shoot-feeding F. occidentalis but not T. urticae are shown to make the roots more attractive for H. schachtii. This work emphasises the importance of above- and belowground signalling and contributes to a better understanding of plant systemic defence mechanisms against plant-parasitic nematodes. PMID:26324462

  10. Systemic above- and belowground cross talk: hormone-based responses triggered by Heterodera schachtii and shoot herbivores in Arabidopsis thaliana.

    PubMed

    Kammerhofer, Nina; Egger, Barbara; Dobrev, Petre; Vankova, Radomira; Hofmann, Julia; Schausberger, Peter; Wieczorek, Krzysztof

    2015-12-01

    Above- and belowground plant parts are simultaneously attacked by different pests and pathogens. The host mediates these interactions and physiologically reacts, e.g. with local and systemic alterations of endogenous hormone levels coupled with coordinated transcriptional changes. This in turn affects attractiveness and susceptibility of the plant to subsequent attackers. Here, the model plant Arabidopsis thaliana is used to study stress hormone-based systemic responses triggered by simultaneous root parasitism by the cyst nematode Heterodera schachtii and shoot herbivory by the thrips Frankliniella occidentalis and the spider mite Tetranychus urticae. First, HPLC/MS and quantitative reverse transcriptase PCR are used to show that nematode parasitism strongly affects stress hormone levels and expression of hormone marker genes in shoots. Previous nematode infection is then demonstrated to affect the behavioural and life history performance of both arthropods. While thrips explicitly avoid nematode-infected plants, spider mites prefer them. In addition, the life history performance of T. urticae is significantly enhanced by nematode infection. Finally, systemic changes triggered by shoot-feeding F. occidentalis but not T. urticae are shown to make the roots more attractive for H. schachtii. This work emphasises the importance of above- and belowground signalling and contributes to a better understanding of plant systemic defence mechanisms against plant-parasitic nematodes.

  11. Combination of a long-acting delivery system for luteinizing hormone-releasing hormone agonist with Novantrone chemotherapy: increased efficacy in the rat prostate cancer model.

    PubMed Central

    Schally, A V; Kook, A I; Monje, E; Redding, T W; Paz-Bouza, J I

    1986-01-01

    The combination of hormonal treatment based on a long-acting delivery system for the agonist [6-D-tryptophan]luteinizing hormone-releasing hormone ([D-Trp6]-LH-RH) with the chemotherapeutic agent Novantrone (mitoxantrone dihydrochloride) was studied in the Dunning R3327H rat prostate cancer model. Microcapsules of [D-Trp6]-LH-RH formulated from poly(DL-lactide-co-glycolide) and calculated to release a controlled dose of 25 micrograms/day were injected intramuscularly once a month. Novantrone (0.25 mg/kg) was injected intravenously once every 3 weeks. Three separate experiments were carried out. When the therapy was started 45 days after transplantation and continued for 70 days, tumor volume in the presence of the microcapsules (966 +/- 219 mm3) or Novantrone (3606 +/- 785 mm3) given alone was significantly decreased compared to controls (14,476 +/- 3045 mm3). However, the combination of microcapsules and Novantrone caused a greater inhibition of tumor growth (189 +/- 31 mm3) than the single agents. Similar effects were seen when the percent increase in tumor volume was examined. Tumor volume increased 10,527 +/- 1803% for the control group. The inhibition of growth caused by the [D-Trp6]LH-RH microcapsules alone (672 +/- 153% increase in volume) was again greater than that caused by Novantrone alone (2722 +/- 421% increase). The combination of the two agents was again the most effective, resulting in an increase in tumor volume of only 105 +/- 29%. Control tumors weighed 30.0 +/- 6.5 g. Tumor weights were much less in the groups treated with either microcapsules (3.28 +/- 0.69 g) or Novantrone (19.53 +/- 3.3 g) alone. The lowest tumor weights after 70 days of treatment were obtained in the group that received the combination of [D-Trp6]LH-RH microcapsules and Novantrone (1.02 +/- 0.2 g). Testes and ventral prostate weights were significantly diminished by the administration of microcapsules of [D-Trp6]LH-RH alone or in combination with Novantrone. In both of these

  12. Melanin-concentrating hormone: unique peptide neuronal systems in the rat brain and pituitary gland

    SciTech Connect

    Zamir, N.; Skofitsch, G.; Bannon, M.J.; Jacobowitz, D.M.

    1986-03-01

    A unique neuronal system was detected in the rat central nervous system by immunohistochemistry and radioimmunoassay with antibodies to salmon melanin-concentrating hormone (MCH). MCH-like immunoreactive (MCH-LI) cell bodies were confined to the hypothalamus. MCH-LI fibers were found throughout the brain but were most prevalent in hypothalamus, mesencephalon, and pons-medulla regions. High concentrations of MCH-LI were measured in the hypothalamic medial forebrain bundle (MFB), posterior hypothalamic nucleus, and nucleus of the diagonal band. Reversed-phase high-performance liquid chromatography of MFB extracts from rat brain indicate that MCH-like peptide from the rat has a different retention time than that of the salmon MCH. An osmotic stimuls (2% NaCl as drinking water for 120 hr) caused a marked increase in MCH-LI concentrations in the lateral hypothalamus and neurointermediate lobe. The present studies establish the presence of MCH-like peptide in the rat brain. The MCH-LI neuronal system is well situated to coordinate complex functions such as regulation of water intake.

  13. Inertia of endocrine systems due to hormone binding to circulatory proteins.

    PubMed

    Kurbel, Sven; Zucić, Damir; Kurbel, Beatrica; Gulam, Danijela; Gmajnić, Rudika; Krajina, Zdenko

    2003-03-01

    It is often presumed that the main role of hormone binding to albumins and binding proteins (BPs) is to reduce oscillating levels of free hormone molecules and to transport steroid hormones. This paper is an attempt to define possible consequences of hormone molecules binding to carrier proteins in circulation. Binding to albumins and BPs prevents exact and quick control of hormone actions. Hormones without significant protein binding govern vital and fast acting regulatory mechanisms (blood glucose or calcium) in which any added inertia might be dangerous. In the presented model, the added inertia for a partially bound hormone (H) is defined as: H(bound)/H(free). Values, calculated from the reported data, range from 0.4 for GH to more than 2000 for T(4). In comparison to albumins, high-affinity BPs make more stable reserve that would cover periods of low or no hormone secretion. At the same time, hormone molecules are taken away from the blood level control and thus might be considered sequestrated. For hormones without protein binding, the well-perfused areas of the body, or the areas with increased capillary permeability, would be more exposed, making an uneven distribution among target tissues. For the hormone that binds blood proteins, places of secretion and tissue perfusion become unimportant, since the hormone is being liberated anywhere in the circulation (i.e., for strongly bound IGFs, IGF binding proteins do not just stabilize proinsulin actions of IGF-1, but also make all parts of body to be under the same exposure to liberated IGFs, an important feature to promote a symmetrical bone growth). Estrogens are known to stimulate liver secretion of different BPs. A possible explanation is that in the follicular phase there is a small initial mass of granulosa cells, and it takes time to saturate free estrogen carriers, before the normal free hormone level can be reached and FSH secretion inhibited. Less inert peptide inhibin might suppress FSH before free

  14. Characterization of thyrotropin-releasing hormone in the central nervous system of African lungfish.

    PubMed

    Kreider, M S; Winokur, A; Manaker, S; Pack, A I; Fishman, A P

    1988-10-01

    Central administration of thyrotropin-releasing hormone (TRH) produces potent effects on various physiological parameters, such as arousal, respiration, and cardiovascular function, in several species. As part of an investigation into the evolution of this tripeptide as a central modulator of these parameters, we examined its distribution in the central nervous system of the African lungfish (Protopterus). Lungfish brains were dissected into three regions: telencephalon, diencephalon, and medulla. Each region was assayed for TRH by radioimmunoassay and for norepinephrine, dopamine, and serotonin by HPLC/electrochemical methods. TRH immunoreactivity (IR-TRH) was present in all regions of lungfish brain examined. The telencephalon contained the highest concentrations of TRH, the diencephalon also contained a high concentration of TRH, and the medulla contained a markedly lower concentration. Similar concentration gradients (telencephalon greater than diencephalon greater than medulla) were observed for norepinephrine, dopamine, and serotonin. The identity of IR-TRH as authentic TRH was confirmed by elution profiles on HPLC. The results of this investigation demonstrated that TRH and the monoamine neurotransmitters are present in high concentrations in various regions of lungfish brain. The lungfish may represent a promising model for further studies of the interactions of TRH with these neurotransmitter systems.

  15. Periplasmic production via the pET expression system of soluble, bioactive human growth hormone.

    PubMed

    Sockolosky, Jonathan T; Szoka, Francis C

    2013-02-01

    A pET based expression system for the production of recombinant human growth hormone (hGH) directed to the Escherichia coli periplasmic space was developed. The pET22b plasmid was used as a template for creating vectors that encode hGH fused to either a pelB or ompA secretion signal under control of the strong bacteriophage T7 promoter. The pelB- and ompA-hGH constructs expressed in BL21 (λDE3)-RIPL E. coli are secreted into the periplasm which facilitates isolation of soluble hGH by selective disruption of the outer membrane. A carboxy-terminal poly-histidine tag enabled purification by Ni(2+) affinity chromatography with an average yield of 1.4 mg/L culture of purified hGH, independent of secretion signal. Purified pelB- and ompA-hGH are monomeric based on size exclusion chromatography with an intact mass corresponding to mature hGH indicating proper cleavage of the signal peptide and folding in the periplasm. Both pelB- and ompA-hGH bind the hGH receptor with high affinity and potently stimulate Nb2 cell growth. These results demonstrate that the pET expression system is suitable for the rapid and simple isolation of bioactive, soluble hGH from E. coli.

  16. Distinct expression patterns of glycoprotein hormone subunits in the lophotrochozoan Aplysia: implications for the evolution of neuroendocrine systems in animals.

    PubMed

    Heyland, Andreas; Plachetzki, David; Donelly, Evonne; Gunaratne, Dinuka; Bobkova, Yelena; Jacobson, John; Kohn, Andrea B; Moroz, Leonid L

    2012-11-01

    Glycoprotein hormones (GPHs) comprise a group of signaling molecules critical for major metabolic and reproductive functions. In vertebrates they include chorionic gonadotropin, LH, FSH, and TSH. The active hormones are characterized by heterodimerization between a common α and hormone-specific β subunit, which activate leucine-rich repeat-containing G protein coupled receptors. To date, genes referred to as GPHα2 and GPHβ5 have been the only glycoprotein hormone subunits identified in invertebrates, suggesting that other GPHα and GPHβ subunits diversified during vertebrate evolution. Still the functions of GPHα2 and GPHβ5 remain largely unknown for both vertebrates and invertebrates. To further understand the evolution and putative function of these subunits, we cloned and analyzed phylogenetically two glycoprotein subunits, AcaGPHα and AcaGPHβ, from the sea hare Aplysia californica. Model based three-dimensional predictions of AcaGPHβ confirm the presence of a complete cysteine knot, two hairpin loops, and a long loop. As in the human GPHβ5 subunit the seatbelt structure is absent in AcaGPHβ. We also found that AcaGPHα and AcaGPHβ subunits are expressed in larval stages of Aplysia, and we present a detailed expression map of the subunits in the adult central nervous system using in situ hybridizations. Both subunits are expressed in subpopulations of pleural and buccal mechanosensory neurons, suggesting a neuronal modulatory function of these subunits in Aplysia. Furthermore it supports the model of a relatively diffuse neuroendocrine-like system in molluscs, where specific primary sensory neurons release peptides extrasynaptically (paracrine secretion). This is in contrast to vertebrates and insects, in which releasing and stimulating factor from centralized sensory regions of the central nervous system ultimately regulate hormone release in peripheral glands.

  17. Histamine inhibits the melanin-concentrating hormone system: implications for sleep and arousal.

    PubMed

    Parks, Gregory S; Olivas, Nicholas D; Ikrar, Taruna; Sanathara, Nayna M; Wang, Lien; Wang, Zhiwei; Civelli, Olivier; Xu, Xiangmin

    2014-05-15

    Melanin-concentrating hormone (MCH)-producing neurons are known to regulate a wide variety of physiological functions such as feeding, metabolism, anxiety and depression, and reward. Recent studies have revealed that MCH neurons receive projections from several wake-promoting brain regions and are integral to the regulation of rapid eye movement (REM) sleep. Here, we provide evidence in both rats and mice that MCH neurons express histamine-3 receptors (H3R), but not histamine-1 (H1R) or histamine-2 (H2R) receptors. Electrophysiological recordings in brain slices from a novel line of transgenic mice that specifically express the reporter ZsGreen in MCH neurons show that histamine strongly inhibits MCH neurons, an effect which is TTX insensitive, and blocked by the intracellular presence of GDP-β-S. A specific H3R agonist, α-methylhistamine, mimicks the inhibitory effects of histamine, and a specific neutral H3R antagonist, VUF 5681, blocks this effect. Tertiapin Q (TPQ), a G protein-dependent inwardly rectifying potassium (GIRK) channel inhibitor, abolishes histaminergic inhibition of MCH neurons. These results indicate that histamine directly inhibits MCH neurons through H3R by activating GIRK channels and suggest that that inhibition of the MCH system by wake-active histaminergic neurons may be responsible for silencing MCH neurons during wakefulness and thus may be directly involved in the regulation of sleep and arousal.

  18. Histamine inhibits the melanin-concentrating hormone system: implications for sleep and arousal

    PubMed Central

    Parks, Gregory S; Olivas, Nicholas D; Ikrar, Taruna; Sanathara, Nayna M; Wang, Lien; Wang, Zhiwei; Civelli, Olivier; Xu, Xiangmin

    2014-01-01

    Melanin-concentrating hormone (MCH)-producing neurons are known to regulate a wide variety of physiological functions such as feeding, metabolism, anxiety and depression, and reward. Recent studies have revealed that MCH neurons receive projections from several wake-promoting brain regions and are integral to the regulation of rapid eye movement (REM) sleep. Here, we provide evidence in both rats and mice that MCH neurons express histamine-3 receptors (H3R), but not histamine-1 (H1R) or histamine-2 (H2R) receptors. Electrophysiological recordings in brain slices from a novel line of transgenic mice that specifically express the reporter ZsGreen in MCH neurons show that histamine strongly inhibits MCH neurons, an effect which is TTX insensitive, and blocked by the intracellular presence of GDP-β-S. A specific H3R agonist, α-methylhistamine, mimicks the inhibitory effects of histamine, and a specific neutral H3R antagonist, VUF 5681, blocks this effect. Tertiapin Q (TPQ), a G protein-dependent inwardly rectifying potassium (GIRK) channel inhibitor, abolishes histaminergic inhibition of MCH neurons. These results indicate that histamine directly inhibits MCH neurons through H3R by activating GIRK channels and suggest that that inhibition of the MCH system by wake-active histaminergic neurons may be responsible for silencing MCH neurons during wakefulness and thus may be directly involved in the regulation of sleep and arousal. PMID:24639485

  19. Autoradiographic localization of thyrotropin releasing hormone (TRH) receptors in the central nervous system

    SciTech Connect

    Manaker, S.

    1985-01-01

    Quantitative autoradiography was used to examine the distribution of thyrotropin-releasing hormone (TRH) receptors in the rat and human central nervous system (CNS). The binding of (/sup 3/H)-3-methyl-histidine/sup 2/-TRH ((/sup 3/H)-MeTRH) to TRH receptors was saturable, of a high affinity (K/sub d/ = 5 nM), and specific for TRH analogs. Studies with neurotoxins ibotenic acid and 6-hydroxydopamine (6-OHDA) suggest that TRH receptors within the amygdala are predominantly located on cell bodies, and not nerve terminals. Finally, an examination was made of the concentrations of TRH receptors in spinal cords of patients with amyotrophic lateral sclerosis (ALS), a degenerative disease of the motor neurons located in Lamina IX. Large decreases in TRH receptors were noted in ALS spinal cords, when compared to non-neurological controls, probably reflecting the loss of motor neurons. In addition, decreases in the TRH receptor concentration of Lamina II were observed. This finding may reflect the sensitivity of neurons throughout the CNS to the pathophysiologic mechanisms of neuronal degeneration which cause ALS.

  20. Photoperiod and acute energy deficits interact on components of the thyroid hormone system in hypothalamic tanycytes of the Siberian hamster.

    PubMed

    Herwig, Annika; Wilson, Dana; Logie, Tracy J; Boelen, Anita; Morgan, Peter J; Mercer, Julian G; Barrett, Perry

    2009-05-01

    In the Siberian hamster, seasonal weight loss occurs gradually over many weeks during autumn and winter. This is driven by a regulatory mechanism that is able to integrate duration of exposure to short days (SDs) with the size of body energy reserves. After food restriction in SDs, followed by ad libitum refeeding, body weight of the hamster does not return to its former level; rather, it increases to a level defined by the length of time spent in SDs. In this report, we show that components of the thyroid hormone system that are involved in seasonal weight loss change expression in response to 48 h of starvation. Eight weeks in an SD photoperiod induced weight loss in the Siberian hamster. In the hypothalamus of these hamsters, type II deiodinase expression was decreased and type III deiodinase expression was induced, but there was no change in hypothalamic neuropeptide Y or thyrotropin-releasing hormone gene expression. For the first time, we show that the thyroid hormone transporter monocarboxylate transporter 8 is expressed in tanycytes and is increased in response to an SD photoperiod. Food restriction (48 h of starvation) reversed the direction of gene expression change for type II and III deiodinase and monocarboxylate transporter 8 induced by SD photoperiods. Furthermore, fasting increased neuropeptide Y expression and decreased thyrotropin-releasing hormone expression. VGF, a gene upregulated in SDs in the dorsal region of the medial posterior area of the arcuate nucleus, was not changed by starvation. These data point to a mechanism whereby energy deprivation can interact with an SD photoperiod on hypothalamic tanycytes to regulate components of the thyroid hormone system involved in photoperiodic regulation of seasonal physiology.

  1. The effects of hypokalaemia on the hormone exocytosis in adenohypophysis and prolactinoma cell culture model systems.

    PubMed

    Molnár, Z; Pálföldi, R; László, A; Radács, M; László, M; Hausinger, P; Tiszlavicz, L; Rázga, Z; Valkusz, Z; Gálfi, M

    2014-11-01

    The extracellular ion milieu determines the exocytosis mechanism that is coupled to spontaneous electrical activity. The K(+) ion plays crucial role in this mechanism: as the potassium current is associated with membrane hyperpolarization and hormone release through protein cascade activation. The primary aim of this study was to investigate the response mechanisms of normal adenohypophysis and adenohypophyseal prolactinoma cell populations at different extracellular K(+) levels with an otherwise isoionic milieu of all other essential ions. We focused on prolactin (PRL) and adrenocorticotrophic hormone (ACTH) release.In our experimental study, female Wistar rats (n=20) were treated with estrone-acetate (150 μg/kg b.w./week) for 6 months to induce prolactinomas in the adenohypophysis. Primary, monolayer cell cultures were prepared by enzymatic and mechanical digestion. PRL and ACTH hormone presence was measured by radioimmunoassay or immuno-chemiluminescence assay. Immunocytochemistry was used to assess the apoptotic cells.Differences between the effects of hypokalaemia on normal adenohypophysis cultures and prolactinoma cell populations were investigated. Significant alteration (p<0.001, n=10) in hormone exocytosis was detected in K(+) treated adenohypophyseal and prolactinoma cell cultures compared to untreated groups. Immunocyto-chemistry showed that Bcl-2 expression was reduced under hypokalaemic conditions.The decrease in hormone exocytosis was tightly correlated to the extracellular K(+) in both cell types, leading to the conclusion that external K(+) may be the major factor for the inhibition of hormone release. The significant increase in hormone content in supernatant media suggests that hypokalaemia may play important role in apoptosis.

  2. Involvement of the opioid system in the orexigenic and hedonic effects of melanin-concentrating hormone.

    PubMed

    Lopez, Carlos Andres; Guesdon, Benjamin; Baraboi, Elena-Dana; Roffarello, Boris Monge; Hétu, Marylène; Richard, Denis

    2011-10-01

    Melanin-concentrating hormone (MCH) exerts an orexigenic effect that resembles that of opioids, suggesting that the MCH and opioid systems could interact in controlling the food intake behavior. Three series of experiments were conducted in male Wistar rats: 1) to test the ability of the κ-, μ-, and δ-opioid receptor antagonists binaltorphimine (nor-BNI-κ), β-funaltrexamine (β-FNA-μ), and naltrindole (NTI-δ), respectively, to block the stimulating effects of MCH on food intake; 2) to verify the ability of MCH to induce a positive hedonic response to a sweet stimulus when injected into the nucleus accumbens shell (NAcSh) or right lateral ventricle (LV) of the brain; and 3) to assess the ability of nor-BNI, β-FNA, and NTI to block the effects of MCH on the hedonic response to a sweet stimulus. Nor-BNI, NTI (0, 10 and 40 nmol), and β-FNA (0, 10 and 50 nmol) were administered into the LV prior to injecting MCH (2.0 nmol). To assess the hedonic response, rats were implanted with an intraoral cannula allowing for the infusion of a sweet solution into the oral cavity. Food intake was assessed in sated rats during the first 3 h following the MCH or vehicle (i.e., artificial cerebrospinal fluid) injection. The hedonic response to a sweet stimulus was assessed by examining facial mimics, following the intraoral administration of a sucrose solution. Blockade of each of the three opioid receptors by selective antagonists prevented MCH-induced feeding. Furthermore, MCH-injections into the NAcSh and right LV resulted in enhanced hedonic responses. Finally, antagonism of the three opioid receptors blunted the LV-injected, MCH-induced, facial-liking expressions in response to an intraoral sweet stimulus. Overall, the present study provides evidence to link the MCH and opioid systems in the food intake behavior.

  3. Steroid hormones, prostanoids, and angiogenic systems during rescue of the corpus luteum in pigs.

    PubMed

    Przygrodzka, E; Kaczmarek, M M; Kaczynski, P; Ziecik, A J

    2016-02-01

    In order to characterize the transition of the corpora lutea (CL) from acquisition of luteolytic sensitivity to rescue of luteal function: i) the expression of 38 factors associated with steroids, prostanoids, and angiogenic systems and ii) concentrations of the main hormones responsible for maintenance of CL function in cyclic and pregnant pigs were examined. Additionally, the effect of prostaglandin (PG) E2 and F2 α on luteal function during the estrous cycle and pregnancy was evaluated in vitro. Significantly up-regulated gene expression was revealed in CL collected on day 14 of the estrous cycle (CYP19A1, ESR2, PTGS2, HIF1A, and EDN1) and on days 12-14 of pregnancy (SCARB1, PGRMC1, STAR, HSD3B1, NR5A1, PTGFR, PTGER4, and VEGFA). Elevated concentrations of estradiol-17β and PGE2 occurred in CL on days 12 and 14 of pregnancy respectively, while an increased intraluteal PGF2 α content was noted on day 14 of the estrous cycle. Both PGs increased the synthesis of progesterone by cultured luteal slices obtained on day 14 of pregnancy, in contrast to the action of PGF2 α on the corresponding day of the estrous cycle. PGE2 stimulated cAMP production via PTGER2 and PTGER4, while PGF2 α elevated the content of CREB in cultured luteal slices from CL of pregnant pigs. In silico analysis showed that infiltration of lymphocytes and apoptosis of microvascular endothelium were activated in CL on day 12 of the estrous cycle vs pregnancy. Summarizing, an abundance of E2 and PGE2 during pregnancy regulates specific pathways responsible for steroidogenesis, the prostanoid signaling system and angiogenesis during rescue from luteolysis in porcine CL.

  4. Hormonal adaptation to real and simulated microgravity.

    PubMed

    Strollo, F; Strollo, G; More, M; Bollanti, L; Ciarmatori, A; Longo, E; Quintiliani, R; Mambro, A; Mangrossa, N; Ferretti, C

    1998-07-01

    The authors provide an overview of relevant results from endocrine studies in astronauts before, during, and after space flight. The hormonal systems examined are the water-electrolyte regulation, the hypothalamic-pituitary-adrenal axis, the hypothalamic-pituitary gonadal axis, the growth hormone-insulin like growth factor 1-prolactin system, hormones which affect bone turnover, the hypothalamic-pituitary-thyroid axis, and the endocrine pancreas. Hormones studied include renin, aldosterone, vasopressin, atrial natriuretic factor, cortisol, testosterone, lutenizing hormone, prolactin, growth hormone, insulin-like growth factor-1, insulin, glucose, T4, thyroid stimulating hormone, calcitonin, active D3, and parathyroid hormone.

  5. Implantation: mutual activity of sex steroid hormones and the immune system guarantee the maternal-embryo interaction.

    PubMed

    Gnainsky, Yulia; Dekel, Nava; Granot, Irit

    2014-09-01

    Implantation is strictly dependent on the mutual interaction between a receptive endometrium and the blastocyst. Hence, synchronization between blastocyst development and the acquisition of endometrial receptivity is a prerequisite for the success of this process. This review depicts the cellular and molecular events that coordinate these complex activities. Specifically, the involvement of the sex steroid hormones, estrogen and progesterone, as well as components of the immune system, such as cytokines and specific blood cells, is elaborated. PMID:24959815

  6. [Anti-Müllerian hormone levels as a predictor of ovarian reserve in systemic lupus erythematosus patients: a review].

    PubMed

    Gasparin, Andrese Aline; Chakr, Rafael Mendonça da Silva; Brenol, Claiton Viegas; Palominos, Penélope Ester; Xavier, Ricardo Machado; Souza, Lucian; Brenol, João Carlos Tavares; Monticielo, Odirlei André

    2015-01-01

    The anti-Müllerian hormone (AMH) is secreted from granulosa cells of growing ovarian follicles and appears to be the best endocrine marker capable of estimating ovarian reserve. Systemic lupus erythematosus (SLE) is an autoimmune disease that predominantly affects women of reproductive age and may negatively affect their fertility due to disease activity and the treatments used. Recently, several studies assessed AMH levels to understand the real impact of SLE and its treatment on fertility.

  7. Prediction of Scylla olivacea (Crustacea; Brachyura) peptide hormones using publicly accessible transcriptome shotgun assembly (TSA) sequences.

    PubMed

    Christie, Andrew E

    2016-05-01

    The aquaculture of crabs from the genus Scylla is of increasing economic importance for many Southeast Asian countries. Expansion of Scylla farming has led to increased efforts to understand the physiology and behavior of these crabs, and as such, there are growing molecular resources for them. Here, publicly accessible Scylla olivacea transcriptomic data were mined for putative peptide-encoding transcripts; the proteins deduced from the identified sequences were then used to predict the structures of mature peptide hormones. Forty-nine pre/preprohormone-encoding transcripts were identified, allowing for the prediction of 187 distinct mature peptides. The identified peptides included isoforms of adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, bursicon β, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/molt-inhibiting hormone, diuretic hormone 31, eclosion hormone, FMRFamide-like peptide, HIGSLYRamide, insulin-like peptide, intocin, leucokinin, myosuppressin, neuroparsin, neuropeptide F, orcokinin, pigment dispersing hormone, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, SIFamide and tachykinin-related peptide, all well-known neuropeptide families. Surprisingly, the tissue used to generate the transcriptome mined here is reported to be testis. Whether or not the testis samples had neural contamination is unknown. However, if the peptides are truly produced by this reproductive organ, it could have far reaching consequences for the study of crustacean endocrinology, particularly in the area of reproductive control. Regardless, this peptidome is the largest thus far predicted for any brachyuran (true crab) species, and will serve as a foundation for future studies of peptidergic control in members of the commercially important genus Scylla.

  8. Determination of juvenile hormone titers by means of LC-MS/MS/MS and a juvenile hormone-responsive Gal4/UAS system in Aedes aegypti mosquitoes.

    PubMed

    Zhao, Bo; Hou, Yuan; Wang, Jianjun; Kokoza, Vladimir A; Saha, Tusar T; Wang, Xue-Li; Lin, Ling; Zou, Zhen; Raikhel, Alexander S

    2016-10-01

    In anautogenous mosquitoes, juvenile hormone III (JH) plays an essential role in female post-eclosion (PE) development, preparing them for subsequent blood feeding and egg growth. We re-examined the JH titer during the reproductive cycle of female Aedes aegypti mosquitoes. Using liquid chromatography coupled with triple tandem mass spectrometry (LC-MS/MS/MS), we have shown that it reaches its peak at 48-54 h PE in the female hemolymph and at 72 h PE in whole body extracts. This method represents an effective assay for determination of JH titers. The 2.1-kb 5' promoter region of the Early Trypsin (ET) gene, which is specifically expressed in the female midgut under the control of JH during the PE phase, was utilized to genetically engineer the Ae. aegypti mosquito line with the ET-Gal4 activator. We then established the ET-GAL4>UAS-enhanced green fluorescent protein (EGFP) system in Ae. aegypti. In ET-Gal4>UAS-EGFP female mosquitoes, the intensity of the midgut-specific EGFP signal was observed to correspond to the ET gene transcript level and follow the JH titer during the PE phase. The EGFP signal and the EGFP transcript level were significantly diminished in midguts of transgenic female mosquitoes after RNA interference depletion of the JH receptor Methoprene-tolerant (Met), providing evidence of the control of ET gene expression by Met. Topical JH application caused premature enhancement of the EGFP signal and the EGFP transcript level in midguts of newly eclosed ET-Gal4>UAS-EGFP female mosquitoes, in which endogenous JH titer is still low. Hence, this novel ET-Gal4>UAS system permits JH-dependent gene overexpression in the midgut of Ae. aegypti female mosquitoes prior to a blood meal. PMID:27530057

  9. Endocrine Glands & Their Hormones

    MedlinePlus

    ... Home » Cancer Registration & Surveillance Modules » Anatomy & Physiology » Endocrine System » Endocrine Glands & Their Hormones Cancer Registration & Surveillance Modules Anatomy & Physiology Intro to the Human Body Body Functions & Life Process Anatomical Terminology Review Quiz ...

  10. Gonadotropin-releasing hormone receptor system: modulatory role in aging and neurodegeneration.

    PubMed

    Wang, Liyun; Chadwick, Wayne; Park, Sung-Soo; Zhou, Yu; Silver, Nathan; Martin, Bronwen; Maudsley, Stuart

    2010-11-01

    Receptors for hormones of the hypothalamic-pituitary-gonadal axis are expressed throughout the brain. Age-related decline in gonadal reproductive hormones cause imbalances of this axis and many hormones in this axis have been functionally linked to neurodegenerative pathophysiology. Gonadotropin-releasing hormone (GnRH) plays a vital role in both central and peripheral reproductive regulation. GnRH has historically been known as a pituitary hormone; however, in the past few years, interest has been raised in GnRH actions at non-pituitary peripheral targets. GnRH ligands and receptors are found throughout the brain where they may act to control multiple higher functions such as learning and memory function and feeding behavior. The actions of GnRH in mammals are mediated by the activation of a unique rhodopsin-like G protein-coupled receptor that does not possess a cytoplasmic carboxyl terminal sequence. Activation of this receptor appears to mediate a wide variety of signaling mechanisms that show diversity in different tissues. Epidemiological support for a role of GnRH in central functions is evidenced by a reduction in neurodegenerative disease after GnRH agonist therapy. It has previously been considered that these effects were not via direct GnRH action in the brain, however recent data has pointed to a direct central action of these ligands outside the pituitary. We have therefore summarized the evidence supporting a central direct role of GnRH ligands and receptors in controlling central nervous physiology and pathophysiology.

  11. Steroid hormones, receptors, and perceptual and cognitive sex differences in the visual system.

    PubMed

    Handa, Robert J; McGivern, Robert F

    2015-02-01

    The actions of gonadal steroid hormones induce morphological sex differences in many tissues in the body, including brain. These occur either during development to organize tissues in a sex-specific pattern and/or in adulthood to activate specific cellular pathways. Cellular and morphological changes in the brain, induced by androgens and estrogens, underlie behavioral sex differences in both reproductive and non-reproductive behaviors, including visual perception. A growing body of evidence indicates that some sex differences related to visual perception arise as the result of the organizational actions of gonadal steroid hormones on cerebral cortical pathways involved in visual processing of objects and movement. This review addresses the influence of gonadal steroids on structural, biochemical and morphological changes in tissues in the brain and body. These effects are extended to consider how gonadal hormone effects may contribute to cognitive sex differences across species that are related to processing within the dorsal and ventral visual streams for motion and objects, respectively. Lastly, this review considers the question of how cognitive sex differences related to processing of movement and objects in humans may be reflective of two types of cognitive style that are only superficially related to gender.

  12. Early-Life Social Isolation Impairs the Gonadotropin-Inhibitory Hormone Neuronal Activity and Serotonergic System in Male Rats.

    PubMed

    Soga, Tomoko; Teo, Chuin Hau; Cham, Kai Lin; Idris, Marshita Mohd; Parhar, Ishwar S

    2015-01-01

    Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH) neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinizing hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic-GnIH neuronal system using enhanced green fluorescent protein (EGFP)-tagged GnIH transgenic rats. Socially isolated rats were observed for anxious and depressive behaviors. Using immunohistochemistry, we examined c-Fos protein expression in EGFP-GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group housing. We also inspected serotonergic fiber juxtapositions in EGFP-GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviors. The total number of EGFP-GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fiber juxtapositions on EGFP-GnIH neurons were also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early-life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure. PMID:26617573

  13. Early-Life Social Isolation Impairs the Gonadotropin-Inhibitory Hormone Neuronal Activity and Serotonergic System in Male Rats

    PubMed Central

    Soga, Tomoko; Teo, Chuin Hau; Cham, Kai Lin; Idris, Marshita Mohd; Parhar, Ishwar S.

    2015-01-01

    Social isolation in early life deregulates the serotonergic system of the brain, compromising reproductive function. Gonadotropin-inhibitory hormone (GnIH) neurons in the dorsomedial hypothalamic nucleus are critical to the inhibitory regulation of gonadotropin-releasing hormone neuronal activity in the brain and release of luteinizing hormone by the pituitary gland. Although GnIH responds to stress, the role of GnIH in social isolation-induced deregulation of the serotonin system and reproductive function remains unclear. We investigated the effect of social isolation in early life on the serotonergic–GnIH neuronal system using enhanced green fluorescent protein (EGFP)-tagged GnIH transgenic rats. Socially isolated rats were observed for anxious and depressive behaviors. Using immunohistochemistry, we examined c-Fos protein expression in EGFP–GnIH neurons in 9-week-old adult male rats after 6 weeks post-weaning isolation or group housing. We also inspected serotonergic fiber juxtapositions in EGFP–GnIH neurons in control and socially isolated male rats. Socially isolated rats exhibited anxious and depressive behaviors. The total number of EGFP–GnIH neurons was the same in control and socially isolated rats, but c-Fos expression in GnIH neurons was significantly reduced in socially isolated rats. Serotonin fiber juxtapositions on EGFP–GnIH neurons were also lower in socially isolated rats. In addition, levels of tryptophan hydroxylase mRNA expression in the dorsal raphe nucleus were significantly attenuated in these rats. These results suggest that social isolation in early-life results in lower serotonin levels, which reduce GnIH neuronal activity and may lead to reproductive failure. PMID:26617573

  14. Hormonal Regulation of Response to Oxidative Stress in Insects-An Update.

    PubMed

    Kodrík, Dalibor; Bednářová, Andrea; Zemanová, Milada; Krishnan, Natraj

    2015-01-01

    Insects, like other organisms, must deal with a wide variety of potentially challenging environmental factors during the course of their life. An important example of such a challenge is the phenomenon of oxidative stress. This review summarizes the current knowledge on the role of adipokinetic hormones (AKH) as principal stress responsive hormones in insects involved in activation of anti-oxidative stress response pathways. Emphasis is placed on an analysis of oxidative stress experimentally induced by various stressors and monitored by suitable biomarkers, and on detailed characterization of AKH's role in the anti-stress reactions. These reactions are characterized by a significant increase of AKH levels in the insect body, and by effective reversal of the markers-disturbed by the stressors-after co-application of the stressor with AKH. A plausible mechanism of AKH action in the anti-oxidative stress response is discussed as well: this probably involves simultaneous employment of both protein kinase C and cyclic adenosine 3',5'-monophosphate pathways in the presence of extra and intra-cellular Ca(2+) stores, with the possible involvement of the FoxO transcription factors. The role of other insect hormones in the anti-oxidative defense reactions is also discussed. PMID:26516847

  15. Hormonal Regulation of Response to Oxidative Stress in Insects—An Update

    PubMed Central

    Kodrík, Dalibor; Bednářová, Andrea; Zemanová, Milada; Krishnan, Natraj

    2015-01-01

    Insects, like other organisms, must deal with a wide variety of potentially challenging environmental factors during the course of their life. An important example of such a challenge is the phenomenon of oxidative stress. This review summarizes the current knowledge on the role of adipokinetic hormones (AKH) as principal stress responsive hormones in insects involved in activation of anti-oxidative stress response pathways. Emphasis is placed on an analysis of oxidative stress experimentally induced by various stressors and monitored by suitable biomarkers, and on detailed characterization of AKH’s role in the anti-stress reactions. These reactions are characterized by a significant increase of AKH levels in the insect body, and by effective reversal of the markers—disturbed by the stressors—after co-application of the stressor with AKH. A plausible mechanism of AKH action in the anti-oxidative stress response is discussed as well: this probably involves simultaneous employment of both protein kinase C and cyclic adenosine 3′,5′-monophosphate pathways in the presence of extra and intra-cellular Ca2+ stores, with the possible involvement of the FoxO transcription factors. The role of other insect hormones in the anti-oxidative defense reactions is also discussed. PMID:26516847

  16. Hormonal Regulation of Response to Oxidative Stress in Insects-An Update.

    PubMed

    Kodrík, Dalibor; Bednářová, Andrea; Zemanová, Milada; Krishnan, Natraj

    2015-10-27

    Insects, like other organisms, must deal with a wide variety of potentially challenging environmental factors during the course of their life. An important example of such a challenge is the phenomenon of oxidative stress. This review summarizes the current knowledge on the role of adipokinetic hormones (AKH) as principal stress responsive hormones in insects involved in activation of anti-oxidative stress response pathways. Emphasis is placed on an analysis of oxidative stress experimentally induced by various stressors and monitored by suitable biomarkers, and on detailed characterization of AKH's role in the anti-stress reactions. These reactions are characterized by a significant increase of AKH levels in the insect body, and by effective reversal of the markers-disturbed by the stressors-after co-application of the stressor with AKH. A plausible mechanism of AKH action in the anti-oxidative stress response is discussed as well: this probably involves simultaneous employment of both protein kinase C and cyclic adenosine 3',5'-monophosphate pathways in the presence of extra and intra-cellular Ca(2+) stores, with the possible involvement of the FoxO transcription factors. The role of other insect hormones in the anti-oxidative defense reactions is also discussed.

  17. Growth Hormone Promotes Lymphangiogenesis

    PubMed Central

    Banziger-Tobler, Nadja Erika; Halin, Cornelia; Kajiya, Kentaro; Detmar, Michael

    2008-01-01

    The lymphatic system plays an important role in inflammation and cancer progression, although the molecular mechanisms involved are poorly understood. As determined using comparative transcriptional profiling studies of cultured lymphatic endothelial cells versus blood vascular endothelial cells, growth hormone receptor was expressed at much higher levels in lymphatic endothelial cells than in blood vascular endothelial cells. These findings were confirmed by quantitative real-time reverse transcriptase-polymerase chain reaction and Western blot analyses. Growth hormone induced in vitro proliferation, sprouting, tube formation, and migration of lymphatic endothelial cells, and the mitogenic effect was independent of vascular endothelial growth factor receptor-2 or -3 activation. Growth hormone also inhibited serum starvation-induced lymphatic endothelial cell apoptosis. No major alterations of lymphatic vessels were detected in the normal skin of bovine growth hormone-transgenic mice. However, transgenic delivery of growth hormone accelerated lymphatic vessel ingrowth into the granulation tissue of full-thickness skin wounds, and intradermal delivery of growth hormone resulted in enlargement and enhanced proliferation of cutaneous lymphatic vessels in wild-type mice. These results identify growth hormone as a novel lymphangiogenic factor. PMID:18583315

  18. [Advances in hormonal contraception].

    PubMed

    Villanueva Egan, Luis Alberto; Pichardo Cuevas, Mauricio

    2007-01-01

    This review provides an update regarding newer options in hormonal contraception that include the progestin-releasing intrauterine system, the contraceptive patch and ring, the single rod progestin-releasing implant, extended and emergency oral contraception and recent advances in hormonal male contraception. These methods represent a major advancement in this field, allowing for the development of more acceptable, safety and effective birth control regimens.

  19. Partial ablation of uropygial gland effects on growth hormone concentration and digestive system histometrical aspect of akar putra chicken.

    PubMed

    Jawad, Hasan S A; Lokman, I H; Zuki, A B Z; Kassim, A B

    2016-04-01

    Partial ablation of the uropygial gland is being used in the poultry industry as a new way to enhance body performance of chickens. However, limited data are available estimating the efficacy of partial uropygialectomy (PU) to improve body organ activity. The present study evaluated the effect of partial ablation of the uropygial gland on the serum growth hormone concentration level and digestive system histology of 120 Akar Putra chickens in 5 trials with 3 replicates per trial. The experimental treatments consisted of a control treatment T1; partial ablation of the uropygial gland was applied in the T2, T3, T4, and T5 treatments at 3, 4, 5, and 6 wk of age, respectively. Feed and water were provided ad libitum. All treatment groups were provided the same diet. Venous blood samples were collected on wk 7, 10, and 12 to assay the levels of growth hormone concentration. On the last d of the experiment, 4 birds per replicate were randomly isolated and euthanized to perform the necropsy. Digestive system organs' cross sections were measured by a computerized image analyzer after being stained with haematoxylin and eosin. In comparison with the control group, surgical removal of the uropygial gland, especially at wk 3, had a greater (P<0.01) effect on the total duodenum, jejunum, and ilium wall thickness. In addition, effects (P<0.05) were observed on the wall thickness of males' cecum and colon. Moreover, the wall layers of the esophagus, proventriculus, gizzard, and rectum were not affected by the treatment. However, removing the uropygial gland showed significant impact (P<0.05) in males' growth hormone concentration level at wk 7 and (P<0.01) effects at wk 12 in both sexes. This study provides a novel and economic alternative to enhance the body performance of poultry in general and Akar Putra chickens particularly. PMID:26908881

  20. Partial ablation of uropygial gland effects on growth hormone concentration and digestive system histometrical aspect of akar putra chicken.

    PubMed

    Jawad, Hasan S A; Lokman, I H; Zuki, A B Z; Kassim, A B

    2016-04-01

    Partial ablation of the uropygial gland is being used in the poultry industry as a new way to enhance body performance of chickens. However, limited data are available estimating the efficacy of partial uropygialectomy (PU) to improve body organ activity. The present study evaluated the effect of partial ablation of the uropygial gland on the serum growth hormone concentration level and digestive system histology of 120 Akar Putra chickens in 5 trials with 3 replicates per trial. The experimental treatments consisted of a control treatment T1; partial ablation of the uropygial gland was applied in the T2, T3, T4, and T5 treatments at 3, 4, 5, and 6 wk of age, respectively. Feed and water were provided ad libitum. All treatment groups were provided the same diet. Venous blood samples were collected on wk 7, 10, and 12 to assay the levels of growth hormone concentration. On the last d of the experiment, 4 birds per replicate were randomly isolated and euthanized to perform the necropsy. Digestive system organs' cross sections were measured by a computerized image analyzer after being stained with haematoxylin and eosin. In comparison with the control group, surgical removal of the uropygial gland, especially at wk 3, had a greater (P<0.01) effect on the total duodenum, jejunum, and ilium wall thickness. In addition, effects (P<0.05) were observed on the wall thickness of males' cecum and colon. Moreover, the wall layers of the esophagus, proventriculus, gizzard, and rectum were not affected by the treatment. However, removing the uropygial gland showed significant impact (P<0.05) in males' growth hormone concentration level at wk 7 and (P<0.01) effects at wk 12 in both sexes. This study provides a novel and economic alternative to enhance the body performance of poultry in general and Akar Putra chickens particularly.

  1. Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men

    PubMed Central

    Morton, Robert W.; Oikawa, Sara Y.; Wavell, Christopher G.; Mazara, Nicole; McGlory, Chris; Quadrilatero, Joe; Baechler, Brittany L.; Baker, Steven K.

    2016-01-01

    We reported, using a unilateral resistance training (RT) model, that training with high or low loads (mass per repetition) resulted in similar muscle hypertrophy and strength improvements in RT-naïve subjects. Here we aimed to determine whether the same was true in men with previous RT experience using a whole-body RT program and whether postexercise systemic hormone concentrations were related to changes in hypertrophy and strength. Forty-nine resistance-trained men (23 ± 1 yr, mean ± SE) performed 12 wk of whole-body RT. Subjects were randomly allocated into a higher-repetition (HR) group who lifted loads of ∼30-50% of their maximal strength (1RM) for 20–25 repetitions/set (n = 24) or a lower-repetition (LR) group (∼75–90% 1RM, 8–12 repetitions/set, n = 25), with all sets being performed to volitional failure. Skeletal muscle biopsies, strength testing, dual-energy X-ray absorptiometry scans, and acute changes in systemic hormone concentrations were examined pretraining and posttraining. In response to RT, 1RM strength increased for all exercises in both groups (P < 0.01), with only the change in bench press being significantly different between groups (HR, 9 ± 1, vs. LR, 14 ± 1 kg, P = 0.012). Fat- and bone-free (lean) body mass and type I and type II muscle fiber cross-sectional area increased following training (P < 0.01) with no significant differences between groups. No significant correlations between the acute postexercise rise in any purported anabolic hormone and the change in strength or hypertrophy were found. In congruence with our previous work, acute postexercise systemic hormonal rises are not related to or in any way indicative of RT-mediated gains in muscle mass or strength. Our data show that in resistance-trained individuals, load, when exercises are performed to volitional failure, does not dictate hypertrophy or, for the most part, strength gains. PMID:27174923

  2. Growth Hormone

    MedlinePlus

    ... the dose of glucose. Growth hormone stimulates the production of insulin-like growth factor-1 (IGF-1) . ... regular intervals for years afterward to monitor GH production and to detect tumor recurrence. Other blood tests ...

  3. Hormone Therapy

    MedlinePlus

    ... based lubricants include petroleum jelly, baby oil, or mineral oil. Oil-based types should not be used ... caused by low levels of these hormones. Hysterectomy: Removal of the uterus. Menopause: The time in a ...

  4. [Hormonal and metabolic disorders as systemic factor for the formation of urinary calculi].

    PubMed

    Aliaev, Iu G; Egshatian, L V; Rapoport, L M; Lartsova, E V

    2014-01-01

    In patients suffering from urolithiasis, metabolic diagnostics often reveals abnormalities contributing to the formation of stones: hypocitraturia, hyper- and hypocalcemia, hypercalciuria, hypomagnesemia/hypomagnesuria, hyperoxalaturia, etc. Before surgery, complex biochemical examination of blood and 24-hourcollection urine in 82 patients with urolithiasis was performed. The analysis of the main laboratory parameters of carbohydrate, lipid, calcium and phosphorus and purine metabolism found the prevalence of violations of calcium and phosphorus metabolism in these patients. Dyslipidemia was diagnosed in 31 (37.8%) patients. There was a significant positive correlation between serum total cholesterol and serum total calcium (rs = 0.3315, P = 0.0103). Low serum calcium levels were associated with hyperoxalaturia (rs = -0.4270, P = 0.0295). There was a significant effect of natriuria on urinary excretion of oxalate (rs = 0.6107, P = 0.0001), Mg (rs = 0.4156, P = 0.0096) and K (rs = 0.5234, P = 0.00005). The study shows the role of magnesium in the prevention of recurrence and manifestation of urolithiasis. The combination of two or more types of hormonal and metabolic disorders increases the incidence of recurrent stones. Timely correction of hormonal-metabolic status allows to reduce the risk of stone formation, and hospitalization attributable to the complications associated. PMID:25807757

  5. [Hormonal and metabolic disorders as systemic factor for the formation of urinary calculi].

    PubMed

    Aliaev, Iu G; Egshatian, L V; Rapoport, L M; Lartsova, E V

    2014-01-01

    In patients suffering from urolithiasis, metabolic diagnostics often reveals abnormalities contributing to the formation of stones: hypocitraturia, hyper- and hypocalcemia, hypercalciuria, hypomagnesemia/hypomagnesuria, hyperoxalaturia, etc. Before surgery, complex biochemical examination of blood and 24-hourcollection urine in 82 patients with urolithiasis was performed. The analysis of the main laboratory parameters of carbohydrate, lipid, calcium and phosphorus and purine metabolism found the prevalence of violations of calcium and phosphorus metabolism in these patients. Dyslipidemia was diagnosed in 31 (37.8%) patients. There was a significant positive correlation between serum total cholesterol and serum total calcium (rs = 0.3315, P = 0.0103). Low serum calcium levels were associated with hyperoxalaturia (rs = -0.4270, P = 0.0295). There was a significant effect of natriuria on urinary excretion of oxalate (rs = 0.6107, P = 0.0001), Mg (rs = 0.4156, P = 0.0096) and K (rs = 0.5234, P = 0.00005). The study shows the role of magnesium in the prevention of recurrence and manifestation of urolithiasis. The combination of two or more types of hormonal and metabolic disorders increases the incidence of recurrent stones. Timely correction of hormonal-metabolic status allows to reduce the risk of stone formation, and hospitalization attributable to the complications associated.

  6. [Vitamin D hormone system and diabetes mellitus: lessons from selective activators of vitamin D receptor and diabetes mellitus].

    PubMed

    Jódar-Gimeno, Esteban; Muñoz-Torres, Manuel

    2013-02-01

    The vitamin D hormone system has significant skeletal and extra-skeletal effects. Vitamin D receptor occurs in different tissues, and several cells other than renal cells are able to locally produce active vitamin D, which is responsible for transcriptional control of hundreds of genes related to its pleiotropic effects. There is increasing evidence relating vitamin D to development and course of type 1 and 2 diabetes mellitus. Specifically, influence of vitamin D on the renin-angiotensin-aldosterone system, inflammatory response, and urinary albumin excretion could explain the relevant impact of vitamin D status on diabetic nephropathy. Selective vitamin D receptor activators are molecules able to reproduce agonistic or antagonistic effects of active vitamin D depending on the tissue or even on the cell type. Specifically, paricalcitol has a beneficial profile because of its potency to reduce parathyroid hormone, with lower effects on serum calcium or phosphate levels. Moreover, in patients with diabetes and renal disease, paricalcitol decreases microalbuminuria, hospitalization rates, and cardiovascular mortality. Therefore, these molecules represent an attractive new option to improve prognosis of renal disease in patients with diabetes.

  7. Chapter 2: hypothalamic neural systems controlling the female reproductive life cycle gonadotropin-releasing hormone, glutamate, and GABA.

    PubMed

    Maffucci, Jacqueline A; Gore, Andrea C

    2009-01-01

    The hypothalamic-pituitary-gonadal (HPG) axis undergoes a number of changes throughout the reproductive life cycle that are responsible for the development, puberty, adulthood, and senescence of reproductive systems. This natural progression is dictated by the neural network controlling the hypothalamus including the cells that synthesize and release gonadotropin-releasing hormone (GnRH) and their regulatory neurotransmitters. Glutamate and GABA are the primary excitatory and inhibitory neurotransmitters in the central nervous system, and as such contribute a great deal to modulating this axis throughout the lifetime via their actions on receptors in the hypothalamus, both directly on GnRH neurons as well as indirectly through other hypothalamic neural networks. Interactions among GnRH neurons, glutamate, and GABA, including the regulation of GnRH gene and protein expression, hormone release, and modulation by estrogen, are critical to age-appropriate changes in reproductive function. Here, we present evidence for the modulation of GnRH neurosecretory cells by the balance of glutamate and GABA in the hypothalamus, and the functional consequences of these interactions on reproductive physiology across the life cycle.

  8. Analysis of the roles of mutations in thyroid hormone receptor-β by a bacterial biosensor system.

    PubMed

    Shi, Changhua; Meng, Qing; Wood, David W

    2014-02-01

    Mutations in thyroid hormone receptors (TRs) often lead to metabolic and developmental disorders, but patients with these mutations are difficult to treat with existing thyromimetic drugs. In this study, we analyzed six clinically observed mutations in the ligand-binding domain of the human TRβ using an engineered bacterial hormone biosensor. Six agonist compounds, including triiodothyronine (T3), thyroxine (T4), 3,5,3'-triiodothyroacetic acid (Triac), GC-1, KB-141, and CO-23, and the antagonist NH-3 were examined for their ability to bind to each of the TRβ mutants. The results indicate that some mutations lead to the loss of ability to bind to native ligands, ranging from several fold to several hundred fold, while other mutations completely abolish the ability to bind to any ligand. Notably, the effect of each ligand on each TRβ mutant in this bacterial system is highly dependent on both the mutation and the ligand; some ligands were bound well by a wide variety of mutants, while other ligands lost their affinity for all but the WT receptor. This study demonstrates the ability of our bacterial system to differentiate agonist compounds from antagonist compounds and shows that one of the TRβ mutations leads to an unexpected increase in antagonist ability relative to other mutations. These results indicate that this bacterial sensor can be used to rapidly determine ligand-binding ability and character for clinically relevant TRβ mutants. PMID:24174637

  9. Influences of the environment on the endocrine and paracrine fish growth hormone-insulin-like growth factor-I system.

    PubMed

    Reinecke, M

    2010-04-01

    Insulin-like growth factor-I (IGF-I) is a key component of the complex system that regulates differentiation, development, growth and reproduction of fishes. The IGF-I gene is mainly expressed in the liver that represents the principal source of endocrine IGF-I but also in numerous other organs where the hormone most probably acts in an autocrine-paracrine manner. The primary stimulus for synthesis and release of IGF-I is growth hormone (GH) from the anterior pituitary. Thus, in analogy to mammals, it is usual to speak of a fish 'GH-IGF-I axis'. The GH-IGF-I system is affected by changes in the environment and probably represents a target of endocrine disrupting compounds (EDC) that impair many physiological processes in fishes. Thus, the review deals with the influences of changes in different environmental factors, such as food availability, temperature, photoperiod, season, salinity and EDCs, on GH gene expression in pituitary, IGF-I gene expression in liver and extrahepatic sites and the physiological effects resulting from the evoked alterations in endocrine and local IGF-I. Environmental influences certainly interact with each other but for convenience of the reader they will be dealt with in separate sections. Current trends in GH-IGF-I research are analysed and future focuses are suggested at the end of the sections. PMID:20537012

  10. Systems analysis of shoot apical meristem growth and development: integrating hormonal and mechanical signaling.

    PubMed

    Murray, James A H; Jones, Angharad; Godin, Christophe; Traas, Jan

    2012-10-01

    The shoot apical meristem (SAM) is a small population of stem cells that continuously generates organs and tissues. This review covers our current understanding of organ initiation by the SAM in Arabidopsis thaliana. Meristem function and maintenance involves two major hormones, cytokinins and auxins. Cytokinins appear to play a major role in meristem maintenance and in controlling meristematic properties, such as cell proliferation. Self-organizing transport processes, which are still only partially understood, lead to the patterned accumulation of auxin at particular positions, where organs will grow out. A major downstream target of auxin-mediated growth regulation is the cell wall, which is a determinant for both growth rates and growth distribution, but feedbacks with metabolism and the synthetic capacity of the cytoplasm are crucial as well. Recent work has also pointed at a potential role of mechanical signals in growth coordination, but the precise mechanisms at work remain to be elucidated.

  11. Skeletal receptors for steroid-family regulating glycoprotein hormones: A multilevel, integrated physiological control system.

    PubMed

    Blair, Harry C; Robinson, Lisa J; Sun, Li; Isales, Carlos; Davies, Terry F; Zaidi, Mone

    2011-12-01

    Pituitary glycoprotein hormone receptors, including ACTH-R, TSH-R, and FSH-R, occur in bone. Their skeletal expression reflects that central endocrine control is evolutionarily recent. ACTH receptors, in osteoblasts or the adrenal cortex, drive VEGF synthesis. VEGF is essential to maintain vasculature. In bone, ACTH suppression by glucocorticoids can cause osteonecrosis. TSH receptors occur on osteoblasts and osteoclasts, in both cases reducing activity. Thus, TSH directly reduces skeletal turnover, consistent with evolutionary adaptation to stress. FSH receptors accelerate bone resorption, whereas estrogen promotes bone formation, the forces usually balancing. With ovarian failure, low estrogen with high FSH causes rapid bone loss. The skeletal FSH effect in the menopause seems paradoxical, but it is a logical adaptation in lactation, where prolonged FSH elevation also occurs. In addition to receptors, there is some synthesis of pituitary glycoproteins at distributed sites; this is not well studied, but it may further modify the paradigm of central endocrine regulation.

  12. Response to copper excess in Arabidopsis thaliana: Impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile.

    PubMed

    Lequeux, Hélène; Hermans, Christian; Lutts, Stanley; Verbruggen, Nathalie

    2010-08-01

    Growth, in particular reorganization of the root system architecture, mineral homeostasis and root hormone distribution were studied in Arabidopsis thaliana upon copper excess. Five-week-old Arabidopsis plants growing in hydroponics were exposed to different Cu(2+) concentrations (up to 5 muM). Root biomass was more severely inhibited than shoot biomass and Cu was mainly retained in roots. Cu(2+) excess also induced important changes in the ionome. In roots, Mg, Ca, Fe and Zn concentrations increased, whereas K and S decreased. Shoot K, Ca, P, and Mn concentrations decreased upon Cu(2+) exposure. Further, experiments with seedlings vertically grown on agar were carried out to investigate the root architecture changes. Increasing Cu(2+) concentrations (up to 50 muM) reduced the primary root growth and increased the density of short lateral roots. Experiment of split-root system emphasized a local toxicity of Cu(2+) on the root system. Observations of GUS reporter lines suggested changes in auxin and cytokinin accumulations and in mitotic activity within the primary and secondary root tips treated with Cu(2+). At toxic Cu(2+) concentrations (50 muM), these responses were accompanied by higher root apical meristem death. Contrary to previous reports, growth on high Cu(2+) did not induce an ethylene production. Finally lignin deposition was detected in Cu(2+)-treated roots, probably impacting on the translocation of nutrients. The effects on mineral profile, hormonal status, mitotic activity, cell viability and lignin deposition changes on the Cu(2+)-induced reorganization of the root system architecture are discussed.

  13. Using Digital Images of the Zebra Finch Song System as a Tool to Teach Organizational Effects of Steroid Hormones: A Free Downloadable Module

    ERIC Educational Resources Information Center

    Grisham, William; Schottler, Natalie A.; Beck McCauley, Lisa M.; Pham, Anh P.; Ruiz, Maureen L.; Fong, Michelle C.; Cui, Xinran

    2011-01-01

    Zebra finch song behavior is sexually dimorphic: males sing and females do not. The neural system underlying this behavior is sexually dimorphic, and this sex difference is easy to quantify. During development, the zebra finch song system can be altered by steroid hormones, specifically estradiol, which actually masculinizes it. Because of the…

  14. Dendritic growth gated by a steroid hormone receptor underlies increases in activity in the developing Drosophila locomotor system

    PubMed Central

    Zwart, Maarten F.; Randlett, Owen; Evers, Jan Felix; Landgraf, Matthias

    2013-01-01

    As animals grow, their nervous systems also increase in size. How growth in the central nervous system is regulated and its functional consequences are incompletely understood. We explored these questions, using the larval Drosophila locomotor system as a model. In the periphery, at neuromuscular junctions, motoneurons are known to enlarge their presynaptic axon terminals in size and strength, thereby compensating for reductions in muscle excitability that are associated with increases in muscle size. Here, we studied how motoneurons change in the central nervous system during periods of animal growth. We find that within the central nervous system motoneurons also enlarge their postsynaptic dendritic arbors, by the net addition of branches, and that these scale with overall animal size. This dendritic growth is gated on a cell-by-cell basis by a specific isoform of the steroid hormone receptor ecdysone receptor-B2, for which functions have thus far remained elusive. The dendritic growth is accompanied by synaptic strengthening and results in increased neuronal activity. Electrical properties of these neurons, however, are independent of ecdysone receptor-B2 regulation. We propose that these structural dendritic changes in the central nervous system, which regulate neuronal activity, constitute an additional part of the adaptive response of the locomotor system to increases in body and muscle size as the animal grows. PMID:24043825

  15. Resolving the growth-promoting and metabolic effects of growth hormone: Differential regulation of GH-IGF-I system components.

    PubMed

    Norbeck, Lindsey A; Kittilson, Jeffrey D; Sheridan, Mark A

    2007-05-01

    Growth hormone regulates numerous processes in vertebrates including growth promotion and lipid mobilization. During periods of food deprivation, growth is arrested yet lipid depletion is promoted. In this study, we used rainbow trout on different nutritional regimens to examine the regulation of growth hormone (GH)-insulin-like growth factor-I (IGF-I) system elements in order to resolve the growth-promoting and lipid catabolic actions of GH. Fish fasted for 2 or 6 weeks displayed significantly reduced growth compared to their fed counterparts despite elevated plasma GH, while refeeding for 2 weeks following 4 weeks of fasting partially restored growth and lowered plasma GH. Fish fasted for 6 weeks also exhausted their mesenteric adipose tissue reserves. Sensitivity to GH in the liver was reduced in fasting fish as evidenced by reduced expression of GH receptor type 1 (GHR 1) and GHR 2 mRNAs and by reduced (125)I-GH binding capacity. Expression of GHR 1 and GHR 2 mRNAs also was reduced in the gill of fasted fish. In adipose tissue, however, sensitivity to GH, as indicated by GHR 1 expression and by (125)I-GH binding capacity, increased after 6 weeks of fasting in concert with the observed lipid depletion. Fasting-associated growth retardation was accompanied by reduced expression of total IGF-I mRNA in the liver, adipose and gill, and by reduced plasma levels of IGF-I. Sensitivity to IGF-I was reduced in the gill of fasted fish as indicated by reduced expression of type 1 IGF-I receptor (IGFR 1A and IGFR 1B) mRNAs. By contrast, fasting did not affect expression of IGFR 1 mRNAs or (125)I-IGF-I binding in skeletal muscle and increased expression of IGFR 1 mRNAs and (125)I-IGF-I binding in cardiac muscle. These results indicate that nutritional state differentially regulates GH-IGF-I system components in a tissue-specific manner and that such alterations disable the growth-promoting actions of GH and promote the lipid-mobilizing actions of the hormone.

  16. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions.

  17. Plant peptide hormone signalling.

    PubMed

    Motomitsu, Ayane; Sawa, Shinichiro; Ishida, Takashi

    2015-01-01

    The ligand-receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone-receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions. PMID:26374891

  18. Combination Treatment with Progesterone and Vitamin D Hormone May Be More Effective than Monotherapy for Nervous System Injury and Disease

    PubMed Central

    Cekic, Milos; Sayeed, Iqbal; Stein, Donald G.

    2010-01-01

    More than two decades of pre-clinical research and two recent clinical trials have shown that progesterone (PROG) and its metabolites exert beneficial effects after traumatic brain injury (TBI) through a number of metabolic and physiological pathways that can reduce damage in many different tissues and organ systems. Emerging data on 1,25-dihydroxyvitamin D3 (VDH), itself a steroid hormone, have begun to provide evidence that, like PROG, it too is neuroprotective, although some of its actions may involve different pathways. Both agents have high safety profiles, act on many different injury and pathological mechanisms, and are clinically relevant, easy to administer, and inexpensive. Furthermore, vitamin D deficiency is prevalent in a large segment of the population, especially the elderly and institutionalized, and can significantly affect recovery after CNS injury. The combination of PROG and VDH in pre-clinical and clinical studies is a novel and compelling approach to TBI treatment. PMID:19394357

  19. Effects of thyroid hormone on. beta. -adrenergic responsiveness of aging cardiovascular systems

    SciTech Connect

    Tsujimoto, G.; Hashimoto, K.; Hoffman, B.B.

    1987-03-01

    The authors have compared the effects of ..beta..-adrenergic stimulation on the heart and peripheral vasculature of young (2-mo-old) and older (12-mo-old) rats both in the presence and absence of triiodothyronine (T/sub 3/)-induced hyperthyroidism. The hemodynamic consequences of T/sub 3/ treatment were less prominent in the aged hyperthyroid rats compared with young hyperthyroid rats (both in intact and pithed rats). There was a decrease in sensitivity of chronotropic responsiveness to isoproterenol in older pithed rats, which was apparently reversed by T/sub 3/ treatment. The number and affinity of myocardial ..beta..-adrenergic receptor sites measured by (/sup 125/I)cyanopindolol were not significantly different in young and older control rats; also, ..beta..-receptor density increased to a similar extent in both young and older T/sub 3/-treated rats. The ability of isoproterenol to relax mesenteric arterial rings, markedly blunted in older rats, was partially restored by T/sub 3/ treatment without their being any change in isoproterenol-mediated relaxation in the arterial preparation from young rats. The number and affinity of the ..beta..-adrenergic receptors measured in the mesenteric arteries was unaffected by either aging or T/sub 3/ treatment. The data suggest that effects of thyroid hormone and age-related alterations of cardiovascular responsiveness to ..beta..-adrenergic stimulation are interrelated in a complex fashion with a net result that the hyperkinetic cardiovascular manifestations in hyperthyroidism are attenuated in the older animals.

  20. Variable estimates of serum growth hormone concentrations by different radioassay systems

    SciTech Connect

    Reiter, E.O.; Morris, A.H.; MacGillivray, M.H.; Weber, D.

    1988-01-01

    Many different assays are being used to measure serum GH concentrations in children with disorders of growth. We assessed four readily available methods to determine the comparability of the immunopotency estimates: standard double antibody RIA with pituitary standards from the National Hormone and Pituitary Program (assay 1) and from a commercial source (assay 2), a double antibody RIA with serum standards (assay 4), and a commercial immunoradiometric assay (assay 3). There was a high degree of relative correlation between assays (r = 0.95-0.98), but absolute potency estimates differed. Assays 1 and 2 were almost identical. Assay 3 yielded serum GH levels about 65% those of assay 1 or 2 and 80% those of assay 4. Assay 4 gave intermediate values between the low readings in assay 3 and higher values in assay 1 and 2. We conclude that substantial variation occurs in potency estimates in different GH assays. Such differences can affect the interpretation of many GH provocative and sampling studies.

  1. Types of hormone therapy

    MedlinePlus

    ... types of hormone therapy; Hormone replacement therapy - types; Menopause - types of hormone therapy; HT - types; Menopausal hormone ... Menopause symptoms include: Hot flashes Night sweats Sleep problems Vaginal dryness Anxiety Moodiness Less interest in sex ...

  2. A novel function of red pigment-concentrating hormone in crustaceans: Porcellio scaber (Isopoda) as a model species.

    PubMed

    Zralá, Jana; Kodrík, Dalibor; Zahradnícková, Helena; Zemek, Rostislav; Socha, Radomír

    2010-04-01

    The RP HPLC and LC/MS QTOF analyses of the methanolic CNS extract from isopod crustacean the woodlouse, Porcellio scaber revealed a presence of the red pigment-concentrating hormone (Panbo-RPCH) in this species. It has been shown that this neuropeptide plays a role in mobilization of energy stores: topical treatments of P. scaber individuals by Panbo-RPCH in a concentration 20 pmol/microl increased the level of glucose in haemolymph about 4 times, while the level of trehalose was only doubled. The results demonstrated that glucose was the main carbohydrate mobilized by the Panbo-RPCH treatment: glucose was responsible for about 97% of total carbohydrate increasing. Despite the demonstration of hyperglycaemic activity of Panbo-RPCH, no stimulatory effect of this hormone on the locomotory activity of P. scaber was observed. The present study is the first discovery of an occurrence of Panbo-RPCH and its hyperglycaemic activity in the representative of the isopod crustaceans. The relationship of the function of Panbo-RPCH in P. scaber to the role of this neuropeptide and adipokinetic hormones in insects is discussed.

  3. Adrenocorticotropic hormone gel in the treatment of systemic lupus erythematosus: A retrospective study of patients.

    PubMed Central

    Li, Xiao; Golubovsky, Josh; Hui-Yuen, Joyce; Shah, Ummara; Olech, Ewa; Lomeo, Rosalia; Singh, Vijay; Busch, Howard; Strandberg, Mary Jane; Strandberg, Kayla; Horowitz, Leslie; Askanase, Anca

    2016-01-01

    Objectives: Acthar Gel is a long-acting formulation of adrenocorticotropic hormone (ACTH) with anti-inflammatory effects thought to be mediated in part through melanocortin receptor activation. This study was initiated to understand the role of Acthar Gel in SLE treatment in rheumatology practices. Methods: This is a retrospective case series of nine adult female patients treated with Acthar Gel for at least six months at five academic centers. Treating physicians completed a one-page questionnaire on lupus medications, disease activity, and outcomes. Clinical response was defined using SLEDAI 2K and improvement in the clinical manifestation(s) being treated. Results: The most common clinical SLE manifestations/indications requiring therapy with Acthar Gel were arthritis, rash, and inability to taper corticosteroids. The mean SLEDAI 2K score at baseline was 5.8 ± 5.0 (range 0-16). Six patients were concomitantly treated with corticosteroids (mean dose 18.3mg/day). All patients were on background SLE medications including immunosuppressives. Seven of nine patients had an overall improvement, with a decrease in SLEDAI 2K from 5.8 ± 5.0 at baseline to 3.5 ± 2.7 (range 0-8); four of five patients had improvement or resolution in arthritis, and one of two patients had resolution of inflammatory rash. Four patients discontinued corticosteroids and one patient tapered below 50% of the initial dose by 3 months of treatment with Acthar Gel. No adverse events were reported. Conclusions: This study suggests a role for Acthar Gel as an alternative to corticosteroids in the treatment of SLE. Acthar Gel appears to be safe and well-tolerated after 6 months of treatment, with a significant reduction in disease activity. PMID:27158444

  4. The gonadotropin-releasing hormone neurosecretory system of the jerboa (Jaculus orientalis) and its seasonal variations.

    PubMed

    El Ouezzani, S; Tramu, G; Magoul, R

    2000-12-01

    The distribution of cells expressing gonadotropin-releasing hormone (GnRH) immunoreactivity was examined in the brain of adult jerboa during two distinct periods of the reproductive cycle. During spring-summer, when the jerboa is sexually active, a high density of cell bodies and fibres immunoreactive (IR) for GnRH was observed at the level of separation of the frontal lobes, in the medial septal nucleus (MS) and in the diagonal band of Broca (DBB), in the preoptic area (POA), in the organum vasculosum laminae terminalis (OVLT), in the retrochiasmatic area and hypothalamus. In autumn, when the jerboa is sexually inactive, GnRH-immunoreactivity was less intense than during spring-summer. In the POA, we noted a 55% decrease in the number of GnRH containing cells with no change in cell numbers in the MS-DBB. Furthermore, a lower density of GnRH immunopositive axon fibres is observed in all the previously mentioned structures and the immunoreaction intensity was very weak particularly within the median eminence and OVLT. Independently of the season, the GnRH immunoreactivity within neurones and fibres was similar in jerboas living in captivity and in jerboas living in their natural biotope. The effects of photoperiod on the density of POA-GnRH and arcuate nucleus beta-endorphin-containing cells were studied in jerboas maintained in long day [(LD) 16-h light, 8-h dark] and short day [(SD) 8-h light, 16-h dark] for 8 weeks. In the POA, the GnRH-IR cell number was not significantly altered by the photoperiod. Similarly, in the mediobasal hypothalamus, the number of beta-endorphin-IR neurones was not affected by such a parameter. Consequently, the GnRH seasonal variations cannot be correlated to changes in the photoperiod alone. PMID:11106979

  5. Mollusc gonadotropin-releasing hormone directly regulates gonadal functions: a primitive endocrine system controlling reproduction.

    PubMed

    Treen, Nicholas; Itoh, Naoki; Miura, Hanae; Kikuchi, Ippei; Ueda, Takenori; Takahashi, Keisuke G; Ubuka, Takayoshi; Yamamoto, Kazutoshi; Sharp, Peter J; Tsutsui, Kazuyoshi; Osada, Makoto

    2012-04-01

    Gonadotropin-releasing hormone (GnRH) is central to the control of vertebrate reproductive cycles and since GnRH orthologs are also present in invertebrates, it is likely that the common ancestor of bilateral animals possessed a GnRH-like peptide. In order to understand the evolutionary and comparative biology of GnRH peptides we cloned the cDNA transcripts of prepro GnRH-like peptides from two species of bivalve molluscs, the Yesso scallop Patinopecten yessoensis and the Pacific oyster Crassostrea gigas. We compared their deduced uncleaved and mature amino acid sequences with those from other invertebrates and vertebrates, and determined their sites of expression and biological activity. The two molluscan GnRH sequences increased the number of known protostome GnRHs to six different forms, indicating the current classification of protostome GnRHs requires further revision. In both molluscs, RT-PCR analysis showed that the genes were highly expressed in nervous tissue with lower levels present in peripheral tissues including the gonads, while immunocytochemistry, using anti-octopus GnRH-like peptide, demonstrated the presence of GnRH-like peptide in neural tissue. Putative scallop GnRH-like peptide stimulated spermatogonial cell division in cultured scallop testis, but the scallop GnRH-like peptide did not stimulate LH release from cultured quail pituitary cells. This is the first report of the cloning of bivalve GnRH-like peptide genes and of molluscan GnRH-like peptides that are biologically active in molluscs, but not in a vertebrate.

  6. Growth hormone alters the glutathione S-transferase and mitochondrial thioredoxin systems in long-living Ames dwarf mice.

    PubMed

    Rojanathammanee, Lalida; Rakoczy, Sharlene; Brown-Borg, Holly M

    2014-10-01

    Ames dwarf mice are deficient in growth hormone (GH), prolactin, and thyroid-stimulating hormone and live significantly longer than their wild-type (WT) siblings. The lack of GH is associated with stress resistance and increased longevity. However, the mechanism underlying GH's actions on cellular stress defense have yet to be elucidated. In this study, WT or Ames dwarf mice were treated with saline or GH (WT saline, Dwarf saline, and Dwarf GH) two times daily for 7 days. The body and liver weights of Ames dwarf mice were significantly increased after 7 days of GH administration. Mitochondrial protein levels of the glutathione S-transferase (GST) isozymes, K1 and M4 (GSTK1 and GSTM4), were significantly higher in dwarf mice (Dwarf saline) when compared with WT mice (WT saline). GH administration downregulated the expression of GSTK1 proteins in dwarf mice. We further investigated GST activity from liver lysates using different substrates. Substrate-specific GST activity (bromosulfophthalein, dichloronitrobenzene, and 4-hydrox-ynonenal) was significantly reduced in GH-treated dwarf mice. In addition, GH treatment attenuated the activity of thioredoxin and glutaredoxin in liver mitochondria of Ames mice. Importantly, GH treatment suppressed Trx2 and TrxR2 mRNA expression. These data indicate that GH has a role in stress resistance by altering the functional capacity of the GST system through the regulation of specific GST family members in long-living Ames dwarf mice. It also affects the regulation of thioredoxin and glutaredoxin, factors that regulate posttranslational modification of proteins and redox balance, thereby further influencing stress resistance.

  7. Growth hormone alters the glutathione S-transferase and mitochondrial thioredoxin systems in long-living Ames dwarf mice.

    PubMed

    Rojanathammanee, Lalida; Rakoczy, Sharlene; Brown-Borg, Holly M

    2014-10-01

    Ames dwarf mice are deficient in growth hormone (GH), prolactin, and thyroid-stimulating hormone and live significantly longer than their wild-type (WT) siblings. The lack of GH is associated with stress resistance and increased longevity. However, the mechanism underlying GH's actions on cellular stress defense have yet to be elucidated. In this study, WT or Ames dwarf mice were treated with saline or GH (WT saline, Dwarf saline, and Dwarf GH) two times daily for 7 days. The body and liver weights of Ames dwarf mice were significantly increased after 7 days of GH administration. Mitochondrial protein levels of the glutathione S-transferase (GST) isozymes, K1 and M4 (GSTK1 and GSTM4), were significantly higher in dwarf mice (Dwarf saline) when compared with WT mice (WT saline). GH administration downregulated the expression of GSTK1 proteins in dwarf mice. We further investigated GST activity from liver lysates using different substrates. Substrate-specific GST activity (bromosulfophthalein, dichloronitrobenzene, and 4-hydrox-ynonenal) was significantly reduced in GH-treated dwarf mice. In addition, GH treatment attenuated the activity of thioredoxin and glutaredoxin in liver mitochondria of Ames mice. Importantly, GH treatment suppressed Trx2 and TrxR2 mRNA expression. These data indicate that GH has a role in stress resistance by altering the functional capacity of the GST system through the regulation of specific GST family members in long-living Ames dwarf mice. It also affects the regulation of thioredoxin and glutaredoxin, factors that regulate posttranslational modification of proteins and redox balance, thereby further influencing stress resistance. PMID:24285747

  8. Safety of Hormonal Replacement Therapy and Oral Contraceptives in Systemic Lupus Erythematosus: A Systematic Review and Meta-Analysis

    PubMed Central

    Rojas-Villarraga, Adriana; Torres-Gonzalez, July-Vianneth; Ruiz-Sternberg, Ángela-María

    2014-01-01

    Background There is conflicting data regarding exogenous sex hormones [oral contraceptives (OC) and hormonal replacement therapy (HRT)] exposure and different outcomes on Systemic Lupus Erythematosus (SLE). The aim of this work is to determine, through a systematic review and meta-analysis the risks associated with estrogen use for women with SLE as well as the association of estrogen with developing SLE. Methods and Findings MEDLINE, EMBASE, SciElo, BIREME and the Cochrane library (1982 to July 2012), were databases from which were selected and reviewed (PRISMA guidelines) randomized controlled trials, cross-sectional, case-control and prospective or retrospective nonrandomized, comparative studies without language restrictions. Those were evaluated by two investigators who extracted information on study characteristics, outcomes of interest, risk of bias and summarized strength of evidence. A total of 6,879 articles were identified; 20 full-text articles were included. Thirty-two meta-analyses were developed. A significant association between HRT exposure (Random model) and an increased risk of developing SLE was found (Rate Ratio: 1.96; 95%-CI: 1.51–2.56; P-value<0.001). One of eleven meta-analyses evaluating the risk for SLE associated with OC exposure had a marginally significant result. There were no associations between HRT or OC exposure and specific outcomes of SLE. It was not always possible to Meta-analyze all the available data. There was a wide heterogeneity of SLE outcome measurements and estrogen therapy administration. Conclusion An association between HRT exposure and SLE causality was observed. No association was found when analyzing the risk for SLE among OC users, however since women with high disease activity/Thromboses or antiphospholipid-antibodies were excluded from most of the studies, caution should be exercised in interpreting the present results. To identify risk factors that predispose healthy individuals to the development of SLE who

  9. The use of hormonal treatments to improve the reproductive performance of lactating dairy cows in feedlot or pasture-based management systems.

    PubMed

    Lucy, M C; McDougall, S; Nation, D P

    2004-07-01

    Hormonal interventions have been used to increase the probability of estrous detection and insemination, and to increase pregnancy rates of dairy cattle under a variety of management systems. The present review addresses the basic principles of hormonal intervention and presents typical examples that illustrate the methodology. The hormones used to control the estrous cycle mimic the reproductive hormones found within the normal cow. Most estrous synchronization systems employ a method for controlling follicular wave development, promoting ovulation in anestrous cows, regressing the corpus luteum in cyclic cows, and synchronizing estrus and (or) ovulation at the end of treatment. A wide range of reproductive systems are in place on dairy farms. In most herds, a non-intervention period is practiced where postpartum cows are observed estrus estrus. Cows not observed in estrus are then treated. A number of studies in pasture-based and confinement systems have demonstrated net benefits of whole-herd synchronization. Despite the advantages of whole-herd reproductive programs, their uptake has been inconsistent globally. The benefits of a timed artificial insemination (AI) system increase under conditions of poor estrous detection rate and poor conception rate. The unpopular nature of timed AI programs in pasture-fed cows relates to high rates of estrous detection and conception for pasture-based dairying. Regardless of production system, some cows must be re-inseminated because they are not pregnant after first insemination. The presence of "phantom cows" (non-pregnant cows that do not return to estrus) creates a serious reproductive challenge for both pasture-based and confinement-style operations. Early pregnancy diagnosis and second insemination timed AI may reduce the effects of phantom cows on dairy herds. Fundamental research into anestrous, the hormonal control of the estrous cycle, and early pregnancy detection should elucidate new methods that can be used to

  10. Role of the ghrelin system in alcoholism: Acting on the growth hormone secretagogue receptor to treat alcohol-related diseases.

    PubMed

    Leggio, L

    2010-04-01

    There exists a substantial need to identify new neuropharmacological targets to treat alcohol-dependent individuals. Ghrelin represents a gut-brain peptide, initially discovered as the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). The existing literature clearly demonstrates that ghrelin affects appetite and food intake. Both animal and human studies provide evidence that ghrelin not only influences hunger but also has a role in the search for rewarding substances, such as alcohol. Animal studies provide evidence that ghrelin stimulates the reward system, acting on specific brain reward nodes, and that ghrelin signaling is required for stimulation of the reward system by alcohol. Human studies show that ethanol acutely affects ghrelin levels. Interestingly, human studies with alcohol-dependent individuals suggest that higher ghrelin levels are associated with higher self-reported measurements of alcohol craving. Altogether, these findings suggest that the ghrelin system plays a role in alcohol dependence. Ghrelin antagonists (i.e., GHS-R1a antagonists and/or inverse agonists) might affect alcohol-seeking behavior, thus having therapeutic potential in alcohol use disorders. Future laboratory and clinical studies testing this hypothesis are warranted. PMID:20440417

  11. Juvenile hormone-dopamine systems for the promotion of flight activity in males of the large carpenter bee Xylocopa appendiculata

    NASA Astrophysics Data System (ADS)

    Sasaki, Ken; Nagao, Takashi

    2013-12-01

    The reproductive roles of dopamine and dopamine regulation systems are known in social hymenopterans, but the knowledge on the regulation systems in solitary species is still needed. To test the possibility that juvenile hormone (JH) and brain dopamine interact to trigger territorial flight behavior in males of a solitary bee species, the effects on biogenic amines of JH analog treatments and behavioral assays with dopamine injections in males of the large carpenter bee Xylocopa appendiculata were quantified. Brain dopamine levels were significantly higher in methoprene-treated males than in control males 4 days after treatment, but were not significantly different after 7 days. Brain octopamine and serotonin levels did not differ between methoprene-treated and control males at 4 and 7 days after treatment. Injection of dopamine caused significantly higher locomotor activities and a shorter duration for flight initiation in experimental versus control males. These results suggest that brain dopamine can be regulated by JH and enhances flight activities in males. The JH-dopamine system in males of this solitary bee species is similar to that of males of the highly eusocial honeybee Apis mellifera.

  12. Juvenile hormone-dopamine systems for the promotion of flight activity in males of the large carpenter bee Xylocopa appendiculata.

    PubMed

    Sasaki, Ken; Nagao, Takashi

    2013-12-01

    The reproductive roles of dopamine and dopamine regulation systems are known in social hymenopterans, but the knowledge on the regulation systems in solitary species is still needed. To test the possibility that juvenile hormone (JH) and brain dopamine interact to trigger territorial flight behavior in males of a solitary bee species, the effects on biogenic amines of JH analog treatments and behavioral assays with dopamine injections in males of the large carpenter bee Xylocopa appendiculata were quantified. Brain dopamine levels were significantly higher in methoprene-treated males than in control males 4 days after treatment, but were not significantly different after 7 days. Brain octopamine and serotonin levels did not differ between methoprene-treated and control males at 4 and 7 days after treatment. Injection of dopamine caused significantly higher locomotor activities and a shorter duration for flight initiation in experimental versus control males. These results suggest that brain dopamine can be regulated by JH and enhances flight activities in males. The JH-dopamine system in males of this solitary bee species is similar to that of males of the highly eusocial honeybee Apis mellifera.

  13. The effects of stress hormones on immune function may be vital for the adaptive reconfiguration of the immune system during fight-or-flight behavior.

    PubMed

    Adamo, Shelley A

    2014-09-01

    Intense, short-term stress (i.e., robust activation of the fight-or-flight response) typically produces a transient decline in resistance to disease in animals across phyla. Chemical mediators of the stress response (e.g., stress hormones) help induce this decline, suggesting that this transient immunosuppression is an evolved response. However, determining the function of stress hormones on immune function is difficult because of their complexity. Nevertheless, evidence suggests that stress hormones help maintain maximal resistance to disease during the physiological changes needed to optimize the body for intense physical activity. Work on insects demonstrates that stress hormones both shunt resources away from the immune system during fight-or-flight responses as well as reconfigure the immune system. Reconfiguring the immune system minimizes the impact of the loss of these resources and reduces the increased costs of some immune functions due to the physiological changes demanded by the fight-or-flight response. For example, during the stress response of the cricket Gryllus texensis, some molecular resources are shunted away from the immune system and toward lipid transport, resulting in a reduction in resistance to disease. However, insects' immune cells (hemocytes) have receptors for octopamine (the insect stress neurohormone). Octopamine increases many hemocyte functions, such as phagocytosis, and these changes would tend to mitigate the decline in immunity due to the loss of molecular resources. Moreover, because the stress response generates oxidative stress, some immune responses are probably more costly when activated during a stress response (e.g., those that produce reactive molecules). Some of these immune responses are depressed during stress in crickets, while others, whose costs are probably not increased during a stress response, are enhanced. Some effects of stress hormones on immune systems may be better understood as examples of reconfiguration

  14. [Dynamic changes in the reactivity of the hormonal system regulation with the impact by LBNP sessions in long-term space mission].

    PubMed

    Grigor'ev, A I; Noskov, V B; Poliakov, V V; Vorob'ev, D V; Nichiporuk, I A; Hinghofer-Szalkay, G; Rossler, A; Kvetnianski, R; Macho, L

    1998-01-01

    Experiment INTERSTITIUM was performed on days 3, 170, 287, and 430 of the long-term MIR mission of the Russian cosmonaut-physician in order to evaluate reactivity of the system of hormonal regulation of homeostasis during LBNP sessions. Data of the experiment displayed different types of reaction of the volume controls to LBNP at the onset (F-3), in the course of and soon after recovery (R-4) from the extended mission which are signs of specific phases of adaptive shifts in the organism of cosmonaut. Exaggerated reactivity of the hormonal systems during LBNP in flight suggests more significant consequences of the test for the cardiovascular system of human in microgravity. The most expressed hormonal reaction to LBNP was documented at the very beginning of the postflight period. Plasma cGMP was materially reduced in the process of the mission and remained quite low on R-4; return of nucleotides to the norm was observed no earlier than on R-90. Complete recovery from the space mission took three months when the hormonal reaction to LBNP was same as prior to launch.

  15. [The effect of low doses of nakom on the hormonal secretion of the hypothalamo-hypophyseal-adrenal system in patients with infantile cerebral palsy].

    PubMed

    Brin, I L; Mashilov, K V

    1996-01-01

    The levels of hormones of hypothalamo-hypophyseal-adrenal system were measured in 14 10-14 year old children with infantile cerebral paralysis (ICP) with central catecholaminergic motor insufficiency. Contents of adrenocorticotropic hormone (ACTH), hydrocortisone (HC), somatotropic hormone, prolactin (P) were examined before and during Nacome administration (62.5 mg once daily in the morning). 110 patients of the same age with ICP and 18 children with acquired encephalopathy (EP) formed the control group. The elevations of ACTH, HC and P were revealed in spastic forms of ICP. Meanwhile nearly normal hormonal levels were observed in hyperkinetic forms of ICP and EP. The more pronounced effect was noted in "dopamine-dependent" children in which the drug's administration resulted in normalization of clinical and biochemical indices. Hyperkinetic phenomena revealed the connection between the character of neuromotor dyskinesias and the state of hypothalamo-hypophyseal-adrenal axis which is regulated by dopamine. The data obtained show hypofunction of dopaminergic neurotransmitter cerebral systems in patients with ICP that plays important pathogenetic role in development of disease with systemic manifestations. PMID:9281279

  16. Seasonal changes in plasma levels of sex hormones in the greater Rhea (Rhea americana), a South American Ratite with a complex mating system.

    PubMed

    Valdez, Diego J; Vera Cortez, Marilina; Della Costa, Natalia S; Lèche, Alvina; Hansen, Cristian; Navarro, Joaquín L; Martella, Mónica B

    2014-01-01

    Seasonal rhythm in sex hormones has been extensively studied in birds, as well as its relationship with the type of mating system. The Greater Rhea (Rhea americana), a South American ratite species, reproduces seasonally and has a complex mating system: female-defense polygyny and sequential polyandry. The present study aimed at analyzing the endocrine basis of reproduction in this species and its relationship with its mating system. We used HPLC and electrochemiluminescence techniques to identify and measure plasma testosterone and estradiol levels. Annual oscillations in sex hormones, testosterone and estradiol, in adult males and females were observed. Lower levels of these hormones were exhibited during the non reproductive season (February to July), whereas their maximum values were reached in September for males and November-December for females. These fluctuations reflect the seasonal changes in gonadal function. By contrast, no significant sex hormones oscillations were observed in juvenile males and females (negative control of seasonal changes). Greater rheas maintain high testosterone and estradiol levels throughout the reproductive period. The high testosterone levels during incubation and chick rearing did not inhibit parental behavior in males, which appears not to conform to the "Challenge Hypothesis". In females, the high estradiol levels throughout the reproductive season would be needed to sustain their long egg-laying period. PMID:24837464

  17. Seasonal Changes in Plasma Levels of Sex Hormones in the Greater Rhea (Rhea americana), a South American Ratite with a Complex Mating System

    PubMed Central

    Valdez, Diego J.; Vera Cortez, Marilina; Della Costa, Natalia S.; Lèche, Alvina; Hansen, Cristian; Navarro, Joaquín L.; Martella, Mónica B.

    2014-01-01

    Seasonal rhythm in sex hormones has been extensively studied in birds, as well as its relationship with the type of mating system. The Greater Rhea (Rhea americana), a South American ratite species, reproduces seasonally and has a complex mating system: female-defense polygyny and sequential polyandry. The present study aimed at analyzing the endocrine basis of reproduction in this species and its relationship with its mating system. We used HPLC and electrochemiluminescence techniques to identify and measure plasma testosterone and estradiol levels. Annual oscillations in sex hormones, testosterone and estradiol, in adult males and females were observed. Lower levels of these hormones were exhibited during the non reproductive season (February to July), whereas their maximum values were reached in September for males and November-December for females. These fluctuations reflect the seasonal changes in gonadal function. By contrast, no significant sex hormones oscillations were observed in juvenile males and females (negative control of seasonal changes). Greater rheas maintain high testosterone and estradiol levels throughout the reproductive period. The high testosterone levels during incubation and chick rearing did not inhibit parental behavior in males, which appears not to conform to the “Challenge Hypothesis”. In females, the high estradiol levels throughout the reproductive season would be needed to sustain their long egg-laying period. PMID:24837464

  18. Seasonal changes in plasma levels of sex hormones in the greater Rhea (Rhea americana), a South American Ratite with a complex mating system.

    PubMed

    Valdez, Diego J; Vera Cortez, Marilina; Della Costa, Natalia S; Lèche, Alvina; Hansen, Cristian; Navarro, Joaquín L; Martella, Mónica B

    2014-01-01

    Seasonal rhythm in sex hormones has been extensively studied in birds, as well as its relationship with the type of mating system. The Greater Rhea (Rhea americana), a South American ratite species, reproduces seasonally and has a complex mating system: female-defense polygyny and sequential polyandry. The present study aimed at analyzing the endocrine basis of reproduction in this species and its relationship with its mating system. We used HPLC and electrochemiluminescence techniques to identify and measure plasma testosterone and estradiol levels. Annual oscillations in sex hormones, testosterone and estradiol, in adult males and females were observed. Lower levels of these hormones were exhibited during the non reproductive season (February to July), whereas their maximum values were reached in September for males and November-December for females. These fluctuations reflect the seasonal changes in gonadal function. By contrast, no significant sex hormones oscillations were observed in juvenile males and females (negative control of seasonal changes). Greater rheas maintain high testosterone and estradiol levels throughout the reproductive period. The high testosterone levels during incubation and chick rearing did not inhibit parental behavior in males, which appears not to conform to the "Challenge Hypothesis". In females, the high estradiol levels throughout the reproductive season would be needed to sustain their long egg-laying period.

  19. Abundance and fate of antibiotics and hormones in a vegetative treatment system receiving cattle feedlot runoff

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetative treatment systems (VTS) have been developed and built as an alternative to conventional holding pond systems for managing run-off from animal feeding operations. Initially developed to manage runoff nutrients via uptake by grasses, their effectiveness at removing other runoff contaminant...

  20. Sex Hormones and Immune Dimorphism

    PubMed Central

    Bhatia, Aruna; Sekhon, Harmandeep Kaur; Kaur, Gurpreet

    2014-01-01

    The functioning of the immune system of the body is regulated by many factors. The abnormal regulation of the immune system may result in some pathological conditions. Sex hormones of reproductive system are one of the major factors that regulate immune system due to the presence of hormone receptors on immune cells. The interaction of sex hormones and immune cells through the receptors on these cells effect the release of cytokines which determines the proliferation, differentiation, and maturation of different types of immunocytes and as a result the outcome of inflammatory or autoimmune diseases. The different regulations of sex hormones in both sexes result in immune dimorphism. In this review article the mechanism of regulation of immune system in different sexes and its impact are discussed. PMID:25478584

  1. Expression of insulin-like factor 3 hormone-receptor system in the reproductive organs of male goats.

    PubMed

    Pitia, Ali Mohammed; Minagawa, Itaru; Uera, Naoto; Hamano, Koh-Ichi; Sugawara, Yasushi; Nagura, Yoshio; Hasegawa, Yoshihisa; Oyamada, Toshifumi; Sasada, Hiroshi; Kohsaka, Tetsuya

    2015-11-01

    Relaxin-like factor (RLF), generally known as insulin-like factor 3 (INSL3), is essential for testis descent during fetal development. However, its role in adult males is not fully understood. We investigate the function of INSL3 in male Saanen goats by identifying cell types expressing its receptor, relaxin/insulin-like family peptide receptor (RXFP)2 and by characterizing the developmental expression pattern of INSL3 and RXFP2 and the binding of INSL3 to target cells in the male reproductive system. A highly specific RXFP2 antibody that co-localizes with an anti-FLAG antibody in HEK-293 cells recognizes RXFP2-transcript-expressing cells in the testis. INSL3 and RXFP2 mRNA expression is upregulated in the testis, starting from puberty. INSL3 mRNA and protein expression has been detected in Leydig cells, whereas RXFP2 mRNA and protein localize to Leydig cells, to meiotic and post-meiotic germ cells and to the epithelium and smooth muscle of the cauda epididymis and vas deferens. INSL3 binds to all of these tissues and cell types, with the exception of Leydig cells, in a hormone-specific and saturable manner. These results provide evidence for a functional intra- and extra-testicular INSL3 ligand-receptor system in adult male goats.

  2. Immunohistochemical study of androgenic gland hormone: localization in the male reproductive system and species specificity in the terrestrial isopods.

    PubMed

    Hasegawa, Yuriko; Okuno, Atsuro; Nagasawa, Hiromichi

    2002-02-01

    Androgenic gland hormone (AGH) is responsible for male sexual differentiation in crustaceans. AGH of the terrestrial isopod, Armadillidium vulgare, is a heterodimetric glycoprotein. To determine the distribution of AGH in the male reproductive system, an immunohistochemical study was carried out using antibodies raised against different components of the proAGH molecule of A. vulgare, for example, the whole molecule of recombinant proAGH expressed in Escherichia coli (E. coli-rAGH), the N-terminal nonapeptide of the B chain, and the N-terminal octapeptide of the A chain. The androgenic gland (AG) showed strong immunoreactivity to all three of these antibodies, while the testis, the seminal vesicle, and the vas deferens did not show immunostaining. To examine the species specificity of AGH, the male reproductive systems in nine species of Oniscidea were examined immunohistochemically with antibody raised against E. coli-rAGH. A positive reaction was observed in the AGs of species belonging to the Armadillidiidae, Porcellionidae, and Scyphacidae families. Immunoreactivity was strongest in A. vulgare and was stronger in Armadillidiidae than in Porcellionidae or in Scyphacidae. These results suggest that structural similarity of AGH may exist among some terrestrial isopods, although AGH seems to harbor a relatively high degree of species specificity. PMID:11884067

  3. [Preparation of Transmembrane Fragments Growth Hormone Receptor GHR in a Cell-Free Expression System for Structural Studies].

    PubMed

    Bocharova, O V; Kuzmichev, P K; Urban, A S; Goncharuk, S A; Bocharov, E V; Arsenyev, A S

    2015-01-01

    Growth hormone somatotropin and its membrane receptor GHR, belonging to a superfamily of the type I receptors possessing tyrosine kinase activity, are involved in the intercellular signal transduction cascade and regulate a number of important physiological and pathological processes in humans. Binding with somatotropin triggers a transition of GHR between two alternative dimer states, resulting in an allosteric activation of JAK2 tyrosine kinase in the cell cytoplasm. Transmembrane domain of GHR directly involved in this complex conformational transition. It has presumably two dimerization interfaces corresponding to the "unliganded" and the active state of GHR. In order to study the molecular basis of biochemical signal transduction mechanism across the cell membrane, we have developed an efficient cell-free production system of a TM fragment of GHR, which contains its TM domain flanked by functionally important juxtamembrane regions (GHRtm residues 254-298). The developed system allows to obtain -1 mg per 1 ml of reaction mixture of 13C- and 15N-isotope-labeled protein for structural and dynamic studies of the GHR TM domain dimerization in the membrane-mimicking medium by high-resolution heteronuclear NMR spectroscopy. PMID:27125024

  4. Regulation of skeletal muscle growth in fish by the growth hormone--insulin-like growth factor system.

    PubMed

    Fuentes, Eduardo N; Valdés, Juan Antonio; Molina, Alfredo; Björnsson, Björn Thrandur

    2013-10-01

    The growth hormone (GH)-insulin-like growth factor (IGF) system is the key promoter of growth in vertebrates; however, how this system modulates muscle mass in fish is just recently becoming elucidated. In fish, the GH induces muscle growth by modulating the expression of several genes belonging to the myostatin (MSTN), atrophy, GH, and IGF systems as well as myogenic regulatory factors (MRFs). The GH controls the expression of igf1 via Janus kinase 2 (JAK2)/signal transducers and activators of the transcription 5 (STAT5) signaling pathway, but it seems that it is not the major regulator. These mild effects of the GH on igf1 expression in fish muscle seem to be related with the presence of higher contents of truncated GH receptor1 (tGHR1) than full length GHR (flGHR1). IGFs in fish stimulate myogenic cell proliferation, differentiation, and protein synthesis through the MAPK/ERK and PI3K/AKT/TOR signaling pathways, concomitant with abolishing protein degradation and atrophy via the PI3K/AKT/FOXO signaling pathway. Besides these signaling pathways control the expression of several genes belonging to the atrophy and IGF systems. Particularly, IGFs and amino acid control the expression of igf1, thus, suggesting other of alternative signaling pathways regulating the transcription of this growth factor. The possible role of IGF binding proteins (IGFBPs) and the contribution of muscle-derived versus hepatic-produced IGF1 on fish muscle growth is also addressed. Thus, a comprehensive overview on the GH-IGF system regulating fish skeletal muscle growth is presented, as well as perspectives for future research in this field.

  5. Rapid and transient reduction in circulating thyroid hormones following systemic antigen priming: implications for functional collaboration between dendritic cells and thyroid.

    PubMed

    Bagriacik, E U; Zhou, Q; Wang, H C; Klein, J R

    2001-09-15

    The thyroid hormones T(3) (tri-iodothyronine) and T(4) (thyroxine) are disseminated throughout the body via the circulation and are maintained across a range of physiological concentrations under the control of thyroid-stimulating hormone (TSH). T(3) (and T(4) after conversion to T(3)) influences many biological activities, including gene expression and protein synthesis, though little is known about the nature of pituitary-thyroid immune interactions. In the present study we show that serum T(3) and T(4) levels are sharply but transiently reduced during the first 24 h of systemic antigen exposure and that this is followed by suppressed levels of free T(4), after which there is rapid recovery to normal levels. Splenic dendritic cells, depending upon the stage of maturation/activation, were found to be a rich source of TSH, and CD11c(+) cells with dendritic cell morphology were present in the thyroid 1-3 days after antigen exposure. Moreover, antigen priming of hypophysectomized mice that are unable to make pituitary-derived TSH resulted in significant increases in circulating T(4), implying that compensation in the drop in thyroid hormones can be regulated from extrapituitary sources. These findings thus identify a novel set of immune-endocrine interactions that transpire during the early phase of antigen exposure, and they suggest that under appropriate conditions the immune system directly participates in the process of maintaining physiological homeostasis by contributing to the regulatory control of thyroid hormone activity.

  6. Hormonal Programming Across the Lifespan

    PubMed Central

    Tobet, Stuart A; Lara, Hernan E; Lucion, Aldo B; Wilson, Melinda E; Recabarren, Sergio E; Paredes, Alfonso H

    2013-01-01

    Hormones influence countless biological processes across the lifespan, and during developmental sensitive periods hormones have the potential to cause permanent tissue-specific alterations in anatomy and physiology. There are numerous critical periods in development wherein different targets are affected. This review outlines the proceedings of the Hormonal Programming in Development session at the US-South American Workshop in Neuroendocrinology in August 2011. Here we discuss how gonadal hormones impact various biological processes within the brain and gonads during early development and describe the changes that take place in the aging female ovary. At the cellular level, hormonal targets in the brain include neurons, glia, or vasculature. On a genomic/epigenomic level, transcription factor signaling and epigenetic changes alter the expression of hormone receptor genes across development and following ischemic brain insult. In addition, organizational hormone exposure alters epigenetic processes in specific brain nuclei and may be a mediator of sexual differentiation of the neonatal brain. During development of the ovary, exposure to excess gonadal hormones leads to polycystic ovarian syndrome (PCOS). Exposure to excess androgens during fetal development also has a profound effect on the development of the male reproductive system. In addition, increased sympathetic nerve activity and stress during early life have been linked to PCOS symptomology in adulthood. Finally, we describe how age-related decreases in fertility are linked to high levels of nerve growth factor (NGF), which enhances sympathetic nerve activity and alters ovarian function. PMID:22700441

  7. Growth hormone.

    PubMed

    Bidlingmaier, Martin; Strasburger, Christian J

    2010-01-01

    Human growth hormone (hGH) is a proteohormone secreted by the pituitary gland. It acts through binding to the hGH receptor, inducing either direct effects or initiating the production of insulin-like growth-factor I (IGF-I), the most important mediator of hGH effects. Growth hormone is primarily known to promote longitudinal growth in children and adolescents, but has also various important metabolic functions throughout adult life. Effects of hGH on the adult organism are well established from studies with recombinant growth hormone (rhGH) therapy in growth hormone deficient subjects. In this particular group of patients, replacement of hGH leads to increased lipolysis and lean body mass, decreased fat mass, improvements in VO(2max), and maximal power output. Although extrapolation from these findings to the situation in well trained healthy subjects is impossible, and controlled studies in healthy subjects are scarce, abuse of hGH seems to be popular among athletes trying to enhance physical performance. Detection of the application of rhGH is difficult, especially because the amino acid sequence of rhGH is identical to the major 22,000 Da isoform of hGH normally secreted by the pituitary. Furthermore, some physiological properties of hGH secretion also hindered the development of a doping test: secreted in a pulsatile manner, it has a very short half-life in circulation, which leads to highly variable serum levels. Concentration alone therefore cannot prove the exogenous administration of hGH.Two approaches have independently been developed for the detection of hGH doping: The so-called "marker approach" investigates changes in hGH-dependent parameters like IGF-I or components of bone and collagen metabolism, which are increased after hGH injection. In contrast, the so-called "isoform approach" directly analyses the spectrum of molecular isoforms in circulation: the pituitary gland secretes a spectrum of homo- and heterodimers and - multimers of a variable

  8. [Do hormones determine our fate?].

    PubMed

    Vermeulen, A

    1994-01-01

    The hormonal system is a communication system between cells and organs. Hence it is not surprising that it influences almost all physiological functions and, at least partially, our behaviour and fate. The sexual phenotype is determined by the sex hormones. Normally, the phenotype is in accordance with gonadal and genetic sex, but occasionally, as a consequence of enzymatic defects in the biosynthesis of sex hormones or of androgen resistance, gonadal and genetic sex are in discordance with the phenotype, the latter determining generally the civil sex and the sex of rearing. Whereas the gender role is generally determined by the sex of rearing and the phenotype, itself under hormonal influence, homo- and transsexuality constitute notorious exceptions to this rule. Although several authors consider homo- and transsexuality to be the consequence of an impairment in androgenic impregnation in the perinatal period, there are at present no convincing arguments for an hormonal origin for either homo- or transsexuality, although such a possibility can't be excluded either. Besides their role in psychosexual behaviour, sex hormones play also a role in our life expectancy. Indeed, although maximal life expectancy of man is genetically determined, a major determinant of individual life expectancy is cardiovascular pathology. The latter is partly responsible for the difference in life expectancy between men and women, cardiovascular mortality increasing rapidly at menopause and being halved by oestrogen replacement therapy. Also atherogenesis as such is, to a large extend, under hormonal control. Indeed insulin resistance and hyperinsulinism, which develop as a corollary of the aging process, is an important cause of atherosclerosis as well as of hypertension. Other hormones also play an important role in our behaviour. We can mention here the role of the thyroid hormones in the physical and mental development of children as well as in the regression of the intellectual

  9. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system.

    PubMed

    López-Bucio, José; Hernández-Abreu, Esmeralda; Sánchez-Calderón, Lenin; Nieto-Jacobo, María Fernanda; Simpson, June; Herrera-Estrella, Luis

    2002-05-01

    The postembryonic developmental program of the plant root system is plastic and allows changes in root architecture to adapt to environmental conditions such as water and nutrient availability. Among essential nutrients, phosphorus (P) often limits plant productivity because of its low mobility in soil. Therefore, the architecture of the root system may determine the capacity of the plant to acquire this nutrient. We studied the effect of P availability on the development of the root system in Arabidopsis. We found that at P-limiting conditions (<50 microM), the Arabidopsis root system undergoes major architectural changes in terms of lateral root number, lateral root density, and primary root length. Treatment with auxins and auxin antagonists indicate that these changes are related to an increase in auxin sensitivity in the roots of P-deprived Arabidopsis seedlings. It was also found that the axr1-3, axr2-1, and axr4-1 Arabidopsis mutants have normal responses to low P availability conditions, whereas the iaa28-1 mutant shows resistance to the stimulatory effects of low P on root hair and lateral root formation. Analysis of ethylene signaling mutants and treatments with 1-aminocyclopropane-1-carboxylic acid showed that ethylene does not promote lateral root formation under P deprivation. These results suggest that in Arabidopsis, auxin sensitivity may play a fundamental role in the modifications of root architecture by P availability.

  10. Osteocalcin induces growth hormone/insulin-like growth factor-1 system by promoting testosterone synthesis in male mice.

    PubMed

    Li, Y; Li, K

    2014-10-01

    Osteocalcin has been shown to enhance testosterone production in men. In the present study, we investigated the effects of osteocalcin on testosterone and on induction of the growth hormone/insulin-like growth factor-1 axis. Osteocalcin injection stimulated growth, which could be inhibited by castration. In addition, osteocalcin induced testosterone secretion in testes both in vivo and in vitro. Using real-time polymerase chain reaction and Western blotting, we showed that growth hormone expression was significantly increased in the pituitary after osteocalcin injection (p<0.05). Growth hormone expression in CLU401 mouse pituitary cells was also significantly stimulated (p<0.05) by osteocalcin-induced MA-10 cells. Osteocalcin injection also promoted hepatic expression of growth hormone receptor and insulin-like growth factor-1 (p<0.05), as demonstrated by real-time polymerase chain reaction and Western blotting. Similarly, osteocalcin-induced MA-10 cells promoted growth hormone receptor and insulin-like growth factor-1 expression in NCTC1469 cells. These results suggest that the growth-stimulating activities of osteocalcin are mediated by testicular testosterone secretion, and thus provide valuable information regarding the regulatory effects of osteocalcin expression on the growth hormone/insulin-like growth factor-1 axis via reproductive activities.

  11. [Incretin hormones].

    PubMed

    Cáp, J

    2011-04-01

    Incretin hormones are peptides that are secreted from endocrine cell of gastrointestinal tract after nutrient ingestion and stimulate insulin secretion. Glucosodependent Insulinotropic Peptide--GIP is released from K-cells of duodenum and proximal jejunum, recently GIP synthesis has been proved in pancreatic alpha cells. Besides the incretin effect causes GIP increased lipogenesis and decreased lipolysis in fat tissue, increased bone formation and decreased resorption and has protective and proliferative effect on CNS neurons. Both GIP agonists (to treat diabetes) and antagonist (to treat obesity) are being studied. Another incretin hormone is derived in intestinal I-cells by posttranslational processing of proglucagon--glucagon-like peptides 1 and 2 (GLP-1 and GLP-2). GLP-1 stimulates insuline production and inhibits glucagon secretion, exerts proliferative and antiapoptotic effect on beta-cells. Via receptors on vagal nerve and central mechanisms decreases food intake and decreases body weight. By deceleration of gastric emptying it attenuates increases in meal-associated blood glucose levels. It exerts cardioprotective effects. GLP-1 receptors have been proved in liver recently but decreased liver glucose production and increased glucose uptake by liver and muscle are mediated indirectly by altering insulin and glucagons levels. GLP-2 stimulates enterocytes proliferation, up-regulates intestinal nutrient transport, improves intestinal barrier function, and inhibits gastric and intestinal motility. GLP-2 also reduces bone resorption. PMID:21612069

  12. Heterogeneity in the growth hormone pituitary gland system of rats and humans: Implications to microgravity based research

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R.; Hayes, C.; Lanham, J. W.; Cleveland, C.; Todd, P.; Morrison, Dennis R.

    1988-01-01

    The cell separation techniques of velocity sedimentation, flow cytometry and continuous flow electrophoresis were used to obtain enriched populations of growth hormone (GH) cells. The goal was to isolate a GH cell subpopulation which releases GH molecules which are very high in biological activity, it was important to use a method which was effective in processing large numbers of cells over a short time span. The techniques based on sedimentation are limited by cell density overlaps and streaming. While flow cytometry is useful in the analytical mode for objectively establishing cell purity, the numbers of cells which can be processed in the sort mode are so small as to make this approach ineffective in terms of the long term goals. It was shown that continuous flow electrophoresis systems (CFES) can separate GH cells from other cell types on the basis of differences in surface charge. The bioreactive producers appear to be more electrophoretically mobile than the low producers. Current ground based CFES efforts are hampered by cell clumping in low ionic strength buffers and poor cell recoveries from the CFES device.

  13. Anti-Müllerian Hormone Is Required for Chicken Embryonic Urogenital System Growth but Not Sexual Differentiation.

    PubMed

    Lambeth, Luke S; Ayers, Katie; Cutting, Andrew D; Doran, Timothy J; Sinclair, Andrew H; Smith, Craig A

    2015-12-01

    In mammals, the primary role of anti-Müllerian hormone (AMH) during development is the regression of Müllerian ducts in males. These structures otherwise develop into fallopian tubes, oviducts, and upper vagina, as in females. This highly conserved function is retained in birds and is supported by the high levels of AMH expression in developing testes. In mammals, AMH expression is controlled partly by the transcription factor, SOX9. However, in the chicken, AMH mRNA expression precedes that of SOX9 , leading to the view that AMH may lie upstream of SOX9 and play a more central role in avian testicular development. To help define the role of AMH in chicken gonad development, we suppressed AMH expression in chicken embryos using RNA interference. In males, AMH knockdown did not affect the expression of key testis pathway genes, and testis cords developed normally. However, a reduction in the size of the mesonephros and gonads was observed, a phenotype that was evident in both sexes. This growth defect occurred as a result of the reduced proliferative capacity of the cells of these tissues, and male gonads also had a significant reduction in germ cell numbers. These data suggest that although AMH does not directly contribute to testicular or ovarian differentiation, it is required in a sex-independent manner for proper cell proliferation and urogenital system growth.

  14. Human Growth Hormone Delivery with a Microneedle Transdermal System: Preclinical Formulation, Stability, Delivery and PK of Therapeutically Relevant Doses

    PubMed Central

    Ameri, Mahmoud; Kadkhodayan, Miryam; Nguyen, Joe; Bravo, Joseph A.; Su, Rebeca; Chan, Kenneth; Samiee, Ahmad; Daddona, Peter E.

    2014-01-01

    This study evaluated the feasibility of coating formulated recombinant human growth hormone (rhGH) on a titanium microneedle transdermal delivery system, Zosano Pharma (ZP)-hGH, and assessed preclinical patch delivery performance. Formulation rheology and surface activity were assessed by viscometry and contact angle measurement. rhGH liquid formulation was coated onto titanium microneedles by dip-coating and drying. The stability of coated rhGH was determined by size exclusion chromatography-high performance liquid chromatography (SEC-HPLC). Preclinical delivery and pharmacokinetic studies were conducted in female hairless guinea pigs (HGP) using rhGH coated microneedle patches at 0.5 and 1 mg doses and compared to Norditropin® a commercially approved rhGH subcutaneous injection. Studies demonstrated successful rhGH formulation development and coating on microneedle arrays. The ZP-hGH patches remained stable at 40 °C for six months with no significant change in % aggregates. Pharmacokinetic studies showed that the rhGH-coated microneedle patches, delivered with high efficiency and the doses delivered indicated linearity with average Tmax of 30 min. The absolute bioavailability of the microneedle rhGH patches was similar to subcutaneous Norditropin® injections. These results suggest that ZP-transdermal microneedle patch delivery of rhGH is feasible and may offer an effective and patient-friendly alternative to currently marketed rhGH injectables. PMID:24838219

  15. The thyrotropin-releasing hormone secretory system in the hypothalamus of the Siberian hamster in long and short photoperiods.

    PubMed

    Ebling, F J P; Wilson, D; Wood, J; Hughes, D; Mercer, J G; Morgan, P J; Barrett, P

    2008-05-01

    Thyrotropin-releasing hormone (TRH) is not only essential for the regulation of the pituitary-thyroid axis, but also exerts complementary effects on energy metabolism within the brain. We hypothesised that increased activity of the TRH secretory system may contribute to seasonal adaptations in the Siberian hamster whereby food intake is decreased in winter, and catabolism of fat stores is increased to support thermogenesis. We determined the distribution of TRH producing neurones and TRH-R1 receptor expressing cells in the hypothalamus, and investigated whether photoperiod regulated this system. TRH-immunoreactive (ir) cell somata and preproTRH mRNA expression were found to be widely distributed throughout the medial hypothalamus, with particular clusters in the paraventricular nucleus, the medial preoptic area and periventricular nucleus, and in the dorsomedial hypothalamus extending into the lateral hypothalamic area. A partial sequence encoding TRH-R1 was cloned from hamster hypothalamic cDNA and used to generate a riboprobe for in situ hybridisation studies. TRH-R1 mRNA expressing cells were abundant throughout the hypothalamus, corresponding to the widespread presence of TRH-ir fibres. Photoperiod did not affect the expression of preproTRH mRNA in any region, and the only significant change in TRH-R1 expression was in the dorsomedial posterior arcuate region. This wide distribution of TRH-producing and receptive cells in the hypothalamus is consistent with its hypothesised neuromodulatory roles in the short-term homeostatic control of appetite, thermoregulation and energy expenditure, but the lack of photoperiodic change in TRH mRNA expression does not support the hypothesis that changes in this system underlie long-term seasonal changes in body weight.

  16. Sexual differentiation of the copulatory neuromuscular system in green anoles (Anolis carolinensis): normal ontogeny and manipulation of steroid hormones.

    PubMed

    Holmes, Melissa M; Wade, Juli

    2005-09-01

    The copulatory neuromuscular system of green anoles is sexually dimorphic and differentiates during embryonic development, although details of the process were unknown. In Experiment 1, we determined the time course of normal ontogeny. Both male and female embryos possessed bilateral copulatory organs (hemipenes) and associated muscles until incubation day 13; the structures completely regressed in female embryos by incubation day 19 (total incubation 34 days). In Experiment 2, we treated eggs with testosterone, dihydrotestosterone, estradiol, or vehicle on both incubation days 10 and 13 to determine whether these steroid hormones mediate sexual differentiation. These time points fall between gonadal differentiation, which was determined in Experiment 1 to complete before day 10, and regression of the peripheral copulatory system in females. Tissue was collected on the day of hatching. Gonads were classified as testes or ovaries; presence versus absence of hemipenes and muscles, and the number and size of copulatory motoneurons were determined. Copulatory system morphology of vehicle-treated animals matched their gonadal sex. Hemipenes and muscles were absent in estradiol-treated animals, and androgens rescued the hemipenes and muscles in most females. Both testosterone and dihydrotestosterone treatment also caused hypertrophy of the hemipenes, which were everted in animals treated with these steroids. Copulatory motoneurons, assessed on the day of hatching in both experiments, were not dimorphic in size or number. Steroid treatment significantly increased motoneuron size and number overall, but no significant differences were detected in pairwise comparisons. These data demonstrate that differentiation of peripheral copulatory neuromuscular structures occurs during embryonic development and is influenced by gonadal steroids (regression by estradiol and enhancement by androgens), but associated motoneurons do not differentiate until later in life.

  17. Sorption and mineral-promoted transformation of synthetic hormone growth promoters in soil systems.

    PubMed

    Qu, Shen; Kolodziej, Edward P; Cwiertny, David M

    2014-12-24

    This work examines the fate of synthetic growth promoters (trenbolone acetate, melengestrol acetate, and zeranol) in sterilized soil systems, focusing on their sorption to organic matter and propensity for mineral-promoted reactions. In organic-rich soil matrices (e.g., Pahokee Peat), the extent and reversibility of sorption did not generally correlate with compound hydrophobicity (e.g., K(ow) values), suggesting that specific binding interactions (e.g., potentially hydrogen bonding through C17 hydroxyl groups for the trenbolone and melengestrol families) can also contribute to uptake. In soils with lower organic carbon contents (1-5.9% OC), evidence supports sorption occurring in parallel with surface reaction on inorganic mineral phases. Subsequent experiments with pure mineral phases representative of those naturally abundant in soil (e.g., iron, silica, and manganese oxides) suggest that growth promoters are prone to mineral-promoted oxidation, hydrolysis, and/or nucleophilic (e.g., H2O or OH(-)) addition reactions. Although reaction products remain unidentified, this study shows that synthetic growth promoters can undergo abiotic transformation in soil systems, a previously unidentified fate pathway with implications for their persistence and ecosystem effects in the subsurface.

  18. Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes.

    PubMed Central

    Barlow, J W; Voz, M L; Eliard, P H; Mathy-Harter, M; De Nayer, P; Economidis, I V; Belayew, A; Martial, J A; Rousseau, G G

    1986-01-01

    The intracellular receptor for thyroid hormone is a protein found in chromatin. Since thyroid hormone stimulates transcription of the growth hormone gene through an unknown mechanism, the hypothesis that the thyroid hormone-receptor complex interacts with defined regions of this gene has been investigated in a cell-free system. Nuclear extracts from human lymphoblastoid IM-9 cells containing thyroid hormone receptors were incubated with L-3,5,3'-tri[125I]iodothyronine and calf thymus DNA-cellulose. Restriction fragments of the human growth hormone gene were added to determine their ability to inhibit labeled receptor binding to DNA-cellulose. These fragments encompassed nucleotide sequences from about three kilobase pairs upstream to about four kilobase pairs downstream from the transcription initiation site. The thyroid hormone-receptor complex bound preferentially to the 5'-flanking sequences of the growth hormone gene in a region between nucleotide coordinates -290 and -129. The receptor also bound to an analogous promoter region in the human placental lactogen gene, which has 92% nucleotide sequence homology with the growth hormone gene. These binding regions appear to be distinct from those that are recognized by the receptor for glucocorticoids, which stimulate growth hormone gene expression synergistically with thyroid hormone. The presence of thyroid hormone was required for binding of its receptor to the growth hormone gene promoter, suggesting that thyroid hormone renders the receptor capable of recognizing specific gene regions. PMID:3466175

  19. Hormone Replacement Therapy

    MedlinePlus

    ... before and during menopause, the levels of female hormones can go up and down. This can cause ... hot flashes and vaginal dryness. Some women take hormone replacement therapy (HRT), also called menopausal hormone therapy, ...

  20. Growth hormone test

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003706.htm Growth hormone test To use the sharing features on this page, please enable JavaScript. The growth hormone test measures the amount of growth hormone in ...

  1. Environmental estrogens inhibit growth of rainbow trout (Oncorhynchus mykiss) by modulating the growth hormone-insulin-like growth factor system.

    PubMed

    Hanson, Andrea M; Kittilson, Jeffrey D; Martin, Lincoln E; Sheridan, Mark A

    2014-01-15

    Although environmental estrogens (EE) have been found to disrupt a wide variety of developmental and reproductive processes in vertebrates, there is a paucity of information concerning their effects on organismal growth, particularly postembryonic growth. In this study, we exposed juvenile rainbow trout (Oncorhynchus mykiss) to 17β-estradiol (E2) β-sitosterol (βS), or 4-n-nonylphenol (NP) to assess the effects of EE on overall organismal growth and on the growth hormone-insulin-like-growth factor (GH-IGF) system. EE treatment significantly reduced food conversion, body condition, and body growth. EE-inhibited growth resulted from alterations in peripheral elements of the GH-IGF system, which includes multiple GH receptors (GHRs), IGFs, and IGF receptors (IGFRs). In general, E2, βS, and NP reduced the expression of GHRs, IGFs, and IGFRs; however, the effects varied in an EE-, tissue-, element type-specific manner. For example, in liver, E2 was more efficacious than either βS, and NP in reducing GHR expression, and the effect of E2 was greater on GHR 1 than GHR2 mRNA. By contrast, in gill, all EEs affected GHR expression in a similar manner and there was no difference in the effect on GHR1 and GHR 2 mRNA. With regard to IGF expression, all EEs reduced hepatic IGF1 and IGF2 mRNA levels, whereas as in gill, only E2 and NP significantly reduced IGF1 and IGF2 expression. Lastly, E2 and NP reduced the expression of IGFR1A and IGFR1B mRNA expression similarly in gill and red and white muscle, whereas βS had no effect on expression of IGFR mRNAs. These findings indicate that EEs disrupt post-embryonic growth by reducing GH sensitivity, IGF production, and IGF sensitivity.

  2. Parathyroid hormone 1 receptor is essential to induce FGF23 production and maintain systemic mineral ion homeostasis.

    PubMed

    Fan, Yi; Bi, Ruiye; Densmore, Michael J; Sato, Tadatoshi; Kobayashi, Tatsuya; Yuan, Quan; Zhou, Xuedong; Erben, Reinhold G; Lanske, Beate

    2016-01-01

    Parathyroid-hormone-type 1 receptor (PTH1R) is extensively expressed in key regulatory organs for systemic mineral ion homeostasis, including kidney and bone. We investigated the bone-specific functions of PTH1R in modulating mineral ion homeostasis by generating a novel mouse model in which PTH1R is ablated in the limb mesenchyme using Prx1Cre transgenic mice. Such ablation decreased FGF23 protein and serum levels by 50%, despite normal Fgf23 mRNA levels in long bones. Circulating calcium and PTH levels were unchanged, but inorganic phosphate and 1,25(OH)2D3 levels were significantly decreased and accompanied by elevated urinary calcium and phosphate wasting. Key renal genes for balancing mineral ion homeostasis, calbindinD28k, Klotho, and Napi2a were suppressed by 30-40%. Intermittent hPTH(1-34) injections increased Fgf23 mRNA (7.3-fold), Nurr1 mRNA (3.1-fold), and serum intact-FGF23 (1.6-fold) in controls, but failed to induce Fgf23, Nurr1 mRNA, or intact FGF23 production in mutants. Moreover, a significant elevation in serum C-terminal-FGF23 levels (4-fold) was detected in both genotypes. PTH markedly downregulated Galnt3 expression (2.7-fold) in controls but not in mutants. These results demonstrate the pivotal role of PTH1R in long bones to regulate systemic mineral ion homeostasis and the direct induction of FGF23 by PTH1R signaling.

  3. Hormonal status modifies renin-angiotensin system-regulating aminopeptidases and vasopressin-degrading activity in the hypothalamus-pituitary-adrenal axis of male mice.

    PubMed

    García, María Jesús; Martínez-Martos, José Manuel; Mayas, María Dolores; Carrera, María Pilar; Ramírez-Expósito, María Jesús

    2003-06-20

    Local renin-angiotensin systems (RAS) have been postulated in brain, pituitary and adrenal glands. These local RAS have been implicated, respectively, in the central regulation of the cardiovascular system and body water balance, the secretion of pituitary hormones and the secretion of aldosterone by adrenal glands. By other hand, it is known that the hypothalamus-pituitary-adrenal (HPA) axis is involved in blood pressure regulation, and is affected by sex hormones. The aim of the present work is to analyze the influence of testosterone on RAS-regulating aminopeptidase A, B and M activities and vasopressin-degrading activity in the HPA axis, measuring these activities in their soluble and membrane-bound forms in the hypothalamus, pituitary and adrenal glands of orchidectomized males and orchidectomized males treated subcutaneously with several doses of testosterone. The present data suggest that in male mice, testosterone influences the RAS- and vasopressin-degrading activities at all levels of the HPA axis.

  4. Nosema ceranae alters a highly conserved hormonal stress pathway in honeybees.

    PubMed

    Mayack, C; Natsopoulou, M E; McMahon, D P

    2015-12-01

    Nosema ceranae, an emerging pathogen of the western honeybee (Apis mellifera), is implicated in recent pollinator losses and causes severe energetic stress. However, whether precocious foraging and accelerated behavioural maturation in infected bees are caused by the infection itself or via indirect energetic stress remains unknown. Using a combination of nutritional and infection treatments, we investigated how starvation and infection alters the regulation of adipokinetic hormone (AKH) and octopamine, two highly conserved physiological pathways that respond to energetic stress by mobilizing fat stores and increasing search activity for food. Although there was no response from AKH when bees were experimentally infected with N. ceranae or starved, supporting the notion that honeybees have lost this pathway, there were significant regulatory changes in the octopamine pathway. Significantly, we found no evidence of acute energetic stress being the only cause of symptoms associated with N. ceranae infection. Therefore, the parasite itself appears to alter regulatory components along a highly conserved physiological pathway in an infection-specific manner. This indicates that pathogen-induced behavioural alteration of chronically infected bees should not just be viewed as a coincidental short-term by-product of pathogenesis (acute energetic stress) and may be a result of a generalist manipulation strategy to obtain energy for reproduction.

  5. Nosema ceranae alters a highly conserved hormonal stress pathway in honeybees.

    PubMed

    Mayack, C; Natsopoulou, M E; McMahon, D P

    2015-12-01

    Nosema ceranae, an emerging pathogen of the western honeybee (Apis mellifera), is implicated in recent pollinator losses and causes severe energetic stress. However, whether precocious foraging and accelerated behavioural maturation in infected bees are caused by the infection itself or via indirect energetic stress remains unknown. Using a combination of nutritional and infection treatments, we investigated how starvation and infection alters the regulation of adipokinetic hormone (AKH) and octopamine, two highly conserved physiological pathways that respond to energetic stress by mobilizing fat stores and increasing search activity for food. Although there was no response from AKH when bees were experimentally infected with N. ceranae or starved, supporting the notion that honeybees have lost this pathway, there were significant regulatory changes in the octopamine pathway. Significantly, we found no evidence of acute energetic stress being the only cause of symptoms associated with N. ceranae infection. Therefore, the parasite itself appears to alter regulatory components along a highly conserved physiological pathway in an infection-specific manner. This indicates that pathogen-induced behavioural alteration of chronically infected bees should not just be viewed as a coincidental short-term by-product of pathogenesis (acute energetic stress) and may be a result of a generalist manipulation strategy to obtain energy for reproduction. PMID:26335565

  6. Hormonal enhancement of insecticide efficacy in Tribolium castaneum: oxidative stress and metabolic aspects.

    PubMed

    Plavšin, Ivana; Stašková, Tereza; Šerý, Michal; Smýkal, Vlastimil; Hackenberger, Branimir K; Kodrík, Dalibor

    2015-04-01

    Insect anti-stress responses, including those induced by insecticides, are controlled by adipokinetic hormones (AKHs). We examined the physiological consequences of Pyrap-AKH application on Tribolium castaneum adults (AKH-normal and AKH-deficient prepared by the RNAi technique) treated by two insecticides, pirimiphos-methyl and deltamethrin. Co-application of pirimiphos-methyl and/or deltamethrin with AKH significantly increased beetle mortality compared with application of the insecticides alone. This co-treatment was accompanied by substantial stimulation of general metabolism, as monitored by carbon dioxide production. Further, the insecticide treatment alone affected some basic markers of oxidative stress: it lowered total antioxidative capacity as well as the activity of superoxide dismutase in the beetle body; in addition, it enhanced the activity of catalase and glutathione-S-transferase. However, these discrepancies in oxidative stress markers were eliminated/reduced by co-application with Pyrap-AKH. We suggest that the elevation of metabolism, which is probably accompanied with faster turnover of toxins, might be responsible for the higher mortality that results after AKH and insecticide co-application. Changes in oxidative stress markers are probably not included in the mechanisms responsible for increased mortality.

  7. A Detailed Physiologically Based Model to Simulate the Pharmacokinetics and Hormonal Pharmacodynamics of Enalapril on the Circulating Endocrine Renin-Angiotensin-Aldosterone System

    PubMed Central

    Claassen, Karina; Willmann, Stefan; Eissing, Thomas; Preusser, Tobias; Block, Michael

    2013-01-01

    The renin-angiotensin-aldosterone system (RAAS) plays a key role in the pathogenesis of cardiovascular disorders including hypertension and is one of the most important targets for drugs. A whole body physiologically based pharmacokinetic (wb PBPK) model integrating this hormone circulation system and its inhibition can be used to explore the influence of drugs that interfere with this system, and thus to improve the understanding of interactions between drugs and the target system. In this study, we describe the development of a mechanistic RAAS model and exemplify drug action by a simulation of enalapril administration. Enalapril and its metabolite enalaprilat are potent inhibitors of the angiotensin-converting-enzyme (ACE). To this end, a coupled dynamic parent-metabolite PBPK model was developed and linked with the RAAS model that consists of seven coupled PBPK models for aldosterone, ACE, angiotensin 1, angiotensin 2, angiotensin 2 receptor type 1, renin, and prorenin. The results indicate that the model represents the interactions in the RAAS in response to the pharmacokinetics (PK) and pharmacodynamics (PD) of enalapril and enalaprilat in an accurate manner. The full set of RAAS-hormone profiles and interactions are consistently described at pre- and post-administration steady state as well as during their dynamic transition and show a good agreement with literature data. The model allows a simultaneous representation of the parent-metabolite conversion to the active form as well as the effect of the drug on the hormone levels, offering a detailed mechanistic insight into the hormone cascade and its inhibition. This model constitutes a first major step to establish a PBPK-PD-model including the PK and the mode of action (MoA) of a drug acting on a dynamic RAAS that can be further used to link to clinical endpoints such as blood pressure. PMID:23404365

  8. Deciding about hormone therapy

    MedlinePlus

    HRT - deciding; Estrogen replacement therapy - deciding; ERT- deciding; Hormone replacement therapy - deciding; Menopause - deciding; HT - deciding; Menopausal hormone therapy - deciding; MHT - deciding

  9. Testicular expression of the Lin28/let-7 system: Hormonal regulation and changes during postnatal maturation and after manipulations of puberty

    PubMed Central

    Sangiao-Alvarellos, S.; Manfredi-Lozano, M.; Ruiz-Pino, F.; León, S.; Morales, C.; Cordido, F.; Gaytán, F.; Pinilla, L.; Tena-Sempere, M.

    2015-01-01

    The Lin28/let-7 system, which includes the RNA-binding proteins, Lin28a/Lin28b, and let-7 miRNAs, has emerged as putative regulator of puberty and male gametogenesis; yet, its expression pattern and regulation in postnatal testis remain ill defined. We report herein expression profiles of Lin28 and let-7 members, and related mir-145 and mir-132, in rat testis during postnatal maturation and in models of altered puberty and hormonal deregulation. Neonatal expression of Lin28a and Lin28b was low and rose markedly during the infantile period; yet, expression patterns diverged thereafter, with persistently elevated levels only for Lin28b, which peaked at puberty. Let-7a, let-7b, mir-132 and mir-145 showed profiles opposite to Lin28b. In fact, let-7b and mir-145 were abundant in pachytene spermatocytes, but absent in elongating spermatids, where high expression of Lin28b was previously reported. Perturbation of puberty by neonatal estrogenization reverted the Lin28/let-7 expression ratio; expression changes were also detected in other models of delayed puberty, due to early photoperiod or nutritional manipulations. In addition, hypophysectomy or growth hormone (GH) deficiency revealed regulation of this system by gonadotropins and GH. Our data document the expression profiles of the Lin28/let-7 system in rat testis along postnatal/pubertal maturation, and their perturbation in models of pubertal and hormonal manipulation. PMID:26494358

  10. Hormonal and Local Regulation of Bone Formation.

    ERIC Educational Resources Information Center

    Canalis, Ernesto

    1985-01-01

    Reviews effects of hormones, systemic factors, and local regulators on bone formation. Identifies and explains the impact on bone growth of several hormones as well as the components of systemic and local systems. Concentrates on bone collagen and DNA synthesis. (Physicians may earn continuing education credit by completing an appended test). (ML)

  11. Compound Deficiencies in Multiple Fibroblast Growth Factor Signalling Components Differentially Impact the Murine Gonadotrophin-Releasing Hormone System

    PubMed Central

    Chung, W. C. J.; Matthews, T. A.; Tata, B. K.; Tsai, P.-S.

    2011-01-01

    Gonadotrophin-releasing hormone (GnRH) neurones control the onset and maintenance of fertility. Aberrant development of the GnRH system underlies infertility in Kallmann syndrome [KS; idiopathic hypogonadotropic hypogonadism (IHH) and anosmia]. Some KS patients harbour mutations in the fibroblast growth factor receptor 1 (Fgfr1) and Fgf8 genes. The biological significance of these two genes in GnRH neuronal development was corroborated by the observation that GnRH neurones were severely reduced in newborn transgenic mice deficient in either gene. In the present study, we hypothesised that the compound deficiency of Fgf8 and its cognate receptors, Fgfr1 and Fgfr3, may lead to more deleterious effects on the GnRH system, thereby resulting in a more severe reproductive phenotype in patients harbouring these mutations. This hypothesis was tested by counting the number of GnRH neurones in adult transgenic mice with digenic heterozygous mutations in Fgfr1/Fgf8, Fgfr3/Fgf8 or Fgfr1/Fgfr3. Monogenic heterozygous mutations in Fgfr1, Fgf8 or Fgfr3 caused a 30–50% decrease in the total number of GnRH neurones. Interestingly, mice with digenic mutations in Fgfr1/Fgf8 showed a greater decrease in GnRH neurones compared to mice with a heterozygous defect in the Fgfr1 or Fgf8 alone. This compounding effect was not detected in mice with digenic heterozygous mutations in Fgfr3/Fgf8 or Fgfr1/Fgfr3. These results support the hypothesis that IHH/KS patients with digenic mutations in Fgfr1/Fgf8 may have a further reduction in the GnRH neuronal population compared to patients harbouring monogenic haploid mutations in Fgfr1 or Fgf8. Because only Fgfr1/Fgf8 compound deficiency leads to greater GnRH system defect, this also suggests that these fibroblast growth factor signalling components interact in a highly specific fashion to support GnRH neuronal development. PMID:20553372

  12. Hormones talking

    PubMed Central

    Marsch-Martínez, Nayelli; Reyes-Olalde, J. Irepan; Ramos-Cruz, Daniela; Lozano-Sotomayor, Paulina; Zúñiga-Mayo, Victor M.; de Folter, Stefan

    2012-01-01

    The proper development of fruits is important for the sexual reproduction and propagation of many plant species. The fruit of Arabidopsis derives from the fertilized gynoecium, which initiates at the center of the flower and obtains its final shape, size, and functional tissues through progressive stages of development. Hormones, specially auxins, play important roles in gynoecium and fruit patterning. Cytokinins, which act as counterparts to auxins in other plant tissues, have been studied more in the context of ovule formation and parthenocarpy. We recently studied the role of cytokinins in gynoecium and fruit patterning and found that they have more than one role during gynoecium and fruit patterning. We also compared the cytokinin response localization to the auxin response localization in these organs, and studied the effects of spraying cytokinins in young flowers of an auxin response line. In this addendum, we discuss further the implications of the observed results in the knowledge about the relationship between cytokinins and auxins at the gynoecium. PMID:23072997

  13. Hormone Abuse Prevention and What You Need to Know

    MedlinePlus

    ... y Cuidadores Hormones and Health Journey Through the Endocrine System Endocrine Disrupting Chemicals (EDCs) Endocrine Glands and Types ... Women's Health Hormones and Health Journey Through the Endocrine System Endocrine Disrupting Chemicals (EDCs) Endocrine Glands and Types ...

  14. [Hormone therapy through changing times].

    PubMed

    Reuter, Miriam; Fassnacht, Martin

    2016-02-01

    Despite several studies in the last years, only women with menopausal symptoms who desire therapy are treated. There is still no recommendation for menopausale hormone therapy for primary prevention of diseases such as coronary artery disease, osteoporosis or depression. The risk of thrombosis, pulmonary embolism and stroke is elevated especially for elderly women with oral hormone therapy. Benefits may exceed risks in younger, early-menopausal women, for whom hormone therapy may be prescribed more liberally. Systemic hormone therapy is for vasomotor symptoms, local therapy for the genitourinary syndrome of menopause. Choice of formulation depends on the individual risk due to symptoms and favours of the patients. With moderate to high cardiovascular risk profile, a transdermal route of estrogen application - in women with an intact uterus in combination with micronized progesterone - seems to be the best option.

  15. Thyroid Hormone and Vascular Remodeling.

    PubMed

    Ichiki, Toshihiro

    2016-01-01

    Both hyperthyroidism and hypothyroidism affect the cardiovascular system. Hypothyroidism is known to be associated with enhanced atherosclerosis and ischemic heart diseases. The accelerated atherosclerosis in the hypothyroid state has been traditionally ascribed to atherogenic lipid profile, diastolic hypertension, and impaired endothelial function. However, recent studies indicate that thyroid hormone has direct anti-atherosclerotic effects, such as production of nitric oxide and suppression of smooth muscle cell proliferation. These data suggest that thyroid hormone inhibits atherogenesis through direct effects on the vasculature as well as modification of risk factors for atherosclerosis. This review summarizes the basic and clinical studies on the role of thyroid hormone in vascular remodeling. The possible application of thyroid hormone mimetics to the therapy of hypercholesterolemia and atherosclerosis is also discussed. PMID:26558400

  16. Thyroid hormone-induced changes in the hepatic monooxygenase system, heme oxygenase activity and epoxide hydrolase activity in adult male, female and immature rats.

    PubMed

    Leakey, J E; Mukhtar, H; Fouts, J R; Bend, J R

    1982-07-01

    In 8-day-old rat pups, pretreatment with a single injection of L-triiodothyronine or L-thyroxine decreased hepatic cytochrome P-450 content, aminopyrine N-demethylase activity and epoxide hydrolase activity but increased hepatic microsomal cytochrome c reductase, 7-ethoxyresorufin O-deethylase and heme oxygenase activities without significantly altering UDP-glucuronosyltransferase activity (towards o-aminophenol) or the microsomal yield. In adult rats of either sex such single injections of L-triiodothyronine failed to significantly alter these enzyme activities. However, multiple injections evoked changes similar to those observed in the pups, in all these enzyme activities, except that 7-ethoxyresorufin O-deethylase activity was slightly decreased rather than increased. These findings demonstrate that: (1) The hepatic monooxygenase system in the rat pup is more responsive to thyroid hormones than that in adult. (2) Thyroid hormones can decrease rat liver cytochrome P-450 content and its dependent monooxygenase activity independently of sexual maturity. (3) Thyroid hormones also decrease hepatic epoxide hydrolase activity in both pups and adults. Thus, hyperthyroidism could render the rat pup more susceptible to hepatotoxicity from electrophilic epoxides which utilize microsomal epoxide hydrolase as the major detoxication pathway.

  17. Preparation of Single-cohort Colonies and Hormone Treatment of Worker Honeybees to Analyze Physiology Associated with Role and/or Endocrine System.

    PubMed

    Ueno, Takayuki; Kawasaki, Kiyoshi; Kubo, Takeo

    2016-01-01

    Honeybee workers are engaged in various tasks related to maintaining colony activity. The tasks of the workers change according to their age (age-related division of labor). Young workers are engaged in nursing the brood (nurse bees), while older workers are engaged in foraging for nectar and pollen (foragers). The physiology of the workers changes in association with this role shift. For example, the main function of the hypopharyngeal glands (HPGs) changes from the secretion of major royal jelly proteins (MRJPs) to the secretion of carbohydrate-metabolizing enzymes. Because worker tasks change as the workers age in typical colonies, it is difficult to discriminate the physiological changes that occur with aging from those that occur with the role shift. To study the physiological changes in worker tissues, including the HPGs, in association with the role shift, it would be useful to manipulate the honeybee colony population by preparing single-cohort colonies in which workers of almost the same age perform different tasks. Here we describe a detailed protocol for preparing single-cohort colonies for this analysis. Six to eight days after single-cohort colony preparation, precocious foragers that perform foraging tasks earlier than usual appear in the colony. Representative results indicated role-associated changes in HPG gene expression, suggesting role-associated HPG function. In addition to manipulating the colony population, analysis of the endocrine system is important for investigating role-associated physiology. Here, we also describe a detailed protocol for treating workers with 20-hydroxyecdysone (20E), an active form of ecdysone, and methoprene, a juvenile hormone analogue. The survival rate of treated bees was sufficient to examine gene expression in the HPGs. Gene expression changes were observed in response to 20E- and/or methoprene-treatment, suggesting that hormone treatments induce physiological changes of the HPGs. The protocol for hormone

  18. Preparation of Single-cohort Colonies and Hormone Treatment of Worker Honeybees to Analyze Physiology Associated with Role and/or Endocrine System.

    PubMed

    Ueno, Takayuki; Kawasaki, Kiyoshi; Kubo, Takeo

    2016-09-06

    Honeybee workers are engaged in various tasks related to maintaining colony activity. The tasks of the workers change according to their age (age-related division of labor). Young workers are engaged in nursing the brood (nurse bees), while older workers are engaged in foraging for nectar and pollen (foragers). The physiology of the workers changes in association with this role shift. For example, the main function of the hypopharyngeal glands (HPGs) changes from the secretion of major royal jelly proteins (MRJPs) to the secretion of carbohydrate-metabolizing enzymes. Because worker tasks change as the workers age in typical colonies, it is difficult to discriminate the physiological changes that occur with aging from those that occur with the role shift. To study the physiological changes in worker tissues, including the HPGs, in association with the role shift, it would be useful to manipulate the honeybee colony population by preparing single-cohort colonies in which workers of almost the same age perform different tasks. Here we describe a detailed protocol for preparing single-cohort colonies for this analysis. Six to eight days after single-cohort colony preparation, precocious foragers that perform foraging tasks earlier than usual appear in the colony. Representative results indicated role-associated changes in HPG gene expression, suggesting role-associated HPG function. In addition to manipulating the colony population, analysis of the endocrine system is important for investigating role-associated physiology. Here, we also describe a detailed protocol for treating workers with 20-hydroxyecdysone (20E), an active form of ecdysone, and methoprene, a juvenile hormone analogue. The survival rate of treated bees was sufficient to examine gene expression in the HPGs. Gene expression changes were observed in response to 20E- and/or methoprene-treatment, suggesting that hormone treatments induce physiological changes of the HPGs. The protocol for hormone

  19. Stress and reproductive hormones reflect inter-specific social and nutritional conditions mediated by resource availability in a bear-salmon system.

    PubMed

    Bryan, Heather M; Darimont, Chris T; Paquet, Paul C; Wynne-Edwards, Katherine E; Smits, Judit E G

    2014-01-01

    Food availability can influence the nutritional and social dynamics within and among species. Our investigation focused on grizzly and black bears in coastal British Columbia, Canada, where recent and dramatic declines in their primary prey (salmon) raise concerns about potentially negative effects on bear physiology. We examined how salmon availability relates to stress and reproductive hormones in coastal grizzly (n = 69) and black bears (n = 68) using cortisol and testosterone. In hair samples from genotyped individuals, we quantified salmon consumption using stable isotope analysis and hormone levels by enzyme immunoassay. To estimate the salmon biomass available to each bear, we developed a spatially explicit approach based on typical bear home-range sizes. Next, we compared the relative importance of salmon consumption and salmon availability on hormone levels in male bears using an information theoretical approach. Cortisol in grizzly bears was higher in individuals that consumed less salmon, possibly reflecting nutritional stress. In black bears, cortisol was better predicted by salmon availability than salmon consumption; specifically, individuals in areas and years with low salmon availability showed higher cortisol levels. This indicates that cortisol in black bears is more strongly influenced by the socially competitive environment mediated by salmon availability than by nutritional requirements. In both species, testosterone generally decreased with increasing salmon availability, possibly reflecting a less competitive environment when salmon were abundant. Differences between species could relate to different nutritional requirements, social densities and competitive behaviour and/or habitat use. We present a conceptual model to inform further investigations in this and other systems. Our approach, which combines data on multiple hormones with dietary and spatial information corresponding to the year of hair growth, provides a promising tool

  20. Stress and reproductive hormones reflect inter-specific social and nutritional conditions mediated by resource availability in a bear-salmon system.

    PubMed

    Bryan, Heather M; Darimont, Chris T; Paquet, Paul C; Wynne-Edwards, Katherine E; Smits, Judit E G

    2014-01-01

    Food availability can influence the nutritional and social dynamics within and among species. Our investigation focused on grizzly and black bears in coastal British Columbia, Canada, where recent and dramatic declines in their primary prey (salmon) raise concerns about potentially negative effects on bear physiology. We examined how salmon availability relates to stress and reproductive hormones in coastal grizzly (n = 69) and black bears (n = 68) using cortisol and testosterone. In hair samples from genotyped individuals, we quantified salmon consumption using stable isotope analysis and hormone levels by enzyme immunoassay. To estimate the salmon biomass available to each bear, we developed a spatially explicit approach based on typical bear home-range sizes. Next, we compared the relative importance of salmon consumption and salmon availability on hormone levels in male bears using an information theoretical approach. Cortisol in grizzly bears was higher in individuals that consumed less salmon, possibly reflecting nutritional stress. In black bears, cortisol was better predicted by salmon availability than salmon consumption; specifically, individuals in areas and years with low salmon availability showed higher cortisol levels. This indicates that cortisol in black bears is more strongly influenced by the socially competitive environment mediated by salmon availability than by nutritional requirements. In both species, testosterone generally decreased with increasing salmon availability, possibly reflecting a less competitive environment when salmon were abundant. Differences between species could relate to different nutritional requirements, social densities and competitive behaviour and/or habitat use. We present a conceptual model to inform further investigations in this and other systems. Our approach, which combines data on multiple hormones with dietary and spatial information corresponding to the year of hair growth, provides a promising tool

  1. Stress and reproductive hormones reflect inter-specific social and nutritional conditions mediated by resource availability in a bear–salmon system

    PubMed Central

    Bryan, Heather M.; Darimont, Chris T.; Paquet, Paul C.; Wynne-Edwards, Katherine E.; Smits, Judit E. G.

    2014-01-01

    Food availability can influence the nutritional and social dynamics within and among species. Our investigation focused on grizzly and black bears in coastal British Columbia, Canada, where recent and dramatic declines in their primary prey (salmon) raise concerns about potentially negative effects on bear physiology. We examined how salmon availability relates to stress and reproductive hormones in coastal grizzly (n = 69) and black bears (n = 68) using cortisol and testosterone. In hair samples from genotyped individuals, we quantified salmon consumption using stable isotope analysis and hormone levels by enzyme immunoassay. To estimate the salmon biomass available to each bear, we developed a spatially explicit approach based on typical bear home-range sizes. Next, we compared the relative importance of salmon consumption and salmon availability on hormone levels in male bears using an information theoretical approach. Cortisol in grizzly bears was higher in individuals that consumed less salmon, possibly reflecting nutritional stress. In black bears, cortisol was better predicted by salmon availability than salmon consumption; specifically, individuals in areas and years with low salmon availability showed higher cortisol levels. This indicates that cortisol in black bears is more strongly influenced by the socially competitive environment mediated by salmon availability than by nutritional requirements. In both species, testosterone generally decreased with increasing salmon availability, possibly reflecting a less competitive environment when salmon were abundant. Differences between species could relate to different nutritional requirements, social densities and competitive behaviour and/or habitat use. We present a conceptual model to inform further investigations in this and other systems. Our approach, which combines data on multiple hormones with dietary and spatial information corresponding to the year of hair growth, provides a promising tool

  2. Hormone therapy in acne.

    PubMed

    Lakshmi, Chembolli

    2013-01-01

    Underlying hormone imbalances may render acne unresponsive to conventional therapy. Relevant investigations followed by initiation of hormonal therapy in combination with regular anti-acne therapy may be necessary if signs of hyperandrogenism are present. In addition to other factors, androgen-stimulated sebum production plays an important role in the pathophysiology of acne in women. Sebum production is also regulated by other hormones, including estrogens, growth hormone, insulin, insulin-like growth factor-1, glucocorticoids, adrenocorticotropic hormone, and melanocortins. Hormonal therapy may also be beneficial in female acne patients with normal serum androgen levels. An understanding of the sebaceous gland and the hormonal influences in the pathogenesis of acne would be essential for optimizing hormonal therapy. Sebocytes form the sebaceous gland. Human sebocytes express a multitude of receptors, including receptors for peptide hormones, neurotransmitters and the receptors for steroid and thyroid hormones. Various hormones and mediators acting through the sebocyte receptors play a role in the orchestration of pathogenetic lesions of acne. Thus, the goal of hormonal treatment is a reduction in sebum production. This review shall focus on hormonal influences in the elicitation of acne via the sebocyte receptors, pathways of cutaneous androgen metabolism, various clinical scenarios and syndromes associated with acne, and the available therapeutic armamentarium of hormones and drugs having hormone-like actions in the treatment of acne.

  3. Effects of 17alpha-ethynylestradiol on hormonal responses and xenobiotic biotransformation system of Atlantic salmon (Salmo salar).

    PubMed

    Mortensen, Anne S; Arukwe, Augustine

    2007-11-30

    Pharmaceuticals are ubiquitous pollutants in the aquatic environment where their potential effects on non-target species like fish has only recently become subject of systematic investigations. In the present study, experiments were undertaken to examine the effects of a synthetic pharmaceutical endocrine disruptor, ethynylestradiol (EE2), given in water at 5 or 50 ng/L and sampled at days 0 (control), 3 and 7 after exposure, on hepatic phase I and II biotransformation and hormonal pathways of juvenile salmon using quantitative (real-time) polymerase chain reaction (qPCR), Vtg ELISA and 7-ethoxyresorufin O-deethylase (EROD) catalytic activity. Our data show that EE2 produced time- and concentration-specific modulation of estrogen receptor isoforms (ERalpha, ERbeta) and androgen receptor-beta (ARbeta). EE2 produced a concentration-specific induction of vitellogenin (Vtg) and zona radiata protein (Zr-protein) at day 3 after exposure. At day 7, Vtg and Zr-protein mRNA (and plasma Vtg protein) expression were significantly decreased in the group given 5 ng EE2/L, compared to dimethyl sulfoxide (DMSO) control group. In the xenobiotic biotransformation pathway, EE2 produced a significant increase of aryl hydrocarbon receptor-alpha (AhRalpha) at day 3 in the group given 5 ng EE2/L and AhRbeta was decreased at the same concentration at day 7. While CYP3A was not significantly affected by EE2 exposure, the CYP1A1, AhR nuclear translocator (Arnt) and AhR repressor (AhRR) mRNA showed an apparent EE2 concentration and time-dependent decrease. The expression of uridine diphosphoglucuronosyl transferase (UGT) and glutathione S-transferase class pi-like (GSTpi-like) mRNA were decreased after exposure to 50ng EE2/L at both day 3 and 7 after exposure. The effect of EE2 on the CYP1A1 gene expressions paralleled effect on EROD and AhRR mRNA, suggesting a direct role of EE2 in controlling cellular detoxification machinery. Interestingly, the carrier vehicle, DMSO produced significant

  4. Identification of two functional guanylin receptors in eel: multiple hormone-receptor system for osmoregulation in fish intestine and kidney.

    PubMed

    Yuge, Shinya; Yamagami, Sayaka; Inoue, Koji; Suzuki, Norio; Takei, Yoshio

    2006-10-01

    Guanylyl cyclase C (GC-C) is a single transmembrane receptor for a family of intestinal hormones, guanylins. In the eel, we previously identified three guanylins, whose gene expression was enhanced in the intestine after transfer from fresh water to seawater. However, only limited information is available about the structure and function of their receptor(s). In the present study, we cloned full-length cDNAs encoding two isoforms of GC-C, named GC-C1 and GC-C2, from eel intestine. The predicted GC-C proteins consisted of extracellular ligand-binding domain, membrane-spanning domain, kinase-like domain and cyclase catalytic domain, in which GC-C-specific sequences were largely conserved. Phylogenetic analyses showed that the cloned membrane GCs are grouped with the GC-C of other vertebrates but not with GC-A and GC-B. However, eel GC-Cs appear to have undergone unique structural evolution compared with other GC-Cs. The three eel guanylins (guanylin, uroguanylin and renoguanylin), but not eel atrial natriuretic peptide, stimulated cGMP production dose-dependently in COS cells expressing either of the cloned cDNAs, providing functional support for assignment as eel guanylin receptors. The potency order for cGMP production was uroguanylin > guanylin > or = renoguanylin for GC-C1; guanylin > or = renoguanylin > uroguanylin for GC-C2. The distinctive ligand selectivity was consistent with the low homology (53%) of the extracellular domain of the two GC-Cs compared with that observed for other domains (74-90%). Both GC-C genes were expressed in the alimentary tract (esophagus, stomach and intestine) and kidney, and their expression was higher in the intestine of seawater-adapted eels than that of freshwater eels just as observed with the guanylin genes. However, the expression of the receptor genes was unchanged for 24h after transfer of eels from fresh water to seawater or vice versa, showing slower response of the receptors to salinity changes than their ligands

  5. Developmental programming: contribution of prenatal androgen and estrogen to estradiol feedback systems and periovulatory hormonal dynamics in sheep.

    PubMed

    Veiga-Lopez, Almudena; Astapova, Olga I; Aizenberg, Esther F; Lee, James S; Padmanabhan, Vasantha

    2009-04-01

    Prenatal testosterone excess leads to neuroendocrine and periovulatory disruptions in the offspring culminating in progressive loss of cyclicity. It is unknown whether the mediary of these disruptions is androgen or estrogen, because testosterone can be aromatized to estrogen. Taking a reproductive life span approach of studying control, prenatal testosterone, and dihydrotestosterone-treated offspring, this study tested the hypothesis that disruptions in estradiol-negative but not -positive feedback effects are programmed by androgenic actions of testosterone and that these disruptions in turn will have an impact on the periovulatory hormonal dynamics. The approach was to test estradiol-negative and -positive feedback responses of all three groups of ovary-intact females during prepubertal age and then compare the periovulatory dynamics of luteinizing hormone, follicle-stimulating hormone, estradiol, and progesterone during the first breeding season. The findings show that estradiol-negative but not estradiol-positive feedback disruptions in prenatal testosterone-treated females are programmed by androgenic actions of prenatal testosterone excess and that follicular phase estradiol and gonadotropins surge disruptions during reproductive life are consistent with estrogenic programming. Additional studies carried out testing estradiol-positive feedback response over time found progressive deterioration of estradiol-positive feedback in prenatal testosterone-treated sheep until the time of puberty. Together, these findings provide insight into the mechanisms by which prenatal testosterone disrupts the reproductive axis. The findings may be of translational relevance since daughters of mothers with hyperandrogenism are at risk of increased exposure to androgens.

  6. Abnormalities of Thyroid Hormone Metabolism during Systemic Illness: The Low T3 Syndrome in Different Clinical Settings

    PubMed Central

    Zantut-Wittmann, Denise Engelbrecht

    2016-01-01

    Thyroid hormone abnormalities are common in critically ill patients. For over three decades, a mild form of these abnormalities has been described in patients with several diseases under outpatient care. These alterations in thyroid hormone economy are a part of the nonthyroidal illness and keep an important relationship with prognosis in most cases. The main feature of this syndrome is a fall in free triiodothyronine (T3) levels with normal thyrotropin (TSH). Free thyroxin (T4) and reverse T3 levels vary according to the underlying disease. The importance of recognizing this condition in such patients is evident to physicians practicing in a variety of specialties, especially general medicine, to avoid misdiagnosing the much more common primary thyroid dysfunctions and indicating treatments that are often not beneficial. This review focuses on the most common chronic diseases already known to present with alterations in serum thyroid hormone levels. A short review of the common pathophysiology of the nonthyroidal illness is followed by the clinical and laboratorial presentation in each condition. Finally, a clinical case vignette and a brief summary on the evidence about treatment of the nonthyroidal illness and on the future research topics to be addressed are presented. PMID:27803712

  7. Hormone symphony during root growth and development.

    PubMed

    Garay-Arroyo, Adriana; De La Paz Sánchez, María; García-Ponce, Berenice; Azpeitia, Eugenio; Alvarez-Buylla, Elena R

    2012-12-01

    Hormones regulate plant growth and development in response to external environmental stimuli via complex signal transduction pathways, which in turn form complex networks of interaction. Several classes of hormones have been reported, and their activity depends on their biosynthesis, transport, conjugation, accumulation in the vacuole, and degradation. However, the activity of a given hormone is also dependent on its interaction with other hormones. Indeed, there is a complex crosstalk between hormones that regulates their biosynthesis, transport, and/or signaling functionality, although some hormones have overlapping or opposite functions. The plant root is a particularly useful system in which to study the complex role of plant hormones in the plastic control of plant development. Physiological, cellular, and molecular genetic approaches have been used to study the role of plant hormones in root meristem homeostasis. In this review, we discuss recent findings on the synthesis, signaling, transport of hormones and role during root development and examine the role of hormone crosstalk in maintaining homeostasis in the apical root meristem.

  8. Gastrointestinal hormone research - with a Scandinavian annotation.

    PubMed

    Rehfeld, Jens F

    2015-06-01

    Gastrointestinal hormones are peptides released from neuroendocrine cells in the digestive tract. More than 30 hormone genes are currently known to be expressed in the gut, which makes it the largest hormone-producing organ in the body. Modern biology makes it feasible to conceive the hormones under five headings: The structural homology groups a majority of the hormones into nine families, each of which is assumed to originate from one ancestral gene. The individual hormone gene often has multiple phenotypes due to alternative splicing, tandem organization or differentiated posttranslational maturation of the prohormone. By a combination of these mechanisms, more than 100 different hormonally active peptides are released from the gut. Gut hormone genes are also widely expressed outside the gut, some only in extraintestinal endocrine cells and cerebral or peripheral neurons but others also in other cell types. The extraintestinal cells may release different bioactive fragments of the same prohormone due to cell-specific processing pathways. Moreover, endocrine cells, neurons, cancer cells and, for instance, spermatozoa secrete gut peptides in different ways, so the same peptide may act as a blood-borne hormone, a neurotransmitter, a local growth factor or a fertility factor. The targets of gastrointestinal hormones are specific G-protein-coupled receptors that are expressed in the cell membranes also outside the digestive tract. Thus, gut hormones not only regulate digestive functions, but also constitute regulatory systems operating in the whole organism. This overview of gut hormone biology is supplemented with an annotation on some Scandinavian contributions to gastrointestinal hormone research.

  9. Lack of sensorial innervation in the newborn female rats affects the activity of hypothalamic monoaminergic system and steroid hormone secretion during puberty.

    PubMed

    Quiróz, Ubaldo; Morales-Ledesma, Leticia; Morán, Carolina; Trujillo, Angélica; Domínguez, Roberto

    2014-06-01

    There is evidence that sensory innervation plays a role regulating ovarian functions, including fertility.Since sensory denervation by means of capsaicin in newborn female rats results in a lower response togonadotropins, the present study analyzed the effects that sensory denervation by means of capsaicin in neonatal rats has on the concentration of monoamines in the anterior(AH) and medium (MH) hypothalamus, and on steroid hormone levels in serum. Groups of newborn female rats were injected subcutaneously with capsaicin and killed at 10, 20, and 30 days of age and on the first vaginal estrous.The concentrations of noradrenaline, dopamine, serotonin(5-HT), and their metabolites in the AH and MH were measured using HPLC, and the levels of estradiol (E),progesterone (P), testosterone (T), FSH, and luteinizing hormone using radioimmunoanalysis. The results show thatat 20 days of age, capsaicin-treated rats have lowernoradrenergic and serotonergic activities in the AH, and that the dopaminergic activity was lower in the MH. These results suggest that the sensorial system connections within the monoaminergic systems of the AH and MH are different.Capsaicin-treated animals had lower T, E, and P levels than in the control group, suggesting that the lower activity in the AH monoaminergic system and lower hormonesecretion could be explained by the blockade of information mediated by the sensory innervation (probably substance P), mainly between the ovary and the AH.

  10. Growth hormone deficiency - children

    MedlinePlus

    ... the same age. The child will have normal intelligence in most cases. In older children, puberty may ... hormones cause the body to make. Tests can measure these growth factors. Accurate growth hormone deficiency testing ...

  11. Hormones and Hypertension

    MedlinePlus

    Fact Sheet Hormones and Hypertension What is hypertension? Hypertension, or chronic (long-term) high blood pressure, is a main cause of ... tobacco, alcohol, and certain medications play a part. Hormones made in the kidneys and in blood vessels ...

  12. ADH (Antidiuretic Hormone) Test

    MedlinePlus

    ... Also known as: Vasopressin; AVP Formal name: Antidiuretic Hormone; Arginine Vasopressin Related tests: Osmolality , BUN , Creatinine , Sodium , ... should know? How is it used? The antidiuretic hormone (ADH) test is used to help detect, diagnose, ...

  13. Menopause and Hormones

    MedlinePlus

    ... Consumer Information by Audience For Women Menopause and Hormones: Common Questions Share Tweet Linkedin Pin it More ... reproduction and distribution. Learn More about Menopause and Hormones Menopause--Medicines to Help You Links to other ...

  14. [Growth hormone treatment update].

    PubMed

    2014-02-01

    Short stature in children is a common cause for referral to pediatric endocrinologists, corresponding most times to normal variants of growth. Initially growth hormone therapy was circumscribed to children presenting growth hormone deficiency. Since the production of recombinant human hormone its use had spread to other pathologies.

  15. Parathyroid hormone-related protein and its receptors: nuclear functions and roles in the renal and cardiovascular systems, the placental trophoblasts and the pancreatic islets

    PubMed Central

    Clemens, Thomas L; Cormier, Sarah; Eichinger, Anne; Endlich, Karlhans; Fiaschi-Taesch, Nathalie; Fischer, Evelyne; Friedman, Peter A; Karaplis, Andrew C; Massfelder, Thierry; Rossert, Jérôme; Schlüter, Klaus-Dieter; Silve, Caroline; Stewart, Andrew F; Takane, Karen; Helwig, Jean-Jacques

    2001-01-01

    The cloning of the so-called ‘parathyroid hormone-related protein' (PTHrP) in 1987 was the result of a long quest for the factor which, by mimicking the actions of PTH in bone and kidney, is responsible for the hypercalcemic paraneoplastic syndrome, humoral calcemia of malignancy. PTHrP is distinct from PTH in a number of ways. First, PTHrP is the product of a separate gene. Second, with the exception of a short N-terminal region, the structure of PTHrP is not closely related to that of PTH. Third, in contrast to PTH, PTHrP is a paracrine factor expressed throughout the body. Finally, most of the functions of PTHrP have nothing in common with those of PTH. PTHrP is a poly-hormone which comprises a family of distinct peptide hormones arising from post-translational endoproteolytic cleavage of the initial PTHrP translation products. Mature N-terminal, mid-region and C-terminal secretory forms of PTHrP are thus generated, each of them having their own physiologic functions and probably their own receptors. The type 1 PTHrP receptor, binding both PTH(1-34) and PTHrP(1-36), is the only cloned receptor so far. PTHrP is a PTH-like calciotropic hormone, a myorelaxant, a growth factor and a developmental regulatory molecule. The present review reports recent aspects of PTHrP pharmacology and physiology, including: (a) the identification of new peptides and receptors of the PTH/PTHrP system; (b) the recently discovered nuclear functions of PTHrP and the role of PTHrP as an intracrine regulator of cell growth and cell death; (c) the physiological and developmental actions of PTHrP in the cardiovascular and the renal glomerulo-vascular systems; (d) the role of PTHrP as a regulator of pancreatic beta cell growth and functions, and, (e) the interactions of PTHrP and calcium-sensing receptors for the control of the growth of placental trophoblasts. These new advances have contributed to a better understanding of the pathophysiological role of PTHrP, and will help to identify

  16. Thyroid hormone signaling in energy homeostasis and energy metabolism

    PubMed Central

    McAninch, Elizabeth A.; Bianco, Antonio C.

    2014-01-01

    The thyroid hormone plays a significant role in diverse processes related to growth, development, differentiation, and metabolism. Thyroid hormone signaling modulates energy expenditure through both central and peripheral pathways. At the cellular level, the thyroid hormone exerts its effects after concerted mechanisms facilitate binding to the thyroid hormone receptor. In the hypothalamus, signals from a range of metabolic pathways, including appetite, temperature, afferent stimuli via the autonomic nervous system, availability of energy substrates, hormones, and other biologically active molecules, converge to maintain plasma thyroid hormone at the appropriate level to preserve energy homeostasis. At the tissue level, thyroid hormone actions on metabolism are controlled by transmembrane transporters, deiodinases, and thyroid hormone receptors. In the modern environment, humans are susceptible to an energy surplus, which has resulted in an obesity epidemic and thus understanding the contribution of the thyroid hormone to cellular and organism metabolism is increasingly relevant. PMID:24697152

  17. Narcotics and the hypothalamic-pituitary-gonadal axix: acute effects on luteinizing hormone, testosterone and androgen-dependent systems.

    PubMed

    Cicero, T J; Bell, R D; Meyer, E R; Schweitzer, J

    1977-04-01

    The effects of narcotics on several aspects of the hypothalamic-pituitary-gonadal axis were examined in the male rat. Our results indicate that a large number of narcotics acutely depress serum luteinizing hormone levels and that these reduced gonadotropin levels lead to a subsequent fall (1-2 hours later) in serum testosterone levels. The luteinizing hormone-depleting effect of the narcotics appears to represent a specific narcotic action since the (-)-isomers of the narcotics were much more effective than the ()-isomers, naloxone antagonized their effects and tolerance rapidly developed. Further, our studies indicate that the impairment of the functional and structural integrity of the secondary sex organs produced by chronic narcotic administration is not due to a direct effect of these drugs since they have no effect on the uptake of subcellular distribution of testosterone in the secondary sex organs or on the androgen-dependent accumulation of myo-inositol. Consequently, it appears that the testosterone depletion produced by the narcotics is solely responsible for their adverse effect on the secondary sex organs. The results of these studies suggest that the effects of the narcotics on the hypothalamic-pituitary-gonadal axis are confined to either the hypthalamus or the pituitary gland.

  18. The influence of ovarian factors on the somatostatin-growth hormone system during the postnatal growth and sexual development in lambs.

    PubMed

    Wańkowska, Marta; Polkowska, Jolanta; Misztal, Tomasz; Romanowicz, Katarzyna

    2012-07-01

    The aim of the study was to elucidate the effects of ovarian hormones on somatostatin in the hypothalamic neurons and growth hormone (GH) secretion during the postnatal growth and development of sheep. The study was performed on 9-week-old (infantile) lambs that were ovary-intact (OVI) or ovariectomized (OVX) at 39 days of age, and on 16-week-old (juvenile) lambs that were OVI or OVX at 88 days of age. Hormones in neurons and somatotropic cells were assayed with immunohistochemistry and radioimmunoassay. Following ovariectomy, immunoreactive somatostatin was more abundant (p<0.05) in the hypothalamus of infantile lambs, whereas in juvenile lambs it was more abundant (p<0.05) in the periventricular nucleus but reduced (p<0.01) in the median eminence. In contrast to somatostatin in the hypothalamus, the content of immunoreactive GH in the hypophysis was less in OVX infantile lambs, but greater in OVX juvenile lambs (p<0.05). Basal blood serum concentrations of GH were greater (p<0.05) in OVX infantile lambs, whereas in OVX juvenile lambs, mean and basal concentrations of GH and amplitude of GH pulses were less than in OVI lambs (p<0.05). The postnatal increase in body weight was greatest in middle-late infancy (p<0.01). The body weight did not differ (p>0.05) between OVI and OVX lambs. In conclusion, ovarian factors may inhibit the GH secretion in infantile lambs but enhance the GH secretion in juvenile lambs. Transition to puberty, as related to the growth rate, appears to be due mainly to change in gonadal influence on the somatostatin neurosecretion. A stimulation of somatostatin output in the median eminence by gonadal factors in infancy is followed by a stimulation of somatostatin accumulation after infancy. Thus, ovarian factors modulate mechanisms within the somatotropic system of lambs to synchronize the somatic growth with sexual development.

  19. Long-term, low-dose lead exposure alters the gonadotropin-releasing hormone system in the male rat.

    PubMed Central

    Sokol, Rebecca Z; Wang, Saixi; Wan, Yu-Jui Y; Stanczyk, Frank Z; Gentzschein, Elisabet; Chapin, Robert E

    2002-01-01

    Lead is a male reproductive toxicant. Data suggest that rats dosed with relatively high levels of lead acetate for short periods of time induced changes in the hypothalamic gonadotropin-releasing hormone (GnRH) at the molecular level, but these changes were attenuated with increased concentration of exposure. The current study evaluated whether exposure to low levels of lead acetate over longer periods of time would produce a similar pattern of adaptation to toxicity at the molecular and biologic levels. Adult 100-day-old Sprague-Dawley male rats were dosed with 0, 0.025, 0.05, 0.1, and 0.3% lead acetate in water. Animals were killed after 1, 4, 8, and 16 weeks of treatment. Luteinzing hormone (LH) and GnRH levels were measured in serum, and lead levels were quantified in whole blood. Hypothalamic GnRH mRNA levels were also quantified. We found no significant differences in serum LH and GnRH among the groups of animals treated within each time period. A significant dose-related increase of GnRH mRNA concentrations with lead dosing occurred in animals treated for 1 week. Animals treated for more than 1 week also exhibited a significant increase in GnRH mRNA, but with an attenuation of the increase at the higher concentrations of lead with increased duration of exposure. We conclude that the signals within and between the hypothalamus and pituitary gland appear to be disrupted by long-term, low-dose lead exposure. PMID:12204820

  20. Extrapituitary growth hormone.

    PubMed

    Harvey, S

    2010-12-01

    Pituitary somatotrophs secrete growth hormone (GH) into the bloodstream, to act as a hormone at receptor sites in most, if not all, tissues. These endocrine actions of circulating GH are abolished after pituitary ablation or hypophysectomy, indicating its pituitary source. GH gene expression is, however, not confined to the pituitary gland, as it occurs in neural, immune, reproductive, alimentary, and respiratory tissues and in the integumentary, muscular, skeletal, and cardiovascular systems, in which GH may act locally rather than as an endocrine. These actions are likely to be involved in the proliferation and differentiation of cells and tissues prior to the ontogeny of the pituitary gland. They are also likely to complement the endocrine actions of GH and are likely to maintain them after pituitary senescence and the somatopause. Autocrine or paracrine actions of GH are, however, sometimes mediated through different signaling mechanisms to those mediating its endocrine actions and these may promote oncogenesis. Extrapituitary GH may thus be of physiological and pathophysiological significance.

  1. Neuroanatomical investigation of the gonadotrophin-releasing hormone 1 system in the seasonally breeding Cape dune mole-rat, Bathyergus suillus.

    PubMed

    Hart, Leanne; Bennett, Nigel C; Kalamatianos, Theodosis; Oosthuizen, Maria K; Jarvis, Jennifer U M; O'Riain, M Justin; Coen, Clive W

    2008-10-22

    The gonadotrophin-releasing hormone 1 (GnRH1) system has been investigated immunohistochemically in Cape dune mole-rats (Bathyergus suillus), subterranean rodents that normally display severe aggression towards conspecifics. These animals breed seasonally and show a reduced mean plasma level of luteinising hormone during the non-breeding season. GnRH1-immunoreactive (ir) cell bodies and processes are found in the septal/preoptic area and the mediobasal hypothalamus; the cell bodies are found in equal measure in these two regions. Dense aggregations of GnRH1-ir fibres are present in the organum vasculosum of the lamina terminalis and the external zone of the median eminence. The total number of detectable GnRH1-ir cell bodies does not differ between the sexes or within the sexes between breeding and non-breeding seasons. Similarly there is no difference in the distribution of detectable GnRH1-ir cell bodies in male and female mole-rats in and out of the breeding season. Although the average size of GnRH1-ir cell bodies does not differ between the seasons in males, their size in females is significantly smaller in the non-breeding season. Whether this reduced size reflects reduced GnRH1 synthesis remains to be determined.

  2. Seasonal plasticity in the peptide neuronal systems: potential roles of gonadotrophin-releasing hormone, gonadotrophin-inhibiting hormone, neuropeptide Y and vasoactive intestinal peptide in the regulation of the reproductive axis in subtropical Indian weaver birds.

    PubMed

    Surbhi; Rastogi, A; Rani, S; Kumar, V

    2015-05-01

    Two experiments examined the expression of gonadotrophin-releasing and inhibiting hormones (GnRH-I, GnRH-II and GnIH), neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP) in subtropical Indian weaver birds, which demonstrate relative photorefractoriness. Experiment 1 measured peptide expression levels in the form of immunoreactive (-IR) cells, percentage cell area and cell optical density in the preoptic area (GnRH-I), midbrain (GnRH-II), paraventricular nucleus (GnIH), mediobasal hypothalamus [dorsomedial hypothalamus (DMH), infundibular complex (INc), NPY and VIP] and lateral septal organ (VIP) during the progressive, breeding, regressive and nonbreeding phases of the annual reproductive cycle. GnRH-I was decreased in the nonbreeding and VIP was increased in INc in the breeding and regressive states. GnRH-II and NPY levels did not differ between the testicular phases. Double-labelled immunohistochemistry (IHC) revealed a close association between the GnRH/GnIH, GnRH/NPY, GnRH/VIP and GnIH/NPY peptide systems, implicating them interacting and playing roles in the reproductive regulation in weaver birds. Experiment 2 further measured these peptide levels in the middle of day and night in weaver birds that were maintained under short days (8 : 16 h light /dark cycle; photosensitive), exposed to ten long days (16 : 8 h light /dark cycle; photostimulated) or maintained for approximately 2 years on a 16 : 8 h light /dark cycle (photorefractory). Reproductively immature testes in these groups precluded the possible effect of an enhanced gonadal feedback on the hypothalamic peptide expression. There were group differences in the GnRH-I (not GnRH-II), GnIH, NPY and VIP immunoreactivity, albeit with variations in immunoreactivity measures in the present study. These results, which are consistent with those reported in birds with relative photorefractoriness, show the distribution and possibly a complex interaction of key neuropeptides in the regulation of the

  3. Ubiquitin, Hormones and Biotic Stress in Plants

    PubMed Central

    Dreher, Kate; Callis, Judy

    2007-01-01

    Background The covalent attachment of ubiquitin to a substrate protein changes its fate. Notably, proteins typically tagged with a lysine48-linked polyubiquitin chain become substrates for degradation by the 26S proteasome. In recent years many experiments have been performed to characterize the proteins involved in the ubiquitylation process and to identify their substrates, in order to understand better the mechanisms that link specific protein degradation events to regulation of plant growth and development. Scope This review focuses on the role that ubiquitin plays in hormone synthesis, hormonal signalling cascades and plant defence mechanisms. Several examples are given of how targeted degradation of proteins affects downstream transcriptional regulation of hormone-responsive genes in the auxin, gibberellin, abscisic acid, ethylene and jasmonate signalling pathways. Additional experiments suggest that ubiquitin-mediated proteolysis may also act upstream of the hormonal signalling cascades by regulating hormone biosynthesis, transport and perception. Moreover, several experiments demonstrate that hormonal cross-talk can occur at the level of proteolysis. The more recently established role of the ubiquitin/proteasome system (UPS) in defence against biotic threats is also reviewed. Conclusions The UPS has been implicated in the regulation of almost every developmental process in plants, from embryogenesis to floral organ production probably through its central role in many hormone pathways. More recent evidence provides molecular mechanisms for hormonal cross-talk and links the UPS system to biotic defence responses. PMID:17220175

  4. Human growth hormone.

    PubMed

    Strobl, J S; Thomas, M J

    1994-03-01

    The study of human growth hormone is a little more than 100 years old. Growth hormone, first identified for its dramatic effect on longitudinal growth, is now known to exert generalized effects on protein, lipid, and carbohydrate metabolism. Additional roles for growth hormone in human physiology are likely to be discovered in the areas of sleep research and reproduction. Furthermore, there is some indication that growth hormone also may be involved in the regulation of immune function, mental well-being, and the aging process. Recombinant DNA technology has provided an abundant and safe, albeit expensive, supply of human growth hormone for human use, but the pharmacological properties of growth hormone are poor. Most growth hormone-deficient individuals exhibit a secretory defect rather than a primary defect in growth hormone production, however, and advances in our understanding of the neuroendocrine regulation of growth hormone secretion have established the basis for the use of drugs to stimulate release of endogenously synthesized growth hormone. This promises to be an important area for future drug development. PMID:8190748

  5. Hormones and endometrial carcinogenesis.

    PubMed

    Kamal, Areege; Tempest, Nicola; Parkes, Christina; Alnafakh, Rafah; Makrydima, Sofia; Adishesh, Meera; Hapangama, Dharani K

    2016-02-01

    Endometrial cancer (EC) is the commonest gynaecological cancer in the Western World with an alarmingly increasing incidence related to longevity and obesity. Ovarian hormones regulate normal human endometrial cell proliferation, regeneration and function therefore are implicated in endometrial carcinogenesis directly or via influencing other hormones and metabolic pathways. Although the role of unopposed oestrogen in the pathogenesis of EC has received considerable attention, the emerging role of other hormones in this process, such as androgens and gonadotropin-releasing hormones (GnRH) is less well recognised. This review aims to consolidate the current knowledge of the involvement of the three main endogenous ovarian hormones (oestrogens, progesterone and androgens) as well as the other hormones in endometrial carcinogenesis, to identify important avenues for future research. PMID:26966933

  6. Hormonal status modifies renin-angiotensin system-regulating aminopeptidases and vasopressin-degrading activity in the hypothalamus-pituitary-adrenal axis of female mice.

    PubMed

    García, María Jesús; Martínez-Martos, José Manuel; Mayas, María Dolores; Carrera, María Pilar; De la Chica, Susana; Cortés, Pedro; Ramírez-Expósito, María Jesús

    2008-07-01

    The hypothalamus-pituitary-adrenal axis (HPA) participates in the maintenance of cardiovascular functions and in the control of blood pressure. By other hand, it is known that blood pressure regulation and HPA activity are affected by sex hormones. The aim of the present work is to analyze the influence of estradiol and progesterone on renin-angiotensin system (RAS)-regulating aminopeptidase A, aminopeptidase B and aminopeptidase N activities and vasopressin-degrading activity in the HPA axis of ovariectomized mice and ovariectomized mice treated subscutaneously with different doses of estradiol and progesterone. Our data suggest that in female mice, estradiol and progesterone influence RAS-regulating and vasopressin-degrading activities at different levels of the HPA axis.

  7. The role of hormones in the pathogenesis of psoriasis vulgaris

    PubMed Central

    ROMAN, IULIA IOANA; CONSTANTIN, ANNE-MARIE; MARINA, MIHAELA ELENA; ORASAN, REMUS IOAN

    2016-01-01

    Psoriasis vulgaris is a chronic, common skin disease, which affects the patient’s quality of life to the highest degree. Several exogenous factors and endogenous hormonal changes may act as triggers for psoriasis. The skin possesses a true endocrine system, which is very important in multiple systemic diseases. A number of conditions are associated with psoriasis, and its severity can also be influenced by hormones. Even though the sex hormones and prolactin have a major role in psoriasis pathogenicity, there are a lot of other hormones which can influence the psoriasis clinical manifestations: glucocorticoids, epinephrine, thyroid hormones, and insulin. PMID:27004020

  8. Identification of a calcitonin-like diuretic hormone that functions as an intrinsic modulator of the American lobster, Homarus americanus, cardiac neuromuscular system.

    PubMed

    Christie, A E; Stevens, J S; Bowers, M R; Chapline, M C; Jensen, D A; Schegg, K M; Goldwaser, J; Kwiatkowski, M A; Pleasant, T K; Shoenfeld, L; Tempest, L K; Williams, C R; Wiwatpanit, T; Smith, C M; Beale, K M; Towle, D W; Schooley, D A; Dickinson, P S

    2010-01-01

    In insects, a family of peptides with sequence homology to the vertebrate calcitonins has been implicated in the control of diuresis, a process that includes mixing of the hemolymph. Here, we show that a member of the insect calcitonin-like diuretic hormone (CLDH) family is present in the American lobster, Homarus americanus, serving, at least in part, as a powerful modulator of cardiac output. Specifically, during an ongoing EST project, a transcript encoding a putative H. americanus CLDH precursor was identified; a full-length cDNA was subsequently cloned. In silico analyses of the deduced prepro-hormone predicted the mature structure of the encoded CLDH to be GLDLGLGRGFSGSQAAKHLMGLAAANFAGGPamide (Homam-CLDH), which is identical to a known Tribolium castaneum peptide. RT-PCR tissue profiling suggests that Homam-CLDH is broadly distributed within the lobster nervous system, including the cardiac ganglion (CG), which controls the movement of the neurogenic heart. RT-PCR analysis conducted on pacemaker neuron- and motor neuron-specific cDNAs suggests that the motor neurons are the source of the CLDH message in the CG. Perfusion of Homam-CLDH through the isolated lobster heart produced dose-dependent increases in both contraction frequency and amplitude and a dose-dependent decrease in contraction duration, with threshold concentrations for all parameters in the range 10(-11) to 10(-10) mol l(-1) or less, among the lowest for any peptide on this system. This report is the first documentation of a decapod CLDH, the first demonstration of CLDH bioactivity outside the Insecta, and the first detection of an intrinsic neuropeptide transcript in the crustacean CG. PMID:20008368

  9. Identification of a calcitonin-like diuretic hormone that functions as an intrinsic modulator of the American lobster, Homarus americanus, cardiac neuromuscular system

    PubMed Central

    Christie, A. E.; Stevens, J. S.; Bowers, M. R.; Chapline, M. C.; Jensen, D. A.; Schegg, K. M.; Goldwaser, J.; Kwiatkowski, M. A.; Pleasant, T. K.; Shoenfeld, L.; Tempest, L. K.; Williams, C. R.; Wiwatpanit, T.; Smith, C. M.; Beale, K. M.; Towle, D. W.; Schooley, D. A.; Dickinson, P. S.

    2010-01-01

    In insects, a family of peptides with sequence homology to the vertebrate calcitonins has been implicated in the control of diuresis, a process that includes mixing of the hemolymph. Here, we show that a member of the insect calcitonin-like diuretic hormone (CLDH) family is present in the American lobster, Homarus americanus, serving, at least in part, as a powerful modulator of cardiac output. Specifically, during an ongoing EST project, a transcript encoding a putative H. americanus CLDH precursor was identified; a full-length cDNA was subsequently cloned. In silico analyses of the deduced prepro-hormone predicted the mature structure of the encoded CLDH to be GLDLGLGRGFSGSQAAKHLMGLAAANFAGGPamide (Homam-CLDH), which is identical to a known Tribolium castaneum peptide. RT-PCR tissue profiling suggests that Homam-CLDH is broadly distributed within the lobster nervous system, including the cardiac ganglion (CG), which controls the movement of the neurogenic heart. RT-PCR analysis conducted on pacemaker neuron- and motor neuron-specific cDNAs suggests that the motor neurons are the source of the CLDH message in the CG. Perfusion of Homam-CLDH through the isolated lobster heart produced dose-dependent increases in both contraction frequency and amplitude and a dose-dependent decrease in contraction duration, with threshold concentrations for all parameters in the range 10–11 to 10–10 mol l–1 or less, among the lowest for any peptide on this system. This report is the first documentation of a decapod CLDH, the first demonstration of CLDH bioactivity outside the Insecta, and the first detection of an intrinsic neuropeptide transcript in the crustacean CG. PMID:20008368

  10. Headaches and hormones.

    PubMed

    Pakalnis, Ann; Gladstein, Jack

    2010-06-01

    It is clear that hormones play an important role in modulating and exacerbating headaches. From an epidemiologic standpoint, we know that before puberty, incidence of new headache is similar for boys and girls. By age 18, however, most new cases of migraine occur in young women. The role of sex hormones in headache is described in the context of pubertal development. Obesity and Pseudotumor also impact headache through hormonal influences. Menstrual migraine will often present in the teenage years. Oral contraceptives may worsen or ameliorate headache. This article will introduce these concepts and help the reader become familiar with the role of hormones in headache.

  11. Inflammation severely alters thyroid hormone signaling in the central nervous system during experimental allergic encephalomyelitis in rat: Direct impact on OPCs differentiation failure.

    PubMed

    Fernández, Mercedes; Baldassarro, Vito A; Sivilia, Sandra; Giardino, Luciana; Calzà, Laura

    2016-09-01

    Differentiation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes is severely impaired by inflammatory cytokines and this could lead to remyelination failure in inflammatory/demyelinating diseases. Due to the role of thyroid hormone in the maturation of OPCs and developmental myelination, in this study we investigated (i) the possible occurrence of dysregulation of thyroid hormone signaling in the CNS tissue during experimental neuroinflammation; (ii) the possible impact of inflammatory cytokines on thyroid hormone signaling and OPCs differentiation in vitro. The disease model is the experimental allergic encephalomyelitis in female Dark-Agouti rats, whereas in vitro experiments were carried out in OPCs derived from neural stem cells. The main results are the following: (i) a strong upregulation of cytokine mRNA expression level was found in the spinal cord during experimental allergic encephalomyelitis; (ii) thyroid hormone signaling in the spinal cord (thyroid hormone receptors; deiodinase; thyroid hormone membrane transporter) is substantially downregulated, due to the upregulation of the thyroid hormone inactivating enzyme deiodinase 3 and the downregulation of thyroid hormone receptors, as investigated at mRNA expression level; (iii) when exposed to inflammatory cytokines, deiodinase 3 is upregulated in OPCs as well, and OPCs differentiation is blocked; (iv) deiodinase 3 inhibition by iopanoic acid recovers OPCs differentiation in the presence on inflammatory cytokines. These data suggest that cellular hypothyroidism occurs during experimental allergic encephalomyelitis, possibly impacting on thyroid hormone-dependent cellular processes, including maturation of OPCs into myelinating oligodendrocytes. GLIA 2016;64:1573-1589. PMID:27404574

  12. The mechanism of regulation of ovarian maturation by red pigment concentrating hormone in the mud crab Scylla paramamosain.

    PubMed

    Zeng, Hui; Bao, Chenchang; Huang, Huiyang; Ye, Haihui; Li, Shaojing

    2016-01-01

    In this study a full-length cDNA (Sp-RPCH) was cloned from the eyestalk ganglia of the mud crab Scylla paramamosain. Sp-RPCH is 660 base pairs in length and its open reading frame encodes a precursor that is predicted to be processed into a 25-residue signal peptide, a mature red pigment concentrating hormone (RPCH, an octapeptide), and a 75-residue precursor-related peptide. Phylogenetic analysis indicates that it clusters with other crustacean RPCHs and belongs to the adipokinetic hormone/RPCH peptide superfamily. Sp-RPCH gene expression was detected, using an end-point polymerase chain reaction (PCR), not only in the eyestalk ganglia but also in the brain and thoracic ganglia. Quantified using a real-time PCR, Sp-RPCH gene expression levels in the three tissues fluctuated along a cycle of ovarian maturation, with the levels progressively increased from stages I to IV, after which the expression levels decreased (although they remained significantly higher than stage I levels) when the ovary reached the mature stage (stage V). It was demonstrated using a patch clamp analysis that synthetic RPCH was able to evoke a Ca(2+) current in dissociated brain neurons and synthetic RPCH significantly increased the mean oocyte diameter of the ovarian tissues co-cultured with the eyestalk ganglia, brain, or thoracic ganglia; the stimulatory effect of RPCH was absent when the nervous tissues were not included in the ovarian incubation. Animals administrated with RPCH had significantly higher levels of gonad-somatic index, hepatopancreas-somatic index, and vitellogenin gene expression, when compared to control animals receiving a saline injection. The combined results clearly show that RPCH is involved in ovarian maturation in the mud crab; the stimulatory effects of RPCH are likely mediated by its actions on the release from the nervous tissues of factor(s) that directly regulate vitellogenesis in the ovary and hepatopancreas. PMID:26679434

  13. Can the usage of human growth hormones affect facial appearance and the accuracy of face recognition systems?

    NASA Astrophysics Data System (ADS)

    Rose, Jake; Martin, Michael; Bourlai, Thirimachos

    2014-06-01

    In law enforcement and security applications, the acquisition of face images is critical in producing key trace evidence for the successful identification of potential threats. The goal of the study is to demonstrate that steroid usage significantly affects human facial appearance and hence, the performance of commercial and academic face recognition (FR) algorithms. In this work, we evaluate the performance of state-of-the-art FR algorithms on two unique face image datasets of subjects before (gallery set) and after (probe set) steroid (or human growth hormone) usage. For the purpose of this study, datasets of 73 subjects were created from multiple sources found on the Internet, containing images of men and women before and after steroid usage. Next, we geometrically pre-processed all images of both face datasets. Then, we applied image restoration techniques on the same face datasets, and finally, we applied FR algorithms in order to match the pre-processed face images of our probe datasets against the face images of the gallery set. Experimental results demonstrate that only a specific set of FR algorithms obtain the most accurate results (in terms of the rank-1 identification rate). This is because there are several factors that influence the efficiency of face matchers including (i) the time lapse between the before and after image pre-processing and restoration face photos, (ii) the usage of different drugs (e.g. Dianabol, Winstrol, and Decabolan), (iii) the usage of different cameras to capture face images, and finally, (iv) the variability of standoff distance, illumination and other noise factors (e.g. motion noise). All of the previously mentioned complicated scenarios make clear that cross-scenario matching is a very challenging problem and, thus, further investigation is required.

  14. Immunocytochemical and pharmacological evidence for an intrinsic cholinomimetic system modulating prolactin and growth hormone release in rat pituitary.

    PubMed

    Carmeliet, P; Denef, C

    1988-08-01

    Pituitary cells were cultured as three-dimensional reaggregates in serum-free chemically defined medium supplemented with different concentrations of dexamethasone. Immunostaining of the cells using a polyclonal antiserum and three monoclonal antibodies raised against choline acetyl transferase (CAT), revealed the presence of CAT immunoreactivity in 4-10% of anterior pituitary cells depending on the antibody used. CAT immunoreactivity was also found in freshly dispersed anterior pituitary cells. CAT-immunoreactive cells could be enriched on BSA and Percoll gradients and codistributed with ACTH-immunoreactive cells in these gradients. Perifusion of the aggregates with the potent muscarinic receptor antagonist atropine (Atr) resulted in a dose-dependent (0.1-100 nM) increase in both basal PRL and GH secretion; the response was dependent on the dexamethasone concentration in the culture medium. A similar response to Atr was observed in organ-cultured pituitaries. The specificity of the Atr effect was supported by the findings that the potent and highly specific muscarinic receptor blocker dexetimide showed a similar action, whereas its inactive enantiomer levetimide and the nicotinic receptor blocker hexamethonium failed to do so. Two other muscarinic antagonists, benzatropine and pirenzepine, showed a dose-dependent hormone-releasing action similar to that of Atr, but were less potent than the latter. Pirenzepine was only effective at high molar concentrations, suggesting that an M2 muscarinic receptor subtype was mediating the present phenomenon. Atr also potentiated GH release stimulated by the beta-adrenergic agonist isoproterenol and PRL release stimulated by vasoactive intestinal peptide, but had no effect on GRF-stimulated GH release. The choline uptake blocker hemicholinium abolished the effect of Atr on GH and PRL release. These data suggest that certain pituitary cells can express CAT activity and that these cells exert a tonic inhibitory activity on GH and

  15. Usability and Tolerability of the Norditropin NordiFlex® Injection Device in Children Never Previously Treated With Growth Hormone

    ClinicalTrials.gov

    2014-06-23

    Growth Hormone Disorder; Growth Hormone Deficiency in Children; Genetic Disorder; Turner Syndrome; Foetal Growth Problem; Small for Gestational Age; Chronic Kidney Disease; Chronic Renal Insufficiency; Delivery Systems

  16. Early-life adversity programs emotional functions and the neuroendocrine stress system: the contribution of nutrition, metabolic hormones and epigenetic mechanisms.

    PubMed

    Yam, Kit-Yi; Naninck, Eva F G; Schmidt, Mathias V; Lucassen, Paul J; Korosi, Aniko

    2015-01-01

    Clinical and pre-clinical studies have shown that early-life adversities, such as abuse or neglect, can increase the vulnerability to develop psychopathologies and cognitive decline later in life. Remarkably, the lasting consequences of stress during this sensitive period on the hypothalamic-pituitary-adrenal axis and emotional function closely resemble the long-term effects of early malnutrition and suggest a possible common pathway mediating these effects. During early-life, brain development is affected by both exogenous factors, like nutrition and maternal care as well as by endogenous modulators including stress hormones. These elements, while mostly considered for their independent actions, clearly do not act alone but rather in a synergistic manner. In order to better understand how the programming by early-life stress takes place, it is important to gain further insight into the exact interplay of these key elements, the possible common pathways as well as the underlying molecular mechanisms that mediate their effects. We here review evidence that exposure to both early-life stress and early-life under-/malnutrition similarly lead to life-long alterations on the neuroendocrine stress system and modify emotional functions. We further discuss how the different key elements of the early-life environment interact and affect one another and next suggest a possible role for the early-life adversity induced alterations in metabolic hormones and nutrient availability in shaping later stress responses and emotional function throughout life, possibly via epigenetic mechanisms. Such knowledge will help to develop intervention strategies, which gives the advantage of viewing the synergistic action of a more complete set of changes induced by early-life adversity. PMID:26260665

  17. Early-life adversity programs emotional functions and the neuroendocrine stress system: the contribution of nutrition, metabolic hormones and epigenetic mechanisms.

    PubMed

    Yam, Kit-Yi; Naninck, Eva F G; Schmidt, Mathias V; Lucassen, Paul J; Korosi, Aniko

    2015-01-01

    Clinical and pre-clinical studies have shown that early-life adversities, such as abuse or neglect, can increase the vulnerability to develop psychopathologies and cognitive decline later in life. Remarkably, the lasting consequences of stress during this sensitive period on the hypothalamic-pituitary-adrenal axis and emotional function closely resemble the long-term effects of early malnutrition and suggest a possible common pathway mediating these effects. During early-life, brain development is affected by both exogenous factors, like nutrition and maternal care as well as by endogenous modulators including stress hormones. These elements, while mostly considered for their independent actions, clearly do not act alone but rather in a synergistic manner. In order to better understand how the programming by early-life stress takes place, it is important to gain further insight into the exact interplay of these key elements, the possible common pathways as well as the underlying molecular mechanisms that mediate their effects. We here review evidence that exposure to both early-life stress and early-life under-/malnutrition similarly lead to life-long alterations on the neuroendocrine stress system and modify emotional functions. We further discuss how the different key elements of the early-life environment interact and affect one another and next suggest a possible role for the early-life adversity induced alterations in metabolic hormones and nutrient availability in shaping later stress responses and emotional function throughout life, possibly via epigenetic mechanisms. Such knowledge will help to develop intervention strategies, which gives the advantage of viewing the synergistic action of a more complete set of changes induced by early-life adversity.

  18. Thyroid hormones and growth in health and disease.

    PubMed

    Tarım, Ömer

    2011-01-01

    Thyroid hormones regulate growth by several mechanisms. In addition to their negative feedback effect on the stimulatory hormones thyrotropin-releasing hormone (TRH) and thyrotropin (TSH), thyroid hormones also regulate their receptors in various physiological and pathological conditions. Up-regulation and down-regulation of the thyroid receptors fine-tune the biological effects exerted by the thyroid hormones. Interestingly, the deiodinase enzyme system is another intrinsic regulator of thyroid physiology that adjusts the availability of thyroid hormones to the tissues, which is essential for normal growth and development. Almost all chronic diseases of childhood impair growth and development. Every disease may have a unique mechanism to halt linear growth, but reduced serum concentration or diminished local availability of thyroid hormones seems to be a common pathway. Therefore, the effects of systemic diseases on thyroid physiology must be taken into consideration in the evaluation of growth retardation in affected children.

  19. Hormonal component of tumor photodynamic therapy response

    NASA Astrophysics Data System (ADS)

    Korbelik, Mladen; Merchant, Soroush

    2008-02-01

    The involvement of adrenal glucocorticoid hormones in the response of the treatment of solid tumors by photodynamic therapy (PDT) comes from the induction of acute phase response by this modality. This adrenal gland activity is orchestrated through the engagement of the hypothalamic-pituitary-adrenal hormonal axis incited by stress signals emanating from the PDT-treated tumor. Glucocorticoid hormone activity engendered within the context of PDT-induced acute phase response performs multiple important functions; among other involvements they beget acute phase reactant production, systemic neutrophil mobilization, and control the production of inflammation-modulating and immunoregulatory proteins.

  20. Long-acting hormonal contraception.

    PubMed

    Benagiano, Giuseppe; Gabelnick, Henry; Brosens, Ivo

    2015-11-01

    Today, a new category of fertility-regulating agents has been created: long-acting, reversible hormonal contraceptives; they minimize compliance, while maximize effectiveness. They comprise subdermal implants and intrauterine devices. Other long-acting agents exist, such as Depo Provera and Noristerat. Use of Depo Provera and Noristerat carries great effectiveness, good clinical safety and usefulness in developing countries. They cause no significant increase in breast cancer risk, but they may carry an increased risk of HIV. Subcutaneous delivery systems have two common features: prolongation of effect is obtained by a drug reservoir and for most of their duration of action they provide a continuous, sustained release of the active hormone. Finally, the intrauterine system Mirena represents both a very effective contraceptive and a specific treatment for menorrhagia.

  1. The behavior of renal-regulating hormones during hypogravic stress

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1985-01-01

    The regulation of fluid and electrolyte behavior during space flight is believed to be under control, in large part, of a group of hormones which have their major effects on renal excretion. The hormones studied include renin-angitensin, aldosterone, and antidiuretic hormone (ADH). The regulatory systems of these renal-regulating hormones as they act individually and in concert with each other are analyzed. The analysis is based on simulations of the mathematical model of Guyton. A generalized theory is described which accounts for both short-term and long-term behavior of this set of hormones.

  2. Effect of noise stress on cardiovascular system in adult male albino rat: implication of stress hormones, endothelial dysfunction and oxidative stress.

    PubMed

    Said, Mona A; El-Gohary, Ola A

    2016-07-01

    Noise pollution has been realized as an environmental stressor associated with modern life style that affects our health without being consciously aware of it. The present study investigated the effect of acute, chronic intermittent and chronic continuous exposure to noise of intensity 80-100 dB on heart rate and mean systemic arterial blood pressure in rats and the possible underlying mechanisms. Noise stress causes significant increase in heart rate, mean systemic arterial blood pressure as well as significant increase in plasma levels of corticosterone, adrenaline, noradrenaline, endothelin-1, nitric oxide and malondialdehyde with significant decrease in superoxide dismutase and these values are significantly more worse in chronic continuous exposure to noise than acute or chronic intermittent exposure. These findings suggest that noise stress has many adverse effects on cardiovascular system via increasing plasma levels of stress hormones, oxidative stress and endothelial dysfunction. These findings have major implication in the management of adverse cardiovascular reactions of people subjected to daily noise stress. PMID:27174896

  3. Effect of noise stress on cardiovascular system in adult male albino rat: implication of stress hormones, endothelial dysfunction and oxidative stress.

    PubMed

    Said, Mona A; El-Gohary, Ola A

    2016-07-01

    Noise pollution has been realized as an environmental stressor associated with modern life style that affects our health without being consciously aware of it. The present study investigated the effect of acute, chronic intermittent and chronic continuous exposure to noise of intensity 80-100 dB on heart rate and mean systemic arterial blood pressure in rats and the possible underlying mechanisms. Noise stress causes significant increase in heart rate, mean systemic arterial blood pressure as well as significant increase in plasma levels of corticosterone, adrenaline, noradrenaline, endothelin-1, nitric oxide and malondialdehyde with significant decrease in superoxide dismutase and these values are significantly more worse in chronic continuous exposure to noise than acute or chronic intermittent exposure. These findings suggest that noise stress has many adverse effects on cardiovascular system via increasing plasma levels of stress hormones, oxidative stress and endothelial dysfunction. These findings have major implication in the management of adverse cardiovascular reactions of people subjected to daily noise stress.

  4. Weightlifting Training and Hormonal Responses in Adolescent Males: Implications for Program Design.

    ERIC Educational Resources Information Center

    Fry, Andrew C.; Schilling, Brian K.

    2002-01-01

    Discusses monitoring of the training tolerance of junior- aged weightlifters, focusing on: whether the hormonal system can be used to monitor training status; puberty and the hormonal environment; whether training stresses can be monitored by the hormonal environment; adolescent weightlifters' hormonal response during a lifting session; whether…

  5. Premenstrual changes. Impaired hormonal homeostasis.

    PubMed

    Halbreich, U; Alt, I H; Paul, L

    1988-03-01

    Premenstrual changes (PMCs) in mood and behavior are very prevalent. Nonetheless, their pathophysiology is still obscure and no proven treatment is yet available. Evaluation of the plethora of available data leads to the suggestion that PMCs may result from a temporary impairment of homeostasis among a multitude of systems. This impairment is triggered by a differential pace and magnitude of change-over-time in levels of several hormones and other substances during the luteal phase. PMID:3288473

  6. [Neurotropic action of adrenocorticotropic hormone].

    PubMed

    Louis, J C; Anglard, P; Vincendon, G

    1986-02-01

    The adrenocorticotropic hormone (ACTH) is produced within the cell body of hypothalamic neurons by proteolytic cleavage of its large precursor molecule, pro-opiomelanocortin. These neurons distribute ACTH-containing nerve endings throughout the central nervous system. ACTH is able to evoke motor and behavioural responses and to modify neuronal metabolism. Since ACTH has been shown to regulate glucose uptake and utilization, its implication in the adaptative response to stress situations, such as cerebral hypoxia, deserves further investigations. PMID:3008142

  7. Endocrine interactions between plants and animals: Implications of exogenous hormone sources for the evolution of hormone signaling.

    PubMed

    Miller, Ashley E M; Heyland, Andreas

    2010-05-01

    Hormones are central to animal physiology, metabolism and development. Details on signal transduction systems and regulation of hormone synthesis, activation and release have only been studied for a small number of animal groups, notably arthropods and chordates. However, a significant body of literature suggests that hormonal signaling systems are not restricted to these phyla. For example, work on several echinoderm species shows that exogenous thyroid hormones (THs) affect larval development and metamorphosis and our new data provide strong evidence for endogenous synthesis of THs in sea urchin larvae. In addition to these endogenous sources, these larvae obtain THs when they consume phytoplankton. Another example of an exogenously acquired hormone or their precursors is in insect and arthropod signaling. Sterols from plants are essential for the synthesis of ecdysteroids, a crucial group of insect morphogenic steroids. The availability of a hormone or hormone precursor from food has implications for understanding hormone function and the evolution of hormonal signaling in animals. For hormone function, it creates an important link between the environment and the regulation of internal homeostatic systems. For the evolution of hormonal signaling it helps us to better understand how complex endocrine mechanisms may have evolved.

  8. The Proprotein Convertase Encoded by amontillado (amon) Is Required in Drosophila Corpora Cardiaca Endocrine Cells Producing the Glucose Regulatory Hormone AKH

    PubMed Central

    Rhea, Jeanne M.; Wegener, Christian; Bender, Michael

    2010-01-01

    Peptide hormones are potent signaling molecules that coordinate animal physiology, behavior, and development. A key step in activation of these peptide signals is their proteolytic processing from propeptide precursors by a family of proteases, the subtilisin-like proprotein convertases (PCs). Here, we report the functional dissection of amontillado (amon), which encodes the Drosophila homolog of the mammalian PC2 protein, using cell-type specific inactivation and rescue experiments, and we show that amon is required in the islet-like adipokinetic hormone (AKH)–producing cells that regulate sugar homeostasis. In Drosophila, AKH acts analogously to vertebrate glucagon to increase circulating sugar levels from energy stores, while insulin-like peptides (DILPs) act to decrease sugar levels. amon mutant larvae have significantly reduced hemolymph sugar levels, and thus phenocopy larvae where the AKH–producing cells in the corpora cardiaca have been ablated. Reduction of amon expression in these cells via cell-specific RNA inactivation also results in larvae with reduced sugar levels while expression of amon in AKH cells in an amon mutant background rescues hypoglycemia. Hypoglycemia in larvae resulting from amon RNA inactivation in the AKH cells can be rescued by global expression of the akh gene. Finally, mass spectrometric profiling shows that the production of mature AKH is inhibited in amon mutants. Our data indicate that amon function in the AKH cells is necessary to maintain normal sugar homeostasis, that amon functions upstream of akh, and that loss of mature AKH is correlated with loss of amon activity. These observations indicate that the AKH propeptide is a proteolytic target of the amon proprotein convertase and provide evidence for a conserved role of PC2 in processing metabolic peptide hormones. PMID:20523747

  9. The proprotein convertase encoded by amontillado (amon) is required in Drosophila corpora cardiaca endocrine cells producing the glucose regulatory hormone AKH.

    PubMed

    Rhea, Jeanne M; Wegener, Christian; Bender, Michael

    2010-05-01

    Peptide hormones are potent signaling molecules that coordinate animal physiology, behavior, and development. A key step in activation of these peptide signals is their proteolytic processing from propeptide precursors by a family of proteases, the subtilisin-like proprotein convertases (PCs). Here, we report the functional dissection of amontillado (amon), which encodes the Drosophila homolog of the mammalian PC2 protein, using cell-type specific inactivation and rescue experiments, and we show that amon is required in the islet-like adipokinetic hormone (AKH)-producing cells that regulate sugar homeostasis. In Drosophila, AKH acts analogously to vertebrate glucagon to increase circulating sugar levels from energy stores, while insulin-like peptides (DILPs) act to decrease sugar levels. amon mutant larvae have significantly reduced hemolymph sugar levels, and thus phenocopy larvae where the AKH-producing cells in the corpora cardiaca have been ablated. Reduction of amon expression in these cells via cell-specific RNA inactivation also results in larvae with reduced sugar levels while expression of amon in AKH cells in an amon mutant background rescues hypoglycemia. Hypoglycemia in larvae resulting from amon RNA inactivation in the AKH cells can be rescued by global expression of the akh gene. Finally, mass spectrometric profiling shows that the production of mature AKH is inhibited in amon mutants. Our data indicate that amon function in the AKH cells is necessary to maintain normal sugar homeostasis, that amon functions upstream of akh, and that loss of mature AKH is correlated with loss of amon activity. These observations indicate that the AKH propeptide is a proteolytic target of the amon proprotein convertase and provide evidence for a conserved role of PC2 in processing metabolic peptide hormones. PMID:20523747

  10. Hormones in the seminal plasma. Cortisol.

    PubMed

    Abbaticchio, G; Giorgino, R; Urago, M; Gattuccio, F; Orlando, G; Jannì, A

    1981-09-01

    The data from previous studies on the seminal concentrations of proteic hormones result in the hypothesis that there exists a selective filter for these hormones, which is between the systemic circulation and the male genital canal. Previous data regarding sexual steroids are insufficient to verify if such a filter system also operates in the case of hormones of minor molecular weight. It would appear that the study of cortisol, a non-sexual steroid, will be more useful. The concentrations of this hormone in the peripheric blood (176 +/- 59, mean +/- ds, ng/ml) prove to be much greater than in the seminal plasma (20 +/- 9.6). No significant differences are found between normozoospermic and oligo-azoospermic subjects, either in the blood (173 +/- 184 +/- 53), or in the seminal plasma (21 +/- 12 versus 20 +/- 8). These data would seem to support the hypothesis under discussion.

  11. Hormonal regulation of female reproduction.

    PubMed

    Christensen, A; Bentley, G E; Cabrera, R; Ortega, H H; Perfito, N; Wu, T J; Micevych, P

    2012-07-01

    Reproduction is an event that requires the coordination of peripheral organs with the nervous system to ensure that the internal and external environments are optimal for successful procreation of the species. This is accomplished by the hypothalamic-pituitary-gonadal axis that coordinates reproductive behavior with ovulation. The primary signal from the central nervous system is gonadotropin-releasing hormone (GnRH), which modulates the activity of anterior pituitary gonadotropes regulating follicle stimulating hormone (FSH) and luteinizing hormone (LH) release. As ovarian follicles develop they release estradiol, which negatively regulates further release of GnRH and FSH. As estradiol concentrations peak they trigger the surge release of GnRH, which leads to LH release inducing ovulation. Release of GnRH within the central nervous system helps modulate reproductive behaviors providing a node at which control of reproduction is regulated. To address these issues, this review focuses on several critical questions. How is the HPG axis regulated in species with different reproductive strategies? What internal and external conditions modulate the synthesis and release of GnRH? How does GnRH modulate reproductive behavior within the hypothalamus? How does disease shift the activity of the HPG axis?

  12. The growth hormone secretagogue receptor.

    PubMed

    Cruz, Conrad Russell Young; Smith, Roy G

    2008-01-01

    The neuroendocrine hormone ghrelin, a recently discovered acylated peptide with numerous activities in various organ systems, exerts most of its known effects on the body through a highly conserved G-protein-coupled receptor, the growth hormone secretagogue receptor (GHSR) type 1a. The GHSR's wide expression in different tissues reflects activity of its ligands in the hypothalamic-pituitary, cardiovascular, immune, gastrointestinal, and reproductive systems. Its extensive cellular distribution along with its important actions on the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis and other neuroendocrine and metabolic systems suggest a pivotal role in governing the mechanisms of aging. A more comprehensive characterization of the receptor, and a more thorough identification of its various agonists and antagonists, will undoubtedly introduce important clinical applications in age-related states like anorexia, cardiovascular pathology, cancer, impaired energy balance, and immune dysfunction. Although present knowledge points to a single functional receptor and a single endogenous ligand, recent investigations suggest the existence of additional GHSR subtypes, as well as other endogenous agonists. It has been more than a decade since the landmark cloning of this ubiquitous, highly conserved receptor, and the considerable extent of its effects on normal physiology and disease states have filled the literature with incredible insights on how organisms regulate various functions through subtle signaling processes. But science has barely scratched the surface, and we can be assured that the mysteries surrounding the precise nature of ghrelin and its receptor(s) are only beginning to unravel. PMID:17983853

  13. Effect of different managerial systems on productive and reproductive traits, blood plasma hormones and serum biochemical constituents of geese.

    PubMed

    El-Hanoun, A M; Attia, Y A; Gad, H A M; Abdella, M M

    2012-11-01

    A flock of 117, 10-month-old Egyptian geese consisting of 90 females and 27 males were utilized in this investigation. Birds were randomly divided into three equal groups, each made up of three replicates of 10 females and 3 males each. The first group was kept under a pasture system (PS) and allowed to swim in water ducts during the daytime (PS) and kept inside the house during the night. The second group of birds were kept in confinement in a house and fed ad libitum on a commercial feed (intensive system (IS)). Birds in the third group (semi-intensive system (SIS)) were released from the house for 6 h a day and given access to the pasture and water ducts. Each group was housed in three pens (replicates) in the SIS. They were given ad libitum access to the commercial feed when in the house. Each pen measured (2 × 3 m2). Natural mating was practiced during the period from November to the end of May. BW of geese under ISS was significantly (P ⩽ 0.05) higher than those under PS and SIS. Egg number, weight and mass of geese in the SIS system were significantly (P ⩽ 0.05) greater than those of geese in the PS and IS systems. Fertility and hatchability percentages were significantly (P ⩽ 0.05) greater in the PS (84.2% and 88.6%) than in the IS (77.5% and 82.8%) and SIS systems (80.7% and 85.5%). Shell weight and thickness were significantly (P ⩽ 0.05) better in the IS and SIS systems than in the PS system. Geese in the PS and SIS systems exhibited significantly higher plasma estradiol-17 and progesterone than those in the IS. Testosterone was significantly higher in IS than in the other systems. Semen quality factor was significantly higher in the PS and SIS systems than in the IS system. Carcass weight was significantly greater in IS and SIS geese than in PS geese, but the PS system resulted in a decreased percentage skin, abdominal fat and liver. Total amount of meat produced per geese was significantly greater in the SIS than in the IS system and greater in

  14. Effect of different managerial systems on productive and reproductive traits, blood plasma hormones and serum biochemical constituents of geese.

    PubMed

    El-Hanoun, A M; Attia, Y A; Gad, H A M; Abdella, M M

    2012-11-01

    A flock of 117, 10-month-old Egyptian geese consisting of 90 females and 27 males were utilized in this investigation. Birds were randomly divided into three equal groups, each made up of three replicates of 10 females and 3 males each. The first group was kept under a pasture system (PS) and allowed to swim in water ducts during the daytime (PS) and kept inside the house during the night. The second group of birds were kept in confinement in a house and fed ad libitum on a commercial feed (intensive system (IS)). Birds in the third group (semi-intensive system (SIS)) were released from the house for 6 h a day and given access to the pasture and water ducts. Each group was housed in three pens (replicates) in the SIS. They were given ad libitum access to the commercial feed when in the house. Each pen measured (2 × 3 m2). Natural mating was practiced during the period from November to the end of May. BW of geese under ISS was significantly (P ⩽ 0.05) higher than those under PS and SIS. Egg number, weight and mass of geese in the SIS system were significantly (P ⩽ 0.05) greater than those of geese in the PS and IS systems. Fertility and hatchability percentages were significantly (P ⩽ 0.05) greater in the PS (84.2% and 88.6%) than in the IS (77.5% and 82.8%) and SIS systems (80.7% and 85.5%). Shell weight and thickness were significantly (P ⩽ 0.05) better in the IS and SIS systems than in the PS system. Geese in the PS and SIS systems exhibited significantly higher plasma estradiol-17 and progesterone than those in the IS. Testosterone was significantly higher in IS than in the other systems. Semen quality factor was significantly higher in the PS and SIS systems than in the IS system. Carcass weight was significantly greater in IS and SIS geese than in PS geese, but the PS system resulted in a decreased percentage skin, abdominal fat and liver. Total amount of meat produced per geese was significantly greater in the SIS than in the IS system and greater in

  15. Sex hormone-related and growth hormone-related alopecias.

    PubMed

    Schmeitzel, L P

    1990-11-01

    Canine endocrine dermatoses are characterized by bilateral symmetrical alopecia. Although growth hormone-related and sex hormone-related dermatoses are less common than hypothyroidism and hyperadrenocorticism, they are important causes of hormonal skin disease. Several new syndromes associated with growth and sex hormones recently have been described.

  16. A hormone receptor-based transactivator bridges different binary systems to precisely control spatial-temporal gene expression in Drosophila.

    PubMed

    Kuo, Shu-Yun; Tu, Chiao-Hui; Hsu, Ya-Ting; Wang, Horng-Dar; Wen, Rong-Kun; Lin, Chen-Ta; Wu, Chia-Lin; Huang, Yu-Ting; Huang, Guan-Shieng; Lan, Tsuo-Hung; Fu, Tsai-Feng

    2012-01-01

    The GAL4/UAS gene expression system is a precise means of targeted gene expression employed to study biological phenomena in Drosophila. A modified GAL4/UAS system can be conditionally regulated using a temporal and regional gene expression targeting (TARGET) system that responds to heat shock induction. However heat shock-related temperature shifts sometimes cause unexpected physiological responses that confound behavioral analyses. We describe here the construction of a drug-inducible version of this system that takes advantage of tissue-specific GAL4 driver lines to yield either RU486-activated LexA-progesterone receptor chimeras (LexPR) or β-estradiol-activated LexA-estrogen receptor chimeras (XVE). Upon induction, these chimeras bind to a LexA operator (LexAop) and activate transgene expression. Using GFP expression as a marker for induction in fly brain cells, both approaches are capable of tightly and precisely modulating transgene expression in a temporal and dosage-dependent manner. Additionally, tissue-specific GAL4 drivers resulted in target gene expression that was restricted to those specific tissues. Constitutive expression of the active PKA catalytic subunit using these systems altered the sleep pattern of flies, demonstrating that both systems can regulate transgene expression that precisely mimics regulation that was previously engineered using the GeneSwitch/UAS system. Unlike the limited number of GeneSwitch drivers, this approach allows for the usage of the multitudinous, tissue-specific GAL4 lines for studying temporal gene regulation and tissue-specific gene expression. Together, these new inducible systems provide additional, highly valuable tools available to study gene function in Drosophila. PMID:23239992

  17. Steroid hormones in cluster headaches.

    PubMed

    Stillman, Mark

    2006-04-01

    For decades, glucocorticoid therapy has been a well-recognized abortive treatment for cluster headaches. However, the role of steroid hormones, including both glucocorticoids and sex steroids, in the pathophysiology and therapy of cluster headaches has been a topic of much debate and speculation. Current research now points to the importance of cortisol and testosterone in the pathogenesis of cluster headaches, and they appear to be linked mechanistically to another hormone, melatonin. Melatonin, unlike cortisol or testosterone, is not a product of the hypothalamic pituitary axis but of the retinohypothalamic pineal axis, and is the major biomarker of circadian rhythms. The regulation of steroids and melatonin in the pathogenesis of cluster headaches in turn depends on the sympathetic nervous system. Accumulated evidence suggests sympathetic dysfunction--embodied in the Horner sign so commonly seen in the cluster headache--as a necessary ingredient in the inception of the cluster headache. Sympathetic dysfunction now is thought to be associated with the hypercortisolism, hypotestosteronism, and lower-than-normal melatonin levels in the active cluster patient. Future research may hold the key to a fuller explanation of the complex interaction of hormonal systems in the cluster headache.

  18. Dietary sugar promotes systemic TOR activation in Drosophila through AKH-dependent selective secretion of Dilp3

    PubMed Central

    Kim, Jung; Neufeld, Thomas P.

    2015-01-01

    Secreted ligands of the insulin family promote cell growth and maintain sugar homeostasis. Insulin release is tightly regulated in response to dietary conditions, but how insulin producing cells (IPCs) coordinate their responses to distinct nutrient signals is unclear. Here, we show that regulation of insulin secretion in Drosophila larvae has been segregated into distinct branches: whereas amino acids promote secretion of Drosophila insulin-like peptide 2 (Dilp2), circulating sugars promote selective release of Dilp3. Dilp3 is uniquely required for sugar-mediated activation of TOR signaling and suppression of autophagy in the larval fat body. Sugar levels are not sensed directly by the IPCs, but rather by the adipokinetic hormone (AKH)-producing cells of the corpora cardiaca, and we demonstrate that AKH signaling is required in the IPCs for sugar-dependent Dilp3 release. Thus, IPCs integrate multiple cues to regulate secretion of distinct insulin subtypes under varying nutrient conditions. PMID:25882208

  19. Concentrations of hormones, pharmaceuticals and other micropollutants in groundwater affected by septic systems in New England and New York

    USGS Publications Warehouse

    Phillips, Patrick J.; Schubert, Christopher E.; Argue, Denise M.; Fisher, Irene J.; Furlong, Edward T.; Foreman, William T.; Gray, James L.; Chalmers, Ann T.

    2015-01-01

    The highest micropollutant concentrations for the NY network were present in the shoreline wells and reflect groundwater that is most affected by septic system discharges. One of the shoreline wells had personal care/domestic use, pharmaceutical, and plasticizer concentrations ranging from 0.4 to 5.7 μg/L. Estradiol equivalency quotient concentrations were also highest in a shoreline well sample (3.1 ng/L). Most micropollutant concentrations increase with increasing specific conductance and total nitrogen concentrations for shoreline well samples. These findings suggest that septic systems serving institutional settings and densely populated areas in coastal settings may be locally important sources of micropollutants to adjacent aquifer and marine systems.

  20. Hormone-dependent aggression in male and female rats: experiential, hormonal, and neural foundations.

    PubMed

    Albert, D J; Jonik, R H; Walsh, M L

    1992-01-01

    Hormone-dependent aggression in both male and female rats includes the distinctive behavioral characteristics of piloerection and lateral attack. In males the aggression is dependent on testicular testosterone and is commonly known as intermale aggression. In females, the aggression is most commonly observed as maternal aggression and is dependent on hormones whose identity is only beginning to emerge. The present review examines the experiential events which activate hormone-dependent aggression, the relation of the aggression to gonadal hormones, and the neural structures that participate in its modulation. In males and females, the aggression is activated by cohabitation with a conspecific of the opposite sex, by competitive experience, and by repeated exposure to unfamiliar conspecifics. In the female, the presence of pups also activates aggression. In both males and females, hormones are necessary for the full manifestation of the aggression. The essential hormone appears to be testosterone in males and a combination of testosterone and estradiol in females. The information available suggests the neural control systems for hormone-dependent aggression may be similar in males and females. It is argued that hormone-dependent aggression is behaviorally and biologically homologous in male and female rats.

  1. Bioidentical Hormones and Menopause

    MedlinePlus

    ... There are two types of bioidentical hormone products: • Pharmaceutical products. These products have been approved by the ... made products. These are made in a compounding pharmacy (a pharmacy that mixes medications according to a ...

  2. Bioidentical Hormones and Menopause

    MedlinePlus

    ... There are two types of bioidentical hormone products: Pharmaceutical products . These products have been approved by the ... made products. These are made in a compounding pharmacy(a pharmacy that mixes medications according to a ...

  3. Thyroid Hormone Treatment

    MedlinePlus

    ... is to closely replicate normal thyroid functioning. Pure, synthetic thyroxine (T4) works in the same way as ... needing thyroid hormone replacement (see Hypothyroidism brochure ). Pure synthetic thyroxine (T4), taken once daily by mouth, successfully ...

  4. Growth Hormone-Releasing Hormone in Diabetes

    PubMed Central

    Fridlyand, Leonid E.; Tamarina, Natalia A.; Schally, Andrew V.; Philipson, Louis H.

    2016-01-01

    Growth hormone-releasing hormone (GHRH) is produced by the hypothalamus and stimulates growth hormone synthesis and release in the anterior pituitary gland. In addition, GHRH is an important regulator of cellular functions in many cells and organs. Expression of GHRH G-Protein Coupled Receptor (GHRHR) has been demonstrated in different peripheral tissues and cell types, including pancreatic islets. Among the peripheral activities, recent studies demonstrate a novel ability of GHRH analogs to increase and preserve insulin secretion by beta-cells in isolated pancreatic islets, which makes them potentially useful for diabetes treatment. This review considers the role of GHRHR in the beta-cell and addresses the unique engineered GHRH agonists and antagonists for treatment of type 2 diabetes mellitus. We discuss the similarity of signaling pathways activated by GHRHR in pituitary somatotrophs and in pancreatic beta-cells and possible ways as to how the GHRHR pathway can interact with glucose and other secretagogues to stimulate insulin secretion. We also consider the hypothesis that novel GHRHR agonists can improve glucose metabolism in Type 2 diabetes by preserving the function and survival of pancreatic beta-cells. Wound healing and cardioprotective action with new GHRH agonists suggest that they may prove useful in ameliorating certain diabetic complications. These findings highlight the future potential therapeutic effectiveness of modulators of GHRHR activity for the development of new therapeutic approaches in diabetes and its complications. PMID:27777568

  5. Illness-induced changes in thyroid hormone metabolism: focus on the tissue level.

    PubMed

    Kwakkel, J; Fliers, E; Boelen, A

    2011-05-01

    During illness changes in thyroid hormone metabolism occur, collectively known as the non-thyroidal illness syndrome (NTIS). NTIS is characterised by low serum thyroid hormone levels without the expected rise in serum thyroid-stimulating hormone, indicating a major change in thyroid hormone feedback regulation. Recent studies have made clear that during NTIS differential changes in thyroid hormone metabolism occur in various tissues, the net effect of which may be either activation or inhibition of thyroid hormone action. In this review we discuss systemic and local changes in thyroid hormone metabolism during illness, highlighting their physiological implications in terms of disease course.

  6. Treatment with thyroid hormone.

    PubMed

    Biondi, Bernadette; Wartofsky, Leonard

    2014-06-01

    Thyroid hormone deficiency can have important repercussions. Treatment with thyroid hormone in replacement doses is essential in patients with hypothyroidism. In this review, we critically discuss the thyroid hormone formulations that are available and approaches to correct replacement therapy with thyroid hormone in primary and central hypothyroidism in different periods of life such as pregnancy, birth, infancy, childhood, and adolescence as well as in adult patients, the elderly, and in patients with comorbidities. Despite the frequent and long term use of l-T4, several studies have documented frequent under- and overtreatment during replacement therapy in hypothyroid patients. We assess the factors determining l-T4 requirements (sex, age, gender, menstrual status, body weight, and lean body mass), the major causes of failure to achieve optimal serum TSH levels in undertreated patients (poor patient compliance, timing of l-T4 administration, interferences with absorption, gastrointestinal diseases, and drugs), and the adverse consequences of unintentional TSH suppression in overtreated patients. Opinions differ regarding the treatment of mild thyroid hormone deficiency, and we examine the recent evidence favoring treatment of this condition. New data suggesting that combined therapy with T3 and T4 could be indicated in some patients with hypothyroidism are assessed, and the indications for TSH suppression with l-T4 in patients with euthyroid multinodular goiter and in those with differentiated thyroid cancer are reviewed. Lastly, we address the potential use of thyroid hormones or their analogs in obese patients and in severe cardiac diseases, dyslipidemia, and nonthyroidal illnesses.

  7. Regional distribution of gonadotropin-releasing hormone-like, beta-endorphin-like, and methionine-enkephalin-like immunoreactivities in the central nervous system of the goat.

    PubMed

    Karuri, A R; Ayres, S; Kumar, M S

    2000-01-01

    Regional distribution of gonadotropin-releasing hormone (GnRH)-like-, beta-endorphin (beta-end)-like-, and methionine-enkephalin (met-enk)-like-immunoreactivity was quantified across various regions of the central nervous system (CNS) of male and female goats by using highly specific radioimmunoassays. All the animals were sacrificed during the months of March through June (non-breeding season). Although the distribution of these three neuropeptides was similar to other mammalian species, species-specific gender differences in the levels of neuropeptides were noticed in the goat CNS. Highest levels of GnRH-like immunoreactivities were found in the hypothalamus. The hypothalamus of male goats exhibited significantly higher levels of GnRH-like immunoreactivities compared to female goats. Other regions exhibiting GnRH-like immunoreactivities included olfactory bulbs, preoptic and supraoptic regions, and mamillary bodies. Both beta-end- and met-enk immunoreactivities were detected in all selected regions of goat CNS, but highest levels of these opioid peptide-like immunoreactivities were limited to the forebrain regions of the goat. The supraoptic area of the female goats contained significantly higher levels of beta-end-like immunoreactivities than that of the male goats. Met-enk-peptide-like immunoreactivity also exhibited gender-specific differences in its content in some regions of the CNS. The male goats exhibited significantly higher levels of met-enk-like immunoreactivity in both the striatal and hypothalamic regions of the brain.

  8. The "multiple hormone deficiency" theory of aging: is human senescence caused mainly by multiple hormone deficiencies?

    PubMed

    Hertoghe, T

    2005-12-01

    In the human body, the productions, levels and cell receptors of most hormones progressively decline with age, gradually putting the body into various states of endocrine deficiency. The circadian cycles of these hormones also change, sometimes profoundly, with time. In aging individuals, the well-balanced endocrine system can fall into a chaotic condition with losses, phase-advancements, phase delays, unpredictable irregularities of nycthemeral hormone cycles, in particular in very old or sick individuals. The desynchronization makes hormone activities peak at the wrong times and become inefficient, and in certain cases health threatening. The occurrence of multiple hormone deficits and spilling through desynchronization may constitute the major causes of human senescence, and they are treatable causes. Several arguments can be put forward to support the view that senescence is mainly a multiple hormone deficiency syndrome: First, many if not most of the signs, symptoms and diseases (including cardiovascular diseases, cancer, obesity, diabetes, osteoporosis, dementia) of senescence are similar to physical consequences of hormone deficiencies and may be caused by hormone deficiencies. Second, most of the presumed causes of senescence such as excessive free radical formation, glycation, cross-linking of proteins, imbalanced apoptosis system, accumulation of waste products, failure of repair systems, deficient immune system, may be caused or favored by hormone deficiencies. Even genetic causes such as limits to cell proliferation (such as the Hayflick limit of cell division), poor gene polymorphisms, premature telomere shortening and activation of possible genetic "dead programs" may have links with hormone deficiencies, being either the consequence, the cause, or the major favoring factor of hormone deficiencies. Third, well-dosed and -balanced hormone supplements may slow down or stop the progression of signs, symptoms, or diseases of senescence and may often

  9. Interactions of growth hormone secretagogues and growth hormone-releasing hormone/somatostatin.

    PubMed

    Tannenbaum, G S; Bowers, C Y

    2001-02-01

    The class of novel synthetic compounds termed growth hormone secretagogues (GHSs) act in the hypothalamus through, as yet, unknown pathways. We performed physiologic and histochemical studies to further understand how the GHS system interacts with the well-established somatostatin (SRIF)/growth hormone-releasing hormone (GHRH) neuroendocrine system for regulating pulsatile GH secretion. Comparison of the GH-releasing activities of the hexapeptide growth hormone-releasing peptide-6 (GHRP-6) and GHRH administered intravenously to conscious adult male rats showed that the pattern of GH responsiveness to GHRP-6 was markedly time-dependent, similar to that observed with GHRH. Immunoneutralization of endogenous SRIF reversed the blunted GH response to GHRP-6 at trough times, suggesting that GHRP-6 neither disrupts nor inhibits the cyclical release of endogenous hypothalamic SRIF. By striking contrast, passive immunization with anti-GHRH serum virtually obliterated the GH responses to GHRP-6, irrespective of the time of administration. These findings suggest that the GHSs do not act by altering SRIF release but, rather, stimulate GH release via GHRH-dependent pathways. Our dual chromogenic and autoradiographic in situ hybridization experiments revealed that a subpopulation of GHRH mRNA-containing neurons in the arcuate (Arc) nucleus and ventromedial nucleus (VMN) of the hypothalamus expressed the GHS receptor (GHS-R) gene. These results provide strong anatomic evidence that GHSs may directly stimulate GHRH release into hypophyseal portal blood, and thereby influence GH secretion, through interaction with the GHS-R on GHRH- containing neurons. Altogether, these findings support the notion that an additional neuroendocrine pathway may exist to regulate pulsatile GH secretion, possibly through the influence of the newly discovered GHS natural peptide, ghrelin. PMID:11322498

  10. Two emerging concepts for elite athletes: the short-term effects of testosterone and cortisol on the neuromuscular system and the dose-response training role of these endogenous hormones.

    PubMed

    Crewther, Blair T; Cook, Christian; Cardinale, Marco; Weatherby, Robert P; Lowe, Tim

    2011-02-01

    The aim of this review is to highlight two emerging concepts for the elite athlete using the resistance-training model: (i) the short-term effects of testosterone (T) and cortisol (C) on the neuromuscular system; and (ii) the dose-response training role of these endogenous hormones. Exogenous evidence confirms that T and C can regulate long-term changes in muscle growth and performance, especially with resistance training. This evidence also confirms that changes in T or C concentrations can moderate or support neuromuscular performance through various short-term mechanisms (e.g. second messengers, lipid/protein pathways, neuronal activity, behaviour, cognition, motor-system function, muscle properties and energy metabolism). The possibility of dual T and C effects on the neuromuscular system offers a new paradigm for understanding resistance-training performance and adaptations. Endogenous evidence supports the short-term T and C effects on human performance. Several factors (e.g. workout design, nutrition, genetics, training status and type) can acutely modify T and/or C concentrations and thereby potentially influence resistance-training performance and the adaptive outcomes. This novel short-term pathway appears to be more prominent in athletes (vs non-athletes), possibly due to the training of the neuromuscular and endocrine systems. However, the exact contribution of these endogenous hormones to the training process is still unclear. Research also confirms a dose-response training role for basal changes in endogenous T and C, again, especially for elite athletes. Although full proof within the physiological range is lacking, this athlete model reconciles a proposed permissive role for endogenous hormones in untrained individuals. It is also clear that the steroid receptors (cell bound) mediate target tissue effects by adapting to exercise and training, but the response patterns of the membrane-bound receptors remain highly speculative. This information

  11. Thyroid hormone regulation of metabolism.

    PubMed

    Mullur, Rashmi; Liu, Yan-Yun; Brent, Gregory A

    2014-04-01

    Thyroid hormone (TH) is required for normal development as well as regulating metabolism in the adult. The thyroid hormone receptor (TR) isoforms, α and β, are differentially expressed in tissues and have distinct roles in TH signaling. Local activation of thyroxine (T4), to the active form, triiodothyronine (T3), by 5'-deiodinase type 2 (D2) is a key mechanism of TH regulation of metabolism. D2 is expressed in the hypothalamus, white fat, brown adipose tissue (BAT), and skeletal muscle and is required for adaptive thermogenesis. The thyroid gland is regulated by thyrotropin releasing hormone (TRH) and thyroid stimulating hormone (TSH). In addition to TRH/TSH regulation by TH feedback, there is central modulation by nutritional signals, such as leptin, as well as peptides regulating appetite. The nutrient status of the cell provides feedback on TH signaling pathways through epigentic modification of histones. Integration of TH signaling with the adrenergic nervous system occurs peripherally, in liver, white fat, and BAT, but also centrally, in the hypothalamus. TR regulates cholesterol and carbohydrate metabolism through direct actions on gene expression as well as cross-talk with other nuclear receptors, including peroxisome proliferator-activated receptor (PPAR), liver X receptor (LXR), and bile acid signaling pathways. TH modulates hepatic insulin sensitivity, especially important for the suppression of hepatic gluconeogenesis. The role of TH in regulating metabolic pathways has led to several new therapeutic targets for metabolic disorders. Understanding the mechanisms and interactions of the various TH signaling pathways in metabolism will improve our likelihood of identifying effective and selective targets.

  12. [Sex Specificity in Age-Related Thyroid Hormone Responsiveness].

    PubMed

    Suzuki, Satoru

    2016-01-01

    Similar to other systems, the endocrine system is affected by aging. Thyroid hormone, the action of which is affected by many factors, has been shown to be associated with longevity. The most useful marker for assessment of the thyroid hormone action is the TSH level. Although age and sex are believed to modify the pituitary set point or response to the free thyroid hormone concentration, the precise age- and sex-dependent responses to thyroid hormone have yet to be reported. In this lecture, molecular aspects of resistance to thyroid hormone are initially overviewed. After presentation of the evidence that the TSH-thyroid hormone axis is evolutionarily modified, and that negative feedback mechanisms may start to play roles in homeostatic regulation at the time of delivery, the rationale of age-dependent thyroid hormone resistance is introduced. To assess the age- and sex-dependent resistance to thyroid hormone, the index is provided by the formula based on the relationship between thyroid hormone and TSH levels. The index is calculated by the results of thyroid function tests obtained from the two individual clinical groups. From the results, there were negative relationships between the free T3 resistance index and age in males of both groups, while there were no apparent relationships in females. These findings indicate that there is a male-specific response to thyroid hormone with aging. Furthermore, the specific features of the response may not be affected by environmental factors such as the presence of disorders or medical treatments. PMID:27192800

  13. A major thyroid hormone response element in the third intron of the rat growth hormone gene.

    PubMed Central

    Sap, J; de Magistris, L; Stunnenberg, H; Vennström, B

    1990-01-01

    The rat growth hormone (RGH) gene constitutes a well-documented model system for the direct regulation of transcription by thyroid hormones. In order to analyse its interaction with sequences in the RGH gene, we have overproduced the thyroid hormone receptor-alpha (c-erbA) protein using a vaccinia virus expression system. The expressed protein bound T3 and DNA-cellulose with expected affinities, and the major binding site for the receptor protein was found to be located in the third intron of the RGH gene. This site displayed significantly higher affinity for the receptor protein than a previously described thyroid hormone response element (TRE) in the promoter of this gene, and also conferred stronger hormone responsiveness in vivo to a heterologous promoter. The data suggest that this novel TRE plays a major role in the regulation of rat growth hormone gene expression by thyroid hormones. Images Fig. 1. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:2155782

  14. [Paraneoplastic hormonal syndromes].

    PubMed

    Forga, L; Anda, E; Martínez de Esteban, J P

    2005-01-01

    We can define paraneoplastic syndromes as a combination of effects occurring far from the original location of the tumour and independently from the local repercussion of its metastases. Paraneoplastic hormonal syndromes depend on the secretion of hormonal peptides or their precursors, cytokines and, more rarely, thyroidal hormones and Vitamin D, which act in an endocrine, paracrine or autocrine way. Sometimes, paraneoplastic syndromes can be more serious than the consequences of the primary tumour itself and can precede, develop in parallel, or follow the manifestations of this tumour. It is important to recognise a paraneoplastic hormonal syndrome for several reasons, amongst which we would draw attention to three: 1) It can lead to the diagnosis of a previously undetected, underlying malign or benign neoplasia; 2) It can dominate the clinical picture and thus lead to errors with respect to the origin and type of primary tumour; and 3) It can follow the clinical course of the underlying tumour and thus be useful for monitoring its evolution. The molecular mechanisms responsible for the development of these syndromes are not well-known, but it is believed that they might be inherent to the mutations responsible for the primary tumour or depend on epigenetic factors such as methylation. In this review, we consider the following paraneoplastic hormonal syndromes: malign hypercalcaemia, hyponatraemia (inappropiate secretion of the antidiuretic hormone), ectopic Cushing's syndrome, ectopic acromegaly, hypoglycaemia due to tumours different from those of the islet cells and paraneoplastic gynaecomastia; we make a brief final reference to other hormones (calcitonin, somatostatin, and VIP). PMID:16155618

  15. A silica-based pH-sensitive nanomatrix system improves the oral absorption and efficacy of incretin hormone glucagon-like peptide-1

    PubMed Central

    Qu, Wei; Li, Yong; Hovgaard, Lars; Li, Song; Dai, Wenbin; Wang, Jiancheng; Zhang, Xuan; Zhang, Qiang

    2012-01-01

    Background Glucagon-like peptide-1 (GLP-1) (7–36) is a peptide incretin hormone released from the endocrine L-cells of the intestinal mucosa with unique antidiabetic potential. Due to low absorption efficiency and instability in the gastrointestinal tract, the introduction of orally active GLP-1 is a large challenge. Here we developed a novel silica-based pH-sensitive nanomatrix of GLP-1 (SPN-GLP-1) in order to provide a strategy for oral peptide delivery. Methods SPN-GLP-1 composed of silica nanoparticles and pH-sensitive Eudragit® was prepared and characterized by dynamic light scattering, scanning electron microscope, transmission electron microscope, high-performance liquid chromatography, surface analysis, drug release, and so on. Its permeability across the Caco-2 cell monolayer and intestinal mucosa, proteolytic stability against the intestinal enzymes, pharmacokinetics, hypoglycemic effect in the intraperitoneal glucose tolerance test (IPGTT), and primary toxicity were then evaluated. Results It was indicated that the nanomatrix system obtained had a unique nanoscale structure and pH-sensitivity in drug release. It displayed a five-fold intestinal mucosa permeability and significantly higher proteolytic stability compared to native GLP-1 (P < 0.001). A longer half-life was observed after oral administration of SPN-GLP-1, and its relative bioavailability was 35.67% in comparison to intraperitoneal GLP-1. Oral delivery of SPN-GLP-1 significantly reduced the blood glucose level and its hypoglycemic effect over intraperitoneal GLP-1 reached 77%. There was no evident toxicity of SPN-GLP-1 found from both animal status and histochemical analysis of gastrointestinal tissues. Conclusion The silica-based pH-sensitive nanomatrix designed and prepared here might be considered as a potential oral delivery system not only for GLP-1, but also for other peptide or macromolecular drugs. PMID:23028226

  16. Sex hormones and the dry eye.

    PubMed

    Truong, Susan; Cole, Nerida; Stapleton, Fiona; Golebiowski, Blanka

    2014-07-01

    The greater prevalence of dry eye in women compared to men suggests that sex hormones may have a role in this condition. This review aims to present evidence for how sex hormones may affect the ocular structures involved in the production, regulation and maintenance of the normal tear film. It is hypothesised that hormone changes alter the homeostasis of the ocular surface and contribute to dry eye. Androgens impact on the structure and function of the meibomian and lacrimal glands and therefore androgen deficiency is, at least in part, associated with the aetiology of dry eye. In contrast, reports of the effects of oestrogen and progesterone on these ocular structures and on the conjunctiva are contradictory and the mechanisms of action of these female-specific sex hormones in the eye are not well understood. The uncertainty of the effects of oestrogen and progesterone on dry eye symptoms is reflected in the controversial relationship between hormone replacement therapy and the signs and symptoms of dry eye. Current understanding of sex hormone influences on the immune system suggests that oestrogen may modulate a cascade of inflammatory events, which underlie dry eye.

  17. Reproductive hormones and bone.

    PubMed

    Nicks, Kristy M; Fowler, Tristan W; Gaddy, Dana

    2010-06-01

    Hypothalamic gonadotropin-releasing hormone (GnRH) stimulates secretion of pituitary luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which directly regulate ovarian function. Pituitary FSH can modulate osteoclast development, and thereby influence bone turnover. Pituitary oxytocin and prolactin effects on the skeleton are not merely limited to pregnancy and lactation; oxytocin stimulates osteoblastogenesis and bone formation, whereas prolactin exerts skeletal effects in an age-dependent manner. Cyclic levels of inhibins and estrogen suppress FSH and LH, respectively, and also suppress bone turnover via their suppressive effects on osteoblast and osteoclast differentiation. However, continuous exposure to inhibins or estrogen/androgens is anabolic for the skeleton in intact animals and protects against gonadectomy-induced bone loss. Alterations of one hormone in the hypothalamic-pituitary-gonadal (HPG) axis influence other bone-active hormones in the entire feedback loop in the axis. Thus, we propose that the action of the HPG axis should be extended to include its combined effects on the skeleton, thus creating the HPG skeletal (HPGS) axis.

  18. Hormonal control of euryhalinity

    USGS Publications Warehouse

    Takei, Yoshio; McCormick, Stephen D.; McCormick, Stephen D.; Farrell, Anthony Peter; Brauner, Colin J.

    2013-01-01

    Hormones play a critical role in maintaining body fluid balance in euryhaline fishes during changes in environmental salinity. The neuroendocrine axis senses osmotic and ionic changes, then signals and coordinates tissue-specific responses to regulate water and ion fluxes. Rapid-acting hormones, e.g. angiotensins, cope with immediate challenges by controlling drinking rate and the activity of ion transporters in the gill, gut, and kidney. Slow-acting hormones, e.g. prolactin and growth hormone/insulin-like growth factor-1, reorganize the body for long-term acclimation by altering the abundance of ion transporters and through cell proliferation and differentiation of ionocytes and other osmoregulatory cells. Euryhaline species exist in all groups of fish, including cyclostomes, and cartilaginous and teleost fishes. The diverse strategies for responding to changes in salinity have led to differential regulation and tissue-specific effects of hormones. Combining traditional physiological approaches with genomic, transcriptomic, and proteomic analyses will elucidate the patterns and diversity of the endocrine control of euryhalinity.

  19. Thyroid hormone resistance.

    PubMed

    Olateju, Tolulope O; Vanderpump, Mark P J

    2006-11-01

    Resistance to thyroid hormone (RTH) is a rare autosomal dominant inherited syndrome of reduced end-organ responsiveness to thyroid hormone. Patients with RTH have elevated serum free thyroxine (FT4) and free triiodothyronine (FT3) concentrations and normal or slightly elevated serum thyroid stimulating hormone (TSH) level. Despite a variable clinical presentation, the common characteristic clinical features are goitre but an absence of the usual symptoms and metabolic consequences of thyroid hormone excess. Patients with RTH can be classified on clinical grounds alone into either generalized resistance (GRTH), pituitary resistance (PRTH) or combined. Mutations in the thyroid hormone receptor (TR) beta gene are responsible for RTH and 122 different mutations have now been identified belonging to 300 families. With the exception of one family found to have complete deletion of the TRbeta gene, all others have been demonstrated to have minor alterations at the DNA level. The differential diagnosis includes a TSH-secreting pituitary adenoma and the presence of endogenous antibodies directed against thyroxine (T4) and triiodothyronine (T3). Failure to differentiate RTH from primary thyrotoxicosis has resulted in the inappropriate treatment of nearly one-third of patients. Although occasionally desirable, no specific treatment is available for RTH; however, the diagnosis allows appropriate genetic counselling. PMID:17132274

  20. [Hormones and hair growth].

    PubMed

    Trüeb, R M

    2010-06-01

    With respect to the relationship between hormones and hair growth, the role of androgens for androgenetic alopecia (AGA) and hirsutism is best acknowledged. Accordingly, therapeutic strategies that intervene in androgen metabolism have been successfully developed for treatment of these conditions. Clinical observations of hair conditions involving hormones beyond the androgen horizon have determined their role in regulation of hair growth: estrogens, prolactin, thyroid hormone, cortisone, growth hormone (GH), and melatonin. Primary GH resistance is characterized by thin hair, while acromegaly may cause hypertrichosis. Hyperprolactinemia may cause hair loss and hirsutism. Partial synchronization of the hair cycle in anagen during late pregnancy points to an estrogen effect, while aromatase inhibitors cause hair loss. Hair loss in a causal relationship to thyroid disorders is well documented. In contrast to AGA, senescent alopecia affects the hair in a diffuse manner. The question arises, whether the hypothesis that a causal relationship exists between the age-related reduction of circulating hormones and organ function also applies to hair and the aging of hair.

  1. Expression of a functional g protein-coupled receptor 54-kisspeptin autoregulatory system in hypothalamic gonadotropin-releasing hormone neurons.

    PubMed

    Quaynor, Samuel; Hu, Lian; Leung, Po Ki; Feng, Hao; Mores, Nadia; Krsmanovic, Lazar Z; Catt, Kevin J

    2007-12-01

    The G protein-coupled receptor 54 (GPR54) and its endogenous ligand, kisspeptin, are essential for activation and regulation of the hypothalamic-pituitary-gonadal axis. Analysis of RNA extracts from individually identified hypothalamic GnRH neurons with primers for GnRH, kisspeptin-1, and GPR54 revealed expression of all three gene products. Also, constitutive and GnRH agonist-induced bioluminescence resonance energy transfer between Renilla luciferase-tagged GnRH receptor and GPR54 tagged with green fluorescent protein, expressed in human embryonic kidney 293 cells, revealed heterooligomerization of the two receptors. Whole cell patch-clamp recordings from identified GnRH neurons showed initial depolarizing effects of kisspeptin on membrane potential, followed by increased action potential firing. In perifusion studies, treatment of GT1-7 neuronal cells with kisspeptin-10 increased GnRH peak amplitude and duration. The production and secretion of kisspeptin in cultured hypothalamic neurons and GT1-7 cells were detected by a specific RIA and was significantly reduced by treatment with GnRH. The expression of kisspeptin and GPR54 mRNAs in identified hypothalamic GnRH neurons, as well as kisspeptin secretion, indicate that kisspeptins may act as paracrine and/or autocrine regulators of the GnRH neuron. Stimulation of GnRH secretion by kisspeptin and the opposing effects of GnRH on kisspeptin secretion indicate that GnRH receptor/GnRH and GPR54/kisspeptin autoregulatory systems are integrated by negative feedback to regulate GnRH and kisspeptin secretion from GnRH neurons.

  2. Neurotensin. Immunohistochemical localization in central and peripheral nervous system and in endocrine cells and its functional role as neurotransmitter and endocrine hormone.

    PubMed

    Reinecke, M

    1985-01-01

    The present study attempts to compile information on the possible physiologic role of the endogenous peptide neurotensin (NT) as a hormone and/or neurotransmitter. The methodological approach is immunohistochemical localization of NT in the entero-endocrine system as well as in the central and peripheral nervous systems. The results found in the three systems are first related to the pharmalogical and physiological findings in the literature. Subsequently their significance is discussed for each organ separately before attempting a final overall interpretation. Briefly, the present study reveals the following essential findings: The occurrence and distribution of NT-IR entero-endocrine cells (N-cells) in different mammals including man, as well as in representative members of all classes of vertebrates and higher invertebrates, are analyzed and evaluated morphometrically. The NT-IR cells in all investigated species are demonstrated to be of the open type. The innervation of paravertebral and prevertebral ganglia by NT-IR fibers is described; at least a portion of these fibers is thought to originate in NT-IR perikarya of the substantia intermedia of the spinal cord. The involvement of these NT-IR fibers in the regulation of systemic blood flow (hypertension) is suggested. The existence of NT-IR innervation of the gastro-intestinal tract is considered to be a general phenomenon. This notion is reaffirmed by phylogenetic investigation of the NT-IR enteric nerves. The pharmacological effects of NT in different portions of the gastro-intestinal tract, reported in the literature are related to the immunohistochemical localization of NT. In light of the present results, some of the effects of NT which were previously considered to be of an endocrine or paracrine nature - such as contraction of the guinea-pig ileum - are interpreted as effects of NT of neuronal origin. The specific NT-IR innervation of target cells in the exocrine pancreas (vascular smooth muscle, acinar

  3. Plant hormone interactions: how complex are they?

    PubMed

    Ross, John J; Weston, Diana E; Davidson, Sandra E; Reid, James B

    2011-04-01

    Models describing plant hormone interactions are often complex and web-like. Here we assess several suggested interactions within one experimental system, elongating pea internodes. Results from this system indicate that at least some suggested interactions between auxin, gibberellins (GAs), brassinosteroids (BRs), abscisic acid (ABA) and ethylene do not occur in this system or occur in the reverse direction to that suggested. Furthermore, some of the interactions are relatively weak and may be of little physiological relevance. This is especially true if plant hormones are assumed to show a log-linear response curve as many empirical results suggest. Although there is strong evidence to support some interactions between hormones (e.g. auxin stimulating ethylene and bioactive GA levels), at least some of the web-like complexities do not appear to be justified or are overstated. Simpler and more targeted models may be developed by dissecting out key interactions with major physiological effects. PMID:21214880

  4. Hormonal therapy for epilepsy.

    PubMed

    Stevens, Scott J; Harden, Cynthia L

    2011-08-01

    In 2011, there are greater than 20 antiepileptic medications available. These medications work by modulating neuronal excitability. Reproductive hormones have been found to have a role in the pathogenesis and treatment of seizures by also altering neuronal excitability, especially in women with catamenial epilepsy. The female reproductive hormones have in general opposing effects on neuronal excitability; estrogens generally impart a proconvulsant neurophysiologic tone, whereas the progestogens have anticonvulsant effects. It follows then that fluctuations in the levels of serum progesterone and estrogen throughout a normal reproductive cycle bring about an increased or decreased risk of seizure occurrence based upon the serum estradiol/progesterone ratio. Therefore, using progesterone, its metabolite allopregnanolone, or other hormonal therapies have been explored in the treatment of patients with epilepsy. PMID:21451944

  5. Bioidentical hormone therapy.

    PubMed

    Files, Julia A; Ko, Marcia G; Pruthi, Sandhya

    2011-07-01

    The change in hormonal milieu associated with perimenopause and menopause can lead to a variety of symptoms that can affect a woman's quality of life. Postmenopausal hormone therapy (HT) is an effective, well-tolerated treatment for these symptoms. However, combined HT consisting of conjugated equine estrogen and medroxyprogesterone acetate has been associated with an increased number of health risks when compared with conjugated equine estrogen alone or placebo. As a result, some women are turning to alternative hormonal formulations known as compounded bioidentical HT because they perceive them to be a safer alternative. This article defines compounded bioidentical HT and explores the similarities and differences between it and US Food and Drug Administration-approved HT. We will examine the major claims made by proponents of compounded bioidentical HT and recommend strategies for management of patients who request bioidentical HT from physicians.

  6. Repeated administrations of adrenocorticotropic hormone during late gestation in pigs: maternal cortisol response and effects on fetal HPA axis and brain neurotransmitter systems.

    PubMed

    Otten, W; Kanitz, E; Tuchscherer, M; Brüssow, K-P; Nürnberg, G

    2008-02-01

    The present study examined the effects of repeated adrenocorticotropic hormone (ACTH) administrations to sows during late gestation on hypothalamic-pituitary-adrenocortical (HPA) axis and brain neurotransmitter systems in their fetuses. ACTH (100 IU per animal, Synacthen Depot, n=6) or saline (n=5) was administered intramuscularly to sows every 2nd day from gestational day (GD) 85 to GD 101. Blood samples were taken from sows repeatedly within 12h after ACTH application on GD 85 and GD 101. On GD 105, fetuses were recovered under general anaesthesia for the collection of blood and brain samples. Plasma cortisol concentrations in sows increased significantly within 2h after ACTH application and returned to control levels after 10h post-application, showing a similar response at the beginning and at the end of the 16-day stimulation period. On GD 101, a significant increase of plasma glucose and insulin concentrations was found in sows after administration of ACTH and after a following feeding time. Number and body weight of fetuses were not affected by the maternal ACTH treatment. Cortisol concentrations in the umbilical vein were significantly decreased in fetuses from ACTH sows and a similar trend was observed in the umbilical artery and in the vena cava cranialis. Glucocorticoid receptor (GR) binding in hippocampus and hypothalamus did not differ between treatments. However, in hippocampus, serotonergic activity was increased in fetuses from ACTH-treated mothers as shown by significantly elevated 5-hydroxytryptamine (5-HT) levels. In conclusion, repeated administrations of ACTH during late gestation resulted in a reproducible cortisol response of sows and reduced cortisol concentrations in the fetal umbilical vein after the treatment period. Although the number of sows used in this experiment was low and differences between treatments were limited these findings indicate that excessive glucocorticoid exposure during gestation alters serotonergic activity in

  7. Mass spectral characterization of peptide transmitters/hormones in the nervous system and neuroendocrine organs of the American lobster Homarus americanus

    PubMed Central

    Ma, Mingming; Chen, Ruibing; Sousa, Gregory L.; Bors, Eleanor K.; Kwiatkowski, Molly; Goiney, Christopher C.; Goy, Michael F.; Christie, Andrew E.; Li, Lingjun

    2008-01-01

    The American lobster Homarus americanus is a decapod crustacean with both high economic and scientific importance. To facilitate physiological investigations of peptide transmitter/hormone function in this species, we have used matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and nanoscale liquid chromatography coupled to electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nanoLC-ESI-Q-TOF-MS/MS) to elucidate the peptidome present in its nervous system and neuroendocrine organs. In total, 84 peptides were identified, including 27 previously known H. americanus peptides (e.g. VYRKPPFNGSIFamide [Val1-SIFamide]), 23 peptides characterized previously from other decapods, but new to the American lobster (e.g. pQTFQYSRGWTNamide [Arg7-corazonin]), and 34 new peptides de novo sequenced/detected for the first time in this study. Of particular note are a novel B-type allatostatin (TNWNKFQGSWamide) and several novel FMRFamide-related peptides, including an unsulfated analog of sulfakinin (GGGEYDDYGHLRFamide), two myosuppressins (QDLDHVFLRFamide and pQDLDHVFLRFamide), and a collection of short neuropeptide F isoforms (e.g. DTSTPALRLRFamide, and FEPSLRLRFamide). Our data also include the first detection of multiple tachykinin-related peptides in a non-brachyuran decapod, as well as the identification of potential individual-specific variants of orcokinin and orcomyotropin-related peptide. Taken collectively, our results not only expand greatly the number of known H. americanus neuropeptides, but also provide a framework for future studies on the physiological roles played by these molecules in this commercially and scientifically important species. PMID:18304551

  8. Growth hormone and its disorders.

    PubMed

    Ayuk, J; Sheppard, M C

    2006-01-01

    Growth hormone (GH) is synthesised and secreted by the somatotroph cells of the anterior lobe of the pituitary gland. Its actions involve multiple organs and systems, affecting postnatal longitudinal growth as well as protein, lipid, and carbohydrate metabolism. GH hypersecretion results in gigantism or acromegaly, a condition associated with significant morbidity and mortality, while GH deficiency results in growth retardation in children and the GH deficiency syndrome in adults. This article, aimed at non-paediatric physicians, examines the clinical features, diagnosis, and current concepts in the management of these conditions. PMID:16397076

  9. Male hormonal contraception.

    PubMed

    Nieschlag, E

    2010-01-01

    The principle of hormonal male contraception based on suppression of gonadotropins and spermatogenesis has been established over the last three decades. All hormonal male contraceptives use testosterone, but only in East Asian men can testosterone alone suppress spermatogenesis to a level compatible with contraceptive protection. In Caucasians, additional agents are required of which progestins are favored. Current clinical trials concentrate on testosterone combined with norethisterone, desogestrel, etonogestrel, DMPA, or nestorone. The first randomized, placebo-controlled clinical trial performed by the pharmaceutical industry demonstrated the effectiveness of a combination of testosterone undecanoate and etonogestrel in suppressing spermatogenesis in volunteers. PMID:20839093

  10. Enzyme action in the regulation of plant hormone responses.

    PubMed

    Westfall, Corey S; Muehler, Ashley M; Jez, Joseph M

    2013-07-01

    Plants synthesize a chemically diverse range of hormones that regulate growth, development, and responses to environmental stresses. The major classes of plant hormones are specialized metabolites with exquisitely tailored perception and signaling systems, but equally important are the enzymes that control the dose and exposure to the bioactive forms of these molecules. Here, we review new insights into the role of enzyme families, including the SABATH methyltransferases, the methylesterases, the GH3 acyl acid-amido synthetases, and the hormone peptidyl hydrolases, in controlling the biosynthesis and modifications of plant hormones and how these enzymes contribute to the network of chemical signals responsible for plant growth, development, and environmental adaptation.

  11. Sex hormones and brain aging.

    PubMed

    Veiga, Sergio; Melcangi, Roberto C; Doncarlos, Lydia L; Garcia-Segura, Luis M; Azcoitia, Iñigo

    2004-01-01

    Sex steroids exert pleiotropic effects in the nervous system, preserving neural function and promoting neuronal survival. Therefore, the age-related decrease in sex steroids may have a negative impact on neural function. Progesterone, testosterone and estradiol prevent neuronal loss in the central nervous system in different experimental animal models of neurodegeneration. Furthermore, progesterone and its reduced derivatives dihydroprogesterone and tetrahydroprogesterone reduce aging-associated morphological abnormalities of myelin and aging-associated myelin fiber loss in rat peripheral nerves. However, the results from hormone replacement studies in humans are thus far inconclusive. A possible alternative to hormonal replacement therapy is to increase local steroidogenesis by neural tissues, which express enzymes for steroid synthesis and metabolism. Proteins involved in the intramitochondrial trafficking of cholesterol, the first step in steroidogenesis, such as the peripheral-type benzodiazepine receptor and the steroidogenic acute regulatory protein, are up-regulated in the nervous system after injury. Furthermore, steroidogenic acute regulatory protein expression is increased in the brain of 24-month-old rats compared with young adult rats. This suggests that brain steroidogenesis may be modified in adaptation to neurodegenerative conditions and to the brain aging process. Furthermore, recent studies have shown that local formation of estradiol in the brain, by the enzyme aromatase, is neuroprotective. Therefore, steroidogenic acute regulatory protein, peripheral-type benzodiazepine receptor and aromatase are attractive pharmacological targets to promote neuroprotection in the aged brain. PMID:15582278

  12. Neurodevelopmental Consequences of Low-Level Thyroid Hormone Disruption Induced by Environmental Contaminants

    EPA Science Inventory

    Inadequate levels of thyroid hormone during critical developmental periods lead to stunted growth, mental retardation, and neurological 'cretinism'. Animal models of developmental thyroid hormone deficiency mirror well the impact of severe insults to the thyroid system. However, ...

  13. Hormone Therapy for Breast Cancer

    MedlinePlus

    ... Cancers Breast Cancer Screening Research Hormone Therapy for Breast Cancer On This Page What are hormones? How do ... sensitive breast cancer: Adjuvant therapy for early-stage breast cancer : Research has shown that women treated for early- ...

  14. Luteinizing hormone (LH) blood test

    MedlinePlus

    ICSH - blood test; Luteinizing hormone - blood test; Interstitial cell stimulating hormone - blood test ... to temporarily stop medicines that may affect the test results. Be sure to tell your provider about ...

  15. Side Effects of Hormone Therapy

    MedlinePlus

    ... Men Living with Prostate Cancer Side Effects of Hormone Therapy Side Effects Urinary Dysfunction Bowel Dysfunction Erectile Dysfunction Loss of Fertility Side Effects of Hormone Therapy Side Effects of Chemotherapy Side Effects: When ...

  16. Thyroid hormones and bone development.

    PubMed

    Combs, C E; Nicholls, J J; Duncan Bassett, J H; Williams, G R

    2011-03-01

    Thyroid hormones are critical determinants of postnatal skeletal development. Thyroid hormone deficiency or excess in children results in severe abnormalities of linear growth and bone maturation. These clinical observations have been recapitulated in mutant mice and these models have facilitated studies of the mechanisms of thyroid hormone action in the developing skeleton. In this review, we consider in detail the direct and indirect effects of thyroid hormone on bone and the molecular mechanisms involved.

  17. Distribution and change in number of gonadotropin-releasing hormone-1 neurons following activation of the photoneuroendocrine system in the chick, Gallus gallus.

    PubMed

    Kuenzel, Wayne J; Golden, Christopher D

    2006-09-01

    The photoneuroendocrine system (PNES) of chicks was activated by transferring birds to a long photoperiod and by giving them a diet supplemented with sulfamethazine (SMZ), a compound that augments the effect of long-day photostimulation. We wished to determine (1) the number of gonadotropin-releasing hormone-1 (GnRH-1) neurons in each identified nucleus (n.) in the subpallium and diencephalon and the major terminal fields (TFs) of GnRH-1 neurons, and (2) the effect of SMZ on the immunoreactive expression of GnRH-1 in perikarya. Four groups of birds were exposed to one of two light treatments, viz., light:dark (LD) cycles of LD20:4 or LD8:16, and given one of two rations, viz., control or one supplemented with SMZ (n=5/treatment). After 3 days, chicks were anesthetized, and their brains were prepared for immunocytochemistry with an antibody identifying GnRH-1 neurons. Seven areas or nuclei contained GnRH-1 neurons: paramedial septal n., preoptic periventricular n./periventricular hypothalamic n., bed n. of the pallial commissure (NCPa), parvocellular lateral and medial septal n., lateral septum near the ventral horn of the lateral ventricle, parvocellular lateral anterior thalamic n., and displaced thalamic neurons. Six TFs of GnRH neurons were found including the organum vasculosum of lamina terminalis (OVLT), preoptic recess (POR), hypothalamic recess (HR), lateral septum adjacent to the ventral horn of the lateral ventricle (SL-VLvh) associated with the choroid plexus, subseptal organ (SSO), and external zone of the median eminence. The extensive TFs for GnRH-1 neurons in the OVLT, POR/HR, SL-VLvh, and SSO suggested that a large amount of the peptide was secreted into the ventricular system. The NCPa responded to the photoperiod and SMZ treatments combined, with a significant increase in GnRH-1 cell number compared with birds fed control diets and exposed to a short-day photoperiod. More than 73% of GnRH-1 neurons resided in the septal region of the subpallium

  18. Neuroendocrine hormones such as growth hormone and prolactin are integral members of the immunological cytokine network.

    PubMed

    Redelman, Doug; Welniak, Lisbeth A; Taub, Dennis; Murphy, William J

    2008-01-01

    Neuroendocrine hormones such as growth hormone (GH) and prolactin (PRL) have been demonstrated to accelerate the recovery of the immune response after chemotherapy and bone marrow transplantation and to enhance the restoration of immunity in individuals infected with HIV and in normal individuals with compromised immune systems associated with aging. As the mechanism of action of these hormones has been elucidated, it has become clear that they are integral members of the immunological cytokine/chemokine network and share regulatory mechanisms with a wide variety of cytokines and chemokines. The members of this cytokine network induce and can be regulated by members of the suppressor of cytokine signaling (SOCS) family of intracellular proteins. In order to take advantage of the potential beneficial effects of hormones such as GH or PRL, it is essential to take into consideration the overall cytokine network and the regulatory effects of SOCS proteins.

  19. BACULOVIRUS REPLICATION ALTERS HORMONE-REGULATED HOST DEVELOPMENT.

    EPA Science Inventory

    The baculovirus Lymantria dispar nuclear polyhedrosis virus interferes with insect larval development by altering the host's hormonal system. The level of haemolymph ecdysteroids, the insect moulting hormone, was found to be higher in virus-infected larvae than in uninfected cont...

  20. [Hormonal contraception in autoimmpne diseases].

    PubMed

    Matyszkiewicz, Anna; Jach, Robert; Rajtar-Ciosek, Agnieszka; Basta, Tomasz

    2016-01-01

    The onset and the course of autoimmune diseases is influenced among other factors by the sex hormones. Hormonal contraception might affect the course of the autoimmune disease. The paper summarises the manner of save application of hormonal contraception in patients with autoimmune disease. PMID:27526427

  1. Hormonal Control of Fetal Growth.

    ERIC Educational Resources Information Center

    Cooke, Paul S.; Nicoll, Charles S.

    1983-01-01

    Summarizes recent research on hormonal control of fetal growth, presenting data obtained using a new method for studying the area. Effects of endocrine ablations and congenital deficiencies, studies of hormone/receptor levels, in-vitro techniques, hormones implicated in promoting fetal growth, problems with existing methodologies, and growth of…

  2. [Plant hormones, plant growth regulators].

    PubMed

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life.

  3. [Plant hormones, plant growth regulators].

    PubMed

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life. PMID:24954142

  4. Hormonal actions in the Protozoan stress: A review.

    PubMed

    Csaba, György

    2015-12-01

    In the higher ranked animals the alteration of the environment can provoke a uniform reaction named general adaptation system (GAS), which is a manifestation of stress, caused by different stressors. During GAS certain organs show typical reactions and two members of the hormonal system are activated: epinephine and glucocorticoids. As the unicellular ciliate Tetrahymena also synthesize most of the mammalian-like hormones (except steroids), it can respond to stress by a hormonal reaction. The main differences, related to the mammalian GAS hormonal reaction are, that 1) in Tetrahymena the level of all of the hormones studied significantly elevates under the effect of heat, osmotic or chemical stress and 2) the single stress effect is durable. It is manifested at least to the 100th generations, which means that it is inherited epigenetically. Not only hormone synthesis but the receptorial hormone binding is also elevated, which means that the whole hormonal system is activated. The stress reaction (GAS) phylogenetically can be deduced to a unicellular (Protozoan) level however, prokaryotes - which are also stress-reactive - are using another mechanisms.

  5. Thyroid Hormones, Oxidative Stress, and Inflammation.

    PubMed

    Mancini, Antonio; Di Segni, Chantal; Raimondo, Sebastiano; Olivieri, Giulio; Silvestrini, Andrea; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases. PMID:27051079

  6. Thyroid Hormones, Oxidative Stress, and Inflammation.

    PubMed

    Mancini, Antonio; Di Segni, Chantal; Raimondo, Sebastiano; Olivieri, Giulio; Silvestrini, Andrea; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases.

  7. Thyroid Hormones, Oxidative Stress, and Inflammation

    PubMed Central

    Raimondo, Sebastiano; Olivieri, Giulio; Meucci, Elisabetta; Currò, Diego

    2016-01-01

    Inflammation and oxidative stress (OS) are closely related processes, as well exemplified in obesity and cardiovascular diseases. OS is also related to hormonal derangement in a reciprocal way. Among the various hormonal influences that operate on the antioxidant balance, thyroid hormones play particularly important roles, since both hyperthyroidism and hypothyroidism have been shown to be associated with OS in animals and humans. In this context, the nonthyroidal illness syndrome (NTIS) that typically manifests as reduced conversion of thyroxine (T4) to triiodothyronine (T3) in different acute and chronic systemic conditions is still a debated topic. The pathophysiological mechanisms of this syndrome are reviewed, together with the roles of deiodinases, the enzymes responsible for the conversion of T4 to T3, in both physiological and pathological situations. The presence of OS indexes in NTIS supports the hypothesis that it represents a condition of hypothyroidism at the tissue level and not only an adaptive mechanism to diseases. PMID:27051079

  8. Thyroid Hormone and Wound Healing

    PubMed Central

    Safer, Joshua D.

    2013-01-01

    Although thyroid hormone is one of the most potent stimulators of growth and metabolic rate, the potential to use thyroid hormone to treat cutaneous pathology has never been subject to rigorous investigation. A number of investigators have demonstrated intriguing therapeutic potential for topical thyroid hormone. Topical T3 has accelerated wound healing and hair growth in rodents. Topical T4 has been used to treat xerosis in humans. It is clear that the use of thyroid hormone to treat cutaneous pathology may be of large consequence and merits further study. This is a review of the literature regarding thyroid hormone action on skin along with skin manifestations of thyroid disease. The paper is intended to provide a context for recent findings of direct thyroid hormone action on cutaneous cells in vitro and in vivo which may portend the use of thyroid hormone to promote wound healing. PMID:23577275

  9. Acne: hormonal concepts and therapy.

    PubMed

    Thiboutot, Diane

    2004-01-01

    Acne vulgaris is the most common skin condition observed in the medical community. Although we know that hormones are important in the development of acne, many questions remain unanswered regarding the mechanisms by which hormones exert their effects. Androgens such as dihydrotestosterone (DHT) and testosterone, the adrenal precursor dehydroepiandrosterone sulfate (DHEAS), estrogens such as estradiol, and other hormones, including growth hormone and insulin-like growth factors (IGFs), may be important in acne. It is not known whether these hormones are taken up from the serum by the sebaceous gland, whether they are produced locally within the gland, or whether a combination of these processes is involved. Finally, the cellular and molecular mechanisms by which these hormones exert their influence on the sebaceous gland have not been fully elucidated. Hormonal therapy is an option in women with acne not responding to conventional treatment or with signs of endocrine abnormalities. PMID:15556729

  10. New approaches to thyroid hormones and purinergic signaling.

    PubMed

    Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar

    2013-01-01

    It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling.

  11. New Approaches to Thyroid Hormones and Purinergic Signaling

    PubMed Central

    Silveira, Gabriel Fernandes; Buffon, Andréia; Bruno, Alessandra Nejar

    2013-01-01

    It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling. PMID:23956925

  12. Hormones in pregnancy

    PubMed Central

    Kumar, Pratap; Magon, Navneet

    2012-01-01

    The endocrinology of human pregnancy involves endocrine and metabolic changes that result from physiological alterations at the boundary between mother and fetus. Progesterone and oestrogen have a great role along with other hormones. The controversies of use of progestogen and others are discussed in this chapter. Progesterone has been shown to stimulate the secretion of Th2 and reduces the secretion of Th1 cytokines which maintains pregnancy. Supportive care in early pregnancy is associated with a significant beneficial effect on pregnancy outcome. Prophylactic hormonal supplementation can be recommended for all assisted reproduction techniques cycles. Preterm labor can be prevented by the use of progestogen. The route of administration plays an important role in the drug's safety and efficacy profile in different trimesters of pregnancy. Thyroid disorders have a great impact on pregnancy outcome and needs to be monitored and treated accordingly. Method of locating review: Pubmed, scopus PMID:23661874

  13. Biosimilar growth hormone.

    PubMed

    Saenger, Paul

    2012-01-01

    As the first wave of biopharmaceuticals is expiring, biosimilars or follow-on -protein products (FOPP's) have emerged. Biosimilar drugs are cheaper than the originator/comparator drug. The regulatory foundation for these products is more advanced and better codified in Europe than in the US. Biosimilar soamtropin has been approved in both the US and Europe. The scientific viability of biosimilar drugs and especially growth hormone has been proven by several rigorously conducted clinical trials. Efficacy and safety data (growth rates, IGF-1 generation) for up to 7 y for pediatric indications measure up favorably to previously approved growth hormones which served as reference comparators. The Obama Administration appears to be committed to establish innovative pathways for the approval of biologics and biosimilars in the US. The cost savings in health care expenditures will be substantial as the global sales of biologics have reached $ 93 billion in 2009.

  14. The stimulus-sensitive H2O2-generating system present in human fat-cell plasma membranes is multireceptor-linked and under antagonistic control by hormones and cytokines.

    PubMed

    Krieger-Brauer, H I; Kather, H

    1995-04-15

    Previous work demonstrated that human fat-cells possess a plasma-membrane-bound H2O2-generating system that is activated by insulin. Here we show that this system is under antagonistic control by various hormones and cytokines that typically act through several distinct receptor families. Similarly to insulin, oxytocin and tumour necrosis factor alpha acted as stimulators of NADPH-dependent H2O2 generation, whereas isoprenaline, a beta-adrenergic agonist, had inhibitory effects. Surprisingly, the acidic and basic isoforms of fibroblast growth factor as well as homodimeric platelet-derived growth factor AA and BB had antagonistic stimulatory and inhibitory effects on NADPH-dependent H2O2 generation. The agents tested acted at discrete ligand-specific receptors and their mechanisms of action were membrane-delimited and occurred in the absence of ATP. These findings implied that established pathways of signal transduction, including receptor kinases or second-messenger-dependent protein kinases A and C, were not involved and placed the stimulus-sensitive H2O2-generating system in a position comparable with adenylate cyclase. It was concluded that the stimulus-sensitive H2O2-generating system of human fat-cells meets all criteria of a universal signal-transducing system for hormones and cytokines that may link ligand binding to cell-surface receptors to changes in the intracellular redox equilibrium.

  15. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods

    PubMed Central

    Barth, Claudia; Villringer, Arno; Sacher, Julia

    2015-01-01

    Sex hormones have been implicated in neurite outgrowth, synaptogenesis, dendritic branching, myelination and other important mechanisms of neural plasticity. Here we review the evidence from animal experiments and human studies reporting interactions between sex hormones and the dominant neurotransmitters, such as serotonin, dopamine, GABA and glutamate. We provide an overview of accumulating data during physiological and pathological conditions and discuss currently conceptualized theories on how sex hormones potentially trigger neuroplasticity changes through these four neurochemical systems. Many brain regions have been demonstrated to express high densities for estrogen- and progesterone receptors, such as the amygdala, the hypothalamus, and the hippocampus. As the hippocampus is of particular relevance in the context of mediating structural plasticity in the adult brain, we put particular emphasis on what evidence could be gathered thus far that links differences in behavior, neurochemical patterns and hippocampal structure to a changing hormonal environment. Finally, we discuss how physiologically occurring hormonal transition periods in humans can be used to model how changes in sex hormones influence functional connectivity, neurotransmission and brain structure in vivo. PMID:25750611

  16. Luteinizing Hormone-Releasing Hormone Distribution in the Anterior Hypothalamus of the Female Rats

    PubMed Central

    Castañeyra-Ruiz, Leandro; González-Marrero, Ibrahim; Castañeyra-Ruiz, Agustín; González-Toledo, Juan M.; Castañeyra-Ruiz, María; de Paz-Carmona, Héctor; Castañeyra-Perdomo, Agustín; Carmona-Calero, Emilia M.

    2013-01-01

    Luteinizing hormone-releasing hormone (LHRH) neurons and fibers are located in the anteroventral hypothalamus, specifically in the preoptic medial area and the organum vasculosum of the lamina terminalis. Most luteinizing hormone-releasing hormone neurons project to the median eminence where they are secreted in the pituitary portal system in order to control the release of gonadotropin. The aim of this study is to provide, using immunohistochemistry and female brain rats, a new description of the luteinizing hormone-releasing hormone fibers and neuron localization in the anterior hypothalamus. The greatest amount of the LHRH immunoreactive material was found in the organum vasculosum of the lamina terminalis that is located around the anterior region of the third ventricle. The intensity of the reaction of LHRH immunoreactive material decreases from cephalic to caudal localization; therefore, the greatest immunoreaction is in the organum vasculosum of the lamina terminalis, followed by the dorsomedial preoptic area, the ventromedial preoptic area, and finally the ventrolateral medial preoptic area, and in fibers surrounding the suprachiasmatic nucleus and subependymal layer on the floor of the third ventricle where the least amount immunoreactive material is found. PMID:25938107

  17. Hormones and the Resistance of Women to Paracoccidioidomycosis

    PubMed Central

    Shankar, Jata; Restrepo, Angela; Clemons, Karl V.; Stevens, David A.

    2011-01-01

    Summary: Paracoccidioidomycosis, one of the most important endemic and systemic mycoses in Latin America, presents several clinical pictures. Epidemiological studies indicate a striking rarity of disease (but not infection) in females, but only during the reproductive years. This suggested a hormonal interaction between female hormones and the etiologic dimorphic fungus Paracoccidioides brasiliensis. Many fungi have been shown to use hormonal (pheromonal) fungal molecules for intercellular communication, and there are increasing numbers of examples of interactions between mammalian hormones and fungi, including the specific binding of mammalian hormones by fungal proteins, and suggestions of mammalian hormonal modulation of fungal behavior. This suggests an evolutionary conservation of hormonal receptor systems. We recount studies showing the specific hormonal binding of mammalian estrogen to proteins in P. brasiliensis and an action of estrogen to specifically block the transition from the saprophytic form to the invasive form of the fungus in vitro. This block has been demonstrated to occur in vivo in animal studies. These unique observations are consistent with an estrogen-fungus receptor-mediated effect on pathogenesis. The fungal genes responsive to estrogen action are under study. PMID:21482727

  18. Modeling resistance to juvenile hormone analogs: linking evolution, ecology and management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Juvenile hormone analogs (JHAs) are insecticides that mimic insect juvenile hormone and interfere with normal insect development. JHAs disrupt a hormonal system that is specific to insects and thus kill some target pests while causing little or no harm to most non-target organisms. Because of thei...

  19. The Fate and Transport of Reproductive Hormones and Their Conjugates in the Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reproductive steroid hormones can disrupt the endocrine system of some species at ng/L concentrations. Sources of steroid hormones to the environment include human waste water effluents or manure produced at animal feeding operations (AFOs). Steroid hormones, such as 17ß-estradiol (E2) and estrone (...

  20. Rapid separation of tritiated thyrotropin-releasing hormone and its catabolic products from mouse and human central nervous system tissues by high-performance liquid chromatography with radioactive flow detection.

    PubMed

    Turner, J G; Schwartz, T M; Brooks, B R

    1989-02-24

    Reversed-phase high-performance liquid chromatography with radioactive flow detection was utilized to investigate the catabolism of thyrotropin-releasing hormone (TRH) in central nervous system (CNS) tissues. Two different column/gradient solvent systems were tested: (1) octadecylsilane (ODS) with an acetic acid-acetonitrile gradient and (2) poly(styrenedivinylbenzene) (PRP-1) with a trifluoroacetic acid-acetonitrile gradient. Both systems used 1-hexanesulfonic acid as the second ion-pairing reagent and yielded excellent separation of TRH and its catabolic products, TRH acid, cyclo(histidyl-proline), histidyl-proline, proline, and prolinamide, produced in CNS tissue homogenates. The PRP-1 column with a trifluoroacetic acid-acetonitrile solvent system produced a better and more reproducible separation of TRH catabolic products than the ODS column with the acetic acid-acetonitrile solvent system. This PRP-1 technique was utilized to demonstrate different rates and products of TRH catabolism in mouse and human spinal cord compared with cerebral cortex.

  1. Daily regulation of hormone profiles.

    PubMed

    Kalsbeek, Andries; Fliers, Eric

    2013-01-01

    The highly coordinated output of the hypothalamic biological clock does not only govern the daily rhythm in sleep/wake (or feeding/fasting) behaviour but also has direct control over many aspects of hormone release. In fact, a significant proportion of our current understanding of the circadian clock has its roots in the study of the intimate connections between the hypothalamic clock and multiple endocrine axes. This chapter will focus on the anatomical connections used by the mammalian biological clock to enforce its endogenous rhythmicity on the rest of the body, using a number of different hormone systems as a representative example. Experimental studies have revealed a highly specialised organisation of the connections between the mammalian circadian clock neurons and neuroendocrine as well as pre-autonomic neurons in the hypothalamus. These complex connections ensure a logical coordination between behavioural, endocrine and metabolic functions that will help the organism adjust to the time of day most efficiently. For example, activation of the orexin system by the hypothalamic biological clock at the start of the active phase not only ensures that we wake up on time but also that our glucose metabolism and cardiovascular system are prepared for this increased activity. Nevertheless, it is very likely that the circadian clock present within the endocrine glands plays a significant role as well, for instance, by altering these glands' sensitivity to specific stimuli throughout the day. In this way the net result of the activity of the hypothalamic and peripheral clocks ensures an optimal endocrine adaptation of the metabolism of the organism to its time-structured environment. PMID:23604480

  2. Sensitive periods for hormonal programming of the brain.

    PubMed

    de Vries, Geert J; Fields, Christopher T; Peters, Nicole V; Whylings, Jack; Paul, Matthew J

    2014-01-01

    During sensitive periods, information from the external and internal environment that occurs during particular phases of development is relayed to the brain to program neural development. Hormones play a central role in this process. In this review, we first discuss sexual differentiation of the brain as an example of hormonal programming. Using sexual differentiation, we define sensitive periods, review cellular and molecular processes that can explain their restricted temporal window, and discuss challenges in determining the precise timing of the temporal window. We then briefly review programming effects of other hormonal systems and discuss how programming of these systems interact with sexual differentiation.

  3. Steroid signaling system responds differently to temperature and hormone manipulation in the red-eared slider turtle (Trachemys scripta elegans), a reptile with temperature-dependent sex determination.

    PubMed

    Ramsey, M; Crews, D

    2007-01-01

    Many reptiles, including the red-eared slider turtle (Trachemys scripta elegans), exhibit temperature-dependent sex determination (TSD). Temperature determines gonadal sex during the middle of embryogenesis, or the temperature-sensitive period (TSP), when gonadal sex is labile to both temperature and hormones--particularly estrogen. The biological actions of steroid hormones are mediated by their receptors as defined here as the classic transcriptional regulation of target genes. To elucidate estrogen action during sex determination, we examined estrogen receptor alpha (Esr1, hereafter referred to as ERalpha), estrogen receptor beta (Esr2, hereafter referred to as ERbeta), and androgen receptor (Ar, hereafter referred to as AR) expression in slider turtle gonads before, during and after the TSP, as well as following sex reversal via temperature or steroid hormone manipulation. ERalpha and AR levels spike at the female-producing temperature while ovarian sex is determined, but none of the receptors exhibited sexually dimorphic localization within the gonad prior to morphological differentiation. All three receptors respond differentially to sex-reversing treatments. When shifted to female-producing temperatures, embryos maintain ERalpha and AR expression while ERbeta is reduced. When shifted to male-producing temperatures, medullary expression of all three receptors is reduced. Feminization via estradiol (E(2)) treatment at a male-producing temperature profoundly changed the expression patterns for all three receptors. ERalpha and ERbeta redirected to the cortex in E(2)-created ovaries, while AR medullary expression was transiently reduced. Although warmer incubation temperature and estrogen result in the same endpoint (ovarian development), our results indicate different steroid signaling patterns between temperature- and estrogen-induced feminization.

  4. [Structural and functional characteristics of the adenylyl cyclase signaling system regulated by biogenic amines and peptide hormones in the muscle of a worm Lumbricus terrestris].

    PubMed

    Shpakov, A O; Shpakova, E A; Kuznetsova, L A; Plesneva, S A; Pertseva, M N

    2008-01-01

    It has been shown for the first time that biogenic amines (catecholamines and tryptophane derivatives) stimulate dose-dependently activity of adenylyl cyclase (AC) and GTP-binding of G-proteins in muscle of the cutaneous-muscle bag of the earthworm Lumbricus terrestris. By efficiency of their stimulating action on the AC activity, biogenic amines can be arranged in the following sequence: octopamine > tyramine > tryptamine = serotonin > dopamine > isoproterenol = adrenalin. The sequence of efficiency of their action on GTP-binding is somewhat different: serotonin > tryptamine > octopamine > dopamine = tyramine > adrenaline > isoproterenol. Sensitivity of AC and G-proteins in the worm muscle to biogenic amines is similar with that in smooth muscle of the molluse Anodonta cygnea (invertebrates), but differs markedly by this parameter from the rat myocardium (vertebrates). It has also been revealed that AC in the worm muscle is regulated by peptide hormones relaxin and somatostatin whose action is comparable with that in the mollusk muscle, but much weaker that the action of these hormones on the rat myocardium AC activity. Use of C-terminal peptides of alpha-subunits of G-proteins of the stimulatory (385-394 Galpha(s)) and inhibitory (346-355 Galpha(i2)) types that disrupt selectively the hormonal signal transduction realized via G(s)- and G(i)-proteins, respectively, allowed establishing that the AC-stimulating effects of relaxin, octopamine, tyramine, and dopamine in the worm muscle are realized via the receptors coupled functionally with G(s)-protein; the AC-inhibiting effect of somatostatin is realized via the receptor coupled with G(i)-protein, whereas serotonin and tryptamine activate both types of G-proteins. PMID:18959208

  5. H9c2 cardiomyoblasts produce thyroid hormone.

    PubMed

    Meischl, Christof; Buermans, Henk P; Hazes, Thierry; Zuidwijk, Marian J; Musters, René J P; Boer, Christa; van Lingen, Arthur; Simonides, Warner S; Blankenstein, Marinus A; Dupuy, Corrine; Paulus, Walter J; Hack, C Erik; Ris-Stalpers, Carrie; Roos, Dirk; Niessen, Hans W M

    2008-05-01

    Thyroid hormone acts on a wide range of tissues. In the cardiovascular system, thyroid hormone is an important regulator of cardiac function and cardiovascular hemodynamics. Although some early reports in the literature suggested an unknown extrathyroidal source of thyroid hormone, it is currently thought to be produced exclusively in the thyroid gland, a highly specialized organ with the sole function of generating, storing, and secreting thyroid hormone. Whereas most of the proteins necessary for thyroid hormone synthesis are thought to be expressed exclusively in the thyroid gland, we now have found evidence that all of these proteins, i.e., thyroglobulin, DUOX1, DUOX2, the sodium-iodide symporter, pendrin, thyroid peroxidase, and thyroid-stimulating hormone receptor, are also expressed in cardiomyocytes. Furthermore, we found thyroglobulin to be transiently upregulated in an in vitro model of ischemia. When performing these experiments in the presence of 125 I, we found that 125 I was integrated into thyroglobulin and that under ischemia-like conditions the radioactive signal in thyroglobulin was reduced. Concomitantly we observed an increase of intracellularly produced, 125 I-labeled thyroid hormone. In conclusion, our findings demonstrate for the first time that cardiomyocytes produce thyroid hormone in a manner adapted to the cell's environment.

  6. Sex hormones and adult hippocampal neurogenesis: Regulation, implications, and potential mechanisms.

    PubMed

    Mahmoud, Rand; Wainwright, Steven R; Galea, Liisa A M

    2016-04-01

    Neurogenesis within the adult hippocampus is modulated by endogenous and exogenous factors. Here, we review the role of sex hormones in the regulation of adult hippocampal neurogenesis in males and females. The review is framed around the potential functional implications of sex hormone regulation of adult hippocampal neurogenesis, with a focus on cognitive function and mood regulation, which may be related to sex differences in incidence and severity of dementia and depression. We present findings from preclinical studies of endogenous fluctuations in sex hormones relating to reproductive function and ageing, and from studies of exogenous hormone manipulations. In addition, we discuss the modulating roles of sex, age, and reproductive history on the relationship between sex hormones and neurogenesis. Because sex hormones have diverse targets in the central nervous system, we overview potential mechanisms through which sex hormones may influence hippocampal neurogenesis. Lastly, we advocate for a more systematic consideration of sex and sex hormones in studying the functional implications of adult hippocampal neurogenesis.

  7. Thyroid Hormone, Cancer, and Apoptosis.

    PubMed

    Lin, Hung-Yun; Chin, Yu-Tan; Yang, Yu-Chen S H; Lai, Husan-Yu; Wang-Peng, Jacqueline; Liu, Leory F; Tang, Heng-Yuan; Davis, Paul J

    2016-01-01

    Thyroid hormones play important roles in regulating normal metabolism, development, and growth. They also stimulate cancer cell proliferation. Their metabolic and developmental effects and growth effects in normal tissues are mediated primarily by nuclear hormone receptors. A cell surface receptor for the hormone on integrin [alpha]vβ3 is the initiation site for effects on tumor cells. Clinical hypothyroidism may retard cancer growth, and hyperthyroidism was recently linked to the prevalence of certain cancers. Local levels of thyroid hormones are controlled through activation and deactivation of iodothyronine deiodinases in different organs. The relative activities of different deiodinases that exist in tissues or organs also affect the progression and development of specific types of cancers. In this review, the effects of thyroid hormone on signaling pathways in breast, brain, liver, thyroid, and colon cancers are discussed. The importance of nuclear thyroid hormone receptor isoforms and of the hormone receptor on the extracellular domain of integrin [alpha]vβ3 as potential cancer risk factors and therapeutic targets are addressed. We analyze the intracellular signaling pathways activated by thyroid hormones in cancer progression in hyperthyroidism or at physiological concentrations in the euthyroid state. Determining how to utilize the deaminated thyroid hormone analog (tetrac), and its nanoparticulate derivative to reduce risks of cancer progression, enhance therapeutic outcomes, and prevent cancer recurrence is also deliberated. © 2016 American Physiological Society. Compr Physiol 6:1221-1237, 2016. PMID:27347891

  8. Hormone therapy for prostate cancer

    MedlinePlus

    Androgen deprivation therapy; ADT; Androgen suppression therapy; Combined androgen blockade ... Androgens cause prostate cancer cells to grow. Hormone therapy for prostate cancer lowers the effect level of ...

  9. Scientific and regulatory policy committee (SRPC) paper: assessment of circulating hormones in nonclinical toxicity studies III. female reproductive hormones.

    PubMed

    Andersson, Håkan; Rehm, Sabine; Stanislaus, Dinesh; Wood, Charles E

    2013-08-01

    Hormonally mediated effects on the female reproductive system may manifest as pathologic changes of endocrine-responsive organs and altered reproductive function. Identification of these effects requires proper assessment, which may include investigative studies to profile female reproductive hormones. Here, we briefly describe normal hormonal patterns across the estrous or menstrual cycle and provide general guidance on measuring female reproductive hormones and characterizing hormonal disturbances in nonclinical toxicity studies. Although species used in standard toxicity studies share basic features of reproductive endocrinology, there are important species differences that affect both study design and interpretation of results. Diagnosing female reproductive hormone disturbances can be complicated by many factors, including estrous/menstrual cyclicity, diurnal variation, and age- and stress-related factors. Thus, female reproductive hormonal measurements should not generally be included in first-tier toxicity studies of standard design with groups of unsynchronized intact female animals. Rather, appropriately designed and statistically powered investigative studies are recommended in order to properly identify ovarian and/or pituitary hormone changes and bridge these effects to mechanistic evaluations and safety assessments. This article is intended to provide general considerations and approaches for these types of targeted studies.

  10. Molecular mechanisms of regulation of growth hormone gene expression in cultured rat pituitary cells by thyroid and glucocorticoid hormones

    SciTech Connect

    Yaffe, B.M.

    1989-01-01

    In cultured GC cells, a rat pituitary tumor cell line, growth hormone (GH) is induced in a synergistic fashion by physiologic concentrations of thyroid and glucocorticoid hormones. Abundant evidence indicates that these hormones mediate this response via their specific receptors. The purpose of this thesis is to explore the mechanisms by which these hormones affect GH production. When poly (A){sup +} RNA was isolated from cells grown both with and without hormones and translated in a cell-free wheat germ system, the preGH translation products were shown to be proportional to immunoassayable GH production under all combinations of hormonal milieux, indicating that changes in GH production is modulated at a pretranslational level. A cDNA library was constructed from poly (A){sup +}RNA and one clone containing GH cDNA sequences was isolated. This was used to confirm the above results by Northern dot blot analysis. This probe was also used to assess hormonal effects on GH mRNA half-life and synthetic rates as well as GH gene transcription rates in isolated nuclei. Using a pulse-chase protocol in which cellular RNA was labeled in vivo with ({sup 3}H)uridine, and quantitating ({sup 3}H)GHmRNA directly by hybridization to GH cDNA bound to nitrocellulose filters, GHmRNA was found to have a half-life of approximately 50 hours, and was not significantly altered by the presence of inducing hormones.

  11. [Hormone replacement therapy--growth hormone, melatonin, DHEA and sex hormones].

    PubMed

    Fukai, Shiho; Akishita, Masahiro

    2009-07-01

    The ability to maintain active and independent living as long as possible is crucial for the healthy longevity. Hormones responsible for some of the manifestations associated with aging are growth hormone, insulin-like growth factor-1 (IGF-1), melatonin, dehydroepiandrosterone (DHEA), sex hormones and thyroid hormones. These hormonal changes are associated with changes in body composition, visceral obesity, muscle weakness, osteoporosis, urinary incontinence, loss of cognitive functioning, reduction in well being, depression, as well as sexual dysfunction. With the prolongation of life expectancy, both men and women today live the latter third life with endocrine deficiencies. Hormone replacement therapy may alleviate the debilitating conditions of secondary partial endocrine deficiencies by preventing or delaying some aspects of aging.

  12. Scientific and regulatory policy committee (SRPC) paper: Assessment of Circulating Hormones in Nonclinical Toxicity Studies. III Female Reproductive Hormones

    EPA Science Inventory

    Hormonally mediated effects on the female reproductive system may manifest in pathologic changes of endocrine-responsive organs and altered reproductive function. Identification of these effects requires proper assessment, which may include investigative studies of female reprod...

  13. Sex Hormones and Tendon.

    PubMed

    Hansen, Mette; Kjaer, Michael

    2016-01-01

    The risk of overuse and traumatic tendon and ligament injuries differ between women and men. Part of this gender difference in injury risk is probably explained by sex hormonal differences which are specifically distinct during the sexual maturation in the teenage years and during young adulthood. The effects of the separate sex hormones are not fully elucidated. However, in women, the presence of estrogen in contrast to very low estrogen levels may be beneficial during regular loading of the tissue or during recovering after an injury, as estrogen can enhance tendon collagen synthesis rate. Yet, in active young female athletes, physiological high concentration of estrogen may enhance the risk of injuries due to reduced fibrillar crosslinking and enhanced joint laxity. In men, testosterone can enhance tendon stiffness due to an enhanced tendon collagen turnover and collagen content, but testosterone has also been linked to a reduced responsiveness to relaxin. The present chapter will focus on sex difference in tendon injury risk, tendon morphology and tendon collagen turnover, but also on the specific effects of estrogen and androgens. PMID:27535256

  14. Hormonal interference with pheromone systems in parasitic acarines, especially ixodid ticks. Annual technical report No. 4, 1 May 1983-30 April 1984

    SciTech Connect

    Sonenshine, D.E.; Oliver, J.H. Jr.; Homsher, P.J.

    1984-05-01

    The most important result of recent project research was the demonstration of the juvenoid JH III by radioimmunoassay. This assay revealed an estimated 78 pg/tick in the hemolymph of partially fed Hyalomma dromedarii females, and an estimated 3 pg/tick in the hemolymph of partially fed D. variabilis. Other studies, especially digestion of tritium labelled JH III, provided additional evidence suggesting the presence of this hormone in adult ticks. The implications of these findings for our understanding of sex pheromone regulation in ticks is discussed. Other studies described in this report deal with the source of ecdysteroid in teh camel tick, Hyalomma dromedarii, the American dog tick, Dermacentor variabilis, and the soft tick, Ornithodoros parkeri. Studies done at ODU, using radioimmunoassay high performance liquid chromatography, and autoradiography, provide new evidence implicating the tick synganglion - lateral nerve plexus as an important site of ecdysteroid activity in the ixodid ticks. Other studies with ecdysteriods suggest that metabolism of ecdysone or 20-hydroxyecdysone (or both) to inactive metabolites, possibly including polar conjugates. If confirmed, these findings indicate the presence of only a single active ecdysteriod hormone in ticks, 20-hydroxyecdysone.

  15. Bovine Parathyroid Hormone: Amino Acid Sequence

    PubMed Central

    Brewer, H. Bryan; Ronan, Rosemary

    1970-01-01

    Bovine parathyroid hormone has been isolated in homogeneous form, and its complete amino acid sequence determined. The bovine hormone is a single chain, 84 amino acids long. It contains amino-terminal alanine, and carboxyl-terminal glutamine. The bovine parathyroid hormone is approximately three times the length of the newly discovered hormone, thyrocalcitonin, whose action is reciprocal to parathyroid hormone. Images PMID:5275384

  16. Neuropeptides and steroid hormones in arthritis.

    PubMed

    Cerinic, M M; Konttinen, Y; Generini, S; Cutolo, M

    1998-05-01

    Primary afferent nociceptive and peptidergic efferent nerves are sensitized in arthritis and thus easily stimulated by mechanical and chemical stimuli. This leads to increased or disturbed release of neuropeptides from nerve terminals. This local (at the site of stimulation), expanded (expanded and additional receptive fields), and remote (cross-spinal reflexes) neuropeptide release leads to disturbed tissue homeostasis and neurogenic inflammation. In arthritis, raised levels of neuropeptides were detected in the synovial fluid, whereas nerve fibers were lacking in the synovial tissue. It has been hypothesized that cycles of nerve fiber destruction and degeneration follow the cycles of joint inflammation. This evidence suggests that the peripheral nervous system, through its neuropeptides, may contribute to the generation of inflammation, i.e., "neurogenic inflammation." Altered hypothalamic-pituitary-adrenocortical axis function and sex hormone status have been suggested to contribute to the development and persistence of arthritis. In particular, current evidence indicates that glucocorticoid secretion is closely and reciprocally interrelated with inflammation, and that an adrenal insufficiency is present in many forms of immune-mediated arthritis. Conversely, gonadal steroids seem to play a central role as predisposing factors in many forms of arthritis, with estrogens involved as immuno-enhancing hormones and androgens as natural immunosuppressors. Functional receptors for sex hormones have been described in cells involved in the immune response and, after activation, the hormone-receptor complex might modulate the expression of selected cytokines. The possibility of targeting the efferent nerves with specific peptides and replacement therapies with selected steroid hormones may represent a new and potentially efficient and natural system of modulation of the arthritis.

  17. Growth hormone: its physiology and control.

    PubMed

    Scanes, C G; Lauterio, T J

    1984-12-01

    Growth hormone (GH) is a protein hormone produced by the somatotrophs of the anterior pituitary gland of birds and other vertebrates. The secretion of GH in birds is under hypothalamic control; it involves three peptidergic releasing factors: growth hormone-releasing factor (GRF) (stimulatory); thyrotropin-releasing hormone (TRH) (stimulatory); and somatostatin (SRIF) (inhibitory). In addition, there is evidence for effects of biogenic amines (including serotonin and norepinephrine) and prostaglandins at the level of the hypothalamus and possibly also the pituitary gland. In all avian species examined, plasma concentrations of GH are high in young posthatching chicks but low in the adult and embryo. The difference in plasma concentrations of GH between young and adult birds is due to both greater GH secretion and reduced clearance. The lower secretion of GH in adult birds reflects fewer somatotrophs in the pituitary, changes in somatotroph structure, and reduced GH responses to TRH or GRF administration. There is only limited data on the role of GH in birds. GH appears to be required for normal growth; acting at least in part by increasing somatomedin production. However, plasma concentrations of GH do not necessarily correlate with growth rate. For instance, in chicks with reduced growth rate owing to either goitrogen or protein deficiency in the diet, plasma concentrations of GH are elevated. GH also can influence lipid metabolism by increasing lipolysis, decreasing lipogenesis, and stimulating the uptake of glucose by adipose tissue. The physiological significance of these actions is, however, not established. In addition, GH affects the secretion of other hormones, the immune system, and perhaps also the reproductive system. PMID:6151579

  18. Epilepsy, sex hormones, and antiepileptic drugs.

    PubMed

    Mattson, R H; Cramer, J A

    1985-01-01

    Many factors associated with hormone function have an impact on the course of epilepsy. Patients with epilepsy may have disturbances in sexual function such as anovulatory cycles in women and decreased libido and potency in men. Data indicate seizures, especially those arising in the limbic system, may influence the hypothalamic pituitary axis. Antiepileptic drugs also influence sexual function through direct brain effects as well as through induced changes in pharmacokinetics of the sex steroid hormones. Pregnancy has been reported to be a time of increased seizures; however, this has often been associated with low drug levels, for reasons that include inadequate drug dose, possible changes in pharmacokinetics, and noncompliance. Some evidence suggests that hormones affect seizure frequency. Changes in seizures during the menstrual cycle (catamenial epilepsy) have been found in some women: seizures were fewer during the luteal phase but increased when progesterone levels declined. Some improvement in seizure frequency has been shown in pilot studies using medroxyprogesterone acetate, a synthetic progesterone. Current concepts of the interrelationship among epilepsy, sex hormones, and antiepileptic drugs are discussed.

  19. Characterization of cDNA for precursor of human luteinizing hormone releasing hormone.

    PubMed

    Seeburg, P H; Adelman, J P

    Human reproduction is controlled by the hypothalamic-pituitary-gonadal axis laid down early in fetal development. Luteinizing hormone releasing hormone (LHRH), also termed gonadotropin releasing hormone (GnRH), is a decapeptide and is a key molecule in this control circuit. It is produced by hypothalamic neurones, secreted in a pulsatile manner into the capillary plexus of the median eminence and effects the release of luteinizing hormone and follicle stimulating hormone from gonadotropic cells in the anterior pituitary. The peptide may have further functions, including behavioural ones, as LHRH or LHRH-like immunoreactivity has been found in gonadal tissue, placenta and the central nervous system, and exogenously administered LHRH is shown to affect behaviour. To investigate the biosynthesis of LHRH, we have now isolated cloned genomic and cDNA sequences encoding the precursor form of LHRH, the existence of which had been suggested from chromatographic studies of hypothalamic and placental extracts. These DNA sequences code for a protein of 92 amino acids in which the LHRH decapeptide is preceded by a signal peptide of 23 amino acids and followed by a Gly-Lys-Arg sequence, as expected for enzymatic cleavage of the decapeptide from its precursor and amidation of the carboxy-terminal of LHRH.

  20. Recent advances in hormonal contraception

    PubMed Central

    Li, HW Raymond

    2010-01-01

    This report reviews some of the new studies regarding new hormonal contraceptive formulations (e.g., Yaz, Qlaira®, extended-cycle or continuous combined contraceptives, subcutaneous depot medroxyprogesterone acetate, and ulipristal acetate as an emergency contraceptive). Recent data on the relationship between hormonal contraceptive use and bone health are also reviewed. PMID:21173872

  1. Hormonal changes in humans during spaceflight.

    PubMed

    Strollo, F

    1999-01-01

    Readers of this review may feel that there is much more that we do not know about space endocrinology than what we know. Several reasons for this state of affairs have been given: 1. the complexity of the field of endocrinology with its still increasing number of known hormones, releasing factors and precursors, and of the interactions between them through various feedback mechanisms 2. the difficulty in separating the microgravity effects from the effects of stress from launch, isolation and confinement during flight, reentry, and postflight re-adaptation 3. the experimental limitations during flight, such as limited number of subjects, limited number of samples, impossibility of collecting triple samples for pulsatile hormones like growth hormone 4. the disturbing effects of countermeasures used by astronauts 5. the inadequacy of postflight samples for conclusions about inflight values 6. limitations of conclusions from animal experiments and space simulation studies The endocrinology field is divided in to nine systems or axes, which are successively reviewed: 1. Rapid bone demineralization in the early phase of spaceflight that, when unopposed, leads to catastrophic effects after three months but that slows down later. The endocrine mechanism, apart from the effect of exercise as a countermeasure, is not yet understood. 2. The hypothalamic-pituitary-adrenal axis is involved in stress reactions, which complicate our understanding and makes postflight analysis dubious. 3. In the hypothalamic-pituitary-gonadal axis, pulsatility poses a problem for obtaining representative values (e.g., for luteinizing hormone). Reproduction of rats in space is possible, but much more needs to be known about this aspect, particularly in women, before the advent of space colonies, but also in males because some evidence for reversible testicular dysfunction in space has been found. 4. The hypothalamic-pituitary-somato-mammotrophic axis involves prolactin and growth hormone. The

  2. Exercise and the Regulation of Endocrine Hormones.

    PubMed

    Hackney, Anthony C; Lane, Amy R

    2015-01-01

    The endocrine system has profound regulatory effects within the human body and thus the ability to control and maintain appropriate function within many physiological systems (i.e., homeostasis). The hormones associated with the endocrine system utilize autocrine, paracrine, or endocrine actions on the cells of their target tissues within these physiologic systems to adjust homeostasis. The introduction of exercise as a stressor to disrupt homeostasis can greatly amplify and impact the actions of these hormones. To that end, the endocrine response to an acute exercise session occurs in a progression of phases with the magnitude of the response being relative to the exercise work intensity or volume. Various physiologic mechanisms are considered responsible for these responses, although not all are completely understood or elucidated. Chronic exercise training does not eliminate the acute exercise response but may attenuate the overall effect of the responsiveness as the body adapts in a positive fashion to the training stimulus. Regrettably, an excessive intensity and/or volume of training may lead to maladaptation and is associated with inappropriate endocrine hormonal responses. The mechanisms leading to a deleterious maladaptive state are not well understood and require additional research for elucidation. PMID:26477919

  3. CELLULAR BIOAVAILABILITY OF NATURAL HORMONES AND ENVIRONMENTAL CONTAMINANTS AS A FUNCTION OF SERUM AND CYTOSOLIC BINDING FACTORS

    EPA Science Inventory

    Environmental contaminants have been reported to function as hormone mimics in various wildlife species. To investigate a potential mechanism for the interaction of contaminants with the endocrine system, we evaluated the cellular bioavailability of numerous chemicals. Hormone bi...

  4. Types of Cancer Treatment: Hormone Therapy

    Cancer.gov

    Describes how hormone therapy slows or stops the growth of breast and prostate cancers that use hormones to grow. Includes information about the types of hormone therapy and side effects that may happen.

  5. Growth hormone stimulation test - series (image)

    MedlinePlus

    The growth hormone (GH) is a protein hormone released from the anterior pituitary gland under the control of the hypothalamus. ... performed on infants and children to identify human growth hormone (hGH) deficiency as a cause of growth retardation. ...

  6. Genetics Home Reference: isolated growth hormone deficiency

    MedlinePlus

    ... Health Conditions isolated growth hormone deficiency isolated growth hormone deficiency Enable Javascript to view the expand/collapse ... PDF Open All Close All Description Isolated growth hormone deficiency is a condition caused by a severe ...

  7. Quo vadis plant hormone analysis?

    PubMed

    Tarkowská, Danuše; Novák, Ondřej; Floková, Kristýna; Tarkowski, Petr; Turečková, Veronika; Grúz, Jiří; Rolčík, Jakub; Strnad, Miroslav

    2014-07-01

    Plant hormones act as chemical messengers in the regulation of myriads of physiological processes that occur in plants. To date, nine groups of plant hormones have been identified and more will probably be discovered. Furthermore, members of each group may participate in the regulation of physiological responses in planta both alone and in concert with members of either the same group or other groups. The ideal way to study biochemical processes involving these signalling molecules is 'hormone profiling', i.e. quantification of not only the hormones themselves, but also their biosynthetic precursors and metabolites in plant tissues. However, this is highly challenging since trace amounts of all of these substances are present in highly complex plant matrices. Here, we review advances, current trends and future perspectives in the analysis of all currently known plant hormones and the associated problems of extracting them from plant tissues and separating them from the numerous potentially interfering compounds.

  8. Growth hormone neurosecretory dysfunction.

    PubMed

    Bercu, B B; Diamond, F B

    1986-08-01

    The basis for understanding clinical disorders in the neuroregulation of GH secretion is derived from the complexity of the CNS-hypothalamic-pituitary axis. Studies in animals and humans demonstrate an anatomic, physiological and pharmacological evidence for neurosecretory control over GH secretion including neurohormones (GRH, somatostatin), neurotransmitters (dopaminergic, adrenergic, cholinergic, serotonergic, histaminergic, GABAergic), and neuropeptides (gut hormones, opioids, CRH, TRH, etc). The observation of a defect in the neuroregulatory control of GH secretion in CNS-irradiated humans and animals led to the hypothesis of a disorder in neurosecretion, GHND, as a cause for short stature. We speculate that in this heterogeneous group of children a disruption in the neurotransmitter-neurohormonal functional pathway could modify secretion ultimately expressed as poor growth velocity and short stature.

  9. [Hormonal changes in inflammatory bowel disease].

    PubMed

    Kollerová, Jana; Koller, Tomáš; Hlavatý, Tibor; Payer, Juraj

    2015-12-01

    Inflammatory bowel disease is often accompanied by extraintestinal manifestations due to a common autoimmune etiopathogenesis, chronic systemic inflammation, frequent nutrition deficits, and the treatment. Endocrine system changes belong to manifestations too. Interaction is mutual, Crohn's disease and ulcerative colitis cause functional and morphological changes of endocrine tissues. On the other hand the endocrine disorders negatively influence the course of bowel disease. In the article we analyze correlation of IBD with gonadal hormone production and fertility, with adrenal function, with the function and morphology of the thyroid, with growth hormone production and growth disorders in children, and with bone mineral density reduction. This topic is not studied enough and needs more analysis and clarification. PMID:27124970

  10. The pituitary growth hormone cell in space

    NASA Technical Reports Server (NTRS)

    Hymer, Wesley C.; Grindeland, R.

    1989-01-01

    Growth hormone (GH), produced and secreted from specialized cells in the pituitary gland, controls the metabolism of protein, fat, and carbohydrate. It is also probably involved in the regulation of proper function of bone, muscle and immune systems. The behavior of the GH cell system was studied by flying either isolated pituitary cells or live rats. In the latter case, pituitary GH cells are prepared on return to earth and then either transplanted into hypophysectomized rats or placed into cell culture so that function of GH cells in-vivo vs. in-vitro can be compared. The results from three flights to date (STS-8, 1983; SL-3, 1985; Cosmos 1887, 1987) established that the ability of GH cells to release hormone, on return to earth, is compromised. The mechanism(s) responsible for this attenuation response is unknown. However, the data are sufficiently positive to indicate that the nature of the secretory defect resides directly within the GH cells.

  11. Preparation of an active recombinant peptide of crustacean androgenic gland hormone.

    PubMed

    Okuno, Atsuro; Hasegawa, Yuriko; Nishiyama, Makoto; Ohira, Tsuyoshi; Ko, Rinkei; Kurihara, Masaaki; Matsumoto, Shogo; Nagasawa, Hiromichi

    2002-03-01

    In crustaceans, male sexual characteristics are induced by a hormone referred to as androgenic gland hormone. We have recently cloned a candidate cDNA in the terrestrial isopod Armadillidium vulgare. In order to prove that this cDNA encodes the hormone, recombinant single-chain precursor molecules consisting of B chain, C peptide and A chain were produced using both baculovirus and bacterial expression systems. Neither recombinant precursors showed activity. Digestion of only the precursor carrying a glycan moiety with lysyl endopeptidase gave a heterodimeric peptide with hormonal activity by removing a part of C peptide. These results indicate that the cDNA encodes the hormone. PMID:11836008

  12. Hormones and autoimmunity: animal models of arthritis.

    PubMed

    Wilder, R L

    1996-05-01

    Hormones, particularly those involved in the hypothalamic-pituitary-gonadal and -adrenal axes (HPG and HPA), play important roles in various animal models of autoimmunity such as systemic lupus erythematosus in mice and collagen-induced arthritis (CIA) in mice and rats, and the streptococcal cell wall, adjuvant and avridine arthritis models in rats. Intimately linked to the subject of hormones and autoimmunity are gender, sex chromosomes and age. The importance of these factors in the various animal models is emphasized in this chapter. Several major themes are apparent. First, oestrogens promote B-cell dependent immune-complex mediated disease (e.g. lupus nephritis) but suppress T-cell dependent pathology (CIA in mice and rats), and vice versa. Second, testosterone's effects are complicated and depend on species and disease model. In rats, testosterone suppresses both T-cell and B-cell immunity. In mice, the effects are complex and difficult to interpret, e.g. they tend to enhance CIA arthritis and suppress lupus. Sex chromosome/sex hormone interactions are clearly involved in generating these complicated effects. Third, studies in Lewis and Fischer F344 rats exemplify the importance of corticosteroids, corticotrophin releasing hormone and the HPA axis in the regulation of inflammation and the predisposition to autoimmune diseases. Fourth, the HPA axis is intimately linked to the HPG axis and is sexually dimorphic. Oestrogens stimulate higher corticosteroid responses in females. The animal model data have major implications for understanding autoimmunity in humans. In particular, adrenal and gonadal hormone deficiency is likely to facilitate T-cell dependent diseases like rheumatoid arthritis, while high oestrogen levels or effects, relative to testosterone, are likely to promote B-cell dependent immune-complex-mediated diseases such as lupus nephritis.

  13. [Neuroendocrine effect of sex hormones].

    PubMed

    Babichev, V N

    2005-01-01

    The paper provides a generalization of data and the results of own experiments on influence ovarian steroids on the hypothalamus and other brain areas related to reproduction. Ovarian hormones have widespread effects throughout the brain: on catecholaminergic neurons and serotonergic pathways and the basal forebrain cholinergic system, as well as the hipocampus, spinal cord, nigrostriatal and mesolimbic system, in addition to glial cells and blood-brain barrier. The widespread influences of these various neuronal systems ovarian steroids have measurable effects on mood and affect as well as on cognition, with implications for dementia. There are developmentally programmed sex differenced in hippocampal structure that may help to explain differences in the strategies which male and female rats use to solve spatial navigation problems. The multiple sites and mechanisms of estrogen action in brain underlie a variety of importants effects on cognitive and other brain functions--coordination of movement, pain, affective state, as well as possible protection in Alzheimer's disease. Estrogen withdrawal after natural or surgical menopause can lead to a host of changes in brain function and behavior.

  14. Functional and molecular neuroimaging of menopause and hormone replacement therapy

    PubMed Central

    Comasco, Erika; Frokjaer, Vibe G.; Sundström-Poromaa, Inger

    2014-01-01

    The level of gonadal hormones to which the female brain is exposed considerably changes across the menopausal transition, which in turn, is likely to be of great relevance for neurodegenerative diseases and psychiatric disorders. However, the neurobiological consequences of these hormone fluctuations and of hormone replacement therapy in the menopause have only begun to be understood. The present review summarizes the findings of thirty-five studies of human brain function, including functional magnetic resonance imaging, positron and single-photon computed emission tomography studies, in peri- and postmenopausal women treated with estrogen, or estrogen-progestagen replacement therapy. Seven studies using gonadotropin-releasing hormone agonist intervention as a model of hormonal withdrawal are also included. Cognitive paradigms are employed by the majority of studies evaluating the effect of unopposed estrogen or estrogen-progestagen treatment on peri- and postmenopausal women's brain. In randomized-controlled trials, estrogen treatment enhances activation of fronto-cingulate regions during cognitive functioning, though in many cases no difference in cognitive performance was present. Progestagens seems to counteract the effects of estrogens. Findings on cognitive functioning during acute ovarian hormone withdrawal suggest a decrease in activation of the left inferior frontal gyrus, thus essentially corroborating the findings in postmenopausal women. Studies of the cholinergic and serotonergic systems indicate these systems as biological mediators of hormonal influences on the brain. More, hormonal replacement appears to increase cerebral blood flow in several cortical regions. On the other hand, studies on emotion processing in postmenopausal women are lacking. These results call for well-powered randomized-controlled multi-modal prospective neuroimaging studies as well as investigation on the related molecular mechanisms of effects of menopausal hormonal

  15. The role of thyroid hormone in testicular development and function.

    PubMed

    Wagner, Márcia Santos; Wajner, Simone Magagnin; Maia, Ana Luiza

    2008-12-01

    Thyroid hormone is a critical regulator of growth, development, and metabolism in virtually all tissues, and altered thyroid status affects many organs and systems. Although for many years testis has been regarded as a thyroid hormone unresponsive organ, it is now evident that thyroid hormone plays an important role in testicular development and function. A considerable amount of data show that thyroid hormone influences steroidogenesis as well as spermatogenesis. The involvement of tri-iodothyronine (T(3)) in the control of Sertoli cell proliferation and functional maturation is widely accepted, as well as its role in postnatal Leydig cell differentiation and steroidogenesis. The presence of thyroid hormone receptors in testicular cells throughout development and in adulthood implies that T(3) may act directly on these cells to bring about its effects. Several recent studies have employed different methodologies and techniques in an attempt to understand the mechanisms underlying thyroid hormone effects on testicular cells. The current review aims at presenting an updated picture of the recent advances made regarding the role of thyroid hormones in male gonadal function.

  16. Thyroid hormones and renin secretion.

    PubMed

    Ganong, W F

    Circulating angiotensin is produced by the action of renin from the kidneys on circulating angiotensinogen. There are other renin-angiotensin systems in various organs in the body, and recent observations raise the intriguing possibility that angiotensin II is produced by a totally intracellular pathway in the juxtaglomerular cells, the gonadotrops of the anterior pituitary, neurons, in the brain, salivary duct cells, and neuroblastoma cells. Circulating angiotensin II levels depend in large part on the plasma concentration of angiotensinogen, which is hormonally regulated, and on the rate of renin secretion. Renin secretion is regulated by an intrarenal baroreceptor mechanism, a macula densa mechanism, angiotensin II, vasopressin, and the sympathetic nervous system. The increase in renin secretion produced by sympathetic discharge is mediated for the most part by beta-adrenergic receptors, which are probably located on the juxtaglomerular cells. Hyperthyroidism would be expected to be associated with increased renin secretion in view of the increased beta-adrenergic activity in this condition, and hypothyroidism would be associated with decreased plasma renin activity due to decreased beta-adrenergic activity. Our recent research on serotonin-mediated increases in renin secretion that depend on the integrity of the dorsal raphe nucleus and the mediobasal hypothalamus has led us to investigate the effect of the pituitary on the renin response to p-chloroamphetamine. The response is potentiated immediately after hypophysectomy, but 22 days after the operation, it is abolished. This slowly developing decrease in responsiveness may be due to decreased thyroid function.

  17. Plant hormone signaling lightens up: integrators of light and hormones.

    PubMed

    Lau, On Sun; Deng, Xing Wang

    2010-10-01

    Light is an important environmental signal that regulates diverse growth and developmental processes in plants. In these light-regulated processes, multiple hormonal pathways are often modulated by light to mediate the developmental changes. Conversely, hormone levels in plants also serve as endogenous cues in influencing light responsiveness. Although interactions between light and hormone signaling pathways have long been observed, recent studies have advanced our understanding by identifying signaling integrators that connect the pathways. These integrators, namely PHYTOCHROME-INTERACTING FACTOR 3 (PIF3), PIF4, PIF3-LIKE 5 (PIL5)/PIF1 and LONG HYPOCOTYL 5 (HY5), are key light signaling components and they link light signals to the signaling of phytohormones, such as gibberellin (GA), abscisic acid (ABA), auxin and cytokinin, in regulating seedling photomorphogenesis and seed germination. This review focuses on these integrators in illustrating how light and hormone interact.

  18. Sex hormone adjuvant therapy in rheumatoid arthritis.

    PubMed

    Cutolo, M

    2000-11-01

    RA is an autoimmune rheumatic disorder resulting from the combination of several predisposing factors, including the relation between epitopes of possible triggering agents and histocompatibility epitopes, the status of the stress response system, and the sex hormone status. Estrogens are implicated as enhancers of humoral immunity, and androgens and progesterone are natural immune suppressors. Sex hormone concentrations have been evaluated in RA patients before glucocorticoid therapy and have frequently been found to be altered, especially in premenopausal women and male patients. In particular, low levels of gonadal and adrenal androgens (testosterone and DHT, DHEA and DHEAS) and a reduced androgen:estrogen ratio have been detected in body fluids (i.e., blood, synovial fluid, smears, saliva) of male and female RA patients. These observations support a possible pathogenic role for the decreased levels of the immune-suppressive androgens. Exposure to environmental estrogens (estrogenic xenobiotics), genetic polymorphisms of genes coding for hormone metabolic enzymes or receptors, and gonadal disturbances related to stress system activation (hypothalamic-pituitary-adrenocortical axis) and physiologic hormonal perturbations such as during aging, the menstrual cycle, pregnancy, the postpartum period, and menopause may interfere with the androgen:estrogen ratio. Sex hormones might exert their immune-modulating effects, at least in RA synovitis, because synovial macrophages, monocytes, and lymphocytes possess functional androgen and estrogen receptors and may metabolize gonadal hormones. The molecular basis for sex hormone adjuvant therapy in RA is thus experimentally substantiated. By considering the well-demonstrated immune-suppressive activities exerted by androgens, male hormones and their derivatives seem to be the most promising therapeutic approach. Recent studies have shown positive effects of androgen replacement therapy at least in male RA patients

  19. Hormone signaling in plant development.

    PubMed

    Durbak, Amanda; Yao, Hong; McSteen, Paula

    2012-02-01

    Hormone signaling plays diverse and critical roles during plant development. In particular, hormone interactions regulate meristem function and therefore control formation of all organs in the plant. Recent advances have dissected commonalities and differences in the interaction of auxin and cytokinin in the regulation of shoot and root apical meristem function. In addition, brassinosteroid hormones have recently been discovered to regulate root apical meristem size. Further insights have also been made into our understanding of the mechanism of crosstalk among auxin, cytokinin, and strigolactone in axillary meristems.

  20. Gut hormones in tropical malabsorption.

    PubMed Central

    Besterman, H S; Cook, G C; Sarson, D L; Christofides, N D; Bryant, M G; Gregor, M; Bloom, S R

    1979-01-01

    Concentrations of various gut hormones were measured after a test breakfast in eight patients with severe tropical malabsorption and 12 controls. The patients with tropical malabsorption had greatly raised basal plasma motilin and enteroglucagon concentrations, but their postprandial release of both gastric inhibitory polypeptide and insulin was significantly reduced. The pattern of gut hormone release differed from that found in coeliac disease. The measurement of gut hormones, each of which has a specific site and function, thus throws new light on the pathophysiology of tropical malabsorption and may suggest approaches of treatment. PMID:519400

  1. Fluoride Exposure, Follicle Stimulating Hormone Receptor Gene Polymorphism and Hypothalamus-pituitary-ovarian Axis Hormones in Chinese Women.

    PubMed

    Zhao, Ming Xu; Zhou, Guo Yu; Zhu, Jing Yuan; Gong, Biao; Hou, Jia Xiang; Zhou, Tong; Duan, Li Ju; Ding, Zhong; Cui, Liu Xin; Ba, Yue

    2015-09-01

    The effects of fluoride exposure on the functions of reproductive and endocrine systems have attracted widespread attention in academic circle nowadays. However, it is unclear whether the gene-environment interaction may modify the secretion and activity of hypothalamus-pituitary- ovarian (HPO) axis hormones. Thus, the aim of this study was to explore the influence of fluoride exposure and follicle stimulating hormone receptor (FSHR) gene polymorphism on reproductive hormones in Chinese women. A cross sectional study was conducted in seven villages of Henan Province, China during 2010-2011. A total of 679 women aged 18-48 years were recruited through cluster sampling and divided into three groups, i.e. endemic fluorosis group (EFG), defluoridation project group (DFPG), and control group (CG) based on the local fluoride concentration in drinking water. The serum levels of gonadotropin releasing hormone (GnRH), follicle stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) were determined respectively and the FSHR polymorphism was detected by real time PCR assay. The results provided the preliminary evidence indicating the gene-environment interaction on HPO axis hormones in women.

  2. Fluoride Exposure, Follicle Stimulating Hormone Receptor Gene Polymorphism and Hypothalamus-pituitary-ovarian Axis Hormones in Chinese Women.

    PubMed

    Zhao, Ming Xu; Zhou, Guo Yu; Zhu, Jing Yuan; Gong, Biao; Hou, Jia Xiang; Zhou, Tong; Duan, Li Ju; Ding, Zhong; Cui, Liu Xin; Ba, Yue

    2015-09-01

    The effects of fluoride exposure on the functions of reproductive and endocrine systems have attracted widespread attention in academic circle nowadays. However, it is unclear whether the gene-environment interaction may modify the secretion and activity of hypothalamus-pituitary- ovarian (HPO) axis hormones. Thus, the aim of this study was to explore the influence of fluoride exposure and follicle stimulating hormone receptor (FSHR) gene polymorphism on reproductive hormones in Chinese women. A cross sectional study was conducted in seven villages of Henan Province, China during 2010-2011. A total of 679 women aged 18-48 years were recruited through cluster sampling and divided into three groups, i.e. endemic fluorosis group (EFG), defluoridation project group (DFPG), and control group (CG) based on the local fluoride concentration in drinking water. The serum levels of gonadotropin releasing hormone (GnRH), follicle stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) were determined respectively and the FSHR polymorphism was detected by real time PCR assay. The results provided the preliminary evidence indicating the gene-environment interaction on HPO axis hormones in women. PMID:26464260

  3. Steroid hormones, stress and the adolescent brain: a comparative perspective.

    PubMed

    Brown, G R; Spencer, K A

    2013-09-26

    Steroid hormones, including those produced by the gonads and the adrenal glands, are known to influence brain development during sensitive periods of life. Until recently, most brain organisation was assumed to take place during early stages of development, with relatively little neurogenesis or brain re-organisation during later stages. However, an increasing body of research has shown that the developing brain is also sensitive to steroid hormone exposure during adolescence (broadly defined as the period from nutritional independence to sexual maturity). In this review, we examine how steroid hormones that are produced by the gonads and adrenal glands vary across the lifespan in a range of mammalian and bird species, and we summarise the evidence that steroid hormone exposure influences behavioural and brain development during early stages of life and during adolescence in these two taxonomic groups. Taking a cross-species, comparative perspective reveals that the effects of early exposure to steroid hormones depend upon the stage of development at birth or hatching, as measured along the altricial-precocial dimension. We then review the evidence that exposure to stress during adolescence impacts upon the developing neuroendocrine systems, the brain and behaviour. Current research suggests that the effects of adolescent stress vary depending upon the sex of the individual and type of stressor, and the effects of stress could involve several neural systems, including the serotonergic and dopaminergic systems. Experience of stressors during adolescence could also influence brain development via the close interactions between the stress hormone and gonadal hormone axes. While sensitivity of the brain to steroid hormones during early life and adolescence potentially leaves the developing organism vulnerable to external adversities, developmental plasticity also provides an opportunity for the developing organism to respond to current circumstances and for behavioural

  4. Steroid hormones, stress and the adolescent brain: a comparative perspective.

    PubMed

    Brown, G R; Spencer, K A

    2013-09-26

    Steroid hormones, including those produced by the gonads and the adrenal glands, are known to influence brain development during sensitive periods of life. Until recently, most brain organisation was assumed to take place during early stages of development, with relatively little neurogenesis or brain re-organisation during later stages. However, an increasing body of research has shown that the developing brain is also sensitive to steroid hormone exposure during adolescence (broadly defined as the period from nutritional independence to sexual maturity). In this review, we examine how steroid hormones that are produced by the gonads and adrenal glands vary across the lifespan in a range of mammalian and bird species, and we summarise the evidence that steroid hormone exposure influences behavioural and brain development during early stages of life and during adolescence in these two taxonomic groups. Taking a cross-species, comparative perspective reveals that the effects of early exposure to steroid hormones depend upon the stage of development at birth or hatching, as measured along the altricial-precocial dimension. We then review the evidence that exposure to stress during adolescence impacts upon the developing neuroendocrine systems, the brain and behaviour. Current research suggests that the effects of adolescent stress vary depending upon the sex of the individual and type of stressor, and the effects of stress could involve several neural systems, including the serotonergic and dopaminergic systems. Experience of stressors during adolescence could also influence brain development via the close interactions between the stress hormone and gonadal hormone axes. While sensitivity of the brain to steroid hormones during early life and adolescence potentially leaves the developing organism vulnerable to external adversities, developmental plasticity also provides an opportunity for the developing organism to respond to current circumstances and for behavioural

  5. Specific involvement of gonadal hormones in the functional maturation of growth hormone releasing hormone (GHRH) neurons.

    PubMed

    Gouty-Colomer, Laurie-Anne; Méry, Pierre-François; Storme, Emilie; Gavois, Elodie; Robinson, Iain C; Guérineau, Nathalie C; Mollard, Patrice; Desarménien, Michel G

    2010-12-01

    Growth hormone (GH) is the key hormone involved in the regulation of growth and metabolism, two functions that are highly modulated during infancy. GH secretion, controlled mainly by GH releasing hormone (GHRH), has a characteristic pattern during postnatal development that results in peaks of blood concentration at birth and puberty. A detailed knowledge of the electrophysiology of the GHRH neurons is necessary to understand the mechanisms regulating postnatal GH secretion. Here, we describe the unique postnatal development of the electrophysiological properties of GHRH neurons and their regulation by gonadal hormones. Using GHRH-eGFP mice, we demonstrate that already at birth, GHRH neurons receive numerous synaptic inputs and fire large and fast action potentials (APs), consistent with effective GH secretion. Concomitant with the GH secretion peak occurring at puberty, these neurons display modifications of synaptic input properties, decrease in AP duration, and increase in a transient voltage-dependant potassium current. Furthermore, the modulation of both the AP duration and voltage-dependent potassium current are specifically controlled by gonadal hormones because gonadectomy prevented the maturation of these active properties and hormonal treatment restored it. Thus, GHRH neurons undergo specific developmental modulations of their electrical properties over the first six postnatal weeks, in accordance with hormonal demand. Our results highlight the importance of the interaction between the somatotrope and gonadotrope axes during the establishment of adapted neuroendocrine functions.

  6. Modulation of hormone-sensitive lipase and protein kinase A-mediated lipolysis by perilipin A in an adenoviral reconstituted system.

    PubMed

    Souza, Sandra C; Muliro, Kizito V; Liscum, Laura; Lien, Ping; Yamamoto, Mia T; Schaffer, Jean E; Dallal, Gerard E; Wang, Xinzhong; Kraemer, Fredric B; Obin, Martin; Greenberg, Andrew S

    2002-03-01

    Perilipin (Peri) A is a phosphoprotein located at the surface of intracellular lipid droplets in adipocytes. Activation of cyclic AMP-dependent protein kinase (PKA) results in the phosphorylation of Peri A and hormone-sensitive lipase (HSL), the predominant lipase in adipocytes, with concurrent stimulation of adipocyte lipolysis. To investigate the relative contributions of Peri A and HSL in basal and PKA-mediated lipolysis, we utilized NIH 3T3 fibroblasts lacking Peri A and HSL but stably overexpressing acyl-CoA synthetase 1 (ACS1) and fatty acid transport protein 1 (FATP1). When incubated with exogenous fatty acids, ACS1/FATP1 cells accumulated 5 times more triacylglycerol (TG) as compared with NIH 3T3 fibroblasts. Adenoviral-mediated expression of Peri A in ACS1/FATP1 cells enhanced TG accumulation and inhibited lipolysis, whereas expression of HSL fused to green fluorescent protein (GFPHSL) reduced TG accumulation and enhanced lipolysis. Forskolin treatment induced Peri A hyperphosphorylation and abrogated the inhibitory effect of Peri A on lipolysis. Expression of a mutated Peri A Delta 3 (Ser to Ala substitutions at PKA consensus sites Ser-81, Ser-222, and Ser-276) reduced Peri A hyperphosphorylation and blocked constitutive and forskolin-stimulated lipolysis. Thus, perilipin expression and phosphorylation state are critical regulators of lipid storage and hydrolysis in ACS1/FATP1 cells. PMID:11751901

  7. Vesicles and mixed micelles in hypothyroid rat bile before and after thyroid hormone treatment: evidence for a vesicle transport system for biliary cholesterol secretion.

    PubMed

    Andreini, J P; Prigge, W F; Ma, C; Gebbard, R L

    1994-08-01

    Hypothyroid rats show reduced secretion of biliary lipids, especially cholesterol. Secretion of biliary cholesterol is markedly augmented to levels above euthryroid beginning 12-24 h after administration of thyroid hormone. In the current studies, bile from hypothyroid and triiodothyronine-treated chronic bile-fistula rats was analyzed for vesicles and mixed micelles by metrizamide gradient ultracentrifugation. For euthryoid and hypothyroid animals, less than 12% of biliary cholesterol was in a vesicle gradient fraction. After treatment with triiodothyronine, biliary cholesterol increased markedly, and 50% of total cholesterol, 60% of excess cholesterol secreted, appeared in the vesicle fraction. Triiodothyronine stimulation of vesicle secretion resulted in cholesterol-rich vesicles (cholesterol:phospholipid ratio rose from less than 0.1 to 0.56), but no change in the distinct fatty acid composition of vesicle phospholipids. The microtubule inhibitor colchicine, given 12 h after triiodothyronine, prevented subsequent increase in cholesterol secretion in the form of vesicles. These studies, in a model that allows rapid changes in biliary lipid secretion, support the hypothesis that an important component of cholesterol and phospholipid secretion into bile involves microtubules and may involve a vesicle pathway.

  8. A novel form of pigment-dispersing hormone in the central nervous system of the intertidal marine isopod, Eurydice pulchra (leach).

    PubMed

    Wilcockson, David C; Zhang, Lin; Hastings, Michael H; Kyriacou, Charalambos P; Webster, Simon G

    2011-02-15

    Pigment-dispersing factor (PDF) is well known as a circadian clock output factor, which drives daily activity rhythms in many insects. The role of its homologue, pigment-dispersing hormone (PDH), in the regulation of circadian and/or circatidal rhythmicity in crustaceans is, however, poorly understood. The intertidal isopod crustacean, Eurydice pulchra has well-defined circatidal (12.4-hour) activity rhythms. In this study we show that this runs parallel to a circadian (24-hour) cycle of chromatophore dispersion. As a first step in determining the potential role of PDH in these rhythms, we have identified a novel form of PDH expressed in this species. Because conventional homology cloning was unsuccessful, we employed immuno-identification and Edman microsequencing to determine the primary structure of this peptide. From this, cDNA cloning identified the nucleotide encoding sequence and thus facilitated description of PDH neurons by in situ hybridization and immunohistochemistry. We show them to be morphologically similar to those that co-ordinate circadian activity rhythms in insects. In animals expressing both tidal (activity) and circadian (chromatophore) rhythms, however, there was no evidence for a corresponding periodicity in the expression of pdh transcript, as determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in Eurydice heads. It is therefore suggested that any role for PDH in daily/tidal timing in Eurydice is not mediated at the transcriptional level, rather rhythms in neurohemal release may be important in such co-ordination. PMID:21192084

  9. Hormonal changes during long-term isolation.

    PubMed

    Custaud, M A; Belin de Chantemele, E; Larina, I M; Nichiporuk, I A; Grigoriev, A; Duvareille, M; Gharib, C; Gauquelin-Koch, G

    2004-05-01

    Confinement and inactivity induce considerable psychological and physiological modifications through social and sensory deprivation. The aim of the SFINCSS-99 experiment was to determine the cardiovascular and hormonal pattern of blood volume regulation during long-term isolation and confinement. Simulation experiments were performed in pressurized chambers similar in size to the volumes of modern space vehicles. Group I consisted of four Russian male volunteers, who spent 240 days in a 100-m(3 )chamber. Group II included four males (one German and three Russians) who spent 110 days in isolation (200-m(3) module). The blood samples, taken before, during and after the isolation period, were used to determine haematocrit (Ht), growth hormone (GH), active renin, aldosterone, and osmolality levels. From the urine samples, electrolytes, osmolality, nitrites, nitrates, cortisol, antidiuretic hormone (ADH), aldosterone, normetanephrine and metanephrine levels were determined. The increase in plasma volume (PV) that is associated with a tendency for a decrease in plasma active renin is likely to be due to decreased sympathetic activity, and concords with the changes in urinary catecholamine levels during confinement. Urinary catecholamine levels were significantly higher during the recovery period than during confinement. This suggests that the sympathoadrenal system was activated, and concords with the increase in heart rate. Vascular resistance is determined by not only the vasoconstrictor but also vasodilator systems. The ratio of nitrite/nitrate in urine, as an indicator of nitric oxide release, did not reveal any significant changes. Analysis of data suggests that the duration of the isolation was a main factor involved in the regulation of hormones.

  10. Hormonal Regulation of Leaf Abscission

    PubMed Central

    Jacobs, William P.

    1968-01-01

    A review is given of the progress made during the last 6 years in elucidating the nature, locus of action, and transport properties of the endogenous hormones that control leaf abscission. PMID:16657014

  11. Menopausal Hormone Therapy and Cancer

    MedlinePlus

    ... both combination and estrogen-alone hormone use made mammography less effective for the early detection of breast ... such as a reduction in the use of mammography, may also have contributed to this decline ( 15 ). ...

  12. Hormone Therapy for Prostate Cancer

    MedlinePlus

    ... agonists , which are sometimes called LHRH analogs, are synthetic proteins that are structurally similar to LHRH and ... gland to stop producing luteinizing hormone, which prevents testosterone from being produced. Treatment with an LHRH agonist ...

  13. Network Identification of Hormonal Regulation

    PubMed Central

    Vis, Daniel J.; Westerhuis, Johan A.; Hoefsloot, Huub C. J.; Roelfsema, Ferdinand; van der Greef, Jan

    2014-01-01

    Relations among hormone serum concentrations are complex and depend on various factors, including gender, age, body mass index, diurnal rhythms and secretion stochastics. Therefore, endocrine deviations from healthy homeostasis are not easily detected or understood. A generic method is presented for detecting regulatory relations between hormones. This is demonstrated with a cohort of obese women, who underwent blood sampling at 10 minute intervals for 24-hours. The cohort was treated with bromocriptine in an attempt to clarify how hormone relations change by treatment. The detected regulatory relations are summarized in a network graph and treatment-induced changes in the relations are determined. The proposed method identifies many relations, including well-known ones. Ultimately, the method provides ways to improve the description and understanding of normal hormonal relations and deviations caused by disease or treatment. PMID:24852517

  14. Identification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones.

    PubMed

    Chiba, Yasutaka; Shimizu, Takafumi; Miyakawa, Shinya; Kanno, Yuri; Koshiba, Tomokazu; Kamiya, Yuji; Seo, Mitsunori

    2015-07-01

    NRT1/PTR FAMILY (NPF) proteins were originally identified as nitrate or di/tri-peptide transporters. Recent studies revealed that this transporter family also transports the plant hormones auxin (indole-3-acetic acid), abscisic acid (ABA), and gibberellin (GA), as well as secondary metabolites (glucosinolates). We developed modified yeast two-hybrid systems with receptor complexes for GA and jasmonoyl-isoleucine (JA-Ile), to detect GA and JA-Ile transport activities of proteins expressed in the yeast cells. Using these GA and JA-Ile systems as well as the ABA system that we had introduced previously, we determined the capacities of Arabidopsis NPFs to transport these hormones. Several NPFs induced the formation of receptor complexes under relatively low hormone concentrations. Hormone transport activities were confirmed for some NPFs by direct analysis of hormone uptake of yeast cells by liquid chromatography-tandem mass spectrometry. Our results suggest that at least some NPFs could function as hormone transporters.

  15. Ghrelin: much more than a hunger hormone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ghrelin is a multifaceted gut hormone that activates its receptor, growth hormone secretagogue receptor (GHS-R). Ghrelin's hallmark functions are its stimulatory effects on growth hormone release, food intake and fat deposition. Ghrelin is famously known as the 'hunger hormone'. However, ample recen...

  16. Calcium calmodulin and hormone secretion.

    PubMed

    Brown, B L; Walker, S W; Tomlinson, S

    1985-08-01

    As long ago as 1970, it was proposed that Ca2+ can act as a 'second messenger' like cAMP (Rasmussen & Nagata, 1979). The recognition that calmodulin is a major Ca2+ binding protein in non-muscle cells has prompted the suggestion that calmodulin may serve an analogous role for Ca2+ to that served by protein kinase for cAMP (Wang & Waisman, 1979), or at least to the regulatory subunit of the cyclic nucleotide-dependent kinases. It is becoming clear that calmodulin probably does play a role in stimulus secretion coupling in endocrine cells. Nevertheless, some of the experimental approaches which have led to this rather tentative conclusion do induce some doubts, as we have attempted to indicate. Many of the pharmacological agents used in the studies cited in this review are not specific in their interaction with calmodulin. For example, the phenothiazines also inhibit phospholipid-sensitive protein kinase. The introduction of more specific drugs, such as the naphthalene sulphonamides, may lead to a clearer picture of the role of calmodulin in hormone secretion. Relationships probably exist between cyclic nucleotides, calcium, calmodulin, phosphatidylinositol (PI) turnover and phospholipids in the overall control of the secretory process (see Fig. 1). There is considerable evidence that calcium is the primary internal signal initiating exocytosis of hormone from many glands. However, it appears that cyclic nucleotides can modulate the calcium signal either positively or negatively and it is possible that cAMP and calcium can separately activate secretion. The presence of both calmodulin-activated adenylate cyclase and cyclic nucleotide phosphodiesterase in the same tissue would appear to suggest either spatial or temporal control mechanisms or that (diagram; see text) the calcium requirement for calmodulin activation differs between the two enzymes. The true explanation is probably far more complex and involves perhaps as yet unknown factors that can differentially

  17. USE OF MOLECULAR BIOLOGICAL TECHNIQUES TO EVALUATE EFFECT OF ENDOGENOUS HORMONES AND A XENOBIOTIC PESTICIDE ON GROWTH OF SHEEPSHEAD MINNOW

    EPA Science Inventory

    We have developed a teleost model to screen physiological effects of endocrine disrupting chemicals (EDCs) on somatic growth. Growth is largely controlled by the endocrine system via the growth-hormone releasing hormone (GRF) - growth hormone (GH) - insulin-like growth factor (IG...

  18. Thyroid Hormone and Seasonal Rhythmicity

    PubMed Central

    Dardente, Hugues; Hazlerigg, David G.; Ebling, Francis J. P.

    2014-01-01

    Living organisms show seasonality in a wide array of functions such as reproduction, fattening, hibernation, and migration. At temperate latitudes, changes in photoperiod maintain the alignment of annual rhythms with predictable changes in the environment. The appropriate physiological response to changing photoperiod in mammals requires retinal detection of light and pineal secretion of melatonin, but extraretinal detection of light occurs in birds. A common mechanism across all vertebrates is that these photoperiod-regulated systems alter hypothalamic thyroid hormone (TH) conversion. Here, we review the evidence that a circadian clock within the pars tuberalis of the adenohypophysis links photoperiod decoding to local changes of TH signaling within the medio-basal hypothalamus (MBH) through a conserved thyrotropin/deiodinase axis. We also focus on recent findings which indicate that, beyond the photoperiodic control of its conversion, TH might also be involved in longer-term timing processes of seasonal programs. Finally, we examine the potential implication of kisspeptin and RFRP3, two RF-amide peptides expressed within the MBH, in seasonal rhythmicity. PMID:24616714

  19. Neuroendocrine hormone amylin in diabetes.

    PubMed

    Zhang, Xiao-Xi; Pan, Yan-Hong; Huang, Yan-Mei; Zhao, Hai-Lu

    2016-05-10

    The neuroendocrine hormone amylin, also known as islet amyloid polypeptide, is co-localized, co-packaged and co-secreted with insulin from adult pancreatic islet β cells to maintain glucose homeostasis. Specifically, amylin reduces secretion of nutrient-stimulated glucagon, regulates blood pressure with an effect on renin-angiotensin system, and delays gastric emptying. The physiological actions of human amylin attribute to the conformational α-helix monomers whereas the misfolding instable oligomers may be detrimental to the islet β cells and further transform to β-sheet fibrils as amyloid deposits. No direct evidence proves that the amylin fibrils in amyloid deposits cause diabetes. Here we also have performed a systematic review of human amylin gene changes and reported the S20G mutation is minor in the development of diabetes. In addition to the metabolic effects, human amylin may modulate autoimmunity and innate inflammation through regulatory T cells to impact on both human type 1 and type 2 diabetes. PMID:27162583

  20. Chemosignals, hormones, and amphibian reproduction.

    PubMed

    Woodley, Sarah

    2015-02-01

    This article is part of a Special Issue "Chemosignals and Reproduction". Amphibians are often thought of as relatively simple animals especially when compared to mammals. Yet the chemosignaling systems used by amphibians are varied and complex. Amphibian chemosignals are particularly important in reproduction, in both aquatic and terrestrial environments. Chemosignaling is most evident in salamanders and newts, but increasing evidence indicates that chemical communication facilitates reproduction in frogs and toads as well. Reproductive hormones shape the production, dissemination, detection, and responsiveness to chemosignals. A large variety of chemosignals have been identified, ranging from simple, invariant chemosignals to complex, variable blends of chemosignals. Although some chemosignals elicit straightforward responses, others have relatively subtle effects. Review of amphibian chemosignaling reveals a number of issues to be resolved, including: 1) the significance of the complex, individually variable blends of courtship chemosignals found in some salamanders, 2) the behavioral and/or physiological functions of chemosignals found in anuran "breeding glands", 3) the ligands for amphibian V2Rs, especially V2Rs expressed in the main olfactory epithelium, and 4) the mechanism whereby transdermal delivery of chemosignals influences behavior. To date, only a handful of the more than 7000 species of amphibians has been examined. Further study of amphibians should provide additional insight to the role of chemosignals in reproduction.

  1. Effects on development, growth responses and thyroid-hormone systems in eyed-eggs and yolk-sac larvae of Atlantic salmon (Salmo salar) continuously exposed to 3,3',4,4'-tetrachlorobiphenyl (PCB-77).

    PubMed

    Arukwe, Augustine; Olufsen, Marianne; Cicero, Nicola; Hansen, Marianne D

    2014-01-01

    Thyroid hormones (triiodothyronine, T3; and thyroxine, T4) play significant roles in development, metamorphosis, metabolism, homeostasis, cellular proliferation, and differentiation, for which the effects are mediated through thyroid hormone receptors (TRα and TRβ). Similarly, the insulin-like growth factor (IGF) is involved in growth and development through regulation of somatic growth. This study was designed to examine the effects of the dioxin-like 3,3',4,4'-tetrachlorobiphenyl (PCB-77) on responses related to growth and thyroid hormone system in eyed eggs and yolk-sac larvae of Atlantic salmon. Salmon eggs were continuously exposed to two waterborne concentrations of PCB-77 (1 or 10 ng/L) over a period of 50 d covering hatching and through yolk-sac absorption stages. Sampling was performed regularly throughout the exposure period and at different time intervals. Gene expression patterns were performed on whole-body homogenate at age 500, 548, 632, 674, and 716 dd (dd: day degrees) using quantitative polymerase chain reaction (PCR). Total T3 (TT3) and total T4 (TT4) were measured using radioimmunoassay (RIA). Data showed that 10 ng PCB-77 increased dioiodinase 2 (Dio2) at 500 dd and both PCB-77 concentrations decreased dio2 expression at 548 dd. PCB-77 elevated cellular TT3 at 500 dd and was lowered at 548 dd only at 10 ng. Otherwise, time-related reduction was not affected by PCB-77 exposure as observed for the rest of the exposure period. For TT4, 1 ng PCB-77 produced a rise at 500 dd, and an apparent concentration decrease at 548 dd, before a total inhibition at 632 dd. The IGF-1 and IGF-1R were variably affected by PCB-77. For IGF-2, PCB-77 produced a concentration-dependent increase at 548 dd, and thereafter an elevation (1 ng) and fall (10 ng) at 632 dd. TRβ mRNA demonstrated PCB-77 related increases during the exposure period, and this effect returned to control levels at 716 dd. For TRα, a rise was noted only after exposure to 10 ng PCB-77 at 500 dd

  2. Morphological analysis of the early development of telencephalic and diencephalic gonadotropin-releasing hormone neuronal systems in enhanced green fluorescent protein-expressing transgenic medaka lines.

    PubMed

    Takahashi, Akiko; Islam, M Sadiqul; Abe, Hideki; Okubo, Kataaki; Akazome, Yasuhisa; Kaneko, Takeshi; Hioki, Hiroyuki; Oka, Yoshitaka

    2016-03-01

    Teleosts possess two or three paralogs of gonadotropin-releasing hormone (GnRH) genes: gnrh1, gnrh2, and gnrh3. Some species have lost the gnrh1 and/or gnrh3 genes, whereas gnrh2 has been completely conserved in the teleost species analyzed to date. In most teleosts that possess gnrh1, GnRH1 peptide is the authentic GnRH that stimulates gonadotropin release, whereas GnRH2 and GnRH3, if present, are neuromodulatory. Progenitors of GnRH1 and GnRH3 neurons originate from olfactory placodes and migrate to their destination during early development. However, because of the relatively low affinity/specificity of generally available antibodies that recognize GnRH1 or GnRH3, labeling of these neurons has only been possible using genetic manipulation. We used a model teleost, medaka, which possesses all three paralogous gnrh genes, to analyze development of forebrain GnRH neurons composed of GnRH1 and GnRH3 neurons. Here, we newly generated transgenic medaka lines that express enhanced green fluorescent protein under the control of promoters for gnrh1 or gnrh3, to detect GnRH neurons and facilitate immunohistochemical analysis of the neuronal morphology. We used a combination of immunohistochemistry and three-dimensional confocal microscopy image reconstructions to improve identification of neurites from GnRH1 or GnRH3 neuronal populations with greater precision. This led us to clearly identify the hypophysiotropic innervation of GnRH1 neurons residing in the ventral preoptic area (vPOA) from as early as 10 days post hatching. Furthermore, these analyses also revealed retinopetal projections of nonhypophysiotropic GnRH1 neurons in vPOA, prominent during early developmental stages, and multiple populations of GnRH3 neurons with different origins and migratory pathways.

  3. [Stimulus of the hypophyseal-adrenocortical axis with corticotropin releasing hormone (CRH) in acquired immunodeficiency syndrome. Evidence for activation of the immune-neuroendocrine system].

    PubMed

    Lewi, D S; Kater, C E; Moreira, A C

    1995-01-01

    Ten-20% of patients with AIDS may present clinical evidence of primary or secondary adrenal insufficiency. PURPOSE--To evaluate the hypothalamic-pituitary-adrenocortical axis (HPAA) with CRH in patients with AIDS. METHODS--We studied 20 patients with AIDS and 17 normal subjects (NS) with exogenous ACTH (cosyntropin, 250 micrograms IV bolus) followed one week later by ovine corticotropin releasing hormone (oCRH 1 microgram/kg BW IV bolus). Basal and 60' cortisol (micrograms/dL) were determined in the former whereas ACTH (pg/mL) and cortisol were measured every 15-30' for 2 hours in the latter. RESULTS--Basal and peak values (mean +/- SD) of ACTH and cortisol for both tests were: cosyntropin test (AIDS x NS): basal cortisol 22.5 +/- 7.1 x 10.6 +/- 3.6 (p < 0.01), peak 36.0 +/- 12.8 x 28.3 +/- 7.6 (p < 0.05); oCRH test: basal ACTH 42.2 +/- 33.5 x 28.9 +/- 12.7 (NS), peak 104.7 +/- 62.2 x 59.3 +/- 17.6 (p < 0.05); basal cortisol 19.7 +/- 9.0 x 10.1 +/- 3.4 (p < 0.01), peak 27.5 +/- 8.9 x 18.3 +/- 5.1 (p < 0.05). CONCLUSION--AIDS patients had elevated basal and CRH stimulated ACTH levels and an intact glucocorticoid pathway with elevated basal and peak cortisol levels to both stimulation tests. This situation is probably due to the stressful disease condition, where lymphokines may play a role activating the hypothalamic-pituitary axis. PMID:8520591

  4. Morphological analysis of the early development of telencephalic and diencephalic gonadotropin-releasing hormone neuronal systems in enhanced green fluorescent protein-expressing transgenic medaka lines.

    PubMed

    Takahashi, Akiko; Islam, M Sadiqul; Abe, Hideki; Okubo, Kataaki; Akazome, Yasuhisa; Kaneko, Takeshi; Hioki, Hiroyuki; Oka, Yoshitaka

    2016-03-01

    Teleosts possess two or three paralogs of gonadotropin-releasing hormone (GnRH) genes: gnrh1, gnrh2, and gnrh3. Some species have lost the gnrh1 and/or gnrh3 genes, whereas gnrh2 has been completely conserved in the teleost species analyzed to date. In most teleosts that possess gnrh1, GnRH1 peptide is the authentic GnRH that stimulates gonadotropin release, whereas GnRH2 and GnRH3, if present, are neuromodulatory. Progenitors of GnRH1 and GnRH3 neurons originate from olfactory placodes and migrate to their destination during early development. However, because of the relatively low affinity/specificity of generally available antibodies that recognize GnRH1 or GnRH3, labeling of these neurons has only been possible using genetic manipulation. We used a model teleost, medaka, which possesses all three paralogous gnrh genes, to analyze development of forebrain GnRH neurons composed of GnRH1 and GnRH3 neurons. Here, we newly generated transgenic medaka lines that express enhanced green fluorescent protein under the control of promoters for gnrh1 or gnrh3, to detect GnRH neurons and facilitate immunohistochemical analysis of the neuronal morphology. We used a combination of immunohistochemistry and three-dimensional confocal microscopy image reconstructions to improve identification of neurites from GnRH1 or GnRH3 neuronal populations with greater precision. This led us to clearly identify the hypophysiotropic innervation of GnRH1 neurons residing in the ventral preoptic area (vPOA) from as early as 10 days post hatching. Furthermore, these analyses also revealed retinopetal projections of nonhypophysiotropic GnRH1 neurons in vPOA, prominent during early developmental stages, and multiple populations of GnRH3 neurons with different origins and migratory pathways. PMID:26287569

  5. Follicle Diameter and Systemic Hormone Interrelationships during Induction of Follicle Collapse with Intrafollicular Prostaglandin E2 and F2α in Mares.

    PubMed

    Martínez-Boví, R; Cuervo-Arango, J

    2016-04-01

    The objectives were to determine: (i) whether intrafollicular administration of PGE2 and PGF2α to mares would hasten follicle collapse and (ii) the differences in reproductive hormone characteristics in mares with spontaneous and prostaglandin-induced follicle collapses. Six mares were followed for two oestrous cycles each: when the mares reached a follicle diameter of 30-35 mm and showed mild-to-moderate endometrial oedema, mares were administered a single 0.5 ml dose containing 500 μg PGE2 and 125 μg PGF2α (treatment cycle) or a placebo (0.5 ml of water for injection; control cycle) into the preovulatory follicle (Hour 0). Blood samples were collected, and serial ultrasound examinations were performed until follicle collapse. Treated mares showed follicle collapse significantly earlier (20.0 ± 5.9 h) than the control mares (72.0 ± 10.7 h). The LH, progesterone, total oestrogens and oestradiol concentrations did not differ between groups; however, the progesterone concentration increased more between 48 and 72 h after follicle injection in the treatment compared to the control cycles (P < 0.05). In conclusion, intrafollicular treatment with PGE2 and PGF2α hastened follicle collapse in mares without the simultaneous use of an inductor of ovulation; despite the early induction of follicle collapse, the profiles of LH and oestradiol were not altered. This study provides information on the role of prostaglandins (PGs) in the process of follicle wall rupture and collapse and suggests that this may happen even before the beginning of the sharp rise in circulating LH at the final stage of the ovulatory surge.

  6. Investigation of PEG crystallization in frozen and freeze-dried PEGylated recombinant human growth hormone-sucrose systems: implications on storage stability.

    PubMed

    Bhatnagar, Bakul S; Martin, Susan W H; Hodge, Tamara S; Das, Tapan K; Joseph, Liji; Teagarden, Dirk L; Shalaev, Evgenyi Y; Suryanarayanan, Raj

    2011-08-01

    The objectives of the current study were to investigate (i) the phase behavior of a PEGylated recombinant human growth hormone (PEG-rhGH, ∼60 kDa) during freeze-drying and (ii) its storage stability. The phase transitions during freeze-thawing of an aqueous solution containing PEG-rhGH and sucrose were characterized by differential scanning calorimetry. Finally, PEG-rhGH and sucrose formulations containing low, medium, and high polyethylene glycol (PEG) to sucrose ratios were freeze-dried in dual-chamber syringes and stored at 4°C and 25°C. Chemical decomposition (methionine oxidation and deamidation) and irreversible aggregation were characterized by size-exclusion and ion-exchange chromatography, and tryptic mapping. PEG crystallization was facilitated when it was covalently linked with rhGH. When the solutions were frozen, phase separation into PEG-rich and sucrose-rich phases facilitated PEG crystallization and the freeze-dried cake contained crystalline PEG. Annealing caused PEG crystallization and when coupled with higher drying temperatures, the primary drying time decreased by up to 51%. When the freeze-dried cakes were stored at 4°C, while there was no change in the purity of the PEG-rhGH monomer, deamidation was highest in the formulations with the lowest PEG to sucrose ratio. When stored at 25°C, this composition also showed the most pronounced decrease in monomer purity, the highest level of aggregation, and deamidation. Furthermore, an increase in PEG crystallinity during storage was accompanied by a decrease in PEG-rhGH stability. Interestingly, during storage, there was no change in PEG crystallinity in formulations with medium and high PEG to sucrose ratios. Although PEG crystallization during freeze-drying did not cause protein degradation, crystallization during storage might have influenced protein stability.

  7. Central administration of chicken growth hormone-releasing hormone decreases food intake in chicks.

    PubMed

    Tachibana, Tetsuya; Sugimoto, Ikue; Ogino, Madoka; Khan, Md Sakirul Islam; Masuda, Keiko; Ukena, Kazuyoshi; Wang, Yajun

    2015-02-01

    Growth hormone-releasing hormone (GHRH) is well known as a stimulator of growth hormone (GH) secretion. GHRH not only stimulates GH release but also modifies feeding behavior and energy homeostasis in rodents. In chickens (Gallus gallus domesticus), on the other hand, two types of GHRH, namely, chicken GHRH (cGHRH) and cGHRH-like peptide (cGHRH-LP), have been identified. The purpose of the present study was to investigate the effect of central injection of cGHRH and cGHRH-LP on feeding behavior in chicks. Intracerebroventricular (ICV) injection of both cGHRH and cGHRH-LP (0.04 to 1 nmol) significantly decreased food intake without any abnormal behavior in chicks. Furthermore, the feeding-inhibitory effect was not abolished by co-injection of the antagonist for pituitary adenylate cyclase-activating polypeptide (PACAP) or corticotropin-releasing hormone (CRH) receptors, suggesting that the anorexigenic effect of cGHRH and cGHRH-LP might not be related to the PACAP and CRH systems in the brain of chicks. Finally, 24-h food deprivation increased mRNA expression of cGHRH but not cGHRH-LP in the diencephalon. These results suggest that central cGHRH is related to inhibiting feeding behavior and energy homeostasis in chicks.

  8. The current state of male hormonal contraception.

    PubMed

    Chao, Jing H; Page, Stephanie T

    2016-07-01

    World population continues to grow at an unprecedented rate, doubling in a mere 50years to surpass the 7-billion milestone in 2011. This steep population growth exerts enormous pressure on the global environment. Despite the availability of numerous contraceptive choices for women, approximately half of all pregnancies are unintended and at least half of those are unwanted. Such statistics suggest that there is still a gap in contraceptive options for couples, particularly effective reversible contraceptives for men, who have few contraceptive choices. Male hormonal contraception has been an active area of research for almost 50years. The fundamental concept involves the use of exogenous hormones to suppress endogenous production of gonadotropins, testosterone, and downstream spermatogenesis. Testosterone-alone regimens are effective in many men but high dosing requirements and sub-optimal gonadotropin suppression in 10-30% of men limit their use. A number of novel combinations of testosterone and progestins have been shown to be more efficacious but still require further refinement in delivery systems and a clearer understanding of the potential short- and long-term side effects. Recently, synthetic androgens with both androgenic and progestogenic activity have been developed. These agents have the potential to be single-agent male hormonal contraceptives. Early studies of these compounds are encouraging and there is reason for optimism that these may provide safe, reversible, and reliable contraception for men in the near future. PMID:27016468

  9. Cadmium effects on hypothalamic activity and pituitary hormone secretion in the male.

    PubMed

    Lafuente, A; Esquifino, A I

    1999-11-22

    Cadmium specifically modify amine metabolism at the central nervous system and pituitary hormone secretions. Thus, the physiological functions controlled by these hormones can be modulated by cadmium. This xenobiotic is associated with deleterious effects on the gonadal function and with changes in the secretory pattern of other pituitary hormones like prolactin, ACTH, GH or TSH. The observed changes in pituitary hormone secretion do not correlate with the modifications of central nervous system metabolism of the neurotransmitters involved in their regulation. The accumulative data indicates the existence of a disruption in the regulatory mechanisms of the hypothalamic-pituitary axis. The physiological significance of these effects remains to be elucidated.

  10. Reevaluation of the relative activities of the pituitary glycoprotein hormones (follicle-stimulating hormone, luteinizing hormone, and thyrotrophin) from the green sea turtle, Chelonia mydas.

    PubMed

    Licht, P; Papkoff, H

    1985-06-01

    The discovery that the follicle-stimulating hormone (FSH) previously prepared from the green sea turtle, Chelonia mydas, contained a major neurohypophysial contaminant prompted a repurification and characterization of the glycoprotein hormones in this turtle. Results reaffirmed the physicochemical distinctiveness of the three hormones. Minimal cross-contamination between hormones (less than 2%) was achieved by ion-exchange chromatography, subunit dissociation (of contaminating luteinizing hormone (LH], gel filtration, and immuno-affinity chromatography. New preparations of FSH and thyrotrophin (TSH) derived from adult pituitaries proved to be more potent than those described previously (the degree depending on the nature of the assay); FSH showed the expected increase in activity based on estimated contamination of previous preparations. LH was similar to original preparations except for enhanced activity in FSH radioreceptor assays. Binding assays (in heterologous and homologous systems) again demonstrated the general absence of an FSH-specific receptor in the reptilian (chelonian and squamate) testes. In an in vivo bioassay in the lizard Anolis, the turtle FSH was orders of magnitude more potent than LH in stimulating both testis growth and androgen secretion, but in vitro LH was considerably more potent than FSH in stimulating androgen secretion in squamate and chelonian testes. Thus, the possibility exists that androgen secretion in some chelonian systems may exhibit a high degree of LH specificity like that of mammals and birds.

  11. Current concepts of the metabolism and radioimmunoassay of parathyroid hormone

    SciTech Connect

    Slatopolsky, E.; Martin, K.; Morrissey, J.; Hruska, K.

    1982-03-01

    Two major hormonal system (PTH and vitamin D) and a minor system (calcitonin) are responsible for the regulation of calcium homeostasis. Serum ionized calcium is maintained within narrow limits by the intereactions of these hormonal systems and their effects on the intestine, the kidney, and the skeleton. The editorial describes in a succinct form, general aspects of PTH metabolism in view of recent information regarding the contributions of the liver, kidney, and bone to the degradation of PTH. On the basis of information accumulated concerning the peripheral metabolism of PTH, the different RIAs for PTH are also discussed.

  12. Roles of plant hormones in the regulation of host-virus interactions.

    PubMed

    Alazem, Mazen; Lin, Na-Sheng

    2015-06-01

    Hormones are tuners of plant responses to biotic and abiotic stresses. They are involved in various complicated networks, through which they modulate responses to different stimuli. Four hormones primarily regulate plant defence to pathogens: salicylic acid (SA), jasmonic acid (JA), ethylene (Et) and abscisic acid (ABA). In susceptible plants, viral infections result in hormonal disruption, which manifests as the simultaneous induction of several antagonistic hormones. However, these antagonistic hormones may exhibit some sequential accumulation in resistant lines. Virus propagation is usually restricted by the activation of the small interfering RNA (siRNA) antiviral machinery and/or SA signalling pathway. Several studies have investigated these two systems, using different model viruses. However, the roles of hormones other than SA, especially those with antagonistic properties, such as ABA, have been neglected. Increasing evidence indicates that hormones control components of the small RNA system, which regulates many processes (including the siRNA antiviral machinery and the microRNA system) at the transcriptional or post-transcriptional level. Consequently, cross-talk between the antagonistic SA and ABA pathways modulates plant responses at multiple levels. In this review, we summarize recent findings on the different roles of hormones in the regulation of plant-virus interactions, which are helping us to elucidate the fine tuning of viral and plant systems by hormones.

  13. Evolutionary Endocrinology of Hormonal Rhythms: Juvenile Hormone Titer Circadian Polymorphism in Gryllus firmus.

    PubMed

    Zera, Anthony J

    2016-08-01

    Daily rhythms for hormonal traits are likely widespread and important aspects of organismal (e.g., life history) adaptation. Yet they remain substantially understudied, especially with respect to variable rhythms within species. The cricket, Gryllus firmus, exhibits a genetically polymorphic circadian rhythm for the blood titer of the key hormone, juvenile hormone (JH). Gryllus firmus is also wing-polymorphic, consisting of a dispersing morph that delays reproduction and a flightless morph with substantially enhanced egg production. JH circadian phenotype strongly covaries with morph type: The blood JH titer is strongly rhythmic in multiple populations artificially-selected for the dispersing morph (LW(f) = long wings with functional flight muscles) and is essentially arrhythmic in populations selected for the SW (short-winged) morph. Association between JH titer cycle and LW(f) morph is also found in natural populations of G. firmus and in several related species in the field. This is one of the very few studies of endocrine titer variation in natural populations of an insect. The morph-specific cycle is underlain by a circadian rhythm in hormone biosynthesis, which in turn is underlain by a rhythm in a brain neuropeptide regulator of JH biosynthesis. The morph-specific JH titer circadian cycle is also strongly correlated with a morph-specific daily rhythm in global gene expression. This is currently the only example of a genetically-variable hormone circadian rhythm in both the laboratory and field that is strongly associated with an ecologically important polymorphism. The extensive information on the underlying causes of the morph-specific JH titer rhythm, coupled with the strong association between the JH circadian rhythm and wing polymorphism makes this system in G. firmus an exceptional experimental model to investigate the mechanisms underlying circadian hormonal adaptations. Genetic polymorphism for the JH titer circadian rhythm in G. firmus is discussed

  14. [Hormonal disruptors and farm animals].

    PubMed

    van Os, J L

    1998-01-01

    A number of man made environmental contaminants displays a weak hormonal, usually oestrogenic, activity. Currently such contaminants are termed hormone disruptors, a terminology that also includes natural compounds with hormonal activity, such as phyto and fungal oestrogens. Fertility and morphological defects in wildlife are related to high exposure to man made hormone disruptors. The potential threat of such exposure for human reproductive health is widely discussed. A possible decline in sperm counts in men is one of the subjects related to such environmental factors. There are no firm indications for this threat. Additional research is needed, however, for a more complete assessment. Farm animals so far played a minor role in the discussion. Therefore, in a study published elsewhere, long term trends in sperm counts of Dutch Dairy Bulls have been evaluated (27). No decline was found in 75,238 ejaculates collected between 1977 and 1996 from 2,314 bulls of the centre for artificial insemination (AI) NOORDWEST. Results of this study, published elsewhere, formed the reason to broader go into the relation between hormone disruptors and farm animals, observed effects of phyto-oestrogens in such animal and the role these animals could play in further research. PMID:9537066

  15. Inhibition of the Thyroid Hormone Pathway in Xenopus by Mercaptobenzothiazole

    EPA Science Inventory

    Amphibian metamorphosis is a thyroid hormone-dependent process that provides a potential model system to assess chemicals for their ability to disrupt the hypothalamic-pituitary-thyroid (HPT) axis. Several studies have demonstrated the sensitivity of this system to a variety of ...

  16. Electrochemical biosensors for hormone analyses.

    PubMed

    Bahadır, Elif Burcu; Sezgintürk, Mustafa Kemal

    2015-06-15

    Electrochemical biosensors have a unique place in determination of hormones due to simplicity, sensitivity, portability and ease of operation. Unlike chromatographic techniques, electrochemical techniques used do not require pre-treatment. Electrochemical biosensors are based on amperometric, potentiometric, impedimetric, and conductometric principle. Amperometric technique is a commonly used one. Although electrochemical biosensors offer a great selectivity and sensitivity for early clinical analysis, the poor reproducible results, difficult regeneration steps remain primary challenges to the commercialization of these biosensors. This review summarizes electrochemical (amperometric, potentiometric, impedimetric and conductometric) biosensors for hormone detection for the first time in the literature. After a brief description of the hormones, the immobilization steps and analytical performance of these biosensors are summarized. Linear ranges, LODs, reproducibilities, regenerations of developed biosensors are compared. Future outlooks in this area are also discussed.

  17. Pathology of growth hormone excess.

    PubMed

    Kovacs, K

    1988-09-01

    This paper briefly reviews the pathology of growth hormone excess. Prolonged oversecretion of growth hormone is associated with elevated serum growth hormone as well as somatomedian C levels and the clinical signs and symptoms of acromegaly or gigantism. Morphologic studies, including immunohistochemistry and electron microscopy, revealed that several distinct morphologic lesions can be present in the pituitary gland of patients with acromegaly or gigantism. Although substantial progress has been achieved during the last two decades, more work is required to correlate the morphologic features of adenoma cells with their biologic behavior. We feel that the future can be viewed with optimism and further exciting results can be expected by the interaction of pathologists, clinical endocrinologists and basic scientists. PMID:3070506

  18. Partial Target Organ Resistance to Thyroid Hormone

    PubMed Central

    Bode, Hans Henning; Danon, Marco; Weintraub, Bruce D.; Maloof, Farahe; Crawford, John D.

    1973-01-01

    An 8-year old boy with a small goiter, normal basal metabolic rate (BMR), and elevated serum thyroid hormone levels (thyroxine [T4] 19.5 μg per 100 ml, free T4 4 ng per 100 ml, triiodothyronine [T3] 505 ng per 100 ml) was studied. He had measurable serum thyroid-stimulating hormone (TSH) levels (average 5.5 μU per ml), and the thyroxine-binding proteins, hearing, and epiphyseal structures were normal. There was no parental consanguinity nor were there thyroid abnormalities either in the parents or six siblings. Methimazole, 50 mg daily, depressed thyroxine synthesis (T4 10.5, free T4 2.5) and caused a rise in TSH to 11 μU per ml. After discontinuation of treatment, TSH declined to 4.2 μU per ml and chemical hyperthyroidism returned (T4 21.0 μg per 100 ml, free T4 4.2, and total T3 475 ng per 100 ml, radioactive iodine [RAI] uptake 68%), but studies of BMR and insensible water loss showed the patient to be clinically euthyroid. Thyrotropin-releasing hormone (TRH), 200 μg i.v., caused a brisk rise in TSH to 28 μU per ml, with T4 rising to 28 μg per 100 ml, free T4 to 5.6, and T3 to 730 ng per 100 ml, thus indicating that the pituitary-thyroid system was intact and that the patient's TSH was biologically active. The unusual sensitivity of the pituitary cells to TRH in spite of the markedly elevated serum thyroid hormone levels also suggested that the pituitary was insensitive to suppression by T3 or T4. Serum dilution studies gave immunochemical evidence that this patient's TSH was normal. Neither propranolol, 60 mg, chlorpromazine, 30 mg, nor prednisone, 15 mg daily, influenced thyroid indices. Steroid treatment, however, suppressed the pituitary response to TRH, T3 in doses increased over a period of 12 days to as much as 150 μg daily caused a rise in serum T3 to above 800 ng per 100 ml, a decline of T4 to euthyroid levels (T4 9.5 μg per 100 ml, free T4 1.6 ng per 100 ml), suppression of the RAI uptake from 68% to 35%, and marked blunting of the responses

  19. Growth Hormone and Cerebral Amyloidosis.

    PubMed

    Benvenga, S; Guarneri, F

    2016-08-01

    Great interest has recently been focused on a paper reporting characteristic deposits of amyloid-β protein associated with Alzheimer's disease in brains of adults who died of Creutzfeldt-Jakob disease. As they had contracted such disease after treatment with prion-contaminated human growth hormone extracted from cadaver-derived pituitaries, the authors have suggested that interhuman transmission of Alzheimer's disease had occurred. Our previous research led us to find that amyloid-forming peptides share amino acid sequence homology, summarized by a motif. Here, we probed the amino acid sequence of human growth hormone for such a motif, and found that 2 segments fit the motif and are potentially amyloid-forming. This finding was confirmed by Aggrescan, another well-known software for the prediction of amyloidogenic peptides. Our results, taken together with data from the literature that are missing in the aforementioned paper and associated commentaries, minimize the contagious nature of the iatrogenically-acquired coexistence of Creutzfeldt-Jakob disease and Alzheimer's disease. In particular, the above mentioned paper misses literature data on intratumoral amyloidosis in growth hormone- and prolactin-secreting adenomas, tumors relatively frequent in adults, which are often silent. It cannot be excluded that some pituitaries used to extract growth hormone contained clinically silent microadenomas, a fraction of which containing amyloid deposits, and patients might had received a fraction of growth hormone (with or without prolactin) that already was an amyloid seed. The intrinsic amyloidogenicity of growth hormone, in the presence of contaminating prion protein (and perhaps prolactin as well) and amyloid-β contained in some cadavers' pituitaries, may have led to the observed co-occurring of Creutzfeldt-Jakob disease and Alzheimer's disease. PMID:27214308

  20. Gender-related differences in irritable bowel syndrome: potential mechanisms of sex hormones.

    PubMed

    Meleine, Mathieu; Matricon, Julien

    2014-06-14

    According to epidemiological studies, twice as many women as men are affected by irritable bowel syndrome (IBS) in western countries, suggesting a role for sex hormones in IBS pathophysiology. Despite growing evidence about the implications of sex hormones in IBS symptom modulation, data on mechanisms by which they influence disease development are sparse. This review aims to determine the state of knowledge about the role of sex hormones in sensorimotor dysfunctions and to address the possible interplay of sex hormones with common risk factors associated with IBS. The scientific bibliography was searched using the following keywords: irritable bowel syndrome, sex, gender, ovarian hormone, estradiol, progesterone, testosterone, symptoms, pain, sensitivity, motility, permeability, stress, immune system, brain activity, spinal, supraspinal, imaging. Ovarian hormones variations along the menstrual cycle affect sensorimotor gastrointestinal function in both healthy and IBS populations. They can modulate pain processing by interacting with neuromodulator systems and the emotional system responsible for visceral pain perception. These hormones can also modulate the susceptibility to stress, which is a pivotal factor in IBS occurrence and symptom severity. For instance, estrogen-dependent hyper-responsiveness to stress can promote immune activation or impairments of gut barrier function. In conclusion, whereas it is important to keep in mind that ovarian hormones cannot be considered as a causal factor of IBS, they arguably modulate IBS onset and symptomatology. However, our understanding of the underlying mechanisms remains limited and studies assessing the link between IBS symptoms and ovarian hormone levels are needed to improve our knowledge of the disease evolution with regard to gender. Further studies assessing the role of male hormones are also needed to understand fully the role of sex hormones in IBS. Finally, investigation of brain-gut interactions is critical

  1. Gender-related differences in irritable bowel syndrome: Potential mechanisms of sex hormones

    PubMed Central

    Meleine, Mathieu; Matricon, Julien

    2014-01-01

    According to epidemiological studies, twice as many women as men are affected by irritable bowel syndrome (IBS) in western countries, suggesting a role for sex hormones in IBS pathophysiology. Despite growing evidence about the implications of sex hormones in IBS symptom modulation, data on mechanisms by which they influence disease development are sparse. This review aims to determine the state of knowledge about the role of sex hormones in sensorimotor dysfunctions and to address the possible interplay of sex hormones with common risk factors associated with IBS. The scientific bibliography was searched using the following keywords: irritable bowel syndrome, sex, gender, ovarian hormone, estradiol, progesterone, testosterone, symptoms, pain, sensitivity, motility, permeability, stress, immune system, brain activity, spinal, supraspinal, imaging. Ovarian hormones variations along the menstrual cycle affect sensorimotor gastrointestinal function in both healthy and IBS populations. They can modulate pain processing by interacting with neuromodulator systems and the emotional system responsible for visceral pain perception. These hormones can also modulate the susceptibility to stress, which is a pivotal factor in IBS occurrence and symptom severity. For instance, estrogen-dependent hyper-responsiveness to stress can promote immune activation or impairments of gut barrier function. In conclusion, whereas it is important to keep in mind that ovarian hormones cannot be considered as a causal factor of IBS, they arguably modulate IBS onset and symptomatology. However, our understanding of the underlying mechanisms remains limited and studies assessing the link between IBS symptoms and ovarian hormone levels are needed to improve our knowledge of the disease evolution with regard to gender. Further studies assessing the role of male hormones are also needed to understand fully the role of sex hormones in IBS. Finally, investigation of brain-gut interactions is critical

  2. Hormone purification by isoelectric focusing in space

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1982-01-01

    The performance of a ground-prototype of an apparatus for recycling isoelectric focusing was evaluated in an effort to provide technology for large scale purification of peptide hormones, proteins, and other biologicals. Special emphasis was given to the effects of gravity on the function of the apparatus and to the determination of potential advantages deriveable from its use in a microgravity environment. A theoretical model of isoelectric focusing sing chemically defined buffer systems for the establishment of the pH gradients was developed. The model was transformed to a form suitable for computer simulations and was used extensively for the design of experimental buffers.

  3. Advances in male hormonal contraception.

    PubMed

    Costantino, Antonietta; Gava, Giulia; Berra, Marta; Meriggiola Maria, Cristina

    2014-11-01

    Contraception is a basic human right for its role on health, quality of life and wellbeing of the woman and of the society as a whole. Since the introduction of female hormonal contraception the responsibility of family planning has always been with women. Currently there are only a few contraceptive methods available for men, but recently, men have become more interested in supporting their partners actively. Over the last few decades different trials have been performed providing important advances in the development of a safe and effective hormonal contraceptive for men. This paper summarizes some of the most recent trials. PMID:25673544

  4. Hormonal Effects on Nodular GAVE

    PubMed Central

    Brijbassie, Alan; Osaimi, Abdullah Al; Powell, Steven M

    2013-01-01

    Gastric antral vascular ectasia (GAVE) and its nodular antral gastropathy (NAG) variant is a unique lesion associated with hypergastrinemic hormonal alterations that may be compounded by concurrent proton pump inhibitor (PPI) therapy. The use of octreotide as a somatostatin analogue and its role in the down regulation of variousenteric hormones has been well documented however its use in the management of NAG has not been widely reported. We herein present a case where octreotide induced gastrin down-regulation as well as PPI cessation facilitated NAG resolution.

  5. Advances in male hormonal contraception

    PubMed Central

    Antonietta, Costantino; Giulia, Gava; Marta, Berra; Cristina, Meriggiola Maria

    2014-01-01

    Contraception is a basic human right for its role on health, quality of life and wellbeing of the woman and of the society as a whole. Since the introduction of female hormonal contraception the responsibility of family planning has always been with women. Currently there are only a few contraceptive methods available for men, but recently, men have become more interested in supporting their partners actively. Over the last few decades different trials have been performed providing important advances in the development of a safe and effective hormonal contraceptive for men. This paper summarizes some of the most recent trials. PMID:25673544

  6. [Corticosteroid hormones and the brain].

    PubMed

    Le Moal, M; Vallée, M; Maccari, S; Mayo, W; Montaron, M F; Piazza, P V; Abrous, N

    1999-01-01

    The anatomical and functional links between the hormone stress axis and the cortico-limbic brain regions which integrate emotion and motivation are well documented. It is important, considering the consequences of stress on the brain, to take into account the regulatory buffer capacities of the personality-cognitive processes. Another point of interest is evaluation of the long term effects of repeated life events on chronic environmental pressures which induce brain negative feedback defects and, subsequently, insidious cellular changes in regions such as the hippocampus that lead to memory or adaptive impairments. An example is provided by perinatal stress that induces, later in life, both hormonal and cognitive deleterious changes. PMID:10542958

  7. Hormonal changes in headache patients.

    PubMed

    Elwan, O; Abdella, M; el Bayad, A B; Hamdy, S

    1991-11-01

    Seventy-three patients with headache underwent serum and cerebrospinal fluid (CSF) radioimmunoassays of follicle-stimulating hormone (FSH), luteinizing hormone (LH), cortisol and prolactin. Serum FSH showed significant increases in all headache patients while serum LH increased only in females. Such a rise of serum FSH and LH is attributed to disturbances of the sleep-wake cycle. On the other hand, serum cortisol was significantly decreased in the male headache patients, probably due to altered circadian rhythm. Serum prolactin remained within normal limits. CSF prolactin, FSH and LH showed detectable levels in all headache sufferers compared to undetectable levels in control subjects, while CSF cortisol was significantly reduced.

  8. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1978-01-01

    The maintainance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro was studied. The primary approach was the testing of agents which may be expected to increase the release of the human growth hormone (hGH). A procedure for tissue procurement is described along with the methodologies used to dissociate human pituitary tissue (obtained either at autopsy or surgery) into single cell suspensions. The validity of the Biogel cell column perfusion system for studying the dynamics of GH release was developed and documented using a rat pituitary cell system.

  9. Regions of the Digestive System

    MedlinePlus

    ... Central Nervous System Peripheral Nervous System Review Quiz Endocrine System Characteristics of Hormones Endocrine Glands & Their Hormones Pituitary & ... Thyroid & Parathyroid Glands Adrenal Gland Pancreas Gonads Other Endocrine Glands ... Cardiovascular System Heart Structure of the Heart Physiology of the ...

  10. Components of the Urinary System

    MedlinePlus

    ... Central Nervous System Peripheral Nervous System Review Quiz Endocrine System Characteristics of Hormones Endocrine Glands & Their Hormones Pituitary & ... Thyroid & Parathyroid Glands Adrenal Gland Pancreas Gonads Other Endocrine Glands ... Cardiovascular System Heart Structure of the Heart Physiology of the ...

  11. Acute Serum Hormone Levels: Characterization and Prognosis after Severe Traumatic Brain Injury

    PubMed Central

    McCullough, Emily H.; Niyonkuru, Christian; Ozawa, Haishin; Loucks, Tammy L.; Dobos, Julie A.; Brett, Christopher A.; Santarsieri, Martina; Dixon, C. Edward; Berga, Sarah L.; Fabio, Anthony

    2011-01-01

    Abstract Experimental traumatic brain injury (TBI) studies report the neuroprotective effects of female sex steroids on multiple mechanisms of injury, with the clinical assumption that women have hormonally mediated neuroprotection because of the endogenous presence of these hormones. Other literature indicates that testosterone may exacerbate injury. Further, stress hormone abnormalities that accompany critical illness may both amplify or blunt sex steroid levels. To better understand the role of sex steroid exposure in mediating TBI, we 1) characterized temporal profiles of serum gonadal and stress hormones in a population with severe TBI during the acute phases of their injury; and 2) used a biological systems approach to evaluate these hormones as biomarkers predicting global outcome. The study population was 117 adults (28 women; 89 men) with severe TBI. Serum samples (n=536) were collected for 7 days post-TBI for cortisol, progesterone, testosterone, estradiol, luteinizing hormone (LH), and follicle-stimulating hormone (FSH). Hormone data were linked with clinical data, including acute care mortality and Glasgow Outcome Scale (GOS) scores at 6 months. Hormone levels after TBI were compared to those in healthy controls (n=14). Group based trajectory analysis (TRAJ) was used to develop temporal hormone profiles that delineate distinct subpopulations in the cohort. Structural equations models were used to determine inter-relationships between hormones and outcomes within a multivariate model. Compared to controls, acute serum hormone levels were significantly altered after severe TBI. Changes in the post-TBI adrenal response and peripheral aromatization influenced hormone TRAJ profiles and contributed to the abnormalities, including increased estradiol in men and increased testosterone in women. In addition to older age and greater injury severity, increased estradiol and testosterone levels over time were associated with increased mortality and worse global

  12. Hormones as "difference makers" in cognitive and socioemotional aging processes.

    PubMed

    Ebner, Natalie C; Kamin, Hayley; Diaz, Vanessa; Cohen, Ronald A; MacDonald, Kai

    2014-01-01

    Aging is associated with well-recognized alterations in brain function, some of which are reflected in cognitive decline. While less appreciated, there is also considerable evidence of socioemotional changes later in life, some of which are beneficial. In this review, we examine age-related changes and individual differences in four neuroendocrine systems-cortisol, estrogen, testosterone, and oxytocin-as "difference makers" in these processes. This suite of interrelated hormonal systems actively coordinates regulatory processes in brain and behavior throughout development, and their level and function fluctuate during the aging process. Despite these facts, their specific impact in cognitive and socioemotional aging has received relatively limited study. It is known that chronically elevated levels of the stress hormone cortisol exert neurotoxic effects on the aging brain with negative impacts on cognition and socioemotional functioning. In contrast, the sex hormones estrogen and testosterone appear to have neuroprotective effects in cognitive aging, but may decrease prosociality. Higher levels of the neuropeptide oxytocin benefit socioemotional functioning, but little is known about the effects of oxytocin on cognition or about age-related changes in the oxytocin system. In this paper, we will review the role of these hormones in the context of cognitive and socioemotional aging. In particular, we address the aforementioned gap in the literature by: (1) examining both singular actions and interrelations of these four hormonal systems; (2) exploring their correlations and causal relationships with aspects of cognitive and socioemotional aging; and (3) considering multilevel internal and external influences on these hormone systems within the framework of explanatory pluralism. We conclude with a discussion of promising future research directions. PMID:25657633

  13. Pediatric stress: hormonal mediators and human development.

    PubMed

    Charmandari, Evangelia; Kino, Tomoshige; Souvatzoglou, Emmanuil; Chrousos, George P

    2003-01-01

    Stress activates the central and peripheral components of the stress system, i.e., the hypothalamic-pituitary-adrenal (HPA) axis and the arousal/sympathetic system. The principal effectors of the stress system are corticotropin-releasing hormone (CRH), arginine vasopressin, the proopiomelanocortin-derived peptides alpha-melanocyte-stimulating hormone and beta-endorphin, the glucocorticoids, and the catecholamines norepinephrine and epinephrine. Appropriate responsiveness of the stress system to stressors is a crucial prerequisite for a sense of well-being, adequate performance of tasks and positive social interactions. By contrast, inappropriate responsiveness of the stress system may impair growth and development, and may account for a number of endocrine, metabolic, autoimmune and psychiatric disorders. The development and severity of these conditions primarily depend on the genetic vulnerability of the individual, the exposure to adverse environmental factors and the timing of the stressful event(s), given that prenatal life, infancy, childhood and adolescence are critical periods characterized by increased vulnerability to stressors. The developing brain undergoes rapid growth and is characterized by high turnover of neuronal connections during the prenatal and early postnatal life. These processes and, hence, brain plasticity, slow down during childhood and puberty, and plateau in young adulthood. Hormonal actions in early life, and to a much lesser extent later, can be organizational, i.e., can have effects that last for long periods of time, often for the entire life of the individual. Hormones of the stress system and sex steroids have such effects, which influence the behavior and certain physiologic functions of individuals for life. Exposure of the developing brain to severe and/or prolonged stress may result in hyperactivity/hyperreactivity of the stress system, with resultant amygdala hyperfunction (fear reaction), decreased activity of the hippocampus

  14. Behavioral, hormonal and central serotonin modulating effects of injected leptin.

    PubMed

    Haleem, Darakhshan J; Haque, Zeba; Inam, Qurrat-ul-Aen; Ikram, Huma; Haleem, Muhammad Abdul

    2015-12-01

    Leptin is viewed as an important target for developing novel therapeutics for obesity, depression/anxiety and cognitive dysfunctions. The present study therefore concerns behavioral, hormonal and central serotonin modulating effects of systemically injected leptin. Pharmacological doses (100 and 500 μg/kg) of leptin injected systemically decreased 24h cumulative food intake and body weight in freely feeding rats and improved acquisition and retention of memory in Morris water maze test. Potential anxiety reducing, hormonal and serotonin modulating effects of the peptide hormone were determined in a separate experiment. Animals injected with 100 or 500 μg/kg leptin were tested for anxiety in an elevated plus maze test 1h later. A significant increase in the number of entries and time passed in open arm of the elevated plus maze in leptin injected animals suggested pronounced anxiety reducing effect. Moreover, circulating levels of leptin correlated significantly with anxiety reducing effects of the peptide hormone. Serum serotonin increased and ghrelin decreased in leptin injected animals and correlated, positively and negatively respectively, with circulating leptin. Corticosterone increased at low dose and levels were normal at higher dose. Serotonin metabolism in the hypothalamus and hippocampus decreased only at higher dose of leptin. The results support a role of leptin in the treatment of obesity, anxiety and cognitive dysfunctions. It is suggested that hormonal and serotonin modulating effects of leptin can alter treatment efficacy in particularly comorbid conditions.

  15. Sex hormones in the modulation of irritable bowel syndrome.

    PubMed

    Mulak, Agata; Taché, Yvette; Larauche, Muriel

    2014-03-14

    Compelling evidence indicates sex and gender differences in epidemiology, symptomatology, pathophysiology, and treatment outcome in irritable bowel syndrome (IBS). Based on the female predominance as well as the correlation between IBS symptoms and hormonal status, several models have been proposed to examine the role of sex hormones in gastrointestinal (GI) function including differences in GI symptoms expression in distinct phases of the menstrual cycle, in pre- and post-menopausal women, during pregnancy, hormonal treatment or after oophorectomy. Sex hormones may influence peripheral and central regulatory mechanisms of the brain-gut axis involved in the pathophysiology of IBS contributing to the alterations in visceral sensitivity, motility, intestinal barrier function, and immune activation of intestinal mucosa. Sex differences in stress response of the hypothalamic-pituitary-adrenal axis and autonomic nervous system, neuroimmune interactions triggered by stress, as well as estrogen interactions with serotonin and corticotropin-releasing factor signaling systems are being increasingly recognized. A concept of "microgenderome" related to the potential role of sex hormone modulation of the gut microbiota is also emerging. Significant differences between IBS female and male patients regarding symptomatology and comorbidity with other chronic pain syndromes and psychiatric disorders, together with differences in efficacy of serotonergic medications in IBS patients confirm the necessity for more sex-tailored therapeutic approach in this disorder.

  16. Sex hormones in the modulation of irritable bowel syndrome

    PubMed Central

    Mulak, Agata; Taché, Yvette; Larauche, Muriel

    2014-01-01

    Compelling evidence indicates sex and gender differences in epidemiology, symptomatology, pathophysiology, and treatment outcome in irritable bowel syndrome (IBS). Based on the female predominance as well as the correlation between IBS symptoms and hormonal status, several models have been proposed to examine the role of sex hormones in gastrointestinal (GI) function including differences in GI symptoms expression in distinct phases of the menstrual cycle, in pre- and post-menopausal women, during pregnancy, hormonal treatment or after oophorectomy. Sex hormones may influence peripheral and central regulatory mechanisms of the brain-gut axis involved in the pathophysiology of IBS contributing to the alterations in visceral sensitivity, motility, intestinal barrier function, and immune activation of intestinal mucosa. Sex differences in stress response of the hypothalamic-pituitary-adrenal axis and autonomic nervous system, neuroimmune interactions triggered by stress, as well as estrogen interactions with serotonin and corticotropin-releasing factor signaling systems are being increasingly recognized. A concept of “microgenderome” related to the potential role of sex hormone modulation of the gut microbiota is also emerging. Significant differences between IBS female and male patients regarding symptomatology and comorbidity with other chronic pain syndromes and psychiatric disorders, together with differences in efficacy of serotonergic medications in IBS patients confirm the necessity for more sex-tailored therapeutic approach in this disorder. PMID:24627581

  17. Executive Summary of Hormonal Physiology of Childbearing: Evidence and Implications for Women, Babies, and Maternity Care.

    PubMed

    Buckley, Sarah J

    2015-01-01

    This report synthesizes evidence about innate hormonally mediated physiologic processes in women and fetuses/newborns during childbearing, and possible impacts of common maternity care practices and interventions on these processes, focusing on four hormone systems that are consequential for childbearing. Core hormonal physiology principles reveal profound interconnections between mothers and babies, among hormone systems, and from pregnancy through to the postpartum and newborn periods. Overall, consistent and coherent evidence from physiologic understandings and human and animal studies finds that the innate hormonal physiology of childbearing has significant benefits for mothers and babies. Such hormonally-mediated benefits may extend into the future through optimization of breastfeeding and maternal-infant attachment. A growing body of research finds that common maternity care interventions may disturb hormonal processes, reduce their benefits, and create new challenges. Developmental and epigenetic effects are biologically plausible but poorly studied. The perspective of hormonal physiology adds new considerations for benefit-harm assessments in maternity care, and suggests new research priorities, including consistently measuring crucial hormonally mediated outcomes that are frequently overlooked. Current understanding suggests that safely avoiding unneeded maternity care interventions would be wise, as supported by the Precautionary Principle. Promoting, supporting, and protecting physiologic childbearing, as far as safely possible in each situation, is a low-technology health and wellness approach to the care of childbearing women and their fetuses/newborns that is applicable in almost all maternity care settings. PMID:26834435

  18. Executive Summary of Hormonal Physiology of Childbearing: Evidence and Implications for Women, Babies, and Maternity Care

    PubMed Central

    Buckley, Sarah J.

    2015-01-01

    ABSTRACT This report synthesizes evidence about innate hormonally mediated physiologic processes in women and fetuses/newborns during childbearing, and possible impacts of common maternity care practices and interventions on these processes, focusing on four hormone systems that are consequential for childbearing. Core hormonal physiology principles reveal profound interconnections between mothers and babies, among hormone systems, and from pregnancy through to the postpartum and newborn periods. Overall, consistent and coherent evidence from physiologic understandings and human and animal studies finds that the innate hormonal physiology of childbearing has significant benefits for mothers and babies. Such hormonally-mediated benefits may extend into the future through optimization of breastfeeding and maternal-infant attachment. A growing body of research finds that common maternity care interventions may disturb hormonal processes, reduce their benefits, and create new challenges. Developmental and epigenetic effects are biologically plausible but poorly studied. The perspective of hormonal physiology adds new considerations for benefit-harm assessments in maternity care, and suggests new research priorities, including consistently measuring crucial hormonally mediated outcomes that are frequently overlooked. Current understanding suggests that safely avoiding unneeded maternity care interventions would be wise, as supported by the Precautionary Principle. Promoting, supporting, and protecting physiologic childbearing, as far as safely possible in each situation, is a low-technology health and wellness approach to the care of childbearing women and their fetuses/newborns that is applicable in almost all maternity care settings. PMID:26834435

  19. NMDA receptors in the medial zona incerta stimulate luteinizing hormone and prolactin release.

    PubMed

    Bregonzio, Claudia; Moreno, Griselda N; Cabrera, Ricardo J; Donoso, Alfredo O

    2004-06-01

    1. The aim of the present work is to demonstrate the interaction between the glutamatergic/NMDA and dopaminergic systems in the medial zona incerta on the control of luteinizing hormone and prolactin secretion and the influence of reproductive hormones. 2. Proestrus and ovariectomized rats were primed with estrogen and progesterone to induce high or low levels of luteinizing hormone and prolactin. 2-Amino-7-phosphonoheptanoic acid, an NMDA receptor antagonist, and dopamine were injected in the medial zona incerta. Blood samples were withdrawn every hour between 1,600 and 2,000 hours or 2,200 hours via intracardiac catheter from conscious rats. Additional groups of animals injected with the NMDA receptor antagonist were killed 1 or 4 h after injection. Dopamine and its metabolite 3,4-dihydroxyphenylacetic acid were measured in different hypothalamic regions. 3. 2-Amino-7-phosphonoheptanoic acid blocked the ovulatory luteinizing hormone surge in proestrus rats. 2-Amino-7-phosphonoheptanoic acid also blocked the increase in luteinizing hormone induced by ovarian hormones in ovariectomized rats, an effect that was partially reversed by dopamine injection. Conversely, the increased release of luteinizing hormone and prolactin induced by dopamine was prevented by 2-amino-7-phosphonoheptanoic acid. We found that the NMDA antagonist injection decreased the dopaminergic activity--as evaluated by the 3,4-dihydroxyphenylacetic acid/dopamine ratio--in the medio basal hypothalamus and increased in the preoptic area. 4. Our results show an stimulatory role of NMDA receptors on the ovulatory luteinizing hormone release and on luteinizing hormone release induced by sexual hormones and demonstrate that the stimulatory effect of dopamine on luteinizing hormone and prolactin is mediated by the NMDA receptors. These results suggest a close interaction between the glutamatergic and dopaminergic incertohypothalamic systems on the control of luteinizing hormone and prolactin release

  20. Conserved steroid hormone homology converges on nuclear factor κB to modulate inflammation in asthma.

    PubMed

    Payne, Asha S; Freishtat, Robert J

    2012-01-01

    Asthma is a complex, multifactorial disease comprising multiple different subtypes, rather than a single disease entity, yet it has a consistent clinical phenotype: recurring episodes of chest tightness, wheezing, and difficulty breathing (Pediatr Pulmonol Suppl. 1997;15:9-12). Despite the complex pathogenesis of asthma, steroid hormones (eg, glucocorticoids) are ubiquitous in the short-term and long-term management of all types of asthma. Overall, steroid hormones are a class of widely relevant, biologically active compounds originating from cholesterol and altered in a stepwise fashion, but maintain a basic 17-carbon, 4-ring structure. Steroids are lipophilic molecules that diffuse readily through cell membranes to directly and/or indirectly affect gene transcription. In addition, they use rapid, nongenomic actions to affect cellular products. Steroid hormones comprise several groups (including glucocorticoids, sex steroid hormones, and secosteroids) with critical divergent biological and physiological functions relevant to health and disease. However, the conserved homology of steroid hormone molecules, receptors, and signaling pathways suggests that each of these is part of a dynamic system of hormone interaction, likely involving an overlap of downstream signaling mechanisms. Therefore, we will review the similarities and differences of these 3 groups of steroid hormones (ie, glucocorticoids, sex steroid hormones, and secosteroids), identifying nuclear factor κB as a common inflammatory mediator. Despite our understanding of the impact of individual steroids (eg, glucocorticoids, sex steroids and secosteroids) on asthma, research has yet to explain the interplay of the dynamic system in which these hormones function. To do so, there needs to be a better understanding of the interplay of classic, nonclassic, and nongenomic steroid hormone functions. However, clues from the conserved homology steroid hormone structure and function and signaling pathways offer

  1. The 'Love Hormone' May Quiet Tinnitus

    MedlinePlus

    ... medlineplus.gov/news/fullstory_161110.html The 'Love Hormone' May Quiet Tinnitus Small, preliminary study suggests oxytocin ... tinnitus -- may find some relief by spraying the hormone oxytocin in their nose, a small initial study ...

  2. Differential expression of preprosomatostatin- and somatostatin receptor-encoding mRNAs in association with the growth hormone-insulin-like growth factor system during embryonic development of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Malkuch, Heidi; Walock, Chad; Kittilson, Jeffery D; Raine, Jason C; Sheridan, Mark A

    2008-01-01

    Rainbow trout were used to evaluate the relationship between the somatostatin (SS) signaling and the growth hormone (GH)-insulin-like growth factor (IGF) systems during pre-hatch and post-hatch embryonic development. The expression of preprosomatostatins (PPSS), SS receptors (SSTR), GH receptors (GHR), IGF-1, IGF-2, and IGF type 1 receptors (IGFR1) was examined in various regions at the eyed-egg (29 days post-fertilization, dpf;), post-hatch (53dpf), swim-up (68dpf), and complete yolk-absorbed (90dpf) stages. In head, PPSSI mRNA abundance increased during development while that of PPSSII' decreased and that of PPSSII'' remained unchanged. In body and tail, mRNA abundance of all PPSSs remained unchanged except that of PPSSII'' which declined in the tail. SSTR expression increased as development progressed in all regions with the exception of SSTR1A mRNA which remained unchanged. mRNA levels of GHR1 declined in all regions of post-hatch embryos, whereas those of GHR2 remained unchanged. Expression of IGF-1 and IGF-2 in head and tail regions increased immediately after hatching, and then declined, whereas the expression of neither IGF changed during development in the body. The expression of IGFR1 mRNAs declined in all regions, reaching their lowest levels at 90dpf, with the exception of IGFR1A mRNA in the body which remained unchanged. The general decline in the expression of GH-IGF system components during development appears inversely related to a general increase in the expression of SS system elements, and suggests that these two systems interact to regulate the tissue expansion and tissue regression of embryogenesis. PMID:18783723

  3. Growth Hormone: Use and Abuse

    MedlinePlus

    ... than children of the same age), such as chronic kidney disease, Turner syndrome, and Prader-Willi syndrome In adults, GH is used to treat • Growth hormone deficiency • Muscle wasting (loss of muscle tissue) from HIV • Short bowel ...

  4. Aetiology of growth hormone deficiency.

    PubMed Central

    Herber, S M; Kay, R

    1987-01-01

    A retrospective analysis was performed in an attempt to identify perinatal risk factors for the development of growth hormone deficiency. More of the affected children were boys, and their birth weights were significantly lower than those of the national average; there were also considerably more preterm and post-term deliveries among boys. PMID:3632025

  5. Anabolic steroids and growth hormone.

    PubMed

    Haupt, H A

    1993-01-01

    Athletes are generally well educated regarding substances that they may use as ergogenic aids. This includes anabolic steroids and growth hormone. Fortunately, the abuse of growth hormone is limited by its cost and the fact that anabolic steroids are simply more enticing to the athlete. There are, however, significant potential adverse effects regarding its use that can be best understood by studying known growth hormone excess, as demonstrated in the acromegalic syndrome. Many athletes are unfamiliar with this syndrome and education of the potential consequences of growth hormone excess is important in counseling athletes considering its use. While athletes contemplating the use of anabolic steroids may correctly perceive their risks for significant physiologic effects to be small if they use the steroids for brief periods of time, many of these same athletes are unaware of the potential for habituation to the use of anabolic steroids. The result may be incessant use of steroids by an athlete who previously considered only short-term use. As we see athletes taking anabolic steroids for more prolonged periods, we are likely to see more severe medical consequences. Those who eventually do discontinue the steroids are dismayed to find that the improvements made with the steroids generally disappear and they have little to show for hours or even years of intense training beyond the psychological scars inherent with steroid use. Counseling of these athletes should focus on the potential adverse psychological consequences of anabolic steroid use and the significant risk for habituation.

  6. Highly potent antagonists of luteinizing hormone-releasing hormone free of edematogenic effects.

    PubMed Central

    Bajusz, S; Kovacs, M; Gazdag, M; Bokser, L; Karashima, T; Csernus, V J; Janaky, T; Guoth, J; Schally, A V

    1988-01-01

    To eliminate the undesirable edematogenic effect of the luteinizing hormone-releasing hormone (LH-RH) antagonists containing basic D amino acids at position 6, exemplified by [Ac-D-Phe(pCl)1,2,D-Trp3,D-Arg6,D-Ala10]LH-RH [Phe(pCl) indicates 4-chlorophenylalanine], analogs with D-ureidoalkyl amino acids such as D-citrulline (D-Cit) or D-homocitrulline (D-Hci) at position 6 were synthesized and tested in several systems in vitro and in vivo. HPLC analysis revealed that the overall hydrophobicity of the D-Cit/D-Hci6 analogs was similar to that of the basic D-Arg6 antagonists. In vitro, most of the analogs completely inhibited LH-RH-mediated luteinizing hormone release in perfused rat pituitary cell systems at an antagonist to LH-RH molar ratio of 5:1. In vivo, the most active peptides, [Ac-D-Nal(2)1,D-Phe(pCl)2,D-Trp3,D-Cit6,D-Ala10]LH-RH [Nal(2) indicates 3-(2-naphthyl)alanine] and its D-Hci6 analog, caused 100% inhibition of ovulation in cycling rats in doses of 3 micrograms and suppressed the luteinizing hormone level in ovariectomized female rats for 47 hr when administered at doses of 25 micrograms. Characteristically, these peptides did not exert any edematogenic effects even at 1.5 mg/kg. These properties of the D-Cit/D-Hci6 antagonists may make them useful clinically. PMID:3278323

  7. Gender, neuroendocrine-immune interactions and neuron-glial plasticity. Role of luteinizing hormone-releasing hormone (LHRH).

    PubMed

    Marchetti, B; Gallo, F; Farinella, Z; Tirolo, C; Testa, N; Caniglia, S; Morale, M C

    2000-01-01

    Signals generated by the hypothalamic-pitutary-gonadal (HPG) axis powerfully modulate immune system function. This article summarizes some aspects of the impact of gender in neuroendocrine immunomodulation. Emphasis is given to the astroglial cell compartment, defined as a key actor in neuroendocrine immune communications. In the brain, the principal hormones of the HPG axis directly interact with astroglial cells. Thus, luteinizing hormone releasing hormone, LHRH, influences hypothalamic astrocyte development and growth, and hypothalamic astrocytes direct LHRH neuron differentiation. Hormonally induced changes in neuron-glial plasticity may dictate major changes in CNS output, and thus actively participate in sex dimorphic immune responses. The impact of gender in neuroimmunomodulation is further underlined by the sex dimorphism in the expression of genes encoding for neuroendocrine hormones and their receptors within the thymus, and by the potent modulation exerted by circulating sex steroids during development and immunization. The central role of glucocorticoids in the interactive communication between neuroendocrine and immune systems, and the impact of gender on hypothalamic-pituitary-adrenocortical (HPA) axis modulation is underscored in transgenic mice expressing a glucocorticoid receptor antisense RNA.

  8. Can Chemicals in the Environment That Affect Hormone Function Disrupt Development?

    EPA Science Inventory

    Hormones, including estrogens and androgens, regulate the expression of genes that play critical roles in guiding the development of organ systems in the embryo. Changes in either the amount or the timing of hormone exposure can lead to altered human development. For example, hum...

  9. Music increase altruism through regulating the secretion of steroid hormones and peptides.

    PubMed

    Fukui, Hajime; Toyoshima, Kumiko

    2014-12-01

    Music is well known for its effect on human behavior especially of their bonding and empathy towards others. Music provokes one's emotion and activates mirror neurons and reward system. It also regulates social hormones such as steroid hormones or peptides, and increases empathy, pro-sociality and altruism. As a result, it improves one's reproductive success. PMID:25459139

  10. Music increase altruism through regulating the secretion of steroid hormones and peptides.

    PubMed

    Fukui, Hajime; Toyoshima, Kumiko

    2014-12-01

    Music is well known for its effect on human behavior especially of their bonding and empathy towards others. Music provokes one's emotion and activates mirror neurons and reward system. It also regulates social hormones such as steroid hormones or peptides, and increases empathy, pro-sociality and altruism. As a result, it improves one's reproductive success.

  11. Ease of calving, blood chemistry, insulin and bovine growth hormone of newborn calves derived from embryos produced in vitro in culture systems with serum and co-culture or with PVA.

    PubMed

    Jacobsen, H; Schmidt, M; Hom, P; Sangild, P T; Greve, T; Callesen, H

    2000-07-01

    Blood chemistry (pH, pCO2, pO2, glucose, lactate) as well as plasma insulin and growth hormone of calves derived from embryos produced under 2 different in vitro culture systems (modified SOFaa with 20% serum and co-culture with bovine oviduct epithelial cells [IVP serum, n=8] or with 3 mg/mL PVA [IVPdefined, n=6]) were compared with those of calves derived from AI (n=5). Calvings were classified according to the ease (unassisted, light traction, heavy traction). Blood samples were taken from the jugular vein of calves at 5, 15, 30 and 60 min, and at 2, 3, 6, 12, 18 and 24 h after delivery, then daily for 6 d. At the second day of life after 4 feedings and a 4-h fasting period, a glucose tolerance test was performed to evaluate glucose metabolism and insulin secretion. Calves in the IVP serum group had higher birth weights than AI calves (LS mean +/- SEM, IVP serum: 45.2 +/- 1.4 kg vs AI: 40.4 +/- 1.7 kg; P < 0.05), while the birth weights of calves in the IVP defined group were in between (IVPdefined: 41.9 +/- 1.6 kg). More IVP serum calves (75%) needed assistance than IVP defined (33%) or AI (40%) calves. The effect of ease of calving vs the effect of embryo culture was compared in relation to blood parameters at birth. There was an effect of ease of calving but not of embryo culture conditions on blood pH, lactate and PCO2. Calves requiring heavy traction had lower pH during the first 3 h after calving, a higher lactate during the first 60 min after calving and a higher pCO2 the first 2 h after calving than calves born unassisted. Calves requiring heavy traction also had lower pH the first 2 h and higher lactate the first 3 h after calving than calves born by light traction. IVP defined calves had lower lactate than IVP serum calves the first 60 min after calving. At 6 h after delivery, all blood parameters had stabilized. There was no effect of either embryo culture or ease of calving on basal insulin and growth hormone level, or the ability of the calves to

  12. "Sex Hormones" in Secondary School Biology Textbooks

    ERIC Educational Resources Information Center

    Nehm, Ross H.; Young, Rebecca

    2008-01-01

    This study explores the extent to which the term "sex hormone" is used in science textbooks, and whether the use of the term "sex hormone" is associated with pre-empirical concepts of sex dualism, in particular the misconceptions that these so-called "sex hormones" are sex specific and restricted to sex-related physiological functioning. We found…

  13. [Leptin: adipocyte hormone].

    PubMed

    Castagna, L; De Gregorio, T; Allegra, A; Buemi, M; Corsonello, A; Bonanzinga, S; Catanoso, M; Ceruso, D; Corica, F

    1998-04-01

    The authors reviewed the most recent literature on leptin, a protein produced by adipocytes which exerts its action on hypothalamus, modifying eating behavior and inhibiting the lust for food consumption. This one appeared to be the main, if not the only, physiologic action of leptin. Later leptin has been acknowledged a major role in the homeostasis. The regulation of the synthesis, and the mechanisms by which the protein modulates both food intake and energetic balance have been evaluated, and the hypotheses on the regulatory function exerted by leptin on the homeostasis, by acting on neuroendocrine system, on sexual maturity and fertility, on the sympathetic nervous system, on hemopoiesis and hydroelectrolytic balance have been discussed, some of which being already supported by experimental evidences.

  14. Nuclear hormone receptors put immunity on sterols

    PubMed Central

    Santori, Fabio R.

    2015-01-01

    Nuclear hormone receptors (NHRs) are transcription factors regulated by small molecules. The functions of NHRs range from development of primary and secondary lymphoid organs, to regulation of differentiation and function of DCs, macrophages and T cells. The human genome has 48 classic (hormone and vitamin receptors) and non-classic (all others) NHRs; 17 non-classic receptors are orphans, meaning that the endogenous ligand is unknown. Understanding the function of orphan NHRs requires the identification of their natural ligands. The mevalonate pathway, including its sterol and non-sterol intermediates and derivatives, is a source of ligands for many classic and non-classic NHRs. For example, cholesterol biosynthetic intermediates (CBIs) are natural ligands for RORγ/γt. CBIs are universal endogenous metabolites in mammalian cells, and to study NHRs that bind CBIs requires ligand-free reporters system in sterol auxotroph cells. Furthermore, RORγ/γt shows broad specificity to sterol lipids, suggesting that RORγ/γt is either a general sterol sensor or specificity is defined by an abundant endogenous ligand. Unlike other NHRs, which regulate specific metabolic pathways, there is no connection between the genetic programs induced by RORγ/γt and ligand biosynthesis. In this review we summarize the roles of non-classic NHRs and their potential ligands in the immune system. PMID:26222181

  15. Nuclear hormone receptors put immunity on sterols.

    PubMed

    Santori, Fabio R

    2015-10-01

    Nuclear hormone receptors (NHRs) are transcription factors regulated by small molecules. The functions of NHRs range from development of primary and secondary lymphoid organs, to regulation of differentiation and function of DCs, macrophages and T cells. The human genome has 48 classic (hormone and vitamin receptors) and nonclassic (all others) NHRs; 17 nonclassic receptors are orphans, meaning that the endogenous ligand is unknown. Understanding the function of orphan NHRs requires the identification of their natural ligands. The mevalonate pathway, including its sterol and nonsterol intermediates and derivatives, is a source of ligands for many classic and nonclassic NHRs. For example, cholesterol biosynthetic intermediates (CBIs) are natural ligands for RORγ/γt. CBIs are universal endogenous metabolites in mammalian cells, and to study NHRs that bind CBIs requires ligand-free reporters system in sterol auxotroph cells. Furthermore, RORγ/γt shows broad specificity to sterol lipids, suggesting that RORγ/γt is either a general sterol sensor or specificity is defined by an abundant endogenous ligand. Unlike other NHRs, which regulate specific metabolic pathways, there is no connection between the genetic programs induced by RORγ/γt and ligand biosynthesis. In this review, we summarize the roles of nonclassic NHRs and their potential ligands in the immune system.

  16. Foetal Hypothalamic and Pituitary Expression of Gonadotrophin Releasing Hormone and Galanin Systems is Disturbed by Exposure to Sewage Sludge Chemicals via Maternal Ingestion

    PubMed Central

    Bellingham, Michelle; Fowler, Paul A.; Amezaga, Maria R.; Whitelaw, Christine M.; Rhind, Stewart M.; Cotinot, Corinne; Mandon-Pepin, Beatrice; Sharpe, Richard M.; Evans, Neil P.

    2016-01-01

    Animals and humans are chronically exposed to endocrine disrupting chemicals (EDCs) which are ubiquitous in the environment. There are strong circumstantial links between environmental EDC exposure and both declining human/wildlife reproductive health and the increasing incidence of reproductive system abnormalities. Verification of such links, however, is difficult and requires animal models exposed to 'real life', environmentally relevant concentrations/mixtures of environmental contaminants (ECs), particularly in- utero, when sensitivity to EC exposure is high. The aim of this study was to determine whether the fetal sheep reproductive neuroendocrine axis, particularly GnRH and galaninergic systems were affected by maternal exposure to a complex mixture of chemicals, applied to pasture, in the form of sewage sludge. Sewage sludge contains high concentrations of a spectrum of EDCs and other pollutants, relative to environmental concentrations but is frequently recycled to land as a fertiliser. We found that foetuses exposed, to the EDC mixture in-utero through their mothers, had lower GnRH mRNA expression in the hypothalamus and lower GnRHR and galanin receptor (GALR) mRNA expression in the hypothalamus and pituitary gland. Strikingly, this, treatment had no significant effect on maternal GnRH or GnRHR mRNA expression although GALR mRNA expression within the maternal hypothalamus and pituitary gland was reduced. This study clearly demonstrates that the developing foetal neuroendocrine axis is sensitive to real-world mixtures of environmental chemicals. Given the important role of GnRH and GnRHR in the regulation of reproductive function, its known in-utero programming role, and the role of galanin in the regulation of many physiological/neuroendocrine systems, in-utero changes in the activity of these systems are likely to have long term consequences in adulthood and represent a novel pathway through which EC mixtures could perturb normal reproductive function

  17. Development of a Transnasal Delivery System for Recombinant Human Growth Hormone (rhGH): Effects of the Concentration and Molecular Weight of Poly-L-arginine on the Nasal Absorption of rhGH in Rats.

    PubMed

    Kawashima, Ryo; Uchida, Masaki; Yamaki, Tsutomu; Ohtake, Kazuo; Hatanaka, Tomomi; Uchida, Hiroyuki; Ueda, Hideo; Kobayashi, Jun; Morimoto, Yasunori; Natsume, Hideshi

    2016-01-01

    A novel system for delivering recombinant human growth hormone (rhGH) that is noninvasive and has a simple method of administration is strongly desired to improve the compliance of children. The aim of this study was to investigate the potential for the intranasal (i.n.) co-administration of rhGH with poly-L-arginine (PLA) as a novel delivery system by evaluating the effects of the concentration and molecular weight of PLA on the nasal absorption of rhGH. The influence of the formation of insoluble aggregates and a soluble complex in the dosage formulation on nasal rhGH absorption was also evaluated by size-exclusion chromatography and ultrafiltration. PLA enhanced the nasal absorption of rhGH at each concentration and molecular weight examined. Nasal rhGH absorption increased dramatically when the PLA concentration was 1.0 % (w/v) due to the improved solubility of rhGH in the formulation. A delay in rhGH absorption was observed when the molecular weight of PLA was increased. This appeared to be because the increase in molecular weight caused the formation of a soluble complex. It seems that the PLA concentration affects the absorption-enhancing effect on rhGH, while the molecular weight of PLA affects the time when the maximum plasma rhGH concentration was reached (Tmax) of rhGH after i.n. administration, mainly because of the interactions among rhGH, PLA, and additives. Therefore, the transnasal rhGH delivery system using PLA is considered to be a promising alternative to subcutaneous (s.c.) injection if these interactions are sufficiently controlled.

  18. Hormonal regulation of hepatocyte tight junctional permeability

    SciTech Connect

    Lowe, P.J.; Miyai, K.; Steinbach, J.H.; Hardison, W.G.M. Univ. of California, San Diego )

    1988-10-01

    The authors have investigated the effects of hormones on the permeability of the hepatocyte tight junction to two probes, ({sup 14}C)sucrose and horseradish peroxidase, using one-pass perfused rat livers. Using a single injection of horseradish peroxidase the authors have demonstrated that this probe can enter bile by two pathways that are kinetically distinct, a fast pathway, which corresponds to the passage of the probe through the hepatocyte tight junctions, and a slow pathway, which corresponds to the transcytotic entry into bile. The passage of horseradish peroxidase through the hepatocyte tight junctions was confirmed by electron microscopic histochemistry. Vasopressin, epinephrine, and angiotensin II, hormones that act in the hepatocyte through the intracellular mediators calcium, the inositol polyphosphates, and diacylglycerol, increased the bile-to-perfusion fluid ratio of ({sup 14}C)sucrose and the rapid entry of horseradish peroxidase into bile, indicating that the permeability of the tight junctions to these probes was increased. The effect of these hormones was dose dependent and in the cases of angiotensin II and epinephrine was inhibited by the specific inhibitors (Sar{sup 1},Thr{sup 8})angiotensin II and prazosin, respectively. Dibutyryl adenosine 3{prime},5{prime}-cyclic monophosphate did not affect the ({sup 14}C)sucrose bile-to-perfusion fluid ratio or the fast entry of horseradish peroxidase into bile. These results suggest that the hepatocyte tight junction can no longer be considered a static system of pores separating blood from bile. It is rather a dynamic barrier potentially capable of influencing the composition of the bile.

  19. Growth hormone in the brain: characteristics of specific brain targets for the hormone and their functional significance.

    PubMed

    Nyberg, F

    2000-10-01

    During the past decade studies have shown that growth hormone (GH) may exert profound effects on the central nervous system (CNS). For instance, GH replacement therapy was found to improve the psychological capabilities in adult GH deficient (GHD) patients. Furthermore, beneficial effects of the hormone on certain functions, including memory, mental alertness, motivation, and working capacity, have been reported. Likewise, GH treatment of GHD children has been observed to produce significant improvement in many behavioral problems seen in these individuals. Studies also indicated that GH therapy affects the cerebrospinal fluid levels of various hormones and neurotransmitters. Further support that the CNS is a target for GH emerges from observations indicating that the hormone may cross the blood-brain barrier (BBB) and from studies confirming the presence of GH receptors in the brain. It was previously shown that specific binding sites for GH are present in discrete areas in the CNS of both humans and rats. Among these regions are the choroid plexus, hippocampus, hypothalamus, and spinal cord. The density of GH binding in the various brain regions was found to decline with increasing age. More recently, we were able to clone and determine the structure of several GH receptors in the rat and human brain. Although the brain receptor proteins for the hormone were shown to differ in molecular size compared to those present in peripheral tissues the corresponding transcripts did not seem to differ from their peripheral congeners. GH receptors in the hypothalamus are likely to be involved in the regulatory mechanism for hormone secretion and those located in the choroid plexus have been suggested to have a role in the receptor-mediated transport of GH across the BBB. The functions mediated by the GH receptors identified in the hippocampus are not yet known but recently it was speculated that they may be involved in the hormone's action on memory and cognitive functions.

  20. Crosstalking between the "gut-brain" hormone ghrelin and the circadian system in the goldfish. Effects on clock gene expression and food anticipatory activity.

    PubMed

    Nisembaum, Laura G; de Pedro, Nuria; Delgado, María J; Isorna, Esther

    2014-09-01

    Ghrelin is a potent orexigenic signal mainly synthesized in the stomach and foregut of vertebrates. Recent studies in rodents point out that ghrelin could also act as an input for the circadian system and/or as an output of peripheral food-entrainable oscillators, being involved in the food anticipatory activity (FAA). In this study we pursue the possible interaction of ghrelin with the circadian system in a teleost, the goldfish (Carassius auratus). First, we analyzed if ghrelin is able to modulate the core clock functioning by regulating clock gene expression in fish under a light/dark cycle 12L:12D and fed at 10 am. As expected the acute intraperitoneal (IP) injection of goldfish ghrelin (gGRL[1-19], 44 pmol/g bw) induced the expression of hypothalamic orexin. Moreover, ghrelin also induced (∼ 2-fold) some Per clock genes in hypothalamus and liver. This effect was partially counteracted in liver by the ghrelin antagonist ([D-Lys(3)]-GHRP-6, 100 pmol/g bw). Second, we investigated if ghrelin is involved in daily FAA rhythms. With this aim locomotor activity was studied in response to IP injections (5-10 days) of gGRL[1-19] and [D-Lys(3)]-GHRP-6 at the doses above indicated. Ghrelin and saline injected fish showed similar 24h activity patterns. However, ghrelin antagonist treatment abolished the FAA in schedule fed fish under 24h light, suggesting the involvement of the endogenous ghrelin system in this pre-feeding activity. Altogether these results suggest that ghrelin could be acting as an input for the entrainment of the food-entrainable oscillators in the circadian organization of goldfish.