Science.gov

Sample records for adipose derived mesenchymal

  1. Adipose-derived mesenchymal stem cell transplantation promotes adult neurogenesis in the brains of Alzheimer's disease mice

    PubMed Central

    Yan, Yufang; Ma, Tuo; Gong, Kai; Ao, Qiang; Zhang, Xiufang; Gong, Yandao

    2014-01-01

    In the present study, we transplanted adipose-derived mesenchymal stem cells into the hippocampi of APP/PS1 transgenic Alzheimer's disease model mice. Immunofluorescence staining revealed that the number of newly generated (BrdU+) cells in the subgranular zone of the dentate gyrus in the hippocampus was significantly higher in Alzheimer's disease mice after adipose-derived mesenchymal stem cell transplantation, and there was also a significant increase in the number of BrdU+/DCX+ neuroblasts in these animals. Adipose-derived mesenchymal stem cell transplantation enhanced neurogenic activity in the subventricular zone as well. Furthermore, adipose-derived mesenchymal stem cell transplantation reduced oxidative stress and alleviated cognitive impairment in the mice. Based on these findings, we propose that adipose-derived mesenchymal stem cell transplantation enhances endogenous neurogenesis in both the subgranular and subventricular zones in APP/PS1 transgenic Alzheimer's disease mice, thereby facilitating functional recovery. PMID:25206892

  2. Osteogenic differentiation strategies for adipose-derived mesenchymal stem cells.

    PubMed

    Kroeze, Robert Jan; Knippenberg, Marlene; Helder, Marco N

    2011-01-01

    Adipose stem cell preparations, either obtained as a freshly isolated so-called stromal vascular fraction (SVF) or as cells cultured to homogeneity and then referred to as adipose stem cells (ASCs), have found widespread use in a broad variety of studies on tissue engineering and regenerative medicine applications, including bone repair.For newcomers within the field, but also for established research laboratories having up to 10 years of expertise in this research area, it may be convenient to strive for, and use consensus protocols (1) for studying the osteogenic differentiation potential of ASC preparations in vitro, and (2) for osteogenic induction regimes for in vivo implementation. To assist in achieving this goal, this chapter describes various step-by-step osteogenic differentiation protocols for adipose-derived stem cell populations (SVF as well as ASCs) currently applied within our laboratory, with particular emphasis on protocols aimed at intra-operative use. The protocols describe the use of inducing compounds, including the bone morphogenetic proteins (BMPs), 1,25-dihydroxyvitamin-D3, and polyamines, as well as methods and parameters for evaluating the level of differentiation achieved.We would appreciate receiving feedback on the protocols described; this will facilitate the development of consensus protocols, which in turn will allow better comparison of data sets generated by different research groups. This continuing standardization, which might be reported on at international meetings like those of IFATS ( http://www.IFATS.org ), might be of benefit for the whole ASC research community.

  3. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α4-Integrin Expression

    PubMed Central

    Irioda, Ana Carolina; Cassilha, Rafael; Zocche, Larissa; Francisco, Julio Cesar; Cunha, Ricardo Correa; Ferreira, Priscila Elias; Guarita-Souza, Luiz Cesar; Ferreira, Reginaldo Justino; Mogharbel, Bassam Felipe; Garikipati, Venkata Naga Srikanth; Souza, Daiany; Beltrame, Mirian Perlingeiro; de Carvalho, Katherine Athayde Teixeira

    2016-01-01

    Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d), colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d), cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy. PMID:26981129

  4. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α4-Integrin Expression.

    PubMed

    Irioda, Ana Carolina; Cassilha, Rafael; Zocche, Larissa; Francisco, Julio Cesar; Cunha, Ricardo Correa; Ferreira, Priscila Elias; Guarita-Souza, Luiz Cesar; Ferreira, Reginaldo Justino; Mogharbel, Bassam Felipe; Garikipati, Venkata Naga Srikanth; Souza, Daiany; Beltrame, Mirian Perlingeiro; de Carvalho, Katherine Athayde Teixeira

    2016-01-01

    Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d), colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d), cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy. PMID:26981129

  5. Adipose-derived Mesenchymal Stem Cells and Their Reparative Potential in Ischemic Heart Disease.

    PubMed

    Badimon, Lina; Oñate, Blanca; Vilahur, Gemma

    2015-07-01

    Adipose tissue has long been considered an energy storage and endocrine organ; however, in recent decades, this tissue has also been considered an abundant source of mesenchymal cells. Adipose-derived stem cells are easily obtained, show a strong capacity for ex vivo expansion and differentiation to other cell types, release a large variety of angiogenic factors, and have immunomodulatory properties. Thus, adipose tissue is currently the focus of considerable interest in the field of regenerative medicine. In the context of coronary heart disease, numerous experimental studies have supported the safety and efficacy of adipose-derived stem cells in the setting of myocardial infarction. These results have encouraged the clinical use of these stem cells, possibly prematurely. Indeed, the presence of cardiovascular risk factors, such as hypertension, coronary disease, diabetes mellitus, and obesity, alter and reduce the functionality of adipose-derived stem cells, putting in doubt the efficacy of their autologous implantation. In the present article, white adipose tissue is described, the stem cells found in this tissue are characterized, and the use of these cells is discussed according to the preclinical and clinical trials performed so far. PMID:26028258

  6. Adipose-derived Mesenchymal Stem Cells and Their Reparative Potential in Ischemic Heart Disease.

    PubMed

    Badimon, Lina; Oñate, Blanca; Vilahur, Gemma

    2015-07-01

    Adipose tissue has long been considered an energy storage and endocrine organ; however, in recent decades, this tissue has also been considered an abundant source of mesenchymal cells. Adipose-derived stem cells are easily obtained, show a strong capacity for ex vivo expansion and differentiation to other cell types, release a large variety of angiogenic factors, and have immunomodulatory properties. Thus, adipose tissue is currently the focus of considerable interest in the field of regenerative medicine. In the context of coronary heart disease, numerous experimental studies have supported the safety and efficacy of adipose-derived stem cells in the setting of myocardial infarction. These results have encouraged the clinical use of these stem cells, possibly prematurely. Indeed, the presence of cardiovascular risk factors, such as hypertension, coronary disease, diabetes mellitus, and obesity, alter and reduce the functionality of adipose-derived stem cells, putting in doubt the efficacy of their autologous implantation. In the present article, white adipose tissue is described, the stem cells found in this tissue are characterized, and the use of these cells is discussed according to the preclinical and clinical trials performed so far.

  7. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells

    SciTech Connect

    Timper, Katharina; Seboek, Dalma; Eberhardt, Michael; Linscheid, Philippe; Christ-Crain, Mirjam; Keller, Ulrich; Mueller, Beat; Zulewski, Henryk . E-mail: henryk.zulewski@unibas.ch

    2006-03-24

    Mesenchymal stem cells (MSC) from mouse bone marrow were shown to adopt a pancreatic endocrine phenotype in vitro and to reverse diabetes in an animal model. MSC from human bone marrow and adipose tissue represent very similar cell populations with comparable phenotypes. Adipose tissue is abundant and easily accessible and could thus also harbor cells with the potential to differentiate in insulin producing cells. We isolated human adipose tissue-derived MSC from four healthy donors. During the proliferation period, the cells expressed the stem cell markers nestin, ABCG2, SCF, Thy-1 as well as the pancreatic endocrine transcription factor Isl-1. The cells were induced to differentiate into a pancreatic endocrine phenotype by defined culture conditions within 3 days. Using quantitative PCR a down-regulation of ABCG2 and up-regulation of pancreatic developmental transcription factors Isl-1, Ipf-1, and Ngn3 were observed together with induction of the islet hormones insulin, glucagon, and somatostatin.

  8. Adipose tissue derived mesenchymal stem cells for musculoskeletal repair in veterinary medicine

    PubMed Central

    Arnhold, Stefan; Wenisch, Sabine

    2015-01-01

    Adipose tissue derived stem cells (ASCs) are mesenchymal stem cells which can be obtained from different adipose tissue sources within the body. It is an abundant cell pool, which is easy accessible and the cells can be obtained in large numbers, cultivated and expanded in vitro and prepared for tissue engineering approaches, especially for skeletal tissue repair. In the recent years this cell population has attracted a great amount of attention among researchers in human as well as in veterinary medicine. In the meantime ASCs have been well characterized and their use in regenerative medicine is very well established. This review focuses on the characterization of ASCs for their use for tissue engineering approaches especially in veterinary medicine and also highlights a selection of clinical trials on the basis of ASCs as the relevant cell source. PMID:25973326

  9. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    SciTech Connect

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing Wang, Zehua

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  10. Mitogenic and chondrogenic effects of fibroblast growth factor-2 in adipose-derived mesenchymal cells

    SciTech Connect

    Chiou, Michael; Xu Yue; Longaker, Michael T. . E-mail: Longaker@stanford.edu

    2006-05-05

    Adipose-derived mesenchymal cells (AMCs) have demonstrated a great capacity for differentiating into bone, cartilage, and fat. Studies using bone marrow-derived mesenchymal cells (BMSCs) have shown that fibroblast growth factor (FGF)-2, a potent mitogenic factor, plays an important role in tissue engineering due to its effects in proliferation and differentiation for mesenchymal cells. The aim of this study was to investigate the function of FGF-2 in AMC chondrogenic differentiation and its possible contributions to cell-based therapeutics in skeletal tissue regeneration. Data demonstrated that FGF-2 significantly promoted the proliferation of AMCs and enhanced chondrogenesis in three-dimensional micromass culture. Moreover, priming AMCs with treatment of FGF-2 at 10 ng/ml demonstrated that cells underwent chondrogenic phenotypic differentiation, possibly by inducing N-Cadherin, FGF-receptor 2, and transcription factor Sox9. Our results indicated that FGF-2 potentiates chondrogenesis in AMCs, similar to its functions in BMSCs, suggesting the versatile potential applications of FGF-2 in skeletal regeneration and cartilage repair.

  11. Adipose-derived mesenchymal cells for bone regereneration: state of the art.

    PubMed

    Barba, Marta; Cicione, Claudia; Bernardini, Camilla; Michetti, Fabrizio; Lattanzi, Wanda

    2013-01-01

    Adipose tissue represents a hot topic in regenerative medicine because of the tissue source abundance, the relatively easy retrieval, and the inherent biological properties of mesenchymal stem cells residing in its stroma. Adipose-derived mesenchymal stem cells (ASCs) are indeed multipotent somatic stem cells exhibiting growth kinetics and plasticity, proved to induce efficient tissue regeneration in several biomedical applications. A defined consensus for their isolation, classification, and characterization has been very recently achieved. In particular, bone tissue reconstruction and regeneration based on ASCs has emerged as a promising approach to restore structure and function of bone compromised by injury or disease. ASCs have been used in combination with osteoinductive biomaterial and/or osteogenic molecules, in either static or dynamic culture systems, to improve bone regeneration in several animal models. To date, few clinical trials on ASC-based bone reconstruction have been concluded and proved effective. The aim of this review is to dissect the state of the art on ASC use in bone regenerative applications in the attempt to provide a comprehensive coverage of the topics, from the basic laboratory to recent clinical applications.

  12. Adipose tissue-derived mesenchymal stem cells as a new host cell in latent leishmaniasis.

    PubMed

    Allahverdiyev, Adil M; Bagirova, Melahat; Elcicek, Serhat; Koc, Rabia Cakir; Baydar, Serap Yesilkir; Findikli, Necati; Oztel, Olga N

    2011-09-01

    Some protozoan infections such as Toxoplasma, Cryptosporidium, and Plasmodium can be transmitted through stem cell transplantations. To our knowledge, so far, there is no study about transmission of Leishmania parasites in stem cell transplantation and interactions between parasites and stem cells in vitro. Therefore, the aim of this study was to investigate the interaction between different species of Leishmania parasites and adipose tissue-derived mesenchymal stem cells (ADMSCs). ADMSCs have been isolated, cultured, characterized, and infected with different species of Leishmania parasites (L. donovani, L. major, L. tropica, and L. infantum). Infectivity was examined by Giemsa staining, microculture, and polymerase chain reaction methods. As a result, infectivity of ADMSCs by Leishmania parasites has been determined for the first time in this study. According to our findings, it is very important that donors are screened for Leishmania parasites before stem cell transplantations in regions where leishmaniasis is endemic. PMID:21896818

  13. Xeno-Free Extraction, Culture, and Cryopreservation of Human Adipose-Derived Mesenchymal Stem Cells.

    PubMed

    Escobar, Carlos Hugo; Chaparro, Orlando

    2016-03-01

    Molecules of animal or bacterial origin, which pose a risk for zoonoses or immune rejection, are commonly used for extraction, culture, and cryopreservation of mesenchymal stem cells. There is no sequential and orderly protocol for producing human adipose-derived stem cells (hASCs) under xeno-free conditions. After standardizing a human platelet lysate (hPL) production protocol, four human adipose tissue samples were processed through explants with fetal bovine serum (FBS)-supplemented or hPL-supplemented media for extracting the adipose-derived stem cells. The cells were cultivated in cell culture medium + hPL (5%) or FBS (10%). The cellular replication rate, immunophenotype, and differentiation potential were evaluated at fourth passage. Cellular viability was evaluated before and after cryopreservation of the cells, with an hPL-based solution compared with an FBS-based solution. The explants cultured in hPL-supplemented media showed earlier and faster hASC proliferation than did those supplemented with FBS. Likewise, cells grown in hPL-supplemented media showed a greater proliferation rate, without losing the immunophenotype. Osteogenic differentiation of xeno-free hASC was higher than the hASC produced in standard conditions. However, adipogenic differentiation was reduced in xeno-free hASC. Finally, the cells cryopreserved in an hPL-based solution showed a higher cellular viability than the cells cryopreserved in an FBS-based. In conclusion, we have developed a complete xeno-free protocol for extracting, culturing, and cryopreserving hASCs that can be safely implemented in clinical studies.

  14. Xeno-Free Extraction, Culture, and Cryopreservation of Human Adipose-Derived Mesenchymal Stem Cells.

    PubMed

    Escobar, Carlos Hugo; Chaparro, Orlando

    2016-03-01

    Molecules of animal or bacterial origin, which pose a risk for zoonoses or immune rejection, are commonly used for extraction, culture, and cryopreservation of mesenchymal stem cells. There is no sequential and orderly protocol for producing human adipose-derived stem cells (hASCs) under xeno-free conditions. After standardizing a human platelet lysate (hPL) production protocol, four human adipose tissue samples were processed through explants with fetal bovine serum (FBS)-supplemented or hPL-supplemented media for extracting the adipose-derived stem cells. The cells were cultivated in cell culture medium + hPL (5%) or FBS (10%). The cellular replication rate, immunophenotype, and differentiation potential were evaluated at fourth passage. Cellular viability was evaluated before and after cryopreservation of the cells, with an hPL-based solution compared with an FBS-based solution. The explants cultured in hPL-supplemented media showed earlier and faster hASC proliferation than did those supplemented with FBS. Likewise, cells grown in hPL-supplemented media showed a greater proliferation rate, without losing the immunophenotype. Osteogenic differentiation of xeno-free hASC was higher than the hASC produced in standard conditions. However, adipogenic differentiation was reduced in xeno-free hASC. Finally, the cells cryopreserved in an hPL-based solution showed a higher cellular viability than the cells cryopreserved in an FBS-based. In conclusion, we have developed a complete xeno-free protocol for extracting, culturing, and cryopreserving hASCs that can be safely implemented in clinical studies. PMID:26838269

  15. Defining the identity of human adipose-derived mesenchymal stem cells.

    PubMed

    Montelatici, Elisa; Baluce, Barbara; Ragni, Enrico; Lavazza, Cristiana; Parazzi, Valentina; Mazzola, Riccardo; Cantarella, Giovanna; Brambilla, Massimiliano; Giordano, Rosaria; Lazzari, Lorenza

    2015-02-01

    Adipose-derived mesenchymal stem cells (ADMSCs) are an ideal population for regenerative medical application. Both the isolation procedure and the culturing conditions are crucial steps, since low yield can limit further cell therapies, especially when minimal adipose tissue harvests are available for cell expansion. To date, a standardized procedure encompassing both isolation sites and expansion methods is missing, thus making the choice of the most appropriate conditions for the preparation of ADMSCs controversial, especially in view of the different applications needed. In this study, we compared the effects of three different commercial media (DMEM, aMEM, and EGM2), routinely used for ADMSCs expansion, and two supplements, FBS and human platelet lysate, recently proven to be an effective alternative to prevent xenogeneic antibody transfer and immune alloresponse in the host. Notably, all the conditions resulted in being safe for ADMSCs isolation and expansion with platelet lysate supplementation giving the highest isolation and proliferation rates, together with a commitment for osteogenic lineage. Then, we proved that the high ADMSC hematopoietic supportive potential is performed through a constant and abundant secretion of both GCSF and SCF. In conclusion, this study further expands the knowledge on ADMSCs, defining their identity definition and offers potential options for in vitro protocols for clinical production, especially related to HSC expansion without use of exogenous cytokines or genetic modifications. PMID:25472894

  16. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation

    PubMed Central

    2014-01-01

    Background Human adipose tissue is an ideal autologous source of mesenchymal stem cells (MSCs) for various regenerative medicine and tissue engineering strategies. Aged patients are one of the primary target populations for many promising applications. It has long been known that advanced age is negatively correlated with an organism’s reparative and regenerative potential, but little and conflicting information is available about the effects of age on the quality of human adipose tissue derived MSCs (hAT-MSCs). Methods To study the influence of age, the expansion and in vitro differentiation potential of hAT-MSCs from young (<30 years), adult (35-50 years) and aged (>60 years) individuals were investigated. MSCs were characterized for expression of the genes p16INK4a and p21 along with measurements of population doublings (PD), superoxide dismutase (SOD) activity, cellular senescence and differentiation potential. Results Aged MSCs displayed senescent features when compared with cells isolated from young donors, concomitant with reduced viability and proliferation. These features were also associated with significantly reduced differentiation potential in aged MSCs compared to young MSCs. Conclusions In conclusion, advancing age negatively impacts stem cell function and such age related alterations may be detrimental for successful stem cell therapies. PMID:24397850

  17. Human Adipose-Derived Mesenchymal Progenitor Cells Engraft into Rabbit Articular Cartilage

    PubMed Central

    Wang, Wen; He, Na; Feng, Chenchen; Liu, Victor; Zhang, Luyi; Wang, Fei; He, Jiaping; Zhu, Tengfang; Wang, Shuyang; Qiao, Weiwei; Li, Suke; Zhou, Guangdong; Zhang, Li; Dai, Chengxiang; Cao, Wei

    2015-01-01

    Mesenchymal stem cells (MSCs) are known to have the potential for articular cartilage regeneration, and are suggested for the treatment of osteoarthritis (OA). Here, we investigated whether intra-articular injection of xenogeneic human adipose-derived mesenchymal progenitor cells (haMPCs) promoted articular cartilage repair in rabbit OA model and engrafted into rabbit articular cartilage. The haMPCs were cultured in vitro, and phenotypes and differentiation characteristics of cells were evaluated. OA was induced surgically by anterior cruciate ligament transection (ACLT) and medical meniscectomy of knee joints. At six weeks following surgery, hyaluronic acid (HA) or haMPCs was injected into the knee joints, the contralateral knee served as normal control. All animals were sacrificed at the 16th week post-surgery. Assessments were carried out by macroscopic examination, hematoxylin/eosin (HE) and Safranin-O/Fast green stainings and immunohistochemistry. The data showed that haMPC treatment promoted cartilage repair. Signals of human mitochondrial can be directly detected in haMPC treated cartilage. The haMPCs expressed human leukocyte antigen I (HLA-I) but not HLA-II-DR in vivo. These results suggest that intra-articular injection of haMPCs promotes regeneration of articular cartilage in rabbit OA model, and support the notion that MPCs are transplantable between HLA-incompatible individuals. PMID:26023716

  18. Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration.

    PubMed

    Linero, Itali; Chaparro, Orlando

    2014-01-01

    Mesenchymal stem cell (MSC) transplantation has proved to be a promising strategy in cell therapy and regenerative medicine. Although their mechanism of action is not completely clear, it has been suggested that their therapeutic activity may be mediated by a paracrine effect. The main goal of this study was to evaluate by radiographic, morphometric and histological analysis the ability of mesenchymal stem cells derived from human adipose tissue (Ad-MSC) and their conditioned medium (CM), to repair surgical bone lesions using an in vivo model (rabbit mandibles). The results demonstrated that both, Ad-MSC and CM, induce bone regeneration in surgically created lesions in rabbit's jaws, suggesting that Ad-MSC improve the process of bone regeneration mainly by releasing paracrine factors. The evidence of the paracrine effect of MSC on bone regeneration has a major impact on regenerative medicine, and the use of their CM can address some issues and difficulties related to cell transplants. In particular, CM can be easily stored and transported, and is easier to handle by medical personnel during clinical procedures.

  19. The Influence of Aging on the Regenerative Potential of Human Adipose Derived Mesenchymal Stem Cells

    PubMed Central

    Marycz, Krzysztof; Henry, Brandon Michael

    2016-01-01

    Tissue regeneration using human adipose derived mesenchymal stem cells (hASCs) has significant potential as a novel treatment for many degenerative bone and joint diseases. Previous studies have established that age negatively affects the proliferation status and the osteogenic and chondrogenic differentiation potential of mesenchymal stem cells. The aim of this study was to assess the age-related maintenance of physiological function and differentiation potential of hASCs in vitro. hASCs were isolated from patients of four different age groups: (1) >20 years (n = 7), (2) >50 years (n = 7), (3) >60 years (n = 7), and (4) >70 years (n = 7). The hASCs were characterized according to the number of fibroblasts colony forming unit (CFU-F), proliferation rate, population doubling time (PDT), and quantified parameters of adipogenic, chondrogenic, and osteogenic differentiation. Compared to younger cells, aged hASCs had decreased proliferation rates, decreased chondrogenic and osteogenic potential, and increased senescent features. A shift in favor of adipogenic differentiation with increased age was also observed. As many bone and joint diseases increase in prevalence with age, it is important to consider the negative influence of age on hASCs viability, proliferation status, and multilineage differentiation potential when considering the potential therapeutic applications of hASCs. PMID:26941800

  20. Functional characteristics of mesenchymal stem cells derived from the adipose tissue of a patient with achondroplasia.

    PubMed

    Park, Jeong-Ran; Lee, Hanbyeol; Kim, Chung-Hyo; Hong, Seok-Ho; Ha, Kwon-Soo; Yang, Se-Ran

    2016-05-01

    Mesenchymal stem cells (MSCs) can be isolated from various tissues including bone marrow, adipose tissue, skin dermis, and umbilical Wharton's jelly as well as injured tissues. MSCs possess the capacity for self-renewal and the potential for differentiation into adipogenic, osteogenic, and chondrogenic lineages. However, the characteristics of MSCs in injured tissues, such as achondroplasia (ACH), are not well known. In this study, we isolated MSCs from human subcutaneous adipose (ACH-SAMSCs) tissue and circumjacent human adipose tissue of the cartilage (ACH-CAMSCs) from a patient with ACH. We then analyzed the characterization of ACH-SAMSCs and ACH-CAMSCs, compared with normal human dermis-derived MSCs (hDMSCs). In flow cytometry analysis, the isolated ACH-MSCs expressed low levels of CD73, CD90, and CD105, compared with hDMSCs. Moreover, both ACH- SAMSCs and ACH-CAMSCs had constitutionally overactive fibroblast growth factor receptor 3 (FGFR3) and exhibited significantly reduced osteogenic differentiation, compared to enhanced adipogenic differentiation. The activity of extracellular signal-regulated kinases 1/2 (ERK1/2) and p38 mitogen-activated protein kinases (p38 MAPK) was increased in ACH-MSCs. In addition, the efficacy of osteogenic differentiation was slightly restored in osteogenic differentiation medium with MAPKs inhibitors. These results suggest that they play essential roles in MSC differentiation toward adipogenesis in ACH pathology. In conclusion, the identification of the characteristics of ACH-MSCs and the favoring of adipogenic differentiation via the FGFR3/MAPK axis might help to elucidate the pathogenic mechanisms relevant to other skeletal diseases and could provide targets for therapeutic interventions.

  1. Three-dimensional differentiation of adipose-derived mesenchymal stem cells into insulin-producing cells.

    PubMed

    Khorsandi, Layasadat; Khodadadi, Ali; Nejad-Dehbashi, Fereshteh; Saremy, Sadegh

    2015-09-01

    The aim of this study is to evaluate the collagen/hyaluronic acid (Col/HA) scaffold effect on the differentiation of insulin-producing cells (IPCs) from adipose-derived mesenchymal stem cells (ASCs). In this experimental study, ASCs were cultured and seeded in a Col/HA scaffold (3D culture) and then treated with induction media. After induction, the presence of IPCs was evaluated using gene expression (PDX-1, GLUT-2 and insulin) analysis and immunocytochemistry, while functional maturity was determined by measuring insulin release in response to low- and high-glucose media. The induced IPCs were morphologically similar to pancreatic islet-like cells. Expression of the islet-associated genes PDX-1, GLUT-2 and insulin genes in 3D-cultured cells was markedly higher than the 2D-cultured cells exposure differentiation media. Compared to the 2D culture of ASCs-derived IPCs, the insulin release from 3D ASCs-derived IPCs showed a nearly 4-fold (p < 0.05) increase when exposed to a high glucose (25 mmol) medium. The percentage of insulin-positive cells in the 3D experimental group showed an approximately 4-fold increase compared to the 2D experimental culture cells. The results of this study demonstrated that the COL/HA scaffold can enhance the differentiation of IPCs from rat ASCs.

  2. Do adipose tissue-derived mesenchymal stem cells ameliorate Parkinson's disease in rat model?

    PubMed

    Ahmed, Hh; Salem, Am; Atta, Hm; Ghazy, Ma; Aglan, Ha

    2014-12-01

    Parkinson's disease (PD) is a common neurodegenerative disorder in middle-aged and elderly people. This study aimed to elucidate the role of mesenchymal stem cells (MSCs) in management of PD in ovariectomized rat model. MSCs were excised from adipose tissue of both the omentum and the inguinal fat pad of male rats, grown, and propagated in culture; then characterized morphologically; and by the detection of surface markers gene expression. In this study, 40 ovariectomized animals were classified into 5 groups; group 1 was ovariectomized control, groups 2 to 5 were subcutaneously administered with rotenone for 14 days after 1 month of ovariectomy for induction of PD. Group 2 was left untreated; groups 3, 4, and 5 were treated with Sinemet(®), Cerebrolysin(®), and a single dose of adipose tissue-derived MSCs (ADMSCs), respectively. Y-chromosome gene (sry) was assessed by polymerase chain reaction (PCR) in brain tissue of the female rats. Serum transforming growth factor β (TGF-β), monocyte chemoattractant protein 1 (MCP-1), and brain-derived neurotrophic factor (BDNF) levels were assayed using enzyme-linked immunosorbent assay technique. Brain dopamine level was assayed fluorometrically, while brain tyrosine hydroxylase (TH) gene expression was detected by semiquantitative real-time PCR. The PD group showed significant increase in serum TGF-β and MCP-1 levels associated with significant decrease in serum BDNF, brain dopamine, and brain TH gene expression levels. In contrast, all treatments produce significant decrease in serum TGF-β and MCP-1 levels in concomitant with significant increase in serum BDNF, brain dopamine, and brain TH gene expression levels. In conclusion, the observed improvements in the studied biomarkers due to ADMSCs infusion might be attributed to their immunomodulatory, anti-inflammatory, and neurotrophic effects.

  3. Use of adipose-derived mesenchymal stem cells in keratoconjunctivitis sicca in a canine model.

    PubMed

    Villatoro, Antonio J; Fernández, Viviana; Claros, Silvia; Rico-Llanos, Gustavo A; Becerra, José; Andrades, José A

    2015-01-01

    Keratoconjunctivitis sicca (KCS) or dry eye disease (DED) is an immune-mediated multifactorial disease, with high level of prevalence in humans and dogs. Our aim in this study was to investigate the therapeutic effects of allogeneic adipose-derived mesenchymal stromal cells (Ad-MSCs) implanted around the lacrimal glands in 12 dogs (24 eyes) with KCS, which is refractory to current available treatments. Schirmer tear test (STT) and ocular surface integrity were assessed at 0 (before treatment), 3, 6, and 9 months after treatment. Average STT values and all clinical signs showed a statistically significant change (P < 0.001) during the follow-up with reduction in all ocular parameters scored: ocular discharge, conjunctival hyperaemia, and corneal changes, and there were no signs of regression or worsening. Implanted cells were well tolerated and were effective reducing clinical signs of KCS with a sustained effect during the study period. None of the animals showed systemic or local complications during the study. To our knowledge, this is the first time in literature that implantation of allogeneic Ad-MSCs around lacrimal glands has been found as an effective therapeutic alternative to treat dogs with KCS. These results could reinforce a good effective solution to be extrapolated to future studies in human.

  4. Stem cells for hepatic regeneration: the role of adipose tissue derived mesenchymal stem cells.

    PubMed

    Ishikawa, Tetsuya; Banas, Agnieszka; Hagiwara, Keitaro; Iwaguro, Hideki; Ochiya, Takahiro

    2010-06-01

    Severe hepatic dysfunctions including hepatic cirrhosis and hepatocarcinoma are life-threatening conditions for which effective medical treatments are needed. With the only effective treatment to date being orthotropic liver transplantation, alternative approaches are needed because of the limited number of donors and the possibility of immune-rejection. One alternative is regenerative medicine, which holds promise for the development of a cell-based therapy enabling hepatic regeneration through transplantation of adipose tissue-derived mesenchymal stem cells (AT-MSCs) or hepatocyte-like cells generated from AT-MSCs. When compared with embryonic stem (ES) cells and induced pluripotent stem (iPS) cells, the use of AT-MSCs as regenerative cells would be advantageous in regard to ethical and safety issues since AT-MSCs are somatic cells and have the potential to be used without in vitro culture. These autologous cells are immuno-compatible and exhibit controlled differentiation and multi-functional abilities and do not undergo post-transplantation rejection or unwanted differentiation such as formation of teratomas. AT-MSC-based therapies may provide a novel approach for hepatic regeneration and hepatocyte differentiation and thereby support hepatic function in diseased individuals.

  5. Osteogenic differentiation of human adipose-derived mesenchymal stem cells on gum tragacanth hydrogel.

    PubMed

    Haeri, Seyed Mohammad Jafar; Sadeghi, Yousef; Salehi, Mohammad; Farahani, Reza Masteri; Mohsen, Nourozian

    2016-05-01

    Currently, natural polymer based hydrogels has attracted great attention of orthopedic surgeons for application in bone tissue engineering. With this aim, osteoinductive capacity of Gum Tragacanth (GT) based hydrogel was compared to collagen hydrogel and tissue culture plate (TCPS). For this purpose, adipose-derived mesenchymal stem cells (AT-MSCs) was cultured on the hydrogels and TCPS and after investigating the biocompatibility of hydrogels using MTT assay, osteoinductivity of hydrogels were evaluated using pan osteogenic markers such as Alizarin red staining, alkaline phosphatase (ALP) activity, calcium content and osteo-related genes. Increasing proliferation trend of AT-MSCs on GT hydrogel demonstrated that TG has no-cytotoxicity and can even be better than the other groups i.e., highest proliferation at day 5. GT hydrogel displayed highest ALP activity and mineralization when compared to the collagen hydrogel and TCPS. Relative gene expression levels have demonstrated that highest expression of Runx2, osteonectin and osteocalcin in the cells cultured GT hydrogel but the expression of collagen type-1 remains constant in hydrogels. Above results demonstrate that GT hydrogel could be an appropriate scaffold for accelerating and supporting the adhesion, proliferation and osteogenic differentiation of stem cells which further can be used for orthopedic applications.

  6. Characterization of Senescence of Culture-expanded Human Adipose-derived Mesenchymal Stem Cells

    PubMed Central

    Legzdina, Diana; Romanauska, Anete; Nikulshin, Sergey; Kozlovska, Tatjana; Berzins, Uldis

    2016-01-01

    Background and Objectives Adipose-derived mesenchymal stem cells (ADSCs) are promising candidates in regenerative medicine. The need for in vitro propagation to obtain therapeutic quantities of the cells imposes a risk of impaired functionality due to cellular senescence. The aim of the study was to analyze in vitro senescence of previously cryopreserved human ADSCs subjected to serial passages in cell culture. Methods and Results ADSC cultures from 8 donors were cultivated until proliferation arrest was reached. A gradual decline of ADSC fitness was observed by altered cell morphology, loss of proliferative, clonogenic and differentiation abilities and increased β-galactosidase expression all of which occurred in a donor-specific manner. Relative telomere length (RTL) analysis revealed that only three tested cultures encountered replicative senescence. The presence of two ADSC subsets with significantly different RTL and cell size was discovered. The heterogeneity of ADSC cultures was supported by the intermittent nature of aging seen in tested samples. Conclusions We conclude that the onset of in vitro senescence of ADSCs is a strongly donor-specific process which is complicated by the intricate dynamics of cell subsets present in ADSC population. This complexity needs to be carefully considered when elaborating protocols for personalized cellular therapy. PMID:27426094

  7. Use of Adipose-Derived Mesenchymal Stem Cells in Keratoconjunctivitis Sicca in a Canine Model

    PubMed Central

    Villatoro, Antonio J.; Fernández, Viviana; Rico-Llanos, Gustavo A.; Becerra, José; Andrades, José A.

    2015-01-01

    Keratoconjunctivitis sicca (KCS) or dry eye disease (DED) is an immune-mediated multifactorial disease, with high level of prevalence in humans and dogs. Our aim in this study was to investigate the therapeutic effects of allogeneic adipose-derived mesenchymal stromal cells (Ad-MSCs) implanted around the lacrimal glands in 12 dogs (24 eyes) with KCS, which is refractory to current available treatments. Schirmer tear test (STT) and ocular surface integrity were assessed at 0 (before treatment), 3, 6, and 9 months after treatment. Average STT values and all clinical signs showed a statistically significant change (P < 0.001) during the follow-up with reduction in all ocular parameters scored: ocular discharge, conjunctival hyperaemia, and corneal changes, and there were no signs of regression or worsening. Implanted cells were well tolerated and were effective reducing clinical signs of KCS with a sustained effect during the study period. None of the animals showed systemic or local complications during the study. To our knowledge, this is the first time in literature that implantation of allogeneic Ad-MSCs around lacrimal glands has been found as an effective therapeutic alternative to treat dogs with KCS. These results could reinforce a good effective solution to be extrapolated to future studies in human. PMID:25802852

  8. Integration of Rabbit Adipose Derived Mesenchymal Stem Cells to Hydroxyapatite Burr Hole Button Device for Bone Interface Regeneration

    PubMed Central

    Gayathri, Viswanathan; Harikrishnan, Varma; Mohanan, Parayanthala Valappil

    2016-01-01

    Adipose Derived Mesenchymal Stem Cells, multipotent stem cells isolated from adipose tissue, present close resemblance to the natural in vivo milieu and microenvironment of bone tissue and hence widely used for in bone tissue engineering applications. The present study evaluates the compatibility of tissue engineered hydroxyapatite burr hole button device (HAP-BHB) seeded with Rabbit Adipose Derived Mesenchymal Stem Cells (ADMSCs). Cytotoxicity, oxidative stress response, apoptotic behavior, attachment, and adherence of adipose MSC seeded on the device were evaluated by scanning electron and confocal microscopy. The results of the MTT (3-(4,5-dimethylthiazol)-2,5-diphenyl tetrazolium bromide) assay indicated that powdered device material was noncytotoxic up to 0.5 g/mL on cultured cells. It was also observed that oxidative stress related reactive oxygen species production and apoptosis on cell seeded device were similar to those of control (cells alone) except in 3-day period which showed increased reactive oxygen species generation. Further scanning electron and confocal microscopy indicated a uniform attachment of cells and viability up to 200 μm deep inside the device, respectively. Based on the results, it can be concluded that the in-house developed HAP-BHB device seeded with ADMSCs is nontoxic/safe compatible device for biomedical application and an attractive tissue engineered device for calvarial defect regeneration. PMID:26880922

  9. [Characteristics of migration of adipose tissue derived mesenchymal stromal cells after co-cultivation with activated monocytes in vitro].

    PubMed

    Grigor'eva, O A; Korovina, I V; Gogia, B Sh; Sysoeva, V Iu

    2014-01-01

    Mesenchymal stromal cells (MSC) are considered to be promising tool of regenerative medicine. Migration of MSC toward damaged inflammatory site is essential for physiological tissue reparation. Therefore we studied modifications of migratory features of adipose tissue derived MSC (AT-MSC) after co-cultivation with activated monocytes derived from THP-1 cell line. As a result, we have observed an increased migration rate of AT-MSC in vitro in the absence of chemoattractant gradient as well as toward the gradient of PDGF BB (platelet-derived growth factor BB), which is well known chemoattractant for the cells of mesenchymal origin. Furthermore, the rate of directional AT-MSC migration through fibronectin was also increased. We have established that signaling from PDGFRβ which is activated through binding of integrin receptors with extracellular matrix may be possible way to stimulate cellular migration under simulated inflammatory conditions.

  10. Adipose-Derived Mesenchymal Stem Cells Restore Impaired Mucosal Immune Responses in Aged Mice.

    PubMed

    Aso, Kazuyoshi; Tsuruhara, Akitoshi; Takagaki, Kentaro; Oki, Katsuyuki; Ota, Megumi; Nose, Yasuhiro; Tanemura, Hideki; Urushihata, Naoki; Sasanuma, Jinichi; Sano, Masayuki; Hirano, Atsuyuki; Aso, Rio; McGhee, Jerry R; Fujihashi, Kohtaro

    2016-01-01

    It has been shown that adipose-derived mesenchymal stem cells (AMSCs) can differentiate into adipocytes, chondrocytes and osteoblasts. Several clinical trials have shown the ability of AMSCs to regenerate these differentiated cell types. Age-associated dysregulation of the gastrointestinal (GI) immune system has been well documented. Our previous studies showed that impaired mucosal immunity in the GI tract occurs earlier during agingthan is seen in the systemic compartment. In this study, we examined the potential of AMSCs to restore the GI mucosal immune system in aged mice. Aged (>18 mo old) mice were adoptively transferred with AMSCs. Two weeks later, mice were orally immunized with ovalbumin (OVA) plus cholera toxin (CT) three times at weekly intervals. Seven days after the final immunization, when fecal extract samples and plasma were subjected to OVA- and CT-B-specific ELISA, elevated levels of mucosal secretory IgA (SIgA) and plasma IgG antibody (Ab) responses were noted in aged mouse recipients. Similar results were also seen aged mice which received AMSCs at one year of age. When cytokine production was examined, OVA-stimulated Peyer's patch CD4+ T cells produced increased levels of IL-4. Further, CD4+ T cells from the lamina propria revealed elevated levels of IL-4 and IFN-γ production. In contrast, aged mice without AMSC transfer showed essentially no OVA- or CT-B-specific mucosal SIgA or plasma IgG Ab or cytokine responses. Of importance, fecal extracts from AMSC transferred aged mice showed neutralization activity to CT intoxication. These results suggest that AMSCs can restore impaired mucosal immunity in the GI tract of aged mice. PMID:26840058

  11. Adipose-Derived Mesenchymal Stem Cells Prevent Systemic Bone Loss in Collagen-Induced Arthritis

    PubMed Central

    Garimella, Manasa G.; Kour, Supinder; Piprode, Vikrant; Mittal, Monika; Kumar, Anil; Rani, Lekha; Pote, Satish T.; Mishra, Gyan C.; Chattopadhyay, Naibedya

    2015-01-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammatory synovitis leading to joint destruction and systemic bone loss. The inflammation-induced bone loss is mediated by increased osteoclast formation and function. Current antirheumatic therapies primarily target suppression of inflammatory cascade with limited or no success in controlling progression of bone destruction. Mesenchymal stem cells (MSCs) by virtue of their tissue repair and immunomodulatory properties have shown promising results in various autoimmune and degenerative diseases. However, the role of MSCs in prevention of bone destruction in RA is not yet understood. In this study, we investigated the effect of adipose-derived MSCs (ASCs) on in vitro formation of bone-resorbing osteoclasts and pathological bone loss in the mouse collagen-induced arthritis (CIA) model of RA. We observed that ASCs significantly inhibited receptor activator of NF-κB ligand (RANKL)–induced osteoclastogenesis in both a contact-dependent and -independent manner. Additionally, ASCs inhibited RANKL-induced osteoclastogenesis in the presence of proinflammatory cytokines such as TNF-α, IL-17, and IL-1β. Furthermore, treatment with ASCs at the onset of CIA significantly reduced clinical symptoms and joint pathology. Interestingly, ASCs protected periarticular and systemic bone loss in CIA mice by maintaining trabecular bone structure. We further observed that treatment with ASCs reduced osteoclast precursors in bone marrow, resulting in decreased osteoclastogenesis. Moreover, ASCs suppressed autoimmune T cell responses and increased the percentages of peripheral regulatory T and B cells. Thus, we provide strong evidence that ASCs ameliorate inflammation-induced systemic bone loss in CIA mice by reducing osteoclast precursors and promoting immune tolerance. PMID:26538398

  12. Adipose-Derived Mesenchymal Stem Cells Prevent Systemic Bone Loss in Collagen-Induced Arthritis.

    PubMed

    Garimella, Manasa G; Kour, Supinder; Piprode, Vikrant; Mittal, Monika; Kumar, Anil; Rani, Lekha; Pote, Satish T; Mishra, Gyan C; Chattopadhyay, Naibedya; Wani, Mohan R

    2015-12-01

    Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammatory synovitis leading to joint destruction and systemic bone loss. The inflammation-induced bone loss is mediated by increased osteoclast formation and function. Current antirheumatic therapies primarily target suppression of inflammatory cascade with limited or no success in controlling progression of bone destruction. Mesenchymal stem cells (MSCs) by virtue of their tissue repair and immunomodulatory properties have shown promising results in various autoimmune and degenerative diseases. However, the role of MSCs in prevention of bone destruction in RA is not yet understood. In this study, we investigated the effect of adipose-derived MSCs (ASCs) on in vitro formation of bone-resorbing osteoclasts and pathological bone loss in the mouse collagen-induced arthritis (CIA) model of RA. We observed that ASCs significantly inhibited receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis in both a contact-dependent and -independent manner. Additionally, ASCs inhibited RANKL-induced osteoclastogenesis in the presence of proinflammatory cytokines such as TNF-α, IL-17, and IL-1β. Furthermore, treatment with ASCs at the onset of CIA significantly reduced clinical symptoms and joint pathology. Interestingly, ASCs protected periarticular and systemic bone loss in CIA mice by maintaining trabecular bone structure. We further observed that treatment with ASCs reduced osteoclast precursors in bone marrow, resulting in decreased osteoclastogenesis. Moreover, ASCs suppressed autoimmune T cell responses and increased the percentages of peripheral regulatory T and B cells. Thus, we provide strong evidence that ASCs ameliorate inflammation-induced systemic bone loss in CIA mice by reducing osteoclast precursors and promoting immune tolerance.

  13. Adipose-Derived Mesenchymal Stem Cells Restore Impaired Mucosal Immune Responses in Aged Mice

    PubMed Central

    Aso, Kazuyoshi; Tsuruhara, Akitoshi; Takagaki, Kentaro; Oki, Katsuyuki; Ota, Megumi; Nose, Yasuhiro; Tanemura, Hideki; Urushihata, Naoki; Sasanuma, Jinichi; Sano, Masayuki; Hirano, Atsuyuki; Aso, Rio; McGhee, Jerry R.; Fujihashi, Kohtaro

    2016-01-01

    It has been shown that adipose-derived mesenchymal stem cells (AMSCs) can differentiate into adipocytes, chondrocytes and osteoblasts. Several clinical trials have shown the ability of AMSCs to regenerate these differentiated cell types. Age-associated dysregulation of the gastrointestinal (GI) immune system has been well documented. Our previous studies showed that impaired mucosal immunity in the GI tract occurs earlier during agingthan is seen in the systemic compartment. In this study, we examined the potential of AMSCs to restore the GI mucosal immune system in aged mice. Aged (>18 mo old) mice were adoptively transferred with AMSCs. Two weeks later, mice were orally immunized with ovalbumin (OVA) plus cholera toxin (CT) three times at weekly intervals. Seven days after the final immunization, when fecal extract samples and plasma were subjected to OVA- and CT-B-specific ELISA, elevated levels of mucosal secretory IgA (SIgA) and plasma IgG antibody (Ab) responses were noted in aged mouse recipients. Similar results were also seen aged mice which received AMSCs at one year of age. When cytokine production was examined, OVA-stimulated Peyer’s patch CD4+ T cells produced increased levels of IL-4. Further, CD4+ T cells from the lamina propria revealed elevated levels of IL-4 and IFN-γ production. In contrast, aged mice without AMSC transfer showed essentially no OVA- or CT-B-specific mucosal SIgA or plasma IgG Ab or cytokine responses. Of importance, fecal extracts from AMSC transferred aged mice showed neutralization activity to CT intoxication. These results suggest that AMSCs can restore impaired mucosal immunity in the GI tract of aged mice. PMID:26840058

  14. Migration of Adipose-derived Mesenchymal Stem Cells Stably Expressing Chondroitinase ABC In vitro

    PubMed Central

    Wu, Jian-Huang; Li, Miao; Liang, Yan; Lu, Tao; Duan, Chun-Yue

    2016-01-01

    Background: Several studies have revealed that adipose-derived mesenchymal stem cells (ADSCs) can be used as seed cells for the treatment of spinal cord injury (SCI). Chondroitinase ABC (ChABC) decomposes chondroitin sulfate proteoglycans in the glial scar that forms following SCI, allowing stem cells to penetrate through the scar and promote recovery of nerve function. This study aimed to establish ADSCs that stably express ChABC (ChABC-ADSCs) and evaluate the migratory capability of ChABC-ADSCs in vitro. Methods: ADSCs were obtained from Sprague-Dawley rats using secondary collagenase digestion. Their phenotypes were characterized using flow cytometry detection of cell surface antigens and their stem cell properties were confirmed by induction of differentiation. After successful culture, ADSCs were transfected with lentiviral vectors and ChABC-ADSCs were obtained. Proliferation curves of ChABC-ADSCs were determined using the Cell Counting Kit-8 method, ChABC expression was verified using Western blotting, and the migration of ChABC-ADSCs was analyzed using the transwell assay. Results: Secondary collagenase digestion increased the isolation efficiency of primary ADSCs. Following transfection using lentiviral vectors, the proliferation of ChABC-ADSCs was reduced in comparison with control ADSCs at 48 h (P < 0.05). And the level of ChABC expression in the ChABC-ADSC group was significantly higher than that of the ADSC group (P < 0.05). Moreover, ChABC-ADSC migration in matrigel was significantly enhanced in comparison with the control (P < 0.05). Conclusions: Secondary collagenase digestion can be used to effectively isolate ADSCs. ChABC-ADSCs constructed using lentiviral vector transfection stably express ChABC, and ChABC expression significantly enhances the migratory capacity of ADSCs. PMID:27364797

  15. Adipose-Derived Mesenchymal Stem Cell Administration Does Not Improve Corneal Graft Survival Outcome

    PubMed Central

    Fuentes-Julián, Sherezade; Arnalich-Montiel, Francisco; Jaumandreu, Laia; Leal, Marina; Casado, Alfonso; García-Tuñon, Ignacio; Hernández-Jiménez, Enrique; López-Collazo, Eduardo; De Miguel, Maria P.

    2015-01-01

    The effect of local and systemic injections of mesenchymal stem cells derived from adipose tissue (AD-MSC) into rabbit models of corneal allograft rejection with either normal-risk or high-risk vascularized corneal beds was investigated. The models we present in this study are more similar to human corneal transplants than previously reported murine models. Our aim was to prevent transplant rejection and increase the length of graft survival. In the normal-risk transplant model, in contrast to our expectations, the injection of AD-MSC into the graft junction during surgery resulted in the induction of increased signs of inflammation such as corneal edema with increased thickness, and a higher level of infiltration of leukocytes. This process led to a lower survival of the graft compared with the sham-treated corneal transplants. In the high-risk transplant model, in which immune ocular privilege was undermined by the induction of neovascularization prior to graft surgery, we found the use of systemic rabbit AD-MSCs prior to surgery, during surgery, and at various time points after surgery resulted in a shorter survival of the graft compared with the non-treated corneal grafts. Based on our results, local or systemic treatment with AD-MSCs to prevent corneal rejection in rabbit corneal models at normal or high risk of rejection does not increase survival but rather can increase inflammation and neovascularization and break the innate ocular immune privilege. This result can be partially explained by the immunomarkers, lack of immunosuppressive ability and immunophenotypical secretion molecules characterization of AD-MSC used in this study. Parameters including the risk of rejection, the inflammatory/vascularization environment, the cell source, the time of injection, the immunosuppression, the number of cells, and the mode of delivery must be established before translating the possible benefits of the use of MSCs in corneal transplants to clinical practice. PMID

  16. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine.

    PubMed

    Wu, Ling; Cai, Xiaoxiao; Zhang, Shu; Karperien, Marcel; Lin, Yunfeng

    2013-05-01

    Adipose-derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self-repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re-construct damaged cartilage tissue. In this article, we have reviewed the most up-to-date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co-culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation.

  17. Potential application of extracellular vesicles of human adipose tissue-derived mesenchymal stem cells in Alzheimer's disease therapeutics.

    PubMed

    Katsuda, Takeshi; Oki, Katsuyuki; Ochiya, Takahiro

    2015-01-01

    In the last 20 years, extracellular vesicles (EVs) have attracted attention as a versatile cell-cell communication mediator. The biological significance of EVs remains to be fully elucidated, but many reports have suggested that the functions of EVs mirror, at least in part, those of the cells from which they originate. Mesenchymal stem cells (MSCs) are a type of adult stem cell that can be isolated from connective tissue including bone marrow and adipose tissue and have emerged as an attractive candidate for cell therapy applications. Accordingly, an increasing number of reports have shown that EVs derived from MSCs have therapeutic potential in multiple diseases. We recently reported a novel therapeutic potential of EVs secreted from human adipose tissue-derived MSCs (hADSCs) (also known as adipose tissue-derived stem cells; ASCs) against Alzheimer's disease (AD). We found that hADSCs secrete exosomes carrying enzymatically active neprilysin, the most important β-amyloid peptide (Aβ)-degrading enzyme in the brain. In this chapter, we describe a method by which to evaluate the therapeutic potential of hADSC-derived EVs against AD from the point of view of their Aβ-degrading capacity.

  18. Fibroblast-Derived Extracellular Matrix Induces Chondrogenic Differentiation in Human Adipose-Derived Mesenchymal Stromal/Stem Cells in Vitro.

    PubMed

    Dzobo, Kevin; Turnley, Taegyn; Wishart, Andrew; Rowe, Arielle; Kallmeyer, Karlien; van Vollenstee, Fiona A; Thomford, Nicholas E; Dandara, Collet; Chopera, Denis; Pepper, Michael S; Parker, M Iqbal

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) represent an area being intensively researched for tissue engineering and regenerative medicine applications. MSCs may provide the opportunity to treat diseases and injuries that currently have limited therapeutic options, as well as enhance present strategies for tissue repair. The cellular environment has a significant role in cellular development and differentiation through cell-matrix interactions. The aim of this study was to investigate the behavior of adipose-derived MSCs (ad-MSCs) in the context of a cell-derived matrix so as to model the in vivo physiological microenvironment. The fibroblast-derived extracellular matrix (fd-ECM) did not affect ad-MSC morphology, but reduced ad-MSC proliferation. Ad-MSCs cultured on fd-ECM displayed decreased expression of integrins α2 and β1 and subsequently lost their multipotency over time, as shown by the decrease in CD44, Octamer-binding transcription factor 4 (OCT4), SOX2, and NANOG gene expression. The fd-ECM induced chondrogenic differentiation in ad-MSCs compared to control ad-MSCs. Loss of function studies, through the use of siRNA and a mutant Notch1 construct, revealed that ECM-mediated ad-MSCs chondrogenesis requires Notch1 and β-catenin signaling. The fd-ECM also showed anti-senescence effects on ad-MSCs. The fd-ECM is a promising approach for inducing chondrogenesis in ad-MSCs and chondrogenic differentiated ad-MSCs could be used in stem cell therapy procedures. PMID:27527147

  19. Fibroblast-Derived Extracellular Matrix Induces Chondrogenic Differentiation in Human Adipose-Derived Mesenchymal Stromal/Stem Cells in Vitro

    PubMed Central

    Dzobo, Kevin; Turnley, Taegyn; Wishart, Andrew; Rowe, Arielle; Kallmeyer, Karlien; van Vollenstee, Fiona A.; Thomford, Nicholas E.; Dandara, Collet; Chopera, Denis; Pepper, Michael S.; Parker, M. Iqbal

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) represent an area being intensively researched for tissue engineering and regenerative medicine applications. MSCs may provide the opportunity to treat diseases and injuries that currently have limited therapeutic options, as well as enhance present strategies for tissue repair. The cellular environment has a significant role in cellular development and differentiation through cell–matrix interactions. The aim of this study was to investigate the behavior of adipose-derived MSCs (ad-MSCs) in the context of a cell-derived matrix so as to model the in vivo physiological microenvironment. The fibroblast-derived extracellular matrix (fd-ECM) did not affect ad-MSC morphology, but reduced ad-MSC proliferation. Ad-MSCs cultured on fd-ECM displayed decreased expression of integrins α2 and β1 and subsequently lost their multipotency over time, as shown by the decrease in CD44, Octamer-binding transcription factor 4 (OCT4), SOX2, and NANOG gene expression. The fd-ECM induced chondrogenic differentiation in ad-MSCs compared to control ad-MSCs. Loss of function studies, through the use of siRNA and a mutant Notch1 construct, revealed that ECM-mediated ad-MSCs chondrogenesis requires Notch1 and β-catenin signaling. The fd-ECM also showed anti-senescence effects on ad-MSCs. The fd-ECM is a promising approach for inducing chondrogenesis in ad-MSCs and chondrogenic differentiated ad-MSCs could be used in stem cell therapy procedures. PMID:27527147

  20. Paracrine effects of human adipose-derived mesenchymal stem cells in inflammatory stress-induced senescence features of osteoarthritic chondrocytes

    PubMed Central

    Platas, Julia; Guillén, Maria Isabel; del Caz, Maria Dolores Pérez; Gomar, Francisco; Castejón, Miguel Angel; Mirabet, Vicente; Alcaraz, Maria José

    2016-01-01

    Aging and exposure to stress would determine the chondrocyte phenotype in osteoarthritis (OA). In particular, chronic inflammation may contribute to stress-induced senescence of chondrocytes and cartilage degeneration during OA progression. Recent studies have shown that adipose-derived mesenchymal stem cells exert paracrine effects protecting against degenerative changes in chondrocytes. We have investigated whether the conditioned medium (CM) from adipose-derived mesenchymal stem cells may regulate senescence features induced by inflammatory stress in OA chondrocytes. Our results indicate that CM down-regulated senescence markers induced by interleukin-1β including senescence-associated β-galactosidase activity, accumulation of γH2AX foci and morphological changes with enhanced formation of actin stress fibers. Treatment of chondrocytes with CM also decreased the production of oxidative stress, the activation of mitogen-activated protein kinases, and the expression of caveolin-1 and p21. The effects of CM were related to the reduction in p53 acetylation which would be dependent on the enhancement of Sirtuin 1 expression. Therefore, CM may exert protective effects in degenerative joint conditions by countering the premature senescence of OA chondrocytes induced by inflammatory stress. PMID:27490266

  1. Regeneration of mandibular defects using adipose tissue mesenchymal stromal cells in combination with human serum-derived scaffolds.

    PubMed

    Peña González, Ignacio; Álvarez-Viejo, María; Alonso-Montes, Cristina; Menéndez-Menéndez, Yolanda; Gutiérrez Álvarez, Fernando; de Vicente Rodríguez, Juan Carlos; Otero Hernández, Jesús; Meana Infiesta, Álvaro

    2016-09-01

    Bone regeneration is a challenging issue. Traditional solutions bring risks, potential complications, and morbidity. The aim of the present study was to regenerate critical-sized mandible defects in athymic rats with adipose tissue mesenchymal stromal cells (AT-MSCs) in combination with human serum-derived scaffolds. Two approaches to treatment were performed. The first approach used differentiated stromal cells that became osteogenic cell lines. The second approach used no pre-differentiation. Follow-up periods were 45 days and 90 days. Both cell types were combined with human serum-derived scaffolds. Afterward, histological (haematoxylin-eosin and Masson's Trichrome stain modified by Goldner), immunohistochemical (human vimentin and Stro-1), and radiological (microCT) studies were performed. The level of calcification between the groups was compared by analysis of variance, and statistical significance was set at p < 0.05. The results demonstrate that bone regeneration can be achieved with both undifferentiated and pre-differentiated cells, but that the structure and level of calcification were better achieved with pre-differentiated cells (p < 0.05). The scaffold is suitable for this cell type, is osteoconductive and simple to perform. This article highlights the possible application of adipose tissue mesenchymal stromal cells in combination with a non-mineralized scaffold in bone regeneration. PMID:27450897

  2. Paracrine effects of human adipose-derived mesenchymal stem cells in inflammatory stress-induced senescence features of osteoarthritic chondrocytes.

    PubMed

    Platas, Julia; Guillén, Maria Isabel; Pérez Del Caz, Maria Dolores; Gomar, Francisco; Castejón, Miguel Angel; Mirabet, Vicente; Alcaraz, Maria José

    2016-08-01

    Aging and exposure to stress would determine the chondrocyte phenotype in osteoarthritis (OA). In particular, chronic inflammation may contribute to stress-induced senescence of chondrocytes and cartilage degeneration during OA progression. Recent studies have shown that adipose-derived mesenchymal stem cells exert paracrine effects protecting against degenerative changes in chondrocytes. We have investigated whether the conditioned medium (CM) from adipose-derived mesenchymal stem cells may regulate senescence features induced by inflammatory stress in OA chondrocytes. Our results indicate that CM down-regulated senescence markers induced by interleukin-1β including senescence-associated β-galactosidase activity, accumulation of γH2AX foci and morphological changes with enhanced formation of actin stress fibers. Treatment of chondrocytes with CM also decreased the production of oxidative stress, the activation of mitogen-activated protein kinases, and the expression of caveolin-1 and p21. The effects of CM were related to the reduction in p53 acetylation which would be dependent on the enhancement of Sirtuin 1 expression. Therefore, CM may exert protective effects in degenerative joint conditions by countering the premature senescence of OA chondrocytes induced by inflammatory stress. PMID:27490266

  3. Alterations in the Secretome of Clinically Relevant Preparations of Adipose-Derived Mesenchymal Stem Cells Cocultured with Hyaluronan

    PubMed Central

    Succar, Peter; Breen, Edmond J.; Kuah, Donald; Herbert, Benjamin R.

    2015-01-01

    Osteoarthritis (OA) can be a debilitating degenerative disease and is the most common form of arthritic disease. There is a general consensus that current nonsurgical therapies are insufficient for younger OA sufferers who are not candidates for knee arthroplasties. Adipose-derived mesenchymal stem cells (MSCs) therapy for the treatment of OA can slow disease progression and lead to neocartilage formation. The mechanism of action is secretion driven. Current clinical preparations from adipose tissue for the treatment of OA include autologous stromal vascular fraction (SVF), SVF plus mature adipocytes, and culture-purified MSCs. Herein we have combined these human adipose-derived preparations with Hyaluronan (Hylan G-F 20: Synvisc) in vitro and measured alterations in cytokine profile. SVF plus mature adipocytes showed the greatest decreased in the proinflammatory cytokines IL-1β, IFN-γ, and VEGF. MCP-1 and MIP-1α decreased substantially in the SVF preparations but not the purified MSCs. The purified MSC preparation was the only one to show increase in MIF. Overall the SVF plus mature adipocytes preparation may be most suited of all the preparations for combination with HA for the treatment of OA, based on the alterations of heavily implicated cytokines in OA disease progression. This will require further validation using in vivo models. PMID:26257790

  4. Effect of TGF-β1 Stimulation on the Secretome of Human Adipose-Derived Mesenchymal Stromal Cells.

    PubMed

    Rodríguez, Tania M; Saldías, Alejandro; Irigo, Marcelo; Zamora, Jorge Velasco; Perone, Marcelo J; Dewey, Ricardo A

    2015-08-01

    Adipose tissue is an attractive source of mesenchymal stromal cells (MSCs) owing to the relative ease of obtaining large volumes with more MSC abundance compared with other sources. Increasing evidence supports the fact that trophic factors secreted by MSCs play a pivotal therapeutic role. Several strategies in regenerative medicine use MSCs, mainly exploiting their immunosuppressive effect and homing capacity to sites of damage. Transforming growth factor-β1 (TGF-β1) is a pleiotropic cytokine that, depending on the cell niche, can display either anti-inflammatory or proinflammatory effects. TGF-β1 expression increases in various tissues with damage, especially when accompanied by inflammation. Thus, we analyzed the effect of TGF-β1 on the secretion by adipose-derived mesenchymal stromal cells (ASCs) of a panel of 80 cytokines/chemokines using an antibody array. To avoid a possible effect of fetal bovine serum (FBS) on ASCs secretion, we performed our analysis by culturing cells in FBS-free conditions, only supplemented with 0.1% of bovine serum albumin. We report the cytokine profile secreted by ASCs. We also found that TGF-β1 exposure modulates 8 chemokines and 18 cytokines, including TGF-β1 and -β2, and other important cytokines involved in immunosuppression, allergic responses, and bone resorption. PMID:26025982

  5. Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation.

    PubMed

    Knippenberg, Marlene; Helder, Marco N; Doulabi, Behrouz Zandieh; Semeins, Cornelis M; Wuisman, Paul I J M; Klein-Nulend, Jenneke

    2005-01-01

    To engineer bone tissue, mechanosensitive cells are needed that are able to perform bone cell-specific functions, such as (re)modeling of bone tissue. In vivo, local bone mass and architecture are affected by mechanical loading, which is thought to provoke a cellular response via loading-induced flow of interstitial fluid. Adipose tissue is an easily accessible source of mesenchymal stem cells for bone tissue engineering, and is available in abundant amounts compared with bone marrow. We studied whether adipose tissue-derived mesenchymal stem cells (AT-MSCs) are responsive to mechanical loading by pulsating fluid flow (PFF) on osteogenic stimulation in vitro. We found that ATMSCs show a bone cell-like response to fluid shear stress as a result of PFF after the stimulation of osteogenic differentiation by 1,25-dihydroxyvitamin D3. PFF increased nitric oxide production, as well as upregulated cyclooxygenase-2, but not cyclooxygenase-1, gene expression in osteogenically stimulated AT-MSCs. These data suggest that AT-MSCs acquire bone cell-like responsiveness to pulsating fluid shear stress on 1,25-dihydroxyvitamin D3-induced osteogenic differentiation. ATMSCs might be able to perform bone cell-specific functions during bone (re)modeling in vivo and, therefore, provide a promising new tool for bone tissue engineering.

  6. Effect of TGF-β1 Stimulation on the Secretome of Human Adipose-Derived Mesenchymal Stromal Cells.

    PubMed

    Rodríguez, Tania M; Saldías, Alejandro; Irigo, Marcelo; Zamora, Jorge Velasco; Perone, Marcelo J; Dewey, Ricardo A

    2015-08-01

    Adipose tissue is an attractive source of mesenchymal stromal cells (MSCs) owing to the relative ease of obtaining large volumes with more MSC abundance compared with other sources. Increasing evidence supports the fact that trophic factors secreted by MSCs play a pivotal therapeutic role. Several strategies in regenerative medicine use MSCs, mainly exploiting their immunosuppressive effect and homing capacity to sites of damage. Transforming growth factor-β1 (TGF-β1) is a pleiotropic cytokine that, depending on the cell niche, can display either anti-inflammatory or proinflammatory effects. TGF-β1 expression increases in various tissues with damage, especially when accompanied by inflammation. Thus, we analyzed the effect of TGF-β1 on the secretion by adipose-derived mesenchymal stromal cells (ASCs) of a panel of 80 cytokines/chemokines using an antibody array. To avoid a possible effect of fetal bovine serum (FBS) on ASCs secretion, we performed our analysis by culturing cells in FBS-free conditions, only supplemented with 0.1% of bovine serum albumin. We report the cytokine profile secreted by ASCs. We also found that TGF-β1 exposure modulates 8 chemokines and 18 cytokines, including TGF-β1 and -β2, and other important cytokines involved in immunosuppression, allergic responses, and bone resorption.

  7. Characterization of basic amino acids-conjugated PAMAM dendrimers as gene carriers for human adipose-derived mesenchymal stem cells.

    PubMed

    Bae, Yoonhee; Lee, Sunray; Green, Eric S; Park, Jung Hyun; Ko, Kyung Soo; Han, Jin; Choi, Joon Sig

    2016-03-30

    Since mesenchymal stem cells (MSCs) can self-renew and differentiate into multiple cell types, the delivery of genes to this type of cell can be an important tool in the emerging field of tissue regeneration and engineering. However, development of more efficient and safe nonviral vectors for gene delivery to stem cells in particular still remains a great challenge. In this study, we describe a group of nonviral gene delivery vectors, conjugated PAMAM derivatives (PAMAM-H-R, PAMAM-H-K, and PAMAM-H-O), displaying affinity toward human adipose-derived mesenchymal stem cells (AD-MSCs). Transfection efficiency using pDNA encoding for luciferase (Luc) and enhanced green fluorescent protein (EGFP), and cytotoxicity assays were performed in human AD-MSCs. The results show that transfection efficiencies of conjugated PAMAM derivatives are improved significantly compared to native PAMAM dendrimer, and that among PAMAM derivatives, cytotoxicity of PAMAM-H-K and PAMAM-H-O were very low. Also, treatment of human AD-MSCs to polyplex formation in conjugated PAMAM derivatives, their cellular uptake and localization were analyzed by flow cytometry and confocal microscopy. PMID:26827918

  8. Effect of TGF-β1 Stimulation on the Secretome of Human Adipose-Derived Mesenchymal Stromal Cells

    PubMed Central

    Rodríguez, Tania M.; Saldías, Alejandro; Irigo, Marcelo; Zamora, Jorge Velasco; Perone, Marcelo J.

    2015-01-01

    Adipose tissue is an attractive source of mesenchymal stromal cells (MSCs) owing to the relative ease of obtaining large volumes with more MSC abundance compared with other sources. Increasing evidence supports the fact that trophic factors secreted by MSCs play a pivotal therapeutic role. Several strategies in regenerative medicine use MSCs, mainly exploiting their immunosuppressive effect and homing capacity to sites of damage. Transforming growth factor-β1 (TGF-β1) is a pleiotropic cytokine that, depending on the cell niche, can display either anti-inflammatory or proinflammatory effects. TGF-β1 expression increases in various tissues with damage, especially when accompanied by inflammation. Thus, we analyzed the effect of TGF-β1 on the secretion by adipose-derived mesenchymal stromal cells (ASCs) of a panel of 80 cytokines/chemokines using an antibody array. To avoid a possible effect of fetal bovine serum (FBS) on ASCs secretion, we performed our analysis by culturing cells in FBS-free conditions, only supplemented with 0.1% of bovine serum albumin. We report the cytokine profile secreted by ASCs. We also found that TGF-β1 exposure modulates 8 chemokines and 18 cytokines, including TGF-β1 and -β2, and other important cytokines involved in immunosuppression, allergic responses, and bone resorption. Significance Mesenchymal stromal cells (MSCs) secrete a broad spectrum of bioactive macromolecules that are both immunoregulatory and serve to structure regenerative microenvironments in fields of tissue injury. Increases or decreases in the production of TGF-β1 have been linked to numerous disease states, including autoimmune diseases and cancer. The secretome of MSCs stimulated with TGF-β1 is largely unknown. Thus, the present study makes an important contribution toward a better understanding of how MSCs could be affected by a cytokine normally upregulated in various diseases. PMID:26025982

  9. Multifunctional nanocrystalline calcium phosphates loaded with Tetracycline antibiotic combined with human adipose derived mesenchymal stromal stem cells (hASCs).

    PubMed

    Marycz, K; Pazik, R; Zawisza, K; Wiglusz, K; Maredziak, M; Sobierajska, P; Wiglusz, R J

    2016-12-01

    Osteoconductive drug delivery system composed of nanocrystalline calcium phosphates (Ca10(PO4)6(OH)2/β-Ca3(PO4)2) co-doped with Yb(3+)/Er(3+) ions loaded with Tetracycline antibiotic (TC) was developed. Their effect on human adipose derived mesenchymal stromal stem cells (hASCs) as a potential reconstructive biomaterial for bone tissue regeneration was studied. The XRD and TEM measurements were used in order to determine the crystal structure and morphology of the final products. The characteristics of nanocomposites with the TC and hASCs as potential regenerative materials as well as the antimicrobial activity of the nanoparticles against: Staphylococcus aureus ATCC 25923 as a model of the Gram-positive bacteria, Escherichia coli ATCC 8739 of the Gram-negative bacteria, were shown. These combinations can be a promising material for theranostic due to its regenerative, antimicrobial and fluorescent properties. PMID:27612684

  10. Differentiation of human adipose-derived mesenchymal stem cell into insulin-producing cells: an in vitro study.

    PubMed

    Moshtagh, P Rahnamay; Emami, S Hojati; Sharifi, Ali M

    2013-09-01

    Stem cells with the ability to differentiate into insulin-producing cells (IPCs) are becoming the most promising therapy for diabetes mellitus and reduce the major limitations of availability and allogeneic rejection of beta cell transplantations. Mesenchymal stem cells (MSCs) are pluripotent stromal cells with the ability to proliferate and differentiate into a variety of cell types including endocrine cells of the pancreas. This study sought to inspect the in vitro differentiation of human adipose-derived tissue stem cells into IPCs which could provide an abundant source of cells for the purpose of diabetic cell therapy in addition to avoid immunological rejection. Adipose-derived MSCs were obtained from liposuction aspirates and induced to differentiate into insulin-secreting cells under a three-stage protocol based on a combination of low-glucose DMEM medium, β-mercaptoethanol, and nicotinamide for pre-induction and high-glucose DMEM, β-mercaptoethanol, nicotinamide, and exendin-4 for induction stages of differentiation. Differentiation was evaluated by the analysis of morphology, dithizone staining, RT-PCR, and immunocytochemistry. Morphological changes including typical islet-like cell clusters were observed by phase-contrast microscope at the end of differentiation protocol. Based on dithizone staining, differentiated cells were positive and undifferentiated cells were not stained. Furthermore, RT-PCR results confirmed the expression of insulin, PDX1, Ngn3, PAX4, and GLUT2 in differentiated cells. Moreover, insulin production by the IPCs was confirmed by immunocytochemistry analysis. It is concluded that adipose-derived MSCs could differentiate into insulin-producing cells in vitro.

  11. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    SciTech Connect

    Fiedler, Tomas; Salamon, Achim; Adam, Stefanie; Herzmann, Nicole; Taubenheim, Jan; Peters, Kirsten

    2013-11-01

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.

  12. Endothelial differentiation of adipose-derived mesenchymal stem cells is improved by epigenetic modifying drug BIX-01294.

    PubMed

    Culmes, Mihaela; Eckstein, Hans-Henning; Burgkart, Rainer; Nüssler, Andreas K; Guenther, Michael; Wagner, Ernst; Pelisek, Jaroslav

    2013-02-01

    Chromatin remodeling plays an essential role in regulation of gene transcription. Consequently, targeted changes in chromatin may also augment pluripotency of somatic cells. The aim of the present study was to evaluate the effect of epigenetic drug BIX-01294 (BIX), a histone G9a inhibitor, on DNA methylation, expression of pluripotency genes POU5F1 (isoform a), NANOG, KLF4, and CMYC in mesenchymal stem cells, and the ability to increase their differentiation potential into endothelial cells (ECs). Human adipose-derived mesenchymal stem cells (AdMSCs) were isolated from abdominal adipose tissue. Cells were pre-treated with BIX for 48h and further differentiated in endothelial medium for 7 and 14 days. Global DNA methylation was determined by MethyLight application, expression of genes for pluripotency, endothelial and angiogenic markers by SYBRGreen-based real-time PCR, immunocytochemistry, and immunobloting. Following treatment with BIX, DNA methylation status of AdMSCs was significantly reduced by 53% (p=0.008), the expression of POU5F1 and NANOG was increased by 2.2-fold (p=0.016) and 1.5-fold (p<0.001), respectively. Furthermore, BIX pre-treatment improved the differentiation capacity of AdMSCs into ECs and significantly increased expression of several endothelial markers and factors involved in blood vessel formation: VCAM-1, PECAM-1, von Willebrand factor, VEGFR-2, PDGF, and ANG-1 in comparison with AdMSCs without BIX pre-treatment. In the present study we demonstrate that epigenetic modifying drug BIX-01294 is able to increase the ability of AdMSCs to differentiate into ECs engaging DNA and histone methylation. Hence, BIX-01294 might serve as a simple tool to increase the differentiation potential of AdMSCs. PMID:23246144

  13. Construction and characterization of osteogenic and vascular endothelial cell sheets from rat adipose-derived mesenchymal stem cells.

    PubMed

    Zhang, Hualin; Yu, Na; Zhou, Yueli; Ma, Hairong; Wang, Juan; Ma, Xuerong; Liu, Jinsong; Huang, Jin; An, Yilin

    2016-10-01

    In this study, adipose-derived mesenchymal stem cells (ADSCs) were isolated from adipose tissues of rats. Flow cytometry identification showed that ADSCs of passage 3 highly expressed CD29 and CD44, but hardly expressed CD31 and CD45. Adipogenic, osteogenic, and chondrogenic differentiation were confirmed by the results of oil red O staining, alkaline phosphatase (ALP), and alcian blue staining, respectively. ADSCs at a density of 1×10(6)/cm(2) were cultured in the osteogenic medium and the osteogenic cell sheets could be obtained after 14 d. The cell sheets were positive with von kossa staining. The transmission electron microscopy (TEM) result showed that needle-like calcium salt crystals were deposited on the ECM. These results suggested that the osteogenic cell sheets may have potential osteogenesis ability. ADSCs at a density of 1×10(6)/cm(2) were cultured in the endothelial cell growth medium-2 and the endothelial cell sheets can be formed after 16 d of culture. The TEM image confirmed that the Weibel-Palade corpuscle was seen in the cells. The expression of CD31 was positive, suggesting that the endothelial cell sheets may have a strong ability to form blood vessels. In this study, two types of cell sheets with the potential abilities of osteogenesis and blood vessels formation were obtained by induced culture of ADSCs in vitro, which lays a foundation to build vascularized tissue engineered bone for the therapy of bone defects. PMID:27514849

  14. Osteogenic potential of human adipose-tissue-derived mesenchymal stromal cells cultured on 3D-printed porous structured titanium.

    PubMed

    Lewallen, Eric A; Jones, Dakota L; Dudakovic, Amel; Thaler, Roman; Paradise, Christopher R; Kremers, Hilal M; Abdel, Matthew P; Kakar, Sanjeev; Dietz, Allan B; Cohen, Robert C; Lewallen, David G; van Wijnen, Andre J

    2016-05-01

    Integration of porous metal prosthetics, which restore form and function of irreversibly damaged joints, into remaining healthy bone is critical for implant success. We investigated the biological properties of adipose-tissue-derived mesenchymal stromal/stem cells (AMSCs) and addressed their potential to alter the in vitro microenvironment of implants. We employed human AMSCs as a practical source for musculoskeletal applications because these cells can be obtained in large quantities, are multipotent, and have trophic paracrine functions. AMSCs were cultured on surgical-grade porous titanium disks as a model for orthopedic implants. We monitored cell/substrate attachment, cell proliferation, multipotency, and differentiation phenotypes of AMSCs upon osteogenic induction. High-resolution scanning electron microscopy and histology revealed that AMSCs adhere to the porous metallic surface. Compared to standard tissue culture plastic, AMSCs grown in the porous titanium microenvironment showed differences in temporal expression for genes involved in cell cycle progression (CCNB2, HIST2H4), extracellular matrix production (COL1A1, COL3A1), mesenchymal lineage identity (ACTA2, CD248, CD44), osteoblastic transcription factors (DLX3, DLX5, ID3), and epigenetic regulators (EZH1, EZH2). We conclude that metal orthopedic implants can be effectively seeded with clinical-grade stem/stromal cells to create a pre-conditioned implant. PMID:26774799

  15. Osteogenic potential of human adipose-tissue-derived mesenchymal stromal cells cultured on 3D-printed porous structured titanium.

    PubMed

    Lewallen, Eric A; Jones, Dakota L; Dudakovic, Amel; Thaler, Roman; Paradise, Christopher R; Kremers, Hilal M; Abdel, Matthew P; Kakar, Sanjeev; Dietz, Allan B; Cohen, Robert C; Lewallen, David G; van Wijnen, Andre J

    2016-05-01

    Integration of porous metal prosthetics, which restore form and function of irreversibly damaged joints, into remaining healthy bone is critical for implant success. We investigated the biological properties of adipose-tissue-derived mesenchymal stromal/stem cells (AMSCs) and addressed their potential to alter the in vitro microenvironment of implants. We employed human AMSCs as a practical source for musculoskeletal applications because these cells can be obtained in large quantities, are multipotent, and have trophic paracrine functions. AMSCs were cultured on surgical-grade porous titanium disks as a model for orthopedic implants. We monitored cell/substrate attachment, cell proliferation, multipotency, and differentiation phenotypes of AMSCs upon osteogenic induction. High-resolution scanning electron microscopy and histology revealed that AMSCs adhere to the porous metallic surface. Compared to standard tissue culture plastic, AMSCs grown in the porous titanium microenvironment showed differences in temporal expression for genes involved in cell cycle progression (CCNB2, HIST2H4), extracellular matrix production (COL1A1, COL3A1), mesenchymal lineage identity (ACTA2, CD248, CD44), osteoblastic transcription factors (DLX3, DLX5, ID3), and epigenetic regulators (EZH1, EZH2). We conclude that metal orthopedic implants can be effectively seeded with clinical-grade stem/stromal cells to create a pre-conditioned implant.

  16. Intracerebral transplantation of adipose-derived mesenchymal stem cells alternatively activates microglia and ameliorates neuropathological deficits in Alzheimer's disease mice.

    PubMed

    Ma, Tuo; Gong, Kai; Ao, Qiang; Yan, Yufang; Song, Bo; Huang, Hongyun; Zhang, Xiufang; Gong, Yandao

    2013-01-01

    Recent studies suggest that transplantation of mesenchymal stem cells might have therapeutic effects in preventing pathogenesis of several neurodegenerative disorders. Adipose-derived mesenchymal stem cells (ADSCs) are a promising new cell source for regenerative therapy. However, whether transplantation of ADSCs could actually ameliorate the neuropathological deficits in Alzheimer's disease (AD) and the mechanisms involved has not yet been established. Here, we evaluated the therapeutic effects of intracerebral ADSC transplantation on AD pathology and spatial learning/memory of APP/PS1 double transgenic AD model mice. Results showed that ADSC transplantation dramatically reduced β-amyloid (Aβ) peptide deposition and significantly restored the learning/memory function in APP/PS1 transgenic mice. It was observed that in both regions of the hippocampus and the cortex there were more activated microglia, which preferentially surrounded and infiltrated into plaques after ADSC transplantation. The activated microglia exhibited an alternatively activated phenotype, as indicated by their decreased expression levels of proinflammatory factors and elevated expression levels of alternative activation markers, as well as Aβ-degrading enzymes. In conclusion, ADSC transplantation could modulate microglial activation in AD mice, mitigate AD symptoms, and alleviate cognitive decline, all of which suggest ADSC transplantation as a promising choice for AD therapy. This manuscript is published as part of the International Association of Neurorestoratology (IANR) supplement issue of Cell Transplantation.

  17. Analysis of cell growth and gene expression of porcine adipose tissue-derived mesenchymal stem cells as nuclear donor cell.

    PubMed

    Oh, Hyun Ju; Park, Jung Eun; Park, Eun Jung; Kim, Min Jung; Kim, Geon A; Rhee, Sang Ho; Lim, Sang Hyun; Kang, Sung Keun; Lee, Byeong Chun

    2014-12-01

    In several laboratory animals and humans, adipose tissue-derived mesenchymal stem cells (ASC) are of considerable interest because they are easy to harvest and can generate a huge proliferation of cells from a small quantity of fat. In this study, we investigated: (i) the expression patterns of reprogramming-related genes in porcine ASC; and (ii) whether ASC can be a suitable donor cell type for generating cloned pigs. For these experiments, ASC, adult skin fibroblasts (AF) and fetal fibroblasts (FF) were derived from a 4-year-old female miniature pig. The ASC expressed cell-surface markers characteristic of stem cells, and underwent in vitro differentiation when exposed to specific differentiation-inducing conditions. Expression of DNA methyltransferase (DNMT)1 in ASC was similar to that in AF, but the highest expression of the DNMT3B gene was observed in ASC. The expression of OCT4 was significantly higher in FF and ASC than in AF (P < 0.05), and SOX2 showed significantly higher expression in ASC than in the other two cell types (P < 0.05). After somatic cell nuclear transfer (SCNT), the development rate of cloned embryos derived from ASC was comparable to the development of those derived using FF. Total cell numbers of blastocysts derived using ASC and FF were significantly higher than in embryos made with AF. The results demonstrated that ASC used for SCNT have a potential comparable to those of AF and FF in terms of embryo in vitro development and blastocyst formation.

  18. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue.

    PubMed

    Heo, June Seok; Choi, Youjeong; Kim, Han-Soo; Kim, Hyun Ok

    2016-01-01

    Mesenchymal stem cells (MSCs) are clinically useful due to their capacity for self-renewal, their immunomodulatory properties and tissue regenerative potential. These cells can be isolated from various tissues and exhibit different potential for clinical applications according to their origin, and thus comparative studies on MSCs from different tissues are essential. In this study, we investigated the immunophenotype, proliferative potential, multilineage differentiation and immunomodulatory capacity of MSCs derived from different tissue sources, namely bone marrow, adipose tissue, the placenta and umbilical cord blood. The gene expression profiles of stemness-related genes [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box (SOX)2, MYC, Krüppel-like factor 4 (KLF4), NANOG, LIN28 and REX1] and lineage‑related and differentiation stage-related genes [B4GALNT1 (GM2/GS2 synthase), inhibin, beta A (INHBA), distal-less homeobox 5 (DLX5), runt-related transcription factor 2 (RUNX2), proliferator‑activated receptor gamma (PPARG), CCAAT/enhancer-binding protein alpha (C/EBPA), bone morphogenetic protein 7 (BMP7) and SOX9] were compared using RT-PCR. No significant differences in growth rate, colony-forming efficiency and immunophenotype were observed. Our results demonstrated that MSCs derived from bone marrow and adipose tissue shared not only in vitro tri-lineage differentiation potential, but also gene expression profiles. While there was considerable inter-donor variation in DLX5 expression between MSCs derived from different tissues, its expression appears to be associated with the osteogenic potential of MSCs. Bone marrow-derived MSCs (BM-MSCs) significantly inhibited allogeneic T cell proliferation possibly via the high levels of the immunosuppressive cytokines, IL10 and TGFB1. Although MSCs derived from different tissues and fibroblasts share many characteristics, some of the marker genes, such as B4GALNT1 and DLX5 may be useful for

  19. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue

    PubMed Central

    HEO, JUNE SEOK; CHOI, YOUJEONG; KIM, HAN-SOO; KIM, HYUN OK

    2016-01-01

    Mesenchymal stem cells (MSCs) are clinically useful due to their capacity for self-renewal, their immunomodulatory properties and tissue regenerative potential. These cells can be isolated from various tissues and exhibit different potential for clinical applications according to their origin, and thus comparative studies on MSCs from different tissues are essential. In this study, we investigated the immunophenotype, proliferative potential, multilineage differentiation and immunomodulatory capacity of MSCs derived from different tissue sources, namely bone marrow, adipose tissue, the placenta and umbilical cord blood. The gene expression profiles of stemness-related genes [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box (SOX)2, MYC, Krüppel-like factor 4 (KLF4), NANOG, LIN28 and REX1] and lineage-related and differentiation stage-related genes [B4GALNT1 (GM2/GS2 synthase), inhibin, beta A (INHBA), distal-less homeobox 5 (DLX5), runt-related transcription factor 2 (RUNX2), proliferator-activated receptor gamma (PPARG), CCAAT/enhancer-binding protein alpha (C/EBPA), bone morphogenetic protein 7 (BMP7) and SOX9] were compared using RT-PCR. No significant differences in growth rate, colony-forming efficiency and immunophenotype were observed. Our results demonstrated that MSCs derived from bone marrow and adipose tissue shared not only in vitro trilineage differentiation potential, but also gene expression profiles. While there was considerable interdonor variation in DLX5 expression between MSCs derived from different tissues, its expression appears to be associated with the osteogenic potential of MSCs. Bone marrow-derived MSCs (BM-MSCs) significantly inhibited allogeneic T cell proliferation possibly via the high levels of the immunosuppressive cytokines, IL10 and TGFB1. Although MSCs derived from different tissues and fibroblasts share many characteristics, some of the marker genes, such as B4GALNT1 and DLX5 may be useful for the

  20. Adipose-derived mesenchymal stromal/stem cells: An update on their phenotype in vivo and in vitro

    PubMed Central

    Baer, Patrick C

    2014-01-01

    Adipose tissue is a rich, ubiquitous and easily accessible source for multipotent stromal/stem cells and has, therefore, several advantages compared to other sources of mesenchymal stromal/stem cells. Several studies have tried to identify the origin of the stromal/stem cell population within adipose tissue in situ. This is a complicated attempt because no marker has currently been described which unambiguously identifies native adipose-derived stromal/stem cells (ASCs). Isolated and cultured ASCs are a non-uniform preparation consisting of several subsets of stem and precursor cells. Cultured ASCs are characterized by their expression of a panel of markers (and the absence of others), whereas their in vitro phenotype is dynamic. Some markers were expressed de novo during culture, the expression of some markers is lost. For a long time, CD34 expression was solely used to characterize haematopoietic stem and progenitor cells, but now it has become evident that it is also a potential marker to identify an ASC subpopulation in situ and after a short culture time. Nevertheless, long-term cultured ASCs do not express CD34, perhaps due to the artificial environment. This review gives an update of the recently published data on the origin and phenotype of ASCs both in vivo and in vitro. In addition, the composition of ASCs (or their subpopulations) seems to vary between different laboratories and preparations. This heterogeneity of ASC preparations may result from different reasons. One of the main problems in comparing results from different laboratories is the lack of a standardized isolation and culture protocol for ASCs. Since many aspects of ASCs, such as the differential potential or the current use in clinical trials, are fully described in other recent reviews, this review further updates the more basic research issues concerning ASCs’ subpopulations, heterogeneity and culture standardization. PMID:25126376

  1. Autologous platelet-rich plasma: a biological supplement to enhance adipose-derived mesenchymal stem cell expansion.

    PubMed

    Atashi, Fatemeh; Jaconi, Marisa E E; Pittet-Cuénod, Brigitte; Modarressi, Ali

    2015-03-01

    Currently the use of non-autologous cell culture media (e.g., animal-derived or allogeneic serum) for clinical applications of mesenchymal stem cells (MSCs) is criticized by regulatory agencies. Autologous platelet-rich plasma (PRP) is proposed as a safer alternative medium supplement for adipose-derived mesenchymal stem cells (AT-MSC) culture. To study its efficiency on cell proliferation, AT-MSCs were cultured for 10 days in media supplemented with different concentrations of autologous non-activated PRP (nPRP) or thrombin-activated PRP (tPRP) (1-60%). AT-MSC proliferation, cell phenotype, multipotency capacity, and chromosome stability were assessed and compared to AT-MSCs expanded in a classical medium supplemented with 10% of fetal bovine serum (FBS). Culture media supplemented with nPRP showed dose-dependent higher AT-MSC proliferation than did FBS or tPRP. Twenty percent nPRP was the most effective concentration to promote cell proliferation. This condition increased 13.9 times greater AT-MSC number in comparison to culture with FBS, without changing the AT-MSC phenotype, differentiation capacity, and chromosome status. We concluded that 20% autologous nPRP is a safe, efficient, and cost-effective supplement for AT-MSC expansion. It should be considered as an alternative to FBS or other nonautologous blood derivatives. It could serve as a potent substitute for the validation of future clinical protocols as it respects good manufacturing practices and regulatory agencies' standards. PMID:25025830

  2. Autologous Platelet-Rich Plasma: A Biological Supplement to Enhance Adipose-Derived Mesenchymal Stem Cell Expansion

    PubMed Central

    Atashi, Fatemeh; Jaconi, Marisa E.E.; Pittet-Cuénod, Brigitte

    2015-01-01

    Currently the use of non-autologous cell culture media (e.g., animal-derived or allogeneic serum) for clinical applications of mesenchymal stem cells (MSCs) is criticized by regulatory agencies. Autologous platelet-rich plasma (PRP) is proposed as a safer alternative medium supplement for adipose-derived mesenchymal stem cells (AT-MSC) culture. To study its efficiency on cell proliferation, AT-MSCs were cultured for 10 days in media supplemented with different concentrations of autologous non-activated PRP (nPRP) or thrombin-activated PRP (tPRP) (1–60%). AT-MSC proliferation, cell phenotype, multipotency capacity, and chromosome stability were assessed and compared to AT-MSCs expanded in a classical medium supplemented with 10% of fetal bovine serum (FBS). Culture media supplemented with nPRP showed dose-dependent higher AT-MSC proliferation than did FBS or tPRP. Twenty percent nPRP was the most effective concentration to promote cell proliferation. This condition increased 13.9 times greater AT-MSC number in comparison to culture with FBS, without changing the AT-MSC phenotype, differentiation capacity, and chromosome status. We concluded that 20% autologous nPRP is a safe, efficient, and cost-effective supplement for AT-MSC expansion. It should be considered as an alternative to FBS or other nonautologous blood derivatives. It could serve as a potent substitute for the validation of future clinical protocols as it respects good manufacturing practices and regulatory agencies' standards. PMID:25025830

  3. Platelet-derived growth factor BB enhances osteogenesis of adipose-derived but not bone marrow-derived mesenchymal stromal/stem cells

    PubMed Central

    Hung, Ben P.; Hutton, Daphne L.; Kozielski, Kristen L.; Bishop, Corey J.; Naved, Bilal; Green, Jordan J.; Caplan, Arnold I.; Gimble, Jeffrey M.; Dorafshar, Amir H.; Grayson, Warren L.

    2015-01-01

    Tissue engineering using mesenchymal stem cells holds great promise for regenerating critically sized bone defects. While the bone marrow-derived mesenchymal stem cell (MSC) is the most widely studied stromal/stem cell type for this application, its rarity within bone marrow and painful isolation procedure have motivated investigation of alternative cell sources. Adipose-derived stromal/stem cells (ASCs) are more abundant and more easily procured; furthermore, they also possess robust osteogenic potency. While these two cell types are widely considered very similar, there is a growing appreciation of possible innate differences in their biology and response to growth factors. In particular, reports indicate that their osteogenic response to platelet-derived growth factor BB (PDGF-BB) is markedly different: MSCs responded negatively or not at all to PDGF-BB while ASCs exhibited enhanced mineralization in response to physiological concentrations of PDGF-BB. In this study, we directly tested whether a fundamental difference existed between the osteogenic responses of MSCs and ASCs to PDGF-BB. MSCs and ASCs cultured under identical osteogenic conditions responded disparately to 20 ng/mL of PDGF-BB: MSCs exhibited no difference in mineralization while ASCs produced more calcium per cell. siRNA-mediated knockdown of PDGFRβ within ASCs abolished their ability to respond to PDGF-BB. Gene expression was also different; MSCs generally downregulated and ASCs generally upregulated osteogenic genes in response to PDGF-BB. ASCs transduced to produce PDGF-BB resulted in more regenerated bone within a critically sized murine calvarial defect compared to control ASCs, indicating PDGF-BB used specifically in conjunction with ASCs might enhance tissue engineering approaches for bone regeneration. PMID:26013357

  4. Adipose-derived mesenchymal stem cell-facilitated TRAIL expression in melanoma treatment in vitro

    PubMed Central

    JING, HAI XIA; DUAN, DE JIAN; ZHOU, HUI; HU, QING MEI; LEI, TIE CHI

    2016-01-01

    Adipose-derived stem cells (ADSCs) may be useful as an efficient vehicle in cell-based gene therapy of human diseases due to their ability to migrate to disease lesions. This study investigated the ability of ADSC-harbored human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cDNA to facilitate TRAIL expression and induce A375 melanoma cell apoptosis as observed using a Transwell co-culture system. A cell migration assay was used to observe ADSC migration ability. In addition, TRAIL protein expression was successfully detected by western blot analysis in ADSCs after stable transfection of TRAIL cDNA. The Transwell co-culture system data showed that TRAIL-ADSCs could induce A375 cell apoptosis in a dose-dependent manner. At the gene level, the killing activity of TRAIL-ADSCs was associated with activation of caspase-4 and caspase-8. Collectively, the data from the current study provides preclinical support of ADSC-facilitated TRAIL expression in the treatment of melanoma. Further investigation is required to evaluate and confirm the in vivo ability of TRAIL-ADSCs in therapy of melanoma in animal models. PMID:27177242

  5. Adhesion of adipose-derived mesenchymal stem cells to glycosaminoglycan surfaces with different protein patterns.

    PubMed

    Soares da Costa, Diana; Márquez-Posadas, Maria del Carmen; Araujo, Ana R; Yang, Yuan; Merino, Santos; Groth, Thomas; Reis, Rui L; Pashkuleva, Iva

    2015-05-13

    Proteins and glycosaminoglycans (GAGs) are the main constituents of the extracellular matrix (ECM). They act in synergism and are equally critical for the development, growth, function, or survival of an organism. In this work, we developed surfaces that display these two classes of biomacromolecules, namely, GAGs and proteins, in a spatially controlled fashion. The generated surfaces can be used as a minimalistic but straightforward model aiding the elucidation of cell-ECM interactions. GAGs (hyaluronic acid and heparin) were covalently bound to amino functionalized surfaces, and albumin or fibronectin was patterned by microcontact printing on top of them. We demonstrate that adipose-derived stem cells (ASCs) can adhere either on the protein or on the GAG pattern as a function of the patterned molecules. ASCs found on the GAG pattern had different morphology and expressed different surface markers than the cells adhered on the protein pattern. ASCs morphology and spreading were also dependent on the size of the pattern. These results show that the developed supports can also be used for ASCs differentiation into different lineages.

  6. Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells.

    PubMed

    Ongaro, Alessia; Pellati, Agnese; Bagheri, Leila; Fortini, Cinzia; Setti, Stefania; De Mattei, Monica

    2014-09-01

    Pulsed electromagnetic fields (PEMFs) play a regulatory role on osteoblast activity and are clinically beneficial during fracture healing. Human mesenchymal stem cells (MSCs) derived from different sources have been extensively used in bone tissue engineering. Compared with MSCs isolated from bone marrow (BMSCs), those derived from adipose tissue (ASCs) are easier to obtain and available in larger amounts, although they show a less osteogenic differentiation potential than BMSCs. The hypothesis tested in this study was to evaluate whether PEMFs favor osteogenic differentiation both in BMSCs and in ASCs and to compare the role of PEMFs alone and in combination with the biochemical osteogenic stimulus bone morphogenetic protein (BMP)-2. Early and later osteogenic markers, such as alkaline phosphatase (ALP) activity, osteocalcin levels, and matrix mineralization, were analyzed at different times during osteogenic differentiation. Results showed that PEMFs induced osteogenic differentiation by increasing ALP activity, osteocalcin, and matrix mineralization in both BMSCs and ASCs, suggesting that PEMF activity is maintained during the whole differentiation period. The addition of BMP-2 in PEMF exposed cultures further increased all the osteogenic markers in BMSCs, while in ASCs, the stimulatory role of PEMFs was independent of BMP-2. Our results indicate that PEMFs may stimulate an early osteogenic induction in both BMSCs and ASCs and they suggest PEMFs as a bioactive factor to enhance the osteogenesis of ASCs, which are an attractive cell source for clinical applications. In conclusion, PEMFs may be considered a possible tool to improve autologous cell-based regeneration of bone defects in orthopedics.

  7. Addition of Adipose-Derived Stem Cells to Mesenchymal Stem Cell Sheets Improves Bone Formation at an Ectopic Site

    PubMed Central

    Wang, Zhifa; Li, Zhijin; Dai, Taiqiang; Zong, Chunlin; Liu, Yanpu; Liu, Bin

    2016-01-01

    To determine the effect of adipose-derived stem cells (ADSCs) added to bone marrow-derived mesenchymal stem cell (MSC) sheets on bone formation at an ectopic site. We isolated MSCs and ADSCs from the same rabbits. We then prepared MSC sheets for implantation with or without ADSCs subcutaneously in the backs of severe combined immunodeficiency (SCID) mice. We assessed bone formation at eight weeks after implantation by micro-computed tomography and histological analysis. In osteogenic medium, MSCs grew to form multilayer sheets containing many calcium nodules. MSC sheets without ADSCs formed bone-like tissue; although neo-bone and cartilage-like tissues were sparse and unevenly distributed by eight weeks after implantation. In comparison, MSC sheets with ADSCs promoted better bone regeneration as evidenced by the greater density of bone, increased mineral deposition, obvious formation of blood vessels, large number of interconnected ossified trabeculae and woven bone structures, and greater bone volume/total volume within the composite constructs. Our results indicate that although sheets of only MSCs have the potential to form tissue engineered bone at an ectopic site, the addition of ADSCs can significantly increase the osteogenic potential of MSC sheets. Thus, the combination of MSC sheets with ADSCs may be regarded as a promising therapeutic strategy to stimulate bone regeneration. PMID:26848656

  8. Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Lee, Jun Hee; Han, Yong-Seok; Lee, Sang Hun

    2016-01-01

    Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine. PMID:26869524

  9. Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells.

    PubMed

    Lee, Jun Hee; Han, Yong-Seok; Lee, Sang Hun

    2016-05-01

    Mesenchymal stem cells (MSCs) offer significant therapeutic promise for various regenerative therapies. However, MSC-based therapy for injury exhibits low efficacy due to the pathological environment in target tissues and the differences between in vitro and in vivo conditions. To address this issue, we developed adipose-derived MSC spheroids as a novel delivery method to preserve the stem cell microenvironment. MSC spheroids were generated by suspension culture for 3 days, and their sizes increased in a time-dependent manner. After re-attachment of MSC spheroids to the plastic dish, their adhesion capacity and morphology were not altered. MSC spheroids showed enhanced production of hypoxia-induced angiogenic cytokines such as vascular endothelial growth factor (VEGF), stromal cell derived factor (SDF), and hepatocyte growth factor (HGF). In addition, spheroid culture promoted the preservation of extracellular matrix (ECM) components, such as laminin and fibronectin, in a culture time- and spheroid size-dependent manner. Furthermore, phosphorylation of AKT, a cell survival signal, was significantly higher and the expression of pro-apoptotic molecules, poly (ADP ribose) polymerase-1 (PARP-1) and cleaved caspase-3, was markedly lower in the spheroids than in MSCs in monolayers. In the murine hindlimb ischemia model, transplanted MSC spheroids showed better proliferation than MSCs in monolayer. These findings suggest that MSC spheroids promote MSC bioactivities via secretion of angiogenic cytokines, preservation of ECM components, and regulation of apoptotic signals. Therefore, MSC spheroid-based cell therapy may serve as a simple and effective strategy for regenerative medicine. PMID:26869524

  10. Addition of Adipose-Derived Stem Cells to Mesenchymal Stem Cell Sheets Improves Bone Formation at an Ectopic Site.

    PubMed

    Wang, Zhifa; Li, Zhijin; Dai, Taiqiang; Zong, Chunlin; Liu, Yanpu; Liu, Bin

    2016-01-01

    To determine the effect of adipose-derived stem cells (ADSCs) added to bone marrow-derived mesenchymal stem cell (MSC) sheets on bone formation at an ectopic site. We isolated MSCs and ADSCs from the same rabbits. We then prepared MSC sheets for implantation with or without ADSCs subcutaneously in the backs of severe combined immunodeficiency (SCID) mice. We assessed bone formation at eight weeks after implantation by micro-computed tomography and histological analysis. In osteogenic medium, MSCs grew to form multilayer sheets containing many calcium nodules. MSC sheets without ADSCs formed bone-like tissue; although neo-bone and cartilage-like tissues were sparse and unevenly distributed by eight weeks after implantation. In comparison, MSC sheets with ADSCs promoted better bone regeneration as evidenced by the greater density of bone, increased mineral deposition, obvious formation of blood vessels, large number of interconnected ossified trabeculae and woven bone structures, and greater bone volume/total volume within the composite constructs. Our results indicate that although sheets of only MSCs have the potential to form tissue engineered bone at an ectopic site, the addition of ADSCs can significantly increase the osteogenic potential of MSC sheets. Thus, the combination of MSC sheets with ADSCs may be regarded as a promising therapeutic strategy to stimulate bone regeneration.

  11. Supplementation freeze-thawed media with selenium protect adipose-derived mesenchymal stem cells from freeze-thawed induced injury.

    PubMed

    Valadbeygi, Arash; Naji, Tahere; Pirnia, Afshin; Gholami, Mohammadreza

    2016-10-01

    Successful freezed-thaw of adipose-derived mesenchymal stem cells (ADMSCs) could be a major step in regenerative medicine as well as in the cloning of animal breeds. The aim of this study was to evaluate the efficacy of selenium on the optimizing of freezed-thaw media in the ADMSCs. ADMSCs were extracted from NMRI mice and purified with positive selection Monoclonal CD105 Antibody (PE) and negative selection Monoclonal CD31 and CD45 Antibody using MACS method as well as differentiation to adipose and bone tissue. ADMSCs were divided into four groups. ADMSCs were freezed-thaw under standard condition with or without the addition of 5 ng/ml selenium to both the cryopreservation and thawing solutions. Frozen cells were thawed after four months and viability and cytotoxicity of the cells were analyzed by the Trypan blue test and MTT assay respectively. RNA was extracted and cDNA was synthesized and the expression of apoptotic genes (P53, Fas, Bax, Caspase3, and Bcl2) was examined using Real time-PCR Rotor gene 2009. This study compares slow and rapid methods of cryopreservation. After thawing, viability of the cells treated with selenium was higher than the control group in rapid and slow cryopreserved ADMSCs. Also, the percentage of living cells in the slow cooling method was considerably more than with the rapid cooling method. After analysis of the results using Real time-PCR, the Bcl2 gene was shown to be expressed in both the rapid and slow cooling methods. In the rapid cooling group in addition to the BCL-2 gene, p53 was also expressed. It appears that selenium prevented the apoptotic genes from expression due to its anti-apoptotic effects. The slow cooling method is better and more optimized for ADMSCs protecting them from oxidative damage to a greater extent compared to the rapid cooling method. PMID:27546222

  12. hBMP-7 induces the differentiation of adipose-derived mesenchymal stem cells into osteoblast-like cells.

    PubMed

    Ren, Y; Han, C; Wang, J; Jia, Y; Kong, L; Eerdun, T; Wu, L; Jiang, D

    2016-01-01

    The aim of this study was to investigate the differentiation potential of adipose-derived mesenchymal stem cells (ADMSCs) into osteoblasts by human bone morphogenetic protein-7 (hBMP-7) induction. ADMSCs were isolated from the subcutaneous adipose tissue of a rabbit, and then transfected with the pcDNA3.1 vector alone and pcDNA3.1-hBMP-7 (hBMP-7), respectively. Untransfected ADMSCs were used as the control group. After transfection, the morphology and green fluorescent protein (GFP) fluorescence intensity of ADMSCs were observed by fluorescent microscopy. The 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide assay was performed to detect the growth of ADMSCs at 1, 3, and 5 days, respectively. Transmission electron microscopy was performed to observe the ultrastructural morphology of ADMSCs. In addition, ADMSCs were stained with quinalizarin and toluidine blue to reflect the content of osteoblasts and chondrocytes, respectively. Finally, the expression of collagen I and osteocalcin in ADMSCs was detected by western blot. ADMSCs were successfully isolated. Obvious GFP fluorescence and high expression of hBMP-7 demonstrated the successful transfection of hBMP-7. Specific morphological characters with a metabolically active ultrastructure were exhibited on the ADMSCs transfected with hBMP- 7. In addition, the growth rate of ADMSCs transfected with hBMP-7 was significantly higher than that of the cells in the vector and control groups. Successfully induced osteoblast-like cells were identified by an obvious erythrine area and high expression of collagen I and osteocalcin in ADMSCs transfected with hBMP-7. Thus, ADMSCs can be successfully differentiated into osteoblast-like cells by hBMP-7 induction in vitro. PMID:27525862

  13. Adipose tissue-derived mesenchymal stem cells differentiated into hepatocyte-like cells in vivo and in vitro.

    PubMed

    Yin, Libo; Zhu, Yuhua; Yang, Jiangang; Ni, Yijiang; Zhou, Zhao; Chen, Yu; Wen, Lixing

    2015-03-01

    Cell‑based therapy is a potential alternative to liver transplantation. The goal of the present study was to examine the in vivo and in vitro hepatic differentiation potential of adipose tissue‑derived mesenchymal stem cells (AT‑MSCs) and to explore its therapeutic use. AT‑MSCs were isolated and cultured with hepatic differentiation medium. Bioactivity assays were used to study the properties of AT‑MSCs. The morphology of differentiated AT‑MSCs in serum‑free hepatic differentiation medium changed into polygonal epithelial cells, while the morphology of AT‑MSCs in a similar medium containing 2% fetal bovine serum remained unchanged. The differentiated cells cultured without serum showed hepatocyte‑like cell morphology and hepatocyte‑specific markers, including albumin (ALB) and α‑fetoprotein. The bioactivity assays revealed that hepatocyte‑like cells could take up low‑density lipoprotein (LDL) and store glycogen. Furthermore, trichostatin A (TSA) enhanced ALB production and LDL uptake by the hepatocyte‑like cells, analogous to the functions of human liver cells. ALB was detected in the livers of the CCl4‑injured mice one month post‑transplantation. This suggested that transplantation of the human AT‑MSCs could relieve the impairment of acute CCl4‑injured livers in nude mice. This therefore implied that adipose tissue was a source of multipotent stem cells which had the potential to differentiate into mature, transplantable hepatocyte‑like cells in vivo and in vitro. In addition, the present study determined that TSA was essential to promoting differentiation of human MSC towards functional hepatocyte‑like cells. The relief of liver injury following treatment with AT‑MSCs suggested their potential as a novel therapeutic method for liver disorders or injury. PMID:25395242

  14. MicroRNA-27b Enhances the Hepatic Regenerative Properties of Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Chen, Kuang-Den; Huang, Kuang-Tzu; Lin, Chih-Che; Weng, Wei-Teng; Hsu, Li-Wen; Goto, Shigeru; Nakano, Toshiaki; Lai, Chia-Yun; Kung, Chao-Pin; Chiu, King-Wah; Wang, Chih-Chi; Cheng, Yu-Fan; Ma, Yen-Ying; Chen, Chao-Long

    2016-01-01

    Adipose-derived mesenchymal stem cells (ASCs) are readily available multipotent mesenchymal progenitor cells and have become an attractive therapeutic tool for regenerative medicine. We herein investigated the mechanistic role of how miR-27b modulated regenerative capacities of ASCs. Intravenous administration of miR-27b-transfected ASCs (ASCs-miR-27b) was conducted after 70% partial hepatectomy (PH). After PH, rats injected with ASCs-miR-27b had decreased inflammatory cytokines and increased hepatocyte growth factor and other related growth factors. We showed that the nature of ASCs-miR-27b to inhibit hepatic stellate cell activation was dependent upon peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) in vitro. Moreover, expression of miR-27b in ASCs induced heme oxygenase-1 (HO-1), resulting in increased production of ATP, protective cytokines/growth factors, and genes involved in mitochondrial biogenesis in a PGC-1α-dependent manner. RNA sequencing (RNA-Seq) analysis revealed drastic transcriptional changes in livers treated with ASCs-miR-27b after PH. The differentially expressed genes classified into “regeneration,” “fibrosis,” and “mitochondrial biogenesis” clusters were mainly mitochondrial. The potential biological context reflecting the effects of PGC-1α by ASCs-miR-27b treatment was also observed by the subnetwork analysis with HO-1 and PGC-1α being the top-ranked regulatory genes. We demonstrate autologous ASCs-miR-27b enhances liver regeneration and, importantly, preserves hepatic function through paracrine actions which offers a viable therapeutic option to facilitate rapid recovery after liver injury. PMID:26836372

  15. Priming Adipose-Derived Mesenchymal Stem Cells with Hyaluronan Alters Growth Kinetics and Increases Attachment to Articular Cartilage

    PubMed Central

    Succar, Peter; Medynskyj, Michael; Breen, Edmond J.; Batterham, Tony; Molloy, Mark P.; Herbert, Benjamin R.

    2016-01-01

    Background. Biological therapeutics such as adipose-derived mesenchymal stem cell (MSC) therapy are gaining acceptance for knee-osteoarthritis (OA) treatment. Reports of OA-patients show reductions in cartilage defects and regeneration of hyaline-like-cartilage with MSC-therapy. Suspending MSCs in hyaluronan commonly occurs in animals and humans, usually without supporting data. Objective. To elucidate the effects of different concentrations of hyaluronan on MSC growth kinetics. Methods. Using a range of hyaluronan concentrations, we measured MSC adherence and proliferation on culture plastic surfaces and a novel cartilage-adhesion assay. We employed time-course and dispersion imaging to assess MSC binding to cartilage. Cytokine profiling was also conducted on the MSC-secretome. Results. Hyaluronan had dose-dependent effects on growth kinetics of MSCs at concentrations of entanglement point (1 mg/mL). At higher concentrations, viscosity effects outweighed benefits of additional hyaluronan. The cartilage-adhesion assay highlighted for the first time that hyaluronan-primed MSCs increased cell attachment to cartilage whilst the presence of hyaluronan did not. Our time-course suggested patients undergoing MSC-therapy for OA could benefit from joint-immobilisation for up to 8 hours. Hyaluronan also greatly affected dispersion of MSCs on cartilage. Conclusion. Our results should be considered in future trials with MSC-therapy using hyaluronan as a vehicle, for the treatment of OA. PMID:26981136

  16. Generation of Two Biological Wound Dressings as a Potential Delivery System of Human Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Brena-Molina, Ana; Martínez-López, Valentín; Melgarejo-Ramírez, Yaaziel; Tamay de Dios, Lenin; Gómez-García, Ricardo; Reyes-Frías, Ma. de Lourdes; Rodríguez-Rodríguez, Lourdes; Garciadiego-Cázares, David; Lugo-Martínez, Haydée; Ibarra, Clemente

    2015-01-01

    Human adipose-derived mesenchymal stem cells (hADMSCs) are believed to be potential key factors for starting the regenerative process after tissue injury. However, an efficient method of delivering these regenerative cells to an external wound site is still lacking. Human amnion and pig skin have long been used as skin wound dressings for the treatment of burns and other skin lesions. Herein, we present the generation of two constructs using these two biomaterials as effective scaffolds for the culture of hADMSCs. It was found that hADMSCs seeded onto radiosterilized human amnion and pig skin are viable and proliferate. These cells are able to migrate over these scaffolds as demonstrated by using time-lapse microscopy. In addition, the scaffolds induce hADMSCs to secrete interleukin-10, an important negative regulator of inflammation, and interleukin-1β, a proinflammatory protein. The interplay between these two proteins has been proven to be vital for a balanced restoration of all necessary tissues. Thus, radiosterilized human amnion and pig skin are likely suitable scaffolds for delivery of hADMSCs transplants that could promote tissue regeneration in skin injuries like patients with burn injuries. PMID:26418201

  17. Vanillin attenuates negative effects of ultraviolet A on the stemness of human adipose tissue-derived mesenchymal stem cells.

    PubMed

    Lee, Sang Yeol; Park, See-Hyoung; Kim, Mi Ok; Lim, Inhwan; Kang, Mingyeong; Oh, Sae Woong; Jung, Kwangseon; Jo, Dong Gyu; Cho, Il-Hoon; Lee, Jongsung

    2016-10-01

    Ultraviolet A (UVA) irradiation induces various changes in cell biology. The objective of this study was to determine the effect of vanillin on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). UVA-antagonizing mechanisms of vanillin were also examined. The results revealed that vanillin attenuated UVA-induced reduction of the proliferative potential and stemness of hAMSCs evidenced by increased proliferative activity in BrdU incorporation assay and upregulation of stemness-related genes (OCT4, NANOG and SOX2) in response to vanillin treatment. UVA-induced reduction in mRNA level of hypoxia-inducible factor (HIF)-1α was significantly recovered by vanillin. In addition, the antagonizing effect of vanillin on UVA was found to be mediated by reduced production of PGE2 through inhibiting JNK and p38 MAPK. Taken together, these findings showed that vanillin could improve the reduced stemness of hAMSCs induced by UVA. The effect of vanillin is mediated by upregulating HIF-1α via inhibiting PGE2-cAMP signaling. Therefore, vanillin might be used as an antagonizing agent to mitigate the effects of UVA. PMID:27470612

  18. Generation of Two Biological Wound Dressings as a Potential Delivery System of Human Adipose-Derived Mesenchymal Stem Cells.

    PubMed

    Sánchez-Sánchez, Roberto; Brena-Molina, Ana; Martínez-López, Valentín; Melgarejo-Ramírez, Yaaziel; Tamay de Dios, Lenin; Gómez-García, Ricardo; Reyes-Frías, Ma de Lourdes; Rodríguez-Rodríguez, Lourdes; Garciadiego-Cázares, David; Lugo-Martínez, Haydée; Ibarra, Clemente; Martínez-Pardo, María Esther; Velasquillo-Martínez, Cristina

    2015-01-01

    Human adipose-derived mesenchymal stem cells (hADMSCs) are believed to be potential key factors for starting the regenerative process after tissue injury. However, an efficient method of delivering these regenerative cells to an external wound site is still lacking. Human amnion and pig skin have long been used as skin wound dressings for the treatment of burns and other skin lesions. Herein, we present the generation of two constructs using these two biomaterials as effective scaffolds for the culture of hADMSCs. It was found that hADMSCs seeded onto radiosterilized human amnion and pig skin are viable and proliferate. These cells are able to migrate over these scaffolds as demonstrated by using time-lapse microscopy. In addition, the scaffolds induce hADMSCs to secrete interleukin-10, an important negative regulator of inflammation, and interleukin-1β, a proinflammatory protein. The interplay between these two proteins has been proven to be vital for a balanced restoration of all necessary tissues. Thus, radiosterilized human amnion and pig skin are likely suitable scaffolds for delivery of hADMSCs transplants that could promote tissue regeneration in skin injuries like patients with burn injuries. PMID:26418201

  19. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration

    NASA Astrophysics Data System (ADS)

    Carriel, Víctor; Garrido-Gómez, Juan; Hernández-Cortés, Pedro; Garzón, Ingrid; García-García, Salomé; Sáez-Moreno, José Antonio; Sánchez-Quevedo, María del Carmen; Campos, Antonio; Alaminos, Miguel

    2013-04-01

    Objective. The objective was to study the effectiveness of a commercially available collagen conduit filled with fibrin-agarose hydrogels alone or with fibrin-agarose hydrogels containing autologous adipose-derived mesenchymal stem cells (ADMSCs) in a rat sciatic nerve injury model. Approach. A 10 mm gap was created in the sciatic nerve of 48 rats and repaired using saline-filled collagen conduits or collagen conduits filled with fibrin-agarose hydrogels alone (acellular conduits) or with hydrogels containing ADMSCs (ADMSC conduits). Nerve regeneration was assessed in clinical, electrophysiological and histological studies. Main results. Clinical and electrophysiological outcomes were more favorable with ADMSC conduits than with the acellular or saline conduits, evidencing a significant recovery of sensory and motor functions. Histological analysis showed that ADMSC conduits produce more effective nerve regeneration by Schwann cells, with higher remyelination and properly oriented axonal growth that reached the distal areas of the grafted conduits, and with intensely positive expressions of S100, neurofilament and laminin. Extracellular matrix was also more abundant and better organized around regenerated nerve tissues with ADMSC conduits than those with acellular or saline conduits. Significance. Clinical, electrophysiological and histological improvements obtained with tissue-engineered ADMSC conduits may contribute to enhancing axonal regeneration by Schwann cells.

  20. Adipose tissue-derived mesenchymal stem cells and platelet-rich plasma: stem cell transplantation methods that enhance stemness.

    PubMed

    Tobita, Morikuni; Tajima, Satoshi; Mizuno, Hiroshi

    2015-11-05

    Because of their ease of isolation and relative abundance, adipose-derived mesenchymal stem cells (ASCs) are a particularly attractive autologous cell source for various therapeutic purposes. ASCs retain a high proliferation capacity in vitro and have the ability to undergo extensive differentiation into multiple cell lineages. Moreover, ASCs secrete a wide range of growth factors that can stimulate tissue regeneration. Therefore, the clinical use of ASCs is feasible. However, the potential of ASCs differs depending on the donor's medical condition, including diseases such as diabetes. Recent studies demonstrated that ASCs from diabetic donors exhibit reduced proliferative potential and a smaller proportion of stem cell marker-positive cells. Therefore, to ensure the success of regenerative medicine, tissue engineering methods must be improved by the incorporation of factors that increase the proliferation and differentiation of stem/progenitor cells when autologous cells are used. Platelet-rich plasma (PRP), which contains high levels of diverse growth factors that can stimulate stem cell proliferation and cell differentiation in the context of tissue regeneration, has recently been identified as a biological material that could be applied to tissue regeneration. Thus, co-transplantation of ASCs and PRP represents a promising novel approach for cell therapy in regenerative medicine. In this review, we describe the potential benefits of adding PRP to ASCs and preclinical and clinical studies of this approach in various medical fields. We also discuss the mechanisms of PRP action and future cell-based therapies using co-transplantation of ASCs and PRP.

  1. Propyl gallate inhibits adipogenesis by stimulating extracellular signal-related kinases in human adipose tissue-derived mesenchymal stem cells.

    PubMed

    Lee, Jeung-Eun; Kim, Jung-Min; Jang, Hyun-Jun; Lim, Se-Young; Choi, Seon-Jeong; Lee, Nan-Hee; Suh, Pann-Ghill; Choi, Ung-Kyu

    2015-04-01

    Propyl gallate (PG) used as an additive in various foods has antioxidant and anti-inflammatory effects. Although the functional roles of PG in various cell types are well characterized, it is unknown whether PG has effect on stem cell differentiation. In this study, we demonstrated that PG could inhibit adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells (hAMSCs) by decreasing the accumulation of intracellular lipid droplets. In addition, PG significantly reduced the expression of adipocyte-specific markers including peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT enhancer binding protein-α (C/EBP-α), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein 2 (aP2). PG inhibited adipogenesis in hAMSCs through extracellular regulated kinase (ERK) pathway. Decreased adipogenesis following PG treatment was recovered in response to ERK blocking. Taken together, these results suggest a novel effect of PG on adipocyte differentiation in hAMSCs, supporting a negative role of ERK1/2 pathway in adipogenic differentiation.

  2. Vanillin attenuates negative effects of ultraviolet A on the stemness of human adipose tissue-derived mesenchymal stem cells.

    PubMed

    Lee, Sang Yeol; Park, See-Hyoung; Kim, Mi Ok; Lim, Inhwan; Kang, Mingyeong; Oh, Sae Woong; Jung, Kwangseon; Jo, Dong Gyu; Cho, Il-Hoon; Lee, Jongsung

    2016-10-01

    Ultraviolet A (UVA) irradiation induces various changes in cell biology. The objective of this study was to determine the effect of vanillin on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). UVA-antagonizing mechanisms of vanillin were also examined. The results revealed that vanillin attenuated UVA-induced reduction of the proliferative potential and stemness of hAMSCs evidenced by increased proliferative activity in BrdU incorporation assay and upregulation of stemness-related genes (OCT4, NANOG and SOX2) in response to vanillin treatment. UVA-induced reduction in mRNA level of hypoxia-inducible factor (HIF)-1α was significantly recovered by vanillin. In addition, the antagonizing effect of vanillin on UVA was found to be mediated by reduced production of PGE2 through inhibiting JNK and p38 MAPK. Taken together, these findings showed that vanillin could improve the reduced stemness of hAMSCs induced by UVA. The effect of vanillin is mediated by upregulating HIF-1α via inhibiting PGE2-cAMP signaling. Therefore, vanillin might be used as an antagonizing agent to mitigate the effects of UVA.

  3. Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells.

    PubMed

    Puissant, Bénédicte; Barreau, Corinne; Bourin, Philippe; Clavel, Cyril; Corre, Jill; Bousquet, Christine; Taureau, Christine; Cousin, Béatrice; Abbal, Michel; Laharrague, Patrick; Penicaud, Luc; Casteilla, Louis; Blancher, Antoine

    2005-04-01

    Like mesenchymal stem cells from bone marrow (BM-MSCs), adipose tissue-derived adult stem cells (ADAS cells) can differentiate into several lineages and present therapeutical potential for repairing damaged tissues. The use of allogenic stem cells can enlarge their therapeutical interest, provided that the grafted cells could be tolerated. We investigate here, for the first time, the immunosuppressive properties of ADAS cells compared with the well-characterized immunosuppressive properties of BM-MSCs. ADAS cells did not provoke in vitro alloreactivity of incompatible lymphocytes and, moreover, suppressed mixed lymphocyte reaction (MLR) and lymphocyte proliferative response to mitogens. The impairment of inhibition when ADAS cells and BM-MSCs were separated from lymphocytes by a permeable membrane suggests that cell contact is required for a full inhibitory effect. Hepatocyte growth factor is secreted by both stem cells but, similar to interleukin-10 and transforming growth factor-beta (TGF-beta), the levels of which were undetectable in supernatants of MLR inhibited by ADAS cells or BM-MSCs, it did not seem implicated in the stem cell suppressive effect. These findings support that ADAS cells share immunosuppressive properties with BM-MSCs. Therefore, ADAS cell-based reconstructive therapy could employ allogenic cells and because of their immunosuppressive properties, ADAS cells could be an alternative source to BM-MSCs to treat allogenic conflicts.

  4. Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes.

    PubMed

    Bassi, Ênio J; Moraes-Vieira, Pedro M M; Moreira-Sá, Carla S R; Almeida, Danilo C; Vieira, Leonardo M; Cunha, Cláudia S; Hiyane, Meire I; Basso, Alexandre S; Pacheco-Silva, Alvaro; Câmara, Niels O S

    2012-10-01

    Adipose-derived mesenchymal stem cells (ADMSCs) display immunosuppressive properties, suggesting a promising therapeutic application in several autoimmune diseases, but their role in type 1 diabetes (T1D) remains largely unexplored. The aim of this study was to investigate the immune regulatory properties of allogeneic ADMSC therapy in T cell-mediated autoimmune diabetes in NOD mice. ADMSC treatment reversed the hyperglycemia of early-onset diabetes in 78% of diabetic NOD mice, and this effect was associated with higher serum insulin, amylin, and glucagon-like peptide 1 levels compared with untreated controls. This improved outcome was associated with downregulation of the CD4(+) Th1-biased immune response and expansion of regulatory T cells (Tregs) in the pancreatic lymph nodes. Within the pancreas, inflammatory cell infiltration and interferon-γ levels were reduced, while insulin, pancreatic duodenal homeobox-1, and active transforming growth factor-β1 expression were increased. In vitro, ADMSCs induced the expansion/proliferation of Tregs in a cell contact-dependent manner mediated by programmed death ligand 1. In summary, ADMSC therapy efficiently ameliorates autoimmune diabetes pathogenesis in diabetic NOD mice by attenuating the Th1 immune response concomitant with the expansion/proliferation of Tregs, thereby contributing to the maintenance of functional β-cells. Thus, this study may provide a new perspective for the development of ADMSC-based cellular therapies for T1D.

  5. A comparative study of non-viral gene delivery techniques to human adipose-derived mesenchymal stem cell.

    PubMed

    Abdul Halim, Nur Shuhaidatul Sarmiza; Fakiruddin, Kamal Shaik; Ali, Syed Atif; Yahaya, Badrul Hisham

    2014-01-01

    Mesenchymal stem cells (MSCs) hold tremendous potential for therapeutic use in stem cell-based gene therapy. Ex vivo genetic modification of MSCs with beneficial genes of interest is a prerequisite for successful use of stem cell-based therapeutic applications. However, genetic manipulation of MSCs is challenging because they are resistant to commonly used methods to introduce exogenous DNA or RNA. Herein we compared the effectiveness of several techniques (classic calcium phosphate precipitation, cationic polymer, and standard electroporation) with that of microporation technology to introduce the plasmid encoding for angiopoietin-1 (ANGPT-1) and enhanced green fluorescent protein (eGFP) into human adipose-derived MSCs (hAD-MSCs). The microporation technique had a higher transfection efficiency, with up to 50% of the viable hAD-MSCs being transfected, compared to the other transfection techniques, for which less than 1% of cells were positive for eGFP expression following transfection. The capability of cells to proliferate and differentiate into three major lineages (chondrocytes, adipocytes, and osteocytes) was found to be independent of the technique used for transfection. These results show that the microporation technique is superior to the others in terms of its ability to transfect hAD-MSCs without affecting their proliferation and differentiation capabilities. Therefore, this study provides a foundation for the selection of techniques when using ex vivo gene manipulation for cell-based gene therapy with MSCs as the vehicle for gene delivery. PMID:25162825

  6. Effects of Exendine-4 on The Differentiation of Insulin Producing Cells from Rat Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Khorsandi, Layasadat; Saremy, Sadegh; Khodadadi, Ali; Dehbashi, Fereshteh

    2016-01-01

    Objective To evaluate the effect of Exendine-4 (EX-4), a Glucagon-like peptide 1 (GLP-1) receptor agonist, on the differentiation of insulin-secreting cells (IPCs) from rat adipose-derived mesenchymal stem cells(ADMSCs). Materials and Methods In this experimental study, ADMSCs were isolated from rat adi- pose tissue and exposed to induction media with or without EX-4. After induction, the existence of IPCs was confirmed by morphology analysis, expression pattern analysis of islet-specific genes (Pdx-1, Glut-2 and Insulin) and insulin synthesis and secretion. Results IPCs induced in presence of EX-4 were morphologically similar to pancre- atic islet-like cells. Expression of Pdx-1, Glut-2 and Insulin genes in EX-4 treated cells was significantly higher than the cells exposed to differentiation media without EX-4. Compared to EX-4 untreated ADMSCs, insulin release from EX-4 treated ADMSCs showed a nearly 2.5 fold (P<0.05) increase when exposed to a high glucose (25 mM) medium. The percentage of insulin positive cells in the EX-4 treated group was ap- proximately 4-fold higher than in the EX-4 untreated ADMSCs. Conclusion The present study has demonstrated that EX-4 enhances the differen- tiation of ADMSCs into IPCs. Improvement of this method may help the formation of an unlimited source of cells for transplantation. PMID:26862531

  7. Immune regulatory properties of allogeneic adipose-derived mesenchymal stem cells in the treatment of experimental autoimmune diabetes.

    PubMed

    Bassi, Ênio J; Moraes-Vieira, Pedro M M; Moreira-Sá, Carla S R; Almeida, Danilo C; Vieira, Leonardo M; Cunha, Cláudia S; Hiyane, Meire I; Basso, Alexandre S; Pacheco-Silva, Alvaro; Câmara, Niels O S

    2012-10-01

    Adipose-derived mesenchymal stem cells (ADMSCs) display immunosuppressive properties, suggesting a promising therapeutic application in several autoimmune diseases, but their role in type 1 diabetes (T1D) remains largely unexplored. The aim of this study was to investigate the immune regulatory properties of allogeneic ADMSC therapy in T cell-mediated autoimmune diabetes in NOD mice. ADMSC treatment reversed the hyperglycemia of early-onset diabetes in 78% of diabetic NOD mice, and this effect was associated with higher serum insulin, amylin, and glucagon-like peptide 1 levels compared with untreated controls. This improved outcome was associated with downregulation of the CD4(+) Th1-biased immune response and expansion of regulatory T cells (Tregs) in the pancreatic lymph nodes. Within the pancreas, inflammatory cell infiltration and interferon-γ levels were reduced, while insulin, pancreatic duodenal homeobox-1, and active transforming growth factor-β1 expression were increased. In vitro, ADMSCs induced the expansion/proliferation of Tregs in a cell contact-dependent manner mediated by programmed death ligand 1. In summary, ADMSC therapy efficiently ameliorates autoimmune diabetes pathogenesis in diabetic NOD mice by attenuating the Th1 immune response concomitant with the expansion/proliferation of Tregs, thereby contributing to the maintenance of functional β-cells. Thus, this study may provide a new perspective for the development of ADMSC-based cellular therapies for T1D. PMID:22688334

  8. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys.

    PubMed

    Fazel Anvari-Yazdi, Abbas; Tahermanesh, Kobra; Hadavi, Seyed Mohammad Mehdi; Talaei-Khozani, Tahereh; Razmkhah, Mahboobeh; Abed, Seyedeh Mehr; Mohtasebi, Maryam Sadat

    2016-12-01

    Magnesium (Mg)-based alloys have been extensively considered as biodegradable implant materials for orthopedic surgery. Mg and its alloys are metallic biomaterials that can degrade in the body and promote new bone formation. In this study, the corrosion behavior and cytotoxicity of Mg-Zn-Ca alloys are evaluated with adipose-derived mesenchymal stem cells (ASCs). Mg-2Zn and Mg-2Zn-xCa (x=1, 2 and 3wt.%) alloys were designated. Mg alloys were analyzed with scanning electron microscopy and potentiodynamic polarization. To understand the in-vitro biocompatibility and cytotoxicity of Mg-2Zn and Mg-2Zn-xCa alloys, ASCs were cultured for 24 and 72h in contact with 10%, 50% and 100% extraction of all alloys prepared in DMEM. Cell cytotoxicity and viability of ASCs were examined by MTT assay. Alloying elements including Zn and Ca improved the corrosion resistance of alloys were compared with pure Mg. The cytotoxicity results showed that all alloys had no significant adverse effects on cell viability in 24h. After 72h, cell viability and proliferation increased in the cells exposed to pure Mg and Mg-2Zn-1Ca extracts. The release of Mg, Zn and Ca ions in culture media had no toxic impacts on ASCs viability and proliferation. Mg-2Zn-1Ca alloy can be suggested as a good candidate to be used in biomedical applications.

  9. Evaluation of pH effects on genomic integrity in adipose-derived mesenchymal stem cells using the comet assay.

    PubMed

    Hermeto, L C; Oliveira, R J; Matuo, R; Jardim, P H A; DeRossi, R; Antoniolli, A C M B; Deffune, E; Evaristo, T C; Santana, Á E

    2015-01-23

    The use of mesenchymal stem cells (MSCs) in experimental, clinical, and therapeutic trials has grown in recent years. However, the issue remains of whether these procedures are completely safe for transplant patients. Therefore, this study was designed and carried out with the aim of evaluating two different comet assay protocols for genomic damage pattern analysis in MSCs derived from adipose tissue. The analyzed and interpreted results suggest that genetic testing is needed to support clonal expansion safety in cell therapy procedures with MSCs. Furthermore, they also suggest that if the comet assay technique would be used as a genomic integrity screening assay, the protocol performed at pH = 12 (that yielded a frequency of damaged cells: tail intensity = 9.50 ± 0.60, tail moment = 0.0122 ± 0.0007; results are reported as means ± standard deviation) would be indicated as genomic damage, and that subsequent single-strand breaks occur at pH > 13 (frequency of damaged cells: tail intensity = 30.71 ± 4.23, tail moment = 0.0447 ± 0.0073). Our study demonstrates that, in the era of regenerative medicine, it is necessary to standardize and establish a battery of tests in order to identify genomic damage prior to MSC transplantation.

  10. Priming Adipose-Derived Mesenchymal Stem Cells with Hyaluronan Alters Growth Kinetics and Increases Attachment to Articular Cartilage.

    PubMed

    Succar, Peter; Medynskyj, Michael; Breen, Edmond J; Batterham, Tony; Molloy, Mark P; Herbert, Benjamin R

    2016-01-01

    Background. Biological therapeutics such as adipose-derived mesenchymal stem cell (MSC) therapy are gaining acceptance for knee-osteoarthritis (OA) treatment. Reports of OA-patients show reductions in cartilage defects and regeneration of hyaline-like-cartilage with MSC-therapy. Suspending MSCs in hyaluronan commonly occurs in animals and humans, usually without supporting data. Objective. To elucidate the effects of different concentrations of hyaluronan on MSC growth kinetics. Methods. Using a range of hyaluronan concentrations, we measured MSC adherence and proliferation on culture plastic surfaces and a novel cartilage-adhesion assay. We employed time-course and dispersion imaging to assess MSC binding to cartilage. Cytokine profiling was also conducted on the MSC-secretome. Results. Hyaluronan had dose-dependent effects on growth kinetics of MSCs at concentrations of entanglement point (1 mg/mL). At higher concentrations, viscosity effects outweighed benefits of additional hyaluronan. The cartilage-adhesion assay highlighted for the first time that hyaluronan-primed MSCs increased cell attachment to cartilage whilst the presence of hyaluronan did not. Our time-course suggested patients undergoing MSC-therapy for OA could benefit from joint-immobilisation for up to 8 hours. Hyaluronan also greatly affected dispersion of MSCs on cartilage. Conclusion. Our results should be considered in future trials with MSC-therapy using hyaluronan as a vehicle, for the treatment of OA. PMID:26981136

  11. Cytotoxicity assessment of adipose-derived mesenchymal stem cells on synthesized biodegradable Mg-Zn-Ca alloys.

    PubMed

    Fazel Anvari-Yazdi, Abbas; Tahermanesh, Kobra; Hadavi, Seyed Mohammad Mehdi; Talaei-Khozani, Tahereh; Razmkhah, Mahboobeh; Abed, Seyedeh Mehr; Mohtasebi, Maryam Sadat

    2016-12-01

    Magnesium (Mg)-based alloys have been extensively considered as biodegradable implant materials for orthopedic surgery. Mg and its alloys are metallic biomaterials that can degrade in the body and promote new bone formation. In this study, the corrosion behavior and cytotoxicity of Mg-Zn-Ca alloys are evaluated with adipose-derived mesenchymal stem cells (ASCs). Mg-2Zn and Mg-2Zn-xCa (x=1, 2 and 3wt.%) alloys were designated. Mg alloys were analyzed with scanning electron microscopy and potentiodynamic polarization. To understand the in-vitro biocompatibility and cytotoxicity of Mg-2Zn and Mg-2Zn-xCa alloys, ASCs were cultured for 24 and 72h in contact with 10%, 50% and 100% extraction of all alloys prepared in DMEM. Cell cytotoxicity and viability of ASCs were examined by MTT assay. Alloying elements including Zn and Ca improved the corrosion resistance of alloys were compared with pure Mg. The cytotoxicity results showed that all alloys had no significant adverse effects on cell viability in 24h. After 72h, cell viability and proliferation increased in the cells exposed to pure Mg and Mg-2Zn-1Ca extracts. The release of Mg, Zn and Ca ions in culture media had no toxic impacts on ASCs viability and proliferation. Mg-2Zn-1Ca alloy can be suggested as a good candidate to be used in biomedical applications. PMID:27612751

  12. A Comparative Study of Non-Viral Gene Delivery Techniques to Human Adipose-Derived Mesenchymal Stem Cell

    PubMed Central

    Halim, Nur Shuhaidatul Sarmiza Abdul; Fakiruddin, Kamal Shaik; Ali, Syed Atif; Yahaya, Badrul Hisham

    2014-01-01

    Mesenchymal stem cells (MSCs) hold tremendous potential for therapeutic use in stem cell-based gene therapy. Ex vivo genetic modification of MSCs with beneficial genes of interest is a prerequisite for successful use of stem cell-based therapeutic applications. However, genetic manipulation of MSCs is challenging because they are resistant to commonly used methods to introduce exogenous DNA or RNA. Herein we compared the effectiveness of several techniques (classic calcium phosphate precipitation, cationic polymer, and standard electroporation) with that of microporation technology to introduce the plasmid encoding for angiopoietin-1 (ANGPT-1) and enhanced green fluorescent protein (eGFP) into human adipose-derived MSCs (hAD-MSCs). The microporation technique had a higher transfection efficiency, with up to 50% of the viable hAD-MSCs being transfected, compared to the other transfection techniques, for which less than 1% of cells were positive for eGFP expression following transfection. The capability of cells to proliferate and differentiate into three major lineages (chondrocytes, adipocytes, and osteocytes) was found to be independent of the technique used for transfection. These results show that the microporation technique is superior to the others in terms of its ability to transfect hAD-MSCs without affecting their proliferation and differentiation capabilities. Therefore, this study provides a foundation for the selection of techniques when using ex vivo gene manipulation for cell-based gene therapy with MSCs as the vehicle for gene delivery. PMID:25162825

  13. Cardiosphere conditioned media influence the plasticity of human mediastinal adipose tissue-derived mesenchymal stem cells.

    PubMed

    Siciliano, Camilla; Chimenti, Isotta; Ibrahim, Mohsen; Napoletano, Chiara; Mangino, Giorgio; Scafetta, Gaia; Zoccai, Giuseppe Biondi; Rendina, Erino Angelo; Calogero, Antonella; Frati, Giacomo; De Falco, Elena

    2015-01-01

    Nowadays, cardiac regenerative medicine is facing many limitations because of the complexity to find the most suitable stem cell source and to understand the regenerative mechanisms involved. Mesenchymal stem cells (MSCs) have shown great regenerative potential due to their intrinsic properties and ability to restore cardiac functionality, directly by transdifferentiation and indirectly by paracrine effects. Yet, how MSCs could respond to definite cardiac-committing microenvironments, such as that created by resident cardiac progenitor cells in the form of cardiospheres (CSs), has never been addressed. Recently, a putative MSC pool has been described in the mediastinal fat (hmADMSCs), but both its biology and function remain hitherto unexplored. Accordingly, we investigated the potential of hmADMSCs to be committed toward a cardiovascular lineage after preconditioning with CS-conditioned media (CCM). Results indicated that CCM affects cell proliferation. Gene expression levels of multiple cardiovascular and stemness markers (MHC, KDR, Nkx2.5, Thy-1, c-kit, SMA) are significantly modulated, and the percentage of hmADMSCs preconditioned with CCM and positive for Nkx2.5, MHC, and KDR is significantly higher relative to FBS and explant-derived cell conditioned media (EDCM, the unselected stage before CS formation). Growth factor-specific and survival signaling pathways (i.e., Erk1/2, Akt, p38, mTOR, p53) present in CCM are all equally regulated. Nonetheless, earlier BAD phosphorylation (Ser112) occurs associated with the CS microenvironment (and to a lesser extent to EDCM), whereas faster phosphorylation of PRAS40 in FBS, and of Akt (Ser473) in EDCM and 5-azacytidine occurs compared to CCM. For the first time, we demonstrated that the MSC pool held in the mediastinal fat is adequately plastic to partially differentiate in vitro toward a cardiac-like lineage. Besides, we have provided novel evidence of the potent inductive niche-like microenvironment that the CS

  14. Comparative characteristics of mesenchymal stem cells derived from reamer-irrigator-aspirator, iliac crest bone marrow, and adipose tissue.

    PubMed

    Toosi, S; Naderi-Meshkin, H; Kalalinia, F; Peivandi, M T; Hossein Khani, H; Bahrami, A R; Heirani-Tabasi, A; Mirahmadi, M; Behravan, J

    2016-08-31

    Mesenchymal stem cells (MSCs) have been considered promising tools for new clinical concepts in supporting cellular therapy and regenerative medicine. More recently, Ream/Irrigator/Aspirator (RIA) was introduced as a source of MSCs. In this study we compared MSCs derived from three different sources (iliac crest bone marrow (ICBM), adipose tissue (AT), and (RIA)) regarding the morphology, the success rate of isolating MSCs, colony frequency, expansion potential, osteogenic and chondrogenic differentiation capacity. MSCs were isolated from three different sources and flow cytometric analyses were performed for cell characterization. Colony-forming unit-fibroblast (CFU-F) assay and population doubling time (PDT) were evaluated for MSCs derived from three different sources and differentiation potential of RIA, ICBM-, and AT-MSCs were determined by staining. Additionally, gene expression profiles for tissue specific markers corresponding to osteogenesis and chondrogenesis were analyzed using real time polymerase chain reaction (RT-PCR). Cultured with the appropriate condition, osteogenic and chondrogenic differentiation could be confirmed in all MSC preparations. Flow cytometry analysis indicated that RIA- and AT-derived MSCs have more homogenous populations than ICBM-MSCs. A comparison of the colonogenic ability in different tissues by CFU-F assay after 10 days showed that more colonies are formed from RIA-MSCs than from ICBM-MSCs, and AT-MSCs. AT-MSCs, were dispersed with no obvious colonies. The RIA-MSCs underwent osteogenesis and chondrogenesis at a faster rate than ICBM and AT-MSCs. Direct comparisons of RIA- to ICBM- and AT-MSCs have shown the RIA-MSCs have higher differentiation toward osteoblast and chondrocytes compared to other sources of MSCs. Hence, RIA-MSCs may be recommended as a more suitable source for treating orthopedic disorders.

  15. Comparative characteristics of mesenchymal stem cells derived from reamer-irrigator-aspirator, iliac crest bone marrow, and adipose tissue.

    PubMed

    Toosi, S; Naderi-Meshkin, H; Kalalinia, F; Peivandi, M T; Hossein Khani, H; Bahrami, A R; Heirani-Tabasi, A; Mirahmadi, M; Behravan, J

    2016-01-01

    Mesenchymal stem cells (MSCs) have been considered promising tools for new clinical concepts in supporting cellular therapy and regenerative medicine. More recently, Ream/Irrigator/Aspirator (RIA) was introduced as a source of MSCs. In this study we compared MSCs derived from three different sources (iliac crest bone marrow (ICBM), adipose tissue (AT), and (RIA)) regarding the morphology, the success rate of isolating MSCs, colony frequency, expansion potential, osteogenic and chondrogenic differentiation capacity. MSCs were isolated from three different sources and flow cytometric analyses were performed for cell characterization. Colony-forming unit-fibroblast (CFU-F) assay and population doubling time (PDT) were evaluated for MSCs derived from three different sources and differentiation potential of RIA, ICBM-, and AT-MSCs were determined by staining. Additionally, gene expression profiles for tissue specific markers corresponding to osteogenesis and chondrogenesis were analyzed using real time polymerase chain reaction (RT-PCR). Cultured with the appropriate condition, osteogenic and chondrogenic differentiation could be confirmed in all MSC preparations. Flow cytometry analysis indicated that RIA- and AT-derived MSCs have more homogenous populations than ICBM-MSCs. A comparison of the colonogenic ability in different tissues by CFU-F assay after 10 days showed that more colonies are formed from RIA-MSCs than from ICBM-MSCs, and AT-MSCs. AT-MSCs, were dispersed with no obvious colonies. The RIA-MSCs underwent osteogenesis and chondrogenesis at a faster rate than ICBM and AT-MSCs. Direct comparisons of RIA- to ICBM- and AT-MSCs have shown the RIA-MSCs have higher differentiation toward osteoblast and chondrocytes compared to other sources of MSCs. Hence, RIA-MSCs may be recommended as a more suitable source for treating orthopedic disorders. PMID:27609477

  16. Effects of Ionizing Radiation on Human Adipose Derived Mesenchymal Stem Cells and their Differentiation towards the Osteoblastic Lineage

    NASA Astrophysics Data System (ADS)

    Konda, Bikash; Baumstark-Khan, Christa; Hellweg, Christine; Reitz, Guenther; Lau, Patrick

    Radiation exposure and musculoskeletal disuse are among the major challenges during space missions. Astronauts face the problem to lose bone calcium due to uncoupling of bone formation and resorption. Bone forming osteoblasts can be derived from the undifferentiated mesenchymal stem cell compartment (MSC). In this study, the ability of human adipose tissue derived stem cells (ATSC) to differentiate into the osteoblastic lineage was examined after radiation exposure in presence of medium supplementation with osteogenic additives (ß-glycerophosphate, ascorbic acid and dexamethasone). The SAOS-2 cell line (human osteosarcoma cell line) was used as control for osteoblastic differentiation. Changes in cellular morphology, cell cycle progression, as well as cellular radiation sensitivity were characterized after ionizing radiation exposure with X-rays and heavy ions (Ti). Rapidly proliferating SAOS-2 cells are less radiation-sensitive than slowly proliferating ATSC cells after X-ray (CFA: dose effect curves show D0 values of 1 Gy and 0.75 Gy for SAOS-2 and ATSC, respectively) exposure. Heavy ion (Ti) exposure resulted in a greater extent of cells accumulating in the G2/M phase of the cell cycle in a dose-dependent manner when compared to X-ray exposure. Differentiation of cells towards the osteoblastic lineage was quantified by hydroxyapatite (HA) deposition using Lonza OsteoImageTM mineralization assay. The deposition of HA after X- and Ti-irradiation for highly proliferating SAOS-2 cells showed a dose-dependent time delay while slowly proliferating ATSC showed no effect from radiation exposure. More detailed investigation is required to reveal the radiation dependent mechanism of bone loss in astronauts.

  17. Enhancement of endothelial differentiation of adipose derived mesenchymal stem cells by a three-dimensional culture system of microwell.

    PubMed

    Qiu, Xuefeng; Zhang, Yanting; Zhao, Xiaozhi; Zhang, Shiwei; Wu, Jinhui; Guo, Hongqian; Hu, Yiqiao

    2015-01-01

    Adipose derived mesenchymal stem cells (AdMSCs) have been demonstrated to have ability to differentiate into several cell lineages, including endothelial cells. The low endothelial differentiation efficiency, however, limits further clinical application of AdMSCs for therapeutic angiogenesis. This study was designed to investigate the feasibility to promote endothelial differentiation efficacy of AdMSCs using microwell array as a 3-D culture system. AdMSCs aggregates were prepared using photocrosslinkable polyethylene glycol dimethacrylate (PEGDM) derived microwell. AdMSCs aggregated and formed well defined 3-D aggregates following seeding. The microwell was effective in regulating the size of AdMSCs aggregates with low variation. AdMSCs within the 3-D aggregates maintained the cell surface epitopes of AdMSCs with high viability. Endothelial growth medium was used to induce the in vitro endothelial differentiation of AdMSCs. Both gene expression results from real time PCR and protein expression data from immunofluorescent staining revealed that 3-D cultured aggregates significantly promote the endothelial differentiation efficacy of AdMSCs. AdMSCs or AdMSCs aggregates were injected into the subcutaneous space of nu/nu mice to investigate the endothelial differentiation in vivo. The immunofluorescent staining data indicated promoted endothelial differentiation of 3-D aggregates compared with 2-D AdMSCs. Aggregates dissociated cells were obtained by transferring 3-D aggregates onto the adherent surfaces. Cells dissociated from induced aggregates were still positive for endothelial specific markers and were able to form endothelial-like tube structures on matrigel, indicating the endothelial properties. We conclude that microwell is an ideal 3-D culture system for promoting endothelial differentiation efficacy of AdMSCs. PMID:25890756

  18. Gene expression profiles of human adipose tissue-derived mesenchymal stem cells are modified by cell culture density.

    PubMed

    Kim, Dae Seong; Lee, Myoung Woo; Yoo, Keon Hee; Lee, Tae-Hee; Kim, Hye Jin; Jang, In Keun; Chun, Yong Hoon; Kim, Hyung Joon; Park, Seung Jo; Lee, Soo Hyun; Son, Meong Hi; Jung, Hye Lim; Sung, Ki Woong; Koo, Hong Hoe

    2014-01-01

    Previous studies conducted cell expansion ex vivo using low initial plating densities for optimal expansion and subsequent differentiation of mesenchymal stem cells (MSCs). However, MSC populations are heterogeneous and culture conditions can affect the characteristics of MSCs. In this study, differences in gene expression profiles of adipose tissue (AT)-derived MSCs were examined after harvesting cells cultured at different densities. AT-MSCs from three different donors were plated at a density of 200 or 5,000 cells/cm(2). After 7 days in culture, detailed gene expression profiles were investigated using a DNA chip microarray, and subsequently validated using a reverse transcription polymerase chain reaction (RT-PCR) analysis. Gene expression profiles were influenced primarily by the level of cell confluence at harvest. In MSCs harvested at ∼90% confluence, 177 genes were up-regulated and 102 genes down-regulated relative to cells harvested at ∼50% confluence (P<0.05, FC>2). Proliferation-related genes were highly expressed in MSCs harvested at low density, while genes that were highly expressed in MSCs harvested at high density (∼90% confluent) were linked to immunity and defense, cell communication, signal transduction and cell motility. Several cytokine, chemokine and growth factor genes involved in immunosuppression, migration, and reconstitution of damaged tissues were up-regulated in MSCs harvested at high density compared with MSCs harvested at low density. These results imply that cell density at harvest is a critical factor for modulating the specific gene-expression patterns of heterogeneous MSCs.

  19. Thermally labile components of aqueous humor potently induce osteogenic potential in adipose-derived mesenchymal stem cells.

    PubMed

    Morgan, Joshua T; Kwon, Heung Sun; Wood, Joshua A; Borjesson, Dori L; Tomarev, Stanislav I; Murphy, Christopher J; Russell, Paul

    2015-06-01

    Adipose-derived mesenchymal stem cells (ASCs) hold promise for use in cell-based therapies. Their intrinsic anti-inflammatory properties are potentially useful for treatments of inflammatory conditions such as uveitis, while their ability to differentiate along multiple cell lineages suggests use in regenerating damaged or degenerated tissue. However, how ASCs will respond to the intraocular environment is poorly studied. We have recently reported that aqueous humor (AH), the fluid that nourishes the anterior segment of the eye, potently increases alkaline phosphatase (ALP) activity of ASCs, indicating osteogenic differentiation. Here, we expand on our previous findings to better define the nature of this response. To this end, we cultured ASCs in the presence of 0, 5, 10, and 20% AH and assayed them for ALP activity. We found ALP activity correlates with increasing AH concentrations from 5 to 20%, and that longer treatments result in increased ALP activity. By using serum free media and pretreating AH with dextran-coated charcoal, we found that serum and charcoal-adsorbable AH components augment but are not required for this response. Further, by heat-treating the AH, we established that thermally labile components are required for the osteogenic response. Finally, we showed myocilin, a protein present in AH, could induce ALP activity in ASCs. However, this was to a lesser extent than untreated 5% AH, and myocilin could only partially rescue the effect after heat treatment, documenting there were additional thermally labile constituents of AH involved in the osteogenic response. Our work adds to the understanding of the induction of ALP in ASCs following exposure to AH, providing important insight in how ASCs will be influenced by the ocular environment. In conclusion, increased osteogenic potential upon exposure to AH represents a potential challenge to developing ASC cell-based therapies directed at the eye.

  20. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    SciTech Connect

    Shin, Keun Koo; Lee, Ae Lim; Kim, Jee Young; Lee, Sun Young; Bae, Yong Chan; Jung, Jin Sup

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer miR-21 modulates hADSC-induced increase of tumor growth. Black-Right-Pointing-Pointer The action is mostly mediated by the modulation of TGF-{beta} signaling. Black-Right-Pointing-Pointer Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-{beta} increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.

  1. Effect of human adipose tissue-derived mesenchymal-stem-cell bioactive materials on porcine embryo development.

    PubMed

    Park, Hyo-Young; Kim, Eun-Young; Lee, Seung-Eun; Choi, Hyun-Yong; Moon, Jeremiah Jiman; Park, Min-Jee; Son, Yeo-Jin; Lee, Jun-Beom; Jeong, Chang-Jin; Lee, Dong-Sun; Riu, Key-Jung; Park, Se-Pill

    2013-12-01

    Human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) secrete bioactive materials that are beneficial for tissue repair and regeneration. In this study, we characterized human hAT-MSC bioactive material (hAT-MSC-BM), and examined the effect of hAT-MSC-BM on porcine embryo development. hAT-MSC-BM was enriched with several growth factors and cytokines, including fibroblast growth factor 2 (FGF2), vascular endothelial growth factor A (VEGFA), and interleukin 6 (IL6). Among the various concentrations and days of treatment tested, 10% hAT-MSC-BM treatment beginning on culture Day 4 provided the best environment for the in vitro growth of parthenogenetic porcine embryos. While the addition of 10% fetal bovine serum (FBS) increased the hatching rate and the total cell number of parthenogenetic porcine embryos compared with the control and hAT-MSC culture medium group, the best results were from the group cultured with 10% hAT-MSC-BM. Mitochondrial activity was also higher in the 10% hAT-MSC-BM-treated group. Moreover, the relative mRNA expression levels of development and anti-apoptosis genes were significantly higher in the 10% hAT-MSC-BM-treated group than in control, hAT-MSC culture medium, or 10% FBS groups, whereas the transcript abundance of an apoptosis gene was slightly lower. Treatment with 10% hAT-MSC-BM starting on Day 4 also improved the development rate and the total cell number of in vitro-fertilized embryos. This is the first report on the benefits of hAT-MSC-BM in a porcine embryo in vitro culture system. We conclude that hAT-MSC-BM is a new, alternative supplement that can improve the development of porcine embryos during both parthenogenesis and fertilization in vitro.

  2. Role of thioredoxin 1 and thioredoxin 2 on proliferation of human adipose tissue-derived mesenchymal stem cells.

    PubMed

    Song, Ji Sun; Cho, Hyun Hwa; Lee, Byung-Joo; Bae, Yong Chan; Jung, Jin Sup

    2011-09-01

    Thioredoxin (TRX) is a ubiquitous redox protein that is involved in numerous biological functions, including the first unique step in DNA synthesis. TRX provides control over a number of transcription factors affecting cell proliferation and death through a mechanism referred to as redox regulation. In mammals, there are at least 3 members of the TRX family: TRX1, TRX2, and sperm TRX. To investigate the role of TRX1 and TRX2 in human adipose tissue-derived mesenchymal stem cells (hADSC), we modulated TRX1 and TRX2 expressions in hADSC using a lentiviral gene transfer system and small interfering RNA technique. Reverse transcription-polymerase chain reaction analysis confirmed the changes in expression of TRX1 and TRX2 in lentivirus-transduced or small interfering RNA-transfected cells. Although overexpression of TRX1 and TRX2 did not affect the differentiation of hADSC into adipogenic and osteogenic lineages, it increased the proliferation of hADSC compared with control lentivirus-transduced cells, decreased reactive oxygen species production, and inhibited oxidant-induced cell death. Downregulation of TRX1 and TRX2 inhibited cell proliferation. The treatment of U0126 blocked TRX-induced increase in cell proliferation. Overexpression of TRX1 and TRX2 increased ERK1/2 phosphorylation, nuclear factor-kappaB activation, and β-catenin/Tcf promoter activities and inhibited lucine zipper tumor suppressor 2 expression. On the contrary, downregulation of TRX1 and TRX2 expression induced inhibition of ERK1/2 phosphorylation, nuclear factor-kappaB activation, and β-catenin/Tcf promoter activities and increased lucine zipper tumor suppressor 2 expression. Activation of Wnt signal increased ERK1/2 activities in hADSC. These results indicated that TRX1 and TRX2 regulate the proliferation and survival of hADSC; these processes are mediated by the activation of ERK1/2. PMID:21158569

  3. Human adipose derived mesenchymal stromal cells transduced with GFP lentiviral vectors: assessment of immunophenotype and differentiation capacity in vitro.

    PubMed

    van Vollenstee, Fiona A; Jackson, Carlo; Hoffmann, Danie; Potgieter, Marnie; Durandt, Chrisna; Pepper, Michael S

    2016-10-01

    Adipose derived mesenchymal stromal/stem cells (ASCs) are a heterogeneous population characterized by (a) their ability to adhere to plastic; (b) immunophenotypic expression of certain cell surface markers, while lacking others; and (c) the capacity to differentiate into lineages of mesodermal origin including osteocytes, chondrocytes and adipocytes. The long-term goal is to utilize these cells for clinical translation into cell-based therapies. However, preclinical safety and efficacy need to be demonstrated in animal models. ASCs can also be utilized as biological vehicles for vector-based gene delivery systems, since they are believed to home to sites of inflammation and infection in vivo. These factors motivated the development of a labelling system for ASCs using lentiviral vector-based green fluorescent protein (GFP) transduction. Human ASCs were transduced with GFP-expressing lentiviral vectors. A titration study determined the viral titer required to transduce the maximum number of ASCs. The effect of the transduced GFP lentiviral vector on ASC immunophenotypic expression of surface markers as well as their ability to differentiate into osteocytes and adipocytes were assessed in vitro. A transduction efficiency in ASC cultures of approximately 80 % was observed with an MOI of ~118. No significant immunophenotypic differences were observed between transduced and non-transduced cells and both cell types successfully differentiated into adipocytes and osteocytes in vitro. We obtained >80 % transduction of ASCs using GFP lentiviral vectors. Transduced ASCs maintained plastic adherence, demonstrated ASC immunophenotype and the ability to differentiate into cells of the mesodermal lineage. This GFP-ASC transduction technique offers a potential tracking system for future pre-clinical studies.

  4. Fibroblast-Like Cells Differentiated from Adipose-Derived Mesenchymal Stem Cells for Vocal Fold Wound Healing

    PubMed Central

    Hu, Rong; Ling, Wei; Xu, Wen; Han, Demin

    2014-01-01

    Tissue engineering has revealed the potential to regenerate injured vocal folds, and identification of the most suitable seed cells has remained a hot topic of research. The aim of this study was to implant fibroblast-like cells differentiated from adipose-derived mesenchymal stem cells (ADSCs) in a canine acute vocal fold wound model. We then sought to characterize changes in the extracellular matrix (ECM) proteins of vocal fold lamina propria. For this purpose, ADSCs were induced to differentiate into fibroblasts under the regulation of connective tissue growth factor in vitro. Cell surface proteins were identified by immunofluorescence staining. Thirty vocal folds of 17 canines were injured by localized resection and injected with fibroblast-like cells (differentiated ADSCs, dADSCs), ADSCs or vocal fold fibroblasts (VFFs). The morphology of vocal folds was observed, and the characteristics of ECM protein components (collagen, elastin, hyaluronic acid, decorin and fibronectin) were evaluated by immunofluorescence staining from 15 days to 6 months following implantation. The results showed that in vitro, the dADSCs showed morphology and cell surface protein expression similar to those of VFFs. After implantation in vivo, the surfaces of the recipient vocal folds became almost smooth in the dADSCs and ADSCs groups at 6 months but remained slightly concave and stiff in the VFFs group. The elastin fluorescence intensity increased significantly and was maintained at a high level in the dADSCs group. The collagen fluorescence intensity increased slightly in the dADSCs and ADSCs groups, whereas it demonstrated a more irregular arrangement in the VFFs group. The fluorescence intensity of hyaluronic acid, decorin and fibronectin was similar between the three implanted groups. These results indicated that dADSCs may confer an advantage for vocal fold wound healing. Furthermore, dADSCs have the ability to secrete ECM components in vivo, particularly elastin, which may be

  5. Fibroblast-like cells differentiated from adipose-derived mesenchymal stem cells for vocal fold wound healing.

    PubMed

    Hu, Rong; Ling, Wei; Xu, Wen; Han, Demin

    2014-01-01

    Tissue engineering has revealed the potential to regenerate injured vocal folds, and identification of the most suitable seed cells has remained a hot topic of research. The aim of this study was to implant fibroblast-like cells differentiated from adipose-derived mesenchymal stem cells (ADSCs) in a canine acute vocal fold wound model. We then sought to characterize changes in the extracellular matrix (ECM) proteins of vocal fold lamina propria. For this purpose, ADSCs were induced to differentiate into fibroblasts under the regulation of connective tissue growth factor in vitro. Cell surface proteins were identified by immunofluorescence staining. Thirty vocal folds of 17 canines were injured by localized resection and injected with fibroblast-like cells (differentiated ADSCs, dADSCs), ADSCs or vocal fold fibroblasts (VFFs). The morphology of vocal folds was observed, and the characteristics of ECM protein components (collagen, elastin, hyaluronic acid, decorin and fibronectin) were evaluated by immunofluorescence staining from 15 days to 6 months following implantation. The results showed that in vitro, the dADSCs showed morphology and cell surface protein expression similar to those of VFFs. After implantation in vivo, the surfaces of the recipient vocal folds became almost smooth in the dADSCs and ADSCs groups at 6 months but remained slightly concave and stiff in the VFFs group. The elastin fluorescence intensity increased significantly and was maintained at a high level in the dADSCs group. The collagen fluorescence intensity increased slightly in the dADSCs and ADSCs groups, whereas it demonstrated a more irregular arrangement in the VFFs group. The fluorescence intensity of hyaluronic acid, decorin and fibronectin was similar between the three implanted groups. These results indicated that dADSCs may confer an advantage for vocal fold wound healing. Furthermore, dADSCs have the ability to secrete ECM components in vivo, particularly elastin, which may be

  6. Genetically modified murine adipose-derived mesenchymal stem cells producing interleukin-2 favor B16F10 melanoma cell proliferation.

    PubMed

    Bahrambeigi, Vahid; Ahmadi, Nafiseh; Salehi, Rasoul; Javanmard, Shaghayegh Haghjooy

    2015-01-01

    Adipose-derived mesenchymal stem cells (ADSCs) are attractive tools for cancer gene therapy due to their intrinsic tropism to the tumor environment. Interleukin-2 (IL2) is recognized as a key regulatory molecule, which enhances the activity and growth of the immune effector cell function. High-Dose IL2 Therapy is an option for treatment of malignant melanoma but has frequent, often serious and sometimes life-threatening side effects. Here we investigated the effect of genetically modified ADSCs (GM-ADSCs) expressing IL2 in immunocompetent mouse models of subcutaneous and lung metastatic melanoma. Prior to in vivo studies, we demonstrated that IL2 produced by GM-ADSCs may act as a growth factor for melanoma cells due to the increased viability and reduced apoptosis of melanoma cells after in vitro treatment. Subcutaneous co-injection of IL2-expressing ADSCs with melanoma cells significantly enhanced the melanoma tumor growth. Furthermore, histological analysis of subcutaneous tumors for IL2 and Melan-A (a melanocytic differentiation marker) confirmed that most of cells in melanoma/IL2-ADSC co-injected tumors are melanoma cells, not IL2-ADSCs. In pulmonary metastases model, melanoma cells were injected intravenously and 10 days later mice were treated by systematical injection of GM-ADSCs. Intravenously injected IL2-ADSCs engrafted into melanoma lung tumors but were unable to reduce melanoma lung metastases. Besides, administered IL2-ADSCs significantly reduced systemic CD4+ cells and did not impact the total survival of lung metastases melanoma bearing mice. In conclusion, this study showed that IL2-producing ADSCs can favor B16F10 melanoma cell proliferation. Therefore, therapies utilizing IL2 have to be taken into careful consideration.

  7. Engraftment Potential of Adipose Tissue-Derived Human Mesenchymal Stem Cells After Transplantation in the Fetal Rabbit

    PubMed Central

    Martínez-González, Itziar; Moreno, Rafael; Petriz, Jordi; Gratacós, Eduard

    2012-01-01

    Due to their favorable intrinsic features, including engraftment, differentiation, and immunomodulatory potential, adult mesenchymal stem cells (MSCs) have been proposed for therapeutic in utero intervention. Further improvement of such attributes for particular diseases might merely be achieved by ex vivo MSC genetic engineering previous to transplantation. Here, we evaluated for the first time the feasibility, biodistribution, long-term engraftment, and transgenic enhanced green fluorescent protein (EGFP) expression of genetically engineered human adipose tissue-derived MSCs (EGFP+-ASCs) after intra-amniotic xenotransplantation at E17 of gestation into our validated pregnant rabbit model. Overall, the procedure was safe (86.4% survival rate; absence of anatomical defects). Stable, low-level engraftment of EGFP+-ASCs was confirmed by assessing the presence of the pWT-EGFP lentiviral provirus in the young transplanted rabbit tissues. Accordingly, similar frequencies of provirus-positive animals were found at both 8 weeks (60%) and 16 weeks (66.7%) after in utero intervention. The presence of EGFP+-ASCs was more frequent in respiratory epithelia (lung and trachea), according to the route of administration. However, we were unable to detect EGFP expression, neither by real-time polymerase chain reaction nor by immunohistochemistry, in the provirus-positive tissues, suggesting EGFP transgene silencing mediated by epigenetic events. Moreover, we noticed lack of both host cellular immune responses against xenogeneic ASCs and humoral immune responses against transgenic EGFP. Therefore, the fetal microchimerism achieved by the EGFP+-ASCs in the young rabbit hosts indicates induction of donor-specific tolerance after fetal rabbit xenotransplantation, which should boost postnatal transplantation for the early treatment/prevention of many devastating congenital disorders. PMID:22738094

  8. Gene Expression Profiles of Human Adipose Tissue-Derived Mesenchymal Stem Cells Are Modified by Cell Culture Density

    PubMed Central

    Yoo, Keon Hee; Lee, Tae-Hee; Kim, Hye Jin; Jang, In Keun; Chun, Yong Hoon; Kim, Hyung Joon; Park, Seung Jo; Lee, Soo Hyun; Son, Meong Hi; Jung, Hye Lim; Sung, Ki Woong; Koo, Hong Hoe

    2014-01-01

    Previous studies conducted cell expansion ex vivo using low initial plating densities for optimal expansion and subsequent differentiation of mesenchymal stem cells (MSCs). However, MSC populations are heterogeneous and culture conditions can affect the characteristics of MSCs. In this study, differences in gene expression profiles of adipose tissue (AT)-derived MSCs were examined after harvesting cells cultured at different densities. AT-MSCs from three different donors were plated at a density of 200 or 5,000 cells/cm2. After 7 days in culture, detailed gene expression profiles were investigated using a DNA chip microarray, and subsequently validated using a reverse transcription polymerase chain reaction (RT-PCR) analysis. Gene expression profiles were influenced primarily by the level of cell confluence at harvest. In MSCs harvested at ∼90% confluence, 177 genes were up-regulated and 102 genes down-regulated relative to cells harvested at ∼50% confluence (P<0.05, FC>2). Proliferation-related genes were highly expressed in MSCs harvested at low density, while genes that were highly expressed in MSCs harvested at high density (∼90% confluent) were linked to immunity and defense, cell communication, signal transduction and cell motility. Several cytokine, chemokine and growth factor genes involved in immunosuppression, migration, and reconstitution of damaged tissues were up-regulated in MSCs harvested at high density compared with MSCs harvested at low density. These results imply that cell density at harvest is a critical factor for modulating the specific gene-expression patterns of heterogeneous MSCs. PMID:24400072

  9. The therapeutic efficacy of human adipose tissue-derived mesenchymal stem cells on experimental autoimmune hearing loss in mice.

    PubMed

    Zhou, Yixuan; Yuan, Jingdong; Zhou, Bin; Lee, Austin J; Lee, Albert J; Ghawji, Maher; Yoo, Tai June

    2011-05-01

    Autoimmune inner ear disease is characterized by progressive, bilateral although asymmetric, sensorineural hearing loss. Patients with autoimmune inner ear disease had higher frequencies of interferon-γ-producing T cells than did control subjects tested. Human adipose-derived mesenchymal stem cells (hASCs) were recently found to suppress effector T cells and inflammatory responses and therefore have beneficial effects in various autoimmune diseases. The aim of this study was to examine the immunosuppressive activity of hASCs on autoreactive T cells from the experimental autoimmune hearing loss (EAHL) murine model. Female BALB/c mice underwent β-tubulin immunization to develop EAHL; mice with EAHL were given hASCs or PBS intraperitoneally once a week for 6 consecutive weeks. Auditory brainstem responses were examined over time. The T helper type 1 (Th1)/Th17-mediated autoreactive responses were examined by determining the proliferative response and cytokine profile of splenocytes stimulated with β-tubulin. The frequency of regulatory T (Treg) cells and their suppressive capacity on autoreactive T cells were also determined. Systemic infusion of hASCs significantly improved hearing function and protected hair cells in established EAHL. The hASCs decreased the proliferation of antigen-specific Th1/Th17 cells and induced the production of anti-inflammatory cytokine interleukin-10 in splenocytes. They also induced the generation of antigen-specific CD4(+) CD25(+) Foxp3(+) Treg cells with the capacity to suppress autoantigen-specific T-cell responses. The experiment demonstrated that hASCs are one of the important regulators of immune tolerance with the capacity to suppress effector T cells and to induce the generation of antigen-specific Treg cells.

  10. Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/β-catenin signaling pathway

    PubMed Central

    Choi, Seon Young; Song, Min Seok; Ryu, Pan Dong; Lam, Anh Thu Ngoc; Joo, Sang-Woo; Lee, So Yeong

    2015-01-01

    Gold nanoparticles (AuNPs) are attractive materials for use in biomedicine due to their physical properties. Increasing evidence suggests that several nanoparticles induce the differentiation of human mesenchymal stem cells into osteoblasts and adipocytes. In this study, we hypothesized that chitosan-conjugated AuNPs promote the osteogenic differentiation of human adipose-derived mesenchymal stem cells. For the evaluation of osteogenic differentiation, alizarin red staining, an alamarBlue® assay, and a quantitative real-time polymerase chain reaction analysis were performed. In order to examine specific signaling pathways, immunofluorescence and a western blotting assay were performed. Our results demonstrate that chitosan-conjugated AuNPs increase the deposition of calcium content and the expression of marker genes related to osteogenic differentiation in human adipose-derived mesenchymal stem cells at nontoxic concentrations. These results indicate that chitosan-conjugated AuNPs promote osteogenesis through the Wnt/β-catenin signaling pathway. Therefore, chitosan-conjugated AuNPs can be used as a reagent for promoting bone formation. PMID:26185441

  11. Conditioned Media from Human Adipose Tissue-Derived Mesenchymal Stem Cells and Umbilical Cord-Derived Mesenchymal Stem Cells Efficiently Induced the Apoptosis and Differentiation in Human Glioma Cell Lines In Vitro

    PubMed Central

    Lei, Deqiang; Ouyang, Weixiang; Ren, Jinghua; Li, Huiyu; Hu, Jingqiong; Huang, Shiang

    2014-01-01

    Human mesenchymal stem cells (MSCs) have an intrinsic property for homing towards tumor sites and can be used as tumor-tropic vectors for tumor therapy. But very limited studies investigated the antitumor properties of MSCs themselves. In this study we investigated the antiglioma properties of two easily accessible MSCs, namely, human adipose tissue-derived mesenchymal stem cells (ASCs) and umbilical cord-derived mesenchymal stem cells (UC-MSCs). We found (1) MSC conditioned media can significantly inhibit the growth of human U251 glioma cell line; (2) MSC conditioned media can significantly induce apoptosis in human U251 cell line; (3) real-time PCR experiments showed significant upregulation of apoptotic genes of both caspase-3 and caspase-9 and significant downregulation of antiapoptotic genes such as survivin and XIAP after MSC conditioned media induction in U 251 cells; (4) furthermore, MSCs conditioned media culture induced rapid and complete differentiation in U251 cells. These results indicate MSCs can efficiently induce both apoptosis and differentiation in U251 human glioma cell line. Whereas UC-MSCs are more efficient for apoptosis induction than ASCs, their capability of differentiation induction is not distinguishable from each other. Our findings suggest MSCs themselves have favorable antitumor characteristics and should be further explored in future glioma therapy. PMID:24971310

  12. Increased Expression of EGR-1 in Diabetic Human Adipose Tissue-Derived Mesenchymal Stem Cells Reduces Their Wound Healing Capacity.

    PubMed

    Trinh, Nhu-Thuy; Yamashita, Toshiharu; Ohneda, Kinuko; Kimura, Kenichi; Salazar, Georgina To'a; Sato, Fujio; Ohneda, Osamu

    2016-05-15

    The prevalence of type 2 diabetes mellitus (T2DM), which leads to diabetic complications, has been increasing worldwide. The possible applications of T2DM-derived stem cells in cell therapy are limited because their characteristics are still not fully understood. In this study, we characterized adipose tissue-derived mesenchymal stem cells (AT-MSCs) from diabetic patients (dAT-MSCs) and found that insulin receptor substrate-1 (IRS-1) was highly phosphorylated at serine 636/639 in dAT-MSCs. Moreover, we found that early growth response factor-1 (EGR-1) and its target genes of PTEN and GGPS1 were highly expressed in dAT-MSCs in comparison to healthy donor-derived AT-MSCs (nAT-MSCs). We observed impaired wound healing after the injection of dAT-MSCs in the ischemic flap mouse model. The expressions of EGR-1 and its target genes were diminished by small hairpin RNA-targeted EGR-1 (shEGR-1) and treatment with a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) inhibitor (PD98059). Importantly, dAT-MSCs with shEGR-1 were able to restore the wound healing ability in the mouse model. Interestingly, under hypoxic conditions, hypoxia-inducible factor-1α (HIF-1α) can bind to the EGR-1 promoter in dAT-MSCs, but not in nAT-MSCs. Together, these results demonstrate that the expression of EGR-1 was upregulated in dAT-MSCs through two pathways: the main regulatory pathway is the MAPK/ERK pathway, the other is mediated by HIF-1α through direct transcriptional activation at the promoter region of the EGR1 gene. Our study suggests that dAT-MSCs may contribute to microvascular damage and delay wound healing through the overexpression of EGR-1. Interrupting the expression of EGR-1 in dAT-MSCs may be a useful treatment for chronic wounds in diabetic patients. PMID:26988763

  13. Adipose-derived mesenchymal stromal cells from aged patients with coronary artery disease keep mesenchymal stromal cell properties but exhibit characteristics of aging and have impaired angiogenic potential.

    PubMed

    Efimenko, Anastasia; Dzhoyashvili, Nina; Kalinina, Natalia; Kochegura, Tatiana; Akchurin, Renat; Tkachuk, Vsevolod; Parfyonova, Yelena

    2014-01-01

    Tissue regeneration is impaired in aged individuals. Adipose-derived mesenchymal stromal cells (ADSCs), a promising source for cell therapy, were shown to secrete various angiogenic factors and improve vascularization of ischemic tissues. We analyzed how patient age affected the angiogenic properties of ADSCs. ADSCs were isolated from subcutaneous fat tissue of patients with coronary artery disease (CAD; n = 64, 43-77 years old) and without CAD (n = 31, 2-82 years old). ADSC phenotype characterized by flow cytometry was CD90(+)/CD73(+)/CD105(+)/CD45(-)/CD31(-) for all samples, and these cells were capable of adipogenic and osteogenic differentiation. ADSCs from aged patients had shorter telomeres (quantitative reverse transcription polymerase chain reaction) and a tendency to attenuated telomerase activity. ADSC-conditioned media (ADSC-CM) stimulated capillary-like tube formation by endothelial cells (EA.hy926), and this effect significantly decreased with the age of patients both with and without CAD. Angiogenic factors (vascular endothelial growth factor, placental growth factor, hepatocyte growth factor, angiopoetin-1, and angiogenin) in ADSC-CM measured by enzyme-linked immunosorbent assay significantly decreased with patient age, whereas levels of antiangiogenic factors thrombospondin-1 and endostatin did not. Expression of angiogenic factors in ADSCs did not change with patient age (real-time polymerase chain reaction); however, gene expression of factors related to extracellular proteolysis (urokinase and its receptor, plasminogen activator inhibitor-1) and urokinase-type plasminogen activator receptor surface expression increased in ADSCs from aged patients with CAD. ADSCs from aged patients both with and without CAD acquire aging characteristics, and their angiogenic potential declines because of decreasing proangiogenic factor secretion. This could restrict the effectiveness of autologous cell therapy with ADSCs in aged patients.

  14. Preclinical Biosafety Evaluation of Genetically Modified Human Adipose Tissue-Derived Mesenchymal Stem Cells for Clinical Applications to Brainstem Glioma.

    PubMed

    Choi, Seung Ah; Yun, Jun-Won; Joo, Kyeung Min; Lee, Ji Yeoun; Kwak, Pil Ae; Lee, Young Eun; You, Ji-Ran; Kwon, Euna; Kim, Woo Ho; Wang, Kyu-Chang; Phi, Ji Hoon; Kang, Byeong-Cheol; Kim, Seung-Ki

    2016-06-15

    Stem-cell based gene therapy is a promising novel therapeutic approach for inoperable invasive tumors, including brainstem glioma. Previously, we demonstrated the therapeutic potential of human adipose tissue-derived mesenchymal stem cells (hAT-MSC) genetically engineered to express a secreted form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) against brainstem glioma. However, safety concerns should be comprehensively investigated before clinical applications of hAT-MSC.sTRAIL. At first, we injected stereotactically low (1.2 × 10(5) cells/18 μL), medium (2.4 × 10(5)/18 μL), or high dose (3.6 × 10(5)/18 μL) of hAT-MSC.sTRAIL into the brainstems of immunodeficient mice reflecting the plan of the future clinical trial. Local toxicity, systemic toxicity, secondary tumor formation, and biodistribution of hAT-MSC.sTRAIL were investigated. Next, presence of hAT-MSC.sTRAIL was confirmed in the brain and major organs at 4, 9, and 14 weeks in brainstem glioma-bearing mice. In the 15-week subchronic toxicity test, no serious adverse events in terms of body weight, food consumption, clinical symptom, urinalysis, hematology, clinical chemistry, organ weight, and histopathology were observed. In the 26-week tumorigenicity test, hAT-MSC.sTRAIL made no detectable tumors, whereas positive control U-87 MG cells made huge tumors in the brainstem. No remaining hAT-MSC.sTRAIL was observed in any organs examined, including the brainstem at 15 or 26 weeks. In brainstem glioma-bearing mice, injected hAT-MSC.sTRAIL was observed, but gradually decreased over time in the brain. The mRNA of human specific GAPDH and TRAIL was not detected in all major organs. These results indicate that the hAT-MSC.sTRAIL could be applicable to the future clinical trials in terms of biosafety. PMID:27151205

  15. Preclinical Biosafety Evaluation of Genetically Modified Human Adipose Tissue-Derived Mesenchymal Stem Cells for Clinical Applications to Brainstem Glioma.

    PubMed

    Choi, Seung Ah; Yun, Jun-Won; Joo, Kyeung Min; Lee, Ji Yeoun; Kwak, Pil Ae; Lee, Young Eun; You, Ji-Ran; Kwon, Euna; Kim, Woo Ho; Wang, Kyu-Chang; Phi, Ji Hoon; Kang, Byeong-Cheol; Kim, Seung-Ki

    2016-06-15

    Stem-cell based gene therapy is a promising novel therapeutic approach for inoperable invasive tumors, including brainstem glioma. Previously, we demonstrated the therapeutic potential of human adipose tissue-derived mesenchymal stem cells (hAT-MSC) genetically engineered to express a secreted form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) against brainstem glioma. However, safety concerns should be comprehensively investigated before clinical applications of hAT-MSC.sTRAIL. At first, we injected stereotactically low (1.2 × 10(5) cells/18 μL), medium (2.4 × 10(5)/18 μL), or high dose (3.6 × 10(5)/18 μL) of hAT-MSC.sTRAIL into the brainstems of immunodeficient mice reflecting the plan of the future clinical trial. Local toxicity, systemic toxicity, secondary tumor formation, and biodistribution of hAT-MSC.sTRAIL were investigated. Next, presence of hAT-MSC.sTRAIL was confirmed in the brain and major organs at 4, 9, and 14 weeks in brainstem glioma-bearing mice. In the 15-week subchronic toxicity test, no serious adverse events in terms of body weight, food consumption, clinical symptom, urinalysis, hematology, clinical chemistry, organ weight, and histopathology were observed. In the 26-week tumorigenicity test, hAT-MSC.sTRAIL made no detectable tumors, whereas positive control U-87 MG cells made huge tumors in the brainstem. No remaining hAT-MSC.sTRAIL was observed in any organs examined, including the brainstem at 15 or 26 weeks. In brainstem glioma-bearing mice, injected hAT-MSC.sTRAIL was observed, but gradually decreased over time in the brain. The mRNA of human specific GAPDH and TRAIL was not detected in all major organs. These results indicate that the hAT-MSC.sTRAIL could be applicable to the future clinical trials in terms of biosafety.

  16. Melatonin augments apoptotic adipose-derived mesenchymal stem cell treatment against sepsis-induced acute lung injury

    PubMed Central

    Chen, Hong-Hwa; Chang, Chia-Lo; Lin, Kun-Chen; Sung, Pei-Hsun; Chai, Han-Tan; Zhen, Yen-Yi; Chen, Yi-Ching; Wu, Ying-Chung; Leu, Steve; Tsai, Tzu-Hsien; Chen, Chih-Hung; Chang, Hsueh-Wen; Yip, Hon-Kan

    2014-01-01

    This study investigated whether combining melatonin and apoptotic adipose-derived mesenchymal stem cells (A-ADMSC) was superior to ADMSC alone in ameliorating sepsis-induced acute lung injury. Adult male Sprague-Dawley rats (n=50) were randomized equally into five groups: sham controls (SC), sepsis induced by cecal-ligation and puncture (CLP), CLP-melatonin, CLP-A-ADMSC, and CLP-melatonin-A-ADMSC. Circulating interleukin (IL)-6 at 6, 18, and 72 hrs, were highest in CLP and lowest in SC groups, higher in CLP-melatonin than CLP-A-ADMSC and CLP-melatonin-A-ADMSC groups, higher in CLP-A-ADMSC than CLP-melatonin-A-ADMSC groups (all p<0.001). Immune reactivity (indicated by circulating cytotoxic-, and regulatory-T cells) and WBC count at 72 h exhibited the same pattern as that of circulating IL-6 (all p<0.001). Changes in histological scoring of lung parenchyma and the number of CD68+ and CD14+ cells showed a similar pattern compared to that of IL-6 level in all groups (all p<0.001). Changes in protein expressions of inflammatory (oxidative stress, RANTES, TNF-α, NF-κB, MMP-9, MIP-1, IL-1β), apoptotic (cleaved caspase 3 and PARP, mitochondrial Bax), fibrotic (Smad3, TGF-β) markers and those of reactive-oxygen-species (NOX-1, NOX-2) displayed an identical pattern compared to that of circulating IL-6 in all groups (all p<0.001). Anti-oxidative capacities (GR+, GPx+, HO-1, NQO-1+) and angiogenesis marker (CXCR4+ cells) were lowest in SC group but highest in CLP-melatonin-A-ADMSC group, lower in CLP than CLP-melatonin and CLP-A-ADMSC groups, and lower in CLP-melatonin than CLP-A-ADMSC groups (all p<0.001). In conclusion, combined melatonin and A-ADMSC were superior to A-ADMSC alone in protecting the lung from sepsis-induced injury. PMID:25360211

  17. Effect of serum-derived albumin scaffold and canine adipose tissue-derived mesenchymal stem cells on osteogenesis in canine segmental bone defect model

    PubMed Central

    Yoon, Daeyoung; Kang, Byung-Jae; Kim, Yongsun; Lee, Seung Hoon; Rhew, Daeun; Kim, Wan Hee

    2015-01-01

    Composite biological and synthetic grafts with progenitor cells offer an alternative approach to auto- or allografts for fracture repair. This study was conducted to evaluate osteogenesis of autologous serum-derived albumin (ASA) scaffolds seeded with canine adipose tissue-derived mesenchymal stem cells (Ad-MSCs) in a canine segmental bone defect model. ASA scaffold was prepared with canine serum using cross-linking and freeze-drying procedures. Beta-tricalcium phosphate (β-TCP) was mixed at the cross-linking stage. Ad-MSCs were seeded into the scaffold and incubated for one day before implantation. After 16 weeks, the grafts were harvested for histological analysis. The dogs were divided into five groups: control, ASA scaffolds with and without Ad-MSCs, and ASA scaffolds including β-TCP with and without Ad-MSCs. ASA scaffolds with Ad-MSCs had a significantly larger area of increased opacity at the proximal and distal host cortex-implant interfaces in radiographs 16 weeks after implantation compared to the groups with β-TCP (p < 0.05). Histomorphometric analysis showed that ASA scaffolds with Ad-MSCs had significantly greater new bone formation than other groups (p < 0.05). These results suggest that Ad-MSCs seeded into ASA scaffolds enhanced osteogenesis in the bone defect model, but that β-TCP in the ASA scaffold might prevent penetration of the cells required for bone healing. PMID:26119162

  18. Low-frequency, low-magnitude vibrations (LFLM) enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs)

    PubMed Central

    Lewandowski, Daniel; Tomaszewski, Krzysztof A.; Henry, Brandon M.; Golec, Edward B.; Marędziak, Monika

    2016-01-01

    The aim of this study was to evaluate if low-frequency, low-magnitude vibrations (LFLM) could enhance chondrogenic differentiation potential of human adipose derived mesenchymal stem cells (hASCs) with simultaneous inhibition of their adipogenic properties for biomedical purposes. We developed a prototype device that induces low-magnitude (0.3 g) low-frequency vibrations with the following frequencies: 25, 35 and 45 Hz. Afterwards, we used human adipose derived mesenchymal stem cell (hASCS), to investigate their cellular response to the mechanical signals. We have also evaluated hASCs morphological and proliferative activity changes in response to each frequency. Induction of chondrogenesis in hASCs, under the influence of a 35 Hz signal leads to most effective and stable cartilaginous tissue formation through highest secretion of Bone Morphogenetic Protein 2 (BMP-2), and Collagen type II, with low concentration of Collagen type I. These results correlated well with appropriate gene expression level. Simultaneously, we observed significant up-regulation of α3, α4, β1 and β3 integrins in chondroblast progenitor cells treated with 35 Hz vibrations, as well as Sox-9. Interestingly, we noticed that application of 35 Hz frequencies significantly inhibited adipogenesis of hASCs. The obtained results suggest that application of LFLM vibrations together with stem cell therapy might be a promising tool in cartilage regeneration. PMID:26966645

  19. Low-frequency, low-magnitude vibrations (LFLM) enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs).

    PubMed

    Marycz, Krzysztof; Lewandowski, Daniel; Tomaszewski, Krzysztof A; Henry, Brandon M; Golec, Edward B; Marędziak, Monika

    2016-01-01

    The aim of this study was to evaluate if low-frequency, low-magnitude vibrations (LFLM) could enhance chondrogenic differentiation potential of human adipose derived mesenchymal stem cells (hASCs) with simultaneous inhibition of their adipogenic properties for biomedical purposes. We developed a prototype device that induces low-magnitude (0.3 g) low-frequency vibrations with the following frequencies: 25, 35 and 45 Hz. Afterwards, we used human adipose derived mesenchymal stem cell (hASCS), to investigate their cellular response to the mechanical signals. We have also evaluated hASCs morphological and proliferative activity changes in response to each frequency. Induction of chondrogenesis in hASCs, under the influence of a 35 Hz signal leads to most effective and stable cartilaginous tissue formation through highest secretion of Bone Morphogenetic Protein 2 (BMP-2), and Collagen type II, with low concentration of Collagen type I. These results correlated well with appropriate gene expression level. Simultaneously, we observed significant up-regulation of α3, α4, β1 and β3 integrins in chondroblast progenitor cells treated with 35 Hz vibrations, as well as Sox-9. Interestingly, we noticed that application of 35 Hz frequencies significantly inhibited adipogenesis of hASCs. The obtained results suggest that application of LFLM vibrations together with stem cell therapy might be a promising tool in cartilage regeneration. PMID:26966645

  20. Adipose-Derived Mesenchymal Stem Cells in the Regeneration of Vocal Folds: A Study on a Chronic Vocal Fold Scar

    PubMed Central

    Vassiliki, Kalodimou; Irini, Messini; Nikolaos, Psychalakis; Karampela, Eleftheria; Apostolos, Papalois

    2016-01-01

    Background. The aim of the study was to assess the histological effects of autologous infusion of adipose-derived stem cells (ADSC) on a chronic vocal fold scar in a rabbit model as compared to an untreated scar as well as in injection of hyaluronic acid. Study Design. Animal experiment. Method. We used 74 New Zealand rabbits. Sixteen of them were used as control/normal group. We created a bilateral vocal fold wound in the remaining 58 rabbits. After 18 months we separated our population into three groups. The first group served as control/scarred group. The second one was injected with hyaluronic acid in the vocal folds, and the third received an autologous adipose-derived stem cell infusion in the scarred vocal folds (ADSC group). We measured the variation of thickness of the lamina propria of the vocal folds and analyzed histopathologic changes in each group after three months. Results. The thickness of the lamina propria was significantly reduced in the group that received the ADSC injection, as compared to the normal/scarred group. The collagen deposition, the hyaluronic acid, the elastin levels, and the organization of elastic fibers tend to return to normal after the injection of ADSC. Conclusions. Autologous injection of adipose-derived stem cells on a vocal fold chronic scar enhanced the healing of the vocal folds and the reduction of the scar tissue, even when compared to other treatments. PMID:26933440

  1. Adipose-Derived Mesenchymal Stem Cells in the Regeneration of Vocal Folds: A Study on a Chronic Vocal Fold Scar.

    PubMed

    Valerie, Angelou; Vassiliki, Kalodimou; Irini, Messini; Nikolaos, Psychalakis; Karampela, Eleftheria; Apostolos, Papalois

    2016-01-01

    Background. The aim of the study was to assess the histological effects of autologous infusion of adipose-derived stem cells (ADSC) on a chronic vocal fold scar in a rabbit model as compared to an untreated scar as well as in injection of hyaluronic acid. Study Design. Animal experiment. Method. We used 74 New Zealand rabbits. Sixteen of them were used as control/normal group. We created a bilateral vocal fold wound in the remaining 58 rabbits. After 18 months we separated our population into three groups. The first group served as control/scarred group. The second one was injected with hyaluronic acid in the vocal folds, and the third received an autologous adipose-derived stem cell infusion in the scarred vocal folds (ADSC group). We measured the variation of thickness of the lamina propria of the vocal folds and analyzed histopathologic changes in each group after three months. Results. The thickness of the lamina propria was significantly reduced in the group that received the ADSC injection, as compared to the normal/scarred group. The collagen deposition, the hyaluronic acid, the elastin levels, and the organization of elastic fibers tend to return to normal after the injection of ADSC. Conclusions. Autologous injection of adipose-derived stem cells on a vocal fold chronic scar enhanced the healing of the vocal folds and the reduction of the scar tissue, even when compared to other treatments. PMID:26933440

  2. Rat cortex and hippocampus-derived soluble factors for the induction of adipose-derived mesenchymal stem cells into neuron-like cells.

    PubMed

    Han, Chao; Song, Lin; Liu, Yang; Zou, Wei; Jiang, Chen; Liu, Jing

    2014-06-01

    To simulate brain microenvironment, adipose-derived mesenchymal stem cells (AMSC) were induced to differentiate to neuronal-like cells in rat cortex and hippocampus medium (Cox + Hip). First, isolated AMSC were characterized by flow cytometer and the capacity of adipogenesis and osteogenesis. After induction in rat cortex and hippocampus conditioned medium, the cell morphological change was examined and neural marker proteins (β-Ш-Tubulin, NSE, Nissl body) expression was detected by immunofluorescence staining. A variety of synaptic marker proteins, including GAP43, SHANK2, SHANK3 and Bassoon body, were detected. ELISA was used to measure brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) secretion at different time-points. AMSCs positively expressed CD13, CD44 and CD90 and could differentiate into osteoblasts or adipocytes. After induction in Cox + Hip medium for 14 days, cells had a typical neuronal perikaryal appearance, which was suggestive of neuronal differentiation. After 14 days of Cox + Hip treatment, the percentage of cells expressing β-Ⅲ-Tubulin, NSE and Nissl was 53.9 ± 0.8%, 51.3 ± 1.7% and 16.4 ± 2.1%, respectively. Expression of GAP43, SHANK2, SHANK3 and Bassoon body was detected, indicating synapse formation after treatment in Cox + Hip medium. Differentiated AMSCs secreted neurotrophic factors NGF and BDNF. Thus rat cortex and hippocampus-derived soluble factors can induce AMSCs to a neuronal-like phenotype, suggesting that AMSCs have a dual role in supplementing newborn neurons and secreting neurotrophic factors, and therefore could be help as a potential treatment for nervous system diseases.

  3. Optimization of the isolation and expansion method of human mediastinal-adipose tissue derived mesenchymal stem cells with virally inactivated GMP-grade platelet lysate.

    PubMed

    Siciliano, Camilla; Ibrahim, Mohsen; Scafetta, Gaia; Napoletano, Chiara; Mangino, Giorgio; Pierelli, Luca; Frati, Giacomo; De Falco, Elena

    2015-01-01

    Mesenchymal stem cells (MSCs) are adult multipotent cells currently employed in several clinical trials due to their immunomodulating, angiogenic and repairing features. The adipose tissue is certainly considered an eligible source of MSCs. Recently, putative adipose tissue derived MSCs (ADMSCs) have been isolated from the mediastinal depots. However, very little is known about the properties, the function and the potential of human mediastinal ADMSCs (hmADMSCs). However, the lack of standardized methodologies to culture ADMSCs prevents comparison across. Herein for the first time, we report a detailed step by step description to optimize the isolation and the expansion methodology of hmADMSCs using a virally inactivated good manufacturing practice (GMP)-grade platelet lysate, highlighting the critical aspects of the procedure and providing useful troubleshooting suggestions. Our approach offers a reproducible system which could provide standardization across laboratories. Moreover, our system is time and cost effective, and it can provide a reproducible source of adipose stem cells to enable future studies to unravel new insights regard this promising stem cell population. PMID:24306273

  4. Potential of adipose-derived mesenchymal stem cells and skeletal muscle-derived satellite cells for somatic cell nuclear transfer mediated transgenesis in Arbas Cashmere goats.

    PubMed

    Ren, Yu; Wu, Haiqing; Ma, Yuzhen; Yuan, Jianlong; Liang, Hao; Liu, Dongjun

    2014-01-01

    Somatic cell nuclear transfer is used to generate genetic models for research and new, genetically modified livestock varieties. Goat fetal fibroblast cells (gFFCs) are the predominant nuclear donors in Cashmere goat transgenic cloning, but have disadvantages. We evaluated the potential of goat adipose-derived mesenchymal stem cells (gADSCs) and goat skeletal muscle-derived satellite cells (gMDSCs) for somatic cell nuclear transfer, evaluating their proliferation, pluripotency, transfection efficiency and capacity to support full term development of embryos after additive gene transfer or homologous recombination. gADSCs and gMDSCs were isolated by enzyme digestion and differentiated into neurocytes, myotube cells and insulin-producing cells. Neuron-specific enolase, fast muscle myosin and insulin expression were determined by immunohistochemistry. Following somatic cell nuclear transfer with donor cells derived from gADSCs, gMDSCs and gFFCs, transfection and cloning efficiencies were compared. Red fluorescent protein levels were determined by quantitative PCR and western blotting. 5-Methylcytosine, H4K5, H4K12 and H3K18 were determined immunohistochemically. gADSCs and gMDSCs were maintained in culture for up to 65 passages, whereas gFFCs could be passaged barely more than 15 times. gADSCs and gMDSCs had higher fluorescent colony forming efficiency and greater convergence (20%) and cleavage (10%) rates than gFFCs, and exhibited differing H4K5 histone modification patterns after somatic cell nuclear transfer and in vitro cultivation. After transfection with a pDsRed2-1 expression plasmid, the integrated exogenous genes did not influence the pluripotency of gADSCs-pDsRed2-1 or gMDSCs-pDsRed2-1. DsRed2 mRNA expression by cloned embryos derived from gADSCs-pDsRed2-1 or gMDSCs-pDsRed2-1 was more than twice that of gFFCs-pDsRed2-1 embryos (P<0.01). Pregnancy rates of gADSCs-pDsRed2-1 and gMDSCs-pDsRed2-1 recipients were higher than those of gFFCs-pDsRed2-1 recipients (P

  5. Potential of adipose-derived mesenchymal stem cells and skeletal muscle-derived satellite cells for somatic cell nuclear transfer mediated transgenesis in Arbas Cashmere goats.

    PubMed

    Ren, Yu; Wu, Haiqing; Ma, Yuzhen; Yuan, Jianlong; Liang, Hao; Liu, Dongjun

    2014-01-01

    Somatic cell nuclear transfer is used to generate genetic models for research and new, genetically modified livestock varieties. Goat fetal fibroblast cells (gFFCs) are the predominant nuclear donors in Cashmere goat transgenic cloning, but have disadvantages. We evaluated the potential of goat adipose-derived mesenchymal stem cells (gADSCs) and goat skeletal muscle-derived satellite cells (gMDSCs) for somatic cell nuclear transfer, evaluating their proliferation, pluripotency, transfection efficiency and capacity to support full term development of embryos after additive gene transfer or homologous recombination. gADSCs and gMDSCs were isolated by enzyme digestion and differentiated into neurocytes, myotube cells and insulin-producing cells. Neuron-specific enolase, fast muscle myosin and insulin expression were determined by immunohistochemistry. Following somatic cell nuclear transfer with donor cells derived from gADSCs, gMDSCs and gFFCs, transfection and cloning efficiencies were compared. Red fluorescent protein levels were determined by quantitative PCR and western blotting. 5-Methylcytosine, H4K5, H4K12 and H3K18 were determined immunohistochemically. gADSCs and gMDSCs were maintained in culture for up to 65 passages, whereas gFFCs could be passaged barely more than 15 times. gADSCs and gMDSCs had higher fluorescent colony forming efficiency and greater convergence (20%) and cleavage (10%) rates than gFFCs, and exhibited differing H4K5 histone modification patterns after somatic cell nuclear transfer and in vitro cultivation. After transfection with a pDsRed2-1 expression plasmid, the integrated exogenous genes did not influence the pluripotency of gADSCs-pDsRed2-1 or gMDSCs-pDsRed2-1. DsRed2 mRNA expression by cloned embryos derived from gADSCs-pDsRed2-1 or gMDSCs-pDsRed2-1 was more than twice that of gFFCs-pDsRed2-1 embryos (P<0.01). Pregnancy rates of gADSCs-pDsRed2-1 and gMDSCs-pDsRed2-1 recipients were higher than those of gFFCs-pDsRed2-1 recipients (P

  6. Potential of Adipose-Derived Mesenchymal Stem Cells and Skeletal Muscle-Derived Satellite Cells for Somatic Cell Nuclear Transfer Mediated Transgenesis in Arbas Cashmere Goats

    PubMed Central

    Yuan, Jianlong; Liang, Hao; Liu, Dongjun

    2014-01-01

    Somatic cell nuclear transfer is used to generate genetic models for research and new, genetically modified livestock varieties. Goat fetal fibroblast cells (gFFCs) are the predominant nuclear donors in Cashmere goat transgenic cloning, but have disadvantages. We evaluated the potential of goat adipose-derived mesenchymal stem cells (gADSCs) and goat skeletal muscle-derived satellite cells (gMDSCs) for somatic cell nuclear transfer, evaluating their proliferation, pluripotency, transfection efficiency and capacity to support full term development of embryos after additive gene transfer or homologous recombination. gADSCs and gMDSCs were isolated by enzyme digestion and differentiated into neurocytes, myotube cells and insulin-producing cells. Neuron-specific enolase, fast muscle myosin and insulin expression were determined by immunohistochemistry. Following somatic cell nuclear transfer with donor cells derived from gADSCs, gMDSCs and gFFCs, transfection and cloning efficiencies were compared. Red fluorescent protein levels were determined by quantitative PCR and western blotting. 5-Methylcytosine, H4K5, H4K12 and H3K18 were determined immunohistochemically. gADSCs and gMDSCs were maintained in culture for up to 65 passages, whereas gFFCs could be passaged barely more than 15 times. gADSCs and gMDSCs had higher fluorescent colony forming efficiency and greater convergence (20%) and cleavage (10%) rates than gFFCs, and exhibited differing H4K5 histone modification patterns after somatic cell nuclear transfer and in vitro cultivation. After transfection with a pDsRed2-1 expression plasmid, the integrated exogenous genes did not influence the pluripotency of gADSCs–pDsRed2-1 or gMDSCs–pDsRed2-1. DsRed2 mRNA expression by cloned embryos derived from gADSCs–pDsRed2-1 or gMDSCs–pDsRed2-1 was more than twice that of gFFCs–pDsRed2-1 embryos (P<0.01). Pregnancy rates of gADSCs–pDsRed2-1 and gMDSCs–pDsRed2-1 recipients were higher than those of gFFCs–pDsRed2

  7. Methods for analyzing microRNA expression and function during osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells.

    PubMed

    Kim, Yeon Jeong; Jung, Jin Sup

    2011-01-01

    MicroRNAs (miRNA) are single-stranded RNA molecules of 21-23 nucleotides in length that regulate gene expression at the posttranscriptional level. They may play important roles during osteogenic differentiation of adipose tissue-derived mesenchymal stem cells (hASC). In this chapter, we focus on the methods and strategies for elucidating miRNA function during osteogenic differentiation. We describe a miRNA expression analysis protocol, and a lentiviral vector strategy for the ectopic expression of miRNA in hASC to determine the role of miRNA during osteogenic differentiation. We also describe miRNA inhibition to further determine the role of miRNA during osteogenic differentiation, and a luciferase assay to demonstrate direct binding between a specific miRNA and its putative target.

  8. The Role of Magnesium Ion Substituted Biphasic Calcium Phosphate Spherical Micro-Scaffolds in Osteogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    PubMed

    Kim, Dong-Hyun; Shin, Keun-Koo; Jung, Jin Sup; Chun, Ho Hwan; Park, Seong Soo; Lee, Jong Kook; Park, Hong-Chae; Yoon, Seog-Young

    2015-08-01

    This study was investigated the role of magnesium (Mg2+) ion substituted biphasic calcium phosphate (Mg-BCP) spherical micro-scaffolds in osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs). Mg-BCP micro-scaffolds with spherical morphology were successfully prepared using in situ co-precipitation and spray drying atomization process. The in vitro cell proliferation and differentiation of hAT-MSCs were determined up to day 14. After in vitro biological tests, Mg-BCP micro-scaffolds with hAT-MSCs showed more enhanced osteogenicity than pure hAT-MSCs as control group by unique biodegradation of TCP phase and influence of substituted Mg2+ ion in biphasic nanostructure. Therefore, these results suggest that Mg-BCP micro-scaffolds promote osteogenic differentiation of hAT-MSCs. PMID:26369111

  9. Gata4, Tbx5 and Baf60c induce differentiation of adipose tissue-derived mesenchymal stem cells into beating cardiomyocytes.

    PubMed

    Li, Qiong; Guo, Zhi-Kun; Chang, Yu-Qiao; Yu, Xia; Li, Ci-Xia; Li, He

    2015-09-01

    The adipose tissue-derived mesenchymal stem cells (ADMSCs) are extensively utilized in tissue engineering, regenerative medicine and cell therapy. ADMSCs can differentiate into cardiomyocytes, and it has been shown that over-expression of a cocktail of factors can induce ectopic heart formation and program cardiogenesis in ESCs. However, which genes are responsible for differentiation of ADMSCs into beating cardiomyocyte-like cells remains unknown. In this study we have shown that the combination of Gata4, Tbx5 and Baf60c is sufficient for inducing ADMSCs to form cardiomyocytes. It also appears that, while Gata4 and Baf60c are key inducers of myocardial differentiation, Tbx5 is essential for the ability of cardiac cells to contract. These findings provide additional experimental references for myocardial tissue engineering in the emerging field of cell-based therapy of heart diseases. PMID:26071180

  10. L-carnitine Effectively Induces hTERT Gene Expression of Human Adipose Tissue-derived Mesenchymal Stem Cells Obtained from the Aged Subjects

    PubMed Central

    Farahzadi, Raheleh; Mesbah-Namin, Seyed Alireza; Zarghami, Nosratollah; Fathi, Ezzatollah

    2016-01-01

    Background and Objectives Human mesenchymal stem cells (hMSCs) are attractive candidates for cell therapy and regenerative medicine due to their multipotency and ready availability, but their application can be complicated by the factors such as age of the donors and senescence-associated growth arrest during culture conditions. The latter most likely reflects the fact that aging of hMSCs is associated with a rise in intracellular reactive oxygen species, loss of telomerase activity, decrease in human telomerase reverse transcriptase (hTERT) expression and finally eroded telomere ends. Over-expression of telomerase in hMSCs leads to telomere elongation and may help to maintain replicative life–span of these cells. The aim of this study was to evaluate of the effect of L-carnitine (LC) as an antioxidant on the telomerase gene expression and telomere length in aged adipose tissue-derived hMSCs. Methods For this purpose, cells were isolated from healthy aged volunteers and their viabilities were assessed by MTT assay. Quantitative gene expression of hTERT and absolute telomere length measurement were also performed by real-time PCR in the absence and presence of different doses of LC (0.1, 0.2 and 0.4 mM). Results The results indicated that LC could significantly increase the hTERT gene expression and telomere length, especially in dose of 0.2 mM of LC and in 48 h treatment for the aged adipose tissue-derived hMSCs samples. Conclusion It seems that LC would be a good candidate to improve the lifespan of the aged adipose tissue-derived hMSCs due to over-expression of telomerase and lengthening of the telomeres. PMID:27426092

  11. Conversion of Adipose Tissue-Derived Mesenchymal Stem Cells to Neural Stem Cell-Like Cells by a Single Transcription Factor, Sox2

    PubMed Central

    Qin, Yiren; Zhou, Chikai; Wang, Nianhong; Yang, Hao

    2015-01-01

    Abstract Adipose tissue is an attractive source of easily accessible adult candidate cells for regenerative medicine. Adipose tissue–derived mesenchymal stem cells (ADSCs) have multipotency and strong proliferation and differentiation capabilities in vitro. However, as mesodermal multipotent stem cells, whether the ADSCs can convert into induced neural stem cells (NSCs) has so far not been demonstrated. In this study, we found that normally the naïve ADSCs cultured as either monolayer or spheres in NSC medium did not express Sox2 and Pax6 genes and proteins, and could not differentiate to neuron-like cells. However, when we introduced the Sox2 gene into ADSCs by retrovirus, they exhibited a typical NSC-like morphology, and could be passaged continuously, and expressed NSC specific markers Sox2 and Pax6. In addition, the ADSC-derived NSC-like cells displayed the ability to differentiate into neuron-like cells when switched to the differentiation culture medium, expressing neuronal markers, including Tuj1 and MAP2 genes and proteins. Our results suggest the ADSCs can be converted into induced NSC-like cells with a single transcription factor Sox2. This finding could provide another alternative cell source for cell therapy of neurological disorders. PMID:26053521

  12. Self-patterning of adipose-derived mesenchymal stem cells and chondrocytes cocultured on hyaluronan-grafted chitosan surface.

    PubMed

    Yeh, Hsi-Yi; Hsieh, Fu-Yu; Hsu, Shan-hui

    2016-03-01

    The articular cartilage, once injured, has a limited capacity for intrinsic repair. Preparation of functionally biocartilage substitutes in vitro for cartilage repair is an attractive concept with the recent advances in tissue engineering. In this study, adipose-derived adult stem cells (ADAS) and chondrocytes (Ch) were cocultured in different population ratios on the surface of hyaluronan-grafted chitosan (CS-HA) membranes. The two types of cells could self-assemble into cospheroids with different morphologies. In particular, when ADAS and Ch were cocultured at an initial ratio of 7:3 on CS-HA surface, the expression of chondrogenic markers was upregulated, leading to preferred chondrogenesis of the cospheroids. Therefore, using the ADAS/Ch 7:3 cospheroids derived on CS-HA surface instead of using only a single type of cells may be favorable for future therapeutic applications. PMID:26916660

  13. Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue.

    PubMed

    Hsiao, Sarah Tzu-Feng; Asgari, Azar; Lokmic, Zerina; Sinclair, Rodney; Dusting, Gregory James; Lim, Shiang Yong; Dilley, Rodney James

    2012-08-10

    Human adult mesenchymal stem cells (MSCs) support the engineering of functional tissue constructs by secreting angiogenic and cytoprotective factors, which act in a paracrine fashion to influence cell survival and vascularization. MSCs have been isolated from many different tissue sources, but little is known about how paracrine factor secretion varies between different MSC populations. We evaluated paracrine factor expression patterns in MSCs isolated from adipose tissue (ASCs), bone marrow (BMSCs), and dermal tissues [dermal sheath cells (DSCs) and dermal papilla cells (DPCs)]. Specifically, mRNA expression analysis identified insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor-D (VEGF-D), and interleukin-8 (IL-8) to be expressed at higher levels in ASCs compared with other MSC populations whereas VEGF-A, angiogenin, basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) were expressed at comparable levels among the MSC populations examined. Analysis of conditioned media (CM) protein confirmed the comparable level of angiogenin and VEGF-A secretion in all MSC populations and showed that DSCs and DPCs produced significantly higher concentrations of leptin. Functional assays examining in vitro angiogenic paracrine activity showed that incubation of endothelial cells in ASC(CM) resulted in increased tubulogenic efficiency compared with that observed in DPC(CM). Using neutralizing antibodies we concluded that VEGF-A and VEGF-D were 2 of the major growth factors secreted by ASCs that supported endothelial tubulogenesis. The variation in paracrine factors of different MSC populations contributes to different levels of angiogenic activity and ASCs maybe preferred over other MSC populations for augmenting therapeutic approaches dependent upon angiogenesis.

  14. Bone morphogenetic protein 9 (BMP9) induces effective bone formation from reversibly immortalized multipotent adipose-derived (iMAD) mesenchymal stem cells

    PubMed Central

    Lu, Shun; Wang, Jing; Ye, Jixing; Zou, Yulong; Zhu, Yunxiao; Wei, Qiang; Wang, Xin; Tang, Shengli; Liu, Hao; Fan, Jiaming; Zhang, Fugui; Farina, Evan M; Mohammed, Maryam M; Song, Dongzhe; Liao, Junyi; Huang, Jiayi; Guo, Dan; Lu, Minpeng; Liu, Feng; Liu, Jianxiang; Li, Li; Ma, Chao; Hu, Xue; Lee, Michael J; Reid, Russell R; Ameer, Guillermo A; Zhou, Dongsheng; He, Tongchuan

    2016-01-01

    Regenerative medicine and bone tissue engineering using mesenchymal stem cells (MSCs) hold great promise as an effective approach to bone and skeletal reconstruction. While adipose tissue harbors MSC-like progenitors, or multipotent adipose-derived cells (MADs), it is important to identify and characterize potential biological factors that can effectively induce osteogenic differentiation of MADs. To overcome the time-consuming and technically challenging process of isolating and culturing primary MADs, here we establish and characterize the reversibly immortalized mouse multipotent adipose-derived cells (iMADs). The isolated mouse primary inguinal MAD cells are reversibly immortalized via the retrovirus-mediated expression of SV40 T antigen flanked with FRT sites. The iMADs are shown to express most common MSC markers. FLP-mediated removal of SV40 T antigen effectively reduces the proliferative activity and cell survival of iMADs, indicating the immortalization is reversible. Using the highly osteogenic BMP9, we find that the iMADs are highly responsive to BMP9 stimulation, express multiple lineage regulators, and undergo osteogenic differentiation in vitro upon BMP9 stimulation. Furthermore, we demonstrate that BMP9-stimulated iMADs form robust ectopic bone with a thermoresponsive biodegradable scaffold material. Collectively, our results demonstrate that the reversibly immortalized iMADs exhibit the characteristics of multipotent MSCs and are highly responsive to BMP9-induced osteogenic differentiation. Thus, the iMADs should provide a valuable resource for the study of MAD biology, which would ultimately enable us to develop novel and efficacious strategies for MAD-based bone tissue engineering. PMID:27725853

  15. GC-Rich Extracellular DNA Induces Oxidative Stress, Double-Strand DNA Breaks, and DNA Damage Response in Human Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Kostyuk, Svetlana; Smirnova, Tatiana; Kameneva, Larisa; Porokhovnik, Lev; Speranskij, Anatolij; Ershova, Elizaveta; Stukalov, Sergey; Izevskaya, Vera; Veiko, Natalia

    2015-01-01

    Background. Cell free DNA (cfDNA) circulates throughout the bloodstream of both healthy people and patients with various diseases. CfDNA is substantially enriched in its GC-content as compared with human genomic DNA. Principal Findings. Exposure of haMSCs to GC-DNA induces short-term oxidative stress (determined with H2DCFH-DA) and results in both single- and double-strand DNA breaks (comet assay and γH2AX, foci). As a result in the cells significantly increases the expression of repair genes (BRCA1 (RT-PCR), PCNA (FACS)) and antiapoptotic genes (BCL2 (RT-PCR and FACS), BCL2A1, BCL2L1, BIRC3, and BIRC2 (RT-PCR)). Under the action of GC-DNA the potential of mitochondria was increased. Here we show that GC-rich extracellular DNA stimulates adipocyte differentiation of human adipose-derived mesenchymal stem cells (haMSCs). Exposure to GC-DNA leads to an increase in the level of RNAPPARG2 and LPL (RT-PCR), in the level of fatty acid binding protein FABP4 (FACS analysis) and in the level of fat (Oil Red O). Conclusions. GC-rich fragments in the pool of cfDNA can potentially induce oxidative stress and DNA damage response and affect the direction of mesenchymal stem cells differentiation in human adipose—derived mesenchymal stem cells. Such a response may be one of the causes of obesity or osteoporosis. PMID:26273425

  16. Adipose derived mesenchymal stem cell therapy in the treatment of isolated knee chondral lesions: design of a randomised controlled pilot study comparing arthroscopic microfracture versus arthroscopic microfracture combined with postoperative mesenchymal stem cell injections

    PubMed Central

    Freitag, Julien; Ford, Jon; Bates, Dan; Boyd, Richard; Hahne, Andrew; Wang, Yuanyuan; Cicuttini, Flavia; Huguenin, Leesa; Norsworthy, Cameron; Shah, Kiran

    2015-01-01

    Introduction The management of intra-articular chondral defects in the knee remains a challenge. Inadequate healing in areas of weight bearing leads to impairment in load transmission and these defects predispose to later development of osteoarthritis. Surgical management of full thickness chondral defects include arthroscopic microfracture and when appropriate autologous chondrocyte implantation. This latter method however is technically challenging, and may not offer significant improvement over microfracture. Preclinical and limited clinical trials have indicated the capacity of mesenchymal stem cells to influence chondral repair. The aim of this paper is to describe the methodology of a pilot randomised controlled trial comparing arthroscopic microfracture alone for isolated knee chondral defects versus arthroscopic microfracture combined with postoperative autologous adipose derived mesenchymal stem cell injections. Methods and analysis A pilot single-centre randomised controlled trial is proposed. 40 participants aged 18–50 years, with isolated femoral condyle chondral defects and awaiting planned arthroscopic microfracture will be randomly allocated to a control group (receiving no additional treatment) or treatment group (receiving postoperative adipose derived mesenchymal stem cell treatment). Primary outcome measures will include MRI assessment of cartilage volume and defects and the Knee Injury and Osteoarthritis Outcome Score. Secondary outcomes will include further MRI assessment of bone marrow lesions, bone area and T2 cartilage mapping, a 0–10 Numerical Pain Rating Scale, a Global Impression of Change score and a treatment satisfaction scale. Adverse events and cointerventions will be recorded. Initial outcome follow-up for publication of results will be at 12 months. Further annual follow-up to assess long-term differences between the two group will occur. Ethics and dissemination This trial has received prospective ethics approval through

  17. Comparative study of osteogenic differentiation potential of mesenchymal stem cells derived from bone marrow and adipose tissue of osteoporotic female rats.

    PubMed

    Boeloni, Jankerle Neves; Ocarino, Natália Melo; Goes, Alfredo Miranda; Serakides, Rogéria

    2014-04-01

    Osteoporosis causes reduction of osteogenic differentiation of mesenchymal stem cells (MSCs) from bone marrow and adipose tissue. This study was designed to compare the osteogenic potential of bone marrow mesenchymal stem cells (BMMSCs) and adipose-derived stem cells (ADSCs) of ovariectomized (OVX) rats. MSC were harvested from bone marrow and inguinal fat pads of six OVX rats. The limitations of this report are that cells from different animals were pooled for the purpose of the experiments that were carried out in this study. At 7, 14 and 21 d of osteogenic differentiation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) conversion, alkaline phosphatase activity and gene expression for collagen I, osteocalcin, bone sialoprotein, osteopontin and bone morphogenetic protein-2 bone morphogenetic protein-2 (BMP-2) were analyzed. At 21 d, percentage of cells per field and percentage of mineralized nodule were analyzed. The data were subjected to analysis of variance, and the means were compared by Student-Newman-Keuls test. The cells, regardless of group, showed phenotypic characteristics consistent with stem cells. MTT conversion, alkaline phosphatase activity, percentage of mineralized nodule and expression of collagen I, osteocalcin and BMP-2 of ADSCs from OVX rats were higher when compared to BMMSCs from OVX rats in at least one of the evaluated periods (p<0.05). However, bone sialoprotein and osteopontin expression were smaller than those observed in BMMSCs for all evaluated periods (p<0.05). It was concluded that the ADSCs from OVX rats have higher osteogenic potential when compared to BMMSCs from OVX rats. This result suggests that the treatment of osteoporosis with autologous ADSCs may be more efficient.

  18. Platelet-Rich Plasma Favors Proliferation of Canine Adipose-Derived Mesenchymal Stem Cells in Methacrylate-Endcapped Caprolactone Porous Scaffold Niches

    PubMed Central

    Rodríguez-Jiménez, Francisco Javier; Valdes-Sánchez, Teresa; Carrillo, José M.; Rubio, Mónica; Monleon-Prades, Manuel; García-Cruz, Dunia Mercedes; García, Montserrat; Cugat, Ramón; Moreno-Manzano, Victoria

    2012-01-01

    Osteoarticular pathologies very often require an implementation therapy to favor regeneration processes of bone, cartilage and/or tendons. Clinical approaches performed on osteoarticular complications in dogs constitute an ideal model for human clinical translational applications. The adipose-derived mesenchymal stem cells (ASCs) have already been used to accelerate and facilitate the regenerative process. ASCs can be maintained in vitro and they can be differentiated to osteocytes or chondrocytes offering a good tool for cell replacement therapies in human and veterinary medicine. Although ACSs can be easily obtained from adipose tissue, the amplification process is usually performed by a time consuming process of successive passages. In this work, we use canine ASCs obtained by using a Bioreactor device under GMP cell culture conditions that produces a minimum of 30 million cells within 2 weeks. This method provides a rapid and aseptic method for production of sufficient stem cells with potential further use in clinical applications. We show that plasma rich in growth factors (PRGF) treatment positively contributes to viability and proliferation of canine ASCs into caprolactone 2-(methacryloyloxy) ethyl ester (CLMA) scaffolds. This biomaterial does not need additional modifications for cASCs attachment and proliferation. Here we propose a framework based on a combination of approaches that may contribute to increase the therapeutical capability of stem cells by the use of PRGF and compatible biomaterials for bone and connective tissue regeneration. PMID:24955632

  19. Platelet-rich plasma favors proliferation of canine adipose-derived mesenchymal stem cells in methacrylate-endcapped caprolactone porous scaffold niches.

    PubMed

    Rodríguez-Jiménez, Francisco Javier; Valdes-Sánchez, Teresa; Carrillo, José M; Rubio, Mónica; Monleon-Prades, Manuel; García-Cruz, Dunia Mercedes; García, Montserrat; Cugat, Ramón; Moreno-Manzano, Victoria

    2012-08-09

    Osteoarticular pathologies very often require an implementation therapy to favor regeneration processes of bone, cartilage and/or tendons. Clinical approaches performed on osteoarticular complications in dogs constitute an ideal model for human clinical translational applications. The adipose-derived mesenchymal stem cells (ASCs) have already been used to accelerate and facilitate the regenerative process. ASCs can be maintained in vitro and they can be differentiated to osteocytes or chondrocytes offering a good tool for cell replacement therapies in human and veterinary medicine. Although ACSs can be easily obtained from adipose tissue, the amplification process is usually performed by a time consuming process of successive passages. In this work, we use canine ASCs obtained by using a Bioreactor device under GMP cell culture conditions that produces a minimum of 30 million cells within 2 weeks. This method provides a rapid and aseptic method for production of sufficient stem cells with potential further use in clinical applications. We show that plasma rich in growth factors (PRGF) treatment positively contributes to viability and proliferation of canine ASCs into caprolactone 2-(methacryloyloxy) ethyl ester (CLMA) scaffolds. This biomaterial does not need additional modifications for cASCs attachment and proliferation. Here we propose a framework based on a combination of approaches that may contribute to increase the therapeutical capability of stem cells by the use of PRGF and compatible biomaterials for bone and connective tissue regeneration.

  20. Adipose Tissue-Derived Mesenchymal Stem Cells Exert In Vitro Immunomodulatory and Beta Cell Protective Functions in Streptozotocin-Induced Diabetic Mice Model

    PubMed Central

    Rahavi, Hossein; Hashemi, Seyed Mahmoud; Soleimani, Masoud; Mohammadi, Jamal; Tajik, Nader

    2015-01-01

    Regenerative and immunomodulatory properties of mesenchymal stem cells (MSCs) might be applied for type 1 diabetes mellitus (T1DM) treatment. Thus, we proposed in vitro assessment of adipose tissue-derived MSCs (AT-MSCs) immunomodulation on autoimmune response along with beta cell protection in streptozotocin- (STZ-) induced diabetic C57BL/6 mice model. MSCs were extracted from abdominal adipose tissue of normal mice and cultured to proliferate. Diabetic mice were prepared by administration of multiple low-doses of streptozotocin. Pancreatic islets were isolated from normal mice and splenocytes prepared from normal and diabetic mice. Proliferation, cytokine production, and insulin secretion assays were performed in coculture experiments. AT-MSCs inhibited splenocytes proliferative response to specific (islet lysate) and nonspecific (PHA) triggers in a dose-dependent manner (P < 0.05). Decreased production of proinflammatory cytokines, such as IFN-γ, IL-2, and IL-17, and increased secretion of regulatory cytokines such as TGF-β, IL-4, IL-10, and IL-13 by stimulated splenocytes were also shown in response to islet lysate or PHA stimulants (P < 0.05). Finally, we demonstrated that AT-MSCs could effectively sustain viability as well as insulin secretion potential of pancreatic islets in the presence of reactive splenocytes (P < 0.05). In conclusion, it seems that MSCs may provide a new horizon for T1DM cell therapy and islet transplantation in the future. PMID:25893202

  1. Irradiation enhances susceptibility of tumor cells to the antitumor effects of TNF-α activated adipose derived mesenchymal stem cells in breast cancer model

    PubMed Central

    Mohammadpour, Hemn; Pourfathollah, Ali Akbar; Nikougoftar Zarif, Mahin; Shahbazfar, Amir Ali

    2016-01-01

    Gene modified or cytokine activated mesenchymal stem cells (MSCs) have been used as a treatment in various types of cancer. Moreover, irradiation is usually applied as either a standard primary or adjuvant therapy. Here, we showed that the expression of TNF related apoptosis-inducing ligand (TRAIL) and Dickouf-3 (Dkk-3), the promising anticancer proteins, increased in murine adipose-derived mesenchymal stromal cells (AD-MSCs) following activation with TNF-α, resulting in the induction of apoptosis in cancer cells. Also, anticancer effects of TNF-α activated AD-MSCs were intensified with irradiation. In vivo results showed that TNF-α preactivated AD-MSCs combined with irradiation decreased tumor size and increased survival rate in tumor bearing mice. On the other hands, both TNF-α preactivated AD-MSCs with or without irradiation prevented metastasis in ling and liver, and increased apoptosis in tumor mass. Finally, flowcytometry assay demonstrated that naïve AD-MSCs combined with irradiation but not TNF-α activated MSCs with irradiation increased Treg population in lymph node and spleen. Altogether, obtained results suggest that TNF-α activated MSCs combined with irradiation therapy can serve as new strategy in breast cancer therapy. PMID:27329316

  2. Characterization of glycol chitosan grafted with low molecular weight polyethylenimine as a gene carrier for human adipose-derived mesenchymal stem cells.

    PubMed

    Bae, Yoonhee; Lee, Young Hwa; Lee, Sunray; Han, Jin; Ko, Kyung Soo; Choi, Joon Sig

    2016-11-20

    Mesenchymal stem cells (MSCs) have a great capacity for self-renewal while still maintaining their multipotency, and can differentiate into a variety of cell types. The delivery of genes to a site of injury is a current and interesting field of gene therapy. In the present study, we describe a nonviral gene delivery carrier, glycol chitosan-methyl acrylate-polyethylenimine (GMP) polymer targeted towards human adipose-derived mesenchymal stem cells (AD-MSCs). Transfection efficiency, using luciferase (Luc) and a pDNA encoding enhanced green fluorescent protein (EGFP), along with cytotoxicity assays, were performed in human AD-MSCs. The results show that the transfection efficiency of the GMP polymer was similar to that of PEI25kD, and the cytotoxicity was lower. Moreover, human AD-MSCs were treated with the GMP polymer/pDNA polyplex and its cellular uptake and distribution were analyzed by flow cytometry and confocal microscopy. Furthermore, we performed endosomal escape analysis using LysoTracker Red, and found that the conjugated GMP polymer could escape from the endosome to the cytosol. Human AD-MSCs treated with the GMP polymer maintained their potential for osteogenic differentiation and phenotypic expression of human AD-MSCs based on flow cytometry analysis. The present study demonstrates that the GMP polymer can be used as a potential targeted-delivery carrier for effective gene delivery. PMID:27561509

  3. High-resolution molecular validation of self-renewal and spontaneous differentiation in adipose-tissue derived human mesenchymal stem cells cultured in human platelet lysate

    PubMed Central

    Dudakovic, Amel Dudakovic; Camilleri, Emily; Riester, Scott M.; Lewallen, Eric A.; Kvasha, Sergiy; Chen, Xiaoyue; Radel, Darcie J.; Anderson, Jarett M.; Nair, Asha A.; Evans, Jared M.; Krych, Aaron J.; Smith, Jay; Deyle, David R.; Stein, Janet L.; Stein, Gary S.; Im, Hee-Jeong; Cool, Simon M.; Westendorf, Jennifer J.; Kakar, Sanjeev; Dietz, Allan B.; van Wijnen, Andre J.

    2014-01-01

    Improving the effectiveness of adipose-tissue derived human mesenchymal stromal/stem cells (AMSCs) for skeletal therapies requires a detailed characterization of mechanisms supporting cell proliferation and multi-potency. We investigated the molecular phenotype of AMSCs that were either actively proliferating in platelet lysate or in a basal non-proliferative state. Flow cytometry combined with high-throughput RNA sequencing (RNASeq) and RT-qPCR analyses validate that AMSCs express classic mesenchymal cell surface markers (e.g., CD44, CD73/NT5E, CD90/THY1 and CD105/ENG). Expression of CD90 is selectively elevated at confluence. Self-renewing AMSCs express a standard cell cycle program that successively mediates DNA replication, chromatin packaging, cyto-architectural enlargement and mitotic division. Confluent AMSCs preferentially express genes involved in extracellular matrix (ECM) formation and cellular communication. For example, cell cycle-related biomarkers (e.g., cyclins E2 and B2, transcription factor E2F1) and histone-related genes (e.g., H4, HINFP, NPAT) are elevated in proliferating AMSCs, while ECM genes are strongly upregulated (>10 fold) in quiescent AMSCs. AMSCs also express pluripotency genes (e.g., POU5F1, NANOG, KLF4) and early mesenchymal markers (e.g., NES, ACTA2) consistent with their multipotent phenotype. Strikingly, AMSCs modulate expression of WNT signaling components and switch production of WNT ligands (from WNT5A/WNT5B/WNT7B to WNT2/WNT2B), while up-regulating WNT-related genes (WISP2, SFRP2 and SFRP4). Furthermore, post-proliferative AMSCs spontaneously express fibroblastic, osteogenic, chondrogenic and adipogenic biomarkers when maintained in confluent cultures. Our findings validate the biological properties of self-renewing and multi-potent AMSCs by providing high-resolution quality control data that support their clinical versatility. PMID:24905804

  4. Comparative proteomic analysis of extracellular vesicles isolated from porcine adipose tissue-derived mesenchymal stem/stromal cells

    PubMed Central

    Eirin, Alfonso; Zhu, Xiang-Yang; Puranik, Amrutesh S.; Woollard, John R.; Tang, Hui; Dasari, Surendra; Lerman, Amir; van Wijnen, Andre J.; Lerman, Lilach O.

    2016-01-01

    Extracellular vesicles (EVs) isolated from mesenchymal stem/stromal cells (MSCs) contribute to recovery of damaged tissue. We have previously shown that porcine MSC-derived EVs transport mRNA and miRNA capable of modulating cellular pathways in recipient cells. To identify candidate factors that contribute to the therapeutic effects of porcine MSC-derived EVs, we characterized their protein cargo using proteomics. Porcine MSCs were cultured from abdominal fat, and EVs characterized for expression of typical MSC and EV markers. LC-MS/MS proteomic analysis was performed and proteins classified. Functional pathway analysis was performed and five candidate proteins were validated by western blot. Proteomics analysis identified 5,469 distinct proteins in MSCs and 4,937 in EVs. The average protein expression was higher in MSCs vs. EVs. Differential expression analysis revealed 128 proteins that are selectively enriched in EVs versus MSCs, whereas 563 proteins were excluded from EVs. Proteins enriched in EVs are linked to a broad range of biological functions, including angiogenesis, blood coagulation, apoptosis, extracellular matrix remodeling, and regulation of inflammation. Excluded are mostly nuclear proteins, like proteins involved in nucleotide binding and RNA splicing. EVs have a selectively-enriched protein cargo with a specific biological signature that MSCs may employ for intercellular communication to facilitate tissue repair. PMID:27786293

  5. Effect of bone marrow and adipose tissue-derived mesenchymal stem cells on the natural course of corneal scarring after penetrating injury.

    PubMed

    Demirayak, Bengi; Yüksel, Nurşen; Çelik, Onur Sinan; Subaşı, Cansu; Duruksu, Gökhan; Unal, Z Seda; Yıldız, Demir Kürşat; Karaöz, Erdal

    2016-10-01

    In the present study, we investigate and compare the efficacy of bone marrow- and adipose tissue-derived mesenchymal stem cell (MSCs) in corneal wound healing. A penetrating injury was created in the right corneas of Wistar rats (n = 40). Ten microliters of phosphate-buffered solution (PBS) containing 2 × 10(5) green fluorescent protein (GFP) labeled bone-marrow-derived MSCs to group 1 (n = 15), 10 μl of PBS containing 2 × 10(5) GFP-labeled adipose-tissue-derived MSCs to group 2 (n = 15), 10 μl PBS was injected into anterior chamber in group 3 (n = 10, control). Corneal opacity scoring, in vivo confocal microscopy, and histopathological evaluation were done at the end of 8 weeks. Immunofluorescence sections were evaluated to detect transplanted cells. Immune staining was performed to measure the expression levels of keratocan, aldehyde dehydrogenase (ALDH) and CD34. The gene expression levels of tumor necrosis factor (TNF-α), the interleukin 6 receptor (IL-6R), interleukin 12b (IL-12b), and transforming growth factor beta (TGF-β1) was measured on corneas. The establishment of stem cells in the corneas of the transplanted groups was confirmed by immunofluorescence staining. The expression of keratocan, ALDH, and CD34 increased in the transplanted groups (p < 0.05). The density of keratocytes increased significantly in both transplanted groups according to the in vivo confocal microscopy data (p < 0.05). The expression of TNF-α, IL-6R, and IL-12b decreased significantly in the transplanted groups (p < 0.05). Based on our findings, we consider that allogeneic stem cells facilitate the regeneration of corneal stroma and can be a cell source for stromal repopulation in diseased cornea.

  6. Porcine Adipose-Derived Mesenchymal Stem Cells Retain Their Stem Cell Characteristics and Cell Activities While Enhancing the Expression of Liver-Specific Genes after Acute Liver Failure.

    PubMed

    Hu, Chenxia; Zhou, Ning; Li, Jianzhou; Shi, Ding; Cao, Hongcui; Li, Jun; Li, Lanjuan

    2016-01-05

    Acute liver failure (ALF) is a kind of complicated syndrome. Furthermore, adipose-derived mesenchymal stem cells (ADMSCs) can serve as a useful cell resource for autotransplantation due to their abundance and micro-invasive accessability. However, it is unknown how ALF will influence the characteristics of ADMSCs and whether ADMSCs from patients suffering from end-stage liver diseases are potential candidates for autotransplantation. This study was designed to compare various properties of ALF-derived ADMSCs with normal ADMSCs in pig models, with regard to their cellular morphology, cell proliferative ability, cell apoptosis, expression of surface antigens, mitochondrial and lysosomal activities, multilineage potency, and expression of liver-specific genes. Our results showed that ALF does not influence the stem cell characteristics and cell activities of ADMSCs. Intriguingly, the expression levels of several liver-specific genes in ALF-derived ADMSCs are higher than in normal ADMSCs. In conclusion, our findings indicate that the stem cell characteristics and cell activities of ADMSCs were not altered by ALF and these cells can serve as a new source for regenerative medicine.

  7. Preparation and characterization of directed, one-day-self-assembled millimeter-size spheroids of adipose-derived mesenchymal stem cells.

    PubMed

    Iwai, Ryosuke; Nemoto, Yasushi; Nakayama, Yasuhide

    2016-01-01

    Three-dimensional cell spheroids prepared without using any artificial scaffold materials are desirable for cell-based transplants. However, conventional cell culture systems are inefficient for rapid, large-scale and non-cytotoxic generation of size-controlled spheroids (>1 mm diameter) that are required for tissue regenerative therapy application. In this study, we prepared millimeter-order spheroids of adipose-derived mesenchymal stem cells (ADSCs) by controlling the spheroid size (diameter range: 0.4-2.5 mm). Notably, spheroid generation required only one day of culture on charged culture dishes. Almost all spheroid-derived ADSCs were viable and produced adhesion molecules and growth factors, which play an important role in tissue regeneration. Moreover, spheroid-derived ADSCs could infiltrate and recellularize collagenous tissue membranes in vitro. The ADSC spheroids developed in this study could be directly (without additional processing) used for cell-based tissue regeneration therapy. Furthermore, the rapid scale-up process and noncytotoxic generation of spheroids would also enable other applications such as use as screening models for drug discovery.

  8. Porcine Adipose-Derived Mesenchymal Stem Cells Retain Their Stem Cell Characteristics and Cell Activities While Enhancing the Expression of Liver-Specific Genes after Acute Liver Failure

    PubMed Central

    Hu, Chenxia; Zhou, Ning; Li, Jianzhou; Shi, Ding; Cao, Hongcui; Li, Jun; Li, Lanjuan

    2016-01-01

    Acute liver failure (ALF) is a kind of complicated syndrome. Furthermore, adipose-derived mesenchymal stem cells (ADMSCs) can serve as a useful cell resource for autotransplantation due to their abundance and micro-invasive accessability. However, it is unknown how ALF will influence the characteristics of ADMSCs and whether ADMSCs from patients suffering from end-stage liver diseases are potential candidates for autotransplantation. This study was designed to compare various properties of ALF-derived ADMSCs with normal ADMSCs in pig models, with regard to their cellular morphology, cell proliferative ability, cell apoptosis, expression of surface antigens, mitochondrial and lysosomal activities, multilineage potency, and expression of liver-specific genes. Our results showed that ALF does not influence the stem cell characteristics and cell activities of ADMSCs. Intriguingly, the expression levels of several liver-specific genes in ALF-derived ADMSCs are higher than in normal ADMSCs. In conclusion, our findings indicate that the stem cell characteristics and cell activities of ADMSCs were not altered by ALF and these cells can serve as a new source for regenerative medicine. PMID:26742034

  9. Adipose-Derived Mesenchymal Stem Cell Exosomes Suppress Hepatocellular Carcinoma Growth in a Rat Model: Apparent Diffusion Coefficient, Natural Killer T-Cell Responses, and Histopathological Features

    PubMed Central

    Ko, Sheung-Fat; Yip, Hon-Kan; Zhen, Yen-Yi; Lee, Chen-Chang; Lee, Chia-Chang; Huang, Chung-Cheng; Ng, Shu-Hang; Lin, Jui-Wei

    2015-01-01

    We sought to evaluate the effects of adipose-derived mesenchymal stem cells (ADMSCs) exosomes on hepatocellular carcinoma (HCC) in rats using apparent diffusion coefficient (ADC), natural killer T-cell (NKT-cell) responses, and histopathological features. ADMSC-derived exosomes appeared as nanoparticles (30–90 nm) on electron microscopy and were positive for CD63, tumor susceptibility gene-101, and β-catenin on western blotting. The control (n = 8) and exosome-treated (n = 8) rats with N1S1-induced HCC underwent baseline and posttreatment day 10 and day 20 magnetic resonance imaging and measurement of ADC. Magnetic resonance imaging showed rapidly enlarged HCCs with low ADCs in the controls. The exosome-treated rats showed partial but nonsignificant tumor reduction, and significant ADC and ADC ratio increases on day 10. On day 20, the exosome-treated rats harbored significantly smaller tumors and volume ratios, higher ADC and ADC ratios, more circulating and intratumoral NKT-cells, and low-grade HCC (P < 0.05 for all comparisons) compared to the controls. The ADC and volume ratios exhibited significant inverse correlations (P < 0.001, R2 = 0.679). ADMSC-derived exosomes promoted NKT-cell antitumor responses in rats, thereby facilitating HCC suppression, early ADC increase, and low-grade tumor differentiation. ADC may be an early biomarker of treatment response. PMID:26345219

  10. Human Adipose-Derived Mesenchymal Stem Cells in Cell Therapy: Safety and Feasibility in Different "Hospital Exemption" Clinical Applications

    PubMed Central

    Vériter, Sophie; André, Wivine; Aouassar, Najima; Poirel, Hélène Antoine; Lafosse, Aurore; Docquier, Pierre-Louis; Dufrane, Denis

    2015-01-01

    Based on immunomodulatory, osteogenic, and pro-angiogenic properties of adipose-derived stem cells (ASCs), this study aims to assess the safety and efficacy of ASC-derived cell therapies for clinical indications. Two autologous ASC-derived products were proposed to 17 patients who had not experienced any success with conventional therapies: (1) a scaffold-free osteogenic three-dimensional graft for the treatment of bone non-union and (2) a biological dressing for dermal reconstruction of non-healing chronic wounds. Safety was studied using the quality control of the final product (genetic stability, microbiological/mycoplasma/endotoxin contamination) and the in vivo evaluation of adverse events after transplantation. Feasibility was assessed by the ability to reproducibly obtain the final ASC-based product with specific characteristics, the time necessary for graft manufacturing, the capacity to produce enough material to treat the lesion, the surgical handling of the graft, and the ability to manufacture the graft in line with hospital exemption regulations. For 16 patients (one patient did not undergo grafting because of spontaneous bone healing), in-process controls found no microbiological/mycoplasma/endotoxin contamination, no obvious deleterious genomic anomalies, and optimal ASC purity. Each type of graft was reproducibly obtained without significant delay for implantation and surgical handling was always according to the surgical procedure and the implantation site. No serious adverse events were noted for up to 54 months. We demonstrated that autologous ASC transplantation can be considered a safe and feasible therapy tool for extreme clinical indications of ASC properties and physiopathology of disease. PMID:26485394

  11. The Potential of GMP-Compliant Platelet Lysate to Induce a Permissive State for Cardiovascular Transdifferentiation in Human Mediastinal Adipose Tissue-Derived Mesenchymal Stem Cells

    PubMed Central

    Siciliano, Camilla; Chimenti, Isotta; Bordin, Antonella; Ponti, Donatella; Iudicone, Paola; Peruzzi, Mariangela; Rendina, Erino Angelo; Calogero, Antonella; Pierelli, Luca; Ibrahim, Mohsen; De Falco, Elena

    2015-01-01

    Human adipose tissue-derived mesenchymal stem cells (ADMSCs) are considered eligible candidates for cardiovascular stem cell therapy applications due to their cardiac transdifferentiation potential and immunotolerance. Over the years, the in vitro culture of ADMSCs by platelet lysate (PL), a hemoderivate containing numerous growth factors and cytokines derived from platelet pools, has allowed achieving a safe and reproducible methodology to obtain high cell yield prior to clinical administration. Nevertheless, the biological properties of PL are still to be fully elucidated. In this brief report we show the potential ability of PL to induce a permissive state of cardiac-like transdifferentiation and to cause epigenetic modifications. RTPCR results indicate an upregulation of Cx43, SMA, c-kit, and Thy-1 confirmed by immunofluorescence staining, compared to standard cultures with foetal bovine serum. Moreover, PL-cultured ADMSCs exhibit a remarkable increase of both acetylated histones 3 and 4, with a patient-dependent time trend, and methylation at lysine 9 on histone 3 preceding the acetylation. Expression levels of p300 and SIRT-1, two major regulators of histone 3, are also upregulated after treatment with PL. In conclusion, PL could unravel novel biological properties beyond its routine employment in noncardiac applications, providing new insights into the plasticity of human ADMSCs. PMID:26495284

  12. The potential of GMP-compliant platelet lysate to induce a permissive state for cardiovascular transdifferentiation in human mediastinal adipose tissue-derived mesenchymal stem cells.

    PubMed

    Siciliano, Camilla; Chimenti, Isotta; Bordin, Antonella; Ponti, Donatella; Iudicone, Paola; Peruzzi, Mariangela; Rendina, Erino Angelo; Calogero, Antonella; Pierelli, Luca; Ibrahim, Mohsen; De Falco, Elena

    2015-01-01

    Human adipose tissue-derived mesenchymal stem cells (ADMSCs) are considered eligible candidates for cardiovascular stem cell therapy applications due to their cardiac transdifferentiation potential and immunotolerance. Over the years, the in vitro culture of ADMSCs by platelet lysate (PL), a hemoderivate containing numerous growth factors and cytokines derived from platelet pools, has allowed achieving a safe and reproducible methodology to obtain high cell yield prior to clinical administration. Nevertheless, the biological properties of PL are still to be fully elucidated. In this brief report we show the potential ability of PL to induce a permissive state of cardiac-like transdifferentiation and to cause epigenetic modifications. RTPCR results indicate an upregulation of Cx43, SMA, c-kit, and Thy-1 confirmed by immunofluorescence staining, compared to standard cultures with foetal bovine serum. Moreover, PL-cultured ADMSCs exhibit a remarkable increase of both acetylated histones 3 and 4, with a patient-dependent time trend, and methylation at lysine 9 on histone 3 preceding the acetylation. Expression levels of p300 and SIRT-1, two major regulators of histone 3, are also upregulated after treatment with PL. In conclusion, PL could unravel novel biological properties beyond its routine employment in noncardiac applications, providing new insights into the plasticity of human ADMSCs. PMID:26495284

  13. Osteogenic differentiation of adipose tissue-derived mesenchymal stem cells on nanostructured Ti6Al4V and Ti13Nb13Zr.

    PubMed

    Marini, Francesca; Luzi, Ettore; Fabbri, Sergio; Ciuffi, Simone; Sorace, Sabina; Tognarini, Isabella; Galli, Gianna; Zonefrati, Roberto; Sbaiz, Fausto; Brandi, Maria Luisa

    2015-01-01

    Bone tissue engineering and nanotechnology enable the design of suitable substitutes to restore and maintain the function of human bone tissues in complex fractures and other large skeletal defects. Long-term stability and functionality of prostheses depend on integration between bone cells and biocompatible implants. Human adipose tissue-derived mesenchymal stem cells (hAMSCs) have been shown to possess the same ability to differentiate into osteoblasts and to produce bone matrix of classical bone marrow derived stem cells (BMMSCs). Ti6A14V and Ti13Nb13Zr are two different biocompatible titanium alloys suitable for medical bone transplantation. Preliminary results from our Research Group demonstrated that smooth Ti6Al4V surfaces exhibit an osteoconductive action on hAMSCs, granting their differentiation into functional osteoblasts and sustaining bone matrix synthesis and calcification. The purpose of this study is to assay the ability of nanostructured Ti6Al4V and Ti13Nb13Zr alloys to preserve the growth and adhesion of hAMSCs and, mostly, to sustain and maintain their osteogenic differentiation and osteoblast activity. The overall results showed that both nanostructured titanium alloys are capable of sustaining cell adhesion and proliferation, to promote their differentiation into osteoblast lineage, and to support the activity of mature osteoblasts in terms of calcium deposition and bone extracellular matrix protein production.

  14. Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells

    SciTech Connect

    Yanez, Rosa Oviedo, Alberto Aldea, Montserrat Bueren, Juan A. Lamana, Maria L.

    2010-11-15

    Mesenchymal stromal cells (MSCs) have important immunosuppressive properties, but the mechanisms and soluble factors involved in these effects remain unclear. We have studied prostaglandin-E2 (PGE2) as a possible candidate implied in adipose tissue-derived MSCs (Ad-MSCs) immunosuppressive properties over dendritic cells and T lymphocytes, compared to bone marrow derived MSCs (BM-MSCs). We found that both MSCs inhibited the maturation of myeloid-DCs and plasmocytoid-DCs. High levels of PGE2 were detected in DCs/MSCs co-cultures. Its blockade with indomethacin (IDM) allowed plasmocytoid-DCs but not myeloid-DCs maturation. Additionally, high levels of PGE2 were found in co-cultures in which Ad-MSCs or BM-MSCs inhibited activated T cells proliferation and pro-inflammatory cytokines production. PGE2 blockade by IDM preserved T lymphocytes proliferation but did not restore the pro-inflammatory cytokines secretion. However, an increased expression of transcription factors and cytokines genes involved in the Th1/Th2 differentiation pathway was detected in the T cells co-cultured with Ad-MSCs, but not with BM-MSCs. In conclusion, we propose that PGE2 is a soluble factor mediating most of the immunosuppressive effects of Ad-MSCs and BM-MSCs over p-DCs maturation and activated T lymphocytes proliferation and cytokine secretion.

  15. Osteogenic differentiation of adipose tissue-derived mesenchymal stem cells on nanostructured Ti6Al4V and Ti13Nb13Zr

    PubMed Central

    Marini, Francesca; Luzi, Ettore; Fabbri, Sergio; Ciuffi, Simone; Sorace, Sabina; Tognarini, Isabella; Galli, Gianna; Zonefrati, Roberto; Sbaiz, Fausto; Brandi, Maria Luisa

    2015-01-01

    Summary Bone tissue engineering and nanotechnology enable the design of suitable substitutes to restore and maintain the function of human bone tissues in complex fractures and other large skeletal defects. Long-term stability and functionality of prostheses depend on integration between bone cells and biocompatible implants. Human adipose tissue-derived mesenchymal stem cells (hAMSCs) have been shown to possess the same ability to differentiate into osteoblasts and to produce bone matrix of classical bone marrow derived stem cells (BMMSCs). Ti6A14V and Ti13Nb13Zr are two different biocompatible titanium alloys suitable for medical bone transplantation. Preliminary results from our Research Group demonstrated that smooth Ti6Al4V surfaces exhibit an osteoconductive action on hAMSCs, granting their differentiation into functional osteoblasts and sustaining bone matrix synthesis and calcification. The purpose of this study is to assay the ability of nanostructured Ti6Al4V and Ti13Nb13Zr alloys to preserve the growth and adhesion of hAMSCs and, mostly, to sustain and maintain their osteogenic differentiation and osteoblast activity. The overall results showed that both nanostructured titanium alloys are capable of sustaining cell adhesion and proliferation, to promote their differentiation into osteoblast lineage, and to support the activity of mature osteoblasts in terms of calcium deposition and bone extracellular matrix protein production. PMID:26811701

  16. Adipose-derived mesenchymal stromal (stem) cells differentiate to osteoblast and chondroblast lineages upon incubation with conditioned media from dental pulp stem cell-derived osteoblasts and auricle cartilage chondrocytes.

    PubMed

    Carbone, A; Valente, M; Annacontini, L; Castellani, S; Di Gioia, S; Parisi, D; Rucci, M; Belgiovine, G; Colombo, C; Di Benedetto, A; Mori, G; Lo Muzio, L; Maiorella, A; Portincasa, A; Conese, M

    2016-01-01

    The potential of adipose-derived mesenchymal stromal (stem) cells (ADSCs) to differentiate into either osteoblasts or chondrocytes is controversial. In this study we investigated the multicapacity potential of ADSCs to differentiate towards adipocyte, osteoblast, and chondrocyte lineages when cells are seeded onto plastic in comparison with incubation with conditioned media (CM) obtained from differentiated cell types.ADSCs, obtained from liposuctions, were characterized for mesenchymal and hematopoietic markers by cytofluorimetry. Their differentiation capacity towards adipocytes, osteoblasts, and chondrocytes was investigated by histochemistry methods (Oil-Red-O staining, Safranin O and Alizarin Red staining, respectively). Dental pulp stem cells (DPSCs) and dedifferentiated auricle derived-chondrocytes were differentiated towards osteoblastic and chondrocytic lineages respectively, and the CM obtained from these cultures was used to induce differentiation of ADSCs. ADSCs were positive for mesenchymal markers (CD29, CD105, CD73, CD44), but not for hematopoietic lineage markers (CD14, CD34, CD45) and this behavior was conserved from the isolation up to the fifth passage. While ADSCs were readily differentiated in adipocytes, they were not towards chondrocytes and osteoblastic lineages, a behavior different from that of bone marrow-derived MSCs that differentiated into the three lineages at two weeks post-induction. Only ADSCs treated with CM from cultured chondrocytes and DPSCs, produced glycosaminoglycans and mineralized matrix. These results indicate that ADSCs need growth/morphogenic factor supplementation from the tissue environment to be appropriately differentiated to mesodermic lineages. PMID:27049081

  17. Platelet-rich plasma and adipose-derived mesenchymal stem cells for regenerative medicine-associated treatments in bottlenose dolphins (Tursiops truncatus).

    PubMed

    Griffeth, Richard J; García-Párraga, Daniel; Mellado-López, Maravillas; Crespo-Picazo, Jose Luis; Soriano-Navarro, Mario; Martinez-Romero, Alicia; Moreno-Manzano, Victoria

    2014-01-01

    Dolphins exhibit an extraordinary capacity to heal deep soft tissue injuries. Nevertheless, accelerated wound healing in wild or captive dolphins would minimize infection and other side effects associated with open wounds in marine animals. Here, we propose the use of a biological-based therapy for wound healing in dolphins by the application of platelet-rich plasma (PRP). Blood samples were collected from 9 different dolphins and a specific and simple protocol which concentrates platelets greater than two times that of whole blood was developed. As opposed to a commonly employed human protocol for PRP preparation, a single centrifugation for 3 minutes at 900 rpm resulted in the best condition for the concentration of dolphin platelets. By FACS analysis, dolphin platelets showed reactivity to platelet cell-surface marker CD41. Analysis by electron microscopy revealed that dolphin platelets were larger in size than human platelets. These findings may explain the need to reduce the duration and speed of centrifugation of whole blood from dolphins to obtain a 2-fold increase and maintain proper morphology of the platelets. For the first time, levels of several growth factors from activated dolphin platelets were quantified. Compared to humans, concentrations of PDGF-BB were not different, while TGFβ and VEGF-A were significantly lower in dolphins. Additionally, adipose tissue was obtained from cadaveric dolphins found along the Spanish Mediterranean coast, and adipose-derived mesenchymal stem cells (ASCs) were successfully isolated, amplified, and characterized. When dolphin ASCs were treated with 2.5 or 5% dolphin PRP they exhibited significant increased proliferation and improved phagocytotic activity, indicating that in culture, PRP may improve the regenerative capacity of ASCs. Taken together, we show an effective and well-defined protocol for efficient PRP isolation. This protocol alone or in combination with ASCs, may constitute the basis of a biological

  18. Platelet-Rich Plasma and Adipose-Derived Mesenchymal Stem Cells for Regenerative Medicine-Associated Treatments in Bottlenose Dolphins (Tursiops truncatus)

    PubMed Central

    Griffeth, Richard J.; García-Párraga, Daniel; Mellado-López, Maravillas; Crespo-Picazo, Jose Luis; Soriano-Navarro, Mario; Martinez-Romero, Alicia; Moreno-Manzano, Victoria

    2014-01-01

    Dolphins exhibit an extraordinary capacity to heal deep soft tissue injuries. Nevertheless, accelerated wound healing in wild or captive dolphins would minimize infection and other side effects associated with open wounds in marine animals. Here, we propose the use of a biological-based therapy for wound healing in dolphins by the application of platelet-rich plasma (PRP). Blood samples were collected from 9 different dolphins and a specific and simple protocol which concentrates platelets greater than two times that of whole blood was developed. As opposed to a commonly employed human protocol for PRP preparation, a single centrifugation for 3 minutes at 900 rpm resulted in the best condition for the concentration of dolphin platelets. By FACS analysis, dolphin platelets showed reactivity to platelet cell-surface marker CD41. Analysis by electron microscopy revealed that dolphin platelets were larger in size than human platelets. These findings may explain the need to reduce the duration and speed of centrifugation of whole blood from dolphins to obtain a 2-fold increase and maintain proper morphology of the platelets. For the first time, levels of several growth factors from activated dolphin platelets were quantified. Compared to humans, concentrations of PDGF-BB were not different, while TGFβ and VEGF-A were significantly lower in dolphins. Additionally, adipose tissue was obtained from cadaveric dolphins found along the Spanish Mediterranean coast, and adipose-derived mesenchymal stem cells (ASCs) were successfully isolated, amplified, and characterized. When dolphin ASCs were treated with 2.5 or 5% dolphin PRP they exhibited significant increased proliferation and improved phagocytotic activity, indicating that in culture, PRP may improve the regenerative capacity of ASCs. Taken together, we show an effective and well-defined protocol for efficient PRP isolation. This protocol alone or in combination with ASCs, may constitute the basis of a biological

  19. MicroRNA 21 regulates the proliferation of human adipose tissue-derived mesenchymal stem cells and high-fat diet-induced obesity alters microRNA 21 expression in white adipose tissues.

    PubMed

    Kim, Yeon Jeong; Hwang, Soo Hyun; Cho, Hyun Hwa; Shin, Keun Koo; Bae, Yong Chan; Jung, Jin Sup

    2012-01-01

    A better understanding of the molecular mechanisms that govern human adipose tissue-derived mesenchymal stem cells (hASCs) differentiation could provide new insights into a number of diseases including obesity. Our previous study demonstrated that microRNA-21 (miR-21) controls the adipogenic differentiation of hASCs. In this study, we determined the expression of miR-21 in white adipose tissues in a high-fat diet (HFD)-induced obesity mouse model to examine the relationship between miR-21 and obesity and the effect of miR-21 on hASCs proliferation. Our study showed biphasic changes of miR-21 expression and a correlation between miR-21 level and adipocyte number in the epididymal fat of HFD mice. Over-expression of miR-21 decreased cell proliferation, whereas inhibiting miR-21 with 2'-O-methyl-antisense RNA increased it. Over-expression of miR-21 decreased both protein and mRNA levels of STAT3, whereas inhibiting miR-21 with 2'-O-methyl-antisense RNA increased these levels. The activity of a luciferase construct containing the miR-21 target site from the STAT3 3'UTR was lower in LV-miR21-infected hASCs than in LV-miLacZ infected cells. RNA interference-mediated down-regulation of STAT3 decreased cell proliferation without affecting adipogenic differentiation. These findings provide the evidence of the correlation between miR-21 level and adipocyte number in the white adipose tissue of HFD-induced obese mice, which provides new insights into the mechanisms of obesity.

  20. MicroRNA-302 induces proliferation and inhibits oxidant-induced cell death in human adipose tissue-derived mesenchymal stem cells

    PubMed Central

    Kim, J Y; Shin, K K; Lee, A L; Kim, Y S; Park, H J; Park, Y K; Bae, Y C; Jung, J S

    2014-01-01

    Mesenchymal stem cells (MSCs) are a heterogeneous population of cells that proliferate in vitro as plastic-adherent cells, have a fibroblast-like morphology, form colonies in vitro and can differentiate into bone, cartilage and fat cells. The abundance, ease and repeatable access to subcutaneous adipose tissue and the simple isolation procedures provide clear advantages for the use of human adipose tissue-derived mesenchymal stem cells (hASDCs) in clinical applications. We screened microRNAs (miRNAs) that affected the proliferation and survival of hADSCs. Transfection of miR-302d mimic increased cell proliferation and protected cells from oxidant-induced cell death in hADSCs, which was supported by flow-cytometric analysis. miR-302d did not affect the expression of Bcl-2 family members or anti-oxidant molecules. The Nrf2-Keap1 system, which is one of the major mechanisms for the cellular defense against oxidative stress, was not altered by transfection of miR-302d mimic. To identify the target of the miR-302d actions on proliferation and survival of hADSCs, a microarray analysis was performed using miR-302d-overexpressing hADSCs. Real-time PCR analysis showed that transfection of miR-302d mimic inhibited the CDKN1A and CCL5 expression. Downregulation of CDKN1A with a specific siRNA mimicked the effect of miR-302d on hADSCs proliferation, but did not affect miR-302d-induced cell survival. Downregulation of CCL5 protected oxidant-induced cell death as miR-302d, inhibited oxidant-induced reactive oxygen species (ROS) generation and the addition of recombinant CCL5 inhibited the protective action of miR-302d on oxidant-induced cell death. This study indicates that miR-302 controls proliferation and cell survival of hADSCs through different targets and that this miRNA can be used to enhance the therapeutic efficacy of hADSCs transplantation in vivo. PMID:25144720

  1. Analysis of migration rate and chemotaxis of human adipose-derived mesenchymal stem cells in response to LPS and LTA in vitro.

    PubMed

    Herzmann, Nicole; Salamon, Achim; Fiedler, Tomas; Peters, Kirsten

    2016-03-15

    Mesenchymal stem cells (MSC) are able to stimulate the regeneration of injured tissue. Since bacterial infections are common complications in wound healing, bacterial pathogens and their components come into direct contact with MSC. The interaction with bacterial structures influences the proliferation, differentiation and migratory activity of the MSC, which might be of relevance during regeneration. Studies on MSC migration in response to bacterial components have shown different results depending on the cell type. Here, we analyzed the migration rate and chemotaxis of human adipose-derived MSC (adMSC) in response to the basic cell-wall components lipopolysaccharide (LPS) of Gram-negative bacteria and lipoteichoic acid (LTA) of Gram-positive bacteria in vitro. To this end, we used transwell and scratch assays, as well as a specific chemotaxis assay combined with live-cell imaging. We found no significant influence of LPS or LTA on the migration rate of adMSC in transwell or scratch assays. Furthermore, in the µ-slide chemotaxis assay, the stimulation with LPS did not exert any chemotactic effect on adMSC.

  2. Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells

    PubMed Central

    Minjuan, Wu; Jun, Xiong; Shiyun, Shao; Sha, Xu; Haitao, Ni

    2016-01-01

    Early repair of skin injury and maximal restoration of the function and appearance have become important targets of clinical treatment. In the present study, we observed the healing process of skin defects in nude mice and structural characteristics of the new skin after transplantation of isolated and cultured adipose derived mesenchymal stem cells (ADMSCs) onto the human acellular amniotic membrane (AAM). The result showed that ADMSCs were closely attached to the surface of AAM and grew well 24 h after seeding. Comparison of the wound healing rate at days 7, 14, and 28 after transplantation showed that ADMSCs seeded on AAM facilitated the healing of full-thickness skin wounds more effectively as compared with either hAM or AAM alone, indicating that ADMSCs participated in skin regeneration. More importantly, we noticed a phenomenon of hair follicle development during the process of skin repair. Composite ADMSCs and AAM not only promoted the healing of the mouse full-thickness defects but also facilitated generation of the appendages of the affected skin, thus promoting restoration of the skin function. Our results provide a new possible therapy idea for the treatment of skin wounds with respect to both anatomical regeneration and functional restoration. PMID:27597871

  3. Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells

    PubMed Central

    Minjuan, Wu; Jun, Xiong; Shiyun, Shao; Sha, Xu; Haitao, Ni

    2016-01-01

    Early repair of skin injury and maximal restoration of the function and appearance have become important targets of clinical treatment. In the present study, we observed the healing process of skin defects in nude mice and structural characteristics of the new skin after transplantation of isolated and cultured adipose derived mesenchymal stem cells (ADMSCs) onto the human acellular amniotic membrane (AAM). The result showed that ADMSCs were closely attached to the surface of AAM and grew well 24 h after seeding. Comparison of the wound healing rate at days 7, 14, and 28 after transplantation showed that ADMSCs seeded on AAM facilitated the healing of full-thickness skin wounds more effectively as compared with either hAM or AAM alone, indicating that ADMSCs participated in skin regeneration. More importantly, we noticed a phenomenon of hair follicle development during the process of skin repair. Composite ADMSCs and AAM not only promoted the healing of the mouse full-thickness defects but also facilitated generation of the appendages of the affected skin, thus promoting restoration of the skin function. Our results provide a new possible therapy idea for the treatment of skin wounds with respect to both anatomical regeneration and functional restoration.

  4. Hair Follicle Morphogenesis in the Treatment of Mouse Full-Thickness Skin Defects Using Composite Human Acellular Amniotic Membrane and Adipose Derived Mesenchymal Stem Cells.

    PubMed

    Minjuan, Wu; Jun, Xiong; Shiyun, Shao; Sha, Xu; Haitao, Ni; Yue, Wang; Kaihong, Ji

    2016-01-01

    Early repair of skin injury and maximal restoration of the function and appearance have become important targets of clinical treatment. In the present study, we observed the healing process of skin defects in nude mice and structural characteristics of the new skin after transplantation of isolated and cultured adipose derived mesenchymal stem cells (ADMSCs) onto the human acellular amniotic membrane (AAM). The result showed that ADMSCs were closely attached to the surface of AAM and grew well 24 h after seeding. Comparison of the wound healing rate at days 7, 14, and 28 after transplantation showed that ADMSCs seeded on AAM facilitated the healing of full-thickness skin wounds more effectively as compared with either hAM or AAM alone, indicating that ADMSCs participated in skin regeneration. More importantly, we noticed a phenomenon of hair follicle development during the process of skin repair. Composite ADMSCs and AAM not only promoted the healing of the mouse full-thickness defects but also facilitated generation of the appendages of the affected skin, thus promoting restoration of the skin function. Our results provide a new possible therapy idea for the treatment of skin wounds with respect to both anatomical regeneration and functional restoration. PMID:27597871

  5. Low-level laser therapy promotes the osteogenic potential of adipose-derived mesenchymal stem cells seeded on an acellular dermal matrix.

    PubMed

    Choi, Kyuseok; Kang, Byung-Jae; Kim, Hyoju; Lee, Seungmin; Bae, Sohee; Kweon, Oh-Kyeong; Kim, Wan Hee

    2013-08-01

    This study investigates the feasibility of using an adipose-derived mesenchymal stem cell (ASC)-seeded acellular dermal matrix (ADM) along with low-level laser therapy (LLLT) to repair bone defect in athymic nude mice. Critical-sized calvarial defects were treated either with ADM, ADM/LLLT, ADM/ASCs, or ADM/ASCs/LLLT. In micro-computed tomography scans, the ADM/ASCs and the ADM/ASCs/LLLT groups showed remarkable bone formation after 14 days. Additionally, bone regeneration in the ADM/ASCs/LLLT group was obvious at 28 days, but in the ADM/ASCs group at 56 days. Bone mineral density and bone tissue volume in the ADM/ASCs/LLLT group significantly increased after 7 days, but in the ADM/ASCs group after 14 days. Histological analysis revealed that the defects were repaired in the ADM/ASCs and the ADM/ASCs/LLLT group, while the defects in the ADM and the ADM/LLLT groups exhibited few bone islands at 28 and 56 days. The successful seeding of ASCs onto ADM was confirmed, and LLLT enhanced the proliferation and the survival of ASCs at 14 days. Our results indicate that ASC-seeded grafts promote bone regeneration, and the application of LLLT on ASC-seeded ADM results in rapid bone formation. The implantation of an ASC-seeded ADM combined with LLLT may be used effectively for bone regeneration.

  6. New Therapy of Skin Repair Combining Adipose-Derived Mesenchymal Stem Cells with Sodium Carboxymethylcellulose Scaffold in a Pre-Clinical Rat Model

    PubMed Central

    Rodrigues, Cristiano; de Assis, Adriano M.; Moura, Dinara J.; Halmenschlager, Graziele; Saffi, Jenifer; Xavier, Léder Leal; da Cruz Fernandes, Marilda; Wink, Márcia Rosângela

    2014-01-01

    Lesions with great loss of skin and extensive burns are usually treated with heterologous skin grafts, which may lead rejection. Cell therapy with mesenchymal stem cells is arising as a new proposal to accelerate the healing process. We tested a new therapy consisting of sodium carboxymethylcellulose (CMC) as a biomaterial, in combination with adipose-derived stem cells (ADSCs), to treat skin lesions in an in vivo rat model. This biomaterial did not affect membrane viability and induced a small and transient genotoxicity, only at the highest concentration tested (40 mg/mL). In a rat wound model, CMC at 10 mg/mL associated with ADSCs increased the rate of cell proliferation of the granulation tissue and epithelium thickness when compared to untreated lesions (Sham), but did not increase collagen fibers nor alter the overall speed of wound closure. Taken together, the results show that the CMC is capable to allow the growth of ADSCs and is safe for this biological application up to the concentration of 20 mg/mL. These findings suggest that CMC is a promising biomaterial to be used in cell therapy. PMID:24788779

  7. Unveiling the Differences of Secretome of Human Bone Marrow Mesenchymal Stem Cells, Adipose Tissue-Derived Stem Cells, and Human Umbilical Cord Perivascular Cells: A Proteomic Analysis.

    PubMed

    Pires, Ana O; Mendes-Pinheiro, Barbara; Teixeira, Fábio G; Anjo, Sandra I; Ribeiro-Samy, Silvina; Gomes, Eduardo D; Serra, Sofia C; Silva, Nuno A; Manadas, Bruno; Sousa, Nuno; Salgado, Antonio J

    2016-07-15

    The use of human mesenchymal stem cells (hMSCs) has emerged as a possible therapeutic strategy for CNS-related conditions. Research in the last decade strongly suggests that MSC-mediated benefits are closely related with their secretome. Studies published in recent years have shown that the secretome of hMSCs isolated from different tissue sources may present significant variation. With this in mind, the present work performed a comparative proteomic-based analysis through mass spectrometry on the secretome of hMSCs derived from bone marrow (BMSCs), adipose tissue (ASCs), and human umbilical cord perivascular cells (HUCPVCs). The results revealed that BMSCs, ASCs, and HUCPVCs differed in their secretion of neurotrophic, neurogenic, axon guidance, axon growth, and neurodifferentiative proteins, as well as proteins with neuroprotective actions against oxidative stress, apoptosis, and excitotoxicity, which have been shown to be involved in several CNS disorder/injury processes. Although important changes were observed within the secretome of the cell populations that were analyzed, all cell populations shared the capability of secreting important neuroregulatory molecules. The difference in their secretion pattern may indicate that their secretome is specific to a condition of the CNS. Nevertheless, the confirmation that the secretome of MSCs isolated from different tissue sources is rich in neuroregulatory molecules represents an important asset not only for the development of future neuroregenerative strategies but also for their use as a therapeutic option for human clinical trials. PMID:27226274

  8. Transplantation of Human Adipose Tissue-Derived Mesenchymal Stem Cells Restores the Neurobehavioral Disorders of Rats With Neonatal Hypoxic-Ischemic Encephalopathy

    PubMed Central

    Park, Dongsun; Lee, Sun Hee; Bae, Dae Kwon; Yang, Yun-Hui; Yang, Goeun; Kyung, Jangbeen; Kim, Dajeong; Choi, Ehn-Kyoung; Hong, Jin Tae; Shin, Il Seob; Kang, Sung Keun; Ra, Jeong Chan; Kim, Yun-Bae

    2013-01-01

    Improving the effects of human adipose tissue-derived mesenchymal stem cells (ASCs) on the demyelination and neurobehavioral function was investigated in an experimental model of neonatal hypoxic-ischemic encephalopathy (HIE). Seven-day-old male rats were subjected to hypoxia-ischemia-lipopolysaccharide and intracerebroventricularly transplanted with human ASCs (4 × 105 cells/rat) once at postnatal day 10 (PND10) or repeatedly at PND10, 17, 27, and 37. Neurobehavioral abnormalities (at PND20, 30, and 40) and cognitive functions (at PND41–44) were evaluated using multiple test systems. Human ASCs recovered the using ratio of forelimb contralateral to the injured brain, improved locomotor activity, and restored rota-rod performance of HIE animals, in addition to showing a marked improvement of cognitive functions. It was confirmed that transplanted human ASCs migrated to injured areas and differentiated into oligodendrocytes expressing myelin basic protein (MBP). Moreover, transplanted ASCs restored production of growth and neurotrophic factors and expression of decreased inflammatory cytokines, leading to attenuation of host MBP loss. The results indicate that transplanted ASCs restored neurobehavioral functions by producing MBP as well as by preserving host myelins, which might be mediated by ASCs’ anti-inflammatory activity and release of growth and neurotrophic factors. PMID:26858861

  9. Comparison of Osteogenesis between Adipose-Derived Mesenchymal Stem Cells and Their Sheets on Poly-ε-Caprolactone/β-Tricalcium Phosphate Composite Scaffolds in Canine Bone Defects

    PubMed Central

    Kim, Yongsun; Lee, Seung Hoon; Kang, Byung-jae; Kim, Wan Hee; Yun, Hui-suk

    2016-01-01

    Multipotent mesenchymal stem cells (MSCs) and MSC sheets have effective potentials of bone regeneration. Composite polymer/ceramic scaffolds such as poly-ε-caprolactone (PCL)/β-tricalcium phosphate (β-TCP) are widely used to repair large bone defects. The present study investigated the in vitro osteogenic potential of canine adipose-derived MSCs (Ad-MSCs) and Ad-MSC sheets. Composite PCL/β-TCP scaffolds seeded with Ad-MSCs or wrapped with osteogenic Ad-MSC sheets (OCS) were also fabricated and their osteogenic potential was assessed following transplantation into critical-sized bone defects in dogs. The alkaline phosphatase (ALP) activity of osteogenic Ad-MSCs (O-MSCs) and OCS was significantly higher than that of undifferentiated Ad-MSCs (U-MSCs). The ALP, runt-related transcription factor 2, osteopontin, and bone morphogenetic protein 7 mRNA levels were upregulated in O-MSCs and OCS as compared to U-MSCs. In a segmental bone defect, the amount of newly formed bone was greater in PCL/β-TCP/OCS and PCL/β-TCP/O-MSCs/OCS than in the other groups. The OCS exhibit strong osteogenic capacity, and OCS combined with a PCL/β-TCP composite scaffold stimulated new bone formation in a critical-sized bone defect. These results suggest that the PCL/β-TCP/OCS composite has potential clinical applications in bone regeneration and can be used as an alternative treatment modality in bone tissue engineering.

  10. Controlled, blinded force platform analysis of the effect of intraarticular injection of autologous adipose-derived mesenchymal stem cells associated to PRGF-Endoret in osteoarthritic dogs

    PubMed Central

    2013-01-01

    Background Adipose-derived mesenchymal stem cell (ADMSC) therapy in regenerative medicine is a rapidly growing area of research and is currently also being used to treat osteoarthritis (OA). Force platform analysis has been consistently used to verify the efficacy of different therapeutic strategies for the treatment of OA in dogs, but never with AD-MSC. The aim of this study was to use a force platform to measure the efficacy of intraarticular ADMSC administration for limb function improvement in dogs with severe OA. Results Eight lame dogs with severe hip OA and a control group of 5 sound dogs were used for this study. Results were statistically analyzed to detect a significant increase in peak vertical force (PVF) and vertical impulse (VI) in treated dogs. Mean values of PVF and VI were significantly improved after treatment of the OA groups, reaching 53.02% and 14.84% of body weight, respectively, at day 180, compared with only 43.56% and 12.16% at day 0. Conclusion This study objectively demonstrated that intraarticular ADMSC therapy resulted in reduced lameness due to OA. PMID:23819757

  11. Platelet‐Rich Plasma Increases Growth and Motility of Adipose Tissue‐Derived Mesenchymal Stem Cells and Controls Adipocyte Secretory Function

    PubMed Central

    D'Esposito, Vittoria; Passaretti, Federica; Perruolo, Giuseppe; Ambrosio, Maria Rosaria; Valentino, Rossella; Oriente, Francesco; Raciti, Gregory A.; Nigro, Cecilia; Miele, Claudia; Sammartino, Gilberto; Beguinot, Francesco

    2015-01-01

    ABSTRACT Adipose tissue‐derived mesenchymal stem cells (Ad‐MSC) and platelet derivatives have been used alone or in combination to achieve regeneration of injured tissues. We have tested the effect of platelet‐rich plasma (PRP) on Ad‐MSC and adipocyte function. PRP increased Ad‐MSC viability, proliferation rate and G1‐S cell cycle progression, by at least 7‐, 2‐, and 2.2‐fold, respectively, and reduced caspase 3 cleavage. Higher PRP concentrations or PRPs derived from individuals with higher platelet counts were more effective in increasing Ad‐MSC growth. PRP also accelerated cell migration by at least 1.5‐fold. However, PRP did not significantly affect mature adipocyte viability, differentiation and expression levels of PPAR‐γ and AP‐2 mRNAs, while it increased leptin production by 3.5‐fold. Interestingly, PRP treatment of mature adipocytes also enhanced the release of Interleukin (IL)‐6, IL‐8, IL‐10, Interferon‐γ, and Vascular Endothelial Growth Factor. Thus, data are consistent with a stimulatory effect of platelet derivatives on Ad‐MSC growth and motility. Moreover, PRP did not reduce mature adipocyte survival and increased the release of pro‐angiogenic factors, which may facilitate tissue regeneration processes. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. J. Cell. Biochem. 116: 2408–2418, 2015. © 2015 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. PMID:26012576

  12. The role of SDF-1-CXCR4/CXCR7 axis in biological behaviors of adipose tissue-derived mesenchymal stem cells in vitro

    SciTech Connect

    Li, Qiang; Zhang, Aijun; Tao, Changbo; Li, Xueyang; Jin, Peisheng

    2013-11-22

    Highlights: •SDF-1 pretreating increased the levels of CXCR4, CXCR7 in ADSCs. •SDF-1 improved cells paracrine migration and proliferation abilities. •CXCR4 and CXCR7 could function in ADSCs paracrine, migration and proliferation. -- Abstract: Numerous studies have reported that CXCR4 and CXCR7 play an essential, but differential role in stromal cell-derived factor-1 (SDF-1)-inducing cell chemotaxis, viability and paracrine actions of BMSCs. Adipose tissue-derived mesenchymal stem cells (ADSCs) have been suggested to be potential seed cells for clinical application instead of bone marrow derived stroma cell (BMSCs). However, the function of SDF-1/CXCR4 and SDF-1/CXCR7 in ADSCs is not well understood. This study was designed to analyze the effect of SDF-1/CXCR4 and SDF-1/CXCR7 axis on ADSCs biological behaviors in vitro. Using Flow cytometry and Western blot methods, we found for the first time that CXCR4/CXCR7 expression was increased after treatment with SDF-1 in ADSCs. SDF-1 promoted ADSCs paracrine, proliferation and migration abilities. CXCR4 or CXCR7 antibody suppressed ADSCs paracrine action induced by SDF-1. The migration of ADSCs can be abolished by CXCR4 antibody, while the proliferation of ADSCs was only downregulated by CXCR7 antibody. Our study indicated that the angiogenesis of ADSCs is, at least partly, mediated by SDF-1/CXCR4 and SDF-1/CXCR7 axis. However, only binding of SDF-1/CXCR7 was required for proliferation of ADSCs, and CXCR7 was required for migration of ADSCs induced by SDF-1. Our studies provide evidence that the activation of either axis may be helpful to improve the effectiveness of ADSCs-based stem cell therapy.

  13. Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone.

    PubMed

    Wittenburg, Gretel; Flade, Viktoria; Garbe, Annette I; Lauer, Günter; Labudde, Dirk

    2014-05-01

    We have analysed the growth and differentiation of mesenchymal stromal cells (MSC) from bone marrow, and of adipose derived stem cells (ASC) from murine abdominal fat tissue, of green fluorescent protein (GFP) transgenic animals grown directly on two types of hydroxyapatite ceramic bone substitutes. BONITmatrix® and NanoBone® have specific mechanical and physiochemical properties such as porosity and an inner surface that influence cellular growth. Both MSC and ASC were separately seeded on 200mg of each biomaterial and cultured for 3 weeks under osteogenic differentiation conditions. The degree of mineralisation was assessed by alizarin red dye and the specific alkaline phosphatase activity of the differentiated cells. The morphology of the cells was examined by scanning electron microscopy and confocal microscopy. The osteoblastic phenotype of the cells was confirmed by analysing the expression of bone-specific genes (Runx2, osteocalcin, osteopontin, and osteonectin) by semiquantitative reverse transcriptase polymerase chain reaction (PCR). Comparison of BONITmatrix® and NanoBone® showed cell type-specific preferences in terms of osteogenic differentiation. MSC-derived osteoblast-like cells spread optimally on the surface of NanoBone® but not BONITmatrix® granules. In contrast BONITmatrix® granules conditioned the growth of osteoblast-like cells derived from ASC. The osteoblastic phenotype of the cultured cells on all matrices was confirmed by specific gene expression. Our results show that the in vitro growth and osteogenic differentiation of murine MSC or ASC of GFP transgenic mice are distinctly influenced by the ceramic substratum. While NanoBone® granules support the proliferation and differentiation of murine MSC isolated from bone marrow, the growth of murine ASC is supported by BONITmatrix® granules. NanoBone® is therefore recommended for use as scaffold in tissue engineering that requires MSC, whereas ASC can be combined with BONITmatrix® for

  14. Hypoxia-cultured human adipose-derived mesenchymal stem cells are non-oncogenic and have enhanced viability, motility, and tropism to brain cancer.

    PubMed

    Feng, Y; Zhu, M; Dangelmajer, S; Lee, Y M; Wijesekera, O; Castellanos, C X; Denduluri, A; Chaichana, K L; Li, Q; Zhang, H; Levchenko, A; Guerrero-Cazares, H; Quiñones-Hinojosa, A

    2014-12-11

    Adult human adipose-derived mesenchymal stem cells (hAMSCs) are multipotent cells, which are abundant, easily collected, and bypass the ethical concerns that plague embryonic stem cells. Their utility and accessibility have led to the rapid development of clinical investigations to explore their autologous and allogeneic cellular-based regenerative potential, tissue preservation capabilities, anti-inflammatory properties, and anticancer properties, among others. hAMSCs are typically cultured under ambient conditions with 21% oxygen. However, physiologically, hAMSCs exist in an environment of much lower oxygen tension. Furthermore, hAMSCs cultured in standard conditions have shown limited proliferative and migratory capabilities, as well as limited viability. This study investigated the effects hypoxic culture conditions have on primary intraoperatively derived hAMSCs. hAMSCs cultured under hypoxia (hAMSCs-H) remained multipotent, capable of differentiation into osteogenic, chondrogenic, and adipogenic lineages. In addition, hAMSCs-H grew faster and exhibited less cell death. Furthermore, hAMSCs-H had greater motility than normoxia-cultured hAMSCs and exhibited greater homing ability to glioblastoma (GBM) derived from brain tumor-initiating cells from our patients in vitro and in vivo. Importantly, hAMSCs-H did not transform into tumor-associated fibroblasts in vitro and were not tumorigenic in vivo. Rather, hAMSCs-H promoted the differentiation of brain cancer cells in vitro and in vivo. These findings suggest an alternative culturing technique that can enhance the function of hAMSCs, which may be necessary for their use in the treatment of various pathologies including stroke, myocardial infarction, amyotrophic lateral sclerosis, and GBM.

  15. Del-1 overexpression in endothelial cells increases vascular density in tissue-engineered implants containing endothelial cells and adipose-derived mesenchymal stromal cells.

    PubMed

    Ciucurel, Ema C; Sefton, Michael V

    2014-04-01

    We used a combination of strategies to stimulate the vascularization of tissue-engineered constructs in vivo including a modular approach to build larger tissues from individual building blocks ("modules") mixed together. Each building block included vascular cells by design; modules were submillimeter-sized collagen gels with an outer layer of endothelial cells (ECs), and with embedded adipose-derived mesenchymal stromal cells (adMSCs) to support EC survival and blood vessel maturation in vivo. We transduced the ECs that coat the modules with a lentiviral construct to overexpress the angiogenic extracellular matrix (ECM) protein Developmental endothelial locus-1 (Del-1). Upon injection of modules in a subcutaneous SCID/Bg mouse model, there was an increase in the number of blood vessels for implants with ECs transduced to overexpress Del-1 compared with control implants (with enhanced green fluorescent protein [eGFP]-transduced ECs) over the 21-day duration of the study. The greatest difference between Del-1 and eGFP implants and the highest number of blood vessels were observed 7 days after transplantation. The day-7 Del-1 implants also had increased SMA+ staining compared with control, suggesting increased blood vessel maturation through recruitment of SMA+ smooth muscle cells or pericytes to stabilize the newly formed blood vessels. Perfusion studies (microcomputed tomography, ultrasound imaging, and systemic injection of fluorescent UEA-1 or dextran) showed that some of the newly formed blood vessels (both donor derived and host derived, in both Del-1 and eGFP implants) were perfused and connected to the host vasculature as early as 7 days after transplantation, and at later time points as well. Nevertheless, perfusion of the implants was limited in some cases, suggesting that further improvements are necessary to normalize the vasculature at the implant site. PMID:24151812

  16. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells

    SciTech Connect

    Park, Yoon Shin; Lim, Goh-Woon; Cho, Kyung-Ah; Woo, So-Youn; Shin, Meeyoung; Yoo, Eun-Sun; Chan Ra, Jeong; Ryu, Kyung-Ha

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Neutropenia is a principal complication of cancer treatment. Black-Right-Pointing-Pointer Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. Black-Right-Pointing-Pointer AD-MSC increased functions of neutrophil. Black-Right-Pointing-Pointer AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Black-Right-Pointing-Pointer AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cells by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-{alpha}, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-{beta} in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.

  17. Local delivery of allogeneic bone marrow and adipose tissue-derived mesenchymal stromal cells for cutaneous wound healing in a porcine model.

    PubMed

    Hanson, Summer E; Kleinbeck, Kyle R; Cantu, David; Kim, Jaeyhup; Bentz, Michael L; Faucher, Lee D; Kao, W John; Hematti, Peiman

    2016-02-01

    Wound healing remains a major challenge in modern medicine. Bone marrow- (BM) and adipose tissue- (AT) derived mesenchymal stromal/stem cells (MSCs) are of great interest for tissue reconstruction due to their unique immunological properties and regenerative potential. The purpose of this study was to characterize BM and AT-MSCs and evaluate their effect when administered in a porcine wound model. MSCs were derived from male Göttingen Minipigs and characterized according to established criteria. Allogeneic BM- or AT-MSCs were administered intradermally (1 x 10(6) cells) into partial-thickness wounds created on female animals, and covered with Vaseline® gauze or fibrin in a randomized pattern. Animals were euthanized at 7, 10, 14 and 21 days. Tissues were analyzed visually for healing and by microscopic examination for epidermal development and remodelling. Polymerase chain reaction (PCR) was used to detect the presence of male DNA in the specimens. All wounds were healed by 14 days. MSC-injected wounds were associated with improved appearance and faster re-epithelialization compared to saline controls. Evaluation of rete ridge depth and architecture showed that MSC treatment promoted a faster rate of epidermal maturation. Male DNA was detected in all samples at days 7 and 10, suggesting the presence of MSCs. We showed the safety, feasibility and potential efficacy of local injection of allogeneic BM- and AT-MSCs for treatment of wounds in a preclinical model. Our data in this large animal model support the potential use of BM- and AT-MSC for treatment of cutaneous wounds through modulation of healing and epithelialization.

  18. Comparison of bone marrow tissue- and adipose tissue-derived mesenchymal stem cells in the treatment of sepsis in a murine model of lipopolysaccharide-induced sepsis.

    PubMed

    Ou, Hao; Zhao, Shangping; Peng, Yue; Xiao, Xuefei; Wang, Qianlu; Liu, Huaizeng; Xiao, Xianzhong; Yang, Mingshi

    2016-10-01

    Mesenchymal stem cells (MSCs) have been reported to regulate the systemic inflammatory response and sepsis-induced immunologic injury pre-clinically. However, whether MSCs from different sources elicit identical effects remains to be elucidated. The present study compared the effect of bone marrow‑derived MSCs (BMSCs) and adipose tissue-derived MSCs (ADMSCs) in a murine model of lipopolysaccharide (LPS)‑induced sepsis. SPF BALB/c mice were induced with an injection of LPS (10 mg/kg; 1 mg/ml) via the tail vein. To compare the effect of MSCs on the septic mice, either saline, BMSCs or ADMSCs were injected via the tail vein 5 min following the administration of LPS. The survival rates and body temperatures of the mice were observed regularly up to 48 h. The serum levels of pro‑inflammatory cytokines, including tumour necrosis factor‑α, interleukin (IL)‑6 and IL‑8, anti‑inflammatory cytokines, including IL‑2, IL‑4 and IL‑10, and biochemical markers, including lactate, creatinine, alanine aminotransferase and aspertate aminotransferase, were analyzed at 6 h. The BMSCs and ADMSCs significantly reduced mortality rates, body‑temperature fluctuations, serum levels of biochemical markers and the majority of cytokines. However, the levels of IL‑8 in the BMSC and ADMSC groups were increased and decreased, respectively. These findings suggested that BMSCs and ADMSCs ameliorated sepsis-associated organ injury and mortality, and had a similar regulatory effect on pro‑ and anti‑inflammatory cytokines despite the different MSC sources. Therefore, BMSCs and ADMSCs may serve as novel treatment modalities for sepsis. PMID:27600821

  19. Posterolateral spinal fusion with nano-hydroxyapatite-collagen/PLA composite and autologous adipose-derived mesenchymal stem cells in a rabbit model.

    PubMed

    Tang, Zi-Bin; Cao, Jun-Kai; Wen, Ning; Wang, Hai-Bin; Zhang, Zhong-Wen; Liu, Zhi-Qiang; Zhou, Jin; Duan, Cui-Mi; Cui, Fu-Zhai; Wang, Chang-Yong

    2012-04-01

    Spinal fusion is routinely performed to treat low back pain caused by degeneration of intervertebral discs. An autologous bone graft derived from the iliac crest is the standard procedure used for spinal fusion. However, several shortcomings, including pseudarthrosis, pain and the need for blood transfusion are known to be associated with the procedure. Our study analysed the effectiveness of a new mineralized collagen matrix, nano-hydroxyapatite-collagen-polylactic acid (nHAC-PLA), combined with autologous adipose-derived mesenchymal stem cells (ADMSCs) as a graft material for posterolateral spinal fusion in a rabbit model. Forty rabbits were randomly divided into four groups: autologous iliac crest bone group (ACB), nHAC-PLA composite group (nHAC-PLA), autologous iliac crest bone mixed with nHAC-PLA composite group (ACB + nHAC-PLA), and nHAC-PLA composite combined with ADMSCs (ADMSCs + nHAC-PLA). The viability and the proliferation of the ADMSCs seeded on the scaffolds were evaluated by live/dead kit and MTT assay in vitro, respectively. Lumbar posterolateral fusions were assessed by manual palpation, radiographical and histological procedures, mechanical strength and scanning electronic microscopy (SEM) in 10 weeks of observation. The results showed that the rate of fusion was significantly higher in the ACB and ADMSCs + nHAC-PLA groups than that in the nHAC-PLA and ACB + nHAC-PLA groups. It was not significantly higher in the ACB group than in the ADMSCs + nHAC-PLA group. From microstructural analysis of the samples using histological staining methods, there was more new bone-like tissue formation in the ACB and ADMSCs + nHAC-PLA groups than that in the other two groups at the 10th postoperative week. Our study demonstrated the effective impact of nHAC-PLA combined with ADMSCs in rabbit posterolateral spinal fusion.

  20. Short-term exposure to tumor necrosis factor-alpha enables human osteoblasts to direct adipose tissue-derived mesenchymal stem cells into osteogenic differentiation.

    PubMed

    Lu, ZuFu; Wang, Guocheng; Dunstan, Colin R; Zreiqat, Hala

    2012-09-01

    Tumor necrosis factor-alpha (TNF-α) is one major inflammatory factor peaking at 24 h after bone fracture in response to injury; its role in bone healing is controversial. The aims of this study were to investigate whether the duration of exposure to TNF-α is crucial for the initiation of bone regeneration and to determine its underlying mechanism(s). We demonstrated that 24 h of TNF-α treatment significantly abrogated osteocalcin gene expression by human primary osteoblasts (HOBs). However, when TNF-α was withdrawn after 24 h, bone sialoprotein and osteocalcin gene expression levels in HOBs at day 7 were significantly up-regulated compared with the HOBs without TNF-α treatment. In contrast, continuous TNF-α treatment down-regulated bone sialoprotein and osteocalcin gene expression. In addition, in an indirect co-culture system, HOBs pretreated with TNF-α for 24 h induced significantly greater osteogenic differentiation of adipose tissue-derived mesenchymal stem cells (ASCs) than the HOBs without TNF-α treatment. TNF-α treatment also promoted endogenous bone morphogenetic protein 2 (BMP-2) production in HOBs, while blocking the BMP-2 signaling pathway with Noggin inhibited osteogenic differentiation of ASCs in the co-culture system. Furthermore, activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway after TNF-α treatment occurred earlier than BMP-2 protein expression. BMP-2 production by HOBs and osteogenic differentiation of ASCs in the co-culture system with HOBs was significantly decreased when HOBs were pretreated with TNF-α in combination with the p38 MAPK-specific inhibitor (SB203580). Taken together, we provide evidence that exposure duration is a critical element in determining TNF-α's effects on bone regeneration. We also demonstrate that the p38 MAPK signaling pathway regulates the expression of BMP-2 in osteoblasts, which then acts through a paracrine loop, to direct the osteoblast lineage commitment of mesenchymal

  1. Porcine adipose tissue-derived mesenchymal stem cells retain their proliferative characteristics, senescence, karyotype and plasticity after long-term cryopreservation.

    PubMed

    Dariolli, Rafael; Bassaneze, Vinicius; Nakamuta, Juliana Sanajotti; Omae, Samantha Vieira; Campos, Luciene Cristina Gastalho; Krieger, Jose E

    2013-01-01

    We and others have provided evidence that adipose tissue-derived mesenchymal stem cells (ASCs) can mitigate rat cardiac functional deterioration after myocardial ischemia, even though the mechanism of action or the relevance of these findings to human conditions remains elusive. In this regard, the porcine model is a key translational step, because it displays heart anatomic-physiological features that are similar to those found in the human heart. Towards this end, we wanted to establish the cultural characteristics of porcine ASCs (pASCs) with or without long-term cryostorage, considering that allogeneic transplantation may also be a future option. Compared to fresh pASCs, thawed cells displayed 90-95% viability and no changes in morphological characteristics or in the expression of surface markers (being pASCs characterized by positive markers CD29(+); CD90(+); CD44(+); CD140b(+); CD105(+); and negative markers CD31(-); CD34(-); CD45(-) and SLA-DR(-); n = 3). Mean population doubling time was also comparable (64.26±15.11 hours to thawed cells vs. 62.74±18.07 hours to fresh cells) and cumulative population doubling increased constantly until Passage 10 (P10) in the entire cell population, with a small and gradual increase in senescence (P5, 3.25%±0.26 vs. 3.47%±0.32 and P10, 9.6%±0.29 vs. 10.67%±1.25, thawed vs. fresh; SA-β-Gal staining). Chromosomal aberrations were not observed. In addition, under both conditions pASCs responded to adipogenic and osteogenic chemical cues in vitro. In conclusion, we have demonstrated the growth characteristics, senescence, and the capacity of pASCs to respond to chemical cues in vitro and have provided evidence that these properties are not influenced by cryostorage in 10% DMSO solution.

  2. Therapeutic Benefits of Young, But Not Old, Adipose-Derived Mesenchymal Stem Cells in a Chronic Mouse Model of Bleomycin-Induced Pulmonary Fibrosis

    PubMed Central

    Tashiro, Jun; Elliot, Sharon J.; Gerth, David J.; Xia, Xiaomei; Pereira-Simon, Simone; Choi, Rhea; Catanuto, Paola; Shahzeidi, Shahriar; Toonkel, Rebecca L.; Shah, Rahil H.; El Salem, Fadi; Glassberg, Marilyn K.

    2016-01-01

    The observation that pulmonary inflammatory lesions and bleomycin (BLM)-induced pulmonary fibrosis spontaneously resolve in young mice, while remaining irreversible in aged mice, suggests that impairment of pulmonary regeneration and repair is associated with aging. Since mesenchymal stem cells (MSCs) may promote repair following injury, we postulated that differences in MSCs from aged mice may underlie post-injury fibrosis in aging. The potential for young-donor MSCs to inhibit BLM-induced pulmonary fibrosis in aged male mice (>22 months) has not been studied. Adipose-derived MSCs (ASCs) from young (4-month) and old (22-month) male mice were infused 1-day following intratracheal BLM administration. At 21-day sacrifice, aged BLM mice demonstrated lung fibrosis by Ashcroft score, collagen content, and αv-integrin mRNA expression. Lung tissue from aged BLM mice receiving young ASCs exhibited decreased fibrosis, matrix metalloproteinase (MMP)-2 activity, oxidative stress, and markers of apoptosis vs. BLM controls. Lung mRNA expression of TNFα was also decreased in aged BLM mice receiving young-donor ASCs vs. BLM controls. In contrast, old-donor ASC treatment in aged BLM mice did not reduce fibrosis and related markers. On examination of the cells, young-donor ASCs had decreased mRNA expression of MMP-2, insulin-like growth factor receptor, and AKT activation compared to old-donor ASCs. These results show that the BLM-induced pulmonary fibrosis in aged mice could be blocked by young-donor ASCs and that the mechanisms involve changes in collagen turnover and markers of inflammation. PMID:26432923

  3. Comparison of Osteogenesis between Adipose-Derived Mesenchymal Stem Cells and Their Sheets on Poly-ε-Caprolactone/β-Tricalcium Phosphate Composite Scaffolds in Canine Bone Defects

    PubMed Central

    Kim, Yongsun; Lee, Seung Hoon; Kang, Byung-jae; Kim, Wan Hee; Yun, Hui-suk

    2016-01-01

    Multipotent mesenchymal stem cells (MSCs) and MSC sheets have effective potentials of bone regeneration. Composite polymer/ceramic scaffolds such as poly-ε-caprolactone (PCL)/β-tricalcium phosphate (β-TCP) are widely used to repair large bone defects. The present study investigated the in vitro osteogenic potential of canine adipose-derived MSCs (Ad-MSCs) and Ad-MSC sheets. Composite PCL/β-TCP scaffolds seeded with Ad-MSCs or wrapped with osteogenic Ad-MSC sheets (OCS) were also fabricated and their osteogenic potential was assessed following transplantation into critical-sized bone defects in dogs. The alkaline phosphatase (ALP) activity of osteogenic Ad-MSCs (O-MSCs) and OCS was significantly higher than that of undifferentiated Ad-MSCs (U-MSCs). The ALP, runt-related transcription factor 2, osteopontin, and bone morphogenetic protein 7 mRNA levels were upregulated in O-MSCs and OCS as compared to U-MSCs. In a segmental bone defect, the amount of newly formed bone was greater in PCL/β-TCP/OCS and PCL/β-TCP/O-MSCs/OCS than in the other groups. The OCS exhibit strong osteogenic capacity, and OCS combined with a PCL/β-TCP composite scaffold stimulated new bone formation in a critical-sized bone defect. These results suggest that the PCL/β-TCP/OCS composite has potential clinical applications in bone regeneration and can be used as an alternative treatment modality in bone tissue engineering. PMID:27610141

  4. Comparison of viability and antioxidant capacity between canine adipose-derived mesenchymal stem cells and heme oxygenase-1-overexpressed cells after freeze-thawing

    PubMed Central

    KIM, Mijung; KIM, Yongsun; LEE, Seunghoon; KUK, Minyoung; KIM, Ah Young; KIM, Wanhee; KWEON, Oh-Kyeong

    2015-01-01

    Allogenic adipose-derived mesenchymal stem cells (Ad-MSCs) are an alternative source for cytotherapy owing to their antioxidant and anti-inflammatory effects. Frozen-thawed allogenic Ad-MSCs can be used instantly for this purpose. However, the viability and function of frozen-thawed Ad-MSCs have not been clearly evaluated. The purpose of this study was to compare the viability and function of Ad-MSCs and heme oxygenase-1 (HO-1)-overexpressed Ad-MSCs in vitro after freeze-thawing. The viability, proliferation, antioxidant capacity and mRNA gene expression of growth factors were evaluated. Frozen-thawed cells showed significantly lower viability than fresh cells (77% for Ad-MSCs and 71% for HO-1 Ad-MSCs, P<0.01). However, the proliferation rate of frozen-thawed Ad-MSCs increased and did not differ from that of fresh Ad-MSCs after 3 days of culture. In contrast, the proliferation rate of HO-1-overexpressed Ad-MSCs was lower than that of Ad-MSCs. The mRNA expression levels of TGF-β, HGF and VEGF did not differ between fresh and frozen-thawed Ad-MSCs, but COX-2 and IL-6 had significantly higher mRNA expression in frozen cells than fresh cells (P<0.05). Fresh Ad-MSCs exhibited higher HO-1 mRNA expression than frozen-thawed Ad-MSCs, and fresh HO-1-overexpressed Ad-MSCs exhibited higher than fresh Ad-MSCs (P<0.05). However, there was no significant difference between fresh and frozen HO-1-overexpressed Ad-MSCs. The antioxidant capacity of HO-1-overexpressed Ad-MSCs was significantly higher than that of Ad-MSCs. Cryopreservation of Ad-MSCs negatively affects viability and antioxidant capacity, and HO-1-overexpressed Ad-MSCs might be useful to maximize the effect of Ad-MSCs for cytotherapy. PMID:26725542

  5. Upregulation of miR-22 Promotes Osteogenic Differentiation and Inhibits Adipogenic Differentiation of Human Adipose Tissue-Derived Mesenchymal Stem Cells by Repressing HDAC6 Protein Expression

    PubMed Central

    Huang, Shan; Wang, Shihua; Bian, Chunjing; Yang, Zhuo; Zhou, Hong; Zeng, Yang; Li, Hongling; Han, Qin

    2012-01-01

    Mesenchmal stem cells (MSCs) can be differentiated into either adipocytes or osteoblasts, and a reciprocal relationship exists between adipogenesis and osteogenesis. Multiple transcription factors and signaling pathways have been reported to regulate adipogenic or osteogenic differentiation, respectively, yet the molecular mechanism underlying the cell fate alteration between adipogenesis and osteogenesis still remains to be illustrated. MicroRNAs are important regulators in diverse biological processes by repressing protein expression of their targets. Here, miR-22 was found to regulate adipogenic and osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hADMSCs) in opposite directions. Our data showed that miR-22 decreased during the process of adipogenic differentiation but increased during osteogenic differentiation. On one hand, overexpression of miR-22 in hADMSCs could inhibit lipid droplets accumulation and repress the expression of adipogenic transcription factors and adipogenic-specific genes. On the other hand, enhanced alkaline phosphatase activity and matrix mineralization, as well as increased expression of osteo-specific genes, indicated a positive role of miR-22 in regulating osteogenic differentiation. Target databases prediction and validation by Dual Luciferase Reporter Assay, western blot, and real-time polymerase chain reaction identified histone deacetylase 6 (HDAC6) as a direct downstream target of miR-22 in hADMSCs. Inhibition of endogenous HDAC6 by small-interfering RNAs suppressed adipogenesis and stimulated osteogenesis, consistent with the effect of miR-22 overexpression in hADMSCs. Together, our results suggested that miR-22 acted as a critical regulator of balance between adipogenic and osteogenic differentiation of hADMSCs by repressing its target HDAC6. PMID:22375943

  6. Polyamines modulate nitric oxide production and COX-2 gene expression in response to mechanical loading in human adipose tissue-derived mesenchymal stem cells.

    PubMed

    Tjabringa, Geuranne S; Vezeridis, Peter S; Zandieh-Doulabi, Behrouz; Helder, Marco N; Wuisman, Paul I J M; Klein-Nulend, Jenneke

    2006-10-01

    For bone tissue engineering, it is important that mesenchymal stem cells (MSCs) display a bone cell-like response to mechanical loading. We have shown earlier that this response includes increased nitric oxide (NO) production and cyclooxygenase-2 (COX-2) gene expression, both of which are intimately involved in mechanical adaptation of bone. COX-2 gene expression is likely regulated by polyamines, which are organic cations implicated in cell proliferation and differentiation. This has led to the hypothesis that polyamines may play a role in the response of adipose tissue-derived MSCs (AT-MSCs) to mechanical loading. The aim of this study was to investigate whether genes involved in polyamine metabolism are regulated by mechanical loading and to study whether polyamines modulate mechanical loading-induced NO production and COX-2 gene expression in human AT-MSCs. Human AT-MSCs displayed a bone cell-like response to mechanical loading applied by pulsating fluid flow (PFF), as demonstrated by increased NO production and increased gene expression of COX-2. Furthermore, PFF increased gene expression of spermidine/spermine N (1)-acetyltransferase, which is involved in polyamine catabolism, suggesting that mechanical loading modulates polyamine levels. Finally, the polyamine spermine was shown to inhibit both PFF-induced NO production and COX-2 gene expression, suggesting that polyamines modulate the response of human AT-MSCs to mechanical loading. In conclusion, this is the first study implicating polyamines in the response of human AT-MSCs to mechanical loading, creating opportunities for the use of polyamines in tissue engineering approaches targeting skeletal defects.

  7. Protective effect of melatonin-supported adipose-derived mesenchymal stem cells against small bowel ischemia-reperfusion injury in rat.

    PubMed

    Chang, Chia-Lo; Sung, Pei-Hsun; Sun, Cheuk-Kwan; Chen, Chih-Hung; Chiang, Hsin-Ju; Huang, Tien-Hung; Chen, Yi-Ling; Zhen, Yen-Yi; Chai, Han-Tan; Chung, Sheng-Ying; Tong, Meng-Shen; Chang, Hsueh-Wen; Chen, Hong-Hwa; Yip, Hon-Kan

    2015-09-01

    We tested the hypothesis that combined melatonin and autologous adipose-derived mesenchymal stem cells (ADMSC) was superior to either alone against small bowel ischemia-reperfusion (SBIR) injury induced by superior mesenteric artery clamping for 30 min followed by reperfusion for 72 hr. Male adult Sprague Dawley rats (n = 50) were equally categorized into sham-operated controls SC, SBIR, SBIR-ADMSC (1.0 × 10(6) intravenous and 1.0 × 10(6) intrajejunal injection), SBIR-melatonin (intraperitoneal 20 mg/kg at 30 min after SI ischemia and 50 mg/kg at 6 and 18 hr after SI reperfusion), and SBIR-ADMSC-melatonin groups. The results demonstrated that the circulating levels of TNF-α, MPO, LyG6+ cells, CD68+ cells, WBC count, and gut permeability were highest in SBIR and lowest in SC, significantly higher in SBIR-ADMSC group and further increased in SBIR-melatonin group than in the combined therapy group (all P < 0.001). The ischemic mucosal damage score, the protein expressions of inflammation (TNF-α, NF-κB, MMP-9, MPO, and iNOS), oxidative stress (NOX-1, NOX-2, and oxidized protein), apoptosis (APAF-1, mitochondrial Bax, cleaved caspase-3 and PARP), mitochondrial damage (cytosolic cytochrome C) and DNA damage (γ-H2AX) markers, as well as cellular expressions of proliferation (PCNA), apoptosis (caspase-3, TUNEL assay), and DNA damage (γ-H2AX) showed an identical pattern, whereas mitochondrial cytochrome C exhibited an opposite pattern compared to that of inflammation among all groups (all P < 0.001). Besides, antioxidant expressions at protein (NQO-1, GR, and GPx) and cellular (HO-1) levels progressively increased from SC to the combined treatment group (all P < 0.001). In conclusion, combined melatonin-ADMSC treatment offered additive beneficial effect against SBIR injury. PMID:26013733

  8. Exendin-4 protects adipose-derived mesenchymal stem cells from apoptosis induced by hydrogen peroxide through the PI3K/Akt-Sfrp2 pathways.

    PubMed

    Zhou, Hao; Yang, Junjie; Xin, Ting; Li, Dandan; Guo, Jun; Hu, Shunyin; Zhou, Shanshan; Zhang, Tao; Zhang, Ying; Han, Tianwen; Chen, Yundai

    2014-12-01

    Adipose-derived mesenchymal stem cells (ADMSCs)-based therapy is a promising modality for the treatment of myocardial infarction in the future. However, the majority of transplanted cells are readily lost after transplantation because of hypoxia and oxidative stress. An efficient means to enhance the ability of ADMSCs to survive under pathologic conditions is required. In our study, we explored the effects of exendin-4 (Ex-4) on ADMSCs apoptosis in vitro induced by hydrogen peroxide, focusing in particular on mitochondrial apoptotic pathways and PI3K/Akt-secreted frizzled-related protein 2 (Sfrp2) survival signaling. We demonstrated that ADMSCs subjected to H2O2 for 12h exhibited impaired mitochondrial function and higher apoptotic rate. However, Ex-4 (1-20 nM) preconditioning for 12h could protect ADMSCs against H2O2-mediated apoptosis in a dose-dependent manner. Furthermore, Ex-4 pretreatment upregulated the levels of superoxide dismutase and glutathione as well as downregulating the production of reactive oxygen species and malondialdehyde. Western blots revealed that increased antiapoptotic proteins Bcl-2 and c-IAP1/2 as well as decreased proapoptotic proteins Bax and cytochrome c appeared in ADMSCs with Ex-4 incubation, which inhibited the caspase-9-involved mitochondrial apoptosis pathways with evidence showing inactivation of caspase-9/3 and preservation of mitochondrial membrane potential. Furthermore, we illustrated that Ex-4 enhanced Akt phosphorylation, which increased the expression of Sfrp2. Notably, blockade of the PI3K/Akt pathway or knockdown of Sfrp2 with siRNA obviously abolished the protective effects of Ex-4 on mitochondrial function and ADMSCs apoptosis under H2O2. In summary, this study confirmed that H2O2 induced ADMSCs apoptosis through mitochondria-dependent cell death pathways, and Ex-4 preconditioning may reduce such apoptosis of ADMSCs through the PI3K/Akt-Sfrp2 pathways.

  9. Comparison of Osteogenesis between Adipose-Derived Mesenchymal Stem Cells and Their Sheets on Poly-ε-Caprolactone/β-Tricalcium Phosphate Composite Scaffolds in Canine Bone Defects.

    PubMed

    Kim, Yongsun; Lee, Seung Hoon; Kang, Byung-Jae; Kim, Wan Hee; Yun, Hui-Suk; Kweon, Oh-Kyeong

    2016-01-01

    Multipotent mesenchymal stem cells (MSCs) and MSC sheets have effective potentials of bone regeneration. Composite polymer/ceramic scaffolds such as poly-ε-caprolactone (PCL)/β-tricalcium phosphate (β-TCP) are widely used to repair large bone defects. The present study investigated the in vitro osteogenic potential of canine adipose-derived MSCs (Ad-MSCs) and Ad-MSC sheets. Composite PCL/β-TCP scaffolds seeded with Ad-MSCs or wrapped with osteogenic Ad-MSC sheets (OCS) were also fabricated and their osteogenic potential was assessed following transplantation into critical-sized bone defects in dogs. The alkaline phosphatase (ALP) activity of osteogenic Ad-MSCs (O-MSCs) and OCS was significantly higher than that of undifferentiated Ad-MSCs (U-MSCs). The ALP, runt-related transcription factor 2, osteopontin, and bone morphogenetic protein 7 mRNA levels were upregulated in O-MSCs and OCS as compared to U-MSCs. In a segmental bone defect, the amount of newly formed bone was greater in PCL/β-TCP/OCS and PCL/β-TCP/O-MSCs/OCS than in the other groups. The OCS exhibit strong osteogenic capacity, and OCS combined with a PCL/β-TCP composite scaffold stimulated new bone formation in a critical-sized bone defect. These results suggest that the PCL/β-TCP/OCS composite has potential clinical applications in bone regeneration and can be used as an alternative treatment modality in bone tissue engineering. PMID:27610141

  10. Preliminary study on non-viral transfection of F9 (factor IX) gene by nucleofection in human adipose-derived mesenchymal stem cells

    PubMed Central

    Olmedillas López, Susana; Garcia-Arranz, Mariano; Garcia-Olmo, Damian

    2016-01-01

    Background. Hemophilia is a rare recessive X-linked disease characterized by a deficiency of coagulation factor VIII or factor IX. Its current treatment is merely palliative. Advanced therapies are likely to become the treatment of choice for the disease as they could provide a curative treatment. Methods. The present study looks into the use of a safe non-viral transfection method based on nucleofection to express and secrete human clotting factor IX (hFIX) where human adipose tissue derived mesenchymal stem cells were used as target cells in vitro studies and NOD. Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice were used to analyze factor IX expression in vivo studies. Previously, acute liver injury was induced by an injected intraperitoneal dose of 500 mg/kg body weight of acetaminophen. Results. Nucleofection showed a percentage of positive cells ranging between 30.7% and 41.9% and a cell viability rate of 29.8%, and cells were shown to secrete amounts of hFIX between 36.8 and 71.9 ng/mL. hFIX levels in the blood of NSG mice injected with ASCs transfected with this vector, were 2.7 ng/mL 48 h after injection. Expression and secretion of hFIX were achieved both in vitro cell culture media and in vivo in the plasma of mice treated with the transfected ASCs. Such cells are capable of eventually migrating to a previously damaged target tissue (the liver) where they secrete hFIX, releasing it to the bloodstream over a period of at least five days from administration. Conclusions. The results obtained in the present study may form a preliminary basis for the establishment of a future ex vivo non-viral gene/cellular safe therapy protocol that may eventually contribute to advancing the treatment of hemophilia. PMID:27114871

  11. Targeted transplantation of iron oxide-labeled, adipose-derived mesenchymal stem cells in promoting meniscus regeneration following a rabbit massive meniscal defect

    PubMed Central

    QI, YIYING; YANG, ZHIGAO; DING, QIANHAI; ZHAO, TENGFEI; HUANG, ZHONGMING; FENG, GANG

    2016-01-01

    Repair of a massive meniscal defect remains a challenge in the clinic. However, targeted magnetic cell delivery, an emerging technique, may be useful in its treatment. The present study aimed to determine the effect of targeted intra-articular injection of superparamagnetic iron oxide (SPIO)-labeled adipose-derived mesenchymal stem cells (ASCs) in a rabbit model of a massive meniscal defect. ASCs may be directly labeled and almost 100% of the ASCs were labeled with SPIO after 24 h; these SPIO-labeled ASCs may be orientated by magnet. The centrifuged SPIO-labeled ASCs precipitations may be detected by magnetic resonance imaging (MRI). The anterior half of the medial meniscus of 18 New Zealand Rabbits was excised. After 7 days, the rabbits were randomized to injections of 2×106 SPIO-labeled ASCs, 2×106 unlabeled ASCs or saline. Permanent magnets were fixed to the outside of the operated joints for one day, and after 6 and 12 weeks, the knee joints were examined using MRI, gross and histological observation, and Prussian blue staining. Marked hypointense artifacts caused by SPIO-positive cells in the meniscus were detected using MRI. Histological observation revealed that the anterior portion of the meniscus was similar to the native tissue, demonstrating typical fibrochondrocytes surrounded by richer extracellular matrix in the SPIO-ASCs group. Collagen-rich matrix bridging the interface and the neo-meniscus integrated well with its host meniscus. Furthermore, degenerative changes occurred in all groups, but intra-articular injection of SPIO-ASCs or ASCs alleviated these degenerative changes. Prussian blue staining indicated that the implanted ASCs were directly associated with the regenerated tissue. Overall, targeted intra-articular delivery of SPIO-ASCs promoted meniscal regeneration whilst providing protective effects from osteoarthritic damage. PMID:26893631

  12. A regulatory loop containing miR-26a, GSK3β and C/EBPα regulates the osteogenesis of human adipose-derived mesenchymal stem cells

    PubMed Central

    Wang, Zi; Xie, Qing; Yu, Zhang; Zhou, Huifang; Huang, Yazhuo; Bi, Xiaoping; Wang, Yefei; Shi, Wodong; Sun, Hao; Gu, Ping; Fan, Xianqun

    2015-01-01

    Elucidating the molecular mechanisms responsible for osteogenesis of human adipose-derived mesenchymal stem cells (hADSCs) will provide deeper insights into the regulatory mechanisms of this process and help develop more efficient methods for cell-based therapies. In this study, we analysed the role of miR-26a in the regulation of hADSC osteogenesis. The endogenous expression of miR-26a increased during the osteogenic differentiation. The overexpression of miR-26a promoted hADSC osteogenesis, whereas osteogenesis was repressed by miR-26a knockdown. Additionally, miR-26a directly targeted the 3′UTR of the GSK3β, suppressing the expression of GSK3β protein. Similar to the effect of overexpressing miR-26a, the knockdown of GSK3β promoted osteogenic differentiation, whereas GSK3β overexpression inhibited this process, suggesting that GSK3β acted as a negative regulator of hADSC osteogenesis. Furthermore, GSK3β influences Wnt signalling pathway by regulating β-catenin, and subsequently altered the expression of its downstream target C/EBPα. In turn, C/EBPα transcriptionally regulated the expression of miR-26a by physically binding to the CTDSPL promoter region. Taken together, our data identified a novel feedback regulatory circuitry composed of miR-26a, GSK3β and C/EBPα, the function of which might contribute to the regulation of hADSC osteogenesis. Our findings provided new insights into the function of miR-26a and the mechanisms underlying osteogenesis of hADSCs. PMID:26469406

  13. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues.

    PubMed

    Chen, Yu-Jen; Liu, Hui-Yu; Chang, Yun-Tsui; Cheng, Ying-Hung; Mersmann, Harry J; Kuo, Wen-Hung; Ding, Shih-Torng

    2016-03-31

    Obesity is an unconstrained worldwide epidemic. Unraveling molecular controls in adipose tissue development holds promise to treat obesity or diabetes. Although numerous immortalized adipogenic cell lines have been established, adipose-derived stem cells from the stromal vascular fraction of subcutaneous white adipose tissues provide a reliable cellular system ex vivo much closer to adipose development in vivo. Pig adipose-derived stem cells (pADSC) are isolated from 7- to 9-day old piglets. The dorsal white fat depot of porcine subcutaneous adipose tissues is sliced, minced and collagenase digested. These pADSC exhibit strong potential to differentiate into adipocytes. Moreover, the pADSC also possess multipotency, assessed by selective stem cell markers, to differentiate into various mesenchymal cell types including adipocytes, osteocytes, and chondrocytes. These pADSC can be used for clarification of molecular switches in regulating classical adipocyte differentiation or in direction to other mesenchymal cell types of mesodermal origin. Furthermore, extended lineages into cells of ectodermal and endodermal origin have recently been achieved. Therefore, pADSC derived in this protocol provide an abundant and assessable source of adult mesenchymal stem cells with full multipotency for studying adipose development and application to tissue engineering of regenerative medicine.

  14. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues

    PubMed Central

    Chen, Yu-Jen; Liu, Hui-Yu; Chang, Yun-Tsui; Cheng, Ying-Hung; Mersmann, Harry J.; Kuo, Wen-Hung; Ding, Shih-Torng

    2016-01-01

    Obesity is an unconstrained worldwide epidemic. Unraveling molecular controls in adipose tissue development holds promise to treat obesity or diabetes. Although numerous immortalized adipogenic cell lines have been established, adipose-derived stem cells from the stromal vascular fraction of subcutaneous white adipose tissues provide a reliable cellular system ex vivo much closer to adipose development in vivo. Pig adipose-derived stem cells (pADSC) are isolated from 7- to 9-day old piglets. The dorsal white fat depot of porcine subcutaneous adipose tissues is sliced, minced and collagenase digested. These pADSC exhibit strong potential to differentiate into adipocytes. Moreover, the pADSC also possess multipotency, assessed by selective stem cell markers, to differentiate into various mesenchymal cell types including adipocytes, osteocytes, and chondrocytes. These pADSC can be used for clarification of molecular switches in regulating classical adipocyte differentiation or in direction to other mesenchymal cell types of mesodermal origin. Furthermore, extended lineages into cells of ectodermal and endodermal origin have recently been achieved. Therefore, pADSC derived in this protocol provide an abundant and assessable source of adult mesenchymal stem cells with full multipotency for studying adipose development and application to tissue engineering of regenerative medicine. PMID:27077225

  15. Analysis of biodistribution and engraftment into the liver of genetically modified mesenchymal stromal cells derived from adipose tissue.

    PubMed

    Di Rocco, Giuliana; Gentile, Antonietta; Antonini, Annalisa; Truffa, Silvia; Piaggio, Giulia; Capogrossi, Maurizio C; Toietta, Gabriele

    2012-01-01

    Presently, orthotopic liver transplant is the major therapeutic option for patients affected by primary liver diseases. This procedure is characterized by major invasive surgery, scarcity of donor organs, high costs, and lifelong immunosuppressive treatment. Transplant of hepatic precursor cells represents an attractive alternative. These cells could be used either for allogeneic transplantation or for autologous transplant after ex vivo genetic modification. We used stromal cells isolated from adipose tissue (AT-SCs) as platforms for autologous cell-mediated gene therapy. AT-SCs were transduced with lentiviral vectors expressing firefly luciferase, allowing for transplanted cell tracking by bioluminescent imaging (BLI). As a complementary approach, we followed circulating human α1-antitrypsin (hAAT) levels after infusion of AT-SCs overexpressing hAAT. Cells were transplanted into syngeneic mice after CCl(4)-induced hepatic injury. Luciferase bioluminescence signals and serum hAAT levels were measured at different time points after transplantation and demonstrate persistence of transplanted cells for up to 2 months after administration. These data, along with immunohistochemical analysis, suggest engraftment and repopulation of injured livers by transplanted AT-SCs. Moreover, by transcriptional targeting using cellular tissue-specific regulatory sequences, we confirmed that AT-SCs differentiate towards a hepatogenic-like phenotype in vitro and in vivo. Additionally, in transplanted cells reisolated from recipient animals' livers, we detected activation of the α-fetoprotein (AFP) promoter. This promoter is normally transcriptionally silenced in adult tissues but can be reactivated during liver regeneration, suggesting commitment towards hepatogenic-like differentiation of engrafted cells in vivo. Our data support AT-SC-mediated gene therapy as an innovative therapeutic option for disorders of liver metabolism. PMID:22469297

  16. Autologous adipose-derived mesenchymal stromal cells for the treatment of psoriasis vulgaris and psoriatic arthritis: A case report.

    PubMed

    De Jesus, Miguel M; Santiago, Jayson S; Trinidad, Camille V; See, Melvin E; Semon, Kimberly R; Fernandez, Manuel O; Chung, Francisco S

    2016-06-01

    Psoriasis is a dermatologic disease of immune origins with no definitive cure. We report the Makati Medical Center experience of utilizing autologous mesenchymal stromal cells (MSCs) for one patient with psoriasis vulgaris (PV) and another with psoriatic arthritis (PA). Patients were educated and gave informed consent, according to the principles of the Helsinki Declaration. The protocol was approved by the Cellular Transplantation Ethics Committee of Makati Medical Center. Autologous MSCs were cultured from lipoaspirate, expanded in a clean room class 100 facility (Cellular Therapeutics Center, Makati Medical Center). MSCs were infused intravenously at a dose of 0.5-3.1 million cells/kg after complying with quality control parameters. Psoriasis Area and Severity Index (PASI) Evaluation was conducted by third-party dermatologists. The PA patient, who was previously unresponsive to standard treatment modalities, demonstrated a decrease in Psoriasis Area and Severity Index (PASI) (from 21.6 to 9.0, mild state after two infusions). No improvements were noted in joint pain until further treatment with Etanercept and Infliximab. The PV patient, who was previously dependent on methotrexate, showed a decrease in PASI from 24.0 to 8.3 after three infusions; this clinical improvement was sustained for 292 days (9.7 months) without methotrexate. The PV patient illustrated a marginal reduction in serum tumor necrosis factor α, while significant (3.5- to 5-fold) decreases in reactive oxygen species (ROS) activity were noted. The ROS levels correlated with the clinical improvement of the PV patient. No serious adverse events were noted for either patient as a result of MSC infusions. This report demonstrates safe and tolerable transplantation of autologous MSCs for the treatment of psoriasis, and warrants large clinical studies to investigate the long-term safety and efficacy of this approach.

  17. Adipose-derived stem cells: current findings and future perspectives.

    PubMed

    Tobita, Morikuni; Orbay, Hakan; Mizuno, Hiroshi

    2011-02-01

    Adipose tissue is an abundant source of mesenchymal stem cells, which have shown promise in the field of regenerative medicine. Furthermore, these cells can be readily harvested in large numbers with low donor-site morbidity. During the past decade, numerous studies have provided preclinical data on the safety and efficacy of adipose-derived stem cells, supporting the use of these cells in future clinical applications. Various clinical trials have shown the regenerative capability of adipose-derived stem cells in subspecialties of medical fields such as plastic surgery, orthopedic surgery, oral and maxillofacial surgery, and cardiac surgery. In addition, a great deal of knowledge concerning the harvesting, characterization, and culture of adipose-derived stem cells has been reported. This review will summarize data from in vitro studies, pre-clinical animal models, and recent clinical trials concerning the use of adipose-derived stem cells in regenerative medicine.

  18. Nicotinamide Promotes Adipogenesis in Umbilical Cord-Derived Mesenchymal Stem Cells and Is Associated with Neonatal Adiposity: The Healthy Start BabyBUMP Project

    PubMed Central

    Shapiro, Allison L. B.; Boyle, Kristen E.; Dabelea, Dana; Patinkin, Zachary W.; De la Houssaye, Becky; Ringham, Brandy M.; Glueck, Deborah H.; Barbour, Linda A.; Norris, Jill M.; Friedman, Jacob E.

    2016-01-01

    The cellular mechanisms whereby excess maternal nutrition during pregnancy increases adiposity of the offspring are not well understood. However, nicotinamide (NAM), a fundamental micronutrient that is important in energy metabolism, has been shown to regulate adipogenesis through inhibition of SIRT1. Here we tested three novel hypotheses: 1) NAM increases the adipogenic response of human umbilical cord tissue-derived mesenchymal stem cells (MSCs) through a SIRT1 and PPARγ pathway; 2) lipid potentiates the NAM-enhanced adipogenic response; and 3) the adipogenic response to NAM is associated with increased percent fat mass (%FM) among neonates. MSCs were derived from the umbilical cord of 46 neonates born to non-obese mothers enrolled in the Healthy Start study. Neonatal %FM was measured using air displacement plethysmography (Pea Pod) shortly after birth. Adipogenic differentiation was induced for 21 days in the 46 MSC sets under four conditions, +NAM (3mM)/–lipid (200 μM oleate/palmitate mix), +NAM/+lipid, –NAM/+lipid, and vehicle-control (–NAM/–lipid). Cells incubated in the presence of NAM had significantly higher PPARγ protein (+24%, p <0.01), FABP4 protein (+57%, p <0.01), and intracellular lipid content (+51%, p <0.01). Lipid did not significantly increase either PPARγ protein (p = 0.98) or FABP4 protein content (p = 0.82). There was no evidence of an interaction between NAM and lipid on adipogenic response of PPARγ or FABP4 protein (p = 0.99 and p = 0.09). In a subset of 9 MSC, SIRT1 activity was measured in the +NAM/-lipid and vehicle control conditions. SIRT1 enzymatic activity was significantly lower (-70%, p <0.05) in the +NAM/-lipid condition than in vehicle-control. In a linear model with neonatal %FM as the outcome, the percent increase in PPARγ protein in the +NAM/-lipid condition compared to vehicle-control was a significant predictor (β = 0.04, 95% CI 0.01–0.06, p <0.001). These are the first data to support that chronic NAM

  19. Nicotinamide Promotes Adipogenesis in Umbilical Cord-Derived Mesenchymal Stem Cells and Is Associated with Neonatal Adiposity: The Healthy Start BabyBUMP Project.

    PubMed

    Shapiro, Allison L B; Boyle, Kristen E; Dabelea, Dana; Patinkin, Zachary W; De la Houssaye, Becky; Ringham, Brandy M; Glueck, Deborah H; Barbour, Linda A; Norris, Jill M; Friedman, Jacob E

    2016-01-01

    The cellular mechanisms whereby excess maternal nutrition during pregnancy increases adiposity of the offspring are not well understood. However, nicotinamide (NAM), a fundamental micronutrient that is important in energy metabolism, has been shown to regulate adipogenesis through inhibition of SIRT1. Here we tested three novel hypotheses: 1) NAM increases the adipogenic response of human umbilical cord tissue-derived mesenchymal stem cells (MSCs) through a SIRT1 and PPARγ pathway; 2) lipid potentiates the NAM-enhanced adipogenic response; and 3) the adipogenic response to NAM is associated with increased percent fat mass (%FM) among neonates. MSCs were derived from the umbilical cord of 46 neonates born to non-obese mothers enrolled in the Healthy Start study. Neonatal %FM was measured using air displacement plethysmography (Pea Pod) shortly after birth. Adipogenic differentiation was induced for 21 days in the 46 MSC sets under four conditions, +NAM (3mM)/-lipid (200 μM oleate/palmitate mix), +NAM/+lipid, -NAM/+lipid, and vehicle-control (-NAM/-lipid). Cells incubated in the presence of NAM had significantly higher PPARγ protein (+24%, p <0.01), FABP4 protein (+57%, p <0.01), and intracellular lipid content (+51%, p <0.01). Lipid did not significantly increase either PPARγ protein (p = 0.98) or FABP4 protein content (p = 0.82). There was no evidence of an interaction between NAM and lipid on adipogenic response of PPARγ or FABP4 protein (p = 0.99 and p = 0.09). In a subset of 9 MSC, SIRT1 activity was measured in the +NAM/-lipid and vehicle control conditions. SIRT1 enzymatic activity was significantly lower (-70%, p <0.05) in the +NAM/-lipid condition than in vehicle-control. In a linear model with neonatal %FM as the outcome, the percent increase in PPARγ protein in the +NAM/-lipid condition compared to vehicle-control was a significant predictor (β = 0.04, 95% CI 0.01-0.06, p <0.001). These are the first data to support that chronic NAM exposure

  20. Long Term Study of Protective Mechanisms of Human Adipose Derived Mesenchymal Stem Cells on Cisplatin Induced Kidney injury in Sprague-Dawley Rats

    PubMed Central

    Elhusseini, Fatma M; Saad, Mohamed-Ahdy A.A; Anber, Nahla; Elghannam, Doaa; Sobh, Mohamed-Ahmed; Alsayed, Aziza; El-dusoky, Sara; Sheashaa, Hussein; Abdel-Ghaffar, Hassan; Sobh, Mohamed

    2016-01-01

    Background/Aims: Long-term evaluation of cisplatin induced nephrotoxicity and the probable renal protective activities of stem cells are lacking up until now. We evaluated the early and long-term role of human adipose derived mesenchymal stem cells (ADMSCs) in prevention or amelioration of cisplatin induced acute kidney injury (AKI) in Sprague-Dawley rats. For this, we determined the kidney tissue level of oxidative stress markers in conjugation with a renal histopathological scoring system of both acute and chronic renal changes. Methods: This study used eighty Sprague-Dawley (SD) rats weighing 250-300g. They were assigned into four equal groups (each group n=20): (I) Negative control group, rats injected with single dose of 1 ml normal saline. (II) Positive control cisplatin, rats injected with a single dose of 5 mg/kg I.P in 1 ml saline. (III) Cisplatin and culture media group, rats injected with 0.5 ml of culture media single dose into the tail vein and (IV) Cisplatin and ADMSCs group, rats injected with a single dose of 0.5 ml of culture media containing 5 x106ADMSCs into the tail vein one day after cisplatin administration. Each main group was further divided according to the timing of sacrifice into four subgroups (each subgroup n=5). Rats in the subgroup A were sacrificed after 4 days; subgroup B were sacrificed after 7 days; subgroup C were sacrificed after 11 days; and subgroup D were sacrificed after 30 days. Before sacrifice, 24 hrs.-urine was collected using a metabolic cage. Renal function was evaluated through blood urea nitrogen (BUN), serum creatinine and creatinine clearance. Kidney tissue homogenate oxidative stress parameters, Malondialdehyde (MDA), Superoxide dismutase (SOD) and Glutathione (GSH) were determined. In addition, histopathological analysis for active injury, regenerative and chronic changes was performed. Results: ADMSCs were characterized and their capability of differentiation was proved. Cisplatin induced a significant increase

  1. Differential response of human adipose tissue-derived mesenchymal stem cells, dermal fibroblasts, and keratinocytes to burn wound exudates: potential role of skin-specific chemokine CCL27.

    PubMed

    van den Broek, Lenie J; Kroeze, Kim L; Waaijman, Taco; Breetveld, Melanie; Sampat-Sardjoepersad, Shakun C; Niessen, Frank B; Middelkoop, Esther; Scheper, Rik J; Gibbs, Susan

    2014-01-01

    Many cell-based regenerative medicine strategies toward tissue-engineered constructs are currently being explored. Cell-cell interactions and interactions with different biomaterials are extensively investigated, whereas very few studies address how cultured cells will interact with soluble wound-healing mediators that are present within the wound bed after transplantation. The aim of this study was to determine how adipose tissue-derived mesenchymal stem cells (ASC), dermal fibroblasts, and keratinocytes will react when they come in contact with the deep cutaneous burn wound bed. Burn wound exudates isolated from deep burn wounds were found to contain many cytokines, including chemokines and growth factors related to inflammation and wound healing. Seventeen mediators were identified by ELISA (concentration range 0.0006-9 ng/mg total protein), including the skin-specific chemokine CCL27. Burn wound exudates activated both ASC and dermal fibroblasts, but not keratinocytes, to increase secretion of CXCL1, CXCL8, CCL2, and CCL20. Notably, ASC but not fibroblasts or keratinocytes showed significant increased secretion of vascular endothelial growth factor (5-fold) and interleukin-6 (253-fold), although when the cells were incorporated in bi-layered skin substitute (SS) these differences were less pronounced. A similar discrepancy between ASC and dermal fibroblast mono-cultures was observed when recombinant human-CCL27 was used instead of burn wound exudates. Although CCL27 did not stimulate the secretion of any of the wound-healing mediators by keratinocytes, these cells, in contrast to ASC or dermal fibroblasts, showed increased proliferation and migration. Taken together, these results indicate that on transplantation, keratinocytes are primarily activated to promote wound closure. In contrast, dermal fibroblasts and, in particular, ASC respond vigorously to factors present in the wound bed, leading to increased secretion of angiogenesis/granulation tissue formation

  2. Tracking and therapeutic value of human adipose derived mesenchymal stem cell transplantation in reducing venous neointimal hyperplasia associated with arteriovenous fistula

    PubMed Central

    Yang, Binxia; Brahmbhatt, Akshaar; NievesTorres, Evelyn; Thielen, Brian; McCall, Deborah L.; Engel, Sean; Bansal, Aditya; Pandey, Mukesh K.; Dietz, Allan B.; Leof, Edward B.; DeGrado, Timothy R.; Mukhopadhyay, Debabrata; Misra, Sanjay

    2016-01-01

    Purpose The purpose of this study was to determine if adventitial transplantation of human adipose derived mesenchymal stem cell (MSC) to the outflow vein of B6.Cg-Foxn1nu/J mice with AVF at the time of creation would reduce monocyte chemoattractant protein-1 (Mcp-1) gene expression and venous neointimal hyperplasia (VNH). The second aim was to track transplanted 89 zirconium (89Zr) labeled MSCs serially by positron emission tomography (PET) imaging for 21 days. Materials and Methods All animal experiments were performed according to protocols approved by our institutional animal care and use committee. We used fifty B6.Cg-Foxn1nu/J mice to accomplish the aims outlined in the current paper. 2.5 × 105 MSC cells were stably labeled with green fluorescent protein (GFP) and injected into the adventitia of the outflow vein at the time of AVF creation in MSC group. Eleven mice died after AVF placement. Animals were sacrificed at day 7 following AVF placement for real time polymerase chain reaction (qRT-PCR, n=6 for MSC and control groups) and histomorphometric analyses (n=6, n=6 for MSC and control groups) and at day 21 for histomorphometric analysis only (n=6 for MSC and control groups). In a separate group of experiments (n=3), transplanted 89zirconium (89Zr) labeled MSCs animals were serially imaged by PET imaging for 3 weeks. Multiple comparisons were performed with two-way ANOVA followed by Student t-test with post hoc Bonferroni’s correction. Results We observed that in MSC transplanted vessels when compared to control vessels, there was a significant decrease in the Mcp-1 gene expression (day 7: average reduction: 62%, P=0.029) with a significant increase in the average lumen vessel area (day 7: average increase: 176%, P=0.013; day 21: average increase: 415%, P=0.011); Moreover, this was accompanied with a significant decrease in Ki-67 index (proliferation, day 7: average reduction: 81%, P=0.0003; day 21: average reduction: 60%, P=0.016 Prolonged retention of

  3. Co-infusion of autologous adipose tissue derived insulin-secreting mesenchymal stem cells and bone marrow derived hematopoietic stem cells: viable therapy for type III.C. a diabetes mellitus.

    PubMed

    Thakkar, Umang G; Vanikar, Aruna V; Trivedi, Hargovind L

    2013-01-01

    Transition from acute pancreatitis to insulin-dependent diabetes mellitus (IDDM) is a rare manifestation of primary hyperparathyroidism caused by parathyroid adenoma because of impaired glucose tolerance and suppresses insulin secretion. We report the case of a 26-year-old male with pancreatic diabetes caused by parathyroid adenoma induced chronic pancreatitis. He had serum C-peptide 0.12 ng/ml, glutamic acid decarboxylase antibody 5.0 IU/ml, and glycosylated hemoglobin (HbA1C) 8.9%, and required 72 IU/day of biphasic-isophane insulin injection for uncontrolled hyperglycemia. We treated him with his own adipose tissue derived insulin-secreting mesenchymal stem-cells (IS-ADMSC) along with his bone marrow derived hematopoietic stem cells (BM-HSC). Autologous IS-ADMSC + BM-HSC were infused into subcutaneous tissue, portal and thymic circulation without any conditioning. Over a follow-up of 27 months, the patient is maintaining fasting and postprandial blood sugar levels of 132 and 165 mg/dl, respectively, with HbA1C 6.8% and requiring 36 IU/day of biphasic-isophane insulin. Co-infusion of IS-ADMSC + BM-HSC offers a safe and viable therapy for type III.C.a Diabetes Mellitus.

  4. Co-infusion of autologous adipose tissue derived insulin-secreting mesenchymal stem cells and bone marrow derived hematopoietic stem cells: viable therapy for type III.C. a diabetes mellitus.

    PubMed

    Thakkar, Umang G; Vanikar, Aruna V; Trivedi, Hargovind L

    2013-01-01

    Transition from acute pancreatitis to insulin-dependent diabetes mellitus (IDDM) is a rare manifestation of primary hyperparathyroidism caused by parathyroid adenoma because of impaired glucose tolerance and suppresses insulin secretion. We report the case of a 26-year-old male with pancreatic diabetes caused by parathyroid adenoma induced chronic pancreatitis. He had serum C-peptide 0.12 ng/ml, glutamic acid decarboxylase antibody 5.0 IU/ml, and glycosylated hemoglobin (HbA1C) 8.9%, and required 72 IU/day of biphasic-isophane insulin injection for uncontrolled hyperglycemia. We treated him with his own adipose tissue derived insulin-secreting mesenchymal stem-cells (IS-ADMSC) along with his bone marrow derived hematopoietic stem cells (BM-HSC). Autologous IS-ADMSC + BM-HSC were infused into subcutaneous tissue, portal and thymic circulation without any conditioning. Over a follow-up of 27 months, the patient is maintaining fasting and postprandial blood sugar levels of 132 and 165 mg/dl, respectively, with HbA1C 6.8% and requiring 36 IU/day of biphasic-isophane insulin. Co-infusion of IS-ADMSC + BM-HSC offers a safe and viable therapy for type III.C.a Diabetes Mellitus. PMID:24385073

  5. Co-infusion of autologous adipose tissue derived neuronal differentiated mesenchymal stem cells and bone marrow derived hematopoietic stem cells, a viable therapy for post-traumatic brachial plexus injury: a case report.

    PubMed

    Thakkar, Umang G; Vanikar, Aruna V; Trivedi, Hargovind L

    2014-01-01

    Stem cell therapy is emerging as a viable approach in regenerative medicine. A 31-year-old male with brachial plexus injury had complete sensory-motor loss since 16 years with right pseudo-meningocele at C5-D1 levels and extra-spinal extension up to C7-D1, with avulsion on magnetic resonance imaging and irreversible damage. We generated adipose tissue derived neuronal differentiated mesenchymal stem cells (N-AD-MSC) and bone marrow derived hematopoietic stem cells (HSC-BM). Neuronal stem cells expressed β-3 tubulin and glial fibrillary acid protein which was confirmed on immunofluorescence. On day 14, 2.8 ml stem cell inoculum was infused under local anesthesia in right brachial plexus sheath by brachial block technique under ultrasonography guidance with a 1.5-inch-long 23 gauge needle. Nucleated cell count was 2 × 10 4 /μl, CD34+ was 0.06%, and CD45-/90+ and CD45-/73+ were 41.63% and 20.36%, respectively. No untoward effects were noted. He has sustained recovery with re-innervation over a follow-up of 4 years documented on electromyography-nerve conduction velocity study. PMID:25116721

  6. Isolation, Characterization, Differentiation, and Application of Adipose-Derived Stem Cells

    NASA Astrophysics Data System (ADS)

    Kuhbier, Jörn W.; Weyand, Birgit; Radtke, Christine; Vogt, Peter M.; Kasper, Cornelia; Reimers, Kerstin

    While bone marrow-derived mesenchymal stem cells are known and have been investigated for a long time, mesenchymal stem cells derived from the adipose tissue were identified as such by Zuk et al. in 2001. However, as subcutaneous fat tissue is a rich source which is much more easily accessible than bone marrow and thus can be reached by less invasive procedures, adipose-derived stem cells have moved into the research spotlight over the last 8 years.

  7. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications.

    PubMed

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane-polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane-polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells. PMID:25953554

  8. Polyurethane/polylactide-based biomaterials combined with rat olfactory bulb-derived glial cells and adipose-derived mesenchymal stromal cells for neural regenerative medicine applications.

    PubMed

    Grzesiak, Jakub; Marycz, Krzysztof; Szarek, Dariusz; Bednarz, Paulina; Laska, Jadwiga

    2015-01-01

    Research concerning the elaboration and application of biomaterial which may support the nerve tissue regeneration is currently one of the most promising directions. Biocompatible polymer devices are noteworthy group among the numerous types of potentially attractive biomaterials for regenerative medicine application. Polylactides and polyurethanes may be utilized for developing devices for supporting the nerve regeneration, like nerve guide conduits or bridges connecting the endings of broken nerve tracts. Moreover, the combination of these biomaterial devices with regenerative cell populations, like stem or precursor cells should significantly improve the final therapeutic effect. Therefore, the composition and structure of final device should support the proper adhesion and growth of cells destined for clinical application. In current research, the three polymer mats elaborated for connecting the broken nerve tracts, made from polylactide, polyurethane and their blend were evaluated both for physical properties and in vitro, using the olfactory-bulb glial cells and mesenchymal stem cells. The evaluation of Young's modulus, wettability and roughness of obtained materials showed the differences between analyzed samples. The analysis of cell adhesion, proliferation and morphology showed that the polyurethane-polylactide blend was the most neutral for cells in culture, while in the pure polymer samples there were significant alterations observed. Our results indicated that polyurethane-polylactide blend is an optimal composition for culturing and delivery of glial and mesenchymal stem cells.

  9. In vivo differentiation of human amniotic epithelial cells into cardiomyocyte-like cells and cell transplantation effect on myocardial infarction in rats: comparison with cord blood and adipose tissue-derived mesenchymal stem cells.

    PubMed

    Fang, Cheng-Hu; Jin, Jiyong; Joe, Jun-Ho; Song, Yi-Sun; So, Byung-Im; Lim, Sang Moo; Cheon, Gi Jeong; Woo, Sang-Keun; Ra, Jeong-Chan; Lee, Young-Yiul; Kim, Kyung-Soo

    2012-01-01

    Human amniotic epithelial cells (h-AECs), which have various merits as a cell source for cell therapy, are known to differentiate into cardiomyocytes in vitro. However, the ability of h-AECs to differentiate into cardiomyocytes in vivo and their cell transplantation effects on myocardial infarction are still unknown. In this study, we assessed whether h-AECs could differentiate into cardiomyocytes in vivo and whether h-AECs transplantation can decrease infarct size and improve cardiac function, in comparison to transplantation of cord blood-derived mesenchymal stem cells (MSCs) or adipose tissue-derived MSCs. For our study, we injected h-AECs, cord blood-derived MSCs, adipose tissue-derived MSCs, and saline into areas of myocardial infarction in athymic nude rats. After 4 weeks, 3% of the surviving h-AECs expressed myosin heavy chain, a marker specific to the myocardium. Compared with the saline group, all cell-implanted groups showed a higher ejection fraction, lower infarct area by positron emission tomography and histology, and more abundant myocardial gene and protein expression in the infarct area. We showed that h-AECs can differentiate into cardiomyocyte-like cells, decrease infarct size, and improve cardiac function in vivo. The beneficial effects of h-AECs were comparable to those of cord blood and adipose tissue-derived MSCs. These results support the need for further studies of h-AECs as a cell source for myocardial regeneration due to their plentiful availability, low immunity, and lack of ethical issues related to their use.

  10. In vivo differentiation of human amniotic epithelial cells into cardiomyocyte-like cells and cell transplantation effect on myocardial infarction in rats: comparison with cord blood and adipose tissue-derived mesenchymal stem cells.

    PubMed

    Fang, Cheng-Hu; Jin, Jiyong; Joe, Jun-Ho; Song, Yi-Sun; So, Byung-Im; Lim, Sang Moo; Cheon, Gi Jeong; Woo, Sang-Keun; Ra, Jeong-Chan; Lee, Young-Yiul; Kim, Kyung-Soo

    2012-01-01

    Human amniotic epithelial cells (h-AECs), which have various merits as a cell source for cell therapy, are known to differentiate into cardiomyocytes in vitro. However, the ability of h-AECs to differentiate into cardiomyocytes in vivo and their cell transplantation effects on myocardial infarction are still unknown. In this study, we assessed whether h-AECs could differentiate into cardiomyocytes in vivo and whether h-AECs transplantation can decrease infarct size and improve cardiac function, in comparison to transplantation of cord blood-derived mesenchymal stem cells (MSCs) or adipose tissue-derived MSCs. For our study, we injected h-AECs, cord blood-derived MSCs, adipose tissue-derived MSCs, and saline into areas of myocardial infarction in athymic nude rats. After 4 weeks, 3% of the surviving h-AECs expressed myosin heavy chain, a marker specific to the myocardium. Compared with the saline group, all cell-implanted groups showed a higher ejection fraction, lower infarct area by positron emission tomography and histology, and more abundant myocardial gene and protein expression in the infarct area. We showed that h-AECs can differentiate into cardiomyocyte-like cells, decrease infarct size, and improve cardiac function in vivo. The beneficial effects of h-AECs were comparable to those of cord blood and adipose tissue-derived MSCs. These results support the need for further studies of h-AECs as a cell source for myocardial regeneration due to their plentiful availability, low immunity, and lack of ethical issues related to their use. PMID:22776022

  11. Human adipose-derived mesenchymal stem cells improve motor functions and are neuroprotective in the 6-hydroxydopamine-rat model for Parkinson's disease when cultured in monolayer cultures but suppress hippocampal neurogenesis and hippocampal memory function when cultured in spheroids.

    PubMed

    Berg, Jürgen; Roch, Manfred; Altschüler, Jennifer; Winter, Christine; Schwerk, Anne; Kurtz, Andreas; Steiner, Barbara

    2015-02-01

    Adult human adipose-derived mesenchymal stem cells (MSC) have been reported to induce neuroprotective effects in models for Parkinson's disease (PD). However, these effects strongly depend on the most optimal application of the transplant. In the present study we compared monolayer-cultured (aMSC) and spheroid (sMSC) MSC following transplantation into the substantia nigra (SN) of 6-OHDA lesioned rats regarding effects on the local microenvironment, degeneration of dopaminergic neurons, neurogenesis in the hippocampal DG as well as motor and memory function in the 6-OHDA-rat model for PD. aMSC transplantation significantly increased tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF) levels in the SN, increased the levels of the glial fibrillary acidic protein (GFAP) and improved motor functions compared to untreated and sMSC treated animals. In contrast, sMSC grafting induced an increased local microgliosis, decreased TH levels in the SN and reduced numbers of newly generated cells in the dentate gyrus (DG) without yet affecting hippocampal learning and memory function. We conclude that the neuroprotective potential of adipose-derived MSC in the rat model of PD crucially depends on the applied cellular phenotype.

  12. Delivery of human mesenchymal adipose-derived stem cells restores multiple urological dysfunctions in a rat model mimicking radical prostatectomy damages through tissue-specific paracrine mechanisms.

    PubMed

    Yiou, René; Mahrouf-Yorgov, Meriem; Trébeau, Céline; Zanaty, Marc; Lecointe, Cécile; Souktani, Richard; Zadigue, Patricia; Figeac, Florence; Rodriguez, Anne-Marie

    2016-02-01

    Urinary incontinence (UI) and erectile dysfunction (ED) are the most common functional urological disorders and the main sequels of radical prostatectomy (RP) for prostate cancer. Mesenchymal stem cell (MSC) therapy holds promise for repairing tissue damage due to RP. Because animal studies accurately replicating post-RP clinical UI and ED are lacking, little is known about the mechanisms underlying the urological benefits of MSC in this setting. To determine whether and by which mechanisms MSC can repair damages to both striated urethral sphincter (SUS) and penis in the same animal, we delivered human multipotent adipose stem cells, used as MSC model, in an immunocompetent rat model replicating post-RP UI and ED. In this model, we demonstrated by using noninvasive methods in the same animal from day 7 to day 90 post-RP injury that MSC administration into both the SUS and the penis significantly improved urinary continence and erectile function. The regenerative effects of MSC therapy were not due to transdifferentiation and robust engraftment at injection sites. Rather, our results suggest that MSC benefits in both target organs may involve a paracrine process with not only soluble factor release by the MSC but also activation of the recipient's secretome. These two effects of MSC varied across target tissues and damaged-cell types. In conclusion, our work provides new insights into the regenerative properties of MSC and supports the ability of MSC from a single source to repair multiple types of damage, such as those seen after RP, in the same individual.

  13. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model.

    PubMed

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Holst-Hansen, Claus; Kastrup, Jens; Baandrup, Ulrik; Zachar, Vladimir; Fink, Trine; Simonsen, Ulf

    2014-02-01

    Treatment of myocardial infarction (MI) with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal MI models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of MI using a fully grown non-immune-compromised rat model. Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were randomized to receive intramyocardial injections of adipose-derived stem cells, bone marrow-derived mesenchymal stem cells, or phosphate-buffered saline 1 week following induction of MI. After 4 weeks, left ventricular ejection fraction (LVEF) was improved in the adipose-derived stem cell group, and scar wall thickness was greater compared with the saline group. Adipose-derived as well as bone marrow-derived mesenchymal stem cells prevented left ventricular end diastolic dilation. Neither of the cell groups displayed increased angiogenesis in the myocardium compared with the saline group. Adipose-derived stem cells from a human ischemic patient preserved cardiac function following MI, whereas this could not be demonstrated for bone marrow-derived mesenchymal stem cells, with only adipose-derived stem cells leading to an improvement in LVEF. Neither of the stem cell types induced myocardial angiogenesis, raising the question whether donor age and health have an effect on the efficacy of stem cells used in the treatment of MI.

  14. Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model.

    PubMed

    Rasmussen, Jeppe Grøndahl; Frøbert, Ole; Holst-Hansen, Claus; Kastrup, Jens; Baandrup, Ulrik; Zachar, Vladimir; Fink, Trine; Simonsen, Ulf

    2014-02-01

    Treatment of myocardial infarction (MI) with bone marrow-derived mesenchymal stem cells and recently also adipose-derived stem cells has shown promising results. In contrast to clinical trials and their use of autologous bone marrow-derived cells from the ischemic patient, the animal MI models are often using young donors and young, often immune-compromised, recipient animals. Our objective was to compare bone marrow-derived mesenchymal stem cells with adipose-derived stem cells from an elderly ischemic patient in the treatment of MI using a fully grown non-immune-compromised rat model. Mesenchymal stem cells were isolated from adipose tissue and bone marrow and compared with respect to surface markers and proliferative capability. To compare the regenerative potential of the two stem cell populations, male Sprague-Dawley rats were randomized to receive intramyocardial injections of adipose-derived stem cells, bone marrow-derived mesenchymal stem cells, or phosphate-buffered saline 1 week following induction of MI. After 4 weeks, left ventricular ejection fraction (LVEF) was improved in the adipose-derived stem cell group, and scar wall thickness was greater compared with the saline group. Adipose-derived as well as bone marrow-derived mesenchymal stem cells prevented left ventricular end diastolic dilation. Neither of the cell groups displayed increased angiogenesis in the myocardium compared with the saline group. Adipose-derived stem cells from a human ischemic patient preserved cardiac function following MI, whereas this could not be demonstrated for bone marrow-derived mesenchymal stem cells, with only adipose-derived stem cells leading to an improvement in LVEF. Neither of the stem cell types induced myocardial angiogenesis, raising the question whether donor age and health have an effect on the efficacy of stem cells used in the treatment of MI. PMID:23211469

  15. Biosynthesis of collagen I, II, RUNX2 and lubricin at different time points of chondrogenic differentiation in a 3D in vitro model of human mesenchymal stem cells derived from adipose tissue.

    PubMed

    Musumeci, Giuseppe; Mobasheri, Ali; Trovato, Francesca Maria; Szychlinska, Marta Anna; Graziano, Adriana Carol Eleonora; Lo Furno, Debora; Avola, Rosanna; Mangano, Sebastiano; Giuffrida, Rosario; Cardile, Venera

    2014-10-01

    The first aim of the study was to identify the most appropriate time for differentiation of adipose tissue derived mesenchymal stem cells (MSCs) to chondrocytes, through the self-assembly process. For this purpose, the expression of some chondrocyte markers, such as collagen type I, collagen type II, RUNX2 and lubricin was investigated at different times (7, 14, 21 and 28 days) of chondrogenic differentiation of MSCs, by using immunohistochemistry and Western blot analysis. The second aim of the study was to demonstrate that the expression of lubricin, such as the expression of collagen type II, could be a possible biomarker for the detection of chondrocytes well-being and viability in the natural self-assembling constructs, called 'cell pellets'. Histology (hematoxylin and eosin) and histochemistry (alcian blue staining) methods were used to assess the chondrogenic differentiation of MSCs. The results showed that after 21 days the differentiated chondrocytes, when compared with MSCs cultured without chondrogenic medium (CD44, CD90 and CD105 positive; CD45, CD14 and CD34 negative), were able to produce significant quantities of collagen type I, collagen type II, and lubricin, suggesting hyaline cartilage formation. During the differentiation phase, the cells showed a reduced expression of RUNX2, a protein expressed by osteoblasts. Our studies demonstrated that 21 days is the optimum time for the implantation of chondrocytes differentiated from adipose tissue-derived MSCs. This information could be useful for the future development of cell-based repair therapies for degenerative diseases of articular cartilage.

  16. Phenotype and chondrogenic differentiation of mesenchymal cells from adipose tissue of different species.

    PubMed

    Martínez-Lorenzo, María José; Royo-Cañas, María; Alegre-Aguarón, Elena; Desportes, Paula; Castiella, Tomás; García-Alvarez, Felícito; Larrad, Luis

    2009-11-01

    Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into several mesoderm lineages. They have been isolated from different tissues, such as bone marrow, adult peripheral blood, umbilical cord blood, and adipose tissue. The aim of this study was to analyze the differences in proliferation and phenotype of adipose tissue-derived MSCs from three different species, and to evaluate their capacity to differentiate into chondrocytes in vitro. A comparative study of cultured human, rabbit, and sheep mesenchymal cells from adipose tissue was carried out, and the main morphological parameters, proliferative activity, and expression of surface markers were characterized. Proliferation and flow cytometry data showed species-related differences between animal and human MSCs. Histological staining suggested that rabbit and sheep mesenchymal cells were able to differentiate into chondrocytic lineages. Human mesenchymal cells, though they could also differentiate, accomplished it with more difficulty than animal MSCs. These results could help to explain the differences in the chondrogenic capacity of sheep and rabbit MSCs when they are used as animal models compared to human mesenchymal cells in a clinical assay.

  17. Adipose Tissue-Derived Mesenchymal Stem Cells in Long-Term Dialysis Patients Display Downregulation of PCAF Expression and Poor Angiogenesis Activation

    PubMed Central

    Yamanaka, Shuichiro; Yokote, Shinya; Yamada, Akifumi; Katsuoka, Yuichi; Izuhara, Luna; Shimada, Yohta; Omura, Nobuo; Okano, Hirotaka James; Ohki, Takao; Yokoo, Takashi

    2014-01-01

    We previously demonstrated that mesenchymal stem cells (MSCs) differentiate into functional kidney cells capable of urine and erythropoietin production, indicating that they may be used for kidney regeneration. However, the viability of MSCs from dialysis patients may be affected under uremic conditions. In this study, we isolated MSCs from the adipose tissues of end-stage kidney disease (ESKD) patients undergoing long-term dialysis (KD-MSCs; mean: 72.3 months) and from healthy controls (HC-MSCs) to compare their viability. KD-MSCs and HC-MSCs were assessed for their proliferation potential, senescence, and differentiation capacities into adipocytes, osteoblasts, and chondrocytes. Gene expression of stem cell-specific transcription factors was analyzed by PCR array and confirmed by western blot analysis at the protein level. No significant differences of proliferation potential, senescence, or differentiation capacity were observed between KD-MSCs and HC-MSCs. However, gene and protein expression of p300/CBP-associated factor (PCAF) was significantly suppressed in KD-MSCs. Because PCAF is a histone acetyltransferase that mediates regulation of hypoxia-inducible factor-1α (HIF-1α), we examined the hypoxic response in MSCs. HC-MSCs but not KD-MSCs showed upregulation of PCAF protein expression under hypoxia. Similarly, HIF-1α and vascular endothelial growth factor (VEGF) expression did not increase under hypoxia in KD-MSCs but did so in HC-MSCs. Additionally, a directed in vivo angiogenesis assay revealed a decrease in angiogenesis activation of KD-MSCs. In conclusion, long-term uremia leads to persistent and systematic downregulation of PCAF gene and protein expression and poor angiogenesis activation of MSCs from patients with ESKD. Furthermore, PCAF, HIF-1α, and VEGF expression were not upregulated by hypoxic stimulation of KD-MSCs. These results suggest that the hypoxic response may be blunted in MSCs from ESKD patients. PMID:25025381

  18. Adipose tissue-derived mesenchymal stem cells in long-term dialysis patients display downregulation of PCAF expression and poor angiogenesis activation.

    PubMed

    Yamanaka, Shuichiro; Yokote, Shinya; Yamada, Akifumi; Katsuoka, Yuichi; Izuhara, Luna; Shimada, Yohta; Omura, Nobuo; Okano, Hirotaka James; Ohki, Takao; Yokoo, Takashi

    2014-01-01

    We previously demonstrated that mesenchymal stem cells (MSCs) differentiate into functional kidney cells capable of urine and erythropoietin production, indicating that they may be used for kidney regeneration. However, the viability of MSCs from dialysis patients may be affected under uremic conditions. In this study, we isolated MSCs from the adipose tissues of end-stage kidney disease (ESKD) patients undergoing long-term dialysis (KD-MSCs; mean: 72.3 months) and from healthy controls (HC-MSCs) to compare their viability. KD-MSCs and HC-MSCs were assessed for their proliferation potential, senescence, and differentiation capacities into adipocytes, osteoblasts, and chondrocytes. Gene expression of stem cell-specific transcription factors was analyzed by PCR array and confirmed by western blot analysis at the protein level. No significant differences of proliferation potential, senescence, or differentiation capacity were observed between KD-MSCs and HC-MSCs. However, gene and protein expression of p300/CBP-associated factor (PCAF) was significantly suppressed in KD-MSCs. Because PCAF is a histone acetyltransferase that mediates regulation of hypoxia-inducible factor-1α (HIF-1α), we examined the hypoxic response in MSCs. HC-MSCs but not KD-MSCs showed upregulation of PCAF protein expression under hypoxia. Similarly, HIF-1α and vascular endothelial growth factor (VEGF) expression did not increase under hypoxia in KD-MSCs but did so in HC-MSCs. Additionally, a directed in vivo angiogenesis assay revealed a decrease in angiogenesis activation of KD-MSCs. In conclusion, long-term uremia leads to persistent and systematic downregulation of PCAF gene and protein expression and poor angiogenesis activation of MSCs from patients with ESKD. Furthermore, PCAF, HIF-1α, and VEGF expression were not upregulated by hypoxic stimulation of KD-MSCs. These results suggest that the hypoxic response may be blunted in MSCs from ESKD patients. PMID:25025381

  19. Proinflammatory interleukins' production by adipose tissue-derived mesenchymal stromal cells: the impact of cell culture conditions and cell-to-cell interaction.

    PubMed

    Andreeva, Elena; Andrianova, Irina; Rylova, Julia; Gornostaeva, Aleksandra; Bobyleva, Polina; Buravkova, Ludmila

    2015-08-01

    The impact of culture conditions and interaction with activated peripheral blood mononuclear cells on the interleukin (IL) gene expression profile and proinflammatory IL-6 and IL-8 production by adipose-derived stromal cells (ASCs) was investigated. A microarray analysis revealed a wide range of IL genes either under standard (20%) or hypoxic (5%) O2 concentrations, some highly up-regulated at hypoxia. IL-6 and IL-8 production was inversely dependent on cell culture density. In early (first-third) passages, IL-6 and IL-8 concentration was higher at 20% O2 and in late (8th-12th) passages under 5% O2. Interaction between ASCs and mononuclear cells in indirect setting was accompanied with a significant decrease of IL-6 and did not result in the elevation of IL-8 concentration. Thereby, the production of proinflammatory interleukins (IL-6 and IL-8) may be affected by the ASC intrinsic features (density in culture, and duration of expansion), as well as by microenvironmental factors, such as hypoxia and the presence of blood-borne cells. These data are important for elucidating ASC paracrine activity regulation in vitro. They would also be on demand for optimisation of the cell therapy protocols, based on the application of ASC biologically active substances. SIGNIFICANCE PARAGRAPH: Ex vivo expansion is widely used for increasing the number of adipose-derived stromal cells (ASCs) and improving of their quality. The present study was designed to elucidate the particular factors influencing the interleukin production in ASCs. The presented data specified the parameters (i.e. cell density, duration of cultivation, hypoxia, etc.) that should be taken in mind when ASCs are intended to be used in protocols implying their paracrine activity. These data would be of considerable interest for researchers and clinicians working in the biomedical science.

  20. Novel daidzein analogs enhance osteogenic activity of bone marrow-derived mesenchymal stem cells and adipose-derived stromal/stem cells through estrogen receptor dependent and independent mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osteoporosis is a disease characterized by low bone mineral density (BMD) and increased risk of fractures. Studies have demonstrated the use of phytoestrogens, or plant-derived estrogens, such as genistein anddaidzein, to effectively increase osteogenic activity of bone marrow-derived mesenchymal s...

  1. Metformin Decreases Reactive Oxygen Species, Enhances Osteogenic Properties of Adipose-Derived Multipotent Mesenchymal Stem Cells In Vitro, and Increases Bone Density In Vivo.

    PubMed

    Marycz, Krzysztof; Tomaszewski, Krzysztof A; Kornicka, Katarzyna; Henry, Brandon Michael; Wroński, Sebastian; Tarasiuk, Jacek; Maredziak, Monika

    2016-01-01

    Due to its pleiotropic effects, the commonly used drug metformin has gained renewed interest among medical researchers. While metformin is mainly used for the treatment of diabetes, recent studies suggest that it may have further application in anticancer and antiaging therapies. In this study, we investigated the proliferative potential, accumulation of oxidative stress factors, and osteogenic and adipogenic differentiation potential of mouse adipose-derived stem cells (MuASCs) isolated from mice treated with metformin for 8 weeks. Moreover, we investigated the influence of metformin supplementation on mice bone density and bone element composition. The ASCs isolated from mice who were treated with metformin for 8 weeks showed highest proliferative potential, generated a robust net of cytoskeletal projections, had reduced expression of markers associated with cellular senescence, and decreased amount of reactive oxygen species in comparison to control group. Furthermore, we demonstrated that these cells possessed greatest osteogenic differentiation potential, while their adipogenic differentiation ability was reduced. We also demonstrated that metformin supplementation increases bone density in vivo. Our result stands as a valuable source of data regarding the in vivo influence of metformin on ASCs and bone density and supports a role for metformin in regenerative medicine. PMID:27195075

  2. Metformin Decreases Reactive Oxygen Species, Enhances Osteogenic Properties of Adipose-Derived Multipotent Mesenchymal Stem Cells In Vitro, and Increases Bone Density In Vivo

    PubMed Central

    Marycz, Krzysztof; Tomaszewski, Krzysztof A.; Kornicka, Katarzyna; Henry, Brandon Michael; Wroński, Sebastian; Tarasiuk, Jacek; Maredziak, Monika

    2016-01-01

    Due to its pleiotropic effects, the commonly used drug metformin has gained renewed interest among medical researchers. While metformin is mainly used for the treatment of diabetes, recent studies suggest that it may have further application in anticancer and antiaging therapies. In this study, we investigated the proliferative potential, accumulation of oxidative stress factors, and osteogenic and adipogenic differentiation potential of mouse adipose-derived stem cells (MuASCs) isolated from mice treated with metformin for 8 weeks. Moreover, we investigated the influence of metformin supplementation on mice bone density and bone element composition. The ASCs isolated from mice who were treated with metformin for 8 weeks showed highest proliferative potential, generated a robust net of cytoskeletal projections, had reduced expression of markers associated with cellular senescence, and decreased amount of reactive oxygen species in comparison to control group. Furthermore, we demonstrated that these cells possessed greatest osteogenic differentiation potential, while their adipogenic differentiation ability was reduced. We also demonstrated that metformin supplementation increases bone density in vivo. Our result stands as a valuable source of data regarding the in vivo influence of metformin on ASCs and bone density and supports a role for metformin in regenerative medicine. PMID:27195075

  3. Temporal profiling of the growth and multi-lineage potentiality of adipose tissue-derived mesenchymal stem cells cell-sheets.

    PubMed

    Neo, Puay Yong; See, Eugene Yong-Shun; Toh, Siew Lok; Goh, James Cho-Hong

    2016-07-01

    Cell-sheet tissue engineering retains the benefits of an intact extracellular matrix (ECM) and can be used to produce scaffold-free constructs. Adipose tissue-derived stem cells (ASCs) are multipotent and more easily obtainable than the commonly used bone marrow-derived stem cells (BMSCs). Although BMSC cell sheets have been previously reported to display multipotentiality, a detailed study of the development and multilineage potential of ASC cell sheets (ASC-CSs) is non-existent in the literature. The aims of this study were to temporally profile: (a) the effect of hyperconfluent culture duration on ASC-CSs development; and (b) the multipotentiality of ASC-CSs by differentiation into the osteogenic, adipogenic and chondrogenic lineages. Rabbit ASCs were first isolated and cultured until confluence (day 0). The confluent cells were then cultured in ascorbic acid-supplemented medium for 3 weeks to study cell metabolic activity, cell sheet thickness and early differentiation gene expressions at weekly time points. ASC-CSs and ASCs were then differentiated into the three lineages, using established protocols, and assessed by RT-PCR and histology at multiple time points. ASC-CSs remained healthy up to 3 weeks of hyperconfluent culture. One week-old cell sheets displayed upregulation of early differentiation gene markers (Runx2 and Sox9); however, subsequent differentiation results indicated that they did not necessarily translate to an improved phenotype. ASCs within the preformed cell sheet groups did not differentiate as efficiently as the non-hyperconfluent ASCs, which were directly differentiated. Although ASCs within the cell sheets retained their differentiation capacity and remained viable under prolonged hyperconfluent conditions, future applications of ASC-CSs in tissue engineering should be considered with care. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Co-infusion of adipose tissue derived mesenchymal stem cell-differentiated insulin-making cells and haematopoietic cells with renal transplantation: a novel therapy for type 1 diabetes mellitus with end-stage renal disease.

    PubMed

    Dave, Shruti D; Vanikar, Aruna V; Trivedi, Hargovind L

    2013-01-01

    Type 1 diabetes mellitus (T1DM) is a common cause of end-stage renal disease (ESRD). Various factors contribute to wide fluctuations in blood glucose levels and exogenous insulin requirement in such patients even after renal transplantation (RT). Simultaneous pancreas-kidney transplantation is one of the therapies for these patients. Stem cell (SC) therapy for T1DM and for minimisation of immunosuppression after RT has shown encouraging results. We report a 30-year-old-man with T1DM since 15 years and ESRD since 2 years, who underwent living donor RT and co-infusion of in vitro generated insulin-making cells differentiated from donor adipose tissue derived mesenchymal stem cells and bone marrow -derived haematopoietic SC into subcutaneous tissue, portal and thymic circulation under non-myeloablative conditioning. Over follow-up of 13 months he has stable graft function with serum creatinine, 1.2 mg/dl, zero rejection and glycosylated haemoglobin level of 6.1% on calcineurin-inhibitor based therapy.

  5. Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways

    PubMed Central

    Chen, Xiaosong; Yan, Liu; Guo, Zhihui; Chen, Zhaohong; Chen, Ying; Li, Ming; Huang, Chushan; Zhang, Xiaoping; Chen, Liangwan

    2016-01-01

    Autologous fat grafting is an effective reconstructive surgery technique; however, its success is limited by inconsistent graft retention and an environment characterized by high oxidative stress and inflammation. Adipose-derived stem cells (ADSCs) increase the survival of fat grafts, although the underlying mechanisms remain unclear. Here, TLR4−/− and Nrf2−/− mice were used to explore the effects of oxidative stress and inflammation on the viability and function of ADSCs in vitro and in vivo. Enrichment of fat grafts with ADSCs inhibited inflammatory cytokine production, enhanced growth factor levels, increased fat graft survival, downregulated NADPH oxidase (NOX)1 and 4 expression, increased vascularization and reduced ROS production in a manner dependent on toll-like receptor (TLR)-4 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Immunohistochemical analysis showed that exposure to hypoxia enhanced ADSC growth and promoted the differentiation of ADSCs into vascular endothelial cells. Hypoxia-induced inflammatory cytokine, growth factor and NOX1/4 upregulation, as well as increased ROS production and apoptosis in ADSCs were dependent on TLR4 and Nrf2, which also modulated the effect of ADSCs on promoting endothelial progenitor cell migration and angiogenesis. Western blot analyses showed that the effects of hypoxia on ADSCs were regulated by crosstalk between Nrf2 antioxidant responses and NF-κB- and TLR4-mediated inflammatory responses. Taken together, our results indicate that ADSCs can increase the survival of fat transplants through the modulation of inflammatory and oxidative responses via Nrf2 and TLR4, suggesting potential strategies to improve the use of ADSCs for cell therapy. PMID:27607584

  6. Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways.

    PubMed

    Chen, Xiaosong; Yan, Liu; Guo, Zhihui; Chen, Zhaohong; Chen, Ying; Li, Ming; Huang, Chushan; Zhang, Xiaoping; Chen, Liangwan

    2016-09-08

    Autologous fat grafting is an effective reconstructive surgery technique; however, its success is limited by inconsistent graft retention and an environment characterized by high oxidative stress and inflammation. Adipose-derived stem cells (ADSCs) increase the survival of fat grafts, although the underlying mechanisms remain unclear. Here, TLR4(-/-) and Nrf2(-/-) mice were used to explore the effects of oxidative stress and inflammation on the viability and function of ADSCs in vitro and in vivo. Enrichment of fat grafts with ADSCs inhibited inflammatory cytokine production, enhanced growth factor levels, increased fat graft survival, downregulated NADPH oxidase (NOX)1 and 4 expression, increased vascularization and reduced ROS production in a manner dependent on toll-like receptor (TLR)-4 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Immunohistochemical analysis showed that exposure to hypoxia enhanced ADSC growth and promoted the differentiation of ADSCs into vascular endothelial cells. Hypoxia-induced inflammatory cytokine, growth factor and NOX1/4 upregulation, as well as increased ROS production and apoptosis in ADSCs were dependent on TLR4 and Nrf2, which also modulated the effect of ADSCs on promoting endothelial progenitor cell migration and angiogenesis. Western blot analyses showed that the effects of hypoxia on ADSCs were regulated by crosstalk between Nrf2 antioxidant responses and NF-κB- and TLR4-mediated inflammatory responses. Taken together, our results indicate that ADSCs can increase the survival of fat transplants through the modulation of inflammatory and oxidative responses via Nrf2 and TLR4, suggesting potential strategies to improve the use of ADSCs for cell therapy.

  7. Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways.

    PubMed

    Chen, Xiaosong; Yan, Liu; Guo, Zhihui; Chen, Zhaohong; Chen, Ying; Li, Ming; Huang, Chushan; Zhang, Xiaoping; Chen, Liangwan

    2016-01-01

    Autologous fat grafting is an effective reconstructive surgery technique; however, its success is limited by inconsistent graft retention and an environment characterized by high oxidative stress and inflammation. Adipose-derived stem cells (ADSCs) increase the survival of fat grafts, although the underlying mechanisms remain unclear. Here, TLR4(-/-) and Nrf2(-/-) mice were used to explore the effects of oxidative stress and inflammation on the viability and function of ADSCs in vitro and in vivo. Enrichment of fat grafts with ADSCs inhibited inflammatory cytokine production, enhanced growth factor levels, increased fat graft survival, downregulated NADPH oxidase (NOX)1 and 4 expression, increased vascularization and reduced ROS production in a manner dependent on toll-like receptor (TLR)-4 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Immunohistochemical analysis showed that exposure to hypoxia enhanced ADSC growth and promoted the differentiation of ADSCs into vascular endothelial cells. Hypoxia-induced inflammatory cytokine, growth factor and NOX1/4 upregulation, as well as increased ROS production and apoptosis in ADSCs were dependent on TLR4 and Nrf2, which also modulated the effect of ADSCs on promoting endothelial progenitor cell migration and angiogenesis. Western blot analyses showed that the effects of hypoxia on ADSCs were regulated by crosstalk between Nrf2 antioxidant responses and NF-κB- and TLR4-mediated inflammatory responses. Taken together, our results indicate that ADSCs can increase the survival of fat transplants through the modulation of inflammatory and oxidative responses via Nrf2 and TLR4, suggesting potential strategies to improve the use of ADSCs for cell therapy. PMID:27607584

  8. Characterization of adipose-derived stem cells from subcutaneous and visceral adipose tissues and their function in breast cancer cells.

    PubMed

    Ritter, Andreas; Friemel, Alexandra; Fornoff, Friderike; Adjan, Mouhib; Solbach, Christine; Yuan, Juping; Louwen, Frank

    2015-10-27

    Adipose-derived stem cells are capable of differentiating into multiple cell types and thus considered useful for regenerative medicine. However, this differentiation feature seems to be associated with tumor initiation and metastasis raising safety concerns, which requires further investigation. In this study, we isolated adipose-derived stem cells from subcutaneous as well as from visceral adipose tissues of the same donor and systematically compared their features. Although being characteristic of mesenchymal stem cells, subcutaneous adipose-derived stem cells tend to be spindle form-like and are more able to home to cancer cells, whereas visceral adipose-derived stem cells incline to be "epithelial"-like and more competent to differentiate. Moreover, compared to subcutaneous adipose-derived stem cells, visceral adipose-derived stem cells are more capable of promoting proliferation, inducing the epithelial-to-mesenchymal transition, enhancing migration and invasion of breast cancer cells by cell-cell contact and by secreting interleukins such as IL-6 and IL-8. Importantly, ASCs affect the low malignant breast cancer cells MCF-7 more than the highly metastatic MDA-MB-231 cells. Induction of the epithelial-to-mesenchymal transition is mediated by the activation of multiple pathways especially the PI3K/AKT signaling in breast cancer cells. BCL6, an important player in B-cell lymphoma and breast cancer progression, is crucial for this transition. Finally, this transition fuels malignant properties of breast cancer cells and render them resistant to ATP competitive Polo-like kinase 1 inhibitors BI 2535 and BI 6727.

  9. Synovial fluid of patients with rheumatoid arthritis induces α-smooth muscle actin in human adipose tissue-derived mesenchymal stem cells through a TGF-β1-dependent mechanism

    PubMed Central

    Song, Hae Young; Kim, Min Young; Kim, Kyung Hye; Lee, Il Hwan; Shin, Sang Hun; Lee, Jung Sub

    2010-01-01

    Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disorder that causes the immune system to attack the joints. Transforming growth factor-β1 (TGF-β1) is a secreted protein that promotes differentiation of synovial fibroblasts to α-smooth muscle actin (α-SMA)-positive myofibroblasts to repair the damaged joints. Synovial fluid from patients with RA (RA-SF) induced expression of α-SMA in human adipose tissue-derived mesenchymal stem cells (hASCs). RA-SF-induced α-SMA expression was abrogated by immunodepletion of TGF-β1 from RA-SF with anti-TGF-β1 antibody. Furthermore, pretreatment of hASCs with the TGF-β type I receptor inhibitor SB431542 or lentiviral small hairpin RNA-mediated silencing of TGF-β type I receptor expression in hASCs blocked RA-SF-induced α-SMA expression. Small interfering RNA-mediated silencing of Smad2 or adenoviral overexpression of Smad7 (an inhibitory Smad isoform) completely inhibited RA-SF-stimulated α-SMA expression. These results suggest that TGF-β1 plays a pivotal role in RA-SF-induced differentiation of hASCs to α-SMA-positive cells. PMID:20628268

  10. Adipose-derived stem cells and periodontal tissue engineering.

    PubMed

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  11. Osteogenic and adipogenic potential of porcine adipose mesenchymal stem cells.

    PubMed

    Qu, Chang-qing; Zhang, Guo-hua; Zhang, Li-jie; Yang, Gong-she

    2007-02-01

    Human, rat, and mouse studies have demonstrated the existence of a population of adipose mesenchymal stem cells (AMSCs) that can undergo multilineage differentiation in vitro. Understanding the clinical potential of AMSCs may require their use in preclinical large-animal models such as pigs. Thus, the objectives of this study were to establish a protocol for the isolation of porcine AMSCs from adipose tissue and to examine their ex vivo differentiation potential to adipocytes and osteoblast. The porcine AMSCs from passage 4 were selected for differentiation analysis. The adipocytes were identified morphologically by staining with Oil Red O, and the adipogenic marker genes were examined by RT-PCR technique. Osteogenic lineage was documented by deposition of calcium stained with Alzarin Red S, visualization of alkaline phosphatase activity, and expression of marker gene. Our result indicates that porcine AMSCs have been successfully isolated and induced differentiation into adipocytes and osteoblasts. This study suggested that porcine AMSCs are also a valuable model system for the study on the mesenchymal lineages for basic research and tissue engineering. PMID:17570023

  12. Osteogenic and adipogenic potential of porcine adipose mesenchymal stem cells.

    PubMed

    Qu, Chang-qing; Zhang, Guo-hua; Zhang, Li-jie; Yang, Gong-she

    2007-02-01

    Human, rat, and mouse studies have demonstrated the existence of a population of adipose mesenchymal stem cells (AMSCs) that can undergo multilineage differentiation in vitro. Understanding the clinical potential of AMSCs may require their use in preclinical large-animal models such as pigs. Thus, the objectives of this study were to establish a protocol for the isolation of porcine AMSCs from adipose tissue and to examine their ex vivo differentiation potential to adipocytes and osteoblast. The porcine AMSCs from passage 4 were selected for differentiation analysis. The adipocytes were identified morphologically by staining with Oil Red O, and the adipogenic marker genes were examined by RT-PCR technique. Osteogenic lineage was documented by deposition of calcium stained with Alzarin Red S, visualization of alkaline phosphatase activity, and expression of marker gene. Our result indicates that porcine AMSCs have been successfully isolated and induced differentiation into adipocytes and osteoblasts. This study suggested that porcine AMSCs are also a valuable model system for the study on the mesenchymal lineages for basic research and tissue engineering.

  13. Curcumin-Induced Heme Oxygenase-1 Expression Prevents H2O2-Induced Cell Death in Wild Type and Heme Oxygenase-2 Knockout Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Cremers, Niels A. J.; Lundvig, Ditte M. S.; van Dalen, Stephanie C. M.; Schelbergen, Rik F.; van Lent, Peter L. E. M.; Szarek, Walter A.; Regan, Raymond F.; Carels, Carine E.; Wagener, Frank A. D. T. G.

    2014-01-01

    Mesenchymal stem cell (MSC) administration is a promising adjuvant therapy to treat tissue injury. However, MSC survival after administration is often hampered by oxidative stress at the site of injury. Heme oxygenase (HO) generates the cytoprotective effector molecules biliverdin/bilirubin, carbon monoxide (CO) and iron/ferritin by breaking down heme. Since HO-activity mediates anti-apoptotic, anti-inflammatory, and anti-oxidative effects, we hypothesized that modulation of the HO-system affects MSC survival. Adipose-derived MSCs (ASCs) from wild type (WT) and HO-2 knockout (KO) mice were isolated and characterized with respect to ASC marker expression. In order to analyze potential modulatory effects of the HO-system on ASC survival, WT and HO-2 KO ASCs were pre-treated with HO-activity modulators, or downstream effector molecules biliverdin, bilirubin, and CO before co-exposure of ASCs to a toxic dose of H2O2. Surprisingly, sensitivity to H2O2-mediated cell death was similar in WT and HO-2 KO ASCs. However, pre-induction of HO-1 expression using curcumin increased ASC survival after H2O2 exposure in both WT and HO-2 KO ASCs. Simultaneous inhibition of HO-activity resulted in loss of curcumin-mediated protection. Co-treatment with glutathione precursor N-Acetylcysteine promoted ASC survival. However, co-incubation with HO-effector molecules bilirubin and biliverdin did not rescue from H2O2-mediated cell death, whereas co-exposure to CO-releasing molecules-2 (CORM-2) significantly increased cell survival, independently from HO-2 expression. Summarizing, our results show that curcumin protects via an HO-1 dependent mechanism against H2O2-mediated apoptosis, and likely through the generation of CO. HO-1 pre-induction or administration of CORMs may thus form an attractive strategy to improve MSC therapy. PMID:25299695

  14. Assessment of the effect of intraarticular injection of autologous adipose-derived mesenchymal stem cells in osteoarthritic dogs using a double blinded force platform analysis

    PubMed Central

    2014-01-01

    Background Regenerative medicine using Mesenchymal Stem Cells (MSC) alone or combined with Plasma Rich in Growth Factors (PRGF) is a rapidly growing area of clinical research and is currently also being used to treat osteoarthritis (OA). Force platform analysis has been consistently used to verify and quantify the efficacy of different therapeutic strategies for the treatment of OA in dogs including MSC associated to PRGF, but never with AD-MSC alone. The aim of this study was to use a force platform to measure the efficacy of intraarticular ADMSC administration for limb function improvement in dogs with severe OA. Results Ten lame dogs with severe hip OA and a control group of 5 sound dogs were used for this study. Results were statistically analyzed to detect a significant increase in peak vertical force (PVF) and vertical impulse (VI) in treated dogs. Mean values of PVF and VI were significantly improved within the first three months post-treatment in the OA group, increasing 9% and 2.5% body weight, respectively, at day 30. After this, the effect seems to decrease reaching initial values. Conclusion Intraarticular ADMSC therapy objectively improved limb function in dogs with hip OA. The duration of maximal effect was less than 3 months. PMID:24984756

  15. A comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue, bone marrow and dental pulp.

    PubMed

    Davies, O G; Cooper, P R; Shelton, R M; Smith, A J; Scheven, B A

    2015-07-01

    Stem-cell-based therapies provide a biological basis for the regeneration of mineralised tissues. Stem cells isolated from adipose tissue (ADSCs), bone marrow (BMSCs) and dental pulp (DPSCs) have the capacity to form mineralised tissue. However, studies comparing the capacity of ADSCs with BMSCs and DPSCs for mineralised tissue engineering are lacking, and their ability to regenerate dental tissues has not been fully explored. Characterisation of the cells using fluorescence-activated cell sorting and semi-quantitative reverse transcription PCR for MSC markers indicated that they were immunophenotypically similar. Alizarin red (AR) staining and micro-computed tomography (µCT) analyses demonstrated that the osteogenic potential of DPSCs was significantly greater than that of BMSCs and ADSCs. Scanning electron microscopy and AR staining showed that the pattern of mineralisation in DPSC cultures differed from ADSCs and BMSCs, with DPSC cultures lacking defined mineralised nodules and instead forming a diffuse layer of low-density mineral. Dentine matrix components (DMCs) were used to promote dentinogenic differentiation. Their addition to cultures resulted in increased amounts of mineral deposited in all three cultures and significantly increased the density of mineral deposited in BMSC cultures, as determined by µCT analysis. Addition of DMCs also increased the relative gene expression levels of the dentinogenic markers dentine sialophosphoprotein and dentine matrix protein 1 in ADSC and BMSC cultures. In conclusion, DPSCs show the greatest potential to produce a comparatively high volume of mineralised matrix; however, both dentinogenesis and mineral volume was enhanced in ADSC and BMSC cultures by DMCs, suggesting that these cells show promise for regenerative dental therapies.

  16. Resveratrol reduces IL-6 and VEGF secretion from co-cultured A549 lung cancer cells and adipose-derived mesenchymal stem cells.

    PubMed

    Sahin, Erhan; Baycu, Cengiz; Koparal, Ayse Tansu; Burukoglu Donmez, Dilek; Bektur, Ezgi

    2016-06-01

    Stem cell therapies are important treatment methodologies used in many areas of experimental or clinical medicine. In recent studies of cancer models, Mesenchymal stem cells (MSCs) suppressed the growth of cancer cells. However, also in some studies, stem cell treatments have been shown to induce cancer formation, increase tumor volume, induce the formation of new vessels, and lead to cancer invasion. The presence of MSC-secreted cytokines and their effects on cancer cells limits the reliability of MSC-based treatments. Resveratrol (trans-3,5,4'-trihydroxystilbene), an antioxidant found in red wine, has been shown to have therapeutic effects against several cancers. The aim of this study was to co-culture MSCs with A549 cancer cells to suppress the release of cancer-promoting cytokines from MSCs and to increase the applicability and reliability of stem cell therapies with resveratrol. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and neutral red cell viability assays were used to find safety dose of resveratrol. The MSCs secreted the cytokines IL-6 and VEGF, and the effect of resveratrol on these cytokines was analyzed by ELISA and western blot analysis of conditioned medium. One μM of resveratrol was found to be the safety dose for the A549 cancer cells and MSCs. We observed the highest release of IL-6 and VEGF from the co-cultured A549 cells and MSCs, and resveratrol was found to significantly decrease the release of these cytokines. Our study suggests that resveratrol exerts a positive effect on the release of cytokines. The safety dose of resveratrol can be administered together with stem cells during stem cell treatment.

  17. Adipose Stem Cells as Alternatives for Bone Marrow Mesenchymal Stem Cells in Oral Ulcer Healing

    PubMed Central

    Aziz Aly, Lobna Abdel; Menoufy, Hala El-; Ragae, Alyaa; Rashed, Laila Ahmed; Sabry, Dina

    2012-01-01

    Background and Objectives Adipose tissue is now recognized as an accessible, abundant, and reliable site for the isolation of adult stem cells suitable for tissue engineering and regenerative medicine applications. Methods and Results Oral ulcers were induced by topical application of formocresol in the oral cavity of dogs. Transplantation of undifferentiated GFP-labeled Autologous Bone Marrow Stem Cell (BMSCs), Adipose Derived Stem Cell (ADSCs) or vehicle (saline) was injected around the ulcer in each group. The healing process of the ulcer was monitored clinically and histopathologically. Gene expression of vascular endothelial growth factor (VEGF) was detected in MSCs by Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Expression of VEGF and collagen genes was detected in biopsies from all ulcers. Results: MSCs expressed mRNA for VEGF MSCs transplantation significantly accelerated oral ulcer healing compared with controls. There was increased expression of both collagen and VEGF genes in MSCs-treated ulcers compared to controls. Conclusions MSCs transplantation may help to accelerate oral ulcer healing, possibly through the induction of angiogenesis by VEGF together with increased intracellular matrix formation as detected by increased collagen gene expression. This body of work has provided evidence supporting clinical applications of adipose-derived cells in safety and efficacy trials as an alternative for bone marrow mesenchymal stem cells in oral ulcer healing. PMID:24298363

  18. Use of Ferritin Expression, Regulated by Neural Cell-Specific Promoters in Human Adipose Tissue-Derived Mesenchymal Stem Cells, to Monitor Differentiation with Magnetic Resonance Imaging In Vitro

    PubMed Central

    Mo, Cuiping; Mu, Shuhua; Jiang, Xiaogang; Li, Xiaoyun; Zhong, Shizhen; Zhao, Zhenfu; Zhou, Guangqian

    2015-01-01

    The purpose of this study was to establish a method for monitoring the neural differentiation of stem cells using ferritin transgene expression, under the control of a neural-differentiation-inducible promoter, and magnetic resonance imaging (MRI). Human adipose tissue-derived mesenchymal stem cells (hADMSCs) were transduced with a lentivirus containing the human ferritin heavy chain 1 (FTH1) gene coupled to one of three neural cell-specific promoters: human synapsin 1 promoter (SYN1p, for neurons), human glial fibrillary acidic protein promoter (GFAPp, for astrocytes), and human myelin basic protein promoter (MBPp, for oligodendrocytes). Three groups of neural-differentiation-inducible ferritin-expressing (NDIFE) hADMSCs were established: SYN1p-FTH1, GFAPp-FTH1, and MBPp-FTH1. The proliferation rate of the NDIFE hADMSCs was evaluated using a Cell Counting Kit-8 assay. Ferritin expression was assessed with western blotting and immunofluorescent staining before and after the induction of differentiation in NDIFE hADMSCs. The intracellular iron content was measured with Prussian blue iron staining and inductively coupled plasma mass spectrometry. R2 relaxation rates were measured with MRI in vitro. The proliferation rates of control and NDIFE hADMSCs did not differ significantly (P > 0.05). SYN1p-FTH1, GFAPp-FTH1, and MBPp-FTH1 hADMSCs expressed specific markers of neurons, astrocytes, and oligodendrocytes, respectively, after neural differentiation. Neural differentiation increased ferritin expression twofold, the intracellular iron content threefold, and the R2 relaxation rate two- to threefold in NDIFE hADMSCs, resulting in notable hypointensity in T2-weighted images (P < 0.05). These results were cross-validated. Thus, a link between neural differentiation and MRI signals (R2 relaxation rate) was established in hADMSCs. The use of MRI and neural-differentiation-inducible ferritin expression is a viable method for monitoring the neural differentiation of h

  19. Equine Metabolic Syndrome Affects Viability, Senescence, and Stress Factors of Equine Adipose-Derived Mesenchymal Stromal Stem Cells: New Insight into EqASCs Isolated from EMS Horses in the Context of Their Aging

    PubMed Central

    Marycz, Krzysztof; Kornicka, Katarzyna; Basinska, Katarzyna; Czyrek, Aleksandra

    2016-01-01

    Currently, equine metabolic syndrome (EMS), an endocrine disease linked to insulin resistance, affects an increasing number of horses. However, little is known about the effect of EMS on mesenchymal stem cells that reside in adipose tissue (ASC). Thus it is crucial to evaluate the viability and growth kinetics of these cells, particularly in terms of their application in regenerative medicine. In this study, we investigated the proliferative capacity, morphological features, and accumulation of oxidative stress factors in mesenchymal stem cells isolated from healthy animals (ASCN) and horses suffering from EMS (ASCEMS). ASCEMS displayed senescent phenotype associated with β-galactosidase accumulation, enlarged cell bodies and nuclei, increased apoptosis, and reduced heterochromatin architecture. Moreover, we observed increased amounts of nitric oxide (NO) and reactive oxygen species (ROS) in these cells, accompanied by reduced superoxide dismutase (SOD) activity. We also found in ASCEMS an elevated number of impaired mitochondria, characterized by membrane raptures, disarrayed cristae, and vacuole formation. Our results suggest that the toxic compounds, accumulating in the mitochondria under oxidative stress, lead to alternations in their morphology and may be partially responsible for the senescent phenotype and decreased proliferation potential of ASCEMS. PMID:26682006

  20. Characteristics of mouse adipose tissue-derived stem cells and therapeutic comparisons between syngeneic and allogeneic adipose tissue-derived stem cell transplantation in experimental autoimmune thyroiditis.

    PubMed

    Choi, Eun Wha; Shin, Il Seob; Park, So Young; Yoon, Eun Ji; Kang, Sung Keun; Ra, Jeong Chan; Hong, Sung Hwa

    2014-01-01

    Previously, we found that the intravenous administration of human adipose tissue-derived mesenchymal stem cells was a promising therapeutic option for autoimmune thyroiditis even when the cells were transplanted into a xenogeneic model without an immunosuppressant. Therefore, we explored the comparison between the therapeutic effects of syngeneic and allogeneic adipose tissue-derived stem cells on an experimental autoimmune thyroiditis mouse model. Experimental autoimmune thyroiditis was induced in C57BL/6 mice by immunization with porcine thyroglobulin. Adipose tissue-derived stem cells derived from C57BL/6 mice (syngeneic) or BALB/c mice (allogeneic) or saline as a vehicle control were administered intravenously four times weekly. Blood and tissue samples were collected 1 week after the last transplantation. Adipose tissue-derived stem cells from mice were able to differentiate into multiple lineages in vitro; however, mouse adipose tissue-derived stem cells did not have immunophenotypes identical to those from humans. Syngeneic and allogeneic administrations of adipose tissue-derived stem cells reduced thyroglobulin autoantibodies and the inflammatory immune response, protected against lymphocyte infiltration into the thyroid, and restored the Th1/Th2 balance without any adverse effects. However, different humoral immune responses were observed for infused cells from different stem cell sources. The strongest humoral immune response was induced by xenogeneic transplantation, followed by allogeneic and syngeneic administration, in that order. The stem cells were mostly found in the spleen, not the thyroid. This migration might be because the stem cells primarily function in systemic immune modulation, due to being given prior to disease induction. In this study, we confirmed that there were equal effects of adipose tissue-derived stem cells in treating autoimmune thyroiditis between syngeneic and allogeneic transplantations.

  1. Adipose Tissue-Derived Stem Cells in Regenerative Medicine

    PubMed Central

    Frese, Laura; Dijkman, Petra E.; Hoerstrup, Simon P.

    2016-01-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted. PMID:27721702

  2. Role of adipose-derived stem cells in wound healing.

    PubMed

    Hassan, Waqar Ul; Greiser, Udo; Wang, Wenxin

    2014-01-01

    Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration.

  3. Winner for outstanding research in the Ph.D. category for the 2013 Society for Biomaterials meeting and exposition, April 10-13, 2013, Boston, Massachusetts: Osteogenic differentiation of adipose-derived and marrow-derived mesenchymal stem cells in modular protein/ceramic microbeads.

    PubMed

    Rao, Rameshwar R; Peterson, Alexis W; Stegemann, Jan P

    2013-06-01

    Modular tissue engineering applies biomaterials-based approaches to create discrete cell-seeded microenvironments, which can be further assembled into larger constructs for the repair of injured tissues. In the current study, we embedded human bone marrow-derived mesenchymal stem cells (MSC) and human adipose-derived stem cells (ASC) in collagen/fibrin (COL/FIB) and collagen/fibrin/hydroxyapatite (COL/FIB/HA) microbeads, and evaluated their suitability for bone tissue engineering applications. Microbeads were fabricated using a water-in-oil emulsification process, resulting in an average microbead diameter of approximately 130 ± 25 μm. Microbeads supported both cell viability and cell spreading of MSC and ASC over 7 days in culture. The embedded cells also began to remodel and compact the microbead matrix as demonstrated by confocal reflectance microscopy imaging. After two weeks of culture in media containing osteogenic supplements, both MSC and ASC deposited calcium mineral in COL/FIB microbeads, but not in COL/FIB/HA microbeads. There were no significant differences between MSC and ASC in any of the assays examined, suggesting that either cell type may be an appropriate cell source for orthopedic applications. This study has implications in the creation of defined microenvironments for bone repair, and in developing a modular approach for delivery of pre-differentiated cells.

  4. Characterization and comparison of adipose tissue-derived cells from human subcutaneous and omental adipose tissues.

    PubMed

    Toyoda, Mito; Matsubara, Yoshinori; Lin, Konghua; Sugimachi, Keizou; Furue, Masutaka

    2009-10-01

    Different fat depots contribute differently to disease and function. These differences may be due to the regional variation in cell types and inherent properties of fat cell progenitors. To address the differences of cell types in the adipose tissue from different depots, the phenotypes of freshly isolated adipose tissue-derived cells (ATDCs) from subcutaneous (SC) and omental (OM) adipose tissues were compared using flow cytometry. Our results showed that CD31(-)CD34(+)CD45(-)CD90(-)CD105(-)CD146(+) population, containing vascular smooth muscle cells and pericytes, was specifically defined in the SC adipose tissue while no such population was observed in OM adipose tissue. On the other hand, CD31(-)CD34(+)CD45(-)CD90(-)CD105(-)CD146(-) population, which is an undefined cell population, were found solely in OM adipose tissue. Overall, the SC adipose tissue contained more ATDCs than OM adipose tissue, while OM adipose tissue contained more blood-derived cells. Regarding to the inherent properties of fat cell progenitors from the two depots, adipose-derived stem cells (ADSCs) from SC had higher capacity to differentiate into both adipogenic and osteogenic lineages than those from OM, regardless of that the proliferation rates of ADSCs from both depots were similar. The higher differentiation capacity of ADSCs from SC adipose tissue suggests that SC tissue is more suitable cell source for regenerative medicine than OM adipose tissue.

  5. Therapeutic potential of human adipose-derived stem cells in neurological disorders.

    PubMed

    Chang, Keun-A; Lee, Jun-Ho; Suh, Yoo-Hun

    2014-01-01

    Stem cell therapy has been noted as a novel strategy to various diseases including neurological disorders such as Alzheimer's disease, Parkinson's disease, stroke, amyotrophic lateral sclerosis, and Huntington's disease that have no effective treatment available to date. The adipose-derived stem cells (ASCs), mesenchymal stem cells (MSCs) isolated from adipose tissue, are well known for their pluripotency with the ability to differentiate into various types of cells and immuno-modulatory property. These biological features make ASCs a promising source for regenerative cell therapy in neurological disorders. Here we discuss the recent progress of regenerative therapies in various neurological disorders utilizing ASCs.

  6. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue.

    PubMed

    Rebelatto, C K; Aguiar, A M; Moretão, M P; Senegaglia, A C; Hansen, P; Barchiki, F; Oliveira, J; Martins, J; Kuligovski, C; Mansur, F; Christofis, A; Amaral, V F; Brofman, P S; Goldenberg, S; Nakao, L S; Correa, A

    2008-07-01

    Mesenchymal stem cells (MSCs) have been investigated as promising candidates for use in new cell-based therapeutic strategies such as mesenchyme-derived tissue repair. MSCs are easily isolated from adult tissues and are not ethically restricted. MSC-related literature, however, is conflicting in relation to MSC differentiation potential and molecular markers. Here we compared MSCs isolated from bone marrow (BM), umbilical cord blood (UCB), and adipose tissue (AT). The isolation efficiency for both BM and AT was 100%, but that from UCB was only 30%. MSCs from these tissues are morphologically and immunophenotypically similar although their differentiation diverges. Differentiation to osteoblasts and chondroblasts was similar among MSCs from all sources, as analyzed by cytochemistry. Adipogenic differentiation showed that UCB-derived MSCs produced few and small lipid vacuoles in contrast to those of BM-derived MSCs and AT-derived stem cells (ADSCs) (arbitrary differentiation values of 245.57 +/- 943 and 243.89 +/- 145.52 mum(2) per nucleus, respectively). The mean area occupied by individual lipid droplets was 7.37 mum(2) for BM-derived MSCs and 2.36 mum(2) for ADSCs, a finding indicating more mature adipocytes in BM-derived MSCs than in treated cultures of ADSCs. We analyzed FAPB4, ALP, and type II collagen gene expression by quantitative polymerase chain reaction to confirm adipogenic, osteogenic, and chondrogenic differentiation, respectively. Results showed that all three sources presented a similar capacity for chondrogenic and osteogenic differentiation and they differed in their adipogenic potential. Therefore, it may be crucial to predetermine the most appropriate MSC source for future clinical applications.

  7. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue.

    PubMed

    Rebelatto, C K; Aguiar, A M; Moretão, M P; Senegaglia, A C; Hansen, P; Barchiki, F; Oliveira, J; Martins, J; Kuligovski, C; Mansur, F; Christofis, A; Amaral, V F; Brofman, P S; Goldenberg, S; Nakao, L S; Correa, A

    2008-07-01

    Mesenchymal stem cells (MSCs) have been investigated as promising candidates for use in new cell-based therapeutic strategies such as mesenchyme-derived tissue repair. MSCs are easily isolated from adult tissues and are not ethically restricted. MSC-related literature, however, is conflicting in relation to MSC differentiation potential and molecular markers. Here we compared MSCs isolated from bone marrow (BM), umbilical cord blood (UCB), and adipose tissue (AT). The isolation efficiency for both BM and AT was 100%, but that from UCB was only 30%. MSCs from these tissues are morphologically and immunophenotypically similar although their differentiation diverges. Differentiation to osteoblasts and chondroblasts was similar among MSCs from all sources, as analyzed by cytochemistry. Adipogenic differentiation showed that UCB-derived MSCs produced few and small lipid vacuoles in contrast to those of BM-derived MSCs and AT-derived stem cells (ADSCs) (arbitrary differentiation values of 245.57 +/- 943 and 243.89 +/- 145.52 mum(2) per nucleus, respectively). The mean area occupied by individual lipid droplets was 7.37 mum(2) for BM-derived MSCs and 2.36 mum(2) for ADSCs, a finding indicating more mature adipocytes in BM-derived MSCs than in treated cultures of ADSCs. We analyzed FAPB4, ALP, and type II collagen gene expression by quantitative polymerase chain reaction to confirm adipogenic, osteogenic, and chondrogenic differentiation, respectively. Results showed that all three sources presented a similar capacity for chondrogenic and osteogenic differentiation and they differed in their adipogenic potential. Therefore, it may be crucial to predetermine the most appropriate MSC source for future clinical applications. PMID:18445775

  8. Different wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells.

    PubMed

    Boink, Mireille A; van den Broek, Lenie J; Roffel, Sanne; Nazmi, Kamran; Bolscher, Jan G M; Gefen, Amit; Veerman, Enno C I; Gibbs, Susan

    2016-01-01

    Oral wounds heal faster and with better scar quality than skin wounds. Deep skin wounds where adipose tissue is exposed, have a greater risk of forming hypertrophic scars. Differences in wound healing and final scar quality might be related to differences in mesenchymal stromal cells (MSC) and their ability to respond to intrinsic (autocrine) and extrinsic signals, such as human salivary histatin, epidermal growth factor, and transforming growth factor beta1. Dermis-, adipose-, and gingiva-derived MSC were compared for their regenerative potential with regards to proliferation, migration, and matrix contraction. Proliferation was assessed by cell counting and migration using a scratch wound assay. Matrix contraction and alpha smooth muscle actin was assessed in MSC populated collagen gels, and also in skin and gingival full thickness tissue engineered equivalents (reconstructed epithelium on MSC populated matrix). Compared to skin-derived MSC, gingiva MSC showed greater proliferation and migration capacity, and less matrix contraction in full thickness tissue equivalents, which may partly explain the superior oral wound healing. Epidermal keratinocytes were required for enhanced adipose MSC matrix contraction and alpha smooth muscle actin expression, and may therefore contribute to adverse scarring in deep cutaneous wounds. Histatin enhanced migration without influencing proliferation or matrix contraction in all three MSC, indicating that salivary peptides may have a beneficial effect on wound closure in general. Transforming growth factor beta1 enhanced contraction and alpha smooth muscle actin expression in all three MSC types when incorporated into collagen gels. Understanding the mechanisms responsible for the superior oral wound healing will aid us to develop advanced strategies for optimal skin regeneration, wound healing and scar formation. PMID:26542883

  9. The role of adipose protein derived hydrogels in adipogenesis.

    PubMed

    Uriel, Shiri; Huang, Jung-Ju; Moya, Monica L; Francis, Megan E; Wang, Rui; Chang, Shu-Ying; Cheng, Ming-Huei; Brey, Eric M

    2008-09-01

    Biomaterials that induce adipogenesis may ultimately serve as alternatives to traditional tissue reconstruction and regeneration techniques. In addition, these materials can provide environments for studying factors that regulate adipogenesis. The present study investigates the potential of adipose-derived matrices to induce adipogenesis in vitro and in vivo. Solutions containing basement membrane proteins and growth factors were extracted from subcutaneous adipose tissue. These extracts could be induced to form gels by either incubating the solutions at 37 degrees C or adjusting the pH to 4.0. The adipose extracts promoted rapid preadipocyte aggregation and formation of lipid-loaded colonies in vitro. Differentiation on adipose-derived gels was greater than tissue culture dishes and the tumor-derived product Matrigel (p < 0.05). Significant adipose formation was observed when adipose-derived gels were implanted around a rat epigastric pedicle bundle. Adipose levels in these gels were significantly greater than Matrigel (p < 0.05). The duration of adipose formation depended on the mechanism for gelling the solutions, with acid gelled matrices having greater adipose levels at 6 weeks than temperature gelled matrices. These adipose-derived hydrogels promote rapid adipogenesis in vitro and in vivo. They may lead to new materials for adipose tissue engineering, and provide an environment for studying cell-matrix interactions in adipogenesis.

  10. Comparison between Stromal Vascular Fraction and Adipose Mesenchymal Stem Cells in Remodeling Hypertrophic Scars

    PubMed Central

    Maumus, Marie; Toupet, Karine; Frouin, Eric; Rigau, Valérie; Vozenin, Marie-Catherine; Magalon, Guy; Jorgensen, Christian; Noël, Danièle

    2016-01-01

    Hypertrophic scars (HTS) are characterized by excessive amount of collagen deposition and principally occur following burn injuries or surgeries. In absence of effective treatments, the use of mesenchymal stem/stromal cells, which have been shown to attenuate fibrosis in various applications, seems of interest. The objectives of the present study were therefore to evaluate the effect of human adipose tissue-derived mesenchymal stem cells (hASC) on a pre-existing HTS in a humanized skin graft model in Nude mice and to compare the efficacy of hASCs versus stromal vascular fraction (SVF). We found that injection of SVF or hASCs resulted in an attenuation of HTS as noticed after clinical evaluation of skin thickness, which was associated with lower total collagen contents in the skins of treated mice and a reduced dermis thickness after histological analysis. Although both SVF and hASCs were able to significantly reduce the clinical and histological parameters of HTS, hASCs appeared to be more efficient than SVF. The therapeutic effect of hASCs was attributed to higher expression of TGFβ3 and HGF, which are important anti-fibrotic mediators, and to higher levels of MMP-2 and MMP-2/TIMP-2 ratio, which reflect the remodelling activity responsible for fibrosis resorption. These results demonstrated the therapeutic potential of hASCs for clinical applications of hypertrophic scarring. PMID:27227960

  11. Comparison between Stromal Vascular Fraction and Adipose Mesenchymal Stem Cells in Remodeling Hypertrophic Scars.

    PubMed

    Domergue, Sophie; Bony, Claire; Maumus, Marie; Toupet, Karine; Frouin, Eric; Rigau, Valérie; Vozenin, Marie-Catherine; Magalon, Guy; Jorgensen, Christian; Noël, Danièle

    2016-01-01

    Hypertrophic scars (HTS) are characterized by excessive amount of collagen deposition and principally occur following burn injuries or surgeries. In absence of effective treatments, the use of mesenchymal stem/stromal cells, which have been shown to attenuate fibrosis in various applications, seems of interest. The objectives of the present study were therefore to evaluate the effect of human adipose tissue-derived mesenchymal stem cells (hASC) on a pre-existing HTS in a humanized skin graft model in Nude mice and to compare the efficacy of hASCs versus stromal vascular fraction (SVF). We found that injection of SVF or hASCs resulted in an attenuation of HTS as noticed after clinical evaluation of skin thickness, which was associated with lower total collagen contents in the skins of treated mice and a reduced dermis thickness after histological analysis. Although both SVF and hASCs were able to significantly reduce the clinical and histological parameters of HTS, hASCs appeared to be more efficient than SVF. The therapeutic effect of hASCs was attributed to higher expression of TGFβ3 and HGF, which are important anti-fibrotic mediators, and to higher levels of MMP-2 and MMP-2/TIMP-2 ratio, which reflect the remodelling activity responsible for fibrosis resorption. These results demonstrated the therapeutic potential of hASCs for clinical applications of hypertrophic scarring.

  12. Effect of Human Adipose Tissue Mesenchymal Stem Cells on the Regeneration of Ovine Articular Cartilage.

    PubMed

    Zorzi, Alessandro R; Amstalden, Eliane M I; Plepis, Ana Maria G; Martins, Virginia C A; Ferretti, Mario; Antonioli, Eliane; Duarte, Adriana S S; Luzo, Angela C M; Miranda, João B

    2015-11-09

    Cell therapy is a promising approach to improve cartilage healing. Adipose tissue is an abundant and readily accessible cell source. Previous studies have demonstrated good cartilage repair results with adipose tissue mesenchymal stem cells in small animal experiments. This study aimed to examine these cells in a large animal model. Thirty knees of adult sheep were randomly allocated to three treatment groups: CELLS (scaffold seeded with human adipose tissue mesenchymal stem cells), SCAFFOLD (scaffold without cells), or EMPTY (untreated lesions). A partial thickness defect was created in the medial femoral condyle. After six months, the knees were examined according to an adaptation of the International Cartilage Repair Society (ICRS 1) score, in addition to a new Partial Thickness Model scale and the ICRS macroscopic score. All of the animals completed the follow-up period. The CELLS group presented with the highest ICRS 1 score (8.3 ± 3.1), followed by the SCAFFOLD group (5.6 ± 2.2) and the EMPTY group (5.2 ± 2.4) (p = 0.033). Other scores were not significantly different. These results suggest that human adipose tissue mesenchymal stem cells promoted satisfactory cartilage repair in the ovine model.

  13. Effect of Human Adipose Tissue Mesenchymal Stem Cells on the Regeneration of Ovine Articular Cartilage

    PubMed Central

    Zorzi, Alessandro R.; Amstalden, Eliane M. I.; Plepis, Ana Maria G.; Martins, Virginia C. A.; Ferretti, Mario; Antonioli, Eliane; Duarte, Adriana S. S.; Luzo, Angela C. M.; Miranda, João B.

    2015-01-01

    Cell therapy is a promising approach to improve cartilage healing. Adipose tissue is an abundant and readily accessible cell source. Previous studies have demonstrated good cartilage repair results with adipose tissue mesenchymal stem cells in small animal experiments. This study aimed to examine these cells in a large animal model. Thirty knees of adult sheep were randomly allocated to three treatment groups: CELLS (scaffold seeded with human adipose tissue mesenchymal stem cells), SCAFFOLD (scaffold without cells), or EMPTY (untreated lesions). A partial thickness defect was created in the medial femoral condyle. After six months, the knees were examined according to an adaptation of the International Cartilage Repair Society (ICRS 1) score, in addition to a new Partial Thickness Model scale and the ICRS macroscopic score. All of the animals completed the follow-up period. The CELLS group presented with the highest ICRS 1 score (8.3 ± 3.1), followed by the SCAFFOLD group (5.6 ± 2.2) and the EMPTY group (5.2 ± 2.4) (p = 0.033). Other scores were not significantly different. These results suggest that human adipose tissue mesenchymal stem cells promoted satisfactory cartilage repair in the ovine model. PMID:26569221

  14. Adiponectin Isoforms and Leptin Impact on Rheumatoid Adipose Mesenchymal Stem Cells Function

    PubMed Central

    Skalska, Urszula; Kontny, Ewa

    2016-01-01

    Adiponectin and leptin have recently emerged as potential risk factors in rheumatoid arthritis (RA) pathogenesis. In this study we evaluated the effects of adiponectin and leptin on immunomodulatory function of adipose mesenchymal stem cells (ASCs) derived from infrapatellar fat pad of RA patients. ASCs were stimulated with leptin, low molecular weight (LMW) and high/middle molecular weight (HMW/MMW) adiponectin isoforms. The secretory activity of ASCs and their effect on rheumatoid synovial fibroblasts (RA-FLS) and peripheral blood mononuclear cells (PBMCs) from healthy donors have been analysed. RA-ASCs secreted spontaneously TGFβ, IL-6, IL-1Ra, PGE2, IL-8, and VEGF. Secretion of all these factors was considerably upregulated by HMW/MMW adiponectin, but not by LMW adiponectin and leptin. Stimulation with HMW/MMW adiponectin partially abolished proproliferative effect of ASC-derived soluble factors on RA-FLS but did not affect IL-6 secretion in FLS cultures. ASCs pretreated with HMW/MMW adiponectin maintained their anti-inflammatory function towards PBMCs, which was manifested by moderate PBMCs proliferation inhibition and IL-10 secretion induction. We have proved that HMW/MMW adiponectin stimulates secretory potential of rheumatoid ASCs but does not exert strong impact on ASCs function towards RA-FLS and PBMCs. PMID:26681953

  15. Growth and differentiation characteristics of equine mesenchymal stromal cells derived from different sources.

    PubMed

    Burk, Janina; Ribitsch, Iris; Gittel, Claudia; Juelke, Henriette; Kasper, Cornelia; Staszyk, Carsten; Brehm, Walter

    2013-01-01

    Multipotent mesenchymal stromal cells (MSCs) are a promising therapeutic tool for the treatment of equine tendon and other musculoskeletal injuries. While bone marrow is considered the 'gold standard' source of these cells, various other tissues contain MSCs with potentially useful features. The aim of this study was to compare clinically relevant characteristics of MSCs derived from bone marrow, umbilical cord blood and tissue and from adipose tissue and tendon. Cell yield, proliferation, migration, tendon marker expression and differentiation into adipocytes, chondrocytes and osteoblasts was assessed, quantified and compared. MSC numbers obtained from adipose, tendon or umbilical cord tissues were 222-fold higher than those obtained from bone marrow or cord blood. Cells derived from tendon and adipose tissues exhibited most rapid proliferation. Osteogenic differentiation was most prominent in MSCs derived from bone marrow, and was weak in MSCs derived from umbilical cord blood and tissue. In contrast, the highest levels of chondrogenic differentiation were observed in MSCs derived from these sources. Collagen 1A2 expression was highest in adipose- and tendon-derived MSCs, while scleraxis expression was highest in cord blood- and in tendon-derived MSCs. The findings indicate that MSCs from different sources display significantly diverse properties that may impact on their therapeutic application.

  16. Differentiation and Molecular Properties of Mesenchymal Stem Cells Derived from Murine Induced Pluripotent Stem Cells Derived on Gelatin or Collagen

    PubMed Central

    Obara, Chizuka; Takizawa, Kazuya; Tomiyama, Kenichi; Hazawa, Masaharu; Saotome-Nakamura, Ai; Gotoh, Takaya; Yasuda, Takeshi

    2016-01-01

    The generation of induced-pluripotential stem cells- (iPSCs-) derived mesenchymal stem cells (iMSCs) is an attractive and promising approach for preparing large, uniform batches of applicable MSCs that can serve as an alternative cell source of primary MSCs. Appropriate culture surfaces may influence their growth and differentiation potentials during iMSC derivation. The present study compared molecular properties and differentiation potential of derived mouse iPS-MSCs by deriving on gelatin or collagen-coated surfaces. The cells were derived by a one-step method and expressed CD73 and CD90, but CD105 was downregulated in iMSCs cultured only on gelatin-coated plates with increasing numbers of passages. A pairwise scatter analysis revealed similar expression of MSC-specific genes in iMSCs derived on gelatin and on collagen surfaces as well as in primary mouse bone marrow MSCs. Deriving iMSCs on gelatin and collagen dictated their osteogenic and adipose differentiation potentials, respectively. Derived iMSCs on gelatin upregulated Bmp2 and Lif prior to induction of osteogenic or adipose differentiation, while PPARγ was upregulated by deriving on collagen. Our results suggest that extracellular matrix components such as gelatin biases generated iMSC differentiation potential towards adipose or bone tissue in their derivation process via up- or downregulation of these master genes. PMID:27642306

  17. Differentiation and Molecular Properties of Mesenchymal Stem Cells Derived from Murine Induced Pluripotent Stem Cells Derived on Gelatin or Collagen.

    PubMed

    Obara, Chizuka; Takizawa, Kazuya; Tomiyama, Kenichi; Hazawa, Masaharu; Saotome-Nakamura, Ai; Gotoh, Takaya; Yasuda, Takeshi; Tajima, Katsushi

    2016-01-01

    The generation of induced-pluripotential stem cells- (iPSCs-) derived mesenchymal stem cells (iMSCs) is an attractive and promising approach for preparing large, uniform batches of applicable MSCs that can serve as an alternative cell source of primary MSCs. Appropriate culture surfaces may influence their growth and differentiation potentials during iMSC derivation. The present study compared molecular properties and differentiation potential of derived mouse iPS-MSCs by deriving on gelatin or collagen-coated surfaces. The cells were derived by a one-step method and expressed CD73 and CD90, but CD105 was downregulated in iMSCs cultured only on gelatin-coated plates with increasing numbers of passages. A pairwise scatter analysis revealed similar expression of MSC-specific genes in iMSCs derived on gelatin and on collagen surfaces as well as in primary mouse bone marrow MSCs. Deriving iMSCs on gelatin and collagen dictated their osteogenic and adipose differentiation potentials, respectively. Derived iMSCs on gelatin upregulated Bmp2 and Lif prior to induction of osteogenic or adipose differentiation, while PPARγ was upregulated by deriving on collagen. Our results suggest that extracellular matrix components such as gelatin biases generated iMSC differentiation potential towards adipose or bone tissue in their derivation process via up- or downregulation of these master genes. PMID:27642306

  18. Production of Bovine Embryos and Calves Cloned by Nuclear Transfer Using Mesenchymal Stem Cells from Amniotic Fluid and Adipose Tissue.

    PubMed

    da Silva, Carolina Gonzales; Martins, Carlos Frederico; Cardoso, Tereza Cristina; da Cunha, Elisa Ribeiro; Bessler, Heidi Christina; Martins, George Henrique Lima; Pivato, Ivo; Báo, Sônia Nair

    2016-04-01

    The less differentiated the donor cells are used in nuclear transfer (NT), the more easily are they reprogrammed by the recipient cytoplasm. In this context, mesenchymal stem cells (MSCs) appear as an alternative to donor nuclei for NT. The amniotic fluid and adipose tissue are sources of MSCs that have not been tested for the production of cloned embryos in cattle. The objective of this study was to isolate, characterize, and use MSCs derived from amniotic fluid (MSC-AF) and adipose tissue (MSC-AT) to produce cloned calves. Isolation of MSC-AF was performed using in vivo ultrasound-guided transvaginal amniocentesis, and MSC-AT were isolated by explant culture. Cellular phenotypic and genotypic characterization by flow cytometry, immunohistochemistry, and RT-PCR were performed, as well as induction in different cell lineages. The NT was performed using MSC-AF and MSC-AT as nuclear donors. The mesenchymal markers of MSC were expressed in bovine MSC-AF and MSC-AT cultures, as evidenced by flow cytometry, immunohistochemistry, and RT-PCR. When induced, these cells differentiated into osteocytes, chondrocytes, and adipocytes. Embryo production was similar between the cell types, and two calves were born. The calf from MSC-AT was born healthy, and this fact opens a new possibility of using this type of cell to produce cloned cattle by NT. PMID:27055630

  19. Therapeutic Potential of Human Adipose-Derived Stem Cells (ADSCs) from Cancer Patients: A Pilot Study

    PubMed Central

    García-Contreras, Marta; Vera-Donoso, César David; Hernández-Andreu, José Miguel; García-Verdugo, José Manuel; Oltra, Elisa

    2014-01-01

    Mesenchymal stem cells from adipose tissue (ADSCs) are an important source of cells for regenerative medicine. The therapeutic effect of culture-expanded adipose derived stem cells has been shown; however, optimal xeno-free culture conditions remain to be determined. Cancer patients, specifically those undergoing invasive surgery, constitute a subgroup of patients who could benefit from autologous stem cell transplantation. Although regenerative potential of their ADSCs could be affected by the disease and/or treatment, we are not aware of any study that has evaluated the therapeutic potential of ADSCs isolated from cancer patients in reference to that of ADSCs derived from healthy subjects. Here we report that ADSCs isolated from subabdominal adipose tissue of patients with urological neoplasms yielded similar growth kinetics, presented equivalent mesenchymal surface markers and showed similar differentiation potential into distinct mesodermal cell lineages: adipocytes, chondroblasts and osteoblasts than ADSCs isolated from adipose tissue of age-matched non-oncogenic participants, all under xeno-free growth culture conditions. Molecular karyotyping of patient expanded ADSCs genomes showed no disease-related alterations indicating their safety. In addition, vesicles <100 nm identified as exosomes (EXOs) which may be at least partly responsible for the attributed therapeutic paracrine effects of the ADSCs were effectively isolated from ADSCs and showed equivalent miRNA content regardless they were derived from cancer patients or non-oncogenic participants indicating that the repair capabilities of xeno-free expanded ADSCs are not compromised by patient condition and therefore their xeno-free culture expanded ADSCs should be suitable for autologous stem cell transplantation in a clinical setting. PMID:25412325

  20. The therapeutic effects of human adipose-derived stem cells in Alzheimer's disease mouse models.

    PubMed

    Chang, Keun-A; Kim, Hee Jin; Joo, Yuyoung; Ha, Sungji; Suh, Yoo-Hun

    2014-01-01

    Alzheimer's disease (AD) is an irreversible neurodegenerative disease, still lacking proper clinical treatment. Therefore, many researchers have focused on the possibility of therapeutic use of stem cells for AD. Adipose-derived stem cells (ASCs), mesenchymal stem cells (MSCs) isolated from adipose tissue, are well known for their pluripotency and their ability to differentiate into multiple tissue types and have immune modulatory properties similar to those of MSCs from other origins. Because of their biological properties, ASCs can be considered for cell therapy and neuroregeneration. Our recent results clearly showed the therapeutic potential of these cells after transplantation into Tg2576 mice (an AD mouse model). Intravenously or intracerebrally transplanted human ASCs (hASCs) greatly improved the memory impairment and the neuropathology, suggesting that hASCs have a high therapeutic potential for AD.

  1. Adipose-derived stem cells and platelet-rich plasma: the keys to functional periodontal tissue engineering.

    PubMed

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-09-01

    Numerous different types of periodontal tissue regeneration therapies have been developed clinically with variable outcomes and serious limitations. A key goal of periodontal therapy is to regenerate the destroyed periodontal tissues including alveolar bone, cementum and periodontal ligament. The critical factors in attaining successful periodontal tissue regeneration are the correct recruitment of cells to the site and the production of a suitable extra cellular matrix consistent with the periodontal tissues. Adipose tissue, from which mesenchymal stem cells can be harvested easily and safely, is an especially attractive stem cell source, because adipose-derived stem cells have a strong potential for cell differentiation and growth factor secretion. Meanwhile, the usefulness of platelet-rich plasma in the field of dental surgery has attracted attention. Therapeutic effects of platelet-rich plasma are believed to occur through the provision of concentrated levels of platelet-derived growth factors. Further, recent reports suggested the effect of platelet-rich plasma on mesenchymal stem cell proliferation, differentiation and survival rate. Therefore, the admixture of mesenchymal stem cells and platelet-rich plasma may indicate the great potential for tissue regenerations including periodontal tissue regeneration. In this review, the potential of adipose-derived stem cells and platelet-rich plasma is introduced. Of particular interest, the usefulness in periodontal tissue regeneration and future perspective is discussed.

  2. Implantation of Autologous Adipose-Derived Cells Reconstructs Functional Urethral Sphincters in Rabbit Cryoinjured Urethra

    PubMed Central

    Silwal Gautam, Sudha; Ishizuka, Osamu; Lei, Zhang; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Ogawa, Teruyuki; Kurizaki, Yoshiki; Kato, Haruaki; Nishizawa, Osamu

    2014-01-01

    We investigated the ability of autologous adipose-derived cells injected into cryoinjured rabbit urethras to improve urinary continence and explored the possible mechanisms by which it occurred. Adipose tissue was harvested from the perivesical region of nine 10-week-old female New Zealand White rabbits and cultured for 7 days. Immediately after harvesting the tissue, we injured the internal urethral orifice by spraying liquid nitrogen for 20 s. The cultured cells expressed the mesenchymal cell marker STRO1, but not muscle cell markers myoglobin or smooth muscle actin (SMA). Just before implantation, the adipose-derived cells were labeled with the PKH26 fluorescent cell linker. Autologous 2.0×106 adipose-derived cells (five rabbits) or a cell-free control solution (four rabbits) was injected around the cryoinjured urethras at 7 days after injury. Fourteen days later, the leak point pressure (LPP) was measured, and the urethras were harvested for immunohistochemical analyses. At 14 days after implantation, LPP of the cell-implanted group was significantly higher compared with the cell-free control group (p<0.05). In immunohistochemical examination, the reconstructed skeletal and smooth muscle areas in the cell-implanted regions were significantly more developed than those in controls (p<0.01). Implanted PKH26-labeled adipose-derived cells were immunohistochemically positive for myoglobin, SMA, and Pax7 antibodies, which are markers for skeletal muscles, smooth muscles, and myoblast progenitor cells, respectively. In addition, these implanted cells were positive for the nerve cell markers, tubulin β3, S100, and the vascular endothelial cell marker, von Willebrand factor. Furthermore, some of the implanted cells were positive for the transforming growth factor β1, nerve growth factor, and vascular endothelial growth factor. In conclusion, implantation of autologous adipose-derived cells into the cryoinjured rabbit urethras promoted the recovery of urethral

  3. Adipose-derived stromal cells for the reconstruction of a human vesical equivalent.

    PubMed

    Rousseau, Alexandre; Fradette, Julie; Bernard, Geneviève; Gauvin, Robert; Laterreur, Véronique; Bolduc, Stéphane

    2015-11-01

    Despite a wide panel of tissue-engineering models available for vesical reconstruction, the lack of a differentiated urothelium remains their main common limitation. For the first time to our knowledge, an entirely human vesical equivalent, free of exogenous matrix, has been reconstructed using the self-assembly method. Moreover, we tested the contribution of adipose-derived stromal cells, an easily available source of mesenchymal cells featuring many potential advantages, by reconstructing three types of equivalent, named fibroblast vesical equivalent, adipose-derived stromal cell vesical equivalent and hybrid vesical equivalent--the latter containing both adipose-derived stromal cells and fibroblasts. The new substitutes have been compared and characterized for matrix composition and organization, functionality and mechanical behaviour. Although all three vesical equivalents displayed adequate collagen type I and III expression, only two of them, fibroblast vesical equivalent and hybrid vesical equivalent, sustained the development of a differentiated and functional urothelium. The presence of uroplakins Ib, II and III and the tight junction marker ZO-1 was detected and correlated with impermeability. The mechanical resistance of these tissues was sufficient for use by surgeons. We present here in vitro tissue-engineered vesical equivalents, built without the use of any exogenous matrix, able to sustain mechanical stress and to support the formation of a functional urothelium, i.e. able to display a barrier function similar to that of native tissue.

  4. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells.

    PubMed

    Katz, Adam J; Tholpady, Ashok; Tholpady, Sunil S; Shang, Hulan; Ogle, Roy C

    2005-03-01

    Adult human subcutaneous adipose tissue contains cells with intriguing multilineage developmental plasticity, much like marrow-derived mesenchymal stem cells. Putative stem or progenitor cells from fat have been given many different names in the literature, reflecting an early and evolving consensus regarding their phenotypic characterization. The study reported here used microarrays to evaluate over 170 genes relating to angiogenesis and extracellular matrix in undifferentiated, early-passage human adipose-derived adherent stromal (hADAS) cells isolated from three separate donors. The hADAS populations unanimously transcribed 66% of the screened genes, and 83% were transcribed by at least two of the three populations. The most highly transcribed genes relate to functional groupings such as cell adhesion, matrix proteins, growth factors and receptors, and proteases. The transcriptome of hADAS cells demonstrated by this work reveals many similarities to published profiles of bone marrow mesenchymal stem cells (MSCs). In addition, flow analysis of over 24 hADAS cell surface proteins (n = 7 donors) both confirms and expands on the existing literature and reveals strong intergroup correlation, despite an inconsistent nomenclature and the lack of standardized protocols for cell isolation and culture. Finally, based on flow analysis and reverse transcription polymerase chain reaction studies, our results suggest that hADAS cells do not express several proteins that are implicated as markers of "stemness" in other stem cell populations, including telomerase, CD133, and the membrane transporter ABCG2.

  5. Phenotypic and functional properties of feline dedifferentiated fat cells and adipose-derived stem cells.

    PubMed

    Kono, Shota; Kazama, Tomohiko; Kano, Koichiro; Harada, Kayoko; Uechi, Masami; Matsumoto, Taro

    2014-01-01

    It has been reported that mature adipocyte-derived dedifferentiated fat (DFAT) cells show multilineage differentiation potential similar to that observed in mesenchymal stem cells. Since DFAT cells can be prepared from a small quantity of adipose tissue, they could facilitate cell-based therapies in small companion animals such as cats. The present study examined whether multipotent DFAT cells can be generated from feline adipose tissue, and the properties of DFAT cells were compared with those of adipose-derived stem cells (ASCs). DFAT cells and ASCs were prepared from the floating mature adipocyte fraction and the stromal vascular fraction, respectively, of collagenase-digested feline omental adipose tissue. Both cell types were evaluated for growth kinetics, colony-forming unit fibroblast (CFU-F) frequency, immunophenotypic properties, and multilineage differentiation potential. DFAT cells and ASCs could be generated from approximately 1g of adipose tissue and were grown and subcultured on laminin-coated dishes. The frequency of CFU-Fs in DFAT cells (35.8%) was significantly higher than that in ASCs (20.8%) at passage 1 (P1). DFAT cells and ASCs displayed similar immunophenotypes (CD44(+), CD90(+), CD105(+), CD14(-), CD34(-) and CD45(-)). Alpha-smooth muscle actin-positive cells were readily detected in ASCs (15.2±7.2%) but were rare in DFAT cells (2.2±3.2%) at P1. Both cell types exhibited adipogenic, osteogenic, chondrogenic, and smooth muscle cell differentiation potential in vitro. In conclusion, feline DFAT cells exhibited similar properties to ASCs but displayed higher CFU-F frequency and greater homogeneity. DFAT cells, like ASCs, may be an attractive source for cell-based therapies in cats. PMID:24300011

  6. Transcriptomics Comparison between Porcine Adipose and Bone Marrow Mesenchymal Stem Cells during In Vitro Osteogenic and Adipogenic Differentiation

    PubMed Central

    Monaco, Elisa; Bionaz, Massimo; Rodriguez-Zas, Sandra; Hurley, Walter L.; Wheeler, Matthew B.

    2012-01-01

    Bone-marrow mesenchymal stem cells (BMSC) are considered the gold standard for use in tissue regeneration among mesenchymal stem cells (MSC). The abundance and ease of harvest make the adipose-derived stem cells (ASC) an attractive alternative to BMSC. The aim of the present study was to compare the transcriptome of ASC and BMSC, respectively isolated from subcutaneous adipose tissue and femur of 3 adult pigs, during in vitro osteogenic and adipogenic differentiation for up to four weeks. At 0, 2, 7, and 21 days of differentiation RNA was extracted for microarray analysis. A False Discovery Rate ≤0.05 for overall interactions effect and P<0.001 between comparisons were used to determine differentially expressed genes (DEG). Ingenuity Pathway Analysis and DAVID performed the functional analysis of the DEG. Functional analysis of highest expressed genes in MSC and genes more expressed in MSC vs. fully differentiated tissues indicated low immunity and high angiogenic capacity. Only 64 genes were differentially expressed between ASC and BMSC before differentiation. The functional analysis uncovered a potential larger angiogenic, osteogenic, migration, and neurogenic capacity in BMSC and myogenic capacity in ASC. Less than 200 DEG were uncovered between ASC and BMSC during differentiation. Functional analysis also revealed an overall greater lipid metabolism in ASC, while BMSC had a greater cell growth and proliferation. The time course transcriptomic comparison between differentiation types uncovered <500 DEG necessary to determine cell fate. The functional analysis indicated that osteogenesis had a larger cell proliferation and cytoskeleton organization with a crucial role of G-proteins. Adipogenesis was driven by PPAR signaling and had greater angiogenesis, lipid metabolism, migration, and tumorigenesis capacity. Overall the data indicated that the transcriptome of the two MSC is relatively similar across the conditions studied. In addition, functional analysis

  7. Adipose-Derived Stem Cells for Tissue Engineering and Regenerative Medicine Applications

    PubMed Central

    Dai, Ru; Wang, Zongjie; Samanipour, Roya; Koo, Kyo-in; Kim, Keekyoung

    2016-01-01

    Adipose-derived stem cells (ASCs) are a mesenchymal stem cell source with properties of self-renewal and multipotential differentiation. Compared to bone marrow-derived stem cells (BMSCs), ASCs can be derived from more sources and are harvested more easily. Three-dimensional (3D) tissue engineering scaffolds are better able to mimic the in vivo cellular microenvironment, which benefits the localization, attachment, proliferation, and differentiation of ASCs. Therefore, tissue-engineered ASCs are recognized as an attractive substitute for tissue and organ transplantation. In this paper, we review the characteristics of ASCs, as well as the biomaterials and tissue engineering methods used to proliferate and differentiate ASCs in a 3D environment. Clinical applications of tissue-engineered ASCs are also discussed to reveal the potential and feasibility of using tissue-engineered ASCs in regenerative medicine. PMID:27057174

  8. The Adipose Mesenchymal Stem Cell Secretome Inhibits Inflammatory Responses of Microglia: Evidence for an Involvement of Sphingosine-1-Phosphate Signalling.

    PubMed

    Marfia, Giovanni; Navone, Stefania Elena; Hadi, Loubna Abdel; Paroni, Moira; Berno, Valeria; Beretta, Matteo; Gualtierotti, Roberta; Ingegnoli, Francesca; Levi, Vincenzo; Miozzo, Monica; Geginat, Jens; Fassina, Lorenzo; Rampini, Paolo; Tremolada, Carlo; Riboni, Laura; Campanella, Rolando

    2016-07-15

    Central nervous system (CNS) inflammation is primarily driven by microglial cells which secrete proinflammatory cytokines and undergo proliferation upon activation, as it occurs in neurodegenerative diseases. Uncontrolled or prolonged CNS inflammation is potentially harmful and can result in cellular damage. Recently, many studies have focused on human adipose tissue as an attractive source of cytokines with immunosuppressive properties that potentially modulate inflammation. Our study aimed to evaluate if different methods of human tissue collection could affect adipose mesenchymal stem cell (ADSC)-derived cytokine secretion and investigate the effects of ADSC secretome in modulating microglia activation and the possible implication of sphingosine-1-phosphate (S1P) in these effects. Our results demonstrate that the conditioned medium (CM) of ADSCs isolated by two different processing methods (lipoaspirate and Lipogems) significantly inhibited the lipopolysaccharide (LPS)-induced effects on microglia activation, including microglial expression of CD68, cytokine secretion, proliferation, and migration. Pulse studies with radiolabeled sphingosine demonstrated that LPS treatment of resting microglia induced a significant increase of both cellular and extracellular S1P. Moreover, and of relevance, FTY720, a functional antagonist of S1P receptor, inhibited the multiple LPS-induced proinflammatory effects on microglia, and S1P suppressed the anti-inflammatory effect of ADSC-CM. This suggests that LPS-mediated microglial activation is countered by ADSC-CM through the modulation of sphingosine kinase/S1P signalling. PMID:27217090

  9. Genome-Wide Profiling of MicroRNAs in Adipose Mesenchymal Stem Cell Differentiation and Mouse Models of Obesity

    PubMed Central

    Bengestrate, Lena; Virtue, Sam; Campbell, Mark; Vidal-Puig, Antonio; Hadaschik, Dirk; Hahn, Peter; Bielke, Wolfgang

    2011-01-01

    In recent years, there has been accumulating evidence that microRNAs are key regulator molecules of gene expression. The cellular processes that are regulated by microRNAs include e.g. cell proliferation, programmed cell death and cell differentiation. Adipocyte differentiation is a highly regulated cellular process for which several important regulating factors have been discovered, but still not all are known to fully understand the underlying mechanisms. In the present study, we analyzed the expression of 597 microRNAs during the differentiation of mouse mesenchymal stem cells into terminally differentiated adipocytes by real-time RT-PCR. In total, 66 miRNAs were differentially expressed in mesenchymal stem cell-derived adipocytes compared to the undifferentiated progenitor cells. To further study the regulation of these 66 miRNAs in white adipose tissue in vivo and their dependence on PPARγ activity, mouse models of genetically or diet induced obesity as well as a mouse line expressing a dominant negative PPARγ mutant were employed. PMID:21731698

  10. Adipose-derived stem cell differentiation as a basic tool for vascularized adipose tissue engineering.

    PubMed

    Volz, Ann-Cathrin; Huber, Birgit; Kluger, Petra J

    2016-01-01

    The development of in vitro adipose tissue constructs is highly desired to cope with the increased demand for substitutes to replace damaged soft tissue after high graded burns, deformities or tumor removal. To achieve clinically relevant dimensions, vascularization of soft tissue constructs becomes inevitable but still poses a challenge. Adipose-derived stem cells (ASCs) represent a promising cell source for the setup of vascularized fatty tissue constructs as they can be differentiated into adipocytes and endothelial cells in vitro and are thereby available in sufficiently high cell numbers. This review summarizes the currently known characteristics of ASCs and achievements in adipogenic and endothelial differentiation in vitro. Further, the interdependency of adipogenesis and angiogenesis based on the crosstalk of endothelial cells, stem cells and adipocytes is addressed at the molecular level. Finally, achievements and limitations of current co-culture conditions for the construction of vascularized adipose tissue are evaluated. PMID:26976717

  11. Successful isolation of viable adipose-derived stem cells from human adipose tissue subject to long-term cryopreservation: positive implications for adult stem cell-based therapeutics in patients of advanced age.

    PubMed

    Devitt, Sean M; Carter, Cynthia M; Dierov, Raia; Weiss, Scott; Gersch, Robert P; Percec, Ivona

    2015-01-01

    We examined cell isolation, viability, and growth in adipose-derived stem cells harvested from whole adipose tissue subject to different cryopreservation lengths (2-1159 days) from patients of varying ages (26-62 years). Subcutaneous abdominal adipose tissue was excised during abdominoplasties and was cryopreserved. The viability and number of adipose-derived stem cells isolated were measured after initial isolation and after 9, 18, and 28 days of growth. Data were analyzed with respect to cryopreservation duration and patient age. Significantly more viable cells were initially isolated from tissue cryopreserved <1 year than from tissue cryopreserved >2 years, irrespective of patient age. However, this difference did not persist with continued growth and there were no significant differences in cell viability or growth at subsequent time points with respect to cryopreservation duration or patient age. Mesenchymal stem cell markers were maintained in all cohorts tested throughout the duration of the study. Consequently, longer cryopreservation negatively impacts initial live adipose-derived stem cell isolation; however, this effect is neutralized with continued cell growth. Patient age does not significantly impact stem cell isolation, viability, or growth. Cryopreservation of adipose tissue is an effective long-term banking method for isolation of adipose-derived stem cells in patients of varying ages.

  12. Successful Isolation of Viable Adipose-Derived Stem Cells from Human Adipose Tissue Subject to Long-Term Cryopreservation: Positive Implications for Adult Stem Cell-Based Therapeutics in Patients of Advanced Age

    PubMed Central

    Devitt, Sean M.; Carter, Cynthia M.; Dierov, Raia; Weiss, Scott; Percec, Ivona

    2015-01-01

    We examined cell isolation, viability, and growth in adipose-derived stem cells harvested from whole adipose tissue subject to different cryopreservation lengths (2–1159 days) from patients of varying ages (26–62 years). Subcutaneous abdominal adipose tissue was excised during abdominoplasties and was cryopreserved. The viability and number of adipose-derived stem cells isolated were measured after initial isolation and after 9, 18, and 28 days of growth. Data were analyzed with respect to cryopreservation duration and patient age. Significantly more viable cells were initially isolated from tissue cryopreserved <1 year than from tissue cryopreserved >2 years, irrespective of patient age. However, this difference did not persist with continued growth and there were no significant differences in cell viability or growth at subsequent time points with respect to cryopreservation duration or patient age. Mesenchymal stem cell markers were maintained in all cohorts tested throughout the duration of the study. Consequently, longer cryopreservation negatively impacts initial live adipose-derived stem cell isolation; however, this effect is neutralized with continued cell growth. Patient age does not significantly impact stem cell isolation, viability, or growth. Cryopreservation of adipose tissue is an effective long-term banking method for isolation of adipose-derived stem cells in patients of varying ages. PMID:25945096

  13. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice

    SciTech Connect

    Fujimura, Juri; E-mail: juri-f@nms.ac.jp; Ogawa, Rei; Mizuno, Hiroshi; Fukunaga, Yoshitaka; Suzuki, Hidenori

    2005-07-22

    Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have recently reported that adipose-derived stromal cells (ASCs) could differentiate into mesenchymal lineages in vitro. In this study, we performed neural induction using ASCs from GFP transgenic mice and were able to induce these ASCs into neuronal and glial cell lineages. Most of the neurally induced cells showed bipolar or multipolar appearance morphologically and expressed neuronal markers. Electron microscopy revealed their neuronal morphology. Some cells also showed glial phenotypes, as shown immunocytochemically. The present study clearly shows that ASCs derived from GFP transgenic mice differentiate into neural lineages in vitro, suggesting that these cells might provide an ideal source for further neural stem cell research with possible therapeutic application for neurological disorders.

  14. Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes.

    PubMed

    Abd Elmageed, Zakaria Y; Yang, Yijun; Thomas, Raju; Ranjan, Manish; Mondal, Debasis; Moroz, Krzysztof; Fang, Zhide; Rezk, Bashir M; Moparty, Krishnarao; Sikka, Suresh C; Sartor, Oliver; Abdel-Mageed, Asim B

    2014-04-01

    Emerging evidence suggests that mesenchymal stem cells (MSCs) are often recruited to tumor sites but their functional significance in tumor growth and disease progression remains elusive. Herein we report that prostate cancer (PC) cell microenvironment subverts PC patient adipose-derived stem cells (pASCs) to undergo neoplastic transformation. Unlike normal ASCs, the pASCs primed with PC cell conditioned media (CM) formed prostate-like neoplastic lesions in vivo and reproduced aggressive tumors in secondary recipients. The pASC tumors acquired cytogenetic aberrations and mesenchymal-to-epithelial transition and expressed epithelial, neoplastic, and vasculogenic markers reminiscent of molecular features of PC tumor xenografts. Our mechanistic studies revealed that PC cell-derived exosomes are sufficient to recapitulate formation of prostate tumorigenic mimicry generated by CM-primed pASCs in vivo. In addition to downregulation of the large tumor suppressor homolog2 and the programmed cell death protein 4, a neoplastic transformation inhibitor, the tumorigenic reprogramming of pASCs was associated with trafficking by PC cell-derived exosomes of oncogenic factors, including H-ras and K-ras transcripts, oncomiRNAs miR-125b, miR-130b, and miR-155 as well as the Ras superfamily of GTPases Rab1a, Rab1b, and Rab11a. Our findings implicate a new role for PC cell-derived exosomes in clonal expansion of tumors through neoplastic reprogramming of tumor tropic ASCs in cancer patients.

  15. Regenerative repair of damaged meniscus with autologous adipose tissue-derived stem cells.

    PubMed

    Pak, Jaewoo; Lee, Jung Hun; Lee, Sang Hee

    2014-01-01

    Mesenchymal stem cells (MSCs) are defined as pluripotent cells found in numerous human tissues, including bone marrow and adipose tissue. Such MSCs, isolated from bone marrow and adipose tissue, have been shown to differentiate into bone and cartilage, along with other types of tissues. Therefore, MSCs represent a promising new therapy in regenerative medicine. The initial treatment of meniscus tear of the knee is managed conservatively with nonsteroidal anti-inflammatory drugs and physical therapy. When such conservative treatment fails, an arthroscopic resection of the meniscus is necessary. However, the major drawback of the meniscectomy is an early onset of osteoarthritis. Therefore, an effective and noninvasive treatment for patients with continuous knee pain due to damaged meniscus has been sought. Here, we present a review, highlighting the possible regenerative mechanisms of damaged meniscus with MSCs (especially adipose tissue-derived stem cells (ASCs)), along with a case of successful repair of torn meniscus with significant reduction of knee pain by percutaneous injection of autologous ASCs into an adult human knee.

  16. Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents.

    PubMed

    Bayes-Genis, Antoni; Soler-Botija, Carolina; Farré, Jordi; Sepúlveda, Pilar; Raya, Angel; Roura, Santiago; Prat-Vidal, Cristina; Gálvez-Montón, Carolina; Montero, José Anastasio; Büscher, Dirk; Izpisúa Belmonte, Juan Carlos

    2010-11-01

    Myocardial infarction caused by vascular occlusion results in the formation of nonfunctional fibrous tissue. Cumulative evidence indicates that cell therapy modestly improves cardiac function; thus, novel cell sources with the potential to repair injured tissue are actively sought. Here, we identify and characterize a cell population of cardiac adipose tissue-derived progenitor cells (ATDPCs) from biopsies of human adult cardiac adipose tissue. Cardiac ATDPCs express a mesenchymal stem cell-like marker profile (strongly positive for CD105, CD44, CD166, CD29 and CD90) and have immunosuppressive capacity. Moreover, cardiac ATDPCs have an inherent cardiac-like phenotype and were able to express de novo myocardial and endothelial markers in vitro but not to differentiate into adipocytes. In addition, when cardiac ATDPCs were transplanted into injured myocardium in mouse and rat models of myocardial infarction, the engrafted cells expressed cardiac (troponin I, sarcomeric α-actinin) and endothelial (CD31) markers, vascularization increased, and infarct size was reduced in mice and rats. Moreover, significant differences between control and cell-treated groups were found in fractional shortening and ejection fraction, and the anterior wall remained significantly thicker 30days after cardiac delivery of ATDPCs. Finally, cardiac ATDPCs secreted proangiogenic factors under in vitro hypoxic conditions, suggesting a paracrine effect to promote local vascularization. Our results indicate that the population of progenitor cells isolated from human cardiac adipose tissue (cardiac ATDPCs) may be valid candidates for future use in cell therapy to regenerate injured myocardium. PMID:20713059

  17. Characterization and Multilineage Differentiation of Domestic and Black-Footed Cat Mesenchymal Stromal/Stem Cells from Abdominal and Subcutaneous Adipose Tissue.

    PubMed

    Gómez, Martha C; Qin, Qian; Biancardi, Monica N; Galiguis, Jason; Dumas, Cherie; MacLean, Robert A; Wang, Guoshun; Pope, C Earle

    2015-10-01

    Transplantation of mesenchymal stem cells (MSCs) isolated from bone marrow or adipose tissue is emerging as a promising tool for cell replacement therapy and regenerative medicine in domestic and endangered animal species. Defining the differentiation capability of adipose-derived mesenchymal stromal/stem cells (AMSCs) collected from different depot sites of adipose tissue will be essential for developing strategies for cell replacement therapy. In the present study, we compared the biological characteristics of domestic cat AMSCs isolated from visceral fat of the abdominal cavity (AB) with AMSCs from subcutaneous (SQ) tissue, and the functional capability of domestic and black-footed cat (Felis nigripes) AMSCs to differentiate into other cell types. Our results showed that both domestic and black-footed cat adipose-derived stromal vascular fractions contained AMSCs. Both domestic cat AB- and SQ-AMSCs showed important clonogenic ability and the minimal MSC immunophenotype as defined by the International Society for Cellular Therapy in humans. However, domestic cat AB-AMSCs had higher percentages of cells positive for MSCs-associated cluster of differentiation (CD) markers CD90(+) and CD105(+) (92% and 80%, respectively) than those of SQ-AMSCs (77% and 58%, respectively). Although these results may suggest that AB-AMSCs may be more multipotent than SQ-AMSCs, both types of cells showed similar expression of pluripotent genes Oct-4 and Klf4, except for higher expression of Nanog than in AB-AMSCs, and equivalent in vitro multilineage differentiation. Under appropriate stimuli, the black-footed cat and both domestic cat AB- and SQ-AMSCs differentiated not only toward mesoderm cell lineages but also toward ectoderm cell lineage, such as neuron cell-like cells. Black-footed cat AMSCs had more capability to differentiate toward chondrocytes. These results suggest that the defined AMSC population (regardless of site of collection) could potentially be employed as a

  18. Characterization and Multilineage Differentiation of Domestic and Black-Footed Cat Mesenchymal Stromal/Stem Cells from Abdominal and Subcutaneous Adipose Tissue.

    PubMed

    Gómez, Martha C; Qin, Qian; Biancardi, Monica N; Galiguis, Jason; Dumas, Cherie; MacLean, Robert A; Wang, Guoshun; Pope, C Earle

    2015-10-01

    Transplantation of mesenchymal stem cells (MSCs) isolated from bone marrow or adipose tissue is emerging as a promising tool for cell replacement therapy and regenerative medicine in domestic and endangered animal species. Defining the differentiation capability of adipose-derived mesenchymal stromal/stem cells (AMSCs) collected from different depot sites of adipose tissue will be essential for developing strategies for cell replacement therapy. In the present study, we compared the biological characteristics of domestic cat AMSCs isolated from visceral fat of the abdominal cavity (AB) with AMSCs from subcutaneous (SQ) tissue, and the functional capability of domestic and black-footed cat (Felis nigripes) AMSCs to differentiate into other cell types. Our results showed that both domestic and black-footed cat adipose-derived stromal vascular fractions contained AMSCs. Both domestic cat AB- and SQ-AMSCs showed important clonogenic ability and the minimal MSC immunophenotype as defined by the International Society for Cellular Therapy in humans. However, domestic cat AB-AMSCs had higher percentages of cells positive for MSCs-associated cluster of differentiation (CD) markers CD90(+) and CD105(+) (92% and 80%, respectively) than those of SQ-AMSCs (77% and 58%, respectively). Although these results may suggest that AB-AMSCs may be more multipotent than SQ-AMSCs, both types of cells showed similar expression of pluripotent genes Oct-4 and Klf4, except for higher expression of Nanog than in AB-AMSCs, and equivalent in vitro multilineage differentiation. Under appropriate stimuli, the black-footed cat and both domestic cat AB- and SQ-AMSCs differentiated not only toward mesoderm cell lineages but also toward ectoderm cell lineage, such as neuron cell-like cells. Black-footed cat AMSCs had more capability to differentiate toward chondrocytes. These results suggest that the defined AMSC population (regardless of site of collection) could potentially be employed as a

  19. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells.

    PubMed

    Duscher, Dominik; Atashroo, David; Maan, Zeshaan N; Luan, Anna; Brett, Elizabeth A; Barrera, Janos; Khong, Sacha M; Zielins, Elizabeth R; Whittam, Alexander J; Hu, Michael S; Walmsley, Graham G; Pollhammer, Michael S; Schmidt, Manfred; Schilling, Arndt F; Machens, Hans-Günther; Huemer, Georg M; Wan, Derrick C; Longaker, Michael T; Gurtner, Geoffrey C

    2016-02-01

    Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31-/CD45-), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance: Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency

  20. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells

    PubMed Central

    Duscher, Dominik; Atashroo, David; Maan, Zeshaan N.; Luan, Anna; Brett, Elizabeth A.; Barrera, Janos; Khong, Sacha M.; Zielins, Elizabeth R.; Whittam, Alexander J.; Hu, Michael S.; Walmsley, Graham G.; Pollhammer, Michael S.; Schmidt, Manfred; Schilling, Arndt F.; Machens, Hans-Günther; Huemer, Georg M.; Wan, Derrick C.; Longaker, Michael T.

    2016-01-01

    Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31−/CD45−), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency

  1. Ultrasound-Assisted Liposuction Does Not Compromise the Regenerative Potential of Adipose-Derived Stem Cells.

    PubMed

    Duscher, Dominik; Atashroo, David; Maan, Zeshaan N; Luan, Anna; Brett, Elizabeth A; Barrera, Janos; Khong, Sacha M; Zielins, Elizabeth R; Whittam, Alexander J; Hu, Michael S; Walmsley, Graham G; Pollhammer, Michael S; Schmidt, Manfred; Schilling, Arndt F; Machens, Hans-Günther; Huemer, Georg M; Wan, Derrick C; Longaker, Michael T; Gurtner, Geoffrey C

    2016-02-01

    Human mesenchymal stem cells (MSCs) have recently become a focus of regenerative medicine, both for their multilineage differentiation capacity and their excretion of proregenerative cytokines. Adipose-derived mesenchymal stem cells (ASCs) are of particular interest because of their abundance in fat tissue and the ease of harvest via liposuction. However, little is known about the impact of different liposuction methods on the functionality of ASCs. Here we evaluate the regenerative abilities of ASCs harvested via a third-generation ultrasound-assisted liposuction (UAL) device versus ASCs obtained via standard suction-assisted lipoaspiration (SAL). Lipoaspirates were sorted using fluorescent assisted cell sorting based on an established surface-marker profile (CD34+/CD31-/CD45-), to obtain viable ASCs. Yield and viability were compared and the differentiation capacities of the ASCs were assessed. Finally, the regenerative potential of ASCs was examined using an in vivo model of tissue regeneration. UAL- and SAL-derived samples demonstrated equivalent ASC yield and viability, and UAL ASCs were not impaired in their osteogenic, adipogenic, or chondrogenic differentiation capacity. Equally, quantitative real-time polymerase chain reaction showed comparable expression of most osteogenic, adipogenic, and key regenerative genes between both ASC groups. Cutaneous regeneration and neovascularization were significantly enhanced in mice treated with ASCs obtained by either UAL or SAL compared with controls, but there were no significant differences in healing between cell-therapy groups. We conclude that UAL is a successful method of obtaining fully functional ASCs for regenerative medicine purposes. Cells harvested with this alternative approach to liposuction are suitable for cell therapy and tissue engineering applications. Significance: Adipose-derived mesenchymal stem cells (ASCs) are an appealing source of therapeutic progenitor cells because of their multipotency

  2. Myocardial regeneration potential of adipose tissue-derived stem cells

    SciTech Connect

    Bai, Xiaowen; Alt, Eckhard

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  3. Adipose Mesenchymal Stem Cells Isolated after Manual or Water-jet-Assisted Liposuction Display Similar Properties

    PubMed Central

    Bony, Claire; Cren, Mailys; Domergue, Sophie; Toupet, Karine; Jorgensen, Christian; Noël, Danièle

    2016-01-01

    Mesenchymal stem or stromal cells (MSC) are under investigation in many clinical trials for their therapeutic potential in a variety of diseases, including autoimmune and inflammatory disorders. One of the main sources of MSCs is the adipose tissue, which is mainly obtained by manual liposuction using a cannula linked to a syringe. However, in the past years, a number of devices for fat liposuction intended for clinical use have been commercialized but few papers have compared these procedures in terms of stromal vascular fraction (SVF) or adipose mesenchymal stromal cells (ASC). The objective of the present study was to compare and qualify for clinical use the ASC obtained from fat isolated with the manual or the Bodyjet® water-jet-assisted procedure. Although the initial number of cells obtained after collagenase digestion was higher with the manual procedure, the percentage of dead cells, the number of colony forming unit-fibroblast and the phenotype of cells were identical in the SVF at isolation (day 0) and in the ASC populations at day 14. We also showed that the osteogenic and adipogenic differentiation potentials of ASCs were identical between preparations while a slight but significant higher in vitro immunosuppressive effect was observed with ASCs isolated from fat removed with a cannula. The difference in the immunomodulatory effect between ASC populations was, however, not observed in vivo using the delayed-type hypersensitivity (DTH) model. Our data, therefore, indicate that the procedure for fat liposuction does not impact the characteristics or the therapeutic function of ASCs. PMID:26834736

  4. Adipose-Derived Cells (Stromal Vascular Fraction) Transplanted for Orthopedical or Neurological Purposes: Are They Safe Enough?

    PubMed Central

    Zolocinska, Aleksandra; Stepien, Karolina; Lubina-Dabrowska, Natalia; Maciagowska, Marzena; Mazur, Slawomir; Zdanowicz, Urszula; Smigielski, Robert; Stepien, Adam

    2016-01-01

    Although mesenchymal stem cells are used in numerous clinical trials, the safety of their application is still a matter of concern. We have analysed the clinical results of the autologous adipose-derived stem cell treatment (stromal vascular fraction (SVF) containing adipose-derived stem cells, endothelial progenitors, and blood mononuclear cells) for orthopedic (cartilage, bone, tendon, or combined joint injuries) and neurologic (multiple sclerosis) diseases. Methods of adipose tissue collection, cell isolation and purification, and resulting cell numbers, viability, and morphology were considered, and patient's age, sex, disease type, and method of cell administration (cell numbers per single application, treatment numbers and frequency, and methods of cell implantation) were analysed and searched for the unwanted clinical effects. Results of cellular therapy were compared retrospectively to those obtained with conventional medication without SVF application. SVF transplantation was always the accessory treatment of patients receiving “standard routine” therapies of their diseases. Clinical experiments were approved by the Bioethical Medical Committees supervising the centers where patients were hospitalised. The conclusion of the study is that none of the treated patients developed any serious adverse event, and autologous mesenchymal stem (stromal) cell clinical application is a safe procedure resulting in some beneficial clinical effects (not analysed in this study).

  5. Adipose-Derived Cells (Stromal Vascular Fraction) Transplanted for Orthopedical or Neurological Purposes: Are They Safe Enough?

    PubMed Central

    Zolocinska, Aleksandra; Stepien, Karolina; Lubina-Dabrowska, Natalia; Maciagowska, Marzena; Mazur, Slawomir; Zdanowicz, Urszula; Smigielski, Robert; Stepien, Adam

    2016-01-01

    Although mesenchymal stem cells are used in numerous clinical trials, the safety of their application is still a matter of concern. We have analysed the clinical results of the autologous adipose-derived stem cell treatment (stromal vascular fraction (SVF) containing adipose-derived stem cells, endothelial progenitors, and blood mononuclear cells) for orthopedic (cartilage, bone, tendon, or combined joint injuries) and neurologic (multiple sclerosis) diseases. Methods of adipose tissue collection, cell isolation and purification, and resulting cell numbers, viability, and morphology were considered, and patient's age, sex, disease type, and method of cell administration (cell numbers per single application, treatment numbers and frequency, and methods of cell implantation) were analysed and searched for the unwanted clinical effects. Results of cellular therapy were compared retrospectively to those obtained with conventional medication without SVF application. SVF transplantation was always the accessory treatment of patients receiving “standard routine” therapies of their diseases. Clinical experiments were approved by the Bioethical Medical Committees supervising the centers where patients were hospitalised. The conclusion of the study is that none of the treated patients developed any serious adverse event, and autologous mesenchymal stem (stromal) cell clinical application is a safe procedure resulting in some beneficial clinical effects (not analysed in this study). PMID:27698672

  6. Periadventitial adipose-derived stem cell treatment halts elastase-induced abdominal aortic aneurysm progression

    PubMed Central

    Blose, Kory J; Ennis, Terri L; Arif, Batool; Weinbaum, Justin S; Curci, John A; Vorp, David A

    2014-01-01

    Aim Demonstrate that periadventitial delivery of adipose-derived mesenchymal stem cells (ADMSCs) slows aneurysm progression in an established murine elastase-perfusion model of abdominal aortic aneurysm (AAA). Materials & methods AAAs were induced in C57BL/6 mice using porcine elastase. During elastase perfusion, a delivery device consisting of a subcutaneous port, tubing and porous scaffold was implanted. Five days after elastase perfusion, 100,000 ADMSCs were delivered through the port to the aorta. After sacrifice at day 14, analyzed metrics included aortic diameter and structure of aortic elastin. Results ADMSC treated aneurysms had a smaller diameter and less fragmented elastin versus saline controls. Conclusion Periadventitial stem cell delivery prevented the expansion of an established aneurysm between days 5 and 14 after elastase perfusion. PMID:25431910

  7. Adipose mesenchymal stem cells in the field of bone tissue engineering.

    PubMed

    Romagnoli, Cecilia; Brandi, Maria Luisa

    2014-04-26

    Bone tissue engineering represents one of the most challenging emergent fields for scientists and clinicians. Current failures of autografts and allografts in many pathological conditions have prompted researchers to find new biomaterials able to promote bone repair or regeneration with specific characteristics of biocompatibility, biodegradability and osteoinductivity. Recent advancements for tissue regeneration in bone defects have occurred by following the diamond concept and combining the use of growth factors and mesenchymal stem cells (MSCs). In particular, a more abundant and easily accessible source of MSCs was recently discovered in adipose tissue. These adipose stem cells (ASCs) can be obtained in large quantities with little donor site morbidity or patient discomfort, in contrast to the invasive and painful isolation of bone marrow MSCs. The osteogenic potential of ASCs on scaffolds has been examined in cell cultures and animal models, with only a few cases reporting the use of ASCs for successful reconstruction or accelerated healing of defects of the skull and jaw in patients. Although these reports extend our limited knowledge concerning the use of ASCs for osseous tissue repair and regeneration, the lack of standardization in applied techniques makes the comparison between studies difficult. Additional clinical trials are needed to assess ASC therapy and address potential ethical and safety concerns, which must be resolved to permit application in regenerative medicine.

  8. Comparative characterization of stromal vascular cells derived from three types of vascular wall and adipose tissue.

    PubMed

    Yang, Santsun; Eto, Hitomi; Kato, Harunosuke; Doi, Kentaro; Kuno, Shinichiro; Kinoshita, Kahori; Ma, Hsu; Tsai, Chi-Han; Chou, Wan-Ting; Yoshimura, Kotaro

    2013-12-01

    Multipotent stem/progenitor cells localize perivascularly in many organs and vessel walls. These tissue-resident stem/progenitor cells differentiate into vascular endothelial cells, pericytes, and other mesenchymal lineages, and participate in physiological maintenance and repair of vasculatures. In this study, we characterized stromal vascular cells obtained through the explant culture method from three different vessel walls in humans: arterial wall (ART; >500 μm in diameter), venous wall (VN; >500 μm in diameter), and small vessels in adipose tissue (SV; arterioles and venules, <100 μm in diameter). These were examined for functionality and compared with adipose-derived stem/stromal cells (ASCs). All stromal vascular cells of different origins presented fibroblast-like morphology and we could not visually discriminate one population from another. Flow cytometry showed that the cultured population heterogeneously expressed a variety of surface antigens associated with stem/progenitor cells, but CD105 was expressed by most cells in all groups, suggesting that the cells generally shared the characteristics of mesenchymal stem cells. Our histological and flow cytometric data suggested that the main population of vessel wall-derived stromal vascular cells were CD34(+)/CD31(-) and came from the tunica adventitia and areola tissue surrounding the adventitia. CD271 (p75NTR) was expressed by the vasa vasorum in the VN adventitia and by a limited population in the adventitia of SV. All three populations differentiated into multiple lineages as did ASCs. ART cells induced the largest quantity of calcium formation in the osteogenic medium, whereas ASCs showed the greatest adipogenic differentiation. SV and VN stromal cells had greater potency for network formation than did ART stromal cells. In conclusion, the three stromal vascular populations exhibited differential functional properties. Our results have clinical implications for vascular diseases such as

  9. Isolation and enrichment of human adipose-derived stromal cells for enhanced osteogenesis.

    PubMed

    Zielins, Elizabeth R; Tevlin, Ruth; Hu, Michael S; Chung, Michael T; McArdle, Adrian; Paik, Kevin J; Atashroo, David; Duldulao, Christopher R; Luan, Anna; Senarath-Yapa, Kshemendra; Walmsley, Graham G; Wearda, Taylor; Longaker, Michael T; Wan, Derrick C

    2015-01-12

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are considered the gold standard for stem cell-based tissue engineering applications. However, the process by which they must be harvested can be associated with significant donor site morbidity. In contrast, adipose-derived stromal cells (ASCs) are more readily abundant and more easily harvested, making them an appealing alternative to BM-MSCs. Like BM-MSCs, ASCs can differentiate into osteogenic lineage cells and can be used in tissue engineering applications, such as seeding onto scaffolds for use in craniofacial skeletal defects. ASCs are obtained from the stromal vascular fraction (SVF) of digested adipose tissue, which is a heterogeneous mixture of ASCs, vascular endothelial and mural cells, smooth muscle cells, pericytes, fibroblasts, and circulating cells. Flow cytometric analysis has shown that the surface marker profile for ASCs is similar to that for BM-MSCs. Despite several published reports establishing markers for the ASC phenotype, there is still a lack of consensus over profiles identifying osteoprogenitor cells in this heterogeneous population. This protocol describes how to isolate and use a subpopulation of ASCs with enhanced osteogenic capacity to repair critical-sized calvarial defects.

  10. Mechanical Stimulation Increases Knee Meniscus Gene RNA-level Expression in Adipose-derived Stromal Cells

    PubMed Central

    Meier, Elizabeth M.; Wu, Bin; Siddiqui, Aamir; Tepper, Donna G.; Longaker, Michael T.

    2016-01-01

    Background: Efforts have been made to engineer knee meniscus tissue for injury repair, yet most attempts have been unsuccessful. Creating a cell source that resembles the complex, heterogeneous phenotype of the meniscus cell remains difficult. Stem cell differentiation has been investigated, mainly using bone marrow mesenchymal cells and biochemical means for differentiation, resulting in no solution. Mechanical stimulation has been investigated to an extent with no conclusion. Here, we explore the potential for and effectiveness of mechanical stimulation to induce the meniscal phenotype in adipose-derived stromal cells. Methods: Human adipose-derived stromal cells were chosen for their fibrogenic nature and conduciveness for chondrogenesis. Biochemical and mechanical stimulation were investigated. Biochemical stimulation included fibrogenic and chondrogenic media. For mechanical stimulation, a custom-built device was used to apply constant, cyclical, uniaxial strain for up to 6 hours. Strain and frequency varied. Results: Under biochemical stimulation, both fibrogenic (collagen I, versican) and chondrogenic (collagen II, Sox9, aggrecan) genes were expressed by cells exposed to either fibrogenic or chondrogenic biochemical factors. Mechanical strain was found to preferentially promote fibrogenesis over chondrogenesis, confirming that tensile strain is an effective fibrogenic cue. Three hours at 10% strain and 1 Hz in chondrogenic media resulted in the highest expression of fibrochondrogenic genes. Although mechanical stimulation did not seem to affect protein level expression, biochemical means did affect protein level presence of collagen fibers. Conclusion: Mechanical stimulation can be a useful differentiation tool for mechanoresponsive cell types as long as biochemical factors are also integrated. PMID:27757329

  11. Current progress in use of adipose derived stem cells in peripheral nerve regeneration

    PubMed Central

    Zack-Williams, Shomari DL; Butler, Peter E; Kalaskar, Deepak M

    2015-01-01

    Unlike central nervous system neurons; those in the peripheral nervous system have the potential for full regeneration after injury. Following injury, recovery is controlled by schwann cells which replicate and modulate the subsequent immune response. The level of nerve recovery is strongly linked to the severity of the initial injury despite the significant advancements in imaging and surgical techniques. Multiple experimental models have been used with varying successes to augment the natural regenerative processes which occur following nerve injury. Stem cell therapy in peripheral nerve injury may be an important future intervention to improve the best attainable clinical results. In particular adipose derived stem cells (ADSCs) are multipotent mesenchymal stem cells similar to bone marrow derived stem cells, which are thought to have neurotrophic properties and the ability to differentiate into multiple lineages. They are ubiquitous within adipose tissue; they can form many structures resembling the mature adult peripheral nervous system. Following early in vitro work; multiple small and large animal in vivo models have been used in conjunction with conduits, autografts and allografts to successfully bridge the peripheral nerve gap. Some of the ADSC related neuroprotective and regenerative properties have been elucidated however much work remains before a model can be used successfully in human peripheral nerve injury (PNI). This review aims to provide a detailed overview of progress made in the use of ADSC in PNI, with discussion on the role of a tissue engineered approach for PNI repair. PMID:25621105

  12. Liver-derived human mesenchymal stem cells: a novel therapeutic source for liver diseases.

    PubMed

    Wang, Yini; Yu, Xiaopeng; Chen, Ermei; Li, Lanuan

    2016-01-01

    Mesenchymal stem cells (MSCs) represent an attractive cell type for research and therapy due to their ability to proliferate, differentiate, modulate immune reactions, and secrete trophic factors. MSCs exist in a multitude of tissues, including bone marrow, umbilical cord, and adipose tissues. Moreover, MSCs have recently been isolated from the liver. Compared with other MSC types, liver-derived human MSCs (LHMSCs) possess general morphologies, immune functions, and differentiation capacities. Interestingly, LHMCSs produce higher levels of pro-angiogenic, anti-inflammatory, and anti-apoptotic cytokines than those of bone marrow-derived MSCs. Thus, these cells may be a promising therapeutic source for liver diseases. This paper summarizes the biological characteristics of LHMSCs and their potential benefits and risks for the treatment of liver diseases. PMID:27176654

  13. Differentiation and Molecular Properties of Mesenchymal Stem Cells Derived from Murine Induced Pluripotent Stem Cells Derived on Gelatin or Collagen

    PubMed Central

    Obara, Chizuka; Takizawa, Kazuya; Tomiyama, Kenichi; Hazawa, Masaharu; Saotome-Nakamura, Ai; Gotoh, Takaya; Yasuda, Takeshi

    2016-01-01

    The generation of induced-pluripotential stem cells- (iPSCs-) derived mesenchymal stem cells (iMSCs) is an attractive and promising approach for preparing large, uniform batches of applicable MSCs that can serve as an alternative cell source of primary MSCs. Appropriate culture surfaces may influence their growth and differentiation potentials during iMSC derivation. The present study compared molecular properties and differentiation potential of derived mouse iPS-MSCs by deriving on gelatin or collagen-coated surfaces. The cells were derived by a one-step method and expressed CD73 and CD90, but CD105 was downregulated in iMSCs cultured only on gelatin-coated plates with increasing numbers of passages. A pairwise scatter analysis revealed similar expression of MSC-specific genes in iMSCs derived on gelatin and on collagen surfaces as well as in primary mouse bone marrow MSCs. Deriving iMSCs on gelatin and collagen dictated their osteogenic and adipose differentiation potentials, respectively. Derived iMSCs on gelatin upregulated Bmp2 and Lif prior to induction of osteogenic or adipose differentiation, while PPARγ was upregulated by deriving on collagen. Our results suggest that extracellular matrix components such as gelatin biases generated iMSC differentiation potential towards adipose or bone tissue in their derivation process via up- or downregulation of these master genes. PMID:27642306

  14. Enhanced hepatogenic transdifferentiation of human adipose tissue mesenchymal stem cells by gene engineering with Oct4 and Sox2.

    PubMed

    Han, Sei-Myoung; Coh, Ye-Rin; Ahn, Jin-Ok; Jang, Goo; Yum, Soo Young; Kang, Sung-Keun; Lee, Hee-Woo; Youn, Hwa-Young

    2015-01-01

    Adipose tissue mesenchymal stem cells (ATMSCs) represent an attractive tool for the establishment of a successful stem cell-based therapy in the field of liver regeneration medicine. ATMSCs overexpressing Oct4 and Sox2 (Oct4/Sox2-ATMSCs) showed enhanced proliferation and multipotency. Hence, we hypothesized that Oct4 and Sox2 can increase "transdifferentiation" of ATMSCs into cells of the hepatic lineage. In this study, we generated Oct4- and Sox2-overexpressing human ATMSCs by liposomal transfection. We confirmed the expression of mesenchymal stem cell surface markers without morphological alterations in both red-fluorescent protein (RFP) (control)- and Oct4/Sox2-ATMSCs by flow cytometry. After induction of differentiation into hepatocyte-like cells, the morphology of ATMSCs changed and they began to appear as round or polygonal epithelioid cells. Hepatic markers were evaluated by reverse transcription-polymerase chain reaction and confirmed by immunofluorescence. The results showed that albumin was strongly expressed in hepatogenic differentiated Oct4/Sox2-ATMSCs, whereas the expression level of α-fetoprotein was lower than that of RFP-ATMSCs. The functionality of hepatocytes was evaluated by periodic acid-Schiff (PAS) staining and urea assays. The number of PAS-positive cells was significantly higher and urea production was significantly higher in Oct4/Sox2-ATMSCs compared to that in RFP-ATMSCs. Taken together, the hepatocyte-like cells derived from Oct4/Sox2-ATMSCs were mature hepatocytes, possibly functional hepatocytes with enhanced capacity to store glycogen and produce urea. In this study, we demonstrated the enhanced transdifferentiation of Oct4- and Sox2-overexpressing ATMSCs into hepatocyte-like cells that have enhanced hepatocyte-specific functions. Therefore, we expect that Oct4/Sox2-ATMSCs may become a very useful source for hepatocyte regeneration or liver cell transplantation.

  15. Adipose-derived stromal cells mediate in vivo adipogenesis, angiogenesis and inflammation in decellularized adipose tissue bioscaffolds.

    PubMed

    Han, Tim Tian Y; Toutounji, Sandra; Amsden, Brian G; Flynn, Lauren E

    2015-12-01

    Decellularized adipose tissue (DAT) has shown promise as an adipogenic bioscaffold for soft tissue augmentation and reconstruction. The objective of the current study was to investigate the effects of allogeneic adipose-derived stem/stromal cells (ASCs) on in vivo fat regeneration in DAT bioscaffolds using an immunocompetent rat model. ASC seeding significantly enhanced angiogenesis and adipogenesis, with cell tracking studies indicating that the newly-forming tissues were host-derived. Incorporating ASCs also mediated the inflammatory response and promoted a more constructive macrophage phenotype. A fraction of the CD163(+) macrophages in the implants expressed adipogenic markers, with higher levels of this "adipocyte-like" phenotype in proximity to the developing adipose tissues. Our results indicate that the combination of ASCs and adipose extracellular matrix (ECM) provides an inductive microenvironment for adipose regeneration mediated by infiltrating host cell populations. The DAT scaffolds are a useful tissue-specific model system for investigating the mechanisms of in vivo adipogenesis that may help to develop a better understanding of this complex process in the context of both regeneration and disease. Overall, combining adipose-derived matrices with ASCs is a highly promising approach for the in situ regeneration of host-derived adipose tissue.

  16. Adipose-derived stromal cells mediate in vivo adipogenesis, angiogenesis and inflammation in decellularized adipose tissue bioscaffolds.

    PubMed

    Han, Tim Tian Y; Toutounji, Sandra; Amsden, Brian G; Flynn, Lauren E

    2015-12-01

    Decellularized adipose tissue (DAT) has shown promise as an adipogenic bioscaffold for soft tissue augmentation and reconstruction. The objective of the current study was to investigate the effects of allogeneic adipose-derived stem/stromal cells (ASCs) on in vivo fat regeneration in DAT bioscaffolds using an immunocompetent rat model. ASC seeding significantly enhanced angiogenesis and adipogenesis, with cell tracking studies indicating that the newly-forming tissues were host-derived. Incorporating ASCs also mediated the inflammatory response and promoted a more constructive macrophage phenotype. A fraction of the CD163(+) macrophages in the implants expressed adipogenic markers, with higher levels of this "adipocyte-like" phenotype in proximity to the developing adipose tissues. Our results indicate that the combination of ASCs and adipose extracellular matrix (ECM) provides an inductive microenvironment for adipose regeneration mediated by infiltrating host cell populations. The DAT scaffolds are a useful tissue-specific model system for investigating the mechanisms of in vivo adipogenesis that may help to develop a better understanding of this complex process in the context of both regeneration and disease. Overall, combining adipose-derived matrices with ASCs is a highly promising approach for the in situ regeneration of host-derived adipose tissue. PMID:26360790

  17. Generation of bovine (Bos indicus) and buffalo (Bubalus bubalis) adipose tissue derived stem cells: isolation, characterization, and multipotentiality.

    PubMed

    Sampaio, R V; Chiaratti, M R; Santos, D C N; Bressan, F F; Sangalli, J R; Sá, A L A; Silva, T V G; Costa, N N; Cordeiro, M S; Santos, S S D; Ambrosio, C E; Adona, P R; Meirelles, F V; Miranda, M S; Ohashi, O M

    2015-01-15

    Adult stem cells are known for their plasticity and their potential to differentiate into several different cell types; these characteristics have implications for cell therapy and reproductive biotechnologies. In this study, we report on the isolation and characterization of mesenchymal stem cells (MSC) derived from bovine and buffalo adipose tissue. Cells isolated using enzymatic digestion of bovine and buffalo adipose-tissue biopsy samples were grown in vitro for at least 15 passages, verifying their capacity to proliferate. These cells were also subjected to immunophenotypic characterization for the presence of CD90, CD105, and CD79, and the absence of CD45, CD34, and CD73, which are positive and negative markers of MSC, respectively. To prove their multipotency, the cells were induced to differentiate into three different cell types, chondrocytes, osteoblasts, and adipocytes, which were stained with tissue-specific dyes (Chondrogenic-Alcian Blue, Osteogenic-Alizarin Red, and Adipogenic-Oil-Red O, respectively) to confirm differentiation. Gene expression analysis of pluripotency-related genes was also conducted. Our results suggest that adipose tissue from bovines and buffalos can be used as a source of MSC, making adipose tissue-derived cells an interesting option for cell therapy and regenerative medicine. Additionally, these findings have implications for reproductive biotechnology because the use of MSC as nuclear donors has been linked to an increase in the efficiency of nuclear transfer.

  18. Human Mesenchymal Cells from Adipose Tissue Deposit Laminin and Promote Regeneration of Injured Spinal Cord in Rats

    PubMed Central

    Menezes, Karla; Nascimento, Marcos Assis; Gonçalves, Juliana Pena; Cruz, Aline Silva; Lopes, Daiana Vieira; Curzio, Bianca; Bonamino, Martin; de Menezes, João Ricardo Lacerda; Borojevic, Radovan; Rossi, Maria Isabel Doria; Coelho-Sampaio, Tatiana

    2014-01-01

    Cell therapy is a promising strategy to pursue the unmet need for treatment of spinal cord injury (SCI). Although several studies have shown that adult mesenchymal cells contribute to improve the outcomes of SCI, a descripton of the pro-regenerative events triggered by these cells is still lacking. Here we investigated the regenerative properties of human adipose tissue derived stromal cells (hADSCs) in a rat model of spinal cord compression. Cells were delivered directly into the spinal parenchyma immediately after injury. Human ADSCs promoted functional recovery, tissue preservation, and axonal regeneration. Analysis of the cord tissue showed an abundant deposition of laminin of human origin at the lesion site and spinal midline; the appearance of cell clusters composed of neural precursors in the areas of laminin deposition, and the appearance of blood vessels with separated basement membranes along the spinal axis. These effects were also observed after injection of hADSCs into non-injured spinal cord. Considering that laminin is a well-known inducer of axonal growth, as well a component of the extracellular matrix associated to neural progenitors, we propose that it can be the paracrine factor mediating the pro-regenerative effects of hADSCs in spinal cord injury. PMID:24830794

  19. Pre-Exposure of Human Adipose Mesenchymal Stem Cells to Soluble Factors Enhances Their Homing to Brain Cancer

    PubMed Central

    Smith, Chris L.; Chaichana, Kaisorn L.; Lee, Young M.; Lin, Benjamin; Stanko, Kevin M.; O’Donnell, Thomas; Gupta, Saksham; Shah, Sagar R.; Wang, Joanne; Wijesekera, Olindi; Delannoy, Michael

    2015-01-01

    Recent research advances have established mesenchymal stem cells (MSCs) as a promising vehicle for therapeutic delivery. Their intrinsic tropism for brain injury and brain tumors, their lack of immunogenicity, and their ability to breach the blood-brain barrier make these cells an attractive potential treatment of brain disorders, including brain cancer. Despite these advantages, the efficiency of MSC homing to the brain has been limited in commonly used protocols, hindering the feasibility of such therapies. In the present study, we report a reproducible, comprehensive, cell culture-based approach to enhance human adipose-derived MSC (hAMSC) engraftment to brain tumors. We used micro- and nanotechnological tools to systematically model several steps in the putative homing process. By pre-exposing hAMSCs to glioma-conditioned media and the extracellular matrix proteins fibronectin and laminin, we achieved significant enhancements of the individual homing steps in vitro. This homing was confirmed in an in vivo rodent model of brain cancer. This comprehensive, cell-conditioning approach provides a novel method to enhance stem cell homing to gliomas and, potentially, other neurological disorders. PMID:25646527

  20. Pre-exposure of human adipose mesenchymal stem cells to soluble factors enhances their homing to brain cancer.

    PubMed

    Smith, Chris L; Chaichana, Kaisorn L; Lee, Young M; Lin, Benjamin; Stanko, Kevin M; O'Donnell, Thomas; Gupta, Saksham; Shah, Sagar R; Wang, Joanne; Wijesekera, Olindi; Delannoy, Michael; Levchenko, Andre; Quiñones-Hinojosa, Alfredo

    2015-03-01

    Recent research advances have established mesenchymal stem cells (MSCs) as a promising vehicle for therapeutic delivery. Their intrinsic tropism for brain injury and brain tumors, their lack of immunogenicity, and their ability to breach the blood-brain barrier make these cells an attractive potential treatment of brain disorders, including brain cancer. Despite these advantages, the efficiency of MSC homing to the brain has been limited in commonly used protocols, hindering the feasibility of such therapies. In the present study, we report a reproducible, comprehensive, cell culture-based approach to enhance human adipose-derived MSC (hAMSC) engraftment to brain tumors. We used micro- and nanotechnological tools to systematically model several steps in the putative homing process. By pre-exposing hAMSCs to glioma-conditioned media and the extracellular matrix proteins fibronectin and laminin, we achieved significant enhancements of the individual homing steps in vitro. This homing was confirmed in an in vivo rodent model of brain cancer. This comprehensive, cell-conditioning approach provides a novel method to enhance stem cell homing to gliomas and, potentially, other neurological disorders.

  1. Human mesenchymal cells from adipose tissue deposit laminin and promote regeneration of injured spinal cord in rats.

    PubMed

    Menezes, Karla; Nascimento, Marcos Assis; Gonçalves, Juliana Pena; Cruz, Aline Silva; Lopes, Daiana Vieira; Curzio, Bianca; Bonamino, Martin; de Menezes, João Ricardo Lacerda; Borojevic, Radovan; Rossi, Maria Isabel Doria; Coelho-Sampaio, Tatiana

    2014-01-01

    Cell therapy is a promising strategy to pursue the unmet need for treatment of spinal cord injury (SCI). Although several studies have shown that adult mesenchymal cells contribute to improve the outcomes of SCI, a description of the pro-regenerative events triggered by these cells is still lacking. Here we investigated the regenerative properties of human adipose tissue derived stromal cells (hADSCs) in a rat model of spinal cord compression. Cells were delivered directly into the spinal parenchyma immediately after injury. Human ADSCs promoted functional recovery, tissue preservation, and axonal regeneration. Analysis of the cord tissue showed an abundant deposition of laminin of human origin at the lesion site and spinal midline; the appearance of cell clusters composed of neural precursors in the areas of laminin deposition, and the appearance of blood vessels with separated basement membranes along the spinal axis. These effects were also observed after injection of hADSCs into non-injured spinal cord. Considering that laminin is a well-known inducer of axonal growth, as well a component of the extracellular matrix associated to neural progenitors, we propose that it can be the paracrine factor mediating the pro-regenerative effects of hADSCs in spinal cord injury.

  2. The current landscape of adipose-derived stem cells in clinical applications.

    PubMed

    Lim, Ming Hui; Ong, Wee Kiat; Sugii, Shigeki

    2014-01-01

    Adipose-derived stem cells (ASCs) are considered a great alternative source of mesenchymal stem cells (MSCs). Unlike bone marrow stem cells (BMSCs), ASCs can be retrieved in high numbers from lipoaspirate, a by-product of liposuction procedures. Given that ASCs represent an easily accessible and abundant source of multipotent cells, ASCs have garnered attention and curiosity from both scientific and clinical communities for their potential in clinical applications. Furthermore, their unique immunobiology and secretome are attractive therapeutic properties. A decade since the discovery of a stem cell reservoir residing within adipose tissue, ASC-based clinical trials have grown over the years around the world along with assessments made on their safety and efficacy. With the progress of ASCs into clinical applications, the aim towards producing clinical-grade ASCs becomes increasingly important. Several countries have recognised the growing industry of cell therapies and have developed regulatory frameworks to assure their safety. With more research efforts made to understand their effects in both scientific and clinical settings, ASCs hold great promise as a future therapeutic strategy in treating a wide variety of diseases. Therefore, this review seeks to highlight the clinical applicability of ASCs as well as their progress in clinical trials across various medical disciplines.

  3. Chondrogenic potential and anti-senescence effect of hypoxia on canine adipose mesenchymal stem cells.

    PubMed

    Lee, Jienny; Byeon, Jeong Su; Lee, Keum Sil; Gu, Na-Yeon; Lee, Gyeong Been; Kim, Hee-Ryang; Cho, In-Soo; Cha, Sang-Ho

    2016-03-01

    Mesenchymal stem cells (MSCs) have the ability to differentiate into multi-lineage cells, which confers great promise for use in regenerative medicine. In this study, canine adipose MSCs (cAD-MSCs) were isolated from canine adipose tissue. These cells clearly represented stemness (Oct4, Sox2, and Nanog) and differentiation potential into the mesoderm (adipocytes, chondrocytes, and osteoblasts) at early passages. The aim of this study was to evaluate the effects of hypoxia on the differentiation potential into mesoderm, and the expression of anti-apoptotic genes associated with cell survival for the optimal culturing of MSCs. We observed that the proliferation of the cAD-MSCs meaningfully increased when cultured under hypoxic condition than in normoxic condition, during 7 consecutive passages. Also, we found that hypoxia strongly expressed anti-senescence related genes such as HDAC1 (histone deacetylase 1), DNMT1 (DNA (cytosine-5)-methyltransferase 1), Bcl-2 (inhibitor of apoptosis), TERT (telomerase reverse transcriptase), LDHA (lactate dehydrogenase A), SLC2A1 (glucose transporter), and DKC1 (telomere holoenzyme complex) and differentiation potential of cAD-MSCs into chondrocytes, than seen under the normoxic culture conditions. We also examined the multipotency of hypoxic conditioned MSCs using quantitative real-time RT-PCR. We found that the expression levels of stemness genes such as Oct-4, Nanog, and Sox-2 were increased in hypoxic condition when compared to the normoxic condition. Collectively, these results suggest that hypoxic conditions have the ability to induce proliferation of MSCs and augment their chondrogenic potential. This study suggests that cell proliferation of cAD-MSC under hypoxia could be beneficial, when considering these cells for cell therapies of canine bone diseases.

  4. Adipose-derived stem cells: selecting for translational success.

    PubMed

    Johal, Kavan S; Lees, Vivien C; Reid, Adam J

    2015-01-01

    We have witnessed a rapid expansion of in vitro characterization and differentiation of adipose-derived stem cells, with increasing translation to both in vivo models and a breadth of clinical specialties. However, an appreciation of the truly heterogeneous nature of this unique stem cell group has identified a need to more accurately delineate subpopulations by any of a host of methods, to include functional properties or surface marker expression. Cells selected for improved proliferative, differentiative, angiogenic or ischemia-resistant properties are but a few attributes that could prove beneficial for targeted treatments or therapies. Optimizing cell culture conditions to permit re-introduction to patients is critical for clinical translation.

  5. Neoplastic Reprogramming of Patient-Derived Adipose Stem Cells by Prostate Cancer Cell-Associated Exosomes

    PubMed Central

    Abd Elmageed, Zakaria Y.; Yang, Yijun; Thomas, Raju; Ranjan, Manish; Mondal, Debasis; Moroz, Krzysztof; Fang, Zhide; Rezk, Bashir M.; Moparty, Krishnarao; Sikka, Suresh C.; Sartor, Oliver; Abdel-Mageed, Asim B.

    2014-01-01

    Emerging evidence suggests that mesenchymal stem cells (MSCs) are often recruited to tumor sites but their functional significance in tumor growth and disease progression remains elusive. Herein we report that prostate cancer (PC) cell microenvironment subverts PC patient adipose-derived stem cells (pASCs) to undergo neoplastic transformation. Unlike normal ASCs, the pASCs primed with PC cell conditioned media (CM) formed prostate-like neoplastic lesions in vivo and reproduced aggressive tumors in secondary recipients. The pASC tumors acquired cytogenetic aberrations and mesenchymal-to-epithelial transition (MET) and expressed epithelial, neoplastic, and vasculogenic markers reminiscent of molecular features of PC tumor xenografts. Our mechanistic studies revealed that PC cell-derived exosomes are sufficient to recapitulate formation of prostate tumorigenic mimicry generated by CM-primed pASCs in vivo. In addition to down-regulation of the large tumor suppressor homolog2 (Lats2) and the programmed cell death protein 4 (PDCD4), a neoplastic transformation inhibitor, the tumorigenic reprogramming of pASCs was associated with trafficking by PC cell-derived exosomes of oncogenic factors, including H-ras and K-ras transcripts, oncomiRNAs miR-125b, miR-130b, and miR-155 as well as the Ras superfamily of GTPases Rab1a, Rab1b, and Rab11a. Our findings implicate a new role for PC cell-derived exosomes in clonal expansion of tumors through neoplastic reprogramming of tumor tropic ASCs in cancer patients. PMID:24715691

  6. Subcutaneous Adipose Tissue–Derived Stem Cell Utility Is Independent of Anatomical Harvest Site

    PubMed Central

    Choudhery, Mahmood S.; Badowski, Michael; Muise, Angela; Pierce, John; Harris, David T.

    2015-01-01

    Abstract One of the challenges for tissue engineering and regenerative medicine is to obtain suitably large cell numbers for therapy. Mesenchymal stem cells (MSCs) can easily be expanded in vitro to obtain large numbers of cells, but this approach may induce cellular senescence. The characteristics of cells are dependent on variables like age, body mass index (BMI), and disease conditions, however, and in the case of adipose tissue–derived stem cells (ASCs), anatomical harvest site is also an important variable that can affect the regenerative potential of isolated cells. We therefore had kept the parameters (age, BMI, disease conditions) constant in this study to specifically assess influence of anatomical sites of individual donors on utility of ASCs. Adipose tissue was obtained from multiple anatomical sites in individual donors, and viability and nucleated cell yield were determined. MSC frequency was enumerated using colony forming unit assay and cells were characterized by flow cytometry. Growth characteristics were determined by long-term population doubling analysis of each sample. Finally, MSCs were induced to undergo adipogenic, osteogenic, and chondrogenic differentiation. To validate the findings, these results were compared with similar single harvest sites from multiple individual patients. The results of the current study indicated that MSCs obtained from multiple harvest sites in a single donor have similar morphology and phenotype. All adipose depots in a single donor exhibited similar MSC yield, viability, frequency, and growth characteristics. Equivalent differentiation capacity into osteocytes, adipocytes, and chondrocytes was also observed. On the basis of results, we conclude that it is acceptable to combine MSCs obtained from various anatomical locations in a single donor to obtain suitably large cell numbers required for therapy, avoiding in vitro senescence and lengthy and expensive in vitro culturing and expansion steps. PMID:26309790

  7. Adipose-derived stromal cell therapy improves cardiac function after coronary occlusion in rats.

    PubMed

    Bagno, Luiza L S; Werneck-de-Castro, João Pedro S; Oliveira, Patrícia F; Cunha-Abreu, Márcia S; Rocha, Nazareth N; Kasai-Brunswick, Taís H; Lago, Vivian M; Goldenberg, Regina C S; Campos-de-Carvalho, Antonio C

    2012-01-01

    Recent studies have identified adipose tissue as a new source of mesenchymal stem cells for therapy. The purpose of this study was to investigate the therapy with adipose-derived stromal cells (ASCs) in a rat model of healed myocardial infarction (MI). ASCs from inguinal subcutaneous adipose tissue of male Wistar rats were isolated by enzymatic digestion and filtration. Cells were then cultured until passage 3. Four weeks after ligation of the left coronary artery of female rats, a suspension of either 100 µl with phosphate-buffered saline (PBS) + Matrigel + 2 × 10(6) ASCs labeled with Hoechst (n = 11) or 100 µl of PBS + Matrigel (n = 10) was injected along the borders of the ventricular wall scar tissue. A sham-operated group (n = 5) was submitted to the same surgical procedure except permanent ligation of left coronary artery. Cardiac performance was assessed by electro- and echocardiogram. Echo was performed prior to injections (baseline, BL) and 6 weeks after injections (follow-up, FU), and values after treatment were normalized by values obtained before treatment. Hemodynamic measurements were performed 6 weeks after injections. All infarcted animals exhibited cardiac function impairment. Ejection fraction (EF), shortening fractional area (SFA), and left ventricular akinesia (LVA) were similar between infarcted groups before treatment. Six weeks after therapy, ASC group showed significant improvement in all three ECHO indices in comparison to vehicle group. In anesthetized animals dp/dt(+) was also significantly higher in ASCs when compared to vehicle. In agreement with functional improvement, scar area was diminished in the ASC group. We conclude that ASCs improve cardiac function in infarcted rats when administered directly to the myocardium. PMID:22472303

  8. The effect of diabetes on the wound healing potential of adipose-tissue derived stem cells.

    PubMed

    Kim, Sue Min; Kim, Yun Ho; Jun, Young Joon; Yoo, Gyeol; Rhie, Jong Won

    2016-03-01

    To investigate whether diabetes mellitus affects the wound-healing-promoting potential of adipose tissue-derived stem cells, we designed a wound-healing model using diabetic mice. We compared the degree of wound healing between wounds treated with normal adipose tissue-derived stem cells and wounds treated with diabetic adipose tissue-derived stem cells. We evaluated the wound-healing rate, the epithelial tongue distance, the area of granulation tissue, the number of capillary and the number of Ki-67-stained cells. The wound-healing rate was significantly higher in the normal adipose tissue-derived stem cells group than in the diabetic adipose tissue-derived stem cells group; it was also significantly higher in the normal adipose tissue-derived stem cells group than in the control group. Although the diabetic adipose tissue-derived stem cells group showed a better wound-healing rate than the control group, the difference was not statistically significant. Similar trends were observed for the other parameters examined: re-epithelisation and keratinocyte proliferation; granulation tissue formation; and dermal regeneration. However, with regard to the number of capillary, diabetic adipose tissue-derived stem cells retained their ability to promote neovasculisation and angiogenesis. These results reflect the general impairment of the therapeutic potential of diabetic adipose tissue-derived stem cells in vivo.

  9. Putative population of adipose-derived stem cells isolated from mediastinal tissue during cardiac surgery.

    PubMed

    Patel, Amit N; Yockman, James; Vargas, Vanessa; Bull, David A

    2013-01-01

    Mesenchymal stem cells have been isolated from various adult human tissues and are valuable for not only therapeutic applications but for the study of tissue homeostasis and disease progression. Subcutaneous adipose depots have been shown to contain large amounts of stem cells. There is little information that has been reported to date describing the isolation and characterization of mesenchymal stem cells from visceral adipose tissue. In this study, we describe a mesenchymal stem cell population isolated from mediastinal adipose depots. The cells express CD44, CD105, CD166, and CD90 and are negative for hematopoietic markers CD34, CD45, and HLA-DR. In addition, the cells have a multilineage potential, with the ability to differentiate into adipogenic, osteogenic, and chondrogenic cell types. The biological function of visceral adipose tissue remains largely unknown and uncharacterized. However, the proximity of adipose tissue to the heart suggests a potential role in the pathogenesis of cardiovascular disease in obesity. In addition, with the ability of fat to regulate metabolic activity in humans, this novel stem cell source may be useful to further study the mechanisms involved in metabolic disorders.

  10. Fast-proliferating adipose tissue mesenchymal-stromal-like cells for therapy.

    PubMed

    Aguilar, Elisabet; Bagó, Julio Rodriguez; Soler-Botija, Carol; Alieva, Maria; Rigola, Maria Angeles; Fuster, Carme; Vila, Olaia F; Rubio, Nuria; Blanco, Jeronimo

    2014-12-01

    Human mesenchymal stromal cells, whether from the bone marrow or adipose tissue (hASCs), are promising cell therapy agents. However, generation of abundant cells for therapy remains to be a challenge, due to the need of lengthy expansion and the risk of accumulating genomic defects during the process. We show that hASCs can be easily induced to a reversible fast-proliferating phenotype (FP-ASCs) that allows rapid generation of a clinically useful quantity of cells in <2 weeks of culture. Expanded FP-ASCs retain their finite expansion capacity and pluripotent properties. Despite the high proliferation rate, FP-ASCs show genomic stability by array-comparative genomic hybridization, and did not generate tumors when implanted for a long time in an SCID mouse model. Comparative analysis of gene expression patterns revealed a set of genes that can be used to characterize FP-ASCs and distinguish them from hASCs. As potential candidate therapeutic agents, FP-ASCs displayed high vasculogenic capacity in Matrigel assays. Moreover, application of hASCs and FP-ASCs in a fibrin scaffold over a myocardium infarct model in SCID mice showed that both cell types can differentiate to endothelial and myocardium lineages, although FP-ASCs were more potent angiogenesis inducers than hASCs, at promoting myocardium revascularization. PMID:25019281

  11. Adipose mesenchymal stem cells protect chondrocytes from degeneration associated with osteoarthritis.

    PubMed

    Maumus, Marie; Manferdini, Cristina; Toupet, Karine; Peyrafitte, Julie-Anne; Ferreira, Rosanna; Facchini, Andrea; Gabusi, Elena; Bourin, Philippe; Jorgensen, Christian; Lisignoli, Gina; Noël, Danièle

    2013-09-01

    Our work aimed at evaluating the role of adipose stem cells (ASC) on chondrocytes from osteoarthritic (OA) patients and identifying the mediators involved. We used primary chondrocytes, ASCs from different sources and bone marrow mesenchymal stromal cells (MSC) from OA donors. ASCs or MSCs were co-cultured with chondrocytes in a minimal medium and using cell culture inserts. Under these conditions, ASCs did not affect the proliferation of chondrocytes but significantly decreased camptothecin-induced apoptosis. Both MSCs and ASCs from different sources allowed chondrocytes in the cocultures maintaining a stable expression of markers specific for a mature phenotype, while expression of hypertrophic and fibrotic markers was decreased. A number of factors known to regulate the chondrocyte phenotype (IL-1β, IL-1RA, TNF-α) and matrix remodeling (TIMP-1 and -2, MMP-1 and -9, TSP-1) were not affected. However, a significant decrease of TGF-β1 secretion by chondrocytes and induction of HGF secretion by ASCs was observed. Addition of a neutralizing anti-HGF antibody reversed the anti-fibrotic effect of ASCs whereas hypertrophic markers were not modulated. In summary, ASCs are an interesting source of stem cells for efficiently reducing hypertrophy and dedifferentiation of chondrocytes, at least partly via the secretion of HGF. This supports the interest of using these cells in therapies for osteo-articular diseases.

  12. Differentiation of adipose-derived stem cells into Schwann-like cells: fetal bovine serum or human serum?

    PubMed Central

    Younesi, Elham; Hashemitabar, Mahmoud; Azandeh, Seyyed Saeed; Bijannejad, Dariush; Bahreini, Amin

    2015-01-01

    Access to autologous Schwann cells is limited due to lack of donor site and its difficult isolation and culture. Therefore, one of the possible ways to obtain to Schwann cells is to differentiate mesenchymal stem cells into glial pathway using various materials and protocols. The aim of this study was to compare the effects of fetal bovine serum and human serum on Schwann cell differentiation of adipose-derived stem cells to choose the best serum for use in future research. For this purpose, after isolation of human adipose-derived stem cells, it was characterized and differentiated into Schwann cell lineage using two protocols which one of them contained fetal bovine serum and the other human serum. At the end, morphological evaluation declared an increased detachment of cells in response to human serum. On the other side, immunocytochemistry showed that there was a significant increase in the number of cells expressing glial fibrillary acidic proteins and S100 in fetal bovine serum-treated group when compared to human serum-treated one (P<0.05). It was concluded that fetal bovine serum was more effective than allogeneic human serum in Schwann cell differentiation of adipose-derived stem cells. PMID:26417476

  13. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    SciTech Connect

    Takahara, Kiyoshi; Ii, Masaaki; Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi; Asahi, Michio; Azuma, Haruhito

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  14. Non-virally engineered human adipose mesenchymal stem cells produce BMP4, target brain tumors, and extend survival.

    PubMed

    Mangraviti, Antonella; Tzeng, Stephany Y; Gullotti, David; Kozielski, Kristen L; Kim, Jennifer E; Seng, Michael; Abbadi, Sara; Schiapparelli, Paula; Sarabia-Estrada, Rachel; Vescovi, Angelo; Brem, Henry; Olivi, Alessandro; Tyler, Betty; Green, Jordan J; Quinones-Hinojosa, Alfredo

    2016-09-01

    There is a need for enabling non-viral nanobiotechnology to allow safe and effective gene therapy and cell therapy, which can be utilized to treat devastating diseases such as brain cancer. Human adipose-derived mesenchymal stem cells (hAMSCs) display high anti-glioma tropism and represent a promising delivery vehicle for targeted brain tumor therapy. In this study, we demonstrate that non-viral, biodegradable polymeric nanoparticles (NPs) can be used to engineer hAMSCs with higher efficacy (75% of cells) than leading commercially available reagents and high cell viability. To accomplish this, we engineered a poly(beta-amino ester) (PBAE) polymer structure to transfect hAMSCs with significantly higher efficacy than Lipofectamine™ 2000. We then assessed the ability of NP-engineered hAMSCs to deliver bone morphogenetic protein 4 (BMP4), which has been shown to have a novel therapeutic effect by targeting human brain tumor initiating cells (BTIC), a source of cancer recurrence, in a human primary malignant glioma model. We demonstrated that hAMSCs genetically engineered with polymeric nanoparticles containing BMP4 plasmid DNA (BMP4/NP-hAMSCs) secrete BMP4 growth factor while maintaining their multipotency and preserving their migration and invasion capacities. We also showed that this approach can overcome a central challenge for brain therapeutics, overcoming the blood brain barrier, by demonstrating that NP-engineered hAMSCs can migrate to the brain and penetrate the brain tumor after both intranasal and systemic intravenous administration. Critically, athymic rats bearing human primary BTIC-derived tumors and treated intranasally with BMP4/NP-hAMSCs showed significantly improved survival compared to those treated with control GFP/NP-hAMCSs. This study demonstrates that synthetic polymeric nanoparticles are a safe and effective approach for stem cell-based cancer-targeting therapies. PMID:27240162

  15. Concentrated Hypoxia-Preconditioned Adipose Mesenchymal Stem Cell-Conditioned Medium Improves Wounds Healing in Full-Thickness Skin Defect Model

    PubMed Central

    Sun, Biao; Guo, Shilei; Xu, Fei; Wang, Bin; Liu, Xiujuan; Zhang, Yuanyuan

    2014-01-01

    In recent years, the bioactive factors were utilized in exercise and athletic skin injuries. In this research, the concentrated conditioned medium of hypoxia-preconditioned adipose mesenchymal stem cells, which is rich in bioactive factor, is applied in full-thickness skin defect model to evaluate the therapeutic efficacy. Adipose mesenchymal stem cells were harvested from the abdominal subcutaneous adipose tissues. The surface markers and the potential of differentiation were analyzed. The conditioned medium of hypoxia-preconditioned stem cells was collected and freeze-dried and then applied on the rat full-thickness skin defect model, and the healing time of each group was recorded. Haematoxylin and eosin staining of skin was assessed by microscope. The characteristics of adipose mesenchymal stem cells were similar to those of other mesenchymal stem cells. The concentration of protein in freeze-dried conditioned medium in 1 mL water was about 15 times higher than in the normal condition medium. In vivo, the concentrated hypoxia-preconditioned conditioned medium can reduce the wound size and accelerate the skin wound healing. The concentrated hypoxia-preconditioned adipose mesenchymal stem cell-conditioned medium has great effect on rat model of wound healing, and it would be an ideal agent for wound care in clinical application. PMID:27433483

  16. Harvesting Technique Affects Adipose-Derived Stem Cell Yield

    PubMed Central

    Iyyanki, Tejaswi; Hubenak, Justin; Liu, Jun; Chang, Edward I.; Beahm, Elisabeth K.; Zhang, Qixu

    2015-01-01

    Background The success of an autologous fat graft depends in part on its total stromal vascular fraction (SVF) and adipose-derived stem cells (ASCs). However, variations in the yields of ASCs and SVF cells as a result of different harvesting techniques and donor sites are poorly understood. Objective To investigate the effects of adipose tissue harvesting technique and donor site on the yield of ASCs and SVF cells. Methods Subcutaneous fat tissues from the abdomen, flank, or axilla were harvested from patients of various ages by mechanical liposuction, direct surgical excision, or Coleman's technique with or without centrifugation. Cells were isolated and then analyzed with flow cytometry to determine the yields of total SVF cells and ASCs (CD11b−, CD45−, CD34+, CD90+, D7-FIB+). Differences in ASC and total SVF yields were assessed with one-way analysis of variance. Differentiation experiments were performed to confirm the multilineage potential of cultured SVF cells. Results Compared with Coleman's technique without centrifugation, direct excision yielded significantly more ASCs (P < .001) and total SVF cells (P = .007); liposuction yielded significantly fewer ASCs (P < .001) and total SVF cells (P < .05); and Coleman's technique with centrifugation yielded significantly more total SVF cells (P < .005), but not ASCs. The total number of SVF cells in fat harvested from the abdomen was significantly larger than the number in fat harvested from the flank or axilla (P < .05). Cultured SVF cells differentiated to adipocytes, osteocytes, and chondrocytes. Conclusions Adipose tissue harvested from the abdomen through direct excision or Coleman's technique with centrifugation was found to yield the most SVF cells and ASCs. PMID:25791999

  17. Adipose-derived stem cells for skin regeneration.

    PubMed

    Mizuno, Hiroshi; Nambu, Masaki

    2011-01-01

    Intractable skin ulcers resulting from diabetes, ischemia and collagen diseases represent significant problems with few solutions. Cell-based therapy may hold promise in overcoming such disorders. In order to establish a suitable experimental model for the treatment of such ulcers using stem cells, this chapter describes detailed methods for: (1) isolation of stem cells from adipose tissue, termed adipose-derived stem cells (ASCs), (2) preparing a hybrid-type artificial dermis that consists of a type I collagen sponge and ASCs, (3) preparing intractable ulcers using Mitomycin C, and (4) evaluating the effect of wound healing histologically. ASCs seeded onto a type I collagen sponge are applied to intractable ulcers induced by topical application of Mitomycin C. Histological evaluation after 1 and 2 weeks revealed an increase in capillary density and granulation thickness of the hybrid-type artificial dermis. These findings suggest that ASCs may have a positive effect on wound healing and may be a useful tool for future cell-based therapy. PMID:21082422

  18. Capillary Force Seeding of Hydrogels for Adipose-Derived Stem Cell Delivery in Wounds

    PubMed Central

    Garg, Ravi K.; Rennert, Robert C.; Duscher, Dominik; Sorkin, Michael; Kosaraju, Revanth; Auerbach, Lauren J.; Lennon, James; Chung, Michael T.; Paik, Kevin; Nimpf, Johannes; Rajadas, Jayakumar; Longaker, Michael T.

    2014-01-01

    Effective skin regeneration therapies require a successful interface between progenitor cells and biocompatible delivery systems. We previously demonstrated the efficiency of a biomimetic pullulan-collagen hydrogel scaffold for improving bone marrow-derived mesenchymal stem cell survival within ischemic skin wounds by creating a “stem cell niche” that enhances regenerative cytokine secretion. Adipose-derived mesenchymal stem cells (ASCs) represent an even more appealing source of stem cells because of their abundance and accessibility, and in this study we explored the utility of ASCs for hydrogel-based therapies. To optimize hydrogel cell seeding, a rapid, capillary force-based approach was developed and compared with previously established cell seeding methods. ASC viability and functionality following capillary hydrogel seeding were then analyzed in vitro and in vivo. In these experiments, ASCs were seeded more efficiently by capillary force than by traditional methods and remained viable and functional in this niche for up to 14 days. Additionally, hydrogel seeding of ASCs resulted in the enhanced expression of multiple stemness and angiogenesis-related genes, including Oct4, Vegf, Mcp-1, and Sdf-1. Moving in vivo, hydrogel delivery improved ASC survival, and application of both murine and human ASC-seeded hydrogels to splinted murine wounds resulted in accelerated wound closure and increased vascularity when compared with control wounds treated with unseeded hydrogels. In conclusion, capillary seeding of ASCs within a pullulan-collagen hydrogel bioscaffold provides a convenient and simple way to deliver therapeutic cells to wound environments. Moreover, ASC-seeded constructs display a significant potential to accelerate wound healing that can be easily translated to a clinical setting. PMID:25038246

  19. The Effect of Bone-Marrow-Derived Stem Cells and Adipose-Derived Stem Cells on Wound Contraction and Epithelization

    PubMed Central

    Uysal, Cagri A.; Tobita, Morikuni; Hyakusoku, Hiko; Mizuno, Hiroshi

    2014-01-01

    Objective: The relationship between the wound contraction and levels of α-smooth muscle actin (α-SMA) has been revealed in different studies. We aimed to investigate the effects of mesenchymal stem cells (MSCs), mainly bone-marrow-derived stem cells (BSCs) and adipose-derived stem cells (ASCs), and find out the α-SMA, fibroblast growth factor (FGF), transforming growth factor beta, and vascular endothelial growth factor (VEGF) levels on an in vivo acute wound healing model after the application of MSCs. Approach: Four circular skin defects were formed on the dorsum of Fisher rats (n=20). The defects were applied phosphate-buffered saline (PBS), ASCs, BSCs, and patchy skin graft, respectively. The healing time and scar area were noted. Results: There was a statistical decrease in the healing time in ASC, BSC, and skin graft groups (p<0.05). However, the scar was smaller in the PBS group (p<0.05). The α-SMA levels were statistically lower in ASC, BSC, and graft groups (p<0.05). The FGF levels were statistically higher in ASC and BSC groups (p<0.05). The differentiation of the injected MSCs to endothelial cells and keratinocytes was observed. Innovation and Conclusion: MSCs decrease the healing time and contraction of the wound while increasing the epithelization rate by increasing angiogenesis. PMID:24940554

  20. Layer-shaped alginate hydrogels enhance the biological performance of human adipose-derived stem cells

    PubMed Central

    2012-01-01

    Background The reconstruction of adipose tissue defects is often challenged by the complications that may occur following plastic and reconstructive surgery, including donor-site morbidity, implant migration and foreign body reaction. To overcome these problems, adipose tissue engineering (ATE) using stem cell-based regeneration strategies has been widely explored in the last years. Mounting evidence has shown that adipose-derived stem cells (ADSCs) represent a promising cell source for ATE. In the context of a small number of reports concerning adipose tissue regeneration using three-dimensional (3-D) systems, the present study was designed to evaluate the biological performance of a novel alginate matrix that incorporates human ADSCs (hADSCs). Results Culture-expanded cells isolated from the stromal vascular fraction (SVF), corresponding to the third passage which showed the expression of mesenchymal stem cell (MSC) markers, were used in the 3-D culture systems. The latter represented a calcium alginate hydrogel, obtained by the diffusion of calcium gluconate (CGH matrix), and shaped as discoid-thin layer. For comparative purposes, a similar hADSC-laden alginate hydrogel cross-linked with calcium chloride was considered as reference hydrogel (RH matrix). Both hydrogels showed a porous structure under scanning electron microscopy (SEM) and the hADSCs embedded displayed normal spherical morphologies, some of them showing signs of mitosis. More than 85% of the entrapped cells survived throughout the incubation period of 7 days. The percentage of viable cells was significantly higher within CGH matrix at 2 days post-seeding, and approximately similar within both hydrogels after 7 days of culture. Moreover, both alginate-based hydrogels stimulated cell proliferation. The number of hADSC within hydrogels has increased during the incubation period of 7 days and was higher in the case of CGH matrix. Cells grown under adipogenic conditions for 21 days showed

  1. Adipose-derived stem cells: selecting for translational success

    PubMed Central

    Johal, Kavan S; Lees, Vivien C; Reid, Adam J

    2016-01-01

    We have witnessed a rapid expansion of in vitro characterization and differentiation of adipose-derived stem cells, with increasing translation to both in vivo models and a breadth of clinical specialties. However, an appreciation of the truly heterogeneous nature of this unique stem cell group has identified a need to more accurately delineate subpopulations by any of a host of methods, to include functional properties or surface marker expression. Cells selected for improved proliferative, differentiative, angiogenic or ischemia-resistant properties are but a few attributes that could prove beneficial for targeted treatments or therapies. Optimizing cell culture conditions to permit re-introduction to patients is critical for clinical translation. PMID:25562354

  2. Adipose-derived stem cells in cartilage regeneration: current perspectives.

    PubMed

    Bielli, Alessandra; Scioli, Maria Giovanna; Gentile, Pietro; Cervelli, Valerio; Orlandi, Augusto

    2016-10-01

    Repair of cartilage injuries represents a musculoskeletal medicine criticism because of the poor ability to self-renewal of adult cartilage. Therefore, research focuses on developing new regenerative strategies combining chondrocytes or stem cells, scaffolds and growth factors. Because of the low proliferation capability of explanted chondrocytes, new chondrogenesis models, employing human adipose-derived stem cells (ASCs), have been investigated. ASCs are readily accessible with no morbidity and display the capability to differentiate into several cell lineages, including the spontaneous chondrogenic differentiation when entrapped in collagen gel scaffolds. Recent studies also defined some biomolecular mechanisms involved in ASC chondrogenesis in vitro, and their regenerative properties in bioengineered scaffolds and in the presence of growth factors. However, further investigations are required to validate these exciting preclinical results for the application of bioenginereed ASCs in the clinical practice. PMID:27599358

  3. Research Advancements in Porcine Derived Mesenchymal Stem Cells.

    PubMed

    Bharti, Dinesh; Shivakumar, Sharath Belame; Subbarao, Raghavendra Baregundi; Rho, Gyu-Jin

    2016-01-01

    In the present era of stem cell biology, various animals such as Mouse, Bovine, Rabbit and Porcine have been tested for the efficiency of their mesenchymal stem cells (MSCs before their actual use for stem cell based application in humans. Among them pigs have many similarities to humans in the form of organ size, physiology and their functioning, therefore they have been considered as a valuable model system for in vitro studies and preclinical assessments. Easy assessability, few ethical issues, successful MSC isolation from different origins like bone marrow, skin, umbilical cord blood, Wharton's jelly, endometrium, amniotic fluid and peripheral blood make porcine a good model for stem cell therapy. Porcine derived MSCs (pMSCs have shown greater in vitro differentiation and transdifferention potential towards mesenchymal lineages and specialized lineages such as cardiomyocytes, neurons, hepatocytes and pancreatic beta cells. Immunomodulatory and low immunogenic profiles as shown by autologous and heterologous MSCs proves them safe and appropriate models for xenotransplantation purposes. Furthermore, tissue engineered stem cell constructs can be of immense importance in relation to various osteochondral defects which are difficult to treat otherwise. Using pMSCs successful treatment of various disorders like Parkinson's disease, cardiac ischemia, hepatic failure, has been reported by many studies. Here, in this review we highlight current research findings in the area of porcine mesenchymal stem cells dealing with their isolation methods, differentiation ability, transplantation applications and their therapeutic potential towards various diseases. PMID:26201864

  4. Isolation of adipose-derived stromal cells without enzymatic treatment: expansion, phenotypical, and functional characterization.

    PubMed

    Busser, Hélène; De Bruyn, Cécile; Urbain, Frédéric; Najar, Mehdi; Pieters, Karlien; Raicevic, Gordana; Meuleman, Nathalie; Bron, Dominique; Lagneaux, Laurence

    2014-10-01

    Stem cell therapy is a potential method for the treatment of numerous diseases. The most frequent cellular source is bone-marrow-derived mesenchymal stromal cells (BM-MSCs). Human adipose-derived stromal cells (ADSCs) share similar properties with BM-MSCs as they support hematopoiesis, modulate ongoing immune responses, and differentiate into cells of mesodermal origin. On the other hand, ADSCs have higher frequency in situ, higher availability, and very few ethical issues compared with BM-MSCs, giving them an advantage over BM-MSCs for clinical use. Most of the methods used to isolate ADSCs contain a collagenase digestion step, but the type of collagenase and time of sample digestion vary among studies and these differences could have an impact on the cell properties and thus in result comparison. To overcome this obstacle, we propose a new method to isolate ADSCs from lipoaspirate without collagenase digestion step. We compared ADSCs obtained with our method versus classical protocol using collagenase digestion. Cells obtained with our method are equivalent but they have a better long-term hematopoietic support than those obtained with classical method. Moreover, our method has an advantage over the classical one as it is easier, safer, faster, less expensive, and more consistent with good manufacturing practices to obtain large number of ADSCs ex vivo. PMID:24805167

  5. Overexpressed human heme Oxygenase-1 decreases adipogenesis in pigs and porcine adipose-derived stem cells.

    PubMed

    Park, Eun Jung; Koo, Ok Jae; Lee, Byeong Chun

    2015-11-27

    Adipose-derived mesenchymal stem cells (ADSC) are multipotent, which means they are able to differentiate into several lineages in vivo and in vitro under proper conditions. This indicates it is possible to determine the direction of differentiation of ADSC by controlling the microenvironment. Heme oxygenase 1 (HO-1), a type of antioxidant enzyme, attenuates adipogenicity and obesity. We produced transgenic pigs overexpressing human HO-1 (hHO-1-Tg), and found that these animals have little fatty tissue when autopsied. To determine whether overexpressed human HO-1 suppresses adipogenesis in pigs, we analyzed body weight increases of hHO-1-Tg pigs and wild type (WT) pigs of the same strain, and induced adipogenic differentiation of ADSC derived from WT and hHO-1-Tg pigs. The hHO-1-Tg pigs had lower body weights than WT pigs from 16 weeks of age until they died. In addition, hHO-1-Tg ADSC showed reduced adipogenic differentiation and expression of adipogenic molecular markers such as PPARγ and C/EBPα compared to WT ADSC. These results suggest that HO-1 overexpression reduces adipogenesis both in vivo and in vitro, which could support identification of therapeutic targets of obesity and related metabolic diseases.

  6. Single cell-derived clones from human adipose stem cells present different immunomodulatory properties.

    PubMed

    Sempere, J M; Martinez-Peinado, P; Arribas, M I; Reig, J A; De La Sen, M L; Zubcoff, J J; Fraga, M F; Fernández, A F; Santana, A; Roche, E

    2014-05-01

    Human adipose mesenchymal stem cells are a heterogeneous population, where cell cultures derived from single-cell-expanded clones present varying degrees of differential plasticity. This work focuses on the immunomodulatory/anti-inflammatory properties of these cells. To this end, five single-cell clones were isolated (generally called 1.X and 3.X) from two volunteers. Regarding the expression level of the lineage-characteristic surface antigens, clones 1·10 and 1·22 expressed the lowest amounts, while clones 3·10 and 3·5 expressed more CD105 than the rest and clone 1·7 expressed higher amounts of CD73 and CD44. Regarding cytokine secretion, all clones were capable of spontaneously releasing high levels of interleukin (IL)-6 and low to moderate levels of IL-8. These differences can be explained in part by the distinct methylation profile exhibited by the clones. Furthermore, and after lipopolysaccharide stimulation, clone 3.X produced the highest amounts of proinflammatory cytokines such as IL-1β, while clones 1·10 and 1·22 highly expressed IL-4 and IL-5. In co-culture experiments, clones 1.X are, together, more potent inhibitors than clones 3.X for proliferation of total, CD3(+) T, CD4(+) T and CD8(+) T lymphocytes and natural killer (NK) cells. The results of this work indicate that the adipose stem cell population is heterogeneous in cytokine production profile, and that isolation, characterization and selection of the appropriate cell clone is a more exact method for the possible treatment of different patients or pathologies.

  7. Single cell-derived clones from human adipose stem cells present different immunomodulatory properties

    PubMed Central

    Sempere, J M; Martinez-Peinado, P; Arribas, M I; Reig, J A; De La Sen, M L; Zubcoff, J J; Fraga, M F; Fernández, A F; Santana, A; Roche, E

    2014-01-01

    Human adipose mesenchymal stem cells are a heterogeneous population, where cell cultures derived from single-cell-expanded clones present varying degrees of differential plasticity. This work focuses on the immunomodulatory/anti-inflammatory properties of these cells. To this end, five single-cell clones were isolated (generally called 1.X and 3.X) from two volunteers. Regarding the expression level of the lineage-characteristic surface antigens, clones 1·10 and 1·22 expressed the lowest amounts, while clones 3·10 and 3·5 expressed more CD105 than the rest and clone 1·7 expressed higher amounts of CD73 and CD44. Regarding cytokine secretion, all clones were capable of spontaneously releasing high levels of interleukin (IL)-6 and low to moderate levels of IL-8. These differences can be explained in part by the distinct methylation profile exhibited by the clones. Furthermore, and after lipopolysaccharide stimulation, clone 3.X produced the highest amounts of proinflammatory cytokines such as IL-1β, while clones 1·10 and 1·22 highly expressed IL-4 and IL-5. In co-culture experiments, clones 1.X are, together, more potent inhibitors than clones 3.X for proliferation of total, CD3+T, CD4+T and CD8+T lymphocytes and natural killer (NK) cells. The results of this work indicate that the adipose stem cell population is heterogeneous in cytokine production profile, and that isolation, characterization and selection of the appropriate cell clone is a more exact method for the possible treatment of different patients or pathologies. PMID:24666184

  8. Labeling and Imaging Mesenchymal Stem Cells with Quantum Dots

    EPA Science Inventory

    Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into bone, cartilage, adipose and muscle cells. Adult derived MSCs are being actively investigated because of their potential to be utilized for therapeutic cell-based transplantation. Methods...

  9. Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow-derived counterparts.

    PubMed

    Blashki, Daniel; Murphy, Matthew B; Ferrari, Mauro; Simmons, Paul J; Tasciotti, Ennio

    2016-01-01

    In this study, we show that matrix dense cortical bone is the more potent compartment of bone than bone marrow as a stromal source for mesenchymal stem cells as isolated from adult rats. Lineage-depleted cortical bone-mesenchymal stem cells demonstrated >150-fold enrichment of colony forming unit-fibroblasts per cell incidence. compared to lineage-depleted bone marrow-mesenchymal stem cells, corresponding to a 70-fold increase in absolute recovered colony forming unit-fibroblasts. The composite phenotype Lin(-)/CD45(-)/CD31(-)/VLA-1(+)/Thy-1(+) enriched for clonogenic mesenchymal stem cells solely from cortical bone-derived cells from which 70% of clones spontaneously differentiated into all lineages of bone, cartilage, and adipose. Both populations generated vascularized bone tissue within subcutaneous implanted collagen scaffolds; however, cortical bone-derived cells formed significantly more osteoid than bone marrow counterparts, quantified by histology. The data demonstrate that our isolation protocol identifies and validates mesenchymal stem cells with superior clonal, proliferative, and developmental potential from cortical bone compared to the bone marrow niche although marrow persists as the typical source for mesenchymal stem cells both in the literature and current pre-clinical therapies. PMID:27579159

  10. Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow–derived counterparts

    PubMed Central

    Blashki, Daniel; Murphy, Matthew B; Ferrari, Mauro; Simmons, Paul J; Tasciotti, Ennio

    2016-01-01

    In this study, we show that matrix dense cortical bone is the more potent compartment of bone than bone marrow as a stromal source for mesenchymal stem cells as isolated from adult rats. Lineage-depleted cortical bone-mesenchymal stem cells demonstrated >150-fold enrichment of colony forming unit–fibroblasts per cell incidence. compared to lineage-depleted bone marrow-mesenchymal stem cells, corresponding to a 70-fold increase in absolute recovered colony forming unit–fibroblasts. The composite phenotype Lin−/CD45−/CD31−/VLA-1+/Thy-1+ enriched for clonogenic mesenchymal stem cells solely from cortical bone–derived cells from which 70% of clones spontaneously differentiated into all lineages of bone, cartilage, and adipose. Both populations generated vascularized bone tissue within subcutaneous implanted collagen scaffolds; however, cortical bone–derived cells formed significantly more osteoid than bone marrow counterparts, quantified by histology. The data demonstrate that our isolation protocol identifies and validates mesenchymal stem cells with superior clonal, proliferative, and developmental potential from cortical bone compared to the bone marrow niche although marrow persists as the typical source for mesenchymal stem cells both in the literature and current pre-clinical therapies. PMID:27579159

  11. Adipose tissue-derived cells: from physiology to regenerative medicine.

    PubMed

    Casteilla, L; Dani, C

    2006-11-01

    During the last past years, the importance and the role of adipose tissues have been greatly expanded. After finding that adipose tissues are metabolically very active, the discovery of leptin moved the status of adipose tissue towards an endocrine tissue able to interact with all major organs via secretion of adipokines. Some years ago, the presence of adipocyte precursors, termed preadipocytes, has been described in all adipose tissue depots from various species of different age. More recently, the discovery that different phenotypes can be obtained from stroma cells of adipose tissue has largely emphazised the concept of adipose tissue plasticity. Therefore, raising great hope in regenerative medicine as adipose tissue can be easily harvested in adults it could represent an abundant source of therapeutic cells. Thus, adipose tissue plays the dual role of Mr Obese Hyde as a main actor of obesity and of Dr Regenerative Jekyll as a source of therapeutic cells. Adipose tissue has not yet revealed all its mysteries although one facet could not be well understood without the other one. PMID:17110894

  12. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics (IFATS) and Science and the International Society for Cellular Therapy (ISCT)

    PubMed Central

    BOURIN, PHILIPPE; BUNNELL, BRUCE A.; CASTEILLA, LOUIS; DOMINICI, MASSIMO; KATZ, ADAM J.; MARCH, KEITH L.; REDL, HEINZ; RUBIN, J. PETER; YOSHIMURA, KOTARO; GIMBLE, JEFFREY M.

    2014-01-01

    Background aims Adipose tissue is a rich and very convenient source of cells for regenerative medicine therapeutic approaches. However, a characterization of the population of adipose-derived stromal and stem cells (ASCs) with the greatest therapeutic potential remains unclear. Under the authority of International Federation of Adipose Therapeutics and International Society for Cellular Therapy, this paper sets out to establish minimal definitions of stromal cells both as uncultured stromal vascular fraction (SVF) and as an adherent stromal/stem cells population. Methods Phenotypic and functional criteria for the identification of adipose-derived cells were drawn from the literature. Results In the SVF, cells are identified phenotypically by the following markers: CD45-CD235a-CD31-CD34+. Added value may be provided by both a viability marker and the following surface antigens: CD13, CD73, CD90 and CD105. The fibroblastoid colony-forming unit assay permits the evaluation of progenitor frequency in the SVF population. In culture, ASCs retain markers in common with other mesenchymal stromal/stem cells (MSCs), including CD90, CD73, CD105, and CD44 and remain negative for CD45 and CD31. They can be distinguished from bone-marrow-derived MSCs by their positivity for CD36 and negativity for CD106. The CFU-F assay is recommended to calculate population doublings capacity of ASCs. The adipocytic, chondroblastic and osteoblastic differentiation assays serve to complete the cell identification and potency assessment in conjunction with a quantitative evaluation of the differentiation either biochemically or by reverse transcription polymerase chain reaction. Conclusions The goal of this paper is to provide initial guidance for the scientific community working with adipose-derived cells and to facilitate development of international standards based on reproducible parameters. PMID:23570660

  13. Osteodifferentiated mesenchymal stem cells from bone marrow and adipose tissue express HLA-G and display immunomodulatory properties in HLA-mismatched settings: implications in bone repair therapy.

    PubMed

    Montespan, Florent; Deschaseaux, Frédéric; Sensébé, Luc; Carosella, Edgardo D; Rouas-Freiss, Nathalie

    2014-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells that can be obtained from several sources such as bone marrow and adipose tissue. Depending on the culture conditions, they can differentiate into osteoblasts, chondroblasts, adipocytes, or neurons. In this regard, they constitute promising candidates for cell-based therapy aimed at repairing damaged tissues. In addition, MSCs display immunomodulatory properties through the expression of soluble factors including HLA-G. We here analyse both immunogenicity and immunosuppressive capacity of MSCs derived from bone marrow and adipose tissue before and after osteodifferentiation. Results show that HLA-G expression is maintained after osteodifferentiation and can be boosted in inflammatory conditions mimicked by the addition of IFN-γ and TNF-α. Both MSCs and osteodifferentiated MSCs are hypoimmunogenic and exert immunomodulatory properties in HLA-mismatched settings as they suppress T cell alloproliferation in mixed lymphocyte reactions. Finally, addition of biomaterials that stimulate bone tissue formation did not modify MSC immune properties. As MSCs combine both abilities of osteoregeneration and immunomodulation, they may be considered as allogenic sources for the treatment of bone defects.

  14. The Anti-Tumor Effects of Adipose Tissue Mesenchymal Stem Cell Transduced with HSV-Tk Gene on U-87-Driven Brain Tumor

    PubMed Central

    de Melo, Suely Maymone; Bittencourt, Simone; Ferrazoli, Enéas Galdini; da Silva, Clivandir Severino; da Cunha, Flavia Franco; da Silva, Flavia Helena; Stilhano, Roberta Sessa; Denapoli, Priscila Martins Andrade; Zanetti, Bianca Ferrarini; Martin, Priscila Keiko Matsumoto; Silva, Leonardo Martins; dos Santos, Adara Aurea; Baptista, Leandra Santos; Longo, Beatriz Monteiro; Han, Sang Won

    2015-01-01

    Glioblastoma (GBM) is an infiltrative tumor that is difficult to eradicate. Treating GBM with mesenchymal stem cells (MSCs) that have been modified with the HSV-Tk suicide gene has brought significant advances mainly because MSCs are chemoattracted to GBM and kill tumor cells via a bystander effect. To use this strategy, abundantly present adipose-tissue-derived mesenchymal stem cells (AT-MSCs) were evaluated for the treatment of GBM in mice. AT-MSCs were prepared using a mechanical protocol to avoid contamination with animal protein and transduced with HSV-Tk via a lentiviral vector. The U-87 glioblastoma cells cultured with AT-MSC-HSV-Tk died in the presence of 25 or 50 μM ganciclovir (GCV). U-87 glioblastoma cells injected into the brains of nude mice generated tumors larger than 3.5 mm2 after 4 weeks, but the injection of AT-MSC-HSV-Tk cells one week after the U-87 injection, combined with GCV treatment, drastically reduced tumors to smaller than 0.5 mm2. Immunohistochemical analysis of the tumors showed the presence of AT-MSC-HSV-Tk cells only within the tumor and its vicinity, but not in other areas of the brain, showing chemoattraction between them. The abundance of AT-MSCs and the easier to obtain them mechanically are strong advantages when compared to using MSCs from other tissues. PMID:26067671

  15. Mesenchymal stem cells from adipose tissue which have been differentiated into chondrocytes in three-dimensional culture express lubricin.

    PubMed

    Musumeci, Giuseppe; Lo Furno, Debora; Loreto, Carla; Giuffrida, Rosario; Caggia, Silvia; Leonardi, Rosalia; Cardile, Venera

    2011-11-01

    The present study focused on the isolation, cultivation and characterization of human mesenchymal stem cells (MSCs) from adipose tissue and on their differentiation into chondrocytes through the NH ChondroDiff medium. The main aim was to investigate some markers of biomechanical quality of cartilage, such as lubricin, and collagen type I and II. Little is known, in fact, about the ability of chondrocytes from human MSCs of adipose tissue to generate lubricin in three-dimensional (3D) culture. Lubricin, a 227.5-kDa mucinous glycoprotein, is known to play an important role in articular joint physiology, and the loss of accumulation of lubricin is thought to play a role in the pathology of osteoarthritis. Adipose tissue is an alternative source for the isolation of multipotent MSCs, which allows them to be obtained by a less invasive method and in larger quantities than from other sources. These cells can be isolated from cosmetic liposuctions in large numbers and easily grown under standard tissue culture conditions. 3D chondrocytes were assessed by histology (hematoxylin and eosin) and histochemistry (Alcian blue and Safranin-O/fast green staining). Collagen type I, II and lubricin expression was determined through immunohistochemistry and Western blot. The results showed that, compared with control cartilage and monolayer chondrocytes showing just collagen type I, chondrocytes from MSCs (CD44-, CD90- and CD105- positive; CD45-, CD14- and CD34-negative) of adipose tissue grown in nodules were able to express lubricin, and collagen type I and II, indicative of hyaline cartilage formation. Based on the function of lubricin in the joint cavity and disease and as a potential therapeutic agent, our results suggest that MSCs from adipose tissue are a promising cell source for tissue engineering of cartilage. Our results suggest that chondrocyte nodules producing lubricin could be a novel biotherapeutic approach for the treatment of cartilage abnormalities.

  16. The Role of Adipose-Derived Stem Cells in Breast Cancer Progression and Metastasis

    PubMed Central

    Gorantla, Vijay S.; Rubin, J. Peter

    2015-01-01

    Conventional breast cancer extirpation involves resection of parts of or the whole gland, resulting in asymmetry and disfiguration. Given the unsatisfactory aesthetic outcomes, patients often desire postmastectomy reconstructive procedures. Autologous fat grafting has been proposed for reconstructive purposes for decades to restore form and anatomy after mastectomy. Fat has the inherent advantage of being autologous tissue and the most natural-appearing filler, but given its inconsistent engraftment and retention rates, it lacks reliability. Implementation of autologous fat grafts with cellular adjuncts, such as multipotent adipose-derived stem cells (ADSCs), has shown promising results. However, it is pertinent and critical to question whether these cells could promote any residual tumor cells to proliferate, differentiate, or metastasize or even induce de novo carcinogenesis. Thus far, preclinical and clinical study findings are discordant. A trend towards potential promotion of both breast cancer growth and invasion by ADSCs found in basic science studies was indeed not confirmed in clinical trials. Whether experimental findings eventually correlate with or will be predictive of clinical outcomes remains unclear. Herein, we aimed to concisely review current experimental findings on the interaction of mesenchymal stem cells and breast cancer, mainly focusing on ADSCs as a promising tool for regenerative medicine, and discuss the implications in clinical translation. PMID:26000019

  17. Potential of adipose-derived stem cells in muscular regenerative therapies.

    PubMed

    Forcales, Sonia-V

    2015-01-01

    Regenerative capacity of skeletal muscles resides in satellite cells, a self-renewing population of muscle cells. Several studies are investigating epigenetic mechanisms that control myogenic proliferation and differentiation to find new approaches that could boost regeneration of endogenous myogenic progenitor populations. In recent years, a lot of effort has been applied to purify, expand and manipulate adult stem cells from muscle tissue. However, this population of endogenous myogenic progenitors in adults is limited and their access is difficult and invasive. Therefore, other sources of stem cells with potential to regenerate muscles need to be examined. An excellent candidate could be a population of adult stromal cells within fat characterized by mesenchymal properties, which have been termed adipose-derived stem cells (ASCs). These progenitor adult stem cells have been successfully differentiated in vitro to osteogenic, chondrogenic, neurogenic and myogenic lineages. Autologous ASCs are multipotent and can be harvested with low morbidity; thus, they hold promise for a range of therapeutic applications. This review will summarize the use of ASCs in muscle regenerative approaches. PMID:26217219

  18. Regulation of osteogenic differentiation of human adipose-derived stem cells by controlling electromagnetic field conditions

    PubMed Central

    Kang, Kyung Shin; Hong, Jung Min; Kang, Jo A; Rhie, Jong-Won; Jeong, Young Hun; Cho, Dong-Woo

    2013-01-01

    Many studies have reported that an electromagnetic field can promote osteogenic differentiation of mesenchymal stem cells. However, experimental results have differed depending on the experimental and environmental conditions. Optimization of electromagnetic field conditions in a single, identified system can compensate for these differences. Here we demonstrated that specific electromagnetic field conditions (that is, frequency and magnetic flux density) significantly regulate osteogenic differentiation of adipose-derived stem cells (ASCs) in vitro. Before inducing osteogenic differentiation, we determined ASC stemness and confirmed that the electromagnetic field was uniform at the solenoid coil center. Then, we selected positive (30/45 Hz, 1 mT) and negative (7.5 Hz, 1 mT) osteogenic differentiation conditions by quantifying alkaline phosphate (ALP) mRNA expression. Osteogenic marker (for example, runt-related transcription factor 2) expression was higher in the 30/45 Hz condition and lower in the 7.5 Hz condition as compared with the nonstimulated group. Both positive and negative regulation of ALP activity and mineralized nodule formation supported these responses. Our data indicate that the effects of the electromagnetic fields on osteogenic differentiation differ depending on the electromagnetic field conditions. This study provides a framework for future work on controlling stem cell differentiation. PMID:23306704

  19. Cartilage Regeneration in Human with Adipose Tissue-Derived Stem Cells: Current Status in Clinical Implications.

    PubMed

    Pak, Jaewoo; Lee, Jung Hun; Kartolo, Wiwi Andralia; Lee, Sang Hee

    2016-01-01

    Osteoarthritis (OA) is one of the most common debilitating disorders among the elderly population. At present, there is no definite cure for the underlying causes of OA. However, adipose tissue-derived stem cells (ADSCs) in the form of stromal vascular fraction (SVF) may offer an alternative at this time. ADSCs are one type of mesenchymal stem cells that have been utilized and have demonstrated an ability to regenerate cartilage. ADSCs have been shown to regenerate cartilage in a variety of animal models also. Non-culture-expanded ADSCs, in the form of SVF along with platelet rich plasma (PRP), have recently been used in humans to treat OA and other cartilage abnormalities. These ADSCs have demonstrated effectiveness without any serious side effects. However, due to regulatory issues, only ADSCs in the form of SVF are currently allowed for clinical uses in humans. Culture-expanded ADSCs, although more convenient, require clinical trials for a regulatory approval prior to uses in clinical settings. Here we present a systematic review of currently available clinical studies involving ADSCs in the form of SVF and in the culture-expanded form, with or without PRP, highlighting the clinical effectiveness and safety in treating OA. PMID:26881220

  20. Does the liposuction method influence the phenotypic characteristic of human adipose-derived stem cells?

    PubMed Central

    Bajek, Anna; Gurtowska, Natalia; Gackowska, Lidia; Kubiszewska, Izabela; Bodnar, Magdalena; Marszałek, Andrzej; Januszewski, Rafał; Michalkiewicz, Jacek; Drewa, Tomasz

    2015-01-01

    Adipose-derived stem cells (ASCs) possess a high differentiation and proliferation potential. However, the phenotypic characterization of ASCs is still difficult. Until now, there is no extensive analysis of ASCs markers depending on different liposuction methods. Therefore, the aim of the present study was to analyse 242 surface markers and determine the differences in the phenotypic pattern between ASCs obtained during mechanical and ultrasound-assisted liposuction. ASCs were isolated from healthy donors, due to mechanical and ultrasound-assisted liposuction and cultured in standard medium to the second passage. Differentiation potential and markers expression was evaluated to confirm the mesenchymal nature of cells. Then, the BD LyoplateTM Human Cell Surface Marker Screening Panel was used. Results shown that both population of ASCs are characterized by high expression of markers specific for ASCs: cluster of differentiation (CD)9, CD10, CD34, CD44, CD49d, CD54, CD55, CD59, CD71 and low expression of CD11a, CD11c and CD144. Moreover, we have noticed significant differences in antigen expression in 58 markers from the 242 studied. Presented study shows for the first time that different liposuction methods are not a significant factor which can influence the expression of human ASCs surface markers. PMID:26182374

  1. Potential of adipose-derived stem cells in muscular regenerative therapies

    PubMed Central

    Forcales, Sonia-V

    2015-01-01

    Regenerative capacity of skeletal muscles resides in satellite cells, a self-renewing population of muscle cells. Several studies are investigating epigenetic mechanisms that control myogenic proliferation and differentiation to find new approaches that could boost regeneration of endogenous myogenic progenitor populations. In recent years, a lot of effort has been applied to purify, expand and manipulate adult stem cells from muscle tissue. However, this population of endogenous myogenic progenitors in adults is limited and their access is difficult and invasive. Therefore, other sources of stem cells with potential to regenerate muscles need to be examined. An excellent candidate could be a population of adult stromal cells within fat characterized by mesenchymal properties, which have been termed adipose-derived stem cells (ASCs). These progenitor adult stem cells have been successfully differentiated in vitro to osteogenic, chondrogenic, neurogenic and myogenic lineages. Autologous ASCs are multipotent and can be harvested with low morbidity; thus, they hold promise for a range of therapeutic applications. This review will summarize the use of ASCs in muscle regenerative approaches. PMID:26217219

  2. Live-cell, temporal gene expression analysis of osteogenic differentiation in adipose-derived stem cells.

    PubMed

    Desai, Hetal V; Voruganti, Indu S; Jayasuriya, Chathuraka; Chen, Qian; Darling, Eric M

    2014-03-01

    Adipose-derived stem cells (ASCs) are a widely investigated type of mesenchymal stem cells with great potential for musculoskeletal regeneration. However, the use of ASCs is complicated by their cellular heterogeneity, which exists at both the population and single-cell levels. This study demonstrates a live-cell assay to investigate gene expression in ASCs undergoing osteogenesis using fluorescently tagged DNA hybridization probes called molecular beacons. A molecular beacon was designed to target the mRNA sequence for alkaline phosphatase (ALPL), a gene characteristically expressed during early osteogenesis. The percentage of cells expressing this gene in a population was monitored daily to quantify the uniformity of the differentiation process. Differentiating ASC populations were repeatedly measured in a nondestructive fashion over a 10-day period to obtain temporal gene expression data. Results showed consistent expression patterns for the investigated osteogenic genes in response to induction medium. Peak signal level, indicating when the most cells expressed ALPL at once, was observed on days 3-5. The differentiation response of sample populations was generally uniform when assessed on a well-by-well basis over time. The expression of alkaline phosphatase is consistent with previous studies of osteogenic differentiation, suggesting that molecular beacons are a viable means of monitoring the spatiotemporal gene expression of live, differentiating ASCs.

  3. Expression of p107 and p130 during human adipose-derived stem cell adipogenesis.

    PubMed

    Ross, Ashley S; Tsang, Rocky; Shewmake, Kris; McGehee, Robert E

    2008-02-22

    Within the first 24h of hormonally stimulated adipocyte differentiation, murine 3T3-L1 preadipocytes undergo a mitotic expansion phase prior to terminal differentiation. During this time, the cell cycle regulatory proteins, p130 and p107 undergo dramatic differential expression and the transient increase in expression of p107 appears to be required for terminal differentiation. Recently, human adipose-derived human stem cells (hASC) of mesenchymal origin have been used as a model of human adipocyte differentiation and we sought to determine if differentiating hASC undergo clonal expansion and if the regulated expression of p130/p107 was similar to that observed during 3T3-L1 adipogenesis. Results indicate that differentiating hASC, unlike 3T3-L1 cells do not undergo clonal expansion and p130 expression gradually diminishes across differentiation. However, p107 expression is transiently increased during hASC differentiation in a manner analogous to 3T3-L1 cells suggesting a similar role for p107 in terminal differentiation in human adipocytes.

  4. Regulation of osteogenic differentiation of human adipose-derived stem cells by controlling electromagnetic field conditions.

    PubMed

    Kang, Kyung Shin; Hong, Jung Min; Kang, Jo A; Rhie, Jong-Won; Jeong, Young Hun; Cho, Dong-Woo

    2013-01-18

    Many studies have reported that an electromagnetic field can promote osteogenic differentiation of mesenchymal stem cells. However, experimental results have differed depending on the experimental and environmental conditions. Optimization of electromagnetic field conditions in a single, identified system can compensate for these differences. Here we demonstrated that specific electromagnetic field conditions (that is, frequency and magnetic flux density) significantly regulate osteogenic differentiation of adipose-derived stem cells (ASCs) in vitro. Before inducing osteogenic differentiation, we determined ASC stemness and confirmed that the electromagnetic field was uniform at the solenoid coil center. Then, we selected positive (30/45 Hz, 1 mT) and negative (7.5 Hz, 1 mT) osteogenic differentiation conditions by quantifying alkaline phosphate (ALP) mRNA expression. Osteogenic marker (for example, runt-related transcription factor 2) expression was higher in the 30/45 Hz condition and lower in the 7.5 Hz condition as compared with the nonstimulated group. Both positive and negative regulation of ALP activity and mineralized nodule formation supported these responses. Our data indicate that the effects of the electromagnetic fields on osteogenic differentiation differ depending on the electromagnetic field conditions. This study provides a framework for future work on controlling stem cell differentiation.

  5. Live-Cell, Temporal Gene Expression Analysis of Osteogenic Differentiation in Adipose-Derived Stem Cells

    PubMed Central

    Desai, Hetal V.; Voruganti, Indu S.; Jayasuriya, Chathuraka; Chen, Qian

    2014-01-01

    Adipose-derived stem cells (ASCs) are a widely investigated type of mesenchymal stem cells with great potential for musculoskeletal regeneration. However, the use of ASCs is complicated by their cellular heterogeneity, which exists at both the population and single-cell levels. This study demonstrates a live-cell assay to investigate gene expression in ASCs undergoing osteogenesis using fluorescently tagged DNA hybridization probes called molecular beacons. A molecular beacon was designed to target the mRNA sequence for alkaline phosphatase (ALPL), a gene characteristically expressed during early osteogenesis. The percentage of cells expressing this gene in a population was monitored daily to quantify the uniformity of the differentiation process. Differentiating ASC populations were repeatedly measured in a nondestructive fashion over a 10-day period to obtain temporal gene expression data. Results showed consistent expression patterns for the investigated osteogenic genes in response to induction medium. Peak signal level, indicating when the most cells expressed ALPL at once, was observed on days 3–5. The differentiation response of sample populations was generally uniform when assessed on a well-by-well basis over time. The expression of alkaline phosphatase is consistent with previous studies of osteogenic differentiation, suggesting that molecular beacons are a viable means of monitoring the spatiotemporal gene expression of live, differentiating ASCs. PMID:24367991

  6. Derivation and Chondrogenic Commitment of Human Embryonic Stem Cell-Derived Mesenchymal Progenitors.

    PubMed

    Drissi, Hicham; Gibson, Jason D; Guzzo, Rosa M; Xu, Ren-He

    2015-01-01

    The induction of human embryonic stem cells to a mesenchymal-like progenitor population constitutes a developmentally relevant approach for efficient directed differentiation of human embryonic stem (hES) cells to the chondrogenic lineage. The initial enrichment of a hemangioblast intermediate has been shown to yield a replenishable population of highly purified progenitor cells that exhibit the typical mesenchymal stem cell (MSC) surface markers as well as the capacity for multilineage differentiation to bone, fat, and cartilage. Herein, we provide detailed methodologies for the derivation and characterization of potent mesenchymal-like progenitors from hES cells and describe in vitro assays for bone morphogenetic protein (BMP)-2-mediated differentiation to the chondrogenic lineage.

  7. Comparative Study on Functional Effects of Allotransplantation of Bone Marrow Stromal Cells and Adipose Derived Stromal Vascular Fraction on Tendon Repair: A Biomechanical Study in Rabbits

    PubMed Central

    Behfar, Mehdi; Javanmardi, Sara; Sarrafzadeh-Rezaei, Farshid

    2014-01-01

    Objective Tendon never returns to its complete biological and mechanical properties after repair. Bone marrow and, recently, adipose tissue have been used as sources of mesenchymal stem cells which have been proven to enhance tendon healing. In the present study, we compared the effects of allotransplantation of bone marrow derived mesenchymal stromal cells (BMSCs) and adipose derived stromal vascular fraction (SVF) on tendon mechanical properties after experimentally induced flexor tendon transection. Materials and Methods In this experimental study, we used 48 adult male New Zealand white rabbits. Twelve of rabbits were used as donors of bone marrow and adipose tissue, the rest were divided into control and treatment groups. The injury model was a unilateral complete transection of the deep digital flexor tendon. Immediately after suture repair, 4×106cells of either fresh SVF from enzymatic digestion of adipose tissue or cultured BMSCs were intratendinously injected into tendon stumps in the treatment groups. Controls received phosphate-buffered saline (PBS). Immobilization with a cast was continued for two weeks after surgery. Animals were sacrificed three and eight weeks after surgery and tendons underwent mechanical evaluations. The differences among the groups were analyzed using the analysis of variance (ANOVA) test followed by Tukey’s multiple comparisons test. Results Stromal cell transplantation resulted in a significant increase in ultimate and yield loads, energy absorption, and stress of repairs compared to the controls. However, there were no statistically significant changes detected in terms of stiffness. In comparison, we observed no significant differences at the third week between SVF and BMSCs treated tendons in terms of all load related properties. However, at the eighth week SVF transplantation resulted in significantly increased energy absorption, stress and stiffness compared to BMSCs. Conclusion The enhanced biomechanical properties of

  8. Comparison of human adipose-derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications.

    PubMed

    Russo, Valerio; Yu, Claire; Belliveau, Paul; Hamilton, Andrew; Flynn, Lauren E

    2014-02-01

    Adipose tissue is an abundant source of multipotent progenitor cells that have shown promise in regenerative medicine. In humans, fat is primarily distributed in the subcutaneous and visceral depots, which have varying biochemical and functional properties. In most studies to date, subcutaneous adipose tissue has been investigated as the adipose-derived stem cell (ASC) source. In this study, we sought to develop a broader understanding of the influence of specific adipose tissue depots on the isolated ASC populations through a systematic comparison of donor-matched abdominal subcutaneous fat and omentum, and donor-matched pericardial adipose tissue and thymic remnant samples. We found depot-dependent and donor-dependent variability in the yield, viability, immunophenotype, clonogenic potential, doubling time, and adipogenic and osteogenic differentiation capacities of the ASC populations. More specifically, ASCs isolated from both intrathoracic depots had a longer average doubling time and a significantly higher proportion of CD34(+) cells at passage 2, as compared with cells isolated from subcutaneous fat or the omentum. Furthermore, ASCs from subcutaneous and pericardial adipose tissue demonstrated enhanced adipogenic differentiation capacity, whereas ASCs isolated from the omentum displayed the highest levels of osteogenic markers in culture. Through cell culture analysis under hypoxic (5% O(2)) conditions, oxygen tension was shown to be a key mediator of colony-forming unit-fibroblast number and osteogenesis for all depots. Overall, our results suggest that depot selection is an important factor to consider when applying ASCs in tissue-specific cell-based regenerative therapies, and also highlight pericardial adipose tissue as a potential new ASC source. PMID:24361924

  9. Comparing brain-derived neurotrophic factor and ciliary neurotrophic factor secretion of induced neurotrophic factor secreting cells from human adipose and bone marrow-derived stem cells.

    PubMed

    Razavi, Shahnaz; Razavi, Mohamad Reza; Zarkesh Esfahani, Hamid; Kazemi, Mohammad; Mostafavi, Fatemeh Sadat

    2013-08-01

    Adipose derived stem cells (ADSCs) and bone marrow stem cells (BMSCs) may be equally beneficial in treating neurodegenerative diseases. However, ADSCs have practical advantages. In this study, we aimed to induce neurotrophic factors secreting cells in human ADSCs. Then, we compared the level of brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) secretion in neurotrophic factors secreting cells from human adipose and bone marrow-derived stem cells. Isolated human ADSCs and BMSCs were induced to neurotrophic factor (NTF)-secreting cells. The levels of expression and secretion of BDNF and CTNF of induced cells were assessed using immunocytochemical, Real-Time polymerase chain reaction, and enzyme linked immunosorbent assay (ELISA). The level of BDNF significantly increased in both the induced mesenchymal stem cells (MSCs) relative to ADSCs and the BMSCs (P < 0.01). Moreover, ELISA analysis showed that the release of BDNF in the induced BMSCs was almost twofold more than the induced ADSCs. Overall, NTF-secreting factor cells derived BMSCs and ADSCs could secret a range of different growth factors. Therefore, the variation in neurotrophic factors of different induced MSC populations suggest the possible beneficial effect of each specific kind of neurotrophic factor secreting cells for the treatment of a particular neurodegenerative disease. PMID:23944834

  10. Adipose-Derived Stem Cells Respond to Increased Osmolarities

    PubMed Central

    Potočar, Urška; Hudoklin, Samo; Kreft, Mateja Erdani; Završnik, Janja; Božikov, Krešimir; Fröhlich, Mirjam

    2016-01-01

    Cell therapies present a feasible option for the treatment of degenerated cartilaginous and intervertebral disc (IVD) tissues. Microenvironments of these tissues are specific and often differ from the microenvironment of cells that, could be potentially used for therapy, e.g. human adipose-derived stem cells (hASC). To ensure safe and efficient implantation of hASC, it is important to evaluate how microenvironmental conditions at the site of implantation affect the implanted cells. This study has demonstrated that cartilaginous tissue-specific osmolarities ranging from 400–600 mOsm/L affected hASC in a dose- and time-dependent fashion in comparison to 300 mOsm/L. Increased osmolarities resulted in transient (nuclear DNA and actin reorganisation) and non-transient, long-term morphological changes (vesicle formation, increase in cell area, and culture morphology), as well as reduced proliferation in monolayer cultures. Increased osmolarities diminished acid proteoglycan production and compactness of chondrogenically induced pellet cultures, indicating decreased chondrogenic potential. Viability of hASC was strongly dependent on the type of culture, with hASC in monolayer culture being more tolerant to increased osmolarity compared to hASC in suspension, alginate-agarose hydrogel, and pellet cultures, thus emphasizing the importance of choosing relevant in vitro conditions according to the specifics of clinical application. PMID:27706209

  11. Adipose tissue-derived stem cells in neural regenerative medicine.

    PubMed

    Yeh, Da-Chuan; Chan, Tzu-Min; Harn, Horng-Jyh; Chiou, Tzyy-Wen; Chen, Hsin-Shui; Lin, Zung-Sheng; Lin, Shinn-Zong

    2015-01-01

    Adipose tissue-derived stem cells (ADSCs) have two essential characteristics with regard to regenerative medicine: the convenient and efficient generation of large numbers of multipotent cells and in vitro proliferation without a loss of stemness. The implementation of clinical trials has prompted widespread concern regarding safety issues and has shifted research toward the therapeutic efficacy of stem cells in dealing with neural degeneration in cases such as stroke, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, cavernous nerve injury, and traumatic brain injury. Most existing studies have reported that cell therapies may be able to replenish lost cells and promote neuronal regeneration, protect neuronal survival, and play a role in overcoming permanent paralysis and loss of sensation and the recovery of neurological function. The mechanisms involved in determining therapeutic capacity remain largely unknown; however, this concept can still be classified in a methodical manner by citing current evidence. Possible mechanisms include the following: 1) the promotion of angiogenesis, 2) the induction of neuronal differentiation and neurogenesis, 3) reductions in reactive gliosis, 4) the inhibition of apoptosis, 5) the expression of neurotrophic factors, 6) immunomodulatory function, and 7) facilitating neuronal integration. In this study, several human clinical trials using ADSCs for neuronal disorders were investigated. It is suggested that ADSCs are one of the choices among various stem cells for translating into clinical application in the near future.

  12. Adipose tissue-derived stem cells in neural regenerative medicine.

    PubMed

    Yeh, Da-Chuan; Chan, Tzu-Min; Harn, Horng-Jyh; Chiou, Tzyy-Wen; Chen, Hsin-Shui; Lin, Zung-Sheng; Lin, Shinn-Zong

    2015-01-01

    Adipose tissue-derived stem cells (ADSCs) have two essential characteristics with regard to regenerative medicine: the convenient and efficient generation of large numbers of multipotent cells and in vitro proliferation without a loss of stemness. The implementation of clinical trials has prompted widespread concern regarding safety issues and has shifted research toward the therapeutic efficacy of stem cells in dealing with neural degeneration in cases such as stroke, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, cavernous nerve injury, and traumatic brain injury. Most existing studies have reported that cell therapies may be able to replenish lost cells and promote neuronal regeneration, protect neuronal survival, and play a role in overcoming permanent paralysis and loss of sensation and the recovery of neurological function. The mechanisms involved in determining therapeutic capacity remain largely unknown; however, this concept can still be classified in a methodical manner by citing current evidence. Possible mechanisms include the following: 1) the promotion of angiogenesis, 2) the induction of neuronal differentiation and neurogenesis, 3) reductions in reactive gliosis, 4) the inhibition of apoptosis, 5) the expression of neurotrophic factors, 6) immunomodulatory function, and 7) facilitating neuronal integration. In this study, several human clinical trials using ADSCs for neuronal disorders were investigated. It is suggested that ADSCs are one of the choices among various stem cells for translating into clinical application in the near future. PMID:25647067

  13. A Modeling Insight into Adipose-Derived Stem Cell Myogenesis

    PubMed Central

    Deshpande, Rajiv S.; Grayson, Warren L.; Spector, Alexander A.

    2015-01-01

    Adipose-derived stem cells (ASCs) are clinically important in regenerative medicine as they are relatively easy to obtain, are characterized by low morbidity, and can differentiate into myogenic progenitor cells. Although studies have elucidated the principal markers, PAX7, Desmin, MyoD, and MHC, the underlying mechanisms are not completely understood. This motivates the application of computational methods to facilitate greater understanding of such processes. In the following, we present a multi-stage kinetic model comprising a system of ordinary differential equations (ODEs). We sought to model ASC differentiation using data from a static culture, where no strain is applied, and a dynamic culture, where 10% strain is applied. The coefficients of the equations have been modulated by those experimental data points. To correctly represent the trajectories, various switches and a feedback factor based on total cell number have been introduced to better represent the biology of ASC differentiation. Furthermore, the model has then been applied to predict ASC fate for strains different from those used in the experimental conditions and for times longer than the duration of the experiment. Analysis of the results reveals unique characteristics of ASC myogenesis under dynamic conditions of the applied strain. PMID:26378788

  14. Articular cartilage-derived cells hold a strong osteogenic differentiation potential in comparison to mesenchymal stem cells in vitro

    SciTech Connect

    Salamon, Achim; Jonitz-Heincke, Anika; Adam, Stefanie; Rychly, Joachim; Müller-Hilke, Brigitte; Bader, Rainer; Lochner, Katrin; Peters, Kirsten

    2013-11-01

    Cartilaginous matrix-degenerative diseases like osteoarthritis (OA) are characterized by gradual cartilage erosion, and also by increased presence of cells with mesenchymal stem cell (MSC) character within the affected tissues. Moreover, primary chondrocytes long since are known to de-differentiate in vitro and to be chondrogenically re-differentiable. Since both findings appear to conflict with each other, we quantitatively assessed the mesenchymal differentiation potential of OA patient cartilage-derived cells (CDC) towards the osteogenic and adipogenic lineage in vitro and compared it to that of MSC isolated from adipose tissue (adMSC) of healthy donors. We analyzed expression of MSC markers CD29, CD44, CD105, and CD166, and, following osteogenic and adipogenic induction in vitro, quantified their expression of osteogenic and adipogenic differentiation markers. Furthermore, CDC phenotype and proliferation were monitored. We found that CDC exhibit an MSC CD marker expression pattern similar to adMSC and a similar increase in proliferation rate during osteogenic differentiation. In contrast, the marked reduction of proliferation observed during adipogenic differentiation of adMSC was absent in CDC. Quantification of differentiation markers revealed a strong osteogenic differentiation potential for CDC, however almost no capacity for adipogenic differentiation. Since in the pathogenesis of OA, cartilage degeneration coincides with high bone turnover rates, the high osteogenic differentiation potential of OA patient-derived CDC may affect clinical therapeutic regimens aiming at autologous cartilage regeneration in these patients. - Highlights: • We analyze the mesenchymal differentiation capacity of cartilage-derived cells (CDC). • CDC express mesenchymal stem cell (MSC) markers CD29, CD44, CD105, and CD166. • CDC and MSC proliferation is reduced in adipogenesis and increased in osteogenesis. • Adipogenic differentiation is virtually absent in CDC, but

  15. Equine peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal stem cells.

    PubMed

    Koerner, Jens; Nesic, Dobrila; Romero, Jose Diaz; Brehm, Walter; Mainil-Varlet, Pierre; Grogan, Shawn Patrick

    2006-06-01

    Fibroblast-like cells isolated from peripheral blood of human, canine, guinea pig, and rat have been demonstrated to possess the capacity to differentiate into several mesenchymal lineages. The aim of this work was to investigate the possibility of isolating pluripotent precursor cells from equine peripheral blood and compare them with equine bone marrow-derived mesenchymal stem cells. Human mesenchymal stem cells (MSCs) were used as a control for cell multipotency assessment. Venous blood (n = 33) and bone marrow (n = 5) were obtained from adult horses. Mononuclear cells were obtained by Ficoll gradient centrifugation and cultured in monolayer, and adherent fibroblast-like cells were tested for their differentiation potential. Chondrogenic differentiation was performed in serum-free medium in pellet cultures as a three-dimensional model, whereas osteogenic and adipogenic differentiation were induced in monolayer culture. Evidence for differentiation was made via biochemical, histological, and reverse transcription-polymerase chain reaction evaluations. Fibroblast-like cells were observed on day 10 in 12 out of 33 samples and were allowed to proliferate until confluence. Equine peripheral blood-derived cells had osteogenic and adipogenic differentiation capacities comparable to cells derived from bone marrow. Both cell types showed a limited capacity to produce lipid droplets compared to human MSCs. This result may be due to the assay conditions, which are established for human MSCs from bone marrow and may not be optimal for equine progenitor cells. Bone marrow-derived equine and human MSCs could be induced to develop cartilage, whereas equine peripheral blood progenitors did not show any capacity to produce cartilage at the histological level. In conclusion, equine peripheral blood-derived fibroblast-like cells can differentiate into distinct mesenchymal lineages but have less multipotency than bone marrow-derived MSCs under the conditions used in this study.

  16. Purification of human adipose-derived stem cells from fat tissues using PLGA/silk screen hybrid membranes.

    PubMed

    Chen, Da-Chung; Chen, Li-Yu; Ling, Qing-Dong; Wu, Meng-Hsueh; Wang, Ching-Tang; Suresh Kumar, S; Chang, Yung; Munusamy, Murugan A; Alarfajj, Abdullah A; Wang, Han-Chow; Hsu, Shih-Tien; Higuchi, Akon

    2014-05-01

    The purification of human adipose-derived stem cells (hADSCs) from human adipose tissue cells (stromal vascular fraction) was investigated using membrane filtration through poly(lactide-co-glycolic acid)/silk screen hybrid membranes. Membrane filtration methods are attractive in regenerative medicine because they reduce the time required to purify hADSCs (i.e., less than 30 min) compared with conventional culture methods, which require 5-12 days. hADSCs expressing the mesenchymal stem cell markers CD44, CD73, and CD90 were concentrated in the permeation solution from the hybrid membranes. Expression of the surface markers CD44, CD73, and CD99 on the cells in the permeation solution from the hybrid membranes, which were obtained using 18 mL of feed solution containing 50 × 10⁴ cells, was statistically significantly higher than that of the primary adipose tissue cells, indicating that the hADSCs can be purified in the permeation solution by the membrane filtration method. Cells expressing the stem cell-associated marker CD34 could be successfully isolated in the permeation solution, whereas CD34⁺ cells could not be purified by the conventional culture method. The hADSCs in the permeation solution demonstrated a superior capacity for osteogenic differentiation based on their alkali phosphatase activity, their osterix gene expression, and the results of mineralization analysis by Alizarin Red S and von Kossa staining compared with the cells from the suspension of human adipose tissue. These results suggest that the hADSCs capable of osteogenic differentiation preferentially permeate through the hybrid membranes.

  17. A hybrid-membrane migration method to isolate high-purity adipose-derived stem cells from fat tissues

    PubMed Central

    Higuchi, Akon; Wang, Ching-Tang; Ling, Qing-Dong; Lee, Henry Hsin-chung; Kumar, S. Suresh; Chang, Yung; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Hsu, Shih-Tien; Wu, Gwo-Jang; Umezawa, Akihiko

    2015-01-01

    Human adipose-derived stem cells (hADSCs) exhibit heterogeneous characteristics, indicating various genotypes and differentiation abilities. The isolated hADSCs can possess different purity levels and divergent properties depending on the purification methods used. We developed a hybrid-membrane migration method that purifies hADSCs from a fat tissue solution with extremely high purity and pluripotency. A primary fat-tissue solution was permeated through the porous membranes with a pore size from 8 to 25 μm, and the membranes were incubated in cell culture medium for 15-18 days. The hADSCs that migrated from the membranes contained an extremely high percentage (e.g., >98%) of cells positive for mesenchymal stem cell markers and showed almost one order of magnitude higher expression of some pluripotency genes (Oct4, Sox2, Klf4 and Nanog) compared with cells isolated using the conventional culture method. PMID:25970301

  18. Hair Regeneration Treatment Using Adipose-Derived Stem Cell Conditioned Medium: Follow-up With Trichograms

    PubMed Central

    Suga, Hirotaka

    2015-01-01

    Objective: Adipose-derived stem cells secrete various growth factors that promote hair growth. This study examined the effects of adipose-derived stem cell-conditioned medium on alopecia. Methods: Adipose-derived stem cell-conditioned medium was intradermally injected in 22 patients (11 men and 11 women) with alopecia. Patients received treatment every 3 to 5 weeks for a total of 6 sessions. Hair numbers were counted using trichograms before and after treatment. A half-side comparison study was also performed in 10 patients (8 men and 2 women). Results: Hair numbers were significantly increased after treatment in both male (including those without finasteride administration) and female patients. In the half-side comparison study, the increase in hair numbers was significantly higher on the treatment side than on the placebo side. Conclusion: Treatment using adipose-derived stem cell-conditioned medium appears highly effective for alopecia and may represent a new therapy for hair regeneration. PMID:25834689

  19. Stromal cell-derived factor-1 promotes human adipose tissue-derived stem cell survival and chronic wound healing

    PubMed Central

    LI, QIANG; GUO, YANPING; CHEN, FEIFEI; LIU, JING; JIN, PEISHENG

    2016-01-01

    Adipose tissue-derived stem cells (ADSCs) hold great potential for the stem cell-based therapy of cutaneous wound healing. Stromal cell-derived factor-1 (SDF-1) activates CXC chemokine receptor (CXCR)4+ and CXCR7+ cells and plays an important role in wound healing. Increasing evidence suggests a critical role for SDF-1 in cell apoptosis and the survival of mesenchymal stem cells. However, the function of SDF-1 in the apoptosis and wound healing ability of ADSCs is not well understood. The aim of this study was to analyze the effect of SDF-1 on the apoptosis and therapeutic effect of ADSCs in cutaneous chronic wounds in vitro and in vivos. By flow cytometric analysis, it was found that hypoxia and serum free promoted the apoptosis of ADSCs. When pretreated with SDF-1, the apoptosis of ADSCs induced by hypoxia and serum depletion was partly recovered. Furthermore, in vivo experiments established that the post-implantation cell survival and chronic wound healing ability of ADSCs were increased following pretreatment with SDF-1 in a diabetic mouse model of chronic wound healing. To explore the potential mechanism underlying the effect of SDF-1 on ADSC apoptosis, western blot analysis was employed and the results indicate that SDF-1 may protect against cell apoptosis in hypoxic and serum-free conditions through activation of the caspase signaling pathway in ADSCs. This study provides evidence that SDF-1 pretreatment can increase the therapeutic effect of ADSCs in cutaneous chronic wounds in vitro and in vivo. PMID:27347016

  20. Analysis of type II diabetes mellitus adipose-derived stem cells for tissue engineering applications

    PubMed Central

    Minteer, Danielle Marie; Young, Matthew T; Lin, Yen-Chih; Over, Patrick J; Rubin, J Peter; Gerlach, Jorg C

    2015-01-01

    To address the functionality of diabetic adipose-derived stem cells in tissue engineering applications, adipose-derived stem cells isolated from patients with and without type II diabetes mellitus were cultured in bioreactor culture systems. The adipose-derived stem cells were differentiated into adipocytes and maintained as functional adipocytes. The bioreactor system utilizes a hollow fiber–based technology for three-dimensional perfusion of tissues in vitro, creating a model in which long-term culture of adipocytes is feasible, and providing a potential tool useful for drug discovery. Daily metabolic activity of the adipose-derived stem cells was analyzed within the medium recirculating throughout the bioreactor system. At experiment termination, tissues were extracted from bioreactors for immunohistological analyses in addition to gene and protein expression. Type II diabetic adipose-derived stem cells did not exhibit significantly different glucose consumption compared to adipose-derived stem cells from patients without type II diabetes (p > 0.05, N = 3). Expression of mature adipocyte genes was not significantly different between diabetic/non-diabetic groups (p > 0.05, N = 3). Protein expression of adipose tissue grown within all bioreactors was verified by Western blotting.The results from this small-scale study reveal adipose-derived stem cells from patients with type II diabetes when removed from diabetic environments behave metabolically similar to the same cells of non-diabetic patients when cultured in a three-dimensional perfusion bioreactor, suggesting that glucose transport across the adipocyte cell membrane, the hindrance of which being characteristic of type II diabetes, is dependent on environment. The presented observation describes a tissue-engineered tool for long-term cell culture and, following future adjustments to the culture environment and increased sample sizes, potentially for anti-diabetic drug testing. PMID:26090087

  1. The suitability of human adipose-derived stem cells for the engineering of ligament tissue.

    PubMed

    Eagan, Michael J; Zuk, Patricia A; Zhao, Ke-Wei; Bluth, Benjamin E; Brinkmann, Elyse J; Wu, Benjamin M; McAllister, David R

    2012-10-01

    Rupture of the anterior cruciate ligament (ACL) is the one of the most common sports-related injuries. With its poor healing capacity, surgical reconstruction using either autografts or allografts is currently required to restore function. However, serious complications are associated with graft reconstructions and the number of such reconstructions has steadily risen over the years, necessitating the search for an alternative approach to ACL repair. Such an approach may likely be tissue engineering. Recent engineering approaches using ligament-derived fibroblasts have been promising, but the slow growth rate of such fibroblasts in vitro may limit their practical application. More promising results are being achieved using bone marrow mesenchymal stem cells (MSCs). The adipose-derived stem cell (ASC) is often proposed as an alternative choice to the MSC and, as such, may be a suitable stem cell for ligament engineering. However, the use of ASCs in ligament engineering still remains relatively unexplored. Therefore, in this study, the potential use of human ASCs in ligament tissue engineering was initially explored by examining their ability to express several ligament markers under growth factor treatment. ASC populations treated for up to 4 weeks with TGFβ1 or IGF1 did not show any significant and consistent upregulation in the expression of collagen types 1 and 3, tenascin C and scleraxis. While treatment with EGF or bFGF resulted in increased tenascin C expression, increased expression of collagens 1 and 3 were never observed. Therefore, simple in vitro treatment of human ASC populations with growth factors may not stimulate their ligament differentiative potential.

  2. Defining Essential Stem Cell Characteristics in Adipose-Derived Stromal Cells Extracted from Distinct Anatomical Sites

    PubMed Central

    Sachs, Patrick C.; Francis, Michael P.; Zhao, Min; Brumelle, Jenni; Rao, Raj R.; Elmore, Lynne W.; Holt, Shawn E.

    2013-01-01

    The discovery of adipose-derived stromal cells (ASCs) has created many opportunities for the development of patient-specific cell-based replacement therapies. We have isolated multiple cell strains of ASCs from various anatomical sites (abdomen, arms/legs, breast, buttocks), indicating wide-spread distribution of ASCs throughout the body. Unfortunately, there exists a general lack of agreement in the literature as to their “stem cell” characteristics. We find that telomerase activity and expression of its catalytic subunit in ASCs are both below the levels of detection, independent of age and culturing conditions. ASCs also undergo telomere attrition and eventually senesce, while maintaining a stable karyotype without the development of spontaneous tumor-associated abnormalities. Using a set of cell surface markers that have been promoted to identify ASCs, we find that they failed to distinguish ASCs from normal fibroblasts, as both are positive for CD29, CD73, and CD105 and negative for CD14, CD31, and CD45. All of the ASC isolates are multipotent, capable of differentiating into osteocytes, chondrocytes, and adipocytes, while fibroblasts show no differentiation potential. Our ASC strains also show elevated expression of genes associated with pluripotent cells, Oct-4, SOX2, and NANOG when compared to fibroblasts and bone marrow-derived mesenchymal stem cells (BM-MSCs), although the levels were lower than induced pluripotent stem cells (iPS). Together, our data suggest that while the cell surface profile of ASCs does not distinguish them from normal fibroblasts, their differentiation capacity and the expression of genes closely linked to pluripotency clearly define ASCs as multipotent stem cells, regardless of tissue isolation location. PMID:22628159

  3. Epigenetic regulation of human adipose-derived stem cells differentiation.

    PubMed

    Daniunaite, Kristina; Serenaite, Inga; Misgirdaite, Roberta; Gordevicius, Juozas; Unguryte, Ausra; Fleury-Cappellesso, Sandrine; Bernotiene, Eiva; Jarmalaite, Sonata

    2015-12-01

    Adult stem cells have more restricted differentiation potential than embryonic stem cells (ESCs), but upon appropriate stimulation can differentiate into cells of different germ layers. Epigenetic factors, including DNA modifications, take a significant part in regulation of pluripotency and differentiation of ESCs. Less is known about the epigenetic regulation of these processes in adult stem cells. Gene expression profile and location of DNA modifications in adipose-derived stem cells (ADSCs) and their osteogenically differentiated lineages were analyzed using Agilent microarrays. Methylation-specific PCR and restriction-based quantitative PCR were applied for 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) detection in selected loci. The level of DNA modifications in the POU5F1 locus was quantified with deep sequencing. Expression levels of selected genes were assayed by real-time PCR. ADSCs differentiation into osteogenic lineages involved marked changes in both 5mC and 5hmC profiles, but 5hmC changes were more abundant. 5mC losses and 5hmC gains were the main events observed during ADSCs differentiation, and were accompanied by increased expression of TET1 (P = 0.009). In ADSCs, POU5F1 was better expressed than NANOG or SOX2 (P ≤ 0.001). Both 5mC and 5hmC marks were present in the POU5F1 locus, but only hydroxymethylation of specific cytosine showed significant effect on the gene expression. In summary, the data of our study suggest significant involvement of changes in 5hmC profile during the differentiation of human adult stem cells.

  4. Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells

    PubMed Central

    2010-01-01

    Adipose tissue is now recognized as an accessible, abundant, and reliable site for the isolation of adult stem cells suitable for tissue engineering and regenerative medicine applications. The past decade has witnessed an explosion of preclinical data relating to the isolation, characterization, cryopreservation, differentiation, and transplantation of freshly isolated stromal vascular fraction cells and adherent, culture-expanded, adipose-derived stromal/stem cells in vitro and in animal models. This body of work has provided evidence supporting clinical translational applications of adipose-derived cells in safety and efficacy trials. The present article reviews the case reports and phase I-III clinical evidence using autologous adipose-derived cells that have been published, to date, in the fields of gastroenterology, neurology, orthopedics, reconstructive surgery, and related clinical disciplines. Future directions and challenges facing the field are discussed and evaluated. PMID:20587076

  5. Immunomagnetic Separation of Fat Depot-Specific Sca1high Adipose-Derived Stem Cells (Ascs)

    PubMed Central

    Barnes, Richard H; Chun, Tae-Hwa

    2016-01-01

    The isolation of adipose-derived stem cells (ASCs) is an important method in the field of adipose tissue biology, adipogenesis, and extracellular matrix (ECM) remodeling. In vivo, ECM-rich environment consisting of fibrillar collagens provides a structural support to adipose tissues during the progression and regression of obesity. Physiological ECM remodeling mediated by matrix metalloproteinases (MMPs) plays a major role in regulating adipose tissue size and function1, 2. The loss of physiological collagenolytic ECM remodeling may lead to excessive collagen accumulation (tissue fibrosis), macrophage infiltration, and ultimately, a loss of metabolic homeostasis including insulin resistance3, 4. When a phenotypic change of the adipose tissue is observed in gene-targeted mouse models, isolating primary ASCs from fat depots for in vitro studies is an effective approach to define the role of the specific gene in regulating the function of ASCs. In the following, we define an immunomagnetic separation of Sca1high ASCs. PMID:27583550

  6. Immunomagnetic Separation of Fat Depot-specific Sca1high Adipose-derived Stem Cells (ASCs).

    PubMed

    Barnes, Richard H; Chun, Tae-Hwa

    2016-01-01

    The isolation of adipose-derived stem cells (ASCs) is an important method in the field of adipose tissue biology, adipogenesis, and extracellular matrix (ECM) remodeling. In vivo, ECM-rich environment consisting of fibrillar collagens provides a structural support to adipose tissues during the progression and regression of obesity. Physiological ECM remodeling mediated by matrix metalloproteinases (MMPs) plays a major role in regulating adipose tissue size and function(1,2). The loss of physiological collagenolytic ECM remodeling may lead to excessive collagen accumulation (tissue fibrosis), macrophage infiltration, and ultimately, a loss of metabolic homeostasis including insulin resistance(3,4). When a phenotypic change of the adipose tissue is observed in gene-targeted mouse models, isolating primary ASCs from fat depots for in vitro studies is an effective approach to define the role of the specific gene in regulating the function of ASCs. In the following, we define an immunomagnetic separation of Sca1(high) ASCs. PMID:27583550

  7. Adipose Tissue Residing Progenitors (Adipocyte Lineage Progenitors and Adipose Derived Stem Cells (ADSC)

    PubMed Central

    Berry, Ryan; Rodeheffer, Matthew S.; Rosen, Clifford J.; Horowitz, Mark C.

    2015-01-01

    The formation of brown, white and beige adipocytes have been a subject of intense scientific interest in recent years due to the growing obesity epidemic in the United States and around the world. This interest has led to the identification and characterization of specific tissue resident progenitor cells that give rise to each adipocyte population in vivo. However, much still remains to be discovered about each progenitor population in terms of their “niche” within each tissue and how they are regulated at the cellular and molecular level during healthy and diseased states. While our knowledge of brown, white and beige adipose tissue is rapidly increasing, little is still known about marrow adipose tissue and its progenitor despite recent studies demonstrating possible roles for marrow adipose tissue in regulating the hematopoietic space and systemic metabolism at large. This chapter focuses on our current knowledge of brown, white, beige and marrow adipose tissue with a specific focus on the formation of each tissue from tissue resident progenitor cells. PMID:26526875

  8. Comparing the Immunomodulatory Properties of Bone Marrow, Adipose Tissue, and Birth-Associated Tissue Mesenchymal Stromal Cells

    PubMed Central

    Mattar, Philipp; Bieback, Karen

    2015-01-01

    Mesenchymal stromal cells (MSC) have gained immense attraction in regenerative medicine, tissue engineering, and immunotherapy. This is based on their differentiation potential and the supply of pro-regenerative and immunomodulatory signals. MSC can be isolated from a multitude of tissue sources, but mainly bone marrow, adipose tissue, and birth-associated tissues (e.g., umbilical cord, cord blood, placenta) appear to be relevant for clinical translation in immune-mediated disorders. However, only a few studies directly compared the immunomodulatory potency of MSC from different tissue sources. This review compiles the current literature regarding the similarities and differences between these three sources for MSCs with a special focus on their immunomodulatory effects on T-lymphocyte subsets and monocytes, macrophages, and dendritic cells. PMID:26579133

  9. Human adipose tissue derived pericytes increase life span in Utrn (tm1Ked) Dmd (mdx) /J mice.

    PubMed

    Valadares, M C; Gomes, J P; Castello, G; Assoni, A; Pellati, M; Bueno, C; Corselli, M; Silva, H; Bartolini, P; Vainzof, M; Margarido, P F; Baracat, E; Péault, B; Zatz, M

    2014-12-01

    Duchenne muscular dystrophy (DMD) is still an untreatable lethal X-linked disorder, which affects 1 in 3500 male births. It is caused by the absence of muscle dystrophin due to mutations in the dystrophin gene. The potential regenerative capacity as well as immune privileged properties of mesenchymal Stem Cells (MSC) has been under investigation for many years in an attempt to treat DMD. One of the questions to be addressed is whether stem cells from distinct sources have comparable clinical effects when injected in murine or canine muscular dystrophy animal models. Many studies comparing different stem cells from various sources were reported but these cells were obtained from different donors and thus with different genetic backgrounds. Here we investigated whether human pericytes obtained from 4 different tissues (muscle, adipose tissue, fallopian tube and endometrium) from the same donor have a similar clinical impact when injected in double mutant Utrn (tm1Ked) Dmd (mdx) /J mice, a clinically relevant model for DMD. After a weekly regimen of intraperitoneal injections of 10(6) cells per 8 weeks we evaluated the motor ability as well as the life span of the treated mice as compared to controls. Our experiment showed that only adipose tissue derived pericytes are able to increase significantly (39 days on average) the life span of affected mice. Microarray analysis showed an inhibition of the interferon pathway by adipose derived pericytes. Our results suggest that the clinical benefit associated with intraperitoneal injections of these adult stem cells is related to immune modulation rather than tissue regeneration.

  10. Isolation and characterization of ovine mesenchymal stem cells derived from peripheral blood

    PubMed Central

    2012-01-01

    Background Mesenchymal stem cells (MSCs) are multipotent stem cells with capacity to differentiate into several mesenchymal lineages. This quality makes MSCs good candidates for use in cell therapy. MSCs can be isolated from a variety of tissues including bone marrow and adipose tissue, which are the most common sources of these cells. However, MSCs can also be isolated from peripheral blood. Sheep has been proposed as an ideal model for biomedical studies including those of orthopaedics and transmissible spongiform encephalopathies (TSEs). The aim of this work was to advance these studies by investigating the possibility of MSC isolation from ovine peripheral blood (oPB-MSCs) and by subsequently characterizing there in vitro properties. Results Plastic-adherent fibroblast-like cells were obtained from the mononuclear fraction of blood samples. These cells were analysed for their proliferative and differentiation potential into adipocytes, osteoblasts and chondrocytes, as well as for the gene expression of cell surface markers. The isolated cells expressed transcripts for markers CD29, CD73 and CD90, but failed to express the haematopoietic marker CD45 and expressed only low levels of CD105. The expression of CD34 was variable. The differentiation potential of this cell population was evaluated using specific differentiation media. Although the ability of the cultures derived from different animals to differentiate into adipocytes, osteoblasts and chondrocytes was heterogeneous, we confirmed this feature using specific staining and analysing the gene expression of differentiation markers. Finally, we tested the ability of oPB-MSCs to transdifferentiate into neuronal-like cells. Morphological changes were observed after 24-hour culture in neurogenic media, and the transcript levels of the neurogenic markers increased during the prolonged induction period. Moreover, oPB-MSCs expressed the cellular prion protein gene (PRNP), which was up-regulated during neurogenesis

  11. Semaphorin 3A Shifts Adipose Mesenchymal Stem Cells towards Osteogenic Phenotype and Promotes Bone Regeneration In Vivo

    PubMed Central

    Liu, Xiangwei; Tan, Naiwen; Zhou, Yuchao; Zhou, Xueying; Chen, Hui; Wei, Hongbo; Chen, Ji; Xu, Xiaoru; Zhang, Sijia

    2016-01-01

    Adipose mesenchymal stem cells (ASCs) are considered as the promising seed cells for bone regeneration. However, the lower osteogenic differentiation capacity limits its therapeutic efficacy. Identification of the key molecules governing the differences between ASCs and BMSCs would shed light on manipulation of ASCs towards osteogenic phenotype. In this study, we screened semaphorin family members in ASCs and BMSCs and identified Sema3A as an osteogenic semaphorin that was significantly and predominantly expressed in BMSCs. The analyses in vitro showed that the overexpression of Sema3A in ASCs significantly enhanced the expression of bone-related genes and extracellular matrix calcium deposition, while decreasing the expression of adipose-related genes and thus lipid droplet formation, resembling a BMSCs phenotype. Furthermore, Sema3A modified ASCs were then engrafted into poly(lactic-co-glycolic acid) (PLGA) scaffolds to repair the critical-sized calvarial defects in rat model. As expected, Sema3A modified ASCs encapsulation significantly promoted new bone formation with higher bone volume fraction and bone mineral density. Additionally, Sema3A was found to simultaneously increase multiple Wnt related genes and thus activating Wnt pathway. Taken together, our study here identifies Sema3A as a critical gene for osteogenic phenotype and reveals that Sema3A-modified ASCs would serve as a promising candidate for bettering bone defect repair. PMID:27721834

  12. Human adipose-derived stromal cells for cell-based therapies in the treatment of systemic sclerosis.

    PubMed

    Scuderi, Nicolò; Ceccarelli, Simona; Onesti, Maria Giuseppina; Fioramonti, Paolo; Guidi, Chiara; Romano, Ferdinando; Frati, Luigi; Angeloni, Antonio; Marchese, Cinzia

    2013-01-01

    The present study was designed to evaluate the clinical outcome of cell-based therapy with cultured adipose derived stromal cells (ASCs) for the treatment of cutaneous manifestations in patients affected by systemic sclerosis (SSc). ASCs have an extraordinary developmental plasticity, including the ability to undergo multilineage differentiation and self-renewal. Moreover, ASCs can be easily harvested from small volumes of liposuction aspirate, showing great in vitro viability and proliferation rate. Here we isolated, characterized, and expanded ASCs, assessing both their mesenchymal origin and their capability to differentiate towards the adipogenic, osteogenic, and chondrogenic lineage. We developed an effective method for ASCs transplantation into sclerodermic patients by means of a hyaluronic acid (HA) solution, which allowed us to achieve precise structural modifications. ASCs were isolated from subcutaneous adipose tissue of six sclerodermic patients and cultured in a chemical-defined medium before autologous transplantation to restore skin sequelae. The results indicated that transplantation of a combination of ASCs in HA solution determined a significant improvement in tightening of the skin without complications such as anechoic areas, fat necrosis, or infections, thus suggesting that ASCs are a potentially valuable source of cells for skin therapy in rare diseases such as SSc and generally in skin disorders.

  13. Adipose-derived stem cells from the brown bear (Ursus arctos) spontaneously undergo chondrogenic and osteogenic differentiation in vitro.

    PubMed

    Fink, Trine; Rasmussen, Jeppe G; Emmersen, Jeppe; Pilgaard, Linda; Fahlman, Åsa; Brunberg, Sven; Josefsson, Johan; Arnemo, Jon M; Zachar, Vladimir; Swenson, Jon E; Fröbert, Ole

    2011-07-01

    In the den, hibernating brown bears do not develop tissue atrophy or organ damage, despite almost no physical activity. Mesenchymal stem cells could play an important role in tissue repair and regeneration in brown bears. Our objective was to determine if adipose tissue-derived stem cells (ASCs) can be recovered from wild Scandinavian brown bears and characterize their differentiation potential. Following immobilization of wild brown bears 7-10 days after leaving the den in mid-April, adipose tissue biopsies were obtained. ASCs were recovered from 6 bears, and shown to be able to undergo adipogenesis and osteogenesis in monolayer cultures and chondrogenesis in pellet cultures. Remarkably, when grown in standard cell culture medium in monolayer cultures, ASCs from yearlings spontaneously formed bone-like nodules surrounded by cartilaginous deposits, suggesting differentiation into osteogenic and chondrogenic lineages. This ability appears to be lost gradually with age. This is the first study to demonstrate stem cell recovery and growth from brown bears, and it is the first report of ASCs spontaneously forming extracellular matrix characteristic of bone and cartilage in the absence of specific inducers. These findings could have implications for the use of hibernating brown bears as a model to study disuse osteoporosis.

  14. Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter.

    PubMed

    Zhong, Juan; Guo, Bin; Xie, Jing; Deng, Shuwen; Fu, Na; Lin, Shiyu; Li, Guo; Lin, Yunfeng; Cai, Xiaoxiao

    2016-01-01

    Adipose-derived stem cells (ASCs) and mesenchymal stem cells are promising for tissue repair because of their multilineage differentiation capacity. Our previous data confirmed that the implantation of mixed ASCs and chondrocytes into cartilage defects induced desirable in vivo healing outcomes. However, the paracrine action of ASCs on chondrocytes needs to be further elucidated. In this study, we established a co-culture system to achieve cell-to-cell and cell-to-tissue crosstalk and explored the soluble growth factors in both ASCs and chondrocytes supplemented with 1% fetal bovine serum to mimic the physiological microenvironment. In ASCs, we screened for growth factors by semi-quantitative PCR and quantitative real-time PCR and found that the expression of bone morphogenetic protein 2 (BMP-2), vascular endothelial growth factor B (VEGFB), hypoxia inducible factor-1α (HIF-1α), fibroblast growth factor-2 (FGF-2), and transforming growth factor-β1 significantly increased after co-culture in comparison with mono-culture. In chondrocytes, VEGFA was significantly enhanced after co-culture. Unexpectedly, the expression of collagen II and aggrecan was significantly down-regulated in the co-culture group compared with the mono-culture group. Meanwhile, among all the growth factors screened, we found that the BMP family members BMP-2, BMP-4, and BMP-5 were down-regulated and that VEGFB, HIF-1α, FGF-2, and PDGF were significantly decreased after co-culture. These results suggest that crosstalk between ASCs and chondrocytes is a pathway through the regulated growth factors that might have potential in cartilage repair and regeneration and could be useful for tissue engineering. PMID:26848404

  15. Extracorporeal shock waves modulate myofibroblast differentiation of adipose-derived stem cells.

    PubMed

    Rinella, Letizia; Marano, Francesca; Berta, Laura; Bosco, Ornella; Fraccalvieri, Marco; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella

    2016-03-01

    Mesenchymal stem cells are precursors of myofibroblasts, cells deeply involved in promoting tissue repair and regeneration. However, since myofibroblast persistence is associated with the development of tissue fibrosis, the use of tools that can modulate stem cell differentiation toward myofibroblasts is central. Extracorporeal shock waves are transient short-term acoustic pulses first employed to treat urinary stones. They are a leading choice in the treatment of several orthopedic diseases and, notably, they have been reported as an effective treatment for patients with fibrotic sequels from burn scars. Based on these considerations, the aim of this study is to define the role of shock waves in modulating the differentiation of human adipose-derived stem cells toward myofibroblasts. Shock waves inhibit the development of a myofibroblast phenotype; they down-regulate the expression of the myofibroblast marker alpha smooth muscle actin and the extracellular matrix protein type I collagen. Functionally, stem cells acquire a more fibroblast-like profile characterized by a low contractility and a high migratory ability. Shock wave treatment reduces the expression of integrin alpha 11, a major collagen receptor in fibroblastic cells, involved in myofibroblast differentiation. Mechanistically, the resistance of integrin alpha 11-overexpressing cells to shock waves in terms of alpha smooth muscle actin expression and cell migration and contraction suggests also a role of this integrin in the translation of shock wave signal into stem cell responses. In conclusion, this in vitro study shows that stem cell differentiation toward myofibroblasts can be controlled by shock waves and, consequently, sustains their use as a therapeutic approach in reducing the risk of skin and tissue fibrosis. PMID:26808471

  16. Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter

    PubMed Central

    Zhong, Juan; Guo, Bin; Xie, Jing; Deng, Shuwen; Fu, Na; Lin, Shiyu; Li, Guo; Lin, Yunfeng; Cai, Xiaoxiao

    2016-01-01

    Adipose-derived stem cells (ASCs) and mesenchymal stem cells are promising for tissue repair because of their multilineage differentiation capacity. Our previous data confirmed that the implantation of mixed ASCs and chondrocytes into cartilage defects induced desirable in vivo healing outcomes. However, the paracrine action of ASCs on chondrocytes needs to be further elucidated. In this study, we established a co-culture system to achieve cell-to-cell and cell-to-tissue crosstalk and explored the soluble growth factors in both ASCs and chondrocytes supplemented with 1% fetal bovine serum to mimic the physiological microenvironment. In ASCs, we screened for growth factors by semi-quantitative PCR and quantitative real-time PCR and found that the expression of bone morphogenetic protein 2 (BMP-2), vascular endothelial growth factor B (VEGFB), hypoxia inducible factor-1α (HIF-1α), fibroblast growth factor-2 (FGF-2), and transforming growth factor-β1 significantly increased after co-culture in comparison with mono-culture. In chondrocytes, VEGFA was significantly enhanced after co-culture. Unexpectedly, the expression of collagen II and aggrecan was significantly down-regulated in the co-culture group compared with the mono-culture group. Meanwhile, among all the growth factors screened, we found that the BMP family members BMP-2, BMP-4, and BMP-5 were down-regulated and that VEGFB, HIF-1α, FGF-2, and PDGF were significantly decreased after co-culture. These results suggest that crosstalk between ASCs and chondrocytes is a pathway through the regulated growth factors that might have potential in cartilage repair and regeneration and could be useful for tissue engineering. PMID:26848404

  17. Spheroid formation and enhanced cardiomyogenic potential of adipose-derived stem cells grown on chitosan.

    PubMed

    Liu, Bing-Hsien; Yeh, Hsi-Yi; Lin, Yu-Chun; Wang, Min-Hsiung; Chen, David C; Lee, Bo-Hua; Hsu, Shan-Hui

    2013-02-01

    Mesenchymal stem cells may differentiate into cardiomyocytes and participate in local tissue repair after heart injury. In the current study, rat adipose-derived adult stem cells (ASCs) grown on chitosan membranes were observed to form cell spheroids after 3 days. The cell seeding density and surface modification of chitosan with Arg-Gly-Asp-containing peptide had an influence on the sizes of ASC spheroids. In the absence of induction, these spheroids showed an increased level of cardiac marker gene expression (Gata4, Nkx2-5, Myh6, and Tnnt2) more than 20-fold versus cells on the tissue culture polystyrene (TCPS) dish. Induction by 5-azacytidine or p38 MAP kinase inhibitor (SB202190) did not further increase the cardiac marker gene expression of these spheroids. Moreover, the enhanced cardiomyogenic potential of the spheroids was highly associated with the chitosan substrates. When ASC spheroids were plated onto TCPS with either basal or cardiac induction medium for 9 days, the spheroids spread into a monolayer and the positive effect on cardiomyogenic marker gene expression disappeared. The possible role of calcium ion and the up-regulation of adhesion molecule P-selectin and chemokine receptor Cxcr4 were demonstrated in ASC spheroids. Applying these spheroids to the chronic myocardial infarction animal model showed better functional recovery versus single cells after 12 weeks. Taken together, this study suggested that the ASC spheroids on chitosan may form as a result of calcium ion signaling, and the transplantation of these spheroids may offer a simple method to enhance the efficiency of stem cell-based therapy in myocardial infarction. PMID:23514754

  18. Characterisation of insulin-producing cells differentiated from tonsil derived mesenchymal stem cells.

    PubMed

    Kim, So-Yeon; Kim, Ye-Ryung; Park, Woo-Jae; Kim, Han Su; Jung, Sung-Chul; Woo, So-Youn; Jo, Inho; Ryu, Kyung-Ha; Park, Joo-Won

    2015-01-01

    Tonsil-derived (T-) mesenchymal stem cells (MSCs) display mutilineage differentiation potential and self-renewal capacity and have potential as a banking source. Diabetes mellitus is a prevalent disease in modern society, and the transplantation of pancreatic progenitor cells or various stem cell-derived insulin-secreting cells has been suggested as a novel therapy for diabetes. The potential of T-MSCs to trans-differentiate into pancreatic progenitor cells or insulin-secreting cells has not yet been investigated. We examined the potential of human T-MSCs to trans-differentiate into pancreatic islet cells using two different methods based on β-mercaptoethanol and insulin-transferin-selenium, respectively. First, we compared the efficacy of the two methods for inducing differentiation into insulin-producing cells. We demonstrated that the insulin-transferin-selenium method is more efficient for inducing differentiation into insulin-secreting cells regardless of the source of the MSCs. Second, we compared the differentiation potential of two different MSC types: T-MSCs and adipose-derived MSCs (A-MSCs). T-MSCs had a differentiation capacity similar to that of A-MSCs and were capable of secreting insulin in response to glucose concentration. Islet-like clusters differentiated from T-MSCs had lower synaptotagmin-3, -5, -7, and -8 levels, and consequently lower secreted insulin levels than cells differentiated from A-MSCs. These results imply that T-MSCs can differentiate into functional pancreatic islet-like cells and could provide a novel, alternative cell therapy for diabetes mellitus.

  19. Vanadate Impedes Adipogenesis in Mesenchymal Stem Cells Derived from Different Depots within Bone

    PubMed Central

    Jacobs, Frans Alexander; Sadie-Van Gijsen, Hanél; van de Vyver, Mari; Ferris, William Frank

    2016-01-01

    Glucocorticoid-induced osteoporosis (GIO) is associated with an increase in bone marrow adiposity, which skews the differentiation of mesenchymal stem cell (MSC) progenitors away from osteoblastogenesis and toward adipogenesis. We have previously found that vanadate, a non-specific protein tyrosine phosphatase inhibitor, prevents GIO in rats, but it was unclear whether vanadate directly influenced adipogenesis in bone-derived MSCs. For the present study, we investigated the effect of vanadate on adipogenesis in primary rat MSCs derived from bone marrow (bmMSCs) and from the proximal end of the femur (pfMSCs). By passage 3 after isolation, both cell populations expressed the MSC cell surface markers CD90 and CD106, but not the hematopoietic marker CD45. However, although variable, expression of the fibroblast marker CD26 was higher in pfMSCs than in bmMSCs. Differentiation studies using osteogenic and adipogenic induction media (OM and AM, respectively) demonstrated that pfMSCs rapidly accumulated lipid droplets within 1 week of exposure to AM, while bmMSCs isolated from the same femur only formed lipid droplets after 3 weeks of AM treatment. Conversely, pfMSCs exposed to OM produced mineralized extracellular matrix (ECM) after 3 weeks, compared to 1 week for OM-treated bmMSCs. Vanadate (10 μM) added to AM resulted in a significant reduction in AM-induced intracellular lipid accumulation and expression of adipogenic gene markers (PPARγ2, aP2, adipsin) in both pfMSCs and bmMSCs. Pharmacological concentrations of glucocorticoids (1 μM) alone did not induce lipid accumulation in either bmMSCs or pfMSCs, but resulted in significant cell death in pfMSCs. Our findings demonstrate the existence of at least two fundamentally different MSC depots within the femur and highlights the presence of MSCs capable of rapid adipogenesis within the proximal femur, an area prone to osteoporotic fractures. In addition, our results suggest that the increased bone marrow

  20. Vanadate Impedes Adipogenesis in Mesenchymal Stem Cells Derived from Different Depots within Bone.

    PubMed

    Jacobs, Frans Alexander; Sadie-Van Gijsen, Hanél; van de Vyver, Mari; Ferris, William Frank

    2016-01-01

    Glucocorticoid-induced osteoporosis (GIO) is associated with an increase in bone marrow adiposity, which skews the differentiation of mesenchymal stem cell (MSC) progenitors away from osteoblastogenesis and toward adipogenesis. We have previously found that vanadate, a non-specific protein tyrosine phosphatase inhibitor, prevents GIO in rats, but it was unclear whether vanadate directly influenced adipogenesis in bone-derived MSCs. For the present study, we investigated the effect of vanadate on adipogenesis in primary rat MSCs derived from bone marrow (bmMSCs) and from the proximal end of the femur (pfMSCs). By passage 3 after isolation, both cell populations expressed the MSC cell surface markers CD90 and CD106, but not the hematopoietic marker CD45. However, although variable, expression of the fibroblast marker CD26 was higher in pfMSCs than in bmMSCs. Differentiation studies using osteogenic and adipogenic induction media (OM and AM, respectively) demonstrated that pfMSCs rapidly accumulated lipid droplets within 1 week of exposure to AM, while bmMSCs isolated from the same femur only formed lipid droplets after 3 weeks of AM treatment. Conversely, pfMSCs exposed to OM produced mineralized extracellular matrix (ECM) after 3 weeks, compared to 1 week for OM-treated bmMSCs. Vanadate (10 μM) added to AM resulted in a significant reduction in AM-induced intracellular lipid accumulation and expression of adipogenic gene markers (PPARγ2, aP2, adipsin) in both pfMSCs and bmMSCs. Pharmacological concentrations of glucocorticoids (1 μM) alone did not induce lipid accumulation in either bmMSCs or pfMSCs, but resulted in significant cell death in pfMSCs. Our findings demonstrate the existence of at least two fundamentally different MSC depots within the femur and highlights the presence of MSCs capable of rapid adipogenesis within the proximal femur, an area prone to osteoporotic fractures. In addition, our results suggest that the increased bone marrow

  1. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    SciTech Connect

    Ninomiya, Yuichi; Sugahara-Yamashita, Yzumi; Nakachi, Yutaka; Tokuzawa, Yoshimi; Okazaki, Yasushi; Nishiyama, Masahiko

    2010-04-02

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time for the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor {gamma} agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-{beta}1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.

  2. Human mesenchymal stem cells from adipose tissue and amnion influence T-cells depending on stimulation method and presence of other immune cells.

    PubMed

    Kronsteiner, Barbara; Wolbank, Susanne; Peterbauer, Anja; Hackl, Christa; Redl, Heinz; van Griensven, Martijn; Gabriel, Christian

    2011-12-01

    Mesenchymal stem cells (MSCs) are multipotent progenitor cells exerting immunomodulatory effects on cells of the innate and adaptive immune system. It has been shown that an inflammatory milieu is required for the activation of MSC-mediated immunomodulation, and interferon-γ (IFN-γ) plays an important role in this process. We determined the influence of IFN-γ on human adipose-derived stem cells (ASCs) and human amniotic mesenchymal stromal cells (hAMSCs). We further evaluated the effect of MSCs on stimulated T-cells and peripheral blood mononuclear cells (PBMCs) in a cell-contact independent setting. On IFN-γ treatment, ASCs and hAMSCs possessed significantly higher antiproliferative properties and showed surface characteristics of nonprofessional antigen presenting cells (HLA-DR(+)CD40(med+)CD54(high)) with a possible regulatory phenotype (PD-L1(+)PD-L2(+)). The effect of ASCs and hAMSCs on cytokine secretion and T-cell activation was dependent on stimulation method and cellular context. Although ASCs and hAMSCs highly inhibited cytokine secretion of stimulated PBMCs, this was not observed in the case of purified T-cells. The presence of ASCs even favored the secretion of pro-inflammatory cytokines including IFN-γ by T-cells, although T-cell proliferation was efficiently inhibited. Further, ASCs enhanced the number of CD69(+) T-cells independent of the stimuli and cellular context. Interestingly, ASCs significantly suppressed CD25 expression on phytohemagglutinin stimulated PBMCs but had no effect on αCD3/αCD28 stimulated cells. Depending on the stimulation method and cellular context, immune cells create a specific cytokine milieu in vitro, thus differently influencing MSCs and, in turn, affecting their action on immune cells.

  3. Treatment of Achilles Tendinopathy with Autologous Adipose-derived Stromal Vascular Fraction

    PubMed Central

    de Girolamo, Laura; Grassi, Miriam; Viganò, Marco; Orfei, Carlotta Perucca; Montrasio, Umberto Alfieri; Usuelli, Federico

    2016-01-01

    Objectives: Achilles tendinopathy commonly occurs in both active and inactive persons. It consists in the development of pain and inflammation in the early phases, with progression to the development of fibrotic tissue and degeneration of tendon matrix. Current conservative treatment approaches do not provide sustained satisfactory results, particularly in active patients, although platelet rich plasma (PRP) injection have shown to be effective in many cases. The therapeutic effect of adipose-derived mesenchymal stem cells (ASCs), either expanded or used directly within the stromal vascular fraction (SVF), have demonstrated to possess significant anti-inflammatory and immunomodulatory effects, mediated by the release of active factors, and thus potentially useful in the treatment of tendinopathy. Methods: Patients affected by non-insertional Achilles tendinopathy (range 18-55 y/o) were prospectively enrolled in this controlled study, and randomly assigned either to single PRP injection group (GPSIII kit, Biomet, USA) (n=28 tendons) or single adipose tissue SVF (FastKit, Corios, Italy) (n=28 tendons) injection group. All patients were assessed clinically pre-operatively and at 15, 30, 60, 120 and 180 days from treatment, using VAS Pain, VISA-A, AOFAS and SF-36 forms. Patients also underwent to US and MRI before treatment and then at 4 and 6 month-follow-ups. An aliquot of SVF of each patient was analyzed in vitro for mesenchymal stem cells (MSC) content, viability, proliferation rate, differentiation potential and immunomodulatory ability. Sample size of the study was calculated with a power analysis based on VISA-A score. All the results are expressed as mean ± standard deviation. A Wilcoxon test for paired data was performed to compare variables before and after surgery. Results: Population background data and pre-operative scores were similar in the two groups (p>0.05). At final follow up both patients group showed significantly improvements in all the scores in

  4. Inferior ectopic bone formation of mesenchymal stromal cells from adipose tissue compared to bone marrow: rescue by chondrogenic pre-induction.

    PubMed

    Brocher, J; Janicki, P; Voltz, P; Seebach, E; Neumann, E; Mueller-Ladner, U; Richter, W

    2013-11-01

    Human mesenchymal stromal cells derived from bone marrow (BMSC) and adipose tissue (ATSC) represent a valuable source of progenitor cells for cell therapy and tissue engineering. While ectopic bone formation is a standard activity of human BMSC on calcium phosphate ceramics, the bone formation capacity of human ATSC has so far been unclear. The objectives of this study were to assess the therapeutic potency of ATSC for bone formation in an ectopic mouse model and determine molecular differences by standardized comparison with BMSC. Although ATSC contained less CD146(+) cells, exhibited better proliferation and displayed similar alkaline phosphatase activity upon osteogenic in vitro differentiation, cells did not develop into bone-depositing osteoblasts on β-TCP after 8weeks in vivo. Additionally, ATSC expressed less BMP-2, BMP-4, VEGF, angiopoietin and IL-6 and more adiponectin mRNA, altogether suggesting insufficient osteochondral commitment and reduced proangiogenic activity. Chondrogenic pre-induction of ATSC/β-TCP constructs with TGF-β and BMP-6 initiated ectopic bone formation in >75% of samples. Both chondrogenic pre-induction and the osteoconductive microenvironment of β-TCP were necessary for ectopic bone formation by ATSC pointing towards a need for inductive conditions/biomaterials to make this more easily accessible cell source attractive for future applications in bone regeneration.

  5. Trophic Effects and Regenerative Potential of Mobilized Mesenchymal Stem Cells From Bone Marrow and Adipose Tissue as Alternative Cell Sources for Pulp/Dentin Regeneration.

    PubMed

    Murakami, Masashi; Hayashi, Yuki; Iohara, Koichiro; Osako, Yohei; Hirose, Yujiro; Nakashima, Misako

    2015-01-01

    Dental pulp stem cell (DPSC) subsets mobilized by granulocyte-colony-stimulating factor (G-CSF) are safe and efficacious for complete pulp regeneration. The supply of autologous pulp tissue, however, is very limited in the aged. Therefore, alternative sources of mesenchymal stem/progenitor cells (MSCs) are needed for the cell therapy. In this study, DPSCs, bone marrow (BM), and adipose tissue (AD)-derived stem cells of the same individual dog were isolated using G-CSF-induced mobilization (MDPSCs, MBMSCs, and MADSCs). The positive rates of CXCR4 and G-CSFR in MDPSCs were similar to MADSCs and were significantly higher than those in MBMSCs. Trophic effects of MDPSCs on angiogenesis, neurite extension, migration, and antiapoptosis were higher than those of MBMSCs and MADSCs. Pulp-like loose connective tissues were regenerated in all three MSC transplantations. Significantly higher volume of regenerated pulp and higher density of vascularization and innervation were observed in response to MDPSCs compared to MBMSC and MADSC transplantation. Collagenous matrix containing dentin sialophosphoprotein (DSPP)-positive odontoblast-like cells was the highest in MBMSCs and significantly higher in MADSCs compared to MDPSCs. MBMSCs and MADSCs, therefore, have potential for pulp regeneration, although the volume of regenerated pulp tissue, angiogenesis, and reinnervation, were less. Thus, in conclusion, an alternative cell source for dental pulp/dentin regeneration are stem cells from BM and AD tissue.

  6. A Citrus bergamia Extract Decreases Adipogenesis and Increases Lipolysis by Modulating PPAR Levels in Mesenchymal Stem Cells from Human Adipose Tissue

    PubMed Central

    Lo Furno, Debora; Avola, Rosanna; Bonina, Francesco; Mannino, Giuliana

    2016-01-01

    The aim of this research was to assess the impact of a well-characterized extract from Citrus bergamia juice on adipogenesis and/or lipolysis using mesenchymal stem cells from human adipose tissue as a cell model. To evaluate the effects on adipogenesis, some cell cultures were treated with adipogenic medium plus 10 or 100 μg/mL of extract. To determine the properties on lipolysis, additional mesenchymal stem cells were cultured with adipogenic medium for 14 days and after this time added with Citrus bergamia for further 14 days. To verify adipogenic differentiation, oil red O staining at 7, 14, 21, and 28 days was performed. Moreover, the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ), adipocytes fatty acid-binding protein (A-FABP), adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), monoglyceride lipase (MGL), 5′-adenosine monophosphate-activated protein kinase (AMPK)α1/2, and pAMPKα1/2 was evaluated by Western blot analysis and the release of glycerol by colorimetric assay. Citrus bergamia extract suppressed the accumulation of intracellular lipids in mesenchymal stem cells during adipogenic differentiation and promoted lipolysis by repressing the expression of adipogenic genes and activating lipolytic genes. Citrus bergamia extract could be a useful natural product for improving adipose mobilization in obesity-related disorders. PMID:27403151

  7. Increased Adipogenesis of Human Adipose-Derived Stem Cells on Polycaprolactone Fiber Matrices

    PubMed Central

    Brännmark, Cecilia; Paul, Alexandra; Ribeiro, Diana; Magnusson, Björn; Brolén, Gabriella; Enejder, Annika; Forslöw, Anna

    2014-01-01

    With accelerating rates of obesity and type 2 diabetes world-wide, interest in studying the adipocyte and adipose tissue is increasing. Human adipose derived stem cells - differentiated to adipocytes in vitro - are frequently used as a model system for white adipocytes, as most of their pathways and functions resemble mature adipocytes in vivo. However, these cells are not completely like in vivo mature adipocytes. Hosting the cells in a more physiologically relevant environment compared to conventional two-dimensional cell culturing on plastic surfaces, can produce spatial cues that drive the cells towards a more mature state. We investigated the adipogenesis of adipose derived stem cells on electro spun polycaprolactone matrices and compared functionality to conventional two-dimensional cultures as well as to human primary mature adipocytes. To assess the degree of adipogenesis we measured cellular glucose-uptake and lipolysis and used a range of different methods to evaluate lipid accumulation. We compared the averaged results from a whole population with the single cell characteristics – studied by coherent anti-Stokes Raman scattering microscopy - to gain a comprehensive picture of the cell phenotypes. In adipose derived stem cells differentiated on a polycaprolactone-fiber matrix; an increased sensitivity in insulin-stimulated glucose uptake was detected when cells were grown on either aligned or random matrices. Furthermore, comparing differentiation of adipose derived stem cells on aligned polycaprolactone-fiber matrixes, to those differentiated in two-dimensional cultures showed, an increase in the cellular lipid accumulation, and hormone sensitive lipase content. In conclusion, we propose an adipocyte cell model created by differentiation of adipose derived stem cells on aligned polycaprolactone-fiber matrices which demonstrates increased maturity, compared to 2D cultured cells. PMID:25419971

  8. Adipose-derived stem cell collection and characterization in bottlenose dolphins (Tursiops truncatus).

    PubMed

    Johnson, Shawn P; Catania, Jeffrey M; Harman, Robert J; Jensen, Eric D

    2012-11-01

    To assess the regenerative properties and potential therapeutic value of adipose-derived stem cells (ASCs) in the bottlenose dolphin, there is a need to determine whether an adequate adipose depot exists, in addition to the development of a standardized technique for minimally invasive adipose collection. In this study, an ultrasound-guided liposuction technique for adipose collection was assessed for its safety and efficacy. The ultrasound was utilized to identify and measure the postnuchal adipose depot and aid in the guidance of the liposuction cannula during aspiration. Liposuction procedures from 6 dolphins yielded 0.9-12.7 g of adipose. All samples yielded sufficient nucleated cells to initiate primary cell cultures, and at passage 2, were successfully differentiated into adipogenic, chondrogenic, neurogenic, and osteogenic cell lineages. The cultured dolphin cells expressed known stem-cell-associated CD markers, CD44 and CD90. Ultrasound-guided liposuction proved to be a safe and minimally invasive procedure that resulted in the successful isolation of ASCs in bottlenose dolphins. This is the first article that conclusively establishes the presence of stem cells in the dolphin. PMID:22530932

  9. Ultra-structural morphology of long-term cultivated white adipose tissue-derived stem cells.

    PubMed

    Varga, Ivan; Miko, Michal; Oravcová, Lenka; Bačkayová, Tatiana; Koller, Ján; Danišovič, Ľuboš

    2015-12-01

    White adipose tissue was long perceived as a passive lipid storage depot but it is now considered as an active and important endocrine organ. It also harbours not only adipocytes and vascular cells but also a wide array of immunologically active cells, including macrophages and lymphocytes, which may induce obesity-related inflammation. Recently, adipose tissue has been reported as a source of adult mesenchymal stem cells with wide use in regenerative medicine and tissue engineering. Their relatively non-complicated procurement and collection (often performed as liposuction during aesthetic surgery) and grand plasticity support this idea even more. We focused our research on exploring the issues of isolation and long-term cultivation of mesenchymal stem cells obtained from adipose tissue. Ultra-structural morphology of the cells cultivated in vitro has been studied and analysed in several cultivation time periods and following serial passages--up to 30 passages. In the first passages they had ultra-structural characteristics of cells with high proteosynthetic activity. Within the cytoplasm, big number of small lipid droplets and between them, sparsely placed, small and inconspicuous, electron-dense, lamellar bodies, which resembled myelin figures were observed. The cells from the later passages contained high number of lamellar electron-dense structures, which filled out almost the entire cytoplasm. In between, mitochondria were often found. These bodies were sometimes small and resembled myelin figures, but several of them reached huge dimensions (more than 1 µm) and their lamellar structure was not distinguishable. We did not have an answer to the question about their function, but they probably represented the evidence of active metabolism of lipids present in the cytoplasm of these cells or represented residual bodies, which arise after the breakdown of cellular organelles, notably mitochondria during long-term cultivation.

  10. One in vitro model for visceral adipose-derived fibroblasts in chronic inflammation

    SciTech Connect

    Yue Guiping; Du Lirui; Xia Tao; He Xianhui; Qiu Huan; Xu Lihui; Chen Xiaodong; Feng Shengqiu; Yang Zaiqing . E-mail: yangzq@public.wh.hb.cn

    2005-08-05

    One pathogenesis of the obesity-associated complications is that consistent with increased body fat mass, the elevation of adipose tissue-derived cytokines inflicts a low-grade chronic inflammation, which ultimately leads to metabolic disorders. Adipocytes and macrophages in visceral adipose (VA) have been confirmed to contribute to the chronic inflammation; however, the role of the resident fibroblasts is still unknown. We established one VA fibroblast cell line, termed VAFC. Morphological analysis indicated that there were large numbers of pits at the cell plasma membrane. In vitro VAFC cells promoted bone marrow cells to differentiate into macrophages and protected them from apoptosis in the serum-free conditions. Additionally, they also interfered in lymphocytes proliferation. On the basis of these results, this cell line might be an in vitro model for understanding the role of adipose-derived fibroblasts in obesity-associated chronic inflammation.

  11. GATA2 regulates differentiation of bone marrow-derived mesenchymal stem cells.

    PubMed

    Kamata, Mayumi; Okitsu, Yoko; Fujiwara, Tohru; Kanehira, Masahiko; Nakajima, Shinji; Takahashi, Taro; Inoue, Ai; Fukuhara, Noriko; Onishi, Yasushi; Ishizawa, Kenichi; Shimizu, Ritsuko; Yamamoto, Masayuki; Harigae, Hideo

    2014-11-01

    The bone marrow microenvironment comprises multiple cell niches derived from bone marrow mesenchymal stem cells. However, the molecular mechanism of bone marrow mesenchymal stem cell differentiation is poorly understood. The transcription factor GATA2 is indispensable for hematopoietic stem cell function as well as other hematopoietic lineages, suggesting that it may maintain bone marrow mesenchymal stem cells in an immature state and also contribute to their differentiation. To explore this possibility, we established bone marrow mesenchymal stem cells from GATA2 conditional knockout mice. Differentiation of GATA2-deficient bone marrow mesenchymal stem cells into adipocytes induced accelerated oil-drop formation. Further, GATA2 loss- and gain-of-function analyses based on human bone marrow mesenchymal stem cells confirmed that decreased and increased GATA2 expression accelerated and suppressed bone marrow mesenchymal stem cell differentiation to adipocytes, respectively. Microarray analysis of GATA2 knockdowned human bone marrow mesenchymal stem cells revealed that 90 and 189 genes were upregulated or downregulated by a factor of 2, respectively. Moreover, gene ontology analysis revealed significant enrichment of genes involved in cell cycle regulation, and the number of G1/G0 cells increased after GATA2 knockdown. Concomitantly, cell proliferation was decreased by GATA2 knockdown. When GATA2 knockdowned bone marrow mesenchymal stem cells as well as adipocytes were cocultured with CD34-positive cells, hematopoietic stem cell frequency and colony formation decreased. We confirmed the existence of pathological signals that decrease and increase hematopoietic cell and adipocyte numbers, respectively, characteristic of aplastic anemia, and that suppress GATA2 expression in hematopoietic stem cells and bone marrow mesenchymal stem cells.

  12. Nanostructured Tendon-Derived Scaffolds for Enhanced Bone Regeneration by Human Adipose-Derived Stem Cells.

    PubMed

    Ko, Eunkyung; Alberti, Kyle; Lee, Jong Seung; Yang, Kisuk; Jin, Yoonhee; Shin, Jisoo; Yang, Hee Seok; Xu, Qiaobing; Cho, Seung-Woo

    2016-09-01

    Decellularized matrix-based scaffolds can induce enhanced tissue regeneration due to their biochemical, biophysical, and mechanical similarity to native tissues. In this study, we report a nanostructured decellularized tendon scaffold with aligned, nanofibrous structures to enhance osteogenic differentiation and in vivo bone formation of human adipose-derived stem cells (hADSCs). Using a bioskiving method, we prepared decellularized tendon scaffolds from tissue slices of bovine Achilles and neck tendons with or without fixation, and investigated the effects on physical and mechanical properties of decellularized tendon scaffolds, based on the types and concentrations of cross-linking agents. In general, we found that decellularized tendon scaffolds without fixative treatments were more effective in inducing osteogenic differentiation and mineralization of hADSCs in vitro. When non-cross-linked decellularized tendon scaffolds were applied together with hydroxyapatite for hADSC transplantation in critical-sized bone defects, they promoted bone-specific collagen deposition and mineralized bone formation 4 and 8 weeks after hADSC transplantation, compared to conventional collagen type I scaffolds. Interestingly, stacking of decellularized tendon scaffolds cultured with osteogenically committed hADSCs and those containing human cord blood-derived endothelial progenitor cells (hEPCs) induced vascularized bone regeneration in the defects 8 weeks after transplantation. Our study suggests that biomimetic nanostructured scaffolds made of decellularized tissue matrices can serve as functional tissue-engineering scaffolds for enhanced osteogenesis of stem cells.

  13. Nanostructured Tendon-Derived Scaffolds for Enhanced Bone Regeneration by Human Adipose-Derived Stem Cells.

    PubMed

    Ko, Eunkyung; Alberti, Kyle; Lee, Jong Seung; Yang, Kisuk; Jin, Yoonhee; Shin, Jisoo; Yang, Hee Seok; Xu, Qiaobing; Cho, Seung-Woo

    2016-09-01

    Decellularized matrix-based scaffolds can induce enhanced tissue regeneration due to their biochemical, biophysical, and mechanical similarity to native tissues. In this study, we report a nanostructured decellularized tendon scaffold with aligned, nanofibrous structures to enhance osteogenic differentiation and in vivo bone formation of human adipose-derived stem cells (hADSCs). Using a bioskiving method, we prepared decellularized tendon scaffolds from tissue slices of bovine Achilles and neck tendons with or without fixation, and investigated the effects on physical and mechanical properties of decellularized tendon scaffolds, based on the types and concentrations of cross-linking agents. In general, we found that decellularized tendon scaffolds without fixative treatments were more effective in inducing osteogenic differentiation and mineralization of hADSCs in vitro. When non-cross-linked decellularized tendon scaffolds were applied together with hydroxyapatite for hADSC transplantation in critical-sized bone defects, they promoted bone-specific collagen deposition and mineralized bone formation 4 and 8 weeks after hADSC transplantation, compared to conventional collagen type I scaffolds. Interestingly, stacking of decellularized tendon scaffolds cultured with osteogenically committed hADSCs and those containing human cord blood-derived endothelial progenitor cells (hEPCs) induced vascularized bone regeneration in the defects 8 weeks after transplantation. Our study suggests that biomimetic nanostructured scaffolds made of decellularized tissue matrices can serve as functional tissue-engineering scaffolds for enhanced osteogenesis of stem cells. PMID:27502160

  14. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells

    PubMed Central

    Park, Anna; Kim, Won Kon; Bae, Kwang-Hee

    2014-01-01

    Adipose tissue is a major metabolic organ, and it has been traditionally classified as either white adipose tissue (WAT) or brown adipose tissue (BAT). WAT and BAT are characterized by different anatomical locations, morphological structures, functions, and regulations. WAT and BAT are both involved in energy balance. WAT is mainly involved in the storage and mobilization of energy in the form of triglycerides, whereas BAT specializes in dissipating energy as heat during cold- or diet-induced thermogenesis. Recently, brown-like adipocytes were discovered in WAT. These brown-like adipocytes that appear in WAT are called beige or brite adipocytes. Interestingly, these beige/brite cells resemble white fat cells in the basal state, but they respond to thermogenic stimuli with increased levels of thermogenic genes and increased respiration rates. In addition, beige/brite cells have a gene expression pattern distinct from that of either white or brown fat cells. The current epidemic of obesity has increased the interest in studying adipocyte formation (adipogenesis), especially in beige/brite cells. This review summarizes the developmental process of adipose tissues that originate from the mesenchymal stem cells and the features of these three different types of adipocytes. PMID:24567786

  15. Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells.

    PubMed

    Cheung, Hoi Ki; Han, Tim Tian Y; Marecak, Dale M; Watkins, John F; Amsden, Brian G; Flynn, Lauren E

    2014-02-01

    An injectable tissue-engineered adipose substitute that could be used to deliver adipose-derived stem cells (ASCs), filling irregular defects and stimulating natural soft tissue regeneration, would have significant value in plastic and reconstructive surgery. With this focus, the primary aim of the current study was to characterize the response of human ASCs encapsulated within three-dimensional bioscaffolds incorporating decellularized adipose tissue (DAT) as a bioactive matrix within photo-cross-linkable methacrylated glycol chitosan (MGC) or methacrylated chondroitin sulphate (MCS) delivery vehicles. Stable MGC- and MCS-based composite scaffolds were fabricated containing up to 5 wt% cryomilled DAT through initiation with long-wavelength ultraviolet light. The encapsulation strategy allows for tuning of the 3-D microenvironment and provides an effective method of cell delivery with high seeding efficiency and uniformity, which could be adapted as a minimally-invasive in situ approach. Through in vitro cell culture studies, human ASCs were assessed over 14 days in terms of viability, glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, adipogenic gene expression and intracellular lipid accumulation. In all of the composites, the DAT functioned as a cell-supportive matrix that enhanced ASC viability, retention and adipogenesis within the gels. The choice of hydrogel also influenced the cell response, with significantly higher viability and adipogenic differentiation observed in the MCS composites containing 5 wt% DAT. In vivo analysis in a subcutaneous Wistar rat model at 1, 4 and 12 weeks showed superior implant integration and adipogenesis in the MCS-based composites, with allogenic ASCs promoting cell infiltration, angiogenesis and ultimately, fat formation. PMID:24331712

  16. In Vitro Behavior of Human Adipose Tissue-Derived Stem Cells on Poly(ε-caprolactone) Film for Bone Tissue Engineering Applications

    PubMed Central

    Romagnoli, Cecilia; Zonefrati, Roberto; Galli, Gianna; Puppi, Dario; Pirosa, Alessandro; Chiellini, Federica; Martelli, Francesco Saverio; Tanini, Annalisa; Brandi, Maria Luisa

    2015-01-01

    Bone tissue engineering is an emerging field, representing one of the most exciting challenges for scientists and clinicians. The possibility of combining mesenchymal stem cells and scaffolds to create engineered tissues has brought attention to a large variety of biomaterials in combination with osteoprogenitor cells able to promote and regenerate bone tissue. Human adipose tissue is officially recognized as an easily accessible source of mesenchymal stem cells (AMSCs), a significant factor for use in tissue regenerative medicine. In this study, we analyze the behavior of a clonal finite cell line derived from human adipose tissue seeded on poly(ε-caprolactone) (PCL) film, prepared by solvent casting. PCL polymer is chosen for its good biocompatibility, biodegradability, and mechanical properties. We observe that AMSCs are able to adhere to the biomaterial and remain viable for the entire experimental period. Moreover, we show that the proliferation process and osteogenic activity of AMSCs are maintained on the biofilm, demonstrating that the selected biomaterial ensures cell colonization and the development of an extracellular mineralized matrix. The results of this study highlight that AMSCs and PCL film can be used as a suitable model to support regeneration of new bone for future tissue engineering strategies. PMID:26558266

  17. In Vitro Behavior of Human Adipose Tissue-Derived Stem Cells on Poly(ε-caprolactone) Film for Bone Tissue Engineering Applications.

    PubMed

    Romagnoli, Cecilia; Zonefrati, Roberto; Galli, Gianna; Puppi, Dario; Pirosa, Alessandro; Chiellini, Federica; Martelli, Francesco Saverio; Tanini, Annalisa; Brandi, Maria Luisa

    2015-01-01

    Bone tissue engineering is an emerging field, representing one of the most exciting challenges for scientists and clinicians. The possibility of combining mesenchymal stem cells and scaffolds to create engineered tissues has brought attention to a large variety of biomaterials in combination with osteoprogenitor cells able to promote and regenerate bone tissue. Human adipose tissue is officially recognized as an easily accessible source of mesenchymal stem cells (AMSCs), a significant factor for use in tissue regenerative medicine. In this study, we analyze the behavior of a clonal finite cell line derived from human adipose tissue seeded on poly(ε-caprolactone) (PCL) film, prepared by solvent casting. PCL polymer is chosen for its good biocompatibility, biodegradability, and mechanical properties. We observe that AMSCs are able to adhere to the biomaterial and remain viable for the entire experimental period. Moreover, we show that the proliferation process and osteogenic activity of AMSCs are maintained on the biofilm, demonstrating that the selected biomaterial ensures cell colonization and the development of an extracellular mineralized matrix. The results of this study highlight that AMSCs and PCL film can be used as a suitable model to support regeneration of new bone for future tissue engineering strategies. PMID:26558266

  18. The Use Of Laser Irradiation To Stimulate Adipose Derived Stem Cell Proliferation And Differentiation For Use In Autologous Grafts

    NASA Astrophysics Data System (ADS)

    Abrahamse, Heidi

    2009-09-01

    Stem cells are characterized by the qualities of self-renewal, long term viability, and the ability to differentiate into various cell types. Historically, stem cells have been isolated from the inner cell mass of blastocysts and harvesting these cells resulted in the death of the embryo leading to religious, political and ethical issues. The identification and subsequent isolation of adult stem cells from bone marrow stroma have been welcomed as an alternate source for stem cells. The clinical use of Mesenchymal Stem Cells (MSCs) presented problems such as limited cell number, pain and morbidity upon isolation. Adipose tissue is derived from the mesenchyme, is easily isolated, a reliable source of stem cells and able to differentiate into different cell types including smooth muscle. Over the past few years, the identification and characterization of stem cells has led the potential use of these cells as a promising alternative to cell replacement therapy. Smooth muscle is a major component of human tissues and is essential for the normal functioning of many different organs. Low intensity laser irradiation has been shown to increase viability, protein expression and migration of stem cells in vitro, and to stimulate proliferation of various types of stem cells. In addition, the use of laser irradiation to stimulate differentiation in the absence of growth factors has also been demonstrated in normal human neural progenitor cells (NHNPCs) in vitro where NHNPCs are not only capable of being sustained by light in the absence of growth factors, but that they are also able to differentiate normally as assessed by neurite formation. Our work has focused on the ability of laser irradiation to proliferate adipose derived stem cells (ADSCs), maintain ADSC character and increase the rate and maintenance of differentiation of ADSCs into smooth muscle and skin fibroblast cells. Current studies are also investigating the effect of different irradiation wavelengths and

  19. Hip Osteoarthritis in Dogs: A Randomized Study Using Mesenchymal Stem Cells from Adipose Tissue and Plasma Rich in Growth Factors

    PubMed Central

    Cuervo, Belen; Rubio, Monica; Sopena, Joaquin; Dominguez, Juan Manuel; Vilar, Jose; Morales, Manuel; Cugat, Ramón; Carrillo, Jose Maria

    2014-01-01

    Purpose: The aim of this study was to compare the efficacy and safety of a single intra-articular injection of adipose mesenchymal stem cells (aMSCs) versus plasma rich in growth factors (PRGF) as a treatment for reducing symptoms in dogs with hip osteoarthritis (OA). Methods: This was a randomized, multicenter, blinded, parallel group. Thirty-nine dogs with symptomatic hip OA were assigned to one of the two groups, to receive aMSCs or PRGF. The primary outcome measures were pain and function subscales, including radiologic assessment, functional limitation and joint mobility. The secondary outcome measures were owners’ satisfaction questionnaire, rescue analgesic requirement and overall safety. Data was collected at baseline, then, 1, 3 and 6 months post-treatment. Results: OA degree did not vary within groups. Functional limitation, range of motion (ROM), owner’s and veterinary investigator visual analogue scale (VAS), and patient’s quality of life improved from the first month up to six months. The aMSCs group obtained better results at 6 months. There were no adverse effects during the study. Our findings show that aMSCs and PRGF are safe and effective in the functional analysis at 1, 3 and 6 months; provide a significant improvement, reducing dog’s pain, and improving physical function. With respect to basal levels for every parameter in patients with hip OA, aMSCs showed better results at 6 months. PMID:25089877

  20. Comparison of the osteogenic potential of mesenchymal stem cells from the bone marrow and adipose tissue of young dogs

    PubMed Central

    2014-01-01

    Background The aim of the present study was to compare the osteogenic potential of mesenchymal stem cells extracted from the bone marrow (BM-MSCs) and adipose tissue (AD-MSCs) of young dogs. The following parameters were assessed: dimethyl thiazolyl diphenyl tetrazolium (MTT) conversion, alkaline phosphatase (ALP) activity, collagen and mineralised matrix synthesis, and the expressions of osterix, bone sialoprotein (BSP), and osteocalcin (OC). Results MTT conversion was greater in BM-MSCs compared to AD-MSCs after 14 and 21 days of differentiation; ALP activity was greater in differentiated AD-MSCs on day 7; collagen synthesis was greater in BM-MSCs on days 14 and 21; the percentage of mineralized area per field was greater in BM-MSCs compared to AD-MSCs; osterix expression was greater in BM-MSCs in days 14 and 21, and BSP and OC expression levels were greater in BM-MSCs at all the investigation time-points. Conclusions It was concluded that the osteogenic potential was greater in BM-MSCs than AD-MSCs when extracted from young dogs. PMID:25178540

  1. Therapeutic potential of mesenchymal stem cell-derived microvesicles.

    PubMed

    Biancone, Luigi; Bruno, Stefania; Deregibus, Maria Chiara; Tetta, Ciro; Camussi, Giovanni

    2012-08-01

    Several studies have demonstrated that mesenchymal stem cells have the capacity to reverse acute and chronic kidney injury in different experimental models by paracrine mechanisms. This paracrine action may be accounted for, at least in part, by microvesicles (MVs) released from mesenchymal stem cells, resulting in a horizontal transfer of mRNA, microRNA and proteins. MVs, released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, are now recognized as being an integral component of the intercellular microenvironment. By acting as vehicles for information transfer, MVs play a pivotal role in cell-to-cell communication. This exchange of information between the injured cells and stem cells has the potential to be bi-directional. Thus, MVs may either transfer transcripts from injured cells to stem cells, resulting in reprogramming of their phenotype to acquire specific features of the tissue, or conversely, transcripts could be transferred from stem cells to injured cells, restraining tissue injury and inducing cell cycle re-entry of resident cells, leading to tissue self-repair. Upon administration with a therapeutic regimen, MVs mimic the effect of mesenchymal stem cells in various experimental models by inhibiting apoptosis and stimulating cell proliferation. In this review, we discuss whether MVs released from mesenchymal stem cells have the potential to be exploited in novel therapeutic approaches in regenerative medicine to repair damaged tissues, as an alternative to stem cell-based therapy. PMID:22851627

  2. Mesenchymal Stromal Cells Epithelial Transition Induced by Renal Tubular Cells-Derived Extracellular Vesicles

    PubMed Central

    Chiabotto, Giulia; Bruno, Stefania; Collino, Federica

    2016-01-01

    Mesenchymal-epithelial interactions play an important role in renal tubular morphogenesis and in maintaining the structure of the kidney. The aim of this study was to investigate whether extracellular vesicles (EVs) produced by human renal proximal tubular epithelial cells (RPTECs) may induce mesenchymal-epithelial transition of bone marrow-derived mesenchymal stromal cells (MSCs). To test this hypothesis, we characterized the phenotype and the RNA content of EVs and we evaluated the in vitro uptake and activity of EVs on MSCs. MicroRNA (miRNA) analysis suggested the possible implication of the miR-200 family carried by EVs in the epithelial commitment of MSCs. Bone marrow-derived MSCs were incubated with EVs, or RPTEC-derived total conditioned medium, or conditioned medium depleted of EVs. As a positive control, MSCs were co-cultured in a transwell system with RPTECs. Epithelial commitment of MSCs was assessed by real time PCR and by immunofluorescence analysis of cellular expression of specific mesenchymal and epithelial markers. After one week of incubation with EVs and total conditioned medium, we observed mesenchymal-epithelial transition in MSCs. Stimulation with conditioned medium depleted of EVs did not induce any change in mesenchymal and epithelial gene expression. Since EVs were found to contain the miR-200 family, we transfected MSCs using synthetic miR-200 mimics. After one week of transfection, mesenchymal-epithelial transition was induced in MSCs. In conclusion, miR-200 carrying EVs released from RPTECs induce the epithelial commitment of MSCs that may contribute to their regenerative potential. Based on experiments of MSC transfection with miR-200 mimics, we suggested that the miR-200 family may be involved in mesenchymal-epithelial transition of MSCs. PMID:27409796

  3. Advances of mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering.

    PubMed

    Yang, Maobin; Zhang, Hongming; Gangolli, Riddhi

    2014-05-01

    Bone and dental tissues in craniofacial region work as an important aesthetic and functional unit. Reconstruction of craniofacial tissue defects is highly expected to ensure patients to maintain good quality of life. Tissue engineering and regenerative medicine have been developed in the last two decades, and been advanced with the stem cell technology. Bone marrow derived mesenchymal stem cells are one of the most extensively studied post-natal stem cell population, and are widely utilized in cell-based therapy. Dental tissue derived mesenchymal stem cells are a relatively new stem cell population that isolated from various dental tissues. These cells can undergo multilineage differentiation including osteogenic and odontogenic differentiation, thus provide an alternative source of mesenchymal stem cells for tissue engineering. In this review, we discuss the important issues in mesenchymal stem cell biology including the origin and functions of mesenchymal stem cells, compare the properties of these two types of mesenchymal cells, update recent basic research and clinic applications in this field, and address important future challenges.

  4. The impact of adipose tissue-derived factors on the hypothalamic-pituitary-gonadal (HPG) axis.

    PubMed

    Tsatsanis, Christos; Dermitzaki, Eirini; Avgoustinaki, Pavlina; Malliaraki, Niki; Mytaras, Vasilis; Margioris, Andrew N

    2015-01-01

    Adipose tissue produces factors, including adipokines, cytokines and chemokines which, when released, systemically exert endocrine effects on multiple tissues thereby affecting their physiology. Adipokines also affect the hypothalamic-pituitary-gonadal (HPG) axis both centrally, at the hypothalamic-pituitary level, and peripherally acting on the gonads themselves. Among the adipokines, leptin, adiponectin, resistin, chemerin and the peptide kisspeptin have pleiotropic actions on the HPG axis affecting male and female fertility. Furthermore, adipokines and adipose tissue-produced factors readily affect the immune system resulting in inflammation, which in turn impact the HPG axis, thus evidencing a link between metabolic inflammation and fertility. In this review we provide an overview of the existing extensive bibliography on the crosstalk between adipose tissue-derived factors and the HPG axis, with particular focus on the impact of obesity and the metabolic syndrome on gonadal function and fertility.

  5. In vitro evaluation of bioactive strontium-based ceramic with rabbit adipose-derived stem cells for bone tissue regeneration.

    PubMed

    Mohan, Beena Gopalan; Suresh Babu, Sivadasan; Varma, Hari Krishna; John, Annie

    2013-12-01

    The development of bone replacement materials is an important objective in the field of orthopaedic surgery. Due to the drawbacks of treating bone defects with autografts, synthetic bone graft materials have become optional. So in this work, a bone tissue engineering approach with radiopaque bioactive strontium incorporated calcium phosphate was proposed for the preliminary cytocompatibility studies for bone substitutes. Accumulating evidence indicates that strontium containing biomaterials promote enhanced bone repair and radiopacity for easy imaging. Hence, strontium calcium phosphate (SrCaPO4) and hydroxyapatite scaffolds have been investigated for its ability to support and sustain the growth of rabbit adipose-derived mesenchymal stem cells (RADMSCs) in vitro. They were characterized via Micro-CT for pore size distribution. Cells used were isolated from New Zealand White rabbit adipose tissue, characterized by FACS and via differentiation into the osteogenic lineage by alkaline phosphatase, Masson's trichome, Alizarin Red and von Kossa staining on day 28. Material-cell interaction was observed by SEM imaging of cell morphology on contact with material. Live-Dead analysis was done by confocal laser scanning microscopy and cell cluster analysis via μCT. The in vitro biodegradation, elution and nucleation of apatite formation of the material was evaluated using simulated body fluid and phosphate buffered saline in static regime up to 28 days at 37 °C. These results demonstrated that SrCaPO4 is a good candidate for bone tissue engineering applications and with osteogenically-induced RADMSCs, they may serve as potential implants for the repair of critical-sized bone defects.

  6. Progranulin, a Major Secreted Protein of Mouse Adipose-Derived Stem Cells, Inhibits Light-Induced Retinal Degeneration

    PubMed Central

    Tsuruma, Kazuhiro; Yamauchi, Mika; Sugitani, Sou; Otsuka, Tomohiro; Ohno, Yuta; Nagahara, Yuki; Ikegame, Yuka; Shimazawa, Masamitsu; Yoshimura, Shinichi; Iwama, Toru

    2014-01-01

    Adipose tissue stromal vascular fraction contains mesenchymal stem cells, which show protective effects when administered to damaged tissues, mainly through secreted trophic factors. We examined the protective effects of adipose-derived stem cells (ASCs) and ASC-conditioned medium (ASC-CM) against retinal damage and identified the neuroprotective factors in ASC-CM. ASCs and mature adipocytes were isolated from mouse subcutaneous tissue. ASCs were injected intravitreally in a mouse model of light-induced retinal damage, and ASC injection recovered retinal function as measured by electroretinogram and inhibited outer nuclear layer, thinning, without engraftment of ASCs. ASC-CM and mature adipocyte-conditioned medium were collected after 72 hours of culture. In vitro, H2O2- and light-induced cell death was reduced in a photoreceptor cell line with ASC-CM but not with mature adipocyte-conditioned medium. In vivo, light-induced photoreceptor damage was evaluated by measurement of outer nuclear layer thickness at 5 days after light exposure and by electroretinogram recording. ASC-CM significantly inhibited photoreceptor degeneration and retinal dysfunction after light exposure. Progranulin was identified as a major secreted protein of ASCs that showed protective effects against retinal damage in vitro and in vivo. Furthermore, progranulin phosphorylated extracellular signal-regulated kinase, cAMP response element binding protein, and hepatocyte growth factor receptor, and protein kinase C signaling pathways were involved in the protective effects of progranulin. These findings suggest that ASC-CM and progranulin have neuroprotective effects in the light-induced retinal-damage model. Progranulin may be a potential target for the treatment of the degenerative diseases of the retina. PMID:24233842

  7. In vitro evaluation of bioactive strontium-based ceramic with rabbit adipose-derived stem cells for bone tissue regeneration.

    PubMed

    Mohan, Beena Gopalan; Suresh Babu, Sivadasan; Varma, Hari Krishna; John, Annie

    2013-12-01

    The development of bone replacement materials is an important objective in the field of orthopaedic surgery. Due to the drawbacks of treating bone defects with autografts, synthetic bone graft materials have become optional. So in this work, a bone tissue engineering approach with radiopaque bioactive strontium incorporated calcium phosphate was proposed for the preliminary cytocompatibility studies for bone substitutes. Accumulating evidence indicates that strontium containing biomaterials promote enhanced bone repair and radiopacity for easy imaging. Hence, strontium calcium phosphate (SrCaPO4) and hydroxyapatite scaffolds have been investigated for its ability to support and sustain the growth of rabbit adipose-derived mesenchymal stem cells (RADMSCs) in vitro. They were characterized via Micro-CT for pore size distribution. Cells used were isolated from New Zealand White rabbit adipose tissue, characterized by FACS and via differentiation into the osteogenic lineage by alkaline phosphatase, Masson's trichome, Alizarin Red and von Kossa staining on day 28. Material-cell interaction was observed by SEM imaging of cell morphology on contact with material. Live-Dead analysis was done by confocal laser scanning microscopy and cell cluster analysis via μCT. The in vitro biodegradation, elution and nucleation of apatite formation of the material was evaluated using simulated body fluid and phosphate buffered saline in static regime up to 28 days at 37 °C. These results demonstrated that SrCaPO4 is a good candidate for bone tissue engineering applications and with osteogenically-induced RADMSCs, they may serve as potential implants for the repair of critical-sized bone defects. PMID:23990148

  8. Tissue engineering of bone: Clinical observations with adipose-derived stem cells, resorbable scaffolds, and growth factors

    PubMed Central

    Sándor, George K. B.

    2012-01-01

    Introduction: Tissue engineering offers a simple, nonallergenic, and viable solution for the reconstruction of human tissues such as bone. With deeper understanding of the stem cell's pathobiology, the unique properties of these tissues can be effectively harnessed for the benefit of the patients. A primary source of mesenchymal stem cells (MSCs) for bone regeneration is from adipose tissue to provide adipose-derived stem cells (ASCs). The interdependency between adipogenesis and osteogenesis has been well established. The objective of this article is to present the preliminary clinical observation with reconstruction of craniofacial osseous defects larger than critical size with ASC. Materials and Methods: Patients with large craniofacial osseous defects only were included in this study. Autogenous fat from the anterior abdominal wall of the patients was harvested from 23 patients, taken to a central tissue banking laboratory and prepared. All patients were reconstructed with ASCs, resorbable scaffolds, and growth factor as required. Vascularized soft tissue beds were prepared for ectopic bone formation and later microvascular translocation as indicated. Results: 23 ASC seeded resorbable scaffolds have been combined with rhBMP-2 and successfully implanted into humans to reconstruct their jaws except for three failures. The failures included one infection and two cases of inadequate bone formation. Discussion: The technique of ASC-aided reconstruction of large defects still remains extremely sensitive as it takes longer duration and is costlier than the conventional standard immediate reconstruction. Preliminary results and clinical observations of these cases are extremely encouraging. In future, probably with evolving technological advances, ASC-aided reconstruction will be regularly used in clinical practise. PMID:23483030

  9. Short-term mechanical stretch fails to differentiate human adipose-derived stem cells into cardiovascular cell phenotypes

    PubMed Central

    2014-01-01

    Background We and others have previously demonstrated that adipose-derived stem cells (ASCs) transplantation improve cardiac dysfunction post-myocardium infarction (MI) under hemodynamic stress in rats. The beneficial effects appear to be associated with pleiotropic factors due to a complex interplay between the transplanted ASCs and the microenvironment in the absence of cell transdifferentiation. In the present work, we tested the hypothesis that mechanical stretch per se could change human ASCs (hASCs) into cardiovascular cell phenotypes that might influence post-MI outcomes. Methods Human ASCs were obtained from patients undergoing liposuction procedures. These cells were stretched 12%, 1Hz up to 96 hours by using Flexercell 4000 system. Protein and gene expression were evaluated to identify cardiovascular cell markers. Culture medium was analyzed to determine cell releasing factors, and contraction potential was also evaluated. Results Mechanical stretch, which is associated with extracellular signal-regulated kinase (ERK) phosphorylation, failed to induce the expression of cardiovascular cell markers in human ASCs, and mesenchymal cell surface markers (CD29; CD90) remained unchanged. hASCs and smooth muscle cells (SMCs) displayed comparable contraction ability. In addition, these cells demonstrated a profound ability to secrete an array of cytokines. These two properties of human ASCs were not influenced by mechanical stretch. Conclusions Altogether, our findings demonstrate that hASCs secrete an array of cytokines and display contraction ability even in the absence of induction of cardiovascular cell markers or the loss of mesenchymal surface markers when exposed to mechanical stretch. These properties may contribute to beneficial post-MI cardiovascular outcomes and deserve to be further explored under the controlled influence of other microenvironment components associated with myocardial infarction, such as tissue hypoxia. PMID:24885410

  10. Effects of platelet-rich plasma, adipose-derived stem cells, and stromal vascular fraction on the survival of human transplanted adipose tissue.

    PubMed

    Kim, Deok-Yeol; Ji, Yi-Hwa; Kim, Deok-Woo; Dhong, Eun-Sang; Yoon, Eul-Sik

    2014-11-01

    Traditional adipose tissue transplantation has unpredictable viability and poor absorption rates. Recent studies have reported that treatment with platelet-rich plasma (PRP), adipose-derived stem cells (ASCs), and stromal vascular fraction (SVF) are related to increased survival of grafted adipose tissue. This study was the first simultaneous comparison of graft survival in combination with PRP, ASCs, and SVF. Adipose tissues were mixed with each other, injected subcutaneously into the back of nude mice, and evaluated at 4, 8, and 12 weeks. Human adipocytes were grossly maintained in the ASCs and SVF mixtures. Survival of the adipose tissues with PRP was observed at 4 weeks and with SVF at 8 and 12 weeks. At 12 weeks, volume reduction in the ASCs and SVF mixtures were 36.9% and 32.1%, respectively, which were significantly different from that of the control group without adjuvant treatment, 51.0%. Neovascular structures were rarely observed in any of the groups. Our results suggest that the technique of adding ASCs or SVF to transplanted adipose tissue might be more effective than the conventional grafting method. An autologous adipose tissue graft in combination with ASCs or SVF may potentially contribute to stabilization of engraftment.

  11. Human bone marrow-derived mesenchymal stem cells

    PubMed Central

    Nasef, A; Fouillard, L; El-Taguri, A; Lopez, M

    2007-01-01

    Mesenchymal stem cells (MSCs) have elicited a great clinical interest, particularly in the areas of regenerative medicine and induction of tolerance in allogeneic transplantation. Previous reports demonstrated the feasibility of transplanting MSCs, which generates new prospects in cellular therapy. Recently, injection of MSCs induced remission of steroid-resistant acute graft-versus-host disease (GVHD). This review summarizes the knowledge and possible future clinical uses of MSCs. PMID:21503244

  12. Human bone marrow-derived mesenchymal stem cells.

    PubMed

    Nasef, A; Fouillard, L; El-Taguri, A; Lopez, M

    2007-12-01

    Mesenchymal stem cells (MSCs) have elicited a great clinical interest, particularly in the areas of regenerative medicine and induction of tolerance in allogeneic transplantation. Previous reports demonstrated the feasibility of transplanting MSCs, which generates new prospects in cellular therapy. Recently, injection of MSCs induced remission of steroid-resistant acute graft-versus-host disease (GVHD). This review summarizes the knowledge and possible future clinical uses of MSCs.

  13. Pericytes Derived from Adipose-Derived Stem Cells Protect against Retinal Vasculopathy

    PubMed Central

    Mendel, Thomas A.; Clabough, Erin B. D.; Kao, David S.; Demidova-Rice, Tatiana N.; Durham, Jennifer T.; Zotter, Brendan C.; Seaman, Scott A.; Cronk, Stephen M.; Rakoczy, Elizabeth P.; Katz, Adam J.; Herman, Ira M.; Peirce, Shayn M.; Yates, Paul A.

    2013-01-01

    Background Retinal vasculopathies, including diabetic retinopathy (DR), threaten the vision of over 100 million people. Retinal pericytes are critical for microvascular control, supporting retinal endothelial cells via direct contact and paracrine mechanisms. With pericyte death or loss, endothelial dysfunction ensues, resulting in hypoxic insult, pathologic angiogenesis, and ultimately blindness. Adipose-derived stem cells (ASCs) differentiate into pericytes, suggesting they may be useful as a protective and regenerative cellular therapy for retinal vascular disease. In this study, we examine the ability of ASCs to differentiate into pericytes that can stabilize retinal vessels in multiple pre-clinical models of retinal vasculopathy. Methodology/Principal Findings We found that ASCs express pericyte-specific markers in vitro. When injected intravitreally into the murine eye subjected to oxygen-induced retinopathy (OIR), ASCs were capable of migrating to and integrating with the retinal vasculature. Integrated ASCs maintained marker expression and pericyte-like morphology in vivo for at least 2 months. ASCs injected after OIR vessel destabilization and ablation enhanced vessel regrowth (16% reduction in avascular area). ASCs injected intravitreally before OIR vessel destabilization prevented retinal capillary dropout (53% reduction). Treatment of ASCs with transforming growth factor beta (TGF-β1) enhanced hASC pericyte function, in a manner similar to native retinal pericytes, with increased marker expression of smooth muscle actin, cellular contractility, endothelial stabilization, and microvascular protection in OIR. Finally, injected ASCs prevented capillary loss in the diabetic retinopathic Akimba mouse (79% reduction 2 months after injection). Conclusions/Significance ASC-derived pericytes can integrate with retinal vasculature, adopting both pericyte morphology and marker expression, and provide functional vascular protection in multiple murine models of

  14. Virally and physically transgenized equine adipose-derived stromal cells as a cargo for paracrine secreted factors

    PubMed Central

    2010-01-01

    Background Adipose-Derived Stromal Cells have been shown to have multiple lineage differentiation properties and to be suitable for tissues regeneration in many degenerative processes. Their use has been proposed for the therapy of joint diseases and tendon injuries in the horse. In the present report the genetic manipulation of Equine Adipose-Derived Stromal Cells has been investigated. Results Equine Adipose-Derived Stromal Cells were successfully virally transduced as well as transiently and stably transfected with appropriate parameters, without detrimental effect on their differentiation properties. Moreover, green fluorescent protein alone, fused to neo gene, or co-expressed as bi-cistronic reporter constructs, driven by viral and house-keeping gene promoters, were tested. The better expressed cassette was employed to stably transfect Adipose-Derived Stromal Cells for cell therapy purposes. Stably transfected Equine Adipose-Derived Stromal Cells with a heterologous secreted viral antigen were able to immunize horses upon injection into the lateral wall of the neck. Conclusion This study provides the methods to successfully transgenize Adipose-Derived Stromal Cells both by lentiviral vector and by transfection using optimized constructs with suitable promoters and reporter genes. In conclusion these findings provide a working platform for the delivery of potentially therapeutic proteins to the site of cells injection via transgenized Equine Adipose-Derived Stromal Cells. PMID:20863390

  15. Adipose Mesenchymal Stem Cell Secretome Modulated in Hypoxia for Remodeling of Radiation-Induced Salivary Gland Damage

    PubMed Central

    An, Hye-Young; Shin, Hyun-Soo; Choi, Jeong-Seok; Kim, Hun Jung

    2015-01-01

    Background and Purpose This study was conducted to determine whether a secretome from mesenchymal stem cells (MSC) modulated by hypoxic conditions to contain therapeutic factors contributes to salivary gland (SG) tissue remodeling and has the potential to improve irradiation (IR)-induced salivary hypofunction in a mouse model. Materials and Methods Human adipose mesenchymal stem cells (hAdMSC) were isolated, expanded, and exposed to hypoxic conditions (O2 < 5%). The hypoxia-conditioned medium was then filtered to a high molecular weight fraction and prepared as a hAdMSC secretome. The hAdMSC secretome was subsequently infused into the tail vein of C3H mice immediately after local IR once a day for seven consecutive days. The control group received equal volume (500 μL) of vehicle (PBS) only. SG function and structural tissue remodeling by the hAdMSC secretome were investigated. Human parotid epithelial cells (HPEC) were obtained, expanded in vitro, and then irradiated and treated with either the hypoxia-conditioned medium or a normoxic control medium. Cell proliferation and IR-induced cell death were examined to determine the mechanism by which the hAdMSC secretome exerted its effects. Results The conditioned hAdMSC secretome contained high levels of GM-CSF, VEGF, IL-6, and IGF-1. Repeated systemic infusion with the hAdMSC secretome resulted in improved salivation capacity and increased levels of salivary proteins, including amylase and EGF, relative to the PBS group. The microscopic structural integrity of SG was maintained and salivary epithelial (AQP-5), endothelial (CD31), myoepithelial (α-SMA) and SG progenitor cells (c-Kit) were successfully protected from radiation damage and remodeled. The hAdMSC secretome strongly induced proliferation of HPEC and led to a significant decrease in cell death in vivo and in vitro. Moreover, the anti-apoptotic effects of the hAdMSC secretome were found to be promoted after hypoxia-preconditioning relative to normoxia

  16. In vitro cardiomyogenic potential of human umbilical vein-derived mesenchymal stem cells

    SciTech Connect

    Kadivar, Mehdi; Khatami, Shohreh . E-mail: khatamibiochem@yahoo.com; Mortazavi, Yousef; Shokrgozar, Mohammad Ali; Taghikhani, Mohammad; Soleimani, Masoud

    2006-02-10

    Cardiomyocyte loss in the ischemically injured human heart often leads to irreversible defects in cardiac function. Recently, cellular cardiomyoplasty with mesenchymal stem cells, which are multipotent cells with the ability to differentiate into specialized cells under appropriate stimuli, has emerged as a new approach for repairing damaged myocardium. In the present study, the potential of human umbilical cord-derived mesenchymal stem cells to differentiate into cells with characteristics of cardiomyocyte was investigated. Mesenchymal stem cells were isolated from endothelial/subendothelial layers of the human umbilical cords using a method similar to that of human umbilical vein endothelial cell isolation. Isolated cells were characterized by transdifferentiation ability to adipocytes and osteoblasts, and also with flow cytometry analysis. After treatment with 5-azacytidine, the human umbilical cord-derived mesenchymal stem cells were morphologically transformed into cardiomyocyte-like cells and expressed cardiac differentiation markers. During the differentiation, cells were monitored by a phase contrast microscope and their morphological changes were demonstrated. Immunostaining of the differentiated cells for sarcomeric myosin (MF20), desmin, cardiac troponin I, and sarcomeric {alpha}-actinin was positive. RT-PCR analysis showed that these differentiated cells express cardiac-specific genes. Transmission electron microscopy revealed a cardiomyocyte-like ultrastructure and typical sarcomers. These observations confirm that human umbilical cord-derived mesenchymal stem cells can be chemically transformed into cardiomyocytes and can be considered as a source of cells for cellular cardiomyoplasty.

  17. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts.

    PubMed

    Hu, Li; Wang, Juan; Zhou, Xin; Xiong, Zehuan; Zhao, Jiajia; Yu, Ran; Huang, Fang; Zhang, Handong; Chen, Lili

    2016-09-12

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair.

  18. Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro.

    PubMed

    Li, Junjie; Yang, Boguang; Qian, Yufeng; Wang, Qiyu; Han, Ruijin; Hao, Tong; Shu, Yao; Zhang, Yabin; Yao, Fanglian; Wang, Changyong

    2015-10-01

    In this study, we have developed ι-carrageenan/chitosan/gelatin (CCG) scaffold containing multiple functional groups (-NH2 , -OH, -COOH, and -SO3 H) to resemble the native extracellular matrix (ECM), using the ion-shielding technology and ultrasonic dispersion method. Fourier transform infrared spectroscopy (FTIR) of the CCG scaffolds suggests that the formation of CCG network involves electrostatic interactions between ι-carrageenan (ι-CA) and chitosan/gelatin, and the covalent cross-linking among amino groups of chitosan and/or gelatin. Scanning electron microscopic (SEM) observation reveals that the porous structure of scaffolds can be modulated by the ratio of ι-CA to chitosan/gelatin. The swelling ratio of the hydrogels increases as the ι-CA contents increase. Using differential scanning calorimetry, we found that the double helix structure of ι-CA is only stabilized at low contents of ι-CA in the CCG scaffolds (e.g., 5 wt %). The scaffolds containing 5% ι-CA showed the best protein adsorption capacity (4.46 ± 0.63 μg protein/mg scaffold) and elastic modulus (5.37 ± 1.03 MPa). In addition, the CCG scaffolds exhibit excellent support for adipose-derived mesenchymal stem cells (ADMSCs) attachment and proliferation, and they can improve the osteogenic differentiation and neovascularization capacities of ADMSCs. Overall, we conclude that the CCG may represent an ideal scaffold material for bone tissue engineering.

  19. Tissue-Related Hypoxia Attenuates Proinflammatory Effects of Allogeneic PBMCs on Adipose-Derived Stromal Cells In Vitro

    PubMed Central

    Bobyleva, Polina I.; Andreeva, Elena R.; Gornostaeva, Aleksandra N.; Buravkova, Ludmila B.

    2016-01-01

    Human adipose tissue-stromal derived cells (ASCs) are considered a perspective tool for regenerative medicine. Depending on the application mode ASC/allogeneic immune cell interaction can occur in the systemic circulation under plenty high concentrations of O2 and in target tissues at lower O2 levels. Here we examined the effects of allogeneic PHA-stimulated peripheral blood mononuclear cells (PBMCs) on ASCs under ambient (20%) oxygen and “physiological” hypoxia (5% O2). As revealed with microarray analysis ASCs under 20% O2 were more affected by activated PBMCs, which was manifested in differential expression of more than 300 genes, whereas under 5% O2 only 140 genes were changed. Altered gene pattern was only partly overlapped at different O2 conditions. Under O2 ASCs retained their proliferative and differentiative capacities, mesenchymal phenotype, and intracellular organelle' state. ASCs were proinflammatory activated on transcription level that was confirmed by their ability to suppress activation and proliferation of mitogen-stimulated PBMCs. ASC/PBMCs interaction resulted in anti-inflammatory shift of paracrine mediators in conditioning medium with significant increase of immunosuppressive LIF level. Our data indicated that under both ambient and tissue-related O2 ASCs possessed immunosuppressive potential and maintained functional activity. Under “physiological” hypoxia ASCs were less susceptible to “priming” by allogeneic mitogen-activated PBMCs. PMID:26880965

  20. Bioceramic-collagen scaffolds loaded with human adipose-tissue derived stem cells for bone tissue engineering.

    PubMed

    Daei-Farshbaf, Neda; Ardeshirylajimi, Abdolreza; Seyedjafari, Ehsan; Piryaei, Abbas; Fadaei Fathabady, Fatemeh; Hedayati, Mehdi; Salehi, Mohammad; Soleimani, Masoud; Nazarian, Hamid; Moradi, Sadegh-Lotfalah; Norouzian, Mohsen

    2014-02-01

    The combination of bioceramics and stem cells has attracted the interest of research community for bone tissue engineering applications. In the present study, a combination of Bio-Oss(®) and type 1 collagen gel as scaffold were loaded with human adipose-tissue derived mesenchymal stem cells (AT-MSCs) after isolation and characterization, and the capacity of them for bone regeneration was investigated in rat critical size defects using digital mammography, multi-slice spiral computed tomography imaging and histological analysis. 8 weeks after implantation, no mortality or sign of inflammation was observed in the site of defect. According to the results of imaging analysis, a higher level of bone regeneration was observed in the rats receiving Bio-Oss(®)-Gel compared to untreated group. In addition, MSC-seeded Bio-Oss-Gel induced the highest bone reconstruction among all groups. Histological staining confirmed these findings and impressive osseointegration was observed in MSC-seeded Bio-Oss-Gel compared with Bio-Oss-Gel. On the whole, it was demonstrated that combination of AT-MSCs, Bio-Oss and Gel synergistically enhanced bone regeneration and reconstruction and also could serve as an appropriate structure to bone regenerative medicine and tissue engineering application.

  1. Human adipose-derived stromal cells efficiently support hematopoiesis in vitro and in vivo: a key step for therapeutic studies.

    PubMed

    De Toni, Fabienne; Poglio, Sandrine; Youcef, Aissa Ben; Cousin, Béatrice; Pflumio, Françoise; Bourin, Philippe; Casteilla, Louis; Laharrague, Patrick

    2011-12-01

    Adipose-derived stromal cells (ADSCs) are close relatives of bone marrow mesenchymal stromal cells (BM-MSCs). The ease of access to subcutaneous fat pad and the abundance of stromal precursors make fat tissue an attractive source of stromal cells for clinicians. However, their ability to support hematopoietic stem cells in vitro and in vivo has not been established definitively. Thus, their usefulness in supporting hematopoietic stem cell engraftment is not as clear as with BM-MSCs. In this article, we show that human ADSCs, cultured with a good manufacturing practice medium, maintain in vitro human early and committed hematopoietic progenitors and support their complete differentiation toward myeloid and lymphoid lineages. Compared with BM-MSCs, ADSCs elicit a more precocious early progenitor formation and faster proliferation and differentiation of hematopoietic progenitors. Further, in vivo, when co-injected in NOD.Cg-Prkdc(scid) Il2(rgtm1Wjl)/SzJ (NSG) mice with a low number of human CD34(+) cells, ADSCs enabled the higher production of immature human hematopoietic progenitors and CD45(+) cells when compared with BM-MSCs. As a whole, our results indicate that human ADSCs, isolated and expanded under clinical-grade conditions, support hematopoiesis in vitro and in vivo and thus provide the rationale for their use in supporting hematopoietic reconstitution in clinical settings.

  2. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts.

    PubMed

    Hu, Li; Wang, Juan; Zhou, Xin; Xiong, Zehuan; Zhao, Jiajia; Yu, Ran; Huang, Fang; Zhang, Handong; Chen, Lili

    2016-01-01

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair. PMID:27615560

  3. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts

    PubMed Central

    Hu, Li; Wang, Juan; Zhou, Xin; Xiong, Zehuan; Zhao, Jiajia; Yu, Ran; Huang, Fang; Zhang, Handong; Chen, Lili

    2016-01-01

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair. PMID:27615560

  4. Acute and chronic wound fluids inversely influence adipose-derived stem cell function: molecular insights into impaired wound healing.

    PubMed

    Koenen, Paola; Spanholtz, Timo A; Maegele, Marc; Stürmer, Ewa; Brockamp, Thomas; Neugebauer, Edmund; Thamm, Oliver C

    2015-02-01

    Wound healing is a complex biological process that requires a well-orchestrated interaction of mediators as well as resident and infiltrating cells. In this context, mesenchymal stem cells play a crucial role as they are attracted to the wound site and influence tissue regeneration by various mechanisms. In chronic wounds, these processes are disturbed. In a comparative approach, adipose-derived stem cells (ASC) were treated with acute and chronic wound fluids (AWF and CWF, respectively). Proliferation and migration were investigated using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and transwell migration assay. Gene expression changes were analysed using quantitative real time-polymerase chain reaction. AWF had a significantly stronger chemotactic impact on ASC than CWF (77·5% versus 59·8% migrated cells). While proliferation was stimulated by AWF up to 136·3%, CWF had a negative effect on proliferation over time (80·3%). Expression of b-FGF, vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 was strongly induced by CWF compared with a mild induction by AWF. These results give an insight into impaired ASC function in chronic wounds. The detected effect of CWF on proliferation and migration of ASC might be one reason for an insufficient healing process in chronic wounds.

  5. The Effect of Human Platelet-Rich Plasma on Adipose-Derived Stem Cell Proliferation and Osteogenic Differentiation

    PubMed Central

    Tavakolinejad, Sima; Khosravi, Mohsen; Mashkani, Baratali; Ebrahimzadeh Bideskan, Alireza; Sanjar Mossavi, Nasser; Parizadeh, Seyyed Mohammad Reza; Hamidi Alamdari, Daryoush

    2014-01-01

    Background: The cultured mesenchymal stem cells (MSC) have been used in many clinical trials; however, there are still some concerns about the cultural conditions. One concern is related to the use of FBS as a widely used xenogeneic supplement in the culture system. Human platelet-rich plasma (hPRP) is a candidate replacement for FBS. In this study, the effect of hPRP on MSC proliferation and osteogenic differentiation has been evaluated. Methods: Human adipose-derived stem cells (hADSC) were expanded. Cells from the third passage were characterized by flow cytometric analysis and used for in vitro experiments. Resazurin and alizarin red stains were used for cell proliferation and osteogenic differentiation assays, respectively. Results: Treatment with hPRP resulted in a statistically significant increase in cell proliferation compare to the negative control group (P<0.001). Cell proliferation in the 15% hPRP group was also significantly higher than that in the 10% hPRP group (P<0.05). Additionally, it caused less osteogenic differentiation of the hADSC compared to the FBS (P<0.001), but in comparison to negative control, it caused acceptable mineralization (P<0.001). Conclusion: These findings indicate that hPRP not only improves the proliferation but also it can be a suitable substitution in osteogenic differentiation for clinical purposes. However, the clinical application value of hPRP still needs more investigation. PMID:24842141

  6. Adipose Tissue-Derived Stem Cell Secreted IGF-1 Protects Myoblasts from the Negative Effect of Myostatin

    PubMed Central

    Gehmert, Sebastian; Nerlich, Michael; Gosau, Martin; Klein, Silvan; Schreml, Stephan; Prantl, Lukas

    2014-01-01

    Myostatin, a TGF-β family member, is associated with inhibition of muscle growth and differentiation and might interact with the IGF-1 signaling pathway. Since IGF-1 is secreted at a bioactive level by adipose tissue-derived mesenchymal stem cells (ASCs), these cells (ASCs) provide a therapeutic option for Duchenne Muscular Dystrophy (DMD). But the protective effect of stem cell secreted IGF-1 on myoblast under high level of myostatin remains unclear. In the present study murine myoblasts were exposed to myostatin under presence of ASCs conditioned medium and investigated for proliferation and apoptosis. The protective effect of IGF-1 was further examined by using IGF-1 neutralizing and receptor antibodies as well as gene silencing RNAi technology. MyoD expression was detected to identify impact of IGF-1 on myoblasts differentiation when exposed to myostatin. IGF-1 was accountable for 43.6% of the antiapoptotic impact and 48.8% for the proliferative effect of ASCs conditioned medium. Furthermore, IGF-1 restored mRNA and protein MyoD expression of myoblasts under risk. Beside fusion and transdifferentiation the beneficial effect of ASCs is mediated by paracrine secreted cytokines, particularly IGF-1. The present study underlines the potential of ASCs as a therapeutic option for Duchenne muscular dystrophy and other dystrophic muscle diseases. PMID:24575400

  7. Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro.

    PubMed

    Li, Junjie; Yang, Boguang; Qian, Yufeng; Wang, Qiyu; Han, Ruijin; Hao, Tong; Shu, Yao; Zhang, Yabin; Yao, Fanglian; Wang, Changyong

    2015-10-01

    In this study, we have developed ι-carrageenan/chitosan/gelatin (CCG) scaffold containing multiple functional groups (-NH2 , -OH, -COOH, and -SO3 H) to resemble the native extracellular matrix (ECM), using the ion-shielding technology and ultrasonic dispersion method. Fourier transform infrared spectroscopy (FTIR) of the CCG scaffolds suggests that the formation of CCG network involves electrostatic interactions between ι-carrageenan (ι-CA) and chitosan/gelatin, and the covalent cross-linking among amino groups of chitosan and/or gelatin. Scanning electron microscopic (SEM) observation reveals that the porous structure of scaffolds can be modulated by the ratio of ι-CA to chitosan/gelatin. The swelling ratio of the hydrogels increases as the ι-CA contents increase. Using differential scanning calorimetry, we found that the double helix structure of ι-CA is only stabilized at low contents of ι-CA in the CCG scaffolds (e.g., 5 wt %). The scaffolds containing 5% ι-CA showed the best protein adsorption capacity (4.46 ± 0.63 μg protein/mg scaffold) and elastic modulus (5.37 ± 1.03 MPa). In addition, the CCG scaffolds exhibit excellent support for adipose-derived mesenchymal stem cells (ADMSCs) attachment and proliferation, and they can improve the osteogenic differentiation and neovascularization capacities of ADMSCs. Overall, we conclude that the CCG may represent an ideal scaffold material for bone tissue engineering. PMID:25449538

  8. Human Adipose Tissue Derived Extracellular Matrix and Methylcellulose Hydrogels Augments and Regenerates the Paralyzed Vocal Fold

    PubMed Central

    Kim, Eun Na; Sung, Myung Whun; Kwon, Tack-Kyun; Cho, Yong Woo; Kwon, Seong Keun

    2016-01-01

    Vocal fold paralysis results from various etiologies and can induce voice changes, swallowing complications, and issues with aspiration. Vocal fold paralysis is typically managed using injection laryngoplasty with fat or synthetic polymers. Injection with autologous fat has shown excellent biocompatibility. However, it has several disadvantages such as unpredictable resorption rate, morbidities associated with liposuction procedure which has to be done in operating room under general anesthesia. Human adipose-derived extracellular matrix (ECM) grafts have been reported to form new adipose tissue and ha