Science.gov

Sample records for adipose factor fiaf

  1. Skeletal actions of fasting-induced adipose factor (FIAF).

    PubMed

    Lin, Jian-ming; Naot, Dorit; Watson, Maureen; Costa, Jessica L; Reid, Ian R; Cornish, Jillian; Grey, Andrew

    2013-12-01

    Several adipokines are known to influence skeletal metabolism. Fasting-induced adipose factor (FIAF) is an adipokine that gives rise to 2 further peptides in vivo, the N-terminal coiled-coil domain (FIAF(CCD)) and C-terminal fibrinogen-like domain (FIAF(FLD)). The skeletal action of these peptides is still uncertain. Our results show that FIAF(CCD) is a potent inhibitor of osteoclastogenesis and function, as seen in mouse bone marrow and RAW264.7 cell cultures, and in a resorption assay using isolated primary mature osteoclasts. The inhibitory effects at 500 ng/mL were approximately 90%, 50% and 90%, respectively, in these assays. FIAF(CCD) also stimulated osteoblast mitogenesis by approximately 30% at this concentration. In comparison, FIAF(FLD) was only active in decreasing osteoblast mitogenesis, and intact FIAF had no effect in any of these assays. In murine bone marrow cultures, FIAF(CCD) reduced the expression of macrophage colony-stimulating factor (M-CSF), nuclear factor of activated T-cells c1 (NFATc1) and dendritic cell-specific transmembrane protein (DC-STAMP), and to lesser extent suppressed the expression of connective tissue growth factor (CTGF). FIAF(CCD) also decreased expression of M-CSF and CTGF in stromal/osteoblastic ST2 cells. Its effect on receptor activator of nuclear factor κB (RANKL) and osteoprotegerin expression in bone marrow was not consistent with its inhibitory action on osteoclastogenesis, but it decreased RANKL expression in ST2 cells. In RAW264.7 cell cultures, FIAF(CCD) significantly reduced the expression of NFATc1 and DC-STAMP. In conclusion, FIAF(CCD) inhibits osteoclast differentiation and function in vitro and decreases expression of genes encoding key osteoclastogenic factors such as M-CSF, CTGF, NFATc1, and DC-STAMP. FIAF(CCD)'s action on osteoclasts may be independent of the RANKL/osteoprotegerin pathway. These results suggest a novel mechanism by which adipose tissue may regulate bone resorption and skeletal health. PMID

  2. Influencing Factors of Thermogenic Adipose Tissue Activity

    PubMed Central

    Zhang, Guoqing; Sun, Qinghua; Liu, Cuiqing

    2016-01-01

    Obesity is an escalating public health challenge and contributes tremendously to the disease burden globally. New therapeutic strategies are required to alleviate the health impact of obesity-related metabolic dysfunction. Brown adipose tissue (BAT) is specialized for dissipating chemical energy for thermogenesis as a defense against cold environment. Intriguingly, the brown-fat like adipocytes that dispersed throughout white adipose tissue (WAT) in rodents and humans, called “brite” or “beige” adipocytes, share similar thermogenic characteristics to brown adipocytes. Recently, researchers have focused on cognition of these thermogenic adipose tissues. Some factors have been identified to regulate the development and function of thermogenic adipose tissues. Cold exposure, pharmacological conditions, and lifestyle can enhance non-shivering thermogenesis and metabolism via some mechanisms. However, environmental pollutants, such as ambient fine particulates and ozone, may impair the function of these thermogenic adipose tissues and thereby induce metabolic dysfunction. In this review, the origin, function and influencing factors of thermogenic adipose tissues were summarized and it will provide insights into identifying new therapeutic strategies for the treatment of obesity and obesity-related diseases. PMID:26903879

  3. Influencing Factors of Thermogenic Adipose Tissue Activity.

    PubMed

    Zhang, Guoqing; Sun, Qinghua; Liu, Cuiqing

    2016-01-01

    Obesity is an escalating public health challenge and contributes tremendously to the disease burden globally. New therapeutic strategies are required to alleviate the health impact of obesity-related metabolic dysfunction. Brown adipose tissue (BAT) is specialized for dissipating chemical energy for thermogenesis as a defense against cold environment. Intriguingly, the brown-fat like adipocytes that dispersed throughout white adipose tissue (WAT) in rodents and humans, called "brite" or "beige" adipocytes, share similar thermogenic characteristics to brown adipocytes. Recently, researchers have focused on cognition of these thermogenic adipose tissues. Some factors have been identified to regulate the development and function of thermogenic adipose tissues. Cold exposure, pharmacological conditions, and lifestyle can enhance non-shivering thermogenesis and metabolism via some mechanisms. However, environmental pollutants, such as ambient fine particulates and ozone, may impair the function of these thermogenic adipose tissues and thereby induce metabolic dysfunction. In this review, the origin, function and influencing factors of thermogenic adipose tissues were summarized and it will provide insights into identifying new therapeutic strategies for the treatment of obesity and obesity-related diseases. PMID:26903879

  4. Lactobacillus rhamnosus CNCMI-4317 Modulates Fiaf/Angptl4 in Intestinal Epithelial Cells and Circulating Level in Mice

    PubMed Central

    Jacouton, Elsa; Mach, Núria; Cadiou, Julie; Lapaque, Nicolas; Clément, Karine; Doré, Joël; van Hylckama Vlieg, Johan E. T.; Smokvina, Tamara; Blottière, Hervé M

    2015-01-01

    Background and Objectives Identification of new targets for metabolic diseases treatment or prevention is required. In this context, FIAF/ANGPTL4 appears as a crucial regulator of energy homeostasis. Lactobacilli are often considered to display beneficial effect for their hosts, acting on different regulatory pathways. The aim of the present work was to study the effect of several lactobacilli strains on Fiaf gene expression in human intestinal epithelial cells (IECs) and on mice tissues to decipher the underlying mechanisms. Subjects and Methods Nineteen lactobacilli strains have been tested on HT–29 human intestinal epithelial cells for their ability to regulate Fiaf gene expression by RT-qPCR. In order to determine regulated pathways, we analysed the whole genome transcriptome of IECs. We then validated in vivo bacterial effects using C57BL/6 mono-colonized mice fed with normal chow. Results We identified one strain (Lactobacillus rhamnosus CNCMI–4317) that modulated Fiaf expression in IECs. This regulation relied potentially on bacterial surface-exposed molecules and seemed to be PPAR-γ independent but PPAR-α dependent. Transcriptome functional analysis revealed that multiple pathways including cellular function and maintenance, lymphoid tissue structure and development, as well as lipid metabolism were regulated by this strain. The regulation of immune system and lipid and carbohydrate metabolism was also confirmed by overrepresentation of Gene Ontology terms analysis. In vivo, circulating FIAF protein was increased by the strain but this phenomenon was not correlated with modulation Fiaf expression in tissues (except a trend in distal small intestine). Conclusion We showed that Lactobacillus rhamnosus CNCMI–4317 induced Fiaf expression in human IECs, and increased circulating FIAF protein level in mice. Moreover, this effect was accompanied by transcriptome modulation of several pathways including immune response and metabolism in vitro. PMID:26439630

  5. Macrophage Migration Inhibitory Factor in Acute Adipose Tissue Inflammation.

    PubMed

    Kim, Bong-Sung; Rongisch, Robert; Hager, Stephan; Grieb, Gerrit; Nourbakhsh, Mahtab; Rennekampff, Hans-Oliver; Bucala, Richard; Bernhagen, Juergen; Pallua, Norbert

    2015-01-01

    Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine and has been implicated in inflammatory diseases. However, little is known about the regulation of MIF in adipose tissue and its impact on wound healing. The aim of this study was to investigate MIF expression in inflamed adipose and determine its role in inflammatory cell recruitment and wound healing. Adipose tissue was harvested from subcutaneous adipose tissue layers of 24 healthy subjects and from adipose tissue adjacent to acutely inflamed wounds of 21 patients undergoing wound debridement. MIF protein and mRNA expression were measured by ELISA and RT-PCR. Cell-specific MIF expression was visualized by immunohistochemistry. The functional role of MIF in cell recruitment was investigated by a chemotaxis assay and by flow cytometry of labeled macrophages that were injected into Mif-/-and wildtype mice. Wound healing was evaluated by an in vitro scratch assay on human fibroblast monolayers. MIF protein levels of native adipose tissue and supernatants from acutely inflamed wounds were significantly elevated when compared to healthy controls. MIF mRNA expression was increased in acutely inflamed adipose tissue indicating the activation of MIF gene transcription in response to adipose tissue inflammation. MIF is expressed in mature adipocytes and in infiltrated macrophages. Peripheral blood mononuclear cell migration was significantly increased towards supernatants derived from inflamed adipose tissue. This effect was partially abrogated by MIF-neutralizing antibodies. Moreover, when compared to wildtype mice, Mif-/-mice showed reduced infiltration of labeled macrophages into LPS-stimulated epididymal fat pads in vivo. Finally, MIF antibodies partially neutralized the detrimental effect of MIF on fibroblast wound healing. Our results indicate that increased MIF expression and rapid activation of the MIF gene in fat tissue adjacent to acute wound healing disorders may play a role in cell

  6. Macrophage Migration Inhibitory Factor in Acute Adipose Tissue Inflammation

    PubMed Central

    Kim, Bong-Sung; Rongisch, Robert; Hager, Stephan; Grieb, Gerrit; Nourbakhsh, Mahtab; Rennekampff, Hans-Oliver; Bucala, Richard; Bernhagen, Juergen; Pallua, Norbert

    2015-01-01

    Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine and has been implicated in inflammatory diseases. However, little is known about the regulation of MIF in adipose tissue and its impact on wound healing. The aim of this study was to investigate MIF expression in inflamed adipose and determine its role in inflammatory cell recruitment and wound healing. Adipose tissue was harvested from subcutaneous adipose tissue layers of 24 healthy subjects and from adipose tissue adjacent to acutely inflamed wounds of 21 patients undergoing wound debridement. MIF protein and mRNA expression were measured by ELISA and RT-PCR. Cell-specific MIF expression was visualized by immunohistochemistry. The functional role of MIF in cell recruitment was investigated by a chemotaxis assay and by flow cytometry of labeled macrophages that were injected into Mif–/–and wildtype mice. Wound healing was evaluated by an in vitro scratch assay on human fibroblast monolayers. MIF protein levels of native adipose tissue and supernatants from acutely inflamed wounds were significantly elevated when compared to healthy controls. MIF mRNA expression was increased in acutely inflamed adipose tissue indicating the activation of MIF gene transcription in response to adipose tissue inflammation. MIF is expressed in mature adipocytes and in infiltrated macrophages. Peripheral blood mononuclear cell migration was significantly increased towards supernatants derived from inflamed adipose tissue. This effect was partially abrogated by MIF-neutralizing antibodies. Moreover, when compared to wildtype mice, Mif–/–mice showed reduced infiltration of labeled macrophages into LPS-stimulated epididymal fat pads in vivo. Finally, MIF antibodies partially neutralized the detrimental effect of MIF on fibroblast wound healing. Our results indicate that increased MIF expression and rapid activation of the MIF gene in fat tissue adjacent to acute wound healing disorders may play a role in cell

  7. Relation between adiposity and disease risk factors in Mexican American children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excess adiposity is associated with systemic low-grade inflammation, which has been implicated in the pathophysiology of various diseases. The purpose of this study was to examine the relation between measures of adiposity and disease risk factors in Mexican American children participating in a weig...

  8. Regulation of Vascular Smooth Muscle Tone by Adipose-Derived Contracting Factor

    PubMed Central

    Meyer, Matthias R.; Fredette, Natalie C.; Barton, Matthias; Prossnitz, Eric R.

    2013-01-01

    Obesity and arterial hypertension, important risk factors for atherosclerosis and coronary artery disease, are characterized by an increase in vascular tone. While obesity is known to augment vasoconstrictor prostanoid activity in endothelial cells, less is known about factors released from fat tissue surrounding arteries (perivascular adipose). Using lean controls and mice with either monogenic or diet-induced obesity, we set out to determine whether and through which pathways perivascular adipose affects vascular tone. We unexpectedly found that in the aorta of obese mice, perivascular adipose potentiates vascular contractility to serotonin and phenylephrine, indicating activity of a factor generated by perivascular adipose, which we designated “adipose-derived contracting factor” (ADCF). Inhibition of cyclooxygenase (COX) fully prevented ADCF-mediated contractions, whereas COX-1 or COX-2-selective inhibition was only partially effective. By contrast, inhibition of superoxide anions, NO synthase, or endothelin receptors had no effect on ADCF activity. Perivascular adipose as a source of COX-derived ADCF was further confirmed by detecting increased thromboxane A2 formation from perivascular adipose-replete aortae from obese mice. Taken together, this study identifies perivascular adipose as a novel regulator of arterial vasoconstriction through the release of COX-derived ADCF. Excessive ADCF activity in perivascular fat under obese conditions likely contributes to increased vascular tone by antagonizing vasodilation. ADCF may thus propagate obesity-dependent hypertension and the associated increased risk in coronary artery disease, potentially representing a novel therapeutic target. PMID:24244459

  9. Sociodemographic and behavioral factors associated with body adiposity in adolescents☆

    PubMed Central

    Bozza, Rodrigo; de Campos, Wagner; Bacil, Eliane Denise Araújo; Barbosa, Valter Cordeiro; Hardt, Jennifer Morozini; da Silva, Priscila Marques

    2014-01-01

    Objective: To identify sociodemographic and behavioral factors associated with abdominal obesity (AO) and high body fat percentage (high BF%) in adolescents from the city of Curitiba-PR. Methods: The sample consisted of 1,732 adolescents, aged 11 to 19 years, of both genders. The triceps and calf skinfolds were measured for the calculation of BF%, as well as the waist circumference. A questionnaire was completed by adolescents with the following type of residence, socioeconomic status, time spent watching TV on weekdays and weekends, and daily energy expenditure. Logistic regression was used to measure the association of sociodemographic and behavioral variables with abdominal obesity and high BF%. Results: Female were more likely to have high BF% (OR: 2.73; 95% CI: 2.32-3.33), but were less likely to have abdominal obesity (OR: 0.58; 95% CI: 0.44-0.78). Older individuals (1619 have high BF% (OR: 1.36; 95% CI: 1.02-1.83). The older age groups (13-15 years and 16-19 years) had an inverse association with abdominal obesity. Regarding daily energy expenditure, the less active individuals were more likely to present high BF% (OR: 1.36; 95% CI: 1.07-1.71) and obesity (OR: 1.40; 95% CI: 1.09-1.80). Conclusions: Interventions to increase physical activity levels in young people should be designed in order to combat excess body fat should designed to combat excess adiposity. PMID:25479856

  10. Granulocyte/Macrophage Colony-stimulating Factor-dependent Dendritic Cells Restrain Lean Adipose Tissue Expansion.

    PubMed

    Pamir, Nathalie; Liu, Ning-Chun; Irwin, Angela; Becker, Lev; Peng, YuFeng; Ronsein, Graziella E; Bornfeldt, Karin E; Duffield, Jeremy S; Heinecke, Jay W

    2015-06-01

    The physiological roles of macrophages and dendritic cells (DCs) in lean white adipose tissue homeostasis have received little attention. Because DCs are generated from bone marrow progenitors in the presence of granulocyte/macrophage colony-stimulating factor (GM-CSF), we used GM-CSF-deficient (Csf2(-/-)) mice fed a low fat diet to test the hypothesis that adipose tissue DCs regulate the development of adipose tissue. At 4 weeks of age, Csf2(-/-) mice had 75% fewer CD45(+)Cd11b(+)Cd11c(+)MHCII(+) F4/80(-) DCs in white adipose tissue than did wild-type controls. Furthermore, the Csf2(-/-) mice showed a 30% increase in whole body adiposity, which persisted to adulthood. Adipocytes from Csf2(-/-) mice were 50% larger by volume and contained higher levels of adipogenesis gene transcripts, indicating enhanced adipocyte differentiation. In contrast, adipogenesis/adipocyte lipid accumulation was inhibited when preadipocytes were co-cultured with CD45(+)Cd11b(+)Cd11c(+)MHCII(+)F4/80(-) DCs. Medium conditioned by DCs, but not by macrophages, also inhibited adipocyte lipid accumulation. Proteomic analysis revealed that matrix metalloproteinase 12 and fibronectin 1 were greatly enriched in the medium conditioned by DCs compared with that conditioned by macrophages. Silencing fibronectin or genetic deletion of matrix metalloproteinase 12 in DCs partially reversed the inhibition of adipocyte lipid accumulation. Our observations indicate that DCs residing in adipose tissue play a critical role in suppressing normal adipose tissue expansion. PMID:25931125

  11. Role of adipose secreted factors and kisspeptin in the metabolic control of gonadotropin secretion and puberty

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Factors secreted by adipose tissue continue to be discovered. Evidence indicates a strong link between neural influences and adipocyte expression and secretion of a wide array of cytokines, neurotrophic factors, growth factors, binding proteins, and neuropeptides. These “adipokines” are linked to im...

  12. Switch from Stress Response to Homeobox Transcription Factors in Adipose Tissue After Profound Fat Loss

    PubMed Central

    Stavrum, Anne-Kristin; Stansberg, Christine; Holdhus, Rita; Hoang, Tuyen; Veum, Vivian L.; Christensen, Bjørn Jostein; Våge, Villy; Sagen, Jørn V.; Steen, Vidar M.; Mellgren, Gunnar

    2010-01-01

    Background In obesity, impaired adipose tissue function may promote secondary disease through ectopic lipid accumulation and excess release of adipokines, resulting in systemic low-grade inflammation, insulin resistance and organ dysfunction. However, several of the genes regulating adipose tissue function in obesity are yet to be identified. Methodology/Principal Findings In order to identify novel candidate genes that may regulate adipose tissue function, we analyzed global gene expression in abdominal subcutaneous adipose tissue before and one year after bariatric surgery (biliopancreatic diversion with duodenal switch, BPD/DS) (n = 16). Adipose tissue from lean healthy individuals was also analyzed (n = 13). Two different microarray platforms (AB 1700 and Illumina) were used to measure the differential gene expression, and the results were further validated by qPCR. Surgery reduced BMI from 53.3 to 33.1 kg/m2. The majority of differentially expressed genes were down-regulated after profound fat loss, including transcription factors involved in stress response, inflammation, and immune cell function (e.g., FOS, JUN, ETS, C/EBPB, C/EBPD). Interestingly, a distinct set of genes was up-regulated after fat loss, including homeobox transcription factors (IRX3, IRX5, HOXA5, HOXA9, HOXB5, HOXC6, EMX2, PRRX1) and extracellular matrix structural proteins (COL1A1, COL1A2, COL3A1, COL5A1, COL6A3). Conclusions/Significance The data demonstrate a marked switch of transcription factors in adipose tissue after profound fat loss, providing new molecular insight into a dichotomy between stress response and metabolically favorable tissue development. Our findings implicate homeobox transcription factors as important regulators of adipose tissue function. PMID:20543949

  13. Age- and sex-specific causal effects of adiposity on cardiovascular risk factors.

    PubMed

    Fall, Tove; Hägg, Sara; Ploner, Alexander; Mägi, Reedik; Fischer, Krista; Draisma, Harmen H M; Sarin, Antti-Pekka; Benyamin, Beben; Ladenvall, Claes; Åkerlund, Mikael; Kals, Mart; Esko, Tõnu; Nelson, Christopher P; Kaakinen, Marika; Huikari, Ville; Mangino, Massimo; Meirhaeghe, Aline; Kristiansson, Kati; Nuotio, Marja-Liisa; Kobl, Michael; Grallert, Harald; Dehghan, Abbas; Kuningas, Maris; de Vries, Paul S; de Bruijn, Renée F A G; Willems, Sara M; Heikkilä, Kauko; Silventoinen, Karri; Pietiläinen, Kirsi H; Legry, Vanessa; Giedraitis, Vilmantas; Goumidi, Louisa; Syvänen, Ann-Christine; Strauch, Konstantin; Koenig, Wolfgang; Lichtner, Peter; Herder, Christian; Palotie, Aarno; Menni, Cristina; Uitterlinden, André G; Kuulasmaa, Kari; Havulinna, Aki S; Moreno, Luis A; Gonzalez-Gross, Marcela; Evans, Alun; Tregouet, David-Alexandre; Yarnell, John W G; Virtamo, Jarmo; Ferrières, Jean; Veronesi, Giovanni; Perola, Markus; Arveiler, Dominique; Brambilla, Paolo; Lind, Lars; Kaprio, Jaakko; Hofman, Albert; Stricker, Bruno H; van Duijn, Cornelia M; Ikram, M Arfan; Franco, Oscar H; Cottel, Dominique; Dallongeville, Jean; Hall, Alistair S; Jula, Antti; Tobin, Martin D; Penninx, Brenda W; Peters, Annette; Gieger, Christian; Samani, Nilesh J; Montgomery, Grant W; Whitfield, John B; Martin, Nicholas G; Groop, Leif; Spector, Tim D; Magnusson, Patrik K; Amouyel, Philippe; Boomsma, Dorret I; Nilsson, Peter M; Järvelin, Marjo-Riitta; Lyssenko, Valeriya; Metspalu, Andres; Strachan, David P; Salomaa, Veikko; Ripatti, Samuli; Pedersen, Nancy L; Prokopenko, Inga; McCarthy, Mark I; Ingelsson, Erik

    2015-05-01

    Observational studies have reported different effects of adiposity on cardiovascular risk factors across age and sex. Since cardiovascular risk factors are enriched in obese individuals, it has not been easy to dissect the effects of adiposity from those of other risk factors. We used a Mendelian randomization approach, applying a set of 32 genetic markers to estimate the causal effect of adiposity on blood pressure, glycemic indices, circulating lipid levels, and markers of inflammation and liver disease in up to 67,553 individuals. All analyses were stratified by age (cutoff 55 years of age) and sex. The genetic score was associated with BMI in both nonstratified analysis (P = 2.8 × 10(-107)) and stratified analyses (all P < 3.3 × 10(-30)). We found evidence of a causal effect of adiposity on blood pressure, fasting levels of insulin, C-reactive protein, interleukin-6, HDL cholesterol, and triglycerides in a nonstratified analysis and in the <55-year stratum. Further, we found evidence of a smaller causal effect on total cholesterol (P for difference = 0.015) in the ≥55-year stratum than in the <55-year stratum, a finding that could be explained by biology, survival bias, or differential medication. In conclusion, this study extends previous knowledge of the effects of adiposity by providing sex- and age-specific causal estimates on cardiovascular risk factors. PMID:25712996

  14. Age- and Sex-Specific Causal Effects of Adiposity on Cardiovascular Risk Factors

    PubMed Central

    Fall, Tove; Hägg, Sara; Ploner, Alexander; Mägi, Reedik; Fischer, Krista; Draisma, Harmen H.M.; Sarin, Antti-Pekka; Benyamin, Beben; Ladenvall, Claes; Åkerlund, Mikael; Kals, Mart; Esko, Tõnu; Nelson, Christopher P.; Kaakinen, Marika; Huikari, Ville; Mangino, Massimo; Meirhaeghe, Aline; Kristiansson, Kati; Nuotio, Marja-Liisa; Kobl, Michael; Grallert, Harald; Dehghan, Abbas; Kuningas, Maris; de Vries, Paul S.; de Bruijn, Renée F.A.G.; Willems, Sara M.; Heikkilä, Kauko; Silventoinen, Karri; Pietiläinen, Kirsi H.; Legry, Vanessa; Giedraitis, Vilmantas; Goumidi, Louisa; Syvänen, Ann-Christine; Strauch, Konstantin; Koenig, Wolfgang; Lichtner, Peter; Herder, Christian; Palotie, Aarno; Menni, Cristina; Uitterlinden, André G.; Kuulasmaa, Kari; Havulinna, Aki S.; Moreno, Luis A.; Gonzalez-Gross, Marcela; Evans, Alun; Tregouet, David-Alexandre; Yarnell, John W.G.; Virtamo, Jarmo; Ferrières, Jean; Veronesi, Giovanni; Perola, Markus; Arveiler, Dominique; Brambilla, Paolo; Lind, Lars; Kaprio, Jaakko; Hofman, Albert; Stricker, Bruno H.; van Duijn, Cornelia M.; Ikram, M. Arfan; Franco, Oscar H.; Cottel, Dominique; Dallongeville, Jean; Hall, Alistair S.; Jula, Antti; Tobin, Martin D.; Penninx, Brenda W.; Peters, Annette; Gieger, Christian; Samani, Nilesh J.; Montgomery, Grant W.; Whitfield, John B.; Martin, Nicholas G.; Groop, Leif; Spector, Tim D.; Magnusson, Patrik K.; Amouyel, Philippe; Boomsma, Dorret I.; Nilsson, Peter M.; Järvelin, Marjo-Riitta; Lyssenko, Valeriya; Metspalu, Andres; Strachan, David P.; Salomaa, Veikko; Ripatti, Samuli; Pedersen, Nancy L.; Prokopenko, Inga; McCarthy, Mark I.

    2015-01-01

    Observational studies have reported different effects of adiposity on cardiovascular risk factors across age and sex. Since cardiovascular risk factors are enriched in obese individuals, it has not been easy to dissect the effects of adiposity from those of other risk factors. We used a Mendelian randomization approach, applying a set of 32 genetic markers to estimate the causal effect of adiposity on blood pressure, glycemic indices, circulating lipid levels, and markers of inflammation and liver disease in up to 67,553 individuals. All analyses were stratified by age (cutoff 55 years of age) and sex. The genetic score was associated with BMI in both nonstratified analysis (P = 2.8 × 10−107) and stratified analyses (all P < 3.3 × 10−30). We found evidence of a causal effect of adiposity on blood pressure, fasting levels of insulin, C-reactive protein, interleukin-6, HDL cholesterol, and triglycerides in a nonstratified analysis and in the <55-year stratum. Further, we found evidence of a smaller causal effect on total cholesterol (P for difference = 0.015) in the ≥55-year stratum than in the <55-year stratum, a finding that could be explained by biology, survival bias, or differential medication. In conclusion, this study extends previous knowledge of the effects of adiposity by providing sex- and age-specific causal estimates on cardiovascular risk factors. PMID:25712996

  15. Relationship of Adipocyte Size with Adiposity and Metabolic Risk Factors in Asian Indians

    PubMed Central

    Meena, Ved Prakash; Seenu, V.; Sharma, M. C.; Mallick, Saumya Ranjan; Bhalla, Ashu Seith; Gupta, Nandita; Mohan, Anant; Guleria, Randeep; Pandey, Ravindra M.; Luthra, Kalpana; Vikram, Naval K.

    2014-01-01

    Background Enlargement of adipocyte is associated with their dysfunction and alterations in metabolic functions. Objectives We evaluated the association of adipocyte size of subcutaneous and omental adipose tissue with body composition and cardiovascular risk factors in Asian Indians. Methodology Eighty (40 males and 40 females) non-diabetic adult subjects undergoing elective abdominal surgery were included. Pre-surgery evaluation included anthropometric measurements, % body fat by bioimpedance, abdominal fat area at L2–3 level (computed tomography) and biochemical investigations (fasting blood glucose and insulin, lipids and hsCRP). During surgery, about 5 grams each of omental and subcutaneous adipose tissue was obtained for adipocyte size determination. Results Females had higher BMI, % body fat, skinfold thickness, total and subcutaneous abdominal fat area as compared to males. Overweight was present in 42.5% and 67.5%, and abdominal obesity in 5% and 52.5% males and females, respectively. Subcutaneous adipocyte size was significantly higher than omental adipocyte size. Omental adipocyte size correlated more strongly than subcutaneous adipocyte size with measures of adiposity (BMI, waist circumference, %BF), total and subcutaneous abdominal fat area and biochemical measures (fasting glucose, total cholesterol, triglycerides and HOMA-IR), the correlations being stronger in females. The correlation of adipocyte size with metabolic parameters was attenuated after adjusting for measures of adiposity. Conclusion Omental adipocyte size, though smaller than the subcutaneous adipocyte size, was more closely related to measures of adiposity and metabolic parameters. However, the relationship was not independent of measures of adiposity. PMID:25251402

  16. Early B-cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue

    PubMed Central

    Gao, Hui; Mejhert, Niklas; Fretz, Jackie A.; Arner, Erik; Lorente-Cebrián, Silvia; Ehrlund, Anna; Dahlman-Wright, Karin; Gong, Xiaowei; Strömblad, Staffan; Douagi, Iyadh; Laurencikiene, Jurga; Dahlman, Ingrid; Daub, Carsten O.; Rydén, Mikael; Horowitz, Mark C.; Arner, Peter

    2014-01-01

    Summary White adipose tissue (WAT) morphology characterized by hypertrophy (i.e. fewer but larger adipocytes) associates with increased adipose inflammation, lipolysis, insulin resistance and risk of diabetes. However, the causal relationships and the mechanisms controlling WAT morphology are unclear. Herein, we identified EBF1 as an adipocyte-expressed transcription factor with decreased expression/activity in WAT hypertrophy. In human adipocytes, the regulatory targets of EBF1 were enriched for genes controlling lipolysis and adipocyte morphology/differentiation and in both humans and murine models, reduced EBF1 levels associated with increased lipolysis and adipose hypertrophy. Although EBF1 did not affect adipose inflammation, TNFα reduced EBF1 gene expression. High fat diet-intervention in Ebf1+/− mice resulted in more pronounced WAT hypertrophy and attenuated insulin sensitivity compared with wild-type littermate controls. We conclude that EBF1 is an important regulator of adipose morphology and fat cell lipolysis and may constitute a link between WAT inflammation, altered lipid metabolism, adipose hypertrophy and insulin resistance. PMID:24856929

  17. The impact of adipose tissue-derived factors on the hypothalamic-pituitary-gonadal (HPG) axis.

    PubMed

    Tsatsanis, Christos; Dermitzaki, Eirini; Avgoustinaki, Pavlina; Malliaraki, Niki; Mytaras, Vasilis; Margioris, Andrew N

    2015-01-01

    Adipose tissue produces factors, including adipokines, cytokines and chemokines which, when released, systemically exert endocrine effects on multiple tissues thereby affecting their physiology. Adipokines also affect the hypothalamic-pituitary-gonadal (HPG) axis both centrally, at the hypothalamic-pituitary level, and peripherally acting on the gonads themselves. Among the adipokines, leptin, adiponectin, resistin, chemerin and the peptide kisspeptin have pleiotropic actions on the HPG axis affecting male and female fertility. Furthermore, adipokines and adipose tissue-produced factors readily affect the immune system resulting in inflammation, which in turn impact the HPG axis, thus evidencing a link between metabolic inflammation and fertility. In this review we provide an overview of the existing extensive bibliography on the crosstalk between adipose tissue-derived factors and the HPG axis, with particular focus on the impact of obesity and the metabolic syndrome on gonadal function and fertility. PMID:26859602

  18. Testing the fetal overnutrition hypothesis; the relationship of maternal and paternal adiposity to adiposity, insulin resistance and cardiovascular risk factors in Indian children

    PubMed Central

    Veena, Sargoor R; Krishnaveni, Ghattu V; Karat, Samuel C; Osmond, Clive; Fall, Caroline HD

    2012-01-01

    Objective We aimed to test the fetal overnutrition hypothesis by comparing the associations of maternal and paternal adiposity (sum of skinfolds) with adiposity and cardiovascular risk factors in children. Design Children from a prospective birth cohort had anthropometry, fat percentage (bio-impedance), plasma glucose, insulin and lipid concentrations and blood pressure measured at 9·5 years of age. Detailed anthropometric measurements were recorded for mothers (at 30 ± 2 weeks’ gestation) and fathers (5 years following the index pregnancy). Setting Holdsworth Memorial Hospital, Mysore, India. Subjects Children (n 504), born to mothers with normal glucose tolerance during pregnancy. Results Twenty-eight per cent of mothers and 38 % of fathers were overweight/obese (BMI ≥ 25·0 kg/m2), but only 4 % of the children were overweight/obese (WHO age- and sex-specific BMI ≥ 18·2 kg/m2). The children’s adiposity (BMI, sum of skinfolds, fat percentage and waist circumference), fasting insulin concentration and insulin resistance increased with increasing maternal and paternal sum of skinfolds adjusted for the child’s sex, age and socio-economic status. Maternal and paternal effects were similar. The associations with fasting insulin and insulin resistance were attenuated after adjusting for the child’s current adiposity. Conclusions In this population, both maternal and paternal adiposity equally predict adiposity and insulin resistance in the children. This suggests that shared family environment and lifestyle, or genetic/epigenetic factors, influence child adiposity. Our findings do not support the hypothesis that there is an intrauterine overnutrition effect of maternal adiposity in non-diabetic pregnancies, although we cannot rule out such an effect in cases of extreme maternal obesity, which is rare in our population. PMID:22895107

  19. Granulocyte/Macrophage Colony-stimulating Factor-dependent Dendritic Cells Restrain Lean Adipose Tissue Expansion*

    PubMed Central

    Pamir, Nathalie; Liu, Ning-Chun; Irwin, Angela; Becker, Lev; Peng, YuFeng; Ronsein, Graziella E.; Bornfeldt, Karin E.; Duffield, Jeremy S.; Heinecke, Jay W.

    2015-01-01

    The physiological roles of macrophages and dendritic cells (DCs) in lean white adipose tissue homeostasis have received little attention. Because DCs are generated from bone marrow progenitors in the presence of granulocyte/macrophage colony-stimulating factor (GM-CSF), we used GM-CSF-deficient (Csf2−/−) mice fed a low fat diet to test the hypothesis that adipose tissue DCs regulate the development of adipose tissue. At 4 weeks of age, Csf2−/− mice had 75% fewer CD45+Cd11b+Cd11c+MHCII+ F4/80− DCs in white adipose tissue than did wild-type controls. Furthermore, the Csf2−/− mice showed a 30% increase in whole body adiposity, which persisted to adulthood. Adipocytes from Csf2−/− mice were 50% larger by volume and contained higher levels of adipogenesis gene transcripts, indicating enhanced adipocyte differentiation. In contrast, adipogenesis/adipocyte lipid accumulation was inhibited when preadipocytes were co-cultured with CD45+Cd11b+Cd11c+MHCII+F4/80− DCs. Medium conditioned by DCs, but not by macrophages, also inhibited adipocyte lipid accumulation. Proteomic analysis revealed that matrix metalloproteinase 12 and fibronectin 1 were greatly enriched in the medium conditioned by DCs compared with that conditioned by macrophages. Silencing fibronectin or genetic deletion of matrix metalloproteinase 12 in DCs partially reversed the inhibition of adipocyte lipid accumulation. Our observations indicate that DCs residing in adipose tissue play a critical role in suppressing normal adipose tissue expansion. PMID:25931125

  20. Polymerase I and transcript release factor (PTRF) regulates adipocyte differentiation and determines adipose tissue expandability

    PubMed Central

    Perez-Diaz, Sergio; Johnson, Lance A.; DeKroon, Robert M.; Moreno-Navarrete, Jose M.; Alzate, Oscar; Fernandez-Real, Jose M.; Maeda, Nobuyo; Arbones-Mainar, Jose M.

    2014-01-01

    Impaired adipogenesis renders an adipose tissue unable to expand, leading to lipotoxicity and conditions such as diabetes and cardiovascular disease. While factors important for adipogenesis have been studied extensively, those that set the limits of adipose tissue expansion remain undetermined. Feeding a Western-type diet to apolipoprotein E2 knock-in mice, a model of metabolic syndrome, produced 3 groups of equally obese mice: mice with normal glucose tolerance, hyperinsulinemic yet glucose-tolerant mice, and prediabetic mice with impaired glucose tolerance and reduced circulating insulin. Using proteomics, we compared subcutaneous adipose tissues from mice in these groups and found that the expression of PTRF (polymerase I and transcript release factor) associated selectively with their glucose tolerance status. Lentiviral and pharmacologically overexpressed PTRF, whose function is critical for caveola formation, compromised adipocyte differentiation of cultured 3T3-L1cells. In human adipose tissue, PTRF mRNA levels positively correlated with markers of lipolysis and cellular senescence. Furthermore, a negative relationship between telomere length and PTRF mRNA levels was observed in human subcutaneous fat. PTRF is associated with limited adipose tissue expansion underpinning the key role of caveolae in adipocyte regulation. Furthermore, PTRF may be a suitable adipocyte marker for predicting pathological obesity and inform clinical management.—Perez-Diaz, S., Johnson, L. A., DeKroon, R. M., Moreno-Navarrete, J. M., Alzate, O., Fernandez-Real, J. M., Maeda, N., Arbones-Mainar, J. M. Polymerase I and transcript release factor (PTRF) regulates adipocyte differentiation and determines adipose tissue expandability. PMID:24812087

  1. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells

    SciTech Connect

    Kakudo, Natsuko . E-mail: kakudon@takii.kmu.ac.jp; Shimotsuma, Ayuko; Kusumoto, Kenji

    2007-07-27

    Adipose-derived stem cells (ASCs) have demonstrated a capacity for differentiating into a variety of lineages, including bone, cartilage, or fat, depending on the inducing stimuli and specific growth and factors. It is acknowledged that fibroblast growth factor-2 (FGF-2) promotes chondrogenic and inhibits osteogenic differentiation of ASCs, but thorough investigations of its effects on adipogenic differentiation are lacking. In this study, we demonstrate at the cellular and molecular levels the effect of FGF-2 on adipogenic differentiation of ASCs, as induced by an adipogenic hormonal cocktail consisting of 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and indomethacin. FGF-2 significantly enhances the adipogenic differentiation of human ASCs. Furthermore, in cultures receiving FGF-2 before adipogenic induction, mRNA expression of peroxisome proliferator-activated receptor {gamma}2 (PPAR{gamma}2), a key transcription factor in adipogenesis, was upregulated. The results of FGF-2 supplementation suggest the potential applications of FGF-2 and ASCs in adipose tissue regeneration.

  2. Factors Predicting Adhesion between Renal Capsule and Perinephric Adipose Tissue in Partial Nephrectomy.

    PubMed

    Kobayashi, Yasuyuki; Kurahashi, Hiroaki; Matsumoto, Yuko; Wada, Koichiro; Sasaki, Katsumi; Araki, Motoo; Ebara, Shin; Watanabe, Toyohiko; Nasu, Yasutomo

    2016-04-01

    In minimally invasive partial nephrectomy (MIPN), it is important to preoperatively predict the degree of difficulty of tumor resection. When severe adhesions occur between the renal capsule and perinephric adipose tissue, detachment can be difficult. Preoperative prediction of adhesion is thought to be useful in the selection of surgical procedure. Subjects were 63 patients of a single surgeon who had received MIPN between April 2008 and August 2013 at Okayama University Hospital. Of these patients, this study followed 47 in whom the presence or absence of adhesions between the renal capsule and perinephric adipose tissue was confirmed using intraoperative videos. Data collected included: sex, BMI, CT finding (presence of fi broids in perinephric adipose tissue), comorbidities and lifestyle. Adhesion was observed in 7 patients (14.9%). The mean operative time was 291.6 min in the adhesion group, and 226.3 min in the group without. The increased time in the adhesions group was significant (p<0.05). Predictive factors were a positive CT finding for fibroid structure and comorbidity of hypertension (p<0.05). In MIPN, difficulty of surgery can be affected by the presence of adhesion of the perinephric adipose tissue. Predicting such adhesion from preoperative CT is thus important. PMID:27094831

  3. Hypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction.

    PubMed

    Pfeiffer, Susanne; Krüger, Jacqueline; Maierhofer, Anna; Böttcher, Yvonne; Klöting, Nora; El Hajj, Nady; Schleinitz, Dorit; Schön, Michael R; Dietrich, Arne; Fasshauer, Mathias; Lohmann, Tobias; Dreßler, Miriam; Stumvoll, Michael; Haaf, Thomas; Blüher, Matthias; Kovacs, Peter

    2016-01-01

    Recently, a genome-wide analysis identified DNA methylation of the HIF3A (hypoxia-inducible factor 3A) as strongest correlate of BMI. Here we tested the hypothesis that HIF3A mRNA expression and CpG-sites methylation in adipose tissue (AT) and genetic variants in HIF3A are related to parameters of AT distribution and function. In paired samples of subcutaneous AT (SAT) and visceral AT (VAT) from 603 individuals, we measured HIF3A mRNA expression and analyzed its correlation with obesity and related traits. In subgroups of individuals, we investigated the effects on HIF3A genetic variants on its AT expression (N = 603) and methylation of CpG-sites (N = 87). HIF3A expression was significantly higher in SAT compared to VAT and correlated with obesity and parameters of AT dysfunction (including CRP and leucocytes count). HIF3A methylation at cg22891070 was significantly higher in VAT compared to SAT and correlated with BMI, abdominal SAT and VAT area. Rs8102595 showed a nominal significant association with AT HIF3A methylation levels as well as with obesity and fat distribution. HIF3A expression and methylation in AT are fat depot specific, related to obesity and AT dysfunction. Our data support the hypothesis that HIF pathways may play an important role in the development of AT dysfunction in obesity. PMID:27346320

  4. Hypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction

    PubMed Central

    Pfeiffer, Susanne; Krüger, Jacqueline; Maierhofer, Anna; Böttcher, Yvonne; Klöting, Nora; El Hajj, Nady; Schleinitz, Dorit; Schön, Michael R.; Dietrich, Arne; Fasshauer, Mathias; Lohmann, Tobias; Dreßler, Miriam; Stumvoll, Michael; Haaf, Thomas; Blüher, Matthias; Kovacs, Peter

    2016-01-01

    Recently, a genome-wide analysis identified DNA methylation of the HIF3A (hypoxia-inducible factor 3A) as strongest correlate of BMI. Here we tested the hypothesis that HIF3A mRNA expression and CpG-sites methylation in adipose tissue (AT) and genetic variants in HIF3A are related to parameters of AT distribution and function. In paired samples of subcutaneous AT (SAT) and visceral AT (VAT) from 603 individuals, we measured HIF3A mRNA expression and analyzed its correlation with obesity and related traits. In subgroups of individuals, we investigated the effects on HIF3A genetic variants on its AT expression (N = 603) and methylation of CpG-sites (N = 87). HIF3A expression was significantly higher in SAT compared to VAT and correlated with obesity and parameters of AT dysfunction (including CRP and leucocytes count). HIF3A methylation at cg22891070 was significantly higher in VAT compared to SAT and correlated with BMI, abdominal SAT and VAT area. Rs8102595 showed a nominal significant association with AT HIF3A methylation levels as well as with obesity and fat distribution. HIF3A expression and methylation in AT are fat depot specific, related to obesity and AT dysfunction. Our data support the hypothesis that HIF pathways may play an important role in the development of AT dysfunction in obesity. PMID:27346320

  5. Orthogonal factor coefficient development of subcutaneous adipose tissue topography (SAT-Top) in girls and boys.

    PubMed

    Tafeit, E; Möller, R; Sudi, K; Horejsi, R; Berg, A; Reibnegger, G

    2001-05-01

    The new optical device Lipometer allows noninvasive, quick, and safe determination of the thickness of subcutaneous adipose tissue (SAT) layers (in mm) at any site of the human body. The specification of 15 evenly distributed body sites enables the precise measurement of subcutaneous body fat distribution, so-called subcutaneous adipose tissue topography (SAT-Top). SAT-Top was measured in 980 children aged 7-19 years. In this paper we describe the degree to which SAT-Top body sites are intercorrelated. We consider whether a meaningful reduction of data is possible using factor analysis, which factors can be extracted, and how SAT-Top data of children can be added to a factor value plot, depicting the essential results of age-dependent subcutaneous fat development. SAT layers situated on the same body area provide correlation coefficients up to +r = 0.91. Two factors are extracted: factor 1, containing all upper body sites (from neck to hip); and factor 2, consisting of all leg body sites. When all 980 children are divided into three age groups in a factor value plot, the first age group (7-11 years) shows almost equal SAT-Top development in boys and girls. Afterwards, for the consecutive age groups 2 (11-15 years) and 3 (15-19 years), the age-dependent subcutaneous fat development of boys and girls progresses into nearly orthogonal directions. PMID:11309750

  6. Adipose Expression of Tumor Necrosis Factor-α: Direct Role in Obesity-Linked Insulin Resistance

    NASA Astrophysics Data System (ADS)

    Hotamisligil, Gokhan S.; Shargill, Narinder S.; Spiegelman, Bruce M.

    1993-01-01

    Tumor necrosis factor-α (TNF-α) has been shown to have certain catabolic effects on fat cells and whole animals. An induction of TNF-α messenger RNA expression was observed in adipose tissue from four different rodent models of obesity and diabetes. TNF-α protein was also elevated locally and systemically. Neutralization of TNF-α in obese fa/fa rats caused a significant increase in the peripheral uptake of glucose in response to insulin. These results indicate a role for TNF-α in obesity and particularly in the insulin resistance and diabetes that often accompany obesity.

  7. Obesity, Central Adiposity and Cardiometabolic Risk Factors in Children and Adolescents: a Family-based Study

    PubMed Central

    Cerjak, Diana; Kent, Jack W.; James, Roland; Blangero, John

    2014-01-01

    Objective Assess genetic and phenotypic correlations of obesity-related cardiometabolic risk factors in a family-based cohort. Methods Anthropometric, body composition and biochemical measurements were collected on 999 members of 111 extended Midwestern US families of Northern European origin. Forward stepwise regression was used to identify which of Tanner stage, sex, Tanner stage by sex, BFMI, body fat percent (BF%) (DXA), VF/SubQF (CT scan for adults or MRI for children), VF, SubQF, BMI% and waist to height ratio (WHtR) most influence HOMA, HDL-c, TG, and LDL-c. Results In children and adolescents, subcutaneous adiposity was the most significant covariate for HOMA (p<0.001) and TG (p=0.001) and BMI percentile for HDL-c (p=0.002) and LDL-c (p<0.001). In adults, waist-height ratio (p<0.001), visceral/subcutaneous fat ratio (p=0.001) and BMI (p=0.02) were most significant for HOMA; visceral fat (p<0.001) and BMI (p=0.02) for TG and visceral fat for LDL-c (p=0.001). Conclusion Subcutaneous adiposity at the waist is a more significant predictor of MetS traits in children and adolescents than it is in adults. PMID:24677702

  8. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    SciTech Connect

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.; Mantyh, P.W. )

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific binding of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.

  9. Subcutaneous adipose tissue in relation to subclinical atherosclerosis and cardiometabolic risk factors in midlife women1234

    PubMed Central

    Janssen, Imke; Khan, Unab I; Thurston, Rebecca; Barinas-Mitchell, Emma; El Khoudary, Samar R; Everson-Rose, Susan A; Kazlauskaite, Rasa; Matthews, Karen A; Sutton-Tyrrell, Kim

    2011-01-01

    Background: Limited data suggest that the effects of abdominal subcutaneous adipose tissue (SAT) on cardiovascular disease risk may depend on accompanying amounts of abdominal visceral adipose tissue (VAT). Objective: The objective was to examine whether abdominal VAT area modifies the effects of abdominal SAT area on subclinical atherosclerosis and cardiometabolic risk factors in both whites and African Americans. Design: Computed tomographic measures of abdominal SAT and VAT were examined in relation to carotid intima-media thickness (cIMT) and cardiometabolic risk factor levels in 500 African American and white women in midlife. A VAT × SAT interaction term was evaluated. Results: The mean (±SD) age of the sample was 51.0 ± 2.9 y, and 37% were African American. Higher amounts of SAT and VAT were associated with higher cIMT, blood pressure, homeostasis model assessment insulin resistance index (HOMA-IR), and concentrations of glucose, triglycerides, and insulin and with lower concentrations of HDL cholesterol. However, in African Americans, but not in whites, higher amounts of VAT significantly attenuated associations between higher amounts of SAT and higher insulin concentrations (P for interaction = 0.032) and HOMA-IR (P for interaction = 0.011) and reversed associations with cIMT (P for interaction = 0.005) and glucose (P for interaction = 0.044). Conclusions: These results suggest that in midlife African American but not white women, adverse associations between abdominal SAT and cardiometabolic risk factors are attenuated and, in the case of subclinical atherosclerosis, are reversed as VAT amounts increase. Given that African American women suffer disproportionately from obesity and cardiovascular disease, further research into the role of this effect modification on obesity-associated vascular disease in African American women is warranted. PMID:21346089

  10. Strategies for reducing body fat mass: effects of liposuction and exercise on cardiovascular risk factors and adiposity

    PubMed Central

    Benatti, Fabiana Braga; Lira, Fábio Santos; Oyama, Lila Missae; do Nascimento, Cláudia Maria da Penha Oller; Lancha, Antonio Herbert

    2011-01-01

    Liposuction is the most popular aesthetic surgery performed in Brazil and worldwide. Evidence showing that adipose tissue is a metabolically active tissue has led to the suggestion that liposuction could be a viable method for improving metabolic profile through the immediate loss of adipose tissue. However, the immediate liposuction-induced increase in the proportion of visceral to subcutaneous adipose tissue could be detrimental to metabolism, because a high proportion of visceral to subcutaneous adipose tissue is associated with risk factors for cardiovascular disease. The results of studies investigating the effects of liposuction on the metabolic profile are inconsistent, however, with most studies reporting either no change or improvements in one or more cardiovascular risk factors. In addition, animal studies have demonstrated a compensatory growth of intact adipose tissue in response to lipectomy, although studies with humans have reported inconsistent results. Exercise training improves insulin sensitivity, inflammatory balance, lipid oxidation, and adipose tissue distribution; increases or preserves the fat-free mass; and increases total energy expenditure. Thus, liposuction and exercise appear to directly affect metabolism in similar ways, which suggests a possible interaction between these two strategies. To our knowledge, no studies have reported the associated effects of liposuction and exercise in humans. Nonetheless, one could suggest that exercise training associated with liposuction could attenuate or even block the possible compensatory fat deposition in intact depots or regrowth of the fat mass and exert an additive or even a synergistic effect to liposuction on improving insulin sensitivity and the inflammatory balance, resulting in an improvement of cardiovascular risk factors. Consequently, one could suggest that liposuction and exercise appear to be safe and effective strategies for either the treatment of metabolic disorders or aesthetic

  11. Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance.

    PubMed

    Elias, Ivet; Franckhauser, Sylvie; Ferré, Tura; Vilà, Laia; Tafuro, Sabrina; Muñoz, Sergio; Roca, Carles; Ramos, David; Pujol, Anna; Riu, Efren; Ruberte, Jesús; Bosch, Fatima

    2012-07-01

    During the expansion of fat mass in obesity, vascularization of adipose tissue is insufficient to maintain tissue normoxia. Local hypoxia develops and may result in altered adipokine expression, proinflammatory macrophage recruitment, and insulin resistance. We investigated whether an increase in adipose tissue angiogenesis could protect against obesity-induced hypoxia and, consequently, insulin resistance. Transgenic mice overexpressing vascular endothelial growth factor (VEGF) in brown adipose tissue (BAT) and white adipose tissue (WAT) were generated. Vessel formation, metabolism, and inflammation were studied in VEGF transgenic mice and wild-type littermates fed chow or a high-fat diet. Overexpression of VEGF resulted in increased blood vessel number and size in both WAT and BAT and protection against high-fat diet-induced hypoxia and obesity, with no differences in food intake. This was associated with increased thermogenesis and energy expenditure. Moreover, whole-body insulin sensitivity and glucose tolerance were improved. Transgenic mice presented increased macrophage infiltration, with a higher number of M2 anti-inflammatory and fewer M1 proinflammatory macrophages than wild-type littermates, thus maintaining an anti-inflammatory milieu that could avoid insulin resistance. These studies suggest that overexpression of VEGF in adipose tissue is a potential therapeutic strategy for the prevention of obesity and insulin resistance. PMID:22522611

  12. Adipose Tissue Overexpression of Vascular Endothelial Growth Factor Protects Against Diet-Induced Obesity and Insulin Resistance

    PubMed Central

    Elias, Ivet; Franckhauser, Sylvie; Ferré, Tura; Vilà, Laia; Tafuro, Sabrina; Muñoz, Sergio; Roca, Carles; Ramos, David; Pujol, Anna; Riu, Efren; Ruberte, Jesús; Bosch, Fatima

    2012-01-01

    During the expansion of fat mass in obesity, vascularization of adipose tissue is insufficient to maintain tissue normoxia. Local hypoxia develops and may result in altered adipokine expression, proinflammatory macrophage recruitment, and insulin resistance. We investigated whether an increase in adipose tissue angiogenesis could protect against obesity-induced hypoxia and, consequently, insulin resistance. Transgenic mice overexpressing vascular endothelial growth factor (VEGF) in brown adipose tissue (BAT) and white adipose tissue (WAT) were generated. Vessel formation, metabolism, and inflammation were studied in VEGF transgenic mice and wild-type littermates fed chow or a high-fat diet. Overexpression of VEGF resulted in increased blood vessel number and size in both WAT and BAT and protection against high-fat diet–induced hypoxia and obesity, with no differences in food intake. This was associated with increased thermogenesis and energy expenditure. Moreover, whole-body insulin sensitivity and glucose tolerance were improved. Transgenic mice presented increased macrophage infiltration, with a higher number of M2 anti-inflammatory and fewer M1 proinflammatory macrophages than wild-type littermates, thus maintaining an anti-inflammatory milieu that could avoid insulin resistance. These studies suggest that overexpression of VEGF in adipose tissue is a potential therapeutic strategy for the prevention of obesity and insulin resistance. PMID:22522611

  13. The Effect of Secretory Factors of Adipose-Derived Stem Cells on Human Keratinocytes

    PubMed Central

    Moon, Kyoung Mi; Park, Ye-Hyoung; Lee, Jae Seol; Chae, Yong-Byung; Kim, Moon-Moo; Kim, Dong-Soo; Kim, Byung-Woo; Nam, Soo-Wan; Lee, Jong-Hwan

    2012-01-01

    The beneficial effects of adipose-derived stem cell conditioned medium (ADSC-CM) on skin regeneration have been reported. Although the mechanism of how ADSC-CM promotes skin regeneration is unclear, ADSC-CM contained various growth factors and it is an excellent raw material for skin treatment. ADSC-CM produced in a hypoxia condition of ADSC—in other words, Advanced Adipose-Derived Stem cell Protein Extract (AAPE)—has great merits for skin regeneration. In this study, human primary keratinocytes (HKs), which play fundamental roles in skin tissue, was used to examine how AAPE affects HK. HK proliferation was significantly higher in the experimental group (1.22 μg/mL) than in the control group. DNA gene chip demonstrated that AAPE in keratinocytes (p < 0.05) notably affected expression of 290 identified transcripts, which were associated with cell proliferation, cycle and migration. More keratinocyte wound healing and migration was shown in the experimental group (1.22 μg/mL). AAPE treatment significantly stimulated stress fiber formation, which was linked to the RhoA-ROCK pathway. We identified 48 protein spots in 2-D gel analysis and selected proteins were divided into 64% collagen components and 30% non-collagen components as shown by the MALDI-TOF analysis. Antibody array results contained growth factor/cytokine such as HGF, FGF-1, G-CSF, GM-CSF, IL-6, VEGF, and TGF-β3 differing from that shown by 2-D analysis. Conclusion: AAPE activates HK proliferation and migration. These results highlight the potential of the topical application of AAPE in the treatment of skin regeneration. PMID:22312315

  14. Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter.

    PubMed

    Zhong, Juan; Guo, Bin; Xie, Jing; Deng, Shuwen; Fu, Na; Lin, Shiyu; Li, Guo; Lin, Yunfeng; Cai, Xiaoxiao

    2016-01-01

    Adipose-derived stem cells (ASCs) and mesenchymal stem cells are promising for tissue repair because of their multilineage differentiation capacity. Our previous data confirmed that the implantation of mixed ASCs and chondrocytes into cartilage defects induced desirable in vivo healing outcomes. However, the paracrine action of ASCs on chondrocytes needs to be further elucidated. In this study, we established a co-culture system to achieve cell-to-cell and cell-to-tissue crosstalk and explored the soluble growth factors in both ASCs and chondrocytes supplemented with 1% fetal bovine serum to mimic the physiological microenvironment. In ASCs, we screened for growth factors by semi-quantitative PCR and quantitative real-time PCR and found that the expression of bone morphogenetic protein 2 (BMP-2), vascular endothelial growth factor B (VEGFB), hypoxia inducible factor-1α (HIF-1α), fibroblast growth factor-2 (FGF-2), and transforming growth factor-β1 significantly increased after co-culture in comparison with mono-culture. In chondrocytes, VEGFA was significantly enhanced after co-culture. Unexpectedly, the expression of collagen II and aggrecan was significantly down-regulated in the co-culture group compared with the mono-culture group. Meanwhile, among all the growth factors screened, we found that the BMP family members BMP-2, BMP-4, and BMP-5 were down-regulated and that VEGFB, HIF-1α, FGF-2, and PDGF were significantly decreased after co-culture. These results suggest that crosstalk between ASCs and chondrocytes is a pathway through the regulated growth factors that might have potential in cartilage repair and regeneration and could be useful for tissue engineering. PMID:26848404

  15. Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter

    PubMed Central

    Zhong, Juan; Guo, Bin; Xie, Jing; Deng, Shuwen; Fu, Na; Lin, Shiyu; Li, Guo; Lin, Yunfeng; Cai, Xiaoxiao

    2016-01-01

    Adipose-derived stem cells (ASCs) and mesenchymal stem cells are promising for tissue repair because of their multilineage differentiation capacity. Our previous data confirmed that the implantation of mixed ASCs and chondrocytes into cartilage defects induced desirable in vivo healing outcomes. However, the paracrine action of ASCs on chondrocytes needs to be further elucidated. In this study, we established a co-culture system to achieve cell-to-cell and cell-to-tissue crosstalk and explored the soluble growth factors in both ASCs and chondrocytes supplemented with 1% fetal bovine serum to mimic the physiological microenvironment. In ASCs, we screened for growth factors by semi-quantitative PCR and quantitative real-time PCR and found that the expression of bone morphogenetic protein 2 (BMP-2), vascular endothelial growth factor B (VEGFB), hypoxia inducible factor-1α (HIF-1α), fibroblast growth factor-2 (FGF-2), and transforming growth factor-β1 significantly increased after co-culture in comparison with mono-culture. In chondrocytes, VEGFA was significantly enhanced after co-culture. Unexpectedly, the expression of collagen II and aggrecan was significantly down-regulated in the co-culture group compared with the mono-culture group. Meanwhile, among all the growth factors screened, we found that the BMP family members BMP-2, BMP-4, and BMP-5 were down-regulated and that VEGFB, HIF-1α, FGF-2, and PDGF were significantly decreased after co-culture. These results suggest that crosstalk between ASCs and chondrocytes is a pathway through the regulated growth factors that might have potential in cartilage repair and regeneration and could be useful for tissue engineering. PMID:26848404

  16. Patterns of gene expression in pig adipose tissue: transforming growth factors, interferons, interleukins and apolipoproteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Total RNA was collected at slaughter from outer s.c. adipose tissue (OSQ), middle s.c. adipose tissue (MSQ), ovary, uterus, hypothalamus, and pituitary tissues samples from gilts at 90, 150, and 210 d ( n =5 / age). Dye labeled cDNA probes were hybridized to custom microarrays (70 mer oligonucleotid...

  17. Adipose Depots, not Disease Related Factors, Account for Skeletal Muscle Insulin Sensitivity in Established and Treated Rheumatoid Arthritis

    PubMed Central

    AbouAssi, Hiba; Tune, K. Noelle; Gilmore, Brian; Bateman, Lori A.; McDaniel, Gary; Muehlbauer, Michael; Huebner, Janet L.; Hoenig, Helen M.; Kraus, Virginia B.; Clair, E. William St.; Kraus, William E.; Huffman, Kim M.

    2014-01-01

    Objectives In prior reports, individuals with rheumatoid arthritis (RA) exhibited increased insulin resistance. However, these studies were limited by either suboptimal assessment methods for insulin sensitivity or a failure to account for important determinants, adiposity and physical activity. Our objectives were to carefully assess, compare and determine predictors of skeletal muscle insulin sensitivity (SI) in RA, accounting for adiposity and physical activity. Methods Thirty-nine individuals with established (seropositive or erosions) and treated RA and 39 age, gender, race, BMI, and physical activity-matched controls underwent a frequently-sampled intravenous glucose tolerance test to determine SI. Inflammation, body composition, and physical activity were assessed with systemic cytokine measurements, CT scans, and accelerometry, respectively. Exclusions were diabetes, cardiovascular disease, medication changes within three months, and prednisone use over 5 mg/d. This investigation was powered to detect a clinically significant, moderate effect size for SI difference. Results Despite elevated systemic inflammation (interleukin (IL)-6, IL-18, tumor necrosis factor-alpha; P<0.05 for all), persons with RA were not less insulin sensitive (SI geometric mean (SD): RA 4.0 (2.4) versus Control 4.9 (2.1)*10−5 min−1/[pmol/l]; P=0.39). Except for visceral adiposity being slightly greater in controls (P=0.03), there were no differences in body composition or physical activity. Lower SI was independently associated with increased abdominal and thigh adiposity, but not with cytokines, disease activity, duration, disability, or disease modifying medication use. Conclusions In established and treated RA, traditional risk factors, specifically excess adiposity, play more of a role in predicting skeletal muscle insulin sensitivity than systemic inflammation or other disease-related factors. PMID:24986846

  18. Adipose Stem Cell Microbeads as Production Sources for Chondrogenic Growth Factors

    PubMed Central

    Lee, Christopher S.D.; Nicolini, Anthony M.; Watkins, Elyse A.; Burnsed, Olivia A.; Boyan, Barbara D.; Schwartz, Zvi

    2014-01-01

    Microencapsulating stem cells in injectable microbeads can enhance delivery and localization, but their ability to act as growth factor production sources is still unknown. To address this concern, growth factor mRNA levels and production from alginate microbeads with encapsulated human adipose stem cells (ASC microbeads) cultured in both growth and chondrogenic media (GM and CM) were measured over a two week period. Human ASCs in microbeads were either commercially purchased (Lonza) or isolated from six human donors and compared to human ASCs on tissue culture polystyrene (TCPS). The effects of crosslinking and alginate compositions on growth factor mRNA levels and production were also determined. Secretion profiles of IGF-I, TGF-β3 and VEGF-A from commercial human ASC microbeads were linear and at a significantly higher rate than TCPS cultures over two weeks. For human ASCs derived from different donors, microencapsulation increased pthlh and both IGF-I and TGF-β3 secretion. CM decreased fgf2 and VEGF-A secretion from ASC microbeads derived from the same donor population. Crosslinking microbeads in BaCl2 instead of CaCl2 did not eliminate microencapsulation’s beneficial effects, but did decrease IGF-I production. Increasing the guluronate content of the alginate microbead increased IGF-I retention. Decreasing alginate molecular weight eliminated the effects microencapsulation had on increasing IGF-I secretion. This study demonstrated that microencapsulation can enhance chondrogenic growth factor production and that chondrogenic medium treatment can decrease angiogenic growth factor production from ASCs, making these cells a potential source for paracrine factors that can stimulate cartilage regeneration. PMID:25705097

  19. Expression of adipogenic transcription factors in adipose tissue of fattening Wagyu and Holstein steers.

    PubMed

    Yamada, T; Kawakami, S-I; Nakanishi, N

    2009-01-01

    In this experiment, we studied the effects of breed differences on the protein expression of adipogenic transcription factors, the C/EBP family (C/EBPα, C/EBPβ-LAP, C/EBPβ-LIP and C/EBPδ) and PPARγ, in the adipose tissues of Japanese Black (Wagyu) and Holstein steers from various anatomical sites (subcutaneous, intermuscular, and mesenteric) at different fattening periods (19 and 24 months of age). The expression of C/EBPβ-LAP and C/EBPα in the mesenteric fat tissue of Wagyu at 19 months of age was significantly higher than that of Holstein. The expression of C/EBPδ in the subcutaneous, intermuscular and mesenteric fat tissue of Wagyu at 19 months of age was significantly higher than that of Holstein. The plasma insulin concentrations of Wagyu steers at 19 months of age tended to be higher than those of Holstein. No significant differences in the expression of the adipogenic transcription factors and plasma insulin concentration were observed between the breeds at 24 months of age. These results suggest the existence of breed difference on the expression of the C/EBP family between fattening Wagyu and Holstein steers at 19 months of age, whereas breed difference might have disappeared before 24 months of age. PMID:22063966

  20. Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells

    PubMed Central

    FENG, GANG; WAN, YUQING; BALIAN, GARY; LAURENCIN, CATO T.; LI, XUDONG

    2010-01-01

    The repair of articular cartilage injuries is impeded by the avascular and non-innervated nature of cartilage. Transplantation of autologous chondrocytes has a limited ability to augment the repair process due to the highly differentiated state of chondrocytes and the risks of donor-site morbidity. Mesenchymal stem cells can undergo chondrogenesis in the presence of growth factors for cartilage defect repair. Growth and differentiation factor-5 (GDF5) plays an important role in chondrogenesis. In this study, we examined the effects of GDF5 on chondrogenesis of adipose-derived stem cells (ADSCs) and evaluate the chondrogenic potentials of GDF5 genetically engineered ADSCs using an in vitro pellet culture model. Rat ADSCs were grown as pellet cultures and treated with chondrogenic media (CM). Induction of GDF5 by an adenovirus (Ad-GDF5) was compared with exogenous supplementation of GDF5 (100 ng/ml) and transforming growth factor-β (TGF-β1; 10 ng/ml). The ADSCs underwent chondrogenic differentiation in response to GDF5 exposure as demonstrated by production of proteoglycan, and up-regulation of collagen II and aggrecan at the protein and mRNA level. The chondrogenic potential of a one-time infection with Ad-GDF5 was weaker than exogenous GDF5, but equal to that of TGF-β1. Stimulation with growth factors or CM alone induced transient expression of the mRNA for collagen X, indicating a need for optimization of the CM. Our findings indicate that GDF5 is a potent inducer of chondrogenesis in ADSCs, and that ADSCs genetically engineered to express prochondrogenic growth factors, such as GDF5, may be a promising therapeutic cell source for cartilage tissue engineering. PMID:18569021

  1. Effects of a community-based weight loss intervention on adipose tissue circulating factors

    PubMed Central

    Miller, Gary D; Isom, Scott; Morgan, Timothy M; Vitolins, Mara Z; Blackwell, Caroline; Brosnihan, K. Bridget; Diz, Debra I; Katula, Jeff; Goff, David

    2014-01-01

    Background/Objectives Obesity is associated with metabolic dysfunctions, which may be mediated by changes in adipose tissue signaling factors. These molecules are denoted as Adipose Tissue Generated Mediators of CardioVascular Risk (ATGMCVR) here, and include leptin, adiponectin, C-reactive protein (CRP), interleukin 6 (IL-6), tumor necrosis factor alpha (TNFα), and plasminogen activator inhibitor 1 (PAI-1). This study examined the effect of a weight loss program on ATGMCVR in obese adults with prediabetes. Subjects/Methods Subjects were randomized to usual care (UC; n=15) or lifestyle weight loss groups (LWL; n=15). LWL was a community-based weight loss intervention to promote physical activity and healthy eating. ATGMCVR at 1-yr were compared between groups by analysis of covariance; baseline value of the mediator was the covariate. Baseline means for ATGMCVR were compared between those with (n=21) and without (n=9) metabolic syndrome (MetS). Results At baseline, subjects were 58±9 (SD) yrs, 70% female, with a BMI of 34±4 kg/m2. One-yr weight loss (%) was 7.8±6.0% for LWL and 1.7±4.5% for UC. Group differences at 1-yr were noted (adjusted means [95%CI] for UC and LWL, respectively) for adiponectin (8526.3 [7397.7,9827]; 10870.9 [9432.0,12529.3] ng/ml; p=0.02), leptin (30.4 [26.1,35.4]; 23.7 [20.3,27.5] ng/ml; p=0.02), IL-6 (0.4 [0.3,0.5]; 0.2 [0.1,0.2] pg/ml; p=0.001), and PAI-1 (50 [42.7,58.7]; 36.2 [30.8,42.4] pg/ml; p=0.01). No differences in baseline ATGMCVR were seen between subjects with and without MetS. Conclusions These findings suggest ATGMCVR can be improved with weight loss; larger studies are needed to determine if improvements in metabolic dysfunction are related to changes in ATGMCVR. PMID:25293442

  2. Adiposity and cardiovascular risk factors in a large contemporary population of pre-pubertal children

    PubMed Central

    Falaschetti, Emanuela; Hingorani, Aroon D.; Jones, Alexander; Charakida, Marietta; Finer, Nicholas; Whincup, Peter; Lawlor, Debbie A.; Davey Smith, George; Sattar, Naveed; Deanfield, John E.

    2010-01-01

    Aims To examine the associations of several markers of adiposity and a wide range of cardiovascular risk factors and biomarkers in pre-pubertal children. Methods and results Four measures of adiposity,body mass index (BMI), waist circumference, dual-energy X-ray absorptiometry (DXA)-determined fat mass, and leptin concentration, were available in up to 7589 children aged 8.8–11.7 (9.9 mean) years from the Avon Longitudinal Study of Parents and Children (ALSPAC). Thirteen per cent of boys and 18.8% of girls were overweight, and 5.3% of boys and 5% of girls were obese. Body mass index was highly correlated with waist circumference (r = 0.91), DXA fat mass (r = 0.87), and leptin concentration (r = 0.75), and all had similar associations with cardiovascular risk factors. A 1 kg/m2 greater BMI was associated with 1.4mmHg (95% CI 1.25–1.44) higher systolic blood pressure (BP). In 5002 children, a 1 kg/m2 greater BMI was associated with a 0.05 mmol/L (95% CI 0.036–0.055) higher non-high-density lipoprotein (HDL) cholesterol and 0.03 mmol/L (95% CI −0.034 to −0.025) lower HDL cholesterol. There were also graded associations with apolipoproteins A1 and B, interleukin-6, and C-reactive protein. Comparing children who were obese with those who were normal weight, the odds ratio for hypertension was 10.7 (95% CI 7.2–15.9) for boys and 13.5 (95% CI 9.4–19.5) for girls. Conclusion In pre-pubertal UK children, overweight/obesity is common and has broadly similar associations with BP, HDL cholesterol, and non-HDL cholesterol to those observed in adults. Future research should evaluate whether effective interventions to maintain healthy weight in childhood could have important benefits for adult cardiovascular risk. PMID:20972265

  3. Tailoring adipose stem cell trophic factor production with differentiation medium components to regenerate chondral defects.

    PubMed

    Lee, Christopher S D; Watkins, Elyse; Burnsed, Olivia A; Schwartz, Zvi; Boyan, Barbara D

    2013-06-01

    Recent endeavors to use stem cells as trophic factor production sources have the potential to translate into viable therapies for damaged or diseased musculoskeletal tissues. Adipose stem cells (ASCs) can be differentiated into chondrocytes using the chondrogenic medium (CM), but it is unknown if this approach can optimize ASC growth factor secretion for cartilage regeneration by increasing the chondrogenic factor production, while decreasing angiogenic and hypertrophic factor production. The objective of this study was to determine the effects the CM and its components have on growth factor production from ASCs to promote cartilage regeneration. ASCs isolated from male Sprague-Dawley rats and cultured in monolayer or alginate microbeads were treated with either the growth medium (GM) or the CM for 5 days. In subsequent studies, ASC monolayers were treated with either the GM supplemented with different combinations of 50 μg/mL ascorbic acid-2-phosphate (AA2P), 100 nM dexamethasone (Dex), 10 ng/mL transforming growth factor (TGF)-β1, and 100 ng/mL bone morphogenetic protein (BMP)-6 or with the CM excluding different combinations of AA2P, Dex, TGF-β1, and BMP-6. mRNA levels and growth factor production were quantified at 8 and 24 h after the last media change, respectively. The CM increased chondrogenic factor secretion (TGF-β2, TGF-β3, and insulin-like growth factor [IGF]-I) and decreased angiogenic factor production (the vascular endothelial growth factor [VEGF]-A, the fibroblast growth factor [FGF]-2). Microencapsulation in the GM increased production of the chondrogenic (IGF-I, TGF-β2) and angiogenic (VEGF-A) factors. AA2P increased secretion of chondrogenic factors (IGF-I, TGF-β2), and decreased angiogenic factor (VEGF-A) secretion, in addition to decreasing mRNA levels for factors associated with chondrocyte hypertrophy (FGF-18). Dex increased mRNA levels for hypertrophic factors (BMP-2, FGF-18) and decreased angiogenic factor secretion (VEGF

  4. Regulation of Adipose Tissue Stem Cells Angiogenic Potential by Tumor Necrosis Factor-Alpha.

    PubMed

    Zubkova, Ekaterina S; Beloglazova, Irina B; Makarevich, Pavel I; Boldyreva, Maria A; Sukhareva, Olga Yu; Shestakova, Marina V; Dergilev, Konstantin V; Parfyonova, Yelena V; Menshikov, Mikhail Yu

    2016-01-01

    Tissue regeneration requires coordinated "teamwork" of growth factors, proteases, progenitor and immune cells producing inflammatory cytokines. Mesenchymal stem cells (MSC) might play a pivotal role by substituting cells or by secretion of growth factors or cytokines, and attraction of progenitor and inflammatory cells, which participate in initial stages of tissue repair. Due to obvious impact of inflammation on regeneration it seems promising to explore whether inflammatory factors could influence proangiogenic abilities of MSC. In this study we investigated effects of TNF-α on activity of adipose-derived stem cells (ADSC). We found that treatment with TNF-α enhances ADSC proliferation, F-actin microfilament assembly, increases cell motility and migration through extracellular matrix. Exposure of ADSC to TNF-α led to increased mRNA expression of proangiogenic factors (FGF-2, VEGF, IL-8, and MCP-1), inflammatory cytokines (IL-1β, IL-6), proteases (MMPs, uPA) and adhesion molecule ICAM-1. At the protein level, VEGF, IL-8, MCP-1, and ICAM-1 production was also up-regulated. Pre-incubation of ADSC with TNF-α-enhanced adhesion of monocytes to ADSC but suppressed adherence of ADSC to endothelial cells (HUVEC). Stimulation with TNF-α triggers ROS generation and activates a number of key intracellular signaling mediators known to positively regulate angiogenesis (Akt, small GTPase Rac1, ERK1/2, and p38 MAP-kinases). Pre-treatment with TNF-α-enhanced ADSC ability to promote growth of microvessels in a fibrin gel assay and accelerate blood flow recovery, which was accompanied by increased arteriole density and reduction of necrosis in mouse hind limb ischemia model. These findings indicate that TNF-α plays a role in activation of ADSC angiogenic and regenerative potential. PMID:26096299

  5. General and abdominal adiposity in a representative sample of Portuguese adults: dependency of measures and socio-demographic factors' influence.

    PubMed

    Kowalkowska, Joanna; Poínhos, Rui; Franchini, Bela; Afonso, Cláudia; Correia, Flora; Pinhão, Sílvia; Vaz de Almeida, Maria Daniel; Rodrigues, Sara

    2016-01-14

    The aims of this study were: (i) to estimate the dependency between BMI and waist:height ratio (WHtR) as measures of general and abdominal adiposity, and (ii) to evaluate the influence of socio-demographic factors on both measures and on their dependency in risk classification. Data from a cross-sectional study conducted in 2009 among a representative sample of 3529 Portuguese adults were used. Height, weight and waist were measured and socio-demographic data (sex, age, education level, occupational status, marital status, region of residence) were obtained. Using logistic regression, crude and adjusted OR for high general (BMI≥25·0 kg/m²) and abdominal (WHtR≥0·5) adiposity, and for incompatible classification between them, were calculated. Above half (50·8%) of the respondents had high BMI and 42·1% had high WHtR, and the rates were higher in men than in women. There was an inverse association between education level and both adiposity measures. The lowest prevalence of high general and abdominal adiposity was observed in students and singles, whereas the highest was found in retired, widowed and respondents from Azores, Madeira and Alentejo. Nearly a quarter of respondents (24·0%) were incompatibly classified by BMI and WHtR, with higher prevalence in men than in women and in low- than in high-educated people. Future surveys should focus on developing at least sex-specific cut-offs for both measures. Implementation of effective strategies for preventing and reducing high adiposity levels in Portugal should be directed primarily to men, older, low-educated individuals, as well as those living in the islands and poor regions of the country. PMID:26489926

  6. Factors Associated with Adiposity, Lipid Profile Disorders and the Metabolic Syndrome Occurrence in Premenopausal and Postmenopausal Women

    PubMed Central

    Suliga, Edyta; Kozieł, Dorota; Cieśla, Elżbieta; Rębak, Dorota; Głuszek, Stanisław

    2016-01-01

    The aim of the study was the assessment of the dependencies between a woman’s menopausal status and adiposity, lipid profile and metabolic syndrome occurrence, as well as finding out whether the correlations between the socio-demographic profile and lifestyle elements and adiposity, lipid profile and the risk of MetS are the same before and after menopause. A cross-sectional study was carried out on 3636 women, aged between 40–59, which involved a questionnaire interview, anthropometric measurements and fasting blood samples, on the basis of which the concentration of triglycerides, cholesterol and glucose was estimated. Before menopause, a greater adiposity (BMIβ = 0.08; %BFβ = 0.07; WCβ = 0.06) was characteristic for women living in a stable relationship than for single women. Women who smoked in the past were characterized by a higher BMI (β = 0.09) and WC (β = 0.06) in comparison with women who have never smoked, while after menopause a greater adiposity (%BFβ = 0.12) and a worse lipid profile (TCβ = 0.08; LDLβ = 0.07; HDLβ = -0.05; TGβ = 0.14) were present in women currently smoking, in comparison to women who have never smoked. After menopause, in women who had two or more children, a greater adiposity (BMIβ = 0.07 and 0.09; %BFβ = 0.05 and 0.07) and a higher risk of MetS (OR = 1.22, 95%CI: 1.03–1.44) was observed compared to nulliparous women, than before menopause. In women with a higher level of education, the risk of MetS after menopause was significantly lower compared with women with a lower level of education (OR = 0.74, 95%CI: 0.61–0.90). Physical activity after menopause had a higher influence on the decrease in the women’s adiposity (BMIβ = -0.11 v. -0.06; %BFβ = -0.11 v. -0.06; WCβ = -0.14 v. -0.08), than before menopause. In women not undergoing hormone replacement therapy, some of the socio-demographic factors and lifestyle elements affected adiposity, lipid profile and the risk of MetS differently before and after

  7. Adipose tissue fibrosis

    PubMed Central

    Buechler, Christa; Krautbauer, Sabrina; Eisinger, Kristina

    2015-01-01

    The increasing prevalence of obesity causes a major interest in white adipose tissue biology. Adipose tissue cells are surrounded by extracellular matrix proteins whose composition and remodeling is of crucial importance for cell function. The expansion of adipose tissue in obesity is linked to an inappropriate supply with oxygen and hypoxia development. Subsequent activation of hypoxia inducible factor 1 (HIF-1) inhibits preadipocyte differentiation and initiates adipose tissue fibrosis. Thereby adipose tissue growth is limited and excess triglycerides are stored in ectopic tissues. Stressed adipocytes and hypoxia contribute to immune cell immigration and activation which further aggravates adipose tissue fibrosis. There is substantial evidence that adipose tissue fibrosis is linked to metabolic dysfunction, both in rodent models and in the clinical setting. Peroxisome proliferator activated receptor gamma agonists and adiponectin both reduce adipose tissue fibrosis, inflammation and insulin resistance. Current knowledge suggests that antifibrotic drugs, increasing adipose tissue oxygen supply or HIF-1 antagonists will improve adipose tissue function and thereby ameliorate metabolic diseases. PMID:25987952

  8. Maternal adiposity as an independent risk factor for pre-eclampsia: a meta-analysis of prospective cohort studies.

    PubMed

    Wang, Z; Wang, P; Liu, H; He, X; Zhang, J; Yan, H; Xu, D; Wang, B

    2013-06-01

    Studies investigating the association between maternal adiposity and risk of pre-eclampsia showed contradictory results. Therefore, we performed a meta-analysis of prospective cohort studies to estimate the effect of maternal adiposity on pre-eclampsia. We reviewed 1,286 abstracts and finally included 29 prospective cohort studies with 1,980,761 participants and 67,075 pre-eclampsia events. We pooled data with a random-effects model, and obtained risk estimates for five predetermined bodyweight groups: low, normal-weight (reference), overweight, obese and severely obese. In the cohort studies that unadjusted for pre-eclampsia risk factors, the pooled unadjusted relative risks (RR) with 95% confidence intervals (95%CI) for pre-eclampsia of overweight, obese and severely obese women were 1.58 (95% CI 1.44-1.72, P < 0.001), 2.68 (95% CI 2.39-3.01, P < 0.001) and 3.12 (95% CI 2.24-4.36, P < 0.001), respectively. In those cohorts that adjusted for pre-eclampsia risk factors, the pooled unadjusted RRs for pre-eclampsia of overweight, obese and severely obese women were 1.70 (95% CI 1.60-1.81, P < 0.001), 2.93 (95% CI 2.58-3.33, P < 0.001) and 4.14 (95% CI 3.61-4.75, P < 0.001), respectively. Sensitivity analysis showed maternal adiposity was associated with increased risk of pre-eclampsia in both nulliparous and multiparas women. In conclusion, overweight or obese pregnant women have a substantially increased risk of pre-eclampsia, and maternal adiposity is an independent risk factor of pre-eclampsia. PMID:23530552

  9. A Prospective Study of Gynecological Cancer Risk in Relation to Adiposity Factors: Cumulative Incidence and Association with Plasma Adipokine Levels

    PubMed Central

    Wu, Meei-Maan; You, San-Lin; Cheng, Wen-Fang; Chen, Chi-An; Lee, Te-Chang; Chen, Chien-Jen

    2014-01-01

    Background Associations of obesity and obesity-related metabolic factors (adiposity factors) with uterine corpus cancer (UCC) and ovarian cancer (OVC) risk have been described. Still, a cause-effect relationship and the underlying mediators remain unclear, particularly for low-incidence populations. We aimed to prospectively determine whether adiposity factors could predict the development of UCC and OVC in Taiwanese women. To explore the biological mediators linking adiposity factors to cancer risk, we examined the association of two adipokines, leptin and adiponectin, with the gynecological cancers. Methods Totally, 11,258 women, aged 30–65, were recruited into the Community-Based Cancer Screening Program (CBCSP) study during 1991–1993, and were followed for UCC and OVC cases until December 31, 2011. Cox proportional hazard models were used to estimate hazard ratios (HRs). Adiposity factors and risk covariates were assessed at recruitment. Newly-developed cancer cases were determined from data in the government’s National Cancer Registry and Death Certification System. For adipokienes study, a nested case-control study was conducted within the cohort. Baseline plasma samples of 40 incident gynecological cancer cases and 240 age-menopause-matched controls were assayed for adipokines levels. Findings There were 38 and 30 incident cases of UCC and OVC, respectively, diagnosed during a median 19.9 years of follow-up. Multivariate analysis showed that alcohol intake (HR = 16.00, 95% = 4.83–53.00), high triglyceride levels (HR = 2.58, 95% = 1.28–5.17), and years of endogenous estrogen exposure per 5-year increment (HR = 1.91, 95% = 1.08–3.38) were associated with increased UCC risk. High body mass index (BMI≥27 kg/m2, HR = 2.90, 95% = 1.30–6.46) was associated with increased OVC risk. Analysis further showed an independent effect of adipokines on UCC and OVC risk after adjustment of the risk covariates. Conclusion We

  10. Five-year changes in adiposity and cardio-metabolic risk factors among Guatemalan young adults

    PubMed Central

    Gregory, Cria O; Martorell, Reynaldo; Narayan, KM Venkat; Ramirez-Zea, Manuel; Stein, Aryeh D

    2013-01-01

    Background Rapidly transitioning societies are experiencing dramatic increases in obesity and cardio-metabolic risk; however, few prospective studies from developing countries have quantified these increases or described their joint relationships. Methods We collected dietary, physical activity, demographic, anthropometric and cardio-metabolic risk factor data from 376 Guatemalan young adults in 1997–98 (aged 20–29 years) and in 2002–04 (aged 25–34 years). Results In total, 42% of men and 56% of women experienced weight gain >5kg in 5 years. Percent body fat (%BF) and waist circumference (WC) increased by 4·2% points and 5·5 cm among men, and 3·2% points and 3·4 cm among women, respectively. Five-year increases in both %BF and WC were associated with lower physical activity, urban residence and shorter height among men but not among women (test for heterogeneity P<0·05 for residence and physical activity). Changes in %BF and WC and concomitant changes in cardio-metabolic risk factors were similar for men and women. In standardised regression, change in %BF was associated with changes in TAG (β=0·19; 95% CI 0·08, 0·30), total:HDL cholesterol (β=0·22; 95% CI 0·12, 0·33) and systolic (β=0·22; 95% CI 0·12, 0·33) and diastolic (β=0·18; 95% CI 0·08, 0·28) blood pressure, but not with glucose; associations were similar for WC. Conclusions Over 5 years this relatively young population of Guatemalan adults experienced rapid increases in multiple measures of adiposity, which were associated with adverse changes in lipid and blood pressure levels. PMID:18702839

  11. Nontraditional risk factors for cardiovascular disease and visceral adiposity index among different body size phenotypes

    PubMed Central

    Du, T; Zhang, J; Yuan, G; Zhang, M; Zhou, X; Liu, Z; Sun, X; Yu, X

    2014-01-01

    Background and Aims Increased cardiovascular disease and mortality risk in metabolically healthy obese (MHO) individuals remain highly controversial. Several studies suggested risk while others do not. The traditional cardiovascular risk factors may be insufficient to demonstrate the complete range of metabolic abnormalities in MHO individuals. Hence, we aimed to compare the prevalence of elevated lipoprotein (a), apolipoprotein B, and uric acid (UA) levels, apolipoprotein B/apolipoprotein A1 ratio, and visceral adiposity index (VAI) scores, and low apolipoprotein A1 levels among 6 body size phenotypes (normal weight with and without metabolic abnormalities, overweight with and without metabolic abnormalities, and obese with or without metabolic abnormalities). Methods and Results We conducted a cross-sectional analysis of 7765 Chinese adults using data from the nationwide China Health and Nutrition Survey 2009. MHO persons had intermediate prevalence of elevated apolipoprotein B and UA levels, apolipoprotein B/apolipoprotein A1 ratio and VAI scores, and low apolipoprotein A1 levels between metabolically healthy normal-weight (MHNW) and metabolically abnormal obese individuals (P < 0.001 for all comparisons). Elevated apolipoprotein B and UA concentrations, apolipoprotein B/apolipoprotein A1 ratio, and VAI scores were all strongly associated with the MHO phenotype (all P < 0.01). Conclusions Prevalence of elevated apolipoprotein B and UA levels, apolipoprotein B/apolipoprotein A1 ratio and VAI scores, and low levels of apolipoprotein A1 was higher among MHO persons than among MHNW individuals. The elevated levels of the nontraditional risk factors and VAI scores in MHO persons could contribute to the increased cardiovascular disease risk observed in long-term studies. PMID:25159728

  12. Visceral adiposity and its anatomical distribution as predictors of the metabolic syndrome and cardiometabolic risk factor levels

    PubMed Central

    Demerath, Ellen W; Reed, Derek; Rogers, Nikki; Sun, Shumei S; Lee, Miryoung; Choh, Audrey C; Couch, William; Czerwinski, Stefan A; Chumlea, W Cameron; Siervogel, Roger M; Towne, Bradford

    2009-01-01

    Background Despite the recognition that central obesity plays a critical role in chronic disease, few large-scale imaging studies have documented human variation in abdominal adipose tissue patterning. Objective We aimed to compare the associations between abdominal subcutaneous adipose tissue (ASAT) and visceral abdominal tissue (VAT), which were measured at different locations across the abdomen, and the presence of the metabolic syndrome (MS; National Cholesterol Education Program Adult Treatment Panel III definition) and individual cardiometabolic risk factors. Design This study included 713 non-Hispanic whites aged 18–86 y, in whom VAT and ASAT were assessed by using multiple-image magnetic resonance imaging. The anatomical position of the magnetic resonance image containing the maximum VAT area for each subject was used as a measure of VAT patterning. Multivariate linear and logistic regression analyses were used to examine the relation of VAT, ASAT, and VAT patterning to cardiometabolic risk. Results VAT mass was a stronger predictor of the MS than was ASAT mass, but ASAT mass (and other measures of subcutaneous adiposity) had signification interactions with VAT mass, whereby elevated ASAT reduced the probability of MS among men with high VAT (P = 0.0008). There was variation across image locations in the association of VAT area with the MS in men, and magnetic resonance images located 4–8 cm above L4–L5 provided the strongest correlations between VAT area and cardiometabolic risk factors. Subjects whose maximum VAT area was higher in the abdomen had higher LDL-cholesterol concentrations (R2 = 0.07, P = 0.0001), independent of age and adiposity. Conclusion Further studies are needed to confirm the effects of VAT patterning on cardiometabolic risk. PMID:18996861

  13. Augmented expression and secretion of adipose-derived pigment epithelium-derived factor does not alter local angiogenesis or contribute to the development of systemic metabolic derangements.

    PubMed

    Lakeland, Thomas V; Borg, Melissa L; Matzaris, Maria; Abdelkader, Amany; Evans, Roger G; Watt, Matthew J

    2014-06-15

    Impaired coupling of adipose tissue expansion and vascularization is proposed to lead to adipocyte hypoxia and inflammation, which in turn contributes to systemic metabolic derangements. Pigment epithelium-derived factor (PEDF) is a powerful antiangiogenic factor that is secreted by adipocytes, elevated in obesity, and implicated in the development of insulin resistance. We explored the angiogenic and metabolic role of adipose-derived PEDF through in vivo studies of mice with overexpression of PEDF in adipocytes (PEDF-aP2). PEDF expression in white adipocytes and PEDF secretion from adipose tissue was increased in transgenic mice, but circulating levels of PEDF were not increased. Overexpression of PEDF did not alter vascularization, the partial pressure of O2, cellular hypoxia, or gene expression of inflammatory markers in adipose tissue. Energy expenditure and metabolic substrate utilization, body mass, and adiposity were not altered in PEDF-aP2 mice. Whole body glycemic control was normal as assessed by glucose and insulin tolerance tests, and adipocyte-specific glucose uptake was unaffected by PEDF overexpression. Adipocyte lipolysis was increased in PEDF-aP2 mice and associated with increased adipose triglyceride lipase and decreased perilipin 1 expression. Experiments conducted in mice rendered obese by high-fat feeding showed no differences between PEDF-aP2 and wild-type mice for body mass, adiposity, whole body energy expenditure, glucose tolerance, or adipose tissue oxygenation. Together, these data indicate that adipocyte-generated PEDF enhances lipolysis but question the role of PEDF as a major antiangiogenic or proinflammatory mediator in adipose tissue in vivo. PMID:24760990

  14. Visceral adipose tissue area as an independent risk factor for elevated liver enzyme in nonalcoholic fatty liver disease.

    PubMed

    Chung, Goh Eun; Kim, Donghee; Kwark, Min Sun; Kim, Won; Yim, Jeong Yoon; Kim, Yoon Jun; Yoon, Jung-Hwan

    2015-03-01

    Chronic elevations in alanine aminotransferase (ALT) levels are associated with body composition. The aim of this study was to evaluate the relationship between elevated liver enzyme levels and the visceral tissue area in subjects with and without nonalcoholic fatty liver disease (NAFLD).An observational cohort study was conducted with subjects undergoing general health examinations. To evaluate the visceral and subcutaneous abdominal adipose tissue area, a computed tomography scan was performed. NAFLD was diagnosed if a person demonstrated fatty liver on ultrasonography without a history of significant alcohol consumption or chronic liver disease. Abnormal liver enzyme levels were based on ALT elevations according to the updated Asian definition.Of the 5100 subjects, 3712 (72.8%) met the inclusion criteria, and NAFLD was found in 1185 subjects. Elevated ALT values were positively correlated with body mass index, waist circumference, and subcutaneous and visceral adipose tissue area. These relationships were attenuated, although they remained significant in a dose-dependent manner, after adjusting for multiple liver injury risk factors. In addition, when body mass index and subcutaneous and visceral tissue areas were finally considered in combination, only visceral adipose tissue remained independently associated with elevated ALT levels in the ultrasonographically diagnosed NAFLD group (P for trend <0.001 for men and women).Elevated ALT levels were independently and dose-dependently associated with visceral fat accumulation in the healthy general population, especially in ultrasonographically diagnosed NAFLD patients. These results reemphasize the importance of visceral fat in the pathogenesis of NAFLD. PMID:25738475

  15. The Visceral Adiposity Index: Relationship with cardiometabolic risk factors in obese and overweight postmenopausal women--a MONET group study.

    PubMed

    Elisha, Belinda; Messier, Virginie; Karelis, Antony; Coderre, Lise; Bernard, Sophie; Prud'homme, Denis; Rabasa-Lhoret, Rémi

    2013-08-01

    A recent study suggested visceral adipose index (VAI) as an indicator of adipose tissue distribution and function associated with cardiometabolic risk. We aim to examine the association between VAI and visceral adipose tissue (VAT), insulin sensitivity, and a large panel of associated cardiometabolic risk factors, and to determine if changes in VAI after weight loss intervention will reflect changes in VAT. We performed a secondary analysis using the data of 99 overweight and postmenopausal women that completed a 6-month weight loss program (Montreal Ottawa New Emerging Team Study). VAI was calculated according to the equation by Amato et al. (2010; Diabetes Care, 33(4):920-922). At baseline, VAI was associated with VAT (r = 0.284, p < 0.01) but not with subcutaneous adipose tissue (SAT) while body mass index (BMI) and waist circumference (WC) were significantly related to both. BMI and WC demonstrated significantly stronger predictive value of VAT accumulation (area under the curve = 0.84 and 0.86, respectively) than VAI (area under the curve = 0.61; p < 0.01). However, VAT, BMI, WC, and VAI were similarly related to fasting insulin and glucose disposal rates. After a 6-month weight loss program, VAI decreased significantly and similarly in both intervention groups (p < 0.01). In addition, the percentage of change in VAI showed the significantly weakest correlation (r = 0.25) with the percentage of change in VAT than BMI (r = 0.56; p < 0.01 for r comparisons) and was not a significant predictor of interindividual percentage of change in VAT while BMI accounted for 33.7%. VAI is a weak indicator of VAT function and did not predict changes in VAT after weight loss. Furthermore, this index was not superior to BMI or WC. However, VAI is a good indicator of metabolic syndrome. PMID:23855278

  16. Adiposity is associated with DNA methylation profile in adipose tissue

    PubMed Central

    Agha, Golareh; Houseman, E Andres; Kelsey, Karl T; Eaton, Charles B; Buka, Stephen L; Loucks, Eric B

    2015-01-01

    Background: Adiposity is a risk factor for type 2 diabetes and cardiovascular disease, suggesting an important role for adipose tissue in the development of these conditions. The epigenetic underpinnings of adiposity are not well understood, and studies of DNA methylation in relation to adiposity have rarely focused on target adipose tissue. Objectives were to evaluate whether genome-wide DNA methylation profiles in subcutaneous adipose tissue and peripheral blood leukocytes are associated with measures of adiposity, including central fat mass, body fat distribution and body mass index. Methods: Participants were 106 men and women (mean age 47 years) from the New England Family Study. DNA methylation was evaluated using the Infinium HumanMethylation450K BeadChip. Adiposity phenotypes included dual-energy X-ray absorptiometry-assessed android fat mass, android:gynoid fat ratio and trunk:limb fat ratio, as well as body mass index. Results: Adipose tissue genome-wide DNA methylation profiles were associated with all four adiposity phenotypes, after adjusting for race, sex and current smoking (omnibus p-values <0.001). After further adjustment for adipose cell-mixture effects, associations with android fat mass, android:gynoid fat ratio, and trunk:limb fat ratio remained. In gene-specific analyses, adiposity phenotypes were associated with adipose tissue DNA methylation in several genes that are biologically relevant to the development of adiposity, such as AOC3, LIPE, SOD3, AQP7 and CETP. Blood DNA methylation profiles were not associated with adiposity, before or after adjustment for blood leukocyte cell mixture effects. Conclusion: Findings show that DNA methylation patterns in adipose tissue are associated with adiposity. PMID:25541553

  17. Metabolic factors, adipose tissue, and plasminogen activator inhibitor-1 levels in Type 2 diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasminogen activator inhibitor-1 (PAI-1) production by adipose tissue is increased in obesity, and its circulating levels are high in type 2 diabetes. PAI-1 increases cardiovascular risk by favoring clot stability, interfering with vascular remodeling, or both. We investigated in obese diabetic per...

  18. IL-6 gene expression in adipose tissue of postmenopausal women and its association with metabolic risk factors.

    PubMed

    Sadashiv; Tiwari, Sunita; Gupta, Vani; Paul, Bhola Nath; Kumar, Sandeep; Chandra, Abhijit; Dhananjai, S; Negi, Mahendra Pal Singh; Ghatak, Ashim

    2015-01-01

    Adipose tissue secretes various kinds of adipokines that controls the glucose and lipid metabolism in humans. The abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) both are associated with metabolic syndrome and insulin resistance. IL-6 is one of the adipokines, which promotes insulin resistance and dyslipidemia in humans. The association of adipokines with metabolic syndrome at protein levels are well documented. However, their association at gene expression level are lacking. The present study was design to investigate IL-6 mRNA expression in adipose tissues (VAT and SAT) and its correlation with metabolic risk factors and insulin resistance (HOMA) in post menopausal women. A total of 108 Asian North Indian post menopausal women, 54 without metabolic syndrome (controls) and 54 with metabolic syndrome (cases) were recruited and evaluated. Overnight fasting blood samples were collected at admission and abdominal visceral and subcutaneous adipose tissues were collected during open abdomen surgery. The results showed significantly (p < 0.05 or p < 0.01 or p < 0.001) higher mean SBP, glucose, insulin, HOMA, TG, VLDL and serum IL-6 while significantly (p < 0.001) lower HDL and estrogen in cases as compared to controls. In cases, the relative mean SAT IL-6 expression was also significantly (p < 0.05) higher as compared to VAT. Further, in cases, the VAT IL-6 expression showed significant (p < 0.05 or p < 0.001) and negative correlation with WC, WHR, glucose, HOMA, TC, LDL and estrogen while SAT IL-6 expression also showed significant (p < 0.05 or p < 0.01 or p < 0.001) and negative correlation with WC, WHR and estrogen. The Cox regression analysis found VAT IL-6 mRNA expression the significant (p < 0.05 or p < 0.01) an independent predictor of WC, HOMA, TC, LDL and estrogen while SAT IL-6 mRNA expression the significant (p < 0.01) an independent predictor of TG and VLDL. The study concluded

  19. Regulatory iNKT cells lack expression of the transcription factor PLZF and control the homeostasis of T(reg) cells and macrophages in adipose tissue.

    PubMed

    Lynch, Lydia; Michelet, Xavier; Zhang, Sai; Brennan, Patrick J; Moseman, Ashley; Lester, Chantel; Besra, Gurdyal; Vomhof-Dekrey, Emilie E; Tighe, Mike; Koay, Hui-Fern; Godfrey, Dale I; Leadbetter, Elizabeth A; Sant'Angelo, Derek B; von Andrian, Ulrich; Brenner, Michael B

    2015-01-01

    Invariant natural killer T cells (iNKT cells) are lipid-sensing innate T cells that are restricted by the antigen-presenting molecule CD1d and express the transcription factor PLZF. iNKT cells accumulate in adipose tissue, where they are anti-inflammatory, but the factors that contribute to their anti-inflammatory nature, as well as their targets in adipose tissue, are unknown. Here we found that iNKT cells in adipose tissue had a unique transcriptional program and produced interleukin 2 (IL-2) and IL-10. Unlike other iNKT cells, they lacked PLZF but expressed the transcription factor E4BP4, which controlled their IL-10 production. The adipose iNKT cells were a tissue-resident population that induced an anti-inflammatory phenotype in macrophages and, through the production of IL-2, controlled the number, proliferation and suppressor function of regulatory T cells (Treg cells) in adipose tissue. Thus, iNKT cells in adipose tissue are unique regulators of immunological homeostasis in this tissue. PMID:25436972

  20. Cloning Changes the Response to Obesity of Innate Immune Factors in Blood, Liver, and Adipose Tissues in Domestic Pigs

    PubMed Central

    Rødgaard, Tina; Skovgaard, Kerstin; Stagsted, Jan

    2013-01-01

    Abstract The objective of this study was to evaluate the usefulness of cloned pigs as porcine obesity models reflecting obesity-associated changes in innate immune factor gene expression profiles. Liver and adipose tissue expression of 43 innate immune genes as well as serum concentrations of six immune factors were analyzed in lean and diet-induced obese cloned domestic pigs and compared to normal domestic pigs (obese and lean). The number of genes affected by obesity was lower in cloned animals than in control animals. All genes affected by obesity in adipose tissues of clones were downregulated; both upregulation and downregulation were observed in the controls. Cloning resulted in a less differentiated adipose tissue expression pattern. Finally, the serum concentrations of two acute-phase proteins (APPs), haptoglobin (HP) and orosomucoid (ORM), were increased in obese clones as compared to obese controls as well as lean clones and controls. Generally, the variation in phenotype between individual pigs was not reduced in cloned siblings as compared to normal siblings. Therefore, we conclude that cloning limits both the number of genes responding to obesity as well as the degree of tissue-differentiated gene expression, concomitantly with an increase in APP serum concentrations only seen in cloned, obese pigs. This may suggest that the APP response seen in obese, cloned pigs is a consequence of the characteristic skewed gene response to obesity in cloned pigs, as described in this work. This should be taken into consideration when using cloned animals as models for innate responses to obesity. PMID:23668862

  1. Inhibition of Notch rescues the angiogenic potential impaired by cardiovascular risk factors in epicardial adipose stem cells.

    PubMed

    Bejar, Maria Teresa; Ferrer-Lorente, Raquel; Peña, Esther; Badimon, Lina

    2016-08-01

    The epicardial adipose tissue (EAT) is a reservoir of adipose-derived stem cells (ASCs), with as yet unknown effects on myocardial and coronary arteries homeostasis. The purpose of this study was to investigate the angiogenic function of epicardial ASCs and their regulation by the common cardiovascular risk factors (CVRFs) affecting heart disease. Epicardial fat was obtained from a rodent model with clustering of CVRFs [Zucker diabetic fatty (ZDF)-Lepr(fa)] rats and from their lean control (ZDF-Crl) littermates without CVRFs, ASCs were isolated, and their function was assessed by proliferation and differentiation assays, flow cytometry, gene expression, and in vivo Matrigel angiogenesis analysis. Epicardial ASCs from both groups showed adipogenic and osteogenic differentiation capacity; however, epicardial ASCs from CVRF animals had a lesser ability to form tubular structures in vitro after endothelial differentiation, as well as a reduced angiogenic potential in vivo compared to control animals. Epicardial ASCs from CVRF rats showed up-regulation of the downstream Notch signaling genes Hes7, Hey1, and Heyl compared with control animals. The inhibition of Notch signaling by conditioning epicardial ASCs from CVRF animals with a γ-secretase inhibitor induced a reduction in Hes/Hey gene expression and rescued their angiogenic function in vivo We report for the first time the impact of CVRF burden on the ASCs of EAT and that the defective function is in part caused by increased Notch signaling. Conditioning ASCs by blocking Notch signaling rescues their angiogenic potential.-Bejar, M. T., Ferrer-Lorente, R., Peña, E., Badimon, L. Inhibition of Notch rescues the angiogenic potential impaired by cardiovascular risk factors in epicardial adipose stem cells. PMID:27150622

  2. Grain feeding coordinately alters expression patterns of transcription factor and metabolic genes in subcutaneous adipose tissue of crossbred heifers.

    PubMed

    Key, C N; Perkins, S D; Bratcher, C L; Kriese-Anderson, L A; Brandebourg, T D

    2013-06-01

    The ability to improve meat quality and production efficiency in cattle is limited by an inability to enhance marbling and simultaneously limit undesirable adipose tissue accretion. The objective of this study was to examine expression of regulatory genes in subcutaneous (SCF) adipose tissue of heifers in response to increasing days on feed (DOF) and finishing strategy. Crossbred heifers (n = 24) were allotted as follows: Group 1 = 0 d, Group 2 = 99 d on winter annual ryegrass (grass; Lolium multiflorum Lam.), Group 3 = 218 g on grass, Group 4 = 99 d on grass followed by 119 d on grain. Adipose tissue samples were collected at time of harvest and frozen. Carcass characteristics were measured 24 h postharvest. As expected, HCW (P < 0.0001), ribeye area (REA; P < 0.0002), backfat (BF; P < 0.0001), KPH (P < 0.0001), and marbling score (P < 0.0009) increased with DOF though frame score was not different (P < 0.95). Average daily gain decreased with DOF (P < 0.0001). Yield grade increased (P < 0.0014) but cook loss percentage decreased (P < 0.001) with DOF without changes in 24-h pH (P < 0.31). Interestingly, Warner-Bratzler shear force (WBS) was decreased with DOF (P < 0.0089). Meanwhile, BF (P < 0.01) and KPH (P < 0.05) were greater, whereas marbling values trended greater in grain versus grass-finished heifers. Neither ADG (P < 0.89), HCW (P < 0.26), frame score (P < 0.85), nor REA (P < 0.38) were different between these groups. Grain finishing increased yield grade (P < 0.001) but did not affect 24-h pH (P < 0.88), cook loss percentage (P < 0.98), or WBS (P < 0.44) compared with grass-finished heifers. The expression of PPARγ, bone morphogenic protein 2 (BMP2), and SMAD family member 1 (SMAD1) mRNA was upregulated in response to DOF and grain finishing, whereas sterol regulatory element binding protein 1c (SREBP-1c), sonic hedgehog (SHH), chicken ovalbumin protein transcription factor 1 (COUP-TF1), chicken ovalbumin protein transcription factor 2 (COUP-TF2), and

  3. Patterns of gene expression in pig adipose tissue: insulin-like growth factor system proteins, neuropeptide Y (NPY), NPY receptors, neurotrophic factors and other secreted factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Total RNA was collected at slaughter from outer subcutaneous adipose tissue (OSQ) and middle subcutaneous adipose tissue (MSQ) samples from gilts at 90, 150, and 210 d ( n =5 / age). Dye labeled cDNA probes were hybridized to custom microarrays (70 mer oligonucleotides) representing over 600 pig gen...

  4. Upregulation of pluripotency markers in adipose tissue-derived stem cells by miR-302 and leukemia inhibitory factor.

    PubMed

    Taha, Masoumeh Fakhr; Javeri, Arash; Rohban, Sara; Mowla, Seyed Javad

    2014-01-01

    The expression pattern of pluripotency markers in adipose tissue-derived stem cells (ADSCs) is a subject of controversy. Moreover, there is no data about the signaling molecules that regulate these markers in ADSCs. In the present study, we studied the roles of leukemia inhibitory factor (LIF) and miR-302 in this regard. Freshly isolated mouse ADSCs expressed hematopoietic, mesenchymal, and pluripotency markers. One day after plating, ADSCs expressed OCT4 and Sox2 proteins. After three passages, the expression of hematopoietic and pluripotency markers decreased, while the expression of mesenchymal stem cell markers exhibited a striking rise. Both supplementation of culture media with LIF and transfection of the ADSCs with miR-302 family upregulated the expression levels of OCT4, Nanog, and Sox2 mRNAs. These findings showed that mouse adipose tissue contains a population of cells with molecular resemblance to embryonic stem cells, and LIF and miR-302 family positively affect the expression of pluripotency markers. PMID:25147827

  5. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    SciTech Connect

    Sawada, Keigo; Takedachi, Masahide; Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki; Lee, Chun Man; Okura, Hanayuki; Matsuyama, Akifumi; Kitamura, Masahiro; Murakami, Shinya

    2015-08-14

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.

  6. The effects of BMP6 overexpression on adipose stem cell chondrogenesis: Interactions with dexamethasone and exogenous growth factors.

    PubMed

    Diekman, Brian O; Estes, Bradley T; Guilak, Farshid

    2010-06-01

    Adipose-derived stem cells (ASCs) are multipotent progenitors that can be chondrogenically induced by growth factors such as bone morphogenetic protein 6 (BMP-6). We hypothesized that nonviral transfection of a BMP-6 construct (pcDNA3-BMP6) would induce chondrogenic differentiation of ASCs encapsulated in alginate beads and that differentiation would be enhanced by the presence of the synthetic glucocorticoid dexamethasone (DEX) or the combination of epidermal growth factor (EGF), fibroblast growth factor-2 (FGF-2), and transforming growth factor beta-1 (TGF-beta1), collectively termed expansion factors (EFs). Chondrogenesis was assessed using quantitative real-time polymerase chain reaction for types I, II, and X collagen, aggrecan, and BMP6. Immunohistochemistry was performed with antibodies for types I, II, and X collagen and chondroitin-4-sulfate. BMP6 overexpression alone induced a moderate chondrogenic response. The inclusion of EFs promoted robust type II collagen expression but also increased type I and X collagen deposition, consistent with a hypertrophic chondrocyte phenotype. Early gene expression data indicated that DEX was synergistic with BMP-6 for chondrogenesis, but immunohistochemistry at 28 days showed that DEX reduced glycosaminoglycan accumulation. These results suggest that chondrogenic differentiation of ASCs depends on complex interactions among various growth factors and media supplements, as well as the concentration and duration of growth factor exposure. PMID:19722282

  7. Body Condition Score and Day of Lactation Affect Lipogenic mRNA Abundance and Transpription Factors in Adipose Tissue of Beef Cows Fed Supplemental Fat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We hypothesized that BCS at parturition and postpartum dietary fat supplementation will alter transcription factors and mRNA abundance of adipose tissue lipogenic and lipolytic enzymes during lactation in beef cows. Our objective was to determine abundance of mRNA for acetyl-CoA carboxylase (ACC), h...

  8. Visceral adiposity syndrome.

    PubMed

    Lopes, Heno F; Corrêa-Giannella, Maria Lúcia; Consolim-Colombo, Fernanda M; Egan, Brent M

    2016-01-01

    The association of anthropometric (waist circumference) and hemodynamic (blood pressure) changes with abnormalities in glucose and lipid metabolism has been motivation for a lot of discussions in the last 30 years. Nowadays, blood pressure, body mass index/abdominal circumference, glycemia, triglyceridemia, and HDL-cholesterol concentrations are considered in the definition of Metabolic syndrome, referred as Visceral adiposity syndrome (VAS) in the present review. However, more than 250 years ago an association between visceral and mediastinal obesity with hypertension, gout, and obstructive apnea had already been recognized. Expansion of visceral adipose tissue secondary to chronic over-consumption of calories stimulates the recruitment of macrophages, which assume an inflammatory phenotype and produce cytokines that directly interfere with insulin signaling, resulting in insulin resistance. In turn, insulin resistance (IR) manifests itself in various tissues, contributing to the overall phenotype of VAS. For example, in white adipose tissue, IR results in lipolysis, increased free fatty acids release and worsening of inflammation, since fatty acids can bind to Toll-like receptors. In the liver, IR results in increased hepatic glucose production, contributing to hyperglycemia; in the vascular endothelium and kidney, IR results in vasoconstriction, sodium retention and, consequently, arterial hypertension. Other players have been recognized in the development of VAS, such as genetic predisposition, epigenetic factors associated with exposure to an unfavourable intrauterine environment and the gut microbiota. More recently, experimental and clinical studies have shown the autonomic nervous system participates in modulating visceral adipose tissue. The sympathetic nervous system is related to adipose tissue function and differentiation through beta1, beta2, beta3, alpha1, and alpha2 adrenergic receptors. The relation is bidirectional: sympathetic denervation of

  9. Secret talk between adipose tissue and central nervous system via secreted factors-an emerging frontier in the neurodegenerative research.

    PubMed

    Parimisetty, Avinash; Dorsemans, Anne-Claire; Awada, Rana; Ravanan, Palaniyandi; Diotel, Nicolas; Lefebvre d'Hellencourt, Christian

    2016-01-01

    First seen as a storage organ, the white adipose tissue (WAT) is now considered as an endocrine organ. WAT can produce an array of bioactive factors known as adipokines acting at physiological level and playing a vital role in energy metabolism as well as in immune response. The global effect of adipokines in metabolic activities is well established, but their impact on the physiology and the pathophysiology of the central nervous system (CNS) remains poorly defined. Adipokines are not only produced by the WAT but can also be expressed in the CNS where receptors for these factors are present. When produced in periphery and to affect the CNS, these factors may either cross the blood brain barrier (BBB) or modify the BBB physiology by acting on cells forming the BBB. Adipokines could regulate neuroinflammation and oxidative stress which are two major physiological processes involved in neurodegeneration and are associated with many chronic neurodegenerative diseases. In this review, we focus on four important adipokines (leptin, resistin, adiponectin, and TNFα) and one lipokine (lysophosphatidic acid-LPA) associated with autotaxin, its producing enzyme. Their potential effects on neurodegeneration and brain repair (neurogenesis) will be discussed. Understanding and regulating these adipokines could be an interesting lead to novel therapeutic strategy in order to counteract neurodegenerative disorders and/or promote brain repair. PMID:27012931

  10. Aboriginal birth cohort (ABC): a prospective cohort study of early life determinants of adiposity and associated risk factors among Aboriginal people in Canada

    PubMed Central

    2013-01-01

    Background Aboriginal people living in Canada have a high prevalence of obesity, type 2 diabetes, and cardiovascular disease (CVD). To better understand the pre and postnatal influences on the development of adiposity and related cardio-metabolic factors in adult Aboriginal people, we will recruit and follow prospectively Aboriginal pregnant mothers and their children – the Aboriginal Birth Cohort (ABC) study. Methods/design We aim to recruit 300 Aboriginal pregnant mothers and their newborns from the Six Nations Reserve, and follow them prospectively to age 3 years. Key details of environment and health including maternal nutrition, glucose tolerance, physical activity, and weight gain will be collected. At birth, cord blood and placenta samples will be collected, as well as newborn anthropometric measurements. Mothers and offspring will be followed annually with serial measurements of diet and physical activity, growth trajectory, and adiposity. Discussion There is an urgent need to understand maternal and child factors that underlie the early development of adiposity and type 2 diabetes in Aboriginal people. The information generated from this cohort will assist the Six Nations community in developing interventions to prevent early adiposity in Aboriginal children. PMID:23800270

  11. Regulation of adipogenesis by paracrine factors from adipose stromal-vascular fraction - a link to fat depot-specific differences.

    PubMed

    Meissburger, Bettina; Perdikari, Aliki; Moest, Hansjörg; Müller, Sebastian; Geiger, Matthias; Wolfrum, Christian

    2016-09-01

    Visceral and subcutaneous adipose tissue depots have distinct features and contribute differentially to the development of metabolic dysfunction. We show here that adipocyte differentiation in subcutaneous stromal-vascular fraction (SVF) is increased compared to visceral SVF, however this increased differentiation capacity seems not to be due to changes in the number of adipocyte precursor cells. Rather, we demonstrate that secreted heat-sensitive factors from the SVF can inhibit adipocyte differentiation and that this effect is higher in visceral than in subcutaneous SVF, suggesting that visceral SVF is a source of secreted factors that can inhibit adipocyte formation. In order to explore secreted proteins that potentially inhibit differentiation in visceral preadipocytes we analyzed the secretome of both SVFs which led to the identification of 113 secreted proteins with an overlap of 42%. Further expression analysis in both depots revealed 16 candidates that were subsequently analyzed in a differentiation screen using an adenoviral knockdown system. From this analysis we were able to identify two potential inhibitory candidates, namely decorin (Dcn) and Sparc-like 1 (Sparcl1). We could show that ablation of either candidate enhanced adipogenesis in visceral preadipocytes, while treatment of primary cultures with recombinant Sparcl1 and Dcn blocked adipogenesis in a dose dependent manner. In conclusion, our data suggests that the differences in adipogenesis between depots might be due to paracrine and autocrine feedback mechanisms which could in turn contribute to metabolic homeostasis. PMID:27317982

  12. Repair of osteochondral defects with adipose stem cells and a dual growth factor-releasing scaffold in rabbits.

    PubMed

    Im, Gun-Il; Lee, Jin Ho

    2010-02-01

    The purpose of this work was to evaluate the in vivo effectiveness of a TGF-beta(2) and bone morphogenetic protein (BMP)-7-immobilized porous polycaprolactone (PCL)/F127 scaffold to enhance the healing of cartilage defect. An osteochondral defect was created on the patellar groove of the right distal femur of 12 rabbits and managed by one of the following methods: filling it with the scaffold only (Group I); the scaffold seeded with adipose stem cells (ASCs) (Group II); a TGF-beta(2) and BMP-7-immobilized scaffold (Group III); and a TGF-beta(2) and BMP-7-immobilized scaffold seeded with ASCs (Group IV). Each group had three rabbits. Nine weeks after the implantation, the implanted scaffolds were filled with yellowish, dense tissue, and had distinct margins with adjacent normal cartilage. The histological findings showed infiltration of foreign-body giant cells and blood vessel, more prominently in Groups III and IV. The presence of growth factor significantly increased the ICRS Macroscopic Score (p = 0.045) while the presence of ASC did not. The ICRS Visual Histological Score was not significantly affected by the presence of either growth factors or ASCs, showing similar values in all groups. In conclusion, the use of TGF-beta(2) and BMP-7-immobilized PCL/F127 scaffolds improved gross appearances of the osteochondral defects while not actually leading to better histological results and induced a greater degree of foreign body reaction. PMID:19957354

  13. Plasma FGF21 Concentrations, Adipose Fibroblast Growth Factor Receptor-1 and β-Klotho Expression Decrease with Fasting in Northern Elephant Seals

    PubMed Central

    Suzuki, Miwa; Lee, Andrew; Vázquez-Medina, Jose Pablo; Viscarra, Jose A.; Crocker, Daniel E.; Ortiz, Rudy M.

    2015-01-01

    Fibroblast growth factor (FGF)-21 is secreted from the liver, pancreas, and adipose in response to prolonged fasting/starvation to facilitate lipid and glucose metabolism. Northern elephant seals naturally fast for several months, maintaining a relatively elevated metabolic rate to satisfy their energetic requirements. Thus, to better understand the impact of prolonged food deprivation on FGF21-associated changes, we analyzed the expression of FGF21, FGF receptor-1 (FGFR1), β-klotho (KLB; a co-activator of FGFR) in adipose, and plasma FGF21, glucose and 3-hydroxybutyrate in fasted elephant seal pups. Expression of FGFR1 and KLB mRNA decreased 98% and 43%, respectively, with fasting duration. While the 80% decrease in mean adipose FGF21 mRNA expression with fasting did not reach statistical significance, it paralleled the 39% decrease in plasma FGF21 concentrations suggesting that FGF21 is suppressed with fasting in elephant seals. Data demonstrate an atypical response of FGF21 to prolonged fasting in a mammal suggesting that FGF21-mediated mechanisms have evolved differentially in elephant seals. Furthermore, the typical fasting-induced, FGF21-mediated actions such as the inhibition of lipolysis in adipose may not be required in elephant seals as part of a naturally adapted mechanism to support their unique metabolic demands during prolonged fasting. PMID:25857751

  14. Plasma FGF21 concentrations, adipose fibroblast growth factor receptor-1 and β-klotho expression decrease with fasting in northern elephant seals.

    PubMed

    Suzuki, Miwa; Lee, Andrew Y; Vázquez-Medina, José Pablo; Viscarra, Jose A; Crocker, Daniel E; Ortiz, Rudy M

    2015-05-15

    Fibroblast growth factor (FGF)-21 is secreted from the liver, pancreas, and adipose in response to prolonged fasting/starvation to facilitate lipid and glucose metabolism. Northern elephant seals naturally fast for several months, maintaining a relatively elevated metabolic rate to satisfy their energetic requirements. Thus, to better understand the impact of prolonged food deprivation on FGF21-associated changes, we analyzed the expression of FGF21, FGF receptor-1 (FGFR1), β-klotho (KLB; a co-activator of FGFR) in adipose, and plasma FGF21, glucose and 3-hydroxybutyrate in fasted elephant seal pups. Expression of FGFR1 and KLB mRNA decreased 98% and 43%, respectively, with fasting duration. While the 80% decrease in mean adipose FGF21 mRNA expression with fasting did not reach statistical significance, it paralleled the 39% decrease in plasma FGF21 concentrations suggesting that FGF21 is suppressed with fasting in elephant seals. Data demonstrate an atypical response of FGF21 to prolonged fasting in a mammal suggesting that FGF21-mediated mechanisms have evolved differentially in elephant seals. Furthermore, the typical fasting-induced, FGF21-mediated actions such as the inhibition of lipolysis in adipose may not be required in elephant seals as part of a naturally adapted mechanism to support their unique metabolic demands during prolonged fasting. PMID:25857751

  15. Increased Visceral Adipose Tissue as a Potential Risk Factor in Patients with Embolic Stroke of Undetermined Source (ESUS)

    PubMed Central

    Muuronen, Antti T.; Taina, Mikko; Hedman, Marja; Marttila, Jarkko; Kuusisto, Johanna; Onatsu, Juha; Vanninen, Ritva; Jäkälä, Pekka; Sipola, Petri; Mustonen, Pirjo

    2015-01-01

    Purpose The etiology of an ischemic stroke remains undetermined in 20–35% of cases and many patients do not have any of the conventional risk factors. Increased visceral adipose tissue (VAT) is a suggested new risk factor for both carotid artery atherosclerosis (CAA) and atrial fibrillation (AF), but its role in the remaining stroke population is unknown. We assessed the amount of VAT in patients with embolic stroke of undetermined source (ESUS) after excluding major-risk cardioembolic sources, occlusive atherosclerosis, and lacunar stroke. Methods Altogether 58 patients (mean age 57.7±10.2 years, 44 men) with ischemic stroke of unknown etiology but without CAA, known AF or small vessel disease underwent computed tomography angiography and assessment of VAT. For comparison VAT values from three different reference populations were used. Conventional risk factors (smoking, hypertension, diabetes, increased total and LDL-cholesterol, decreased HDL-cholesterol) were also registered. Results Mean VAT area was significantly higher in stroke patients (205±103 cm2 for men and 168±99 cm2 for women) compared to all reference populations (P<0.01). 50% of male and 57% of female patients had an increased VAT area. In male patients, VAT was significantly higher despite similar body mass index (BMI). Increased VAT was more common than any of the conventional risk factors. Conclusion Increased VAT was found in over half of our patients with ESUS suggesting it may have a role in the pathogenesis of thromboembolism in this selected group of patients. PMID:25756793

  16. Transcription factor PU.1 is expressed in white adipose and inhibits adipocyte differentiation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PU.1 transcription factor is a critical regulator of hematopoiesis and leukemogenesis. Because PU.1 interacts with transcription factors GATA-2 and C/EBPa, both of which are involved in the regulation of adipogenesis, we investigated whether PU.1 also plays a role in the regulation of adipocyte diff...

  17. Age-Related Yield of Adipose-Derived Stem Cells Bearing the Low-Affinity Nerve Growth Factor Receptor

    PubMed Central

    González-Garza, Maria Teresa; Cardenas-Lopez, Alejandro; Chavez-Castilla, Luis; Cruz-Vega, Delia Elva; Moreno-Cuevas, Jorge E.

    2013-01-01

    Adipose-derived stem cells (ADSCs) are a heterogeneous cell population that may be enriched by positive selection with antibodies against the low-affinity nerve growth factor receptor (LNGFR or CD271), yielding a selective cell universe with higher proliferation and differentiation potential. This paper addresses the need for determining the quantity of ADSCs positive for the CD271 receptor and its correlation with donor's age. Mononuclear cells were harvested from the lower backs of 35 female donors and purified using magnetic beads. Multipotency capacity was tested by the expression of stemness genes and through differentiation into preosteoblasts and adipocytes. A significant statistical difference was found in CD271+ concentrations between defined age intervals. The highest yield was found within women on the 30–40-year-old age range. CD271+ ADSCs from all age groups showed differentiation capabilities as well as expression of typical multipotent stem cell genes. Our data suggest that the amount of CD271+ cells correlates inversely with age. However, the ability to obtain these cells was maintained through all age ranges with a yield higher than what has been reported from bone marrow. Our findings propose CD271+ ADSCs as the primary choice for tissue regeneration and autologous stem cell therapies in older subjects. PMID:24376462

  18. Hip Osteoarthritis in Dogs: A Randomized Study Using Mesenchymal Stem Cells from Adipose Tissue and Plasma Rich in Growth Factors

    PubMed Central

    Cuervo, Belen; Rubio, Monica; Sopena, Joaquin; Dominguez, Juan Manuel; Vilar, Jose; Morales, Manuel; Cugat, Ramón; Carrillo, Jose Maria

    2014-01-01

    Purpose: The aim of this study was to compare the efficacy and safety of a single intra-articular injection of adipose mesenchymal stem cells (aMSCs) versus plasma rich in growth factors (PRGF) as a treatment for reducing symptoms in dogs with hip osteoarthritis (OA). Methods: This was a randomized, multicenter, blinded, parallel group. Thirty-nine dogs with symptomatic hip OA were assigned to one of the two groups, to receive aMSCs or PRGF. The primary outcome measures were pain and function subscales, including radiologic assessment, functional limitation and joint mobility. The secondary outcome measures were owners’ satisfaction questionnaire, rescue analgesic requirement and overall safety. Data was collected at baseline, then, 1, 3 and 6 months post-treatment. Results: OA degree did not vary within groups. Functional limitation, range of motion (ROM), owner’s and veterinary investigator visual analogue scale (VAS), and patient’s quality of life improved from the first month up to six months. The aMSCs group obtained better results at 6 months. There were no adverse effects during the study. Our findings show that aMSCs and PRGF are safe and effective in the functional analysis at 1, 3 and 6 months; provide a significant improvement, reducing dog’s pain, and improving physical function. With respect to basal levels for every parameter in patients with hip OA, aMSCs showed better results at 6 months. PMID:25089877

  19. Transgenerational Glucose Intolerance of Tumor Necrosis Factor with Epigenetic Alteration in Rat Perirenal Adipose Tissue Induced by Intrauterine Hyperglycemia

    PubMed Central

    Su, Rina; Yan, Jie; Yang, Huixia

    2016-01-01

    Changes in DNA methylation may play a role in the genetic mechanism underlying glucose intolerance in the offspring of mothers with diabetes. Here, we established a rat model of moderate intrauterine hyperglycemia induced by streptozotocin to detect glucose and lipid metabolism of first-generation (F1) and second-generation (F2) offspring. Moderate intrauterine hyperglycemia induced high body weight in F1 and F2 offspring of diabetic mothers. F1 offspring had impaired glucose tolerance and abnormal insulin level. Additionally, F1 and F2 offspring that were exposed to intrauterine hyperglycemia had impaired insulin secretion from the islets. The tumor necrosis factor (Tnf) gene was upregulated in perirenal adipose tissue from F1 offspring and relatively increased in F2 offspring. Both F1 and F2 offspring showed similar hypomethylation level at the −1952 site of Tnf. We confirmed that DNA methylation occurs in offspring exposed to intrauterine hyperglycemia and that the DNA methylation is intergenerational and inherited. PMID:26881249

  20. Adipose differentiation-related protein is not involved in hypoxia inducible factor-1-induced lipid accumulation under hypoxia

    PubMed Central

    SHEN, GUOMIN; NING, NING; ZHAO, XINGSHENG; LIU, XI; WANG, GUANGYU; WANG, TIANZHEN; ZHAO, RAN; YANG, CHAO; WANG, DONGMEI; GONG, PINGYUAN; SHEN, YAN; SUN, YONGJIAN; ZHAO, XIAO; JIN, YINJI; YANG, WEIWEI; HE, YAN; ZHANG, LEI; JIN, XIAOMING; LI, XIAOBO

    2015-01-01

    Increasing evidence has showed that hypoxia inducible factor-1 (HIF1) has an important role in hypoxia-induced lipid accumulation, a common feature of solid tumors; however, its role remains to be fully elucidated. Adipose differentiation-related protein (ADRP), a structural protein of lipid droplets, is found to be upregulated under hypoxic conditions. In the present study, an MCF7 breast cancer cell line was used to study the role of ADRP in hypoxia-induced lipid accumulation. It was demonstrated that hypoxia induced the gene expression of ADRP in a HIF1-dependent manner. Increases in the mRNA and protein levels of ADRP was accompanied by increased HIF1A activity. In addition, a significant decrease in the mRNA and protein levels of ADRP were detected in presence of siRNA targeting HIF1A. Using a dual-luciferase reporting experiment and chromatin immunoprecipitation assay, the present study demonstrated that ADRP is a direct target gene of HIF1, and identified a functional hypoxia response element localized 33 bp upstream of the transcriptional start site of the ADRP gene. Furthermore, the present study demonstrated the role of ADRP in low density liporotein (LDL) and very-LDL uptake-induced lipid accumulation under hypoxia. The knockdown of ADRP did not reduce HIF1-induced lipid accumulation under hypoxia. Together, these results showed that ADRP may be not involved in HIF1-induced lipid accumulation. PMID:26498183

  1. Tumor Necrosis Factor Improves Vascularization in Osteogenic Grafts Engineered with Human Adipose-Derived Stem/Stromal Cells

    PubMed Central

    Hutton, Daphne L.; Kondragunta, Renu; Moore, Erika M.; Hung, Ben P.; Jia, Xiaofeng; Grayson, Warren L.

    2014-01-01

    The innate immune response following bone injury plays an important role in promoting cellular recruitment, revascularization, and other repair mechanisms. Tumor necrosis factor-α (TNF) is a prominent pro-inflammatory cytokine in this cascade, and has been previously shown to improve bone formation and angiogenesis in a dose- and timing-dependent manner. This ability to positively impact both osteogenesis and vascular growth may benefit bone tissue engineering, as vasculature is essential to maintaining cell viability in large grafts after implantation. Here, we investigated the effects of exogenous TNF on the induction of adipose-derived stem/stromal cells (ASCs) to engineer pre-vascularized osteogenic tissue in vitro with respect to dose, timing, and co-stimulation with other inflammatory mediators. We found that acute (2-day), low-dose exposure to TNF promoted vascularization, whereas higher doses and continuous exposure inhibited vascular growth. Co-stimulation with platelet-derived growth factor (PDGF), another key factor released following bone injury, increased vascular network formation synergistically with TNF. ASC-seeded grafts were then cultured within polycaprolactone-fibrin composite scaffolds and implanted in nude rats for 2 weeks, resulting in further tissue maturation and increased angiogenic ingrowth in TNF-treated grafts. VEGF-A expression levels were significantly higher in TNF-treated grafts immediately prior to implantation, indicating a long-term pro-angiogenic effect. These findings demonstrate that TNF has the potential to promote vasculogenesis in engineered osteogenic grafts both in vitro and in vivo. Thus, modulation and/or recapitulation of the immune response following bone injury may be a beneficial strategy for bone tissue engineering. PMID:25248109

  2. Bioengineering Beige Adipose Tissue Therapeutics.

    PubMed

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  3. Bioengineering Beige Adipose Tissue Therapeutics

    PubMed Central

    Tharp, Kevin M.; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  4. A longitudinal analysis of the effects of socioeconomic factors, foreign media, and attitude toward appearance on general and central adiposity in Chinese adolescents

    PubMed Central

    Felicitas, Jamie Q.; Tanenbaum, Hilary C.; Li, Yawen; Chou, Chih-Ping; Palmer, Paula H.; Spruijt-Metz, Donna; Reynolds, Kim D.; Johnson, C. Anderson; Xie, Bin

    2015-01-01

    This paper explores the longitudinal effects of socioeconomic factors (i.e., parent education and family income level), foreign media, and attitude toward appearance on general and central adiposity among Chinese adolescents. A longitudinal analysis was performed using data from the China Seven Cities Study, a health promotion and smoking prevention study conducted in seven cities across Mainland China between 2002 and 2005. Participants included 5,020 middle and high school students and their parents. Explanatory variables included foreign media exposure, attitude toward appearance, parent education, and family income. Three-level, random-effect models were used to predict general adiposity (i.e., body mass index) and central adiposity (i.e., waist circumference). The Generalized Estimating Equation approach was utilized to determine the effect of explanatory variables on overweight status. Among girls, foreign media exposure was significantly negatively associated with general adiposity over time (β = − 0.06, p = 0.01 for middle school girls; β = − 0.06, p = 0.03 for high school girls). Attitude toward appearance was associated with lesser odds of being overweight, particularly among high school girls (OR = 0.86, p < 0.01). Among boys, parental education was significantly positively associated with general adiposity (β = 0.62, p < 0.01 for middle school boys; β = 0.37, p = 0.02 for high school boys) and associated with greater odds of being overweight (OR = 1.55, p < 0.01 for middle school boys; OR = 1.26, p = 0.04 for high school boys). Across all gender and grade levels, family income was significantly negatively associated with central adiposity over time. Interventions addressing Chinese adolescent overweight/obesity should consider these factors as potential focus areas. PMID:26279973

  5. Adipose tissue extract promotes adipose tissue regeneration in an adipose tissue engineering chamber model.

    PubMed

    Lu, Zijing; Yuan, Yi; Gao, Jianhua; Lu, Feng

    2016-05-01

    An adipose tissue engineering chamber model of spontaneous adipose tissue generation from an existing fat flap has been described. However, the chamber does not completely fill with adipose tissue in this model. Here, the effect of adipose tissue extract (ATE) on adipose tissue regeneration was investigated. In vitro, the adipogenic and angiogenic capacities of ATE were evaluated using Oil Red O and tube formation assays on adipose-derived stem cells (ASCs) and rat aortic endothelial cells (RAECs), respectively. In vivo, saline or ATE was injected into the adipose tissue engineering chamber 1 week after its implantation. At different time points post-injection, the contents were morphometrically, histologically, and immunohistochemically evaluated, and the expression of growth factors and adipogenic genes was analyzed by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR. With the exception of the baseline control group, in which fat flaps were not inserted into a chamber, the total volume of fat flap tissue increased significantly in all groups, especially in the ATE group. Better morphology and structure, a thinner capsule, and more vessels were observed in the ATE group than in the control group. Expression of angiogenic growth factors and adipogenic markers were significantly higher in the ATE group. ATE therefore significantly promoted adipose tissue regeneration and reduced capsule formation in an adipose tissue engineering chamber model. These data suggest that ATE provides a more angiogenic and adipogenic microenvironment for adipose tissue formation by releasing various cytokines and growth factors that also inhibit capsule formation. PMID:26678825

  6. Hepatocyte growth factor-modified adipose tissue-derived stem cells improve erectile function in streptozotocin-induced diabetic rats.

    PubMed

    Liu, Tao; Peng, Yifeng; Jia, Chao; Fang, Xiang; Li, Jing; Zhong, Wan

    2015-01-01

    TGFβ1-Smad signaling pathway is closely related to various tissues fibrosis. Hepatocyte growth factor (HGF) has been shown to antagonize TGFβ1-Smad signaling and may improve kidney tissue fibrosis in diabetic models. Penile fibrosis is a pathological condition which occurs during diabetic erectile dysfunction (ED). The aim of this study was to examine the effect of the treatment of ED in diabetic rats with a combination of HGF and adipose tissue-derived stem cells (ADSC). In this diabetes model, rats were injected intraperitoneally with 60 mg streptozotocin (STZ) to induce diabetes. Three months later, the diabetic rats were divided into a negative control(NC) group, an ADSC-treated group and an ADSC + HGF-treated group while normal rats were assigned into a sham group. Rats in the sham and NC groups were injected in the corpus cavernosum with phosphate-buffered saline, while rats in the other groups were injected with either ADSC or ADSC + HGF. One month later, erectile function was examined in each group and penile tissues were collected for experiments. The expression of smooth muscle actin (SMA) and platelet-endothelial cell adhesion molecule-1 (PECAM-1) was analyzed by Western blotting. The smooth muscle and collagen deposition in corpus cavernosum was evaluated by Masson staining, while endothelial changes were assessed immunohistochemically. Cell apoptosis was detected by the TdT-mediated dUTP nick-end labeling (TUNEL) assay. The results revealed that ADSC alone can significantly improve erectile function in diabetic rats, but in combination with HGF the improvement was more prominent, showing higher content of smooth muscle and endothelial cells and lower cell apoptotic index in corpus cavernosum. Treatment with HGF can significantly enhance the beneficial effect of ADSC on erectile function in diabetic rats, and this effect might be closely related to the down-regulation of TGFβ1-Smad signaling. PMID:26339935

  7. Stromal cell-derived factor-1 promotes human adipose tissue-derived stem cell survival and chronic wound healing

    PubMed Central

    LI, QIANG; GUO, YANPING; CHEN, FEIFEI; LIU, JING; JIN, PEISHENG

    2016-01-01

    Adipose tissue-derived stem cells (ADSCs) hold great potential for the stem cell-based therapy of cutaneous wound healing. Stromal cell-derived factor-1 (SDF-1) activates CXC chemokine receptor (CXCR)4+ and CXCR7+ cells and plays an important role in wound healing. Increasing evidence suggests a critical role for SDF-1 in cell apoptosis and the survival of mesenchymal stem cells. However, the function of SDF-1 in the apoptosis and wound healing ability of ADSCs is not well understood. The aim of this study was to analyze the effect of SDF-1 on the apoptosis and therapeutic effect of ADSCs in cutaneous chronic wounds in vitro and in vivos. By flow cytometric analysis, it was found that hypoxia and serum free promoted the apoptosis of ADSCs. When pretreated with SDF-1, the apoptosis of ADSCs induced by hypoxia and serum depletion was partly recovered. Furthermore, in vivo experiments established that the post-implantation cell survival and chronic wound healing ability of ADSCs were increased following pretreatment with SDF-1 in a diabetic mouse model of chronic wound healing. To explore the potential mechanism underlying the effect of SDF-1 on ADSC apoptosis, western blot analysis was employed and the results indicate that SDF-1 may protect against cell apoptosis in hypoxic and serum-free conditions through activation of the caspase signaling pathway in ADSCs. This study provides evidence that SDF-1 pretreatment can increase the therapeutic effect of ADSCs in cutaneous chronic wounds in vitro and in vivo. PMID:27347016

  8. Stimulated release of a hyperpolarizing factor (ADHF) from mesenteric artery perivascular adipose tissue: involvement of myocyte BKCa channels and adiponectin

    PubMed Central

    Weston, A H; Egner, I; Dong, Y; Porter, E L; Heagerty, A M; Edwards, G

    2013-01-01

    Background and Purpose Perivascular adipose tissue (PVAT) releases adipocyte-derived hyperpolarizing factors (ADHFs) that may partly act by opening myocyte K+ channels. The present study in rat and mouse mesenteric arteries aimed to identify the myocyte K+ channel activated by PVAT and to determine whether adiponectin contributed to the hyperpolarizing effects of PVAT. Experimental Approach Myocyte membrane potential was recorded from de-endothelialized, non-contracted rat and mouse mesenteric arteries in the presence and absence of PVAT. Key Results The β3-adrenoceptor agonist, CL-316,243 (10 μM), generated PVAT-dependent, iberiotoxin-sensitive myocyte hyperpolarizations resulting from BKCa channel opening and which were partially blocked by L-NMMA (100 μM). Adiponectin (5 μg·mL−1) also produced iberiotoxin-sensitive hyperpolarizations in PVAT-denuded arterioles. Activation of myocyte AMP-activated protein kinase (AMPK) using 5 μM A-769662 also induced BKCa-mediated hyperpolarizations. Dorsomorphin abolished hyperpolarizations to CL-316,243, adiponectin and A-769662. In vessels from Adipo−/− mice, hyperpolarizations to CL-316,243 were absent whereas those to A-769662 and adiponectin were normal. In rat vessels, adipocyte-dependent hyperpolarizations were blocked by glibenclamide and clotrimazole but those to NS1619 (33 μM) were unaltered. Conclusions and Implications Under basal, non-contracted conditions, β3-adrenoceptor stimulation of PVAT releases an ADHF, which is probably adiponectin. This activates AMPK to open myocyte BKCa channels indirectly and additionally liberates NO, which also contributes to the observed PVAT-dependent myocyte hyperpolarizations. Clotrimazole and glibenclamide each reversed hyperpolarizations to adiponectin and A-769662, suggesting the involvement of myocyte TRPM4 channels in the ADHF-induced myocyte electrical changes mediated via the opening of BKCa channels. PMID:23488724

  9. Adiposity, Obesity, and Arterial Aging

    PubMed Central

    Shipley, Martin J.; Ahmadi-Abhari, Sara; Tabak, Adam G.; McEniery, Carmel M.; Wilkinson, Ian B.; Marmot, Michael G.; Singh-Manoux, Archana; Kivimaki, Mika

    2015-01-01

    We sought to determine whether adiposity in later midlife is an independent predictor of accelerated stiffening of the aorta. Whitehall II study participants (3789 men; 1383 women) underwent carotid-femoral applanation tonometry at the mean age of 66 and again 4 years later. General adiposity by body mass index, central adiposity by waist circumference and waist:hip ratio, and fat mass percent by body impedance were assessed 5 years before and at baseline. In linear mixed models adjusted for age, sex, ethnicity, and mean arterial pressure, all adiposity measures were associated with aortic stiffening measured as increase in pulse wave velocity (PWV) between baseline and follow-up. The associations were similar in the metabolically healthy and unhealthy, according to Adult Treatment Panel-III criteria excluding waist circumference. C-reactive protein and interleukin-6 levels accounted for part of the longitudinal association between adiposity and PWV change. Adjusting for chronic disease, antihypertensive medication and risk factors, standardized effects of general and central adiposity and fat mass percent on PWV increase (m/s) were similar (0.14, 95% confidence interval: 0.05–0.24, P=0.003; 0.17, 0.08–0.27, P<0.001; 0.14, 0.05–0.22, P=0.002, respectively). Previous adiposity was associated with aortic stiffening independent of change in adiposity, glycaemia, and lipid levels across PWV assessments. We estimated that the body mass index–linked PWV increase will account for 12% of the projected increase in cardiovascular risk because of high body mass index. General and central adiposity in later midlife were strong independent predictors of aortic stiffening. Our findings suggest that adiposity is an important and potentially modifiable determinant of arterial aging. PMID:26056335

  10. Very low density lipoprotein receptor (VLDLR) expression is a determinant factor in adipose tissue inflammation and adipocyte-macrophage interaction.

    PubMed

    Nguyen, Andrew; Tao, Huan; Metrione, Michael; Hajri, Tahar

    2014-01-17

    Obesity is associated with adipose tissue remodeling, characterized by adipocyte hypertrophy and macrophage infiltration. Previously, we have shown that very low density lipoprotein receptor (VLDLR) is virtually absent in preadipocytes but is strongly induced during adipogenesis and actively participates in adipocyte hypertrophy. In this study, we investigated the role of VLDLR in adipose tissue inflammation and adipocyte-macrophage interactions in wild type and VLDLR-deficient mice fed a high fat diet. The results show that VLDLR deficiency reduced high fat diet-induced inflammation and endoplasmic reticulum (ER) stress in adipose tissue in conjunction with reduced macrophage infiltration, especially those expressing pro-inflammatory markers. In adipocyte culture, VLDLR deficiency prevented adipocyte hypertrophy and strongly reduced VLDL-induced ER stress and inflammation. Likewise, cultures of primary peritoneal macrophages show that VLDLR deficiency reduced lipid accumulation and inflammation but did not alter chemotactic response of macrophages to adipocyte signals. Moreover, VLDLR deficiency tempered the synergistic inflammatory interactions between adipocytes and macrophages in a co-culture system. Collectively, these results show that VLDLR contributes to adipose tissue inflammation and mediates VLDL-induced lipid accumulation and induction of inflammation and ER stress in adipocytes and macrophages. PMID:24293365

  11. High Prevalence of Abdominal, Intra-Abdominal and Subcutaneous Adiposity and Clustering of Risk Factors among Urban Asian Indians in North India

    PubMed Central

    Bhardwaj, Swati; Misra, Anoop; Misra, Ranjita; Goel, Kashish; Bhatt, Surya Prakash; Rastogi, Kavita; Vikram, Naval K.; Gulati, Seema

    2011-01-01

    Objective To assess the prevalence of abdominal obesity including intra-abdominal and subcutaneous adiposity along with other cardiometabolic risk factors in urban Asian Indians living in New Delhi. Methods We conducted a cross-sectional epidemiological descriptive study with 459 subjects (217 males and 242 females), representing all socio-economic strata in New Delhi. The anthropometric profile [body mass index (BMI), waist circumference (WC) and skinfold thickness], fasting blood glucose (FBG) and lipid profile were recorded. Percent body fat (%BF), total abdominal fat (TAF), intra-abdominal adipose tissue (IAAT) and subcutaneous abdominal adipose tissue (SCAT) were quantified using predictive equations for Asian Indians. Results The overall prevalence of obesity was high [by BMI (>25 kg/m2), 50.1%]. The prevalence of abdominal obesity (as assessed by WC) was 68.9%, while that assessed by TAF was 70.8%. Increased IAAT was significantly higher in females (80.6%) as compared to males (56.7%) (p = 0.00) with overall prevalence being 69.3%. The overall prevalence of high SCAT was 67.8%, more in males (69.1%) vs. females (66.5%, p = 0.5). The prevalence of type 2 diabetes, the metabolic syndrome and hypertension was 8.5%, 45.3% and 29.2%, respectively. Hypertriglyceridemia, hypercholesterolemia and low levels of HDL-c were prevalent in 42.7%, 26.6% and 37% of the subjects, respectively. The prevalence of hypertriglyceridemia was significantly higher in males (p = 0.007); however, low levels of HDL-c were more prevalent in females as compared to males (p = 0.00). Conclusion High prevalence of generalized obesity, abdominal obesity (by measurement of WC, TAF, IAAT and SCAT) and dysmetabolic state in urban Asian Indians in north India need immediate public health intervention. PMID:21949711

  12. Adipose tissues and thyroid hormones

    PubMed Central

    Obregon, Maria-Jesus

    2014-01-01

    The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases). The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT) with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. “Brite” or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs) that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2, and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that lead to activation of UCP1 in WAT

  13. Conversion of Adipose Tissue-Derived Mesenchymal Stem Cells to Neural Stem Cell-Like Cells by a Single Transcription Factor, Sox2

    PubMed Central

    Qin, Yiren; Zhou, Chikai; Wang, Nianhong; Yang, Hao

    2015-01-01

    Abstract Adipose tissue is an attractive source of easily accessible adult candidate cells for regenerative medicine. Adipose tissue–derived mesenchymal stem cells (ADSCs) have multipotency and strong proliferation and differentiation capabilities in vitro. However, as mesodermal multipotent stem cells, whether the ADSCs can convert into induced neural stem cells (NSCs) has so far not been demonstrated. In this study, we found that normally the naïve ADSCs cultured as either monolayer or spheres in NSC medium did not express Sox2 and Pax6 genes and proteins, and could not differentiate to neuron-like cells. However, when we introduced the Sox2 gene into ADSCs by retrovirus, they exhibited a typical NSC-like morphology, and could be passaged continuously, and expressed NSC specific markers Sox2 and Pax6. In addition, the ADSC-derived NSC-like cells displayed the ability to differentiate into neuron-like cells when switched to the differentiation culture medium, expressing neuronal markers, including Tuj1 and MAP2 genes and proteins. Our results suggest the ADSCs can be converted into induced NSC-like cells with a single transcription factor Sox2. This finding could provide another alternative cell source for cell therapy of neurological disorders. PMID:26053521

  14. Calciotropic hormones and lipolysis of human adipose tissue: role of extracellular calcium as conditioning but not regulating factor.

    PubMed

    Ziegler, R; Jobst, W; Minne, H; Faulhaber, J D

    1980-01-01

    The influences of different calcium concentrations (0, 0.924 and 2.772 mMol/l) on lipolysis of in vitro incubated human adipose tissue slices or adipocytes were studied under the conditions of stimulation with isoproterenol and parathyroid hormone preparations or inhibition by insulin. Extractive bovine PTH (as well as synthetic PTH 1--34) stimulated glycerol release in a biphasic pattern similarly to isoproterenol; PTH was about half as potent as isoproterenol. The optimal conditions for lipolysis were observed using a calcium concentration of 0.924 mMol/l, whereas lipolysis was distinctly impaired at concentrations of 0 or 2.772 mMol/l; this was true for basal as well as isoproterenol- and PTH stimulated lipolysis or the inhibitory effect of insulin. In contrast to partially purified extractive calcitonin, pure synthetic calcitonin did not inhibit lipolysis. Isoproterenol- and PTH-administrations led to cAMP accumulation in the adipose tissue, this process was also diminished at the non-optimal calcium concentrations. The results suggest a conditioning, but not a regulating significance of extracellular calcium for lipolysis, whereas the importance of the lipolytic potency of PTH remains to be elucidated. PMID:6245862

  15. Grafting and Early Expression of Growth Factors from Adipose-Derived Stem Cells Transplanted into the Cochlea, in a Guinea Pig Model of Acoustic Trauma

    PubMed Central

    Fetoni, Anna Rita; Lattanzi, Wanda; Eramo, Sara Letizia Maria; Barba, Marta; Paciello, Fabiola; Moriconi, Chiara; Rolesi, Rolando; Michetti, Fabrizio; Troiani, Diana; Paludetti, Gaetano

    2014-01-01

    Noise exposure causes damage of multiple cochlear cell types producing permanent hearing loss with important social consequences. In mammals, no regeneration of either damaged hair cells or auditory neurons has been observed and no successful treatment is available to achieve a functional recovery. Loads of evidence indicate adipose-derived stem cells (ASCs) as promising tools in diversified regenerative medicine applications, due to the high degree of plasticity and trophic features. This study was aimed at identifying the path of in vivo cell migration and expression of trophic growth factors, upon ASCs transplantation into the cochlea, following noise-induced injury. ASCs were isolated in primary culture from the adipose tissue of a guinea pig, transduced using a viral vector to express the green fluorescent protein, and implanted into the scala tympani of deafened animals. Auditory function was assessed 3 and 7 days after surgery. The expression of trophic growth factors was comparatively analyzed using real-time PCR in control and noise-injured cochlear tissues. Immunofluorescence was used to assess the in vivo localization and expression of trophic growth factors in ASCs and cochleae, 3 and 7 days following homologous implantation. ASC implantation did not modify auditory function. ASCs migrated from the perilymphatic to the endolymphatic compartment, during the analyzed time course. Upon noise exposure, the expression of chemokine ligands and receptors related to the PDGF, VEGF, and TGFbeta pathways, increased in the cochlear tissues, possibly guiding in vivo cell migration. Immunofluorescence confirmed the increased expression, which appeared to be further strengthened by ASCs’ implantation. These results indicated that ASCs are able to migrate at the site of tissue damage and express trophic factors, upon intracochlear implantation, providing an original proof of principle, which could pave the way for further developments of ASC-based treatments of

  16. Grafting and early expression of growth factors from adipose-derived stem cells transplanted into the cochlea, in a Guinea pig model of acoustic trauma.

    PubMed

    Fetoni, Anna Rita; Lattanzi, Wanda; Eramo, Sara Letizia Maria; Barba, Marta; Paciello, Fabiola; Moriconi, Chiara; Rolesi, Rolando; Michetti, Fabrizio; Troiani, Diana; Paludetti, Gaetano

    2014-01-01

    Noise exposure causes damage of multiple cochlear cell types producing permanent hearing loss with important social consequences. In mammals, no regeneration of either damaged hair cells or auditory neurons has been observed and no successful treatment is available to achieve a functional recovery. Loads of evidence indicate adipose-derived stem cells (ASCs) as promising tools in diversified regenerative medicine applications, due to the high degree of plasticity and trophic features. This study was aimed at identifying the path of in vivo cell migration and expression of trophic growth factors, upon ASCs transplantation into the cochlea, following noise-induced injury. ASCs were isolated in primary culture from the adipose tissue of a guinea pig, transduced using a viral vector to express the green fluorescent protein, and implanted into the scala tympani of deafened animals. Auditory function was assessed 3 and 7 days after surgery. The expression of trophic growth factors was comparatively analyzed using real-time PCR in control and noise-injured cochlear tissues. Immunofluorescence was used to assess the in vivo localization and expression of trophic growth factors in ASCs and cochleae, 3 and 7 days following homologous implantation. ASC implantation did not modify auditory function. ASCs migrated from the perilymphatic to the endolymphatic compartment, during the analyzed time course. Upon noise exposure, the expression of chemokine ligands and receptors related to the PDGF, VEGF, and TGFbeta pathways, increased in the cochlear tissues, possibly guiding in vivo cell migration. Immunofluorescence confirmed the increased expression, which appeared to be further strengthened by ASCs' implantation. These results indicated that ASCs are able to migrate at the site of tissue damage and express trophic factors, upon intracochlear implantation, providing an original proof of principle, which could pave the way for further developments of ASC-based treatments of

  17. Minireview: adiposity, inflammation, and atherogenesis.

    PubMed

    Lyon, Christopher J; Law, Ronald E; Hsueh, Willa A

    2003-06-01

    Adipose tissue is a dynamic endocrine organ that secretes a number of factors that are increasingly recognized to contribute to systemic and vascular inflammation. Several of these factors, collectively referred to as adipokines, have now been shown regulate, directly or indirectly, a number of the processes that contribute to the development of atherosclerosis, including hypertension, endothelial dysfunction, insulin resistance, and vascular remodeling. Several adipokines are preferentially expressed in visceral adipose tissue, and the secretion of proinflammatory adipokines is elevated with increasing adiposity. Not surprisingly, approaches that reduce adipose tissue depots, including surgical fat removal, exercise, and reduced caloric intake, improve proinflammatory adipokine levels and reduce the severity of their resultant pathologies. Systemic adipokine levels can also be favorably altered by treatment with several of the existing drug classes used to treat insulin resistance, hypertension, and hypercholesterolemia. Greater understanding of adipokine regulation, however, should result in the design of improved treatment strategies to control disease states associated with increase adiposity, an important outcome in view of the growing worldwide epidemic of obesity. PMID:12746274

  18. The combined effects of matrix stiffness and growth factor immobilization on the bioactivity and differentiation capabilities of adipose-derived stem cells.

    PubMed

    Banks, Jessica M; Mozdzen, Laura C; Harley, Brendan A C; Bailey, Ryan C

    2014-10-01

    Biomaterial designs are increasingly incorporating multiple instructive signals to induce a desired cell response. However, many approaches do not allow orthogonal manipulation of immobilized growth factor signals and matrix stiffness. Further, few methods support patterning of biomolecular signals across a biomaterial in a spatially-selective manner. Here, we report a sequential approach employing carbodiimide crosslinking and benzophenone photoimmobilization chemistries to orthogonally modify the stiffness and immobilized growth factor content of a model collagen-GAG (CG) biomaterial. We subsequently examined the singular and combined effects of bone morphogenetic protein (BMP-2), platelet derived growth factor (PDGF-BB), and CG membrane stiffness on the bioactivity and osteogenic/adipogenic lineage-specific gene expression of adipose derived stem cells, an increasingly popular cell source for regenerative medicine studies. We found that the stiffest substrates direct osteogenic lineage commitment of ASCs regardless of the presence or absence of growth factors, while softer substrates require biochemical cues to direct cell fate. We subsequently describe the use of this approach to create overlapping patterns of growth factors across a single substrate. These results highlight the need for versatile approaches to selectively manipulate the biomaterial microenvironment to identify synergies between biochemical and mechanical cues for a range of regenerative medicine applications. PMID:25085859

  19. Effects of the roughage/concentrate ratio on the expression of angiogenic growth factors in adipose tissue of fattening Wagyu steers.

    PubMed

    Yamada, T; Nakanishi, N

    2012-03-01

    In this experiment, we studied the effects of the dietary roughage/concentrate ratio on the expression of the angiogenic growth factor (VEGF and FGF-2) and the adipogenic transcription factor (C/EBPβ, C/EBPα, and PPARγ) gene in the adipose tissues of Wagyu steers. Steers were fed a high-roughage diet (R group, 35% roughage and 65% concentrate on a TDN basis) or a high-concentrate diet (C group, 10% roughage and 90% concentrate) during the entire fattening period (from 10 to 30months of age) with the same amount of TDN intake between groups. In mesenteric and intermuscular adipocytes, the expression of the angiogenic growth factors was higher in the R group than in the C group. In contrast, the expression of adipogenic transcription factors in the subcutaneous and intramuscular adipocytes was higher in the C group than in the R group. These results indicate that the dietary roughage/concentrate ratio affects the fat depot-specific differences in the angiogenic and adipogenic gene expression pattern. PMID:22133587

  20. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering.

    PubMed

    Huber, Birgit; Czaja, Alina Maria; Kluger, Petra Juliane

    2016-05-01

    The composition of vascularized adipose tissue is still an ongoing challenge as no culture medium is available to supply adipocytes and endothelial cells appropriately. Endothelial cell medium is typically supplemented with epidermal growth factor (EGF) as well as hydrocortisone (HC). The effect of EGF on adipocytes is discussed controversially. Some studies say it inhibits adipocyte differentiation while others reported of improved adipocyte lipogenesis. HC is known to have lipolytic activities, which might result in mature adipocyte dedifferentiation. In this study, we evaluated the influence of EGF and HC on the co-culture of endothelial cells and mature adipocytes regarding their cell morphology and functionality. We showed in mono-culture that high levels of HC promoted dedifferentiation and proliferation of mature adipocytes, whereas EGF seemed to have no negative influence. Endothelial cells kept their typical cobblestone morphology and showed a proliferation rate comparable to the control independent of EGF and HC concentration. In co-culture, HC promoted dedifferentiation of mature adipocytes, which was shown by a higher glycerol release. EGF had no negative impact on adipocyte morphology. No negative impact on endothelial cell morphology and functionality could be seen with reduced EGF and HC supplementation in co-culture with mature adipocytes. Taken together, our results demonstrate that reduced levels of HC are needed for co-culturing mature adipocytes and endothelial cells. In co-culture, EGF had no influence on mature adipocytes. Therefore, for the composition of vascularized adipose tissue constructs, the media with low levels of HC and high or low levels of EGF can be used. PMID:26888598

  1. Differences in Muscle and Adipose Tissue Gene Expression and Cardio-Metabolic Risk Factors in the Members of Physical Activity Discordant Twin Pairs

    PubMed Central

    Leskinen, Tuija; Rinnankoski-Tuikka, Rita; Rintala, Mirva; Seppänen-Laakso, Tuulikki; Pöllänen, Eija; Alen, Markku; Sipilä, Sarianna; Kaprio, Jaakko; Kovanen, Vuokko; Rahkila, Paavo; Orešič, Matej; Kainulainen, Heikki; Kujala, Urho M.

    2010-01-01

    High physical activity/aerobic fitness predicts low morbidity and mortality. Our aim was to identify the most up-regulated gene sets related to long-term physical activity vs. inactivity in skeletal muscle and adipose tissues and to obtain further information about their link with cardio-metabolic risk factors. We studied ten same-sex twin pairs (age range 50–74 years) who had been discordant for leisure-time physical activity for 30 years. The examinations included biopsies from m. vastus lateralis and abdominal subcutaneous adipose tissue. RNA was analyzed with the genome-wide Illumina Human WG-6 v3.0 Expression BeadChip. For pathway analysis we used Gene Set Enrichment Analysis utilizing active vs. inactive co-twin gene expression ratios. Our findings showed that among the physically active members of twin pairs, as compared to their inactive co-twins, gene expression in the muscle tissue samples was chronically up-regulated for the central pathways related to energy metabolism, including oxidative phosphorylation, lipid metabolism and supportive metabolic pathways. Up-regulation of these pathways was associated in particular with aerobic fitness and high HDL cholesterol levels. In fat tissue we found physical activity-associated increases in the expression of polyunsaturated fatty acid metabolism and branched-chain amino acid degradation gene sets both of which associated with decreased ‘high-risk’ ectopic body fat and plasma glucose levels. Consistent with other findings, plasma lipidomics analysis showed up-regulation of the triacylglycerols containing the polyunsaturated fatty acids. Our findings identified skeletal muscle and fat tissue pathways which are associated with the long-term physical activity and reduced cardio-metabolic disease risk, including increased aerobic fitness. In particular, improved skeletal muscle oxidative energy and lipid metabolism as well as changes in adipocyte function and redistribution of body fat are associated with

  2. Cinnamon extract regulates plasma levels of adipose-derived factors and expression of multiple genes related to carbohydrate metabolism and lipogenesis in adipose tissue of fructose-fed rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We reported previously that a dietary cinnamon extract (CE) improves systemic insulin sensitivity and dyslipidemia by enhancing insulin signaling. In the present study, we examined the effects of CE on several biomarkers including plasma levels of adipose-derived adipokines, and the potential molec...

  3. c-Jun NH2-Terminal Kinase Activity in Subcutaneous Adipose Tissue but Not Nuclear Factor-κB Activity in Peripheral Blood Mononuclear Cells Is an Independent Determinant of Insulin Resistance in Healthy Individuals

    PubMed Central

    Sourris, Karly C.; Lyons, Jasmine G.; de Courten, Maximilian P.J.; Dougherty, Sonia L.; Henstridge, Darren C.; Cooper, Mark E.; Hage, Michelle; Dart, Anthony; Kingwell, Bronwyn A.; Forbes, Josephine M.; de Courten, Barbora

    2009-01-01

    OBJECTIVE Chronic low-grade activation of the immune system (CLAIS) predicts type 2 diabetes via a decrease in insulin sensitivity. Our study investigated potential relationships between nuclear factor-κB (NF-κB) and c-Jun NH2-terminal kinase (JNK) pathways—two pathways proposed as the link between CLAIS and insulin resistance. RESEARCH DESIGN AND METHODS Adiposity (dual-energy X-ray absorptiometry), waist-to-hip ratio (WHR), and insulin sensitivity (M, hyperinsulinemic-euglycemic clamp) were measured in 22 healthy nondiabetic volunteers (aged 29 ± 11 years, body fat 28 ± 11%). NF-κB activity (DNA-binding assay) and JNK1/2 activity (phosphorylated JNK) were assessed in biopsies of the vastus lateralis muscle and subcutaneous adipose tissue and in peripheral blood mononuclear cell (PBMC) lysates. RESULTS NF-κB activities in PBMCs and muscle were positively associated with WHR after adjustment for age, sex, and percent body fat (both P < 0.05). NF-κB activity in PBMCs was inversely associated with M after adjustment for age, sex, percent body fat, and WHR (P = 0.02) and explained 16% of the variance of M. There were no significant relationships between NF-κB activity and M in muscle or adipose tissue (both NS). Adipose-derived JNK1/2 activity was not associated with obesity (all P> 0.1), although it was inversely related to M (r = −0.54, P < 0.05) and explained 29% of its variance. When both NF-κB and JNK1/2 were examined statistically, only JNK1/2 activity in adipose tissue was a significant determinant of insulin resistance (P = 0.02). CONCLUSIONS JNK1/2 activity in adipose tissue but not NF-κB activity in PBMCs is an independent determinant of insulin resistance in healthy individuals. PMID:19258436

  4. Adipose tissue: cell heterogeneity and functional diversity.

    PubMed

    Esteve Ràfols, Montserrat

    2014-02-01

    There are two types of adipose tissue in the body whose function appears to be clearly differentiated. White adipose tissue stores energy reserves as fat, whereas the metabolic function of brown adipose tissue is lipid oxidation to produce heat. A good balance between them is important to maintain energy homeostasis. The concept of white adipose tissue has radically changed in the past decades, and is now considered as an endocrine organ that secretes many factors with autocrine, paracrine, and endocrine functions. In addition, we can no longer consider white adipose tissue as a single tissue, because it shows different metabolic profiles in its different locations, with also different implications. Although the characteristic cell of adipose tissue is the adipocyte, this is not the only cell type present in adipose tissue, neither the most abundant. Other cell types in adipose tissue described include stem cells, preadipocytes, macrophages, neutrophils, lymphocytes, and endothelial cells. The balance between these different cell types and their expression profile is closely related to maintenance of energy homeostasis. Increases in adipocyte size, number and type of lymphocytes, and infiltrated macrophages are closely related to the metabolic syndrome diseases. The study of regulation of proliferation and differentiation of preadipocytes and stem cells, and understanding of the interrelationship between the different cell types will provide new targets for action against these diseases. PMID:23834768

  5. Dynamic compression of rabbit adipose-derived stem cells transfected with insulin-like growth factor 1 in chitosan/gelatin scaffolds induces chondrogenesis and matrix biosynthesis.

    PubMed

    Li, Jianjun; Zhao, Qun; Wang, Enbo; Zhang, Chuanhui; Wang, Guangbin; Yuan, Quan

    2012-05-01

    Articular cartilage is routinely subjected to mechanical forces and growth factors. Adipose-derived stem cells (ASCs) are multi-potent adult stem cells and capable of chondrogenesis. In the present study, we investigated the comparative and interactive effects of dynamic compression and insulin-like growth factor-I (IGF-I) on the chondrogenesis of rabbit ASCs in chitosan/gelatin scaffolds. Rabbit ASCs with or without a plasmid overexpressing of human IGF-1 were cultured in chitosan/gelatin scaffolds for 2 days, then subjected to cyclic compression with 5% strain and 1 Hz for 4 h per day for seven consecutive days. Dynamic compression induced chondrogenesis of rabbit ASCs by activating calcium signaling pathways and up-regulating the expression of Sox-9. Dynamic compression plus IGF-1 overexpression up-regulated expression of chondrocyte-specific extracellular matrix genes including type II collagen, Sox-9, and aggrecan with no effect on type X collagen expression. Furthermore, dynamic compression and IGF-1 expression promoted cellular proliferation and the deposition of proteoglycan and collagen. Intracellular calcium ion concentration and peak currents of Ca(2+) ion channels were consistent with chondrocytes. The tissue-engineered cartilage from this process had excellent mechanical properties. When applied together, the effects achieved by the two stimuli (dynamic compression and IGF-1) were greater than those achieved by either stimulus alone. Our results suggest that dynamic compression combined with IGF-1 overexpression might benefit articular cartilage tissue engineering in cartilage regeneration. PMID:21751209

  6. Adipocyte-Specific Hypoxia-Inducible Factor 2α Deficiency Exacerbates Obesity-Induced Brown Adipose Tissue Dysfunction and Metabolic Dysregulation

    PubMed Central

    Alexaki, Vasileia I.; Qin, Nan; Rubín de Celis, María F.; Economopoulou, Matina; Ziogas, Athanasios; Gercken, Bettina; Kotlabova, Klara; Phieler, Julia; Ehrhart-Bornstein, Monika; Bornstein, Stefan R.; Eisenhofer, Graeme; Breier, Georg; Blüher, Matthias; Hampe, Jochen; El-Armouche, Ali; Chatzigeorgiou, Antonios; Chung, Kyoung-Jin

    2015-01-01

    Angiogenesis is a central regulator for white (WAT) and brown (BAT) adipose tissue adaptation in the course of obesity. Here we show that deletion of hypoxia-inducible factor 2α (HIF2α) in adipocytes (by using Fabp4-Cre transgenic mice) but not in myeloid or endothelial cells negatively impacted WAT angiogenesis and promoted WAT inflammation, WAT dysfunction, hepatosteatosis, and systemic insulin resistance in obesity. Importantly, adipocyte HIF2α regulated vascular endothelial growth factor (VEGF) expression and angiogenesis of obese BAT as well as its thermogenic function. Consistently, obese adipocyte-specific HIF2α-deficient mice displayed BAT dysregulation, associated with reduced levels of uncoupling protein 1 (UCP1) and a dysfunctional thermogenic response to cold exposure. VEGF administration reversed WAT and BAT inflammation and BAT dysfunction in adipocyte HIF2α-deficient mice. Together, our findings show that adipocyte HIF2α is protective against maladaptation to obesity and metabolic dysregulation by promoting angiogenesis in both WAT and BAT and by counteracting obesity-mediated BAT dysfunction. PMID:26572826

  7. Preliminary study on non-viral transfection of F9 (factor IX) gene by nucleofection in human adipose-derived mesenchymal stem cells

    PubMed Central

    Olmedillas López, Susana; Garcia-Arranz, Mariano; Garcia-Olmo, Damian

    2016-01-01

    Background. Hemophilia is a rare recessive X-linked disease characterized by a deficiency of coagulation factor VIII or factor IX. Its current treatment is merely palliative. Advanced therapies are likely to become the treatment of choice for the disease as they could provide a curative treatment. Methods. The present study looks into the use of a safe non-viral transfection method based on nucleofection to express and secrete human clotting factor IX (hFIX) where human adipose tissue derived mesenchymal stem cells were used as target cells in vitro studies and NOD. Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice were used to analyze factor IX expression in vivo studies. Previously, acute liver injury was induced by an injected intraperitoneal dose of 500 mg/kg body weight of acetaminophen. Results. Nucleofection showed a percentage of positive cells ranging between 30.7% and 41.9% and a cell viability rate of 29.8%, and cells were shown to secrete amounts of hFIX between 36.8 and 71.9 ng/mL. hFIX levels in the blood of NSG mice injected with ASCs transfected with this vector, were 2.7 ng/mL 48 h after injection. Expression and secretion of hFIX were achieved both in vitro cell culture media and in vivo in the plasma of mice treated with the transfected ASCs. Such cells are capable of eventually migrating to a previously damaged target tissue (the liver) where they secrete hFIX, releasing it to the bloodstream over a period of at least five days from administration. Conclusions. The results obtained in the present study may form a preliminary basis for the establishment of a future ex vivo non-viral gene/cellular safe therapy protocol that may eventually contribute to advancing the treatment of hemophilia. PMID:27114871

  8. Do assortative preferences contribute to assortative mating for adiposity?

    PubMed

    Fisher, Claire I; Fincher, Corey L; Hahn, Amanda C; Little, Anthony C; DeBruine, Lisa M; Jones, Benedict C

    2014-11-01

    Assortative mating for adiposity, whereby levels of adiposity in romantic partners tend to be positively correlated, has implications for population health due to the combined effects of partners' levels of adiposity on fertility and/or offspring health. Although assortative preferences for cues of adiposity, whereby leaner people are inherently more attracted to leaner individuals, have been proposed as a factor in assortative mating for adiposity, there have been no direct tests of this issue. Because of this, and because of recent work suggesting that facial cues of adiposity convey information about others' health that may be particularly important for mate preferences, we tested the contribution of assortative preferences for facial cues of adiposity to assortative mating for adiposity (assessed from body mass index, BMI) in a sample of romantic couples. Romantic partners' BMIs were positively correlated and this correlation was not due to the effects of age or relationship duration. However, although men and women with leaner partners showed stronger preferences for cues of low levels of adiposity, controlling for these preferences did not weaken the correlation between partners' BMIs. Indeed, own BMI and preferences were uncorrelated. These results suggest that assortative preferences for facial cues of adiposity contribute little (if at all) to assortative mating for adiposity. PMID:24168811

  9. Exercise regulation of adipose tissue.

    PubMed

    Stanford, Kristin I; Goodyear, Laurie J

    2016-01-01

    Exercise training results in adaptations to numerous organ systems and offers protection against metabolic disorders including obesity and type 2 diabetes, and recent reports suggest that adipose tissue may play a role in these beneficial effects of exercise on overall health. Multiple studies have investigated the effects of exercise training on both white adipose tissue (WAT) and brown adipose tissue (BAT), as well as the induction of beige adipocytes. Studies from both rodents and humans show that there are exercise training-induced changes in WAT including decreased cell size and lipid content, and increased mitochondrial activity. In rodents, exercise training causes an increased beiging of WAT. Whether exercise training causes a beiging of human scWAT, as well as which factors contribute to the exercise-induced beiging of WAT are areas of current investigation. Studies investigating the effects of exercise training on BAT mass and function have yielded conflicting data, and hence, is another area of intensive investigation. This review will focus on studies aimed at elucidating the mechanisms regulating exercise training induced-adaptations to adipose tissue. PMID:27386159

  10. Modifiable early-life risk factors for childhood adiposity and overweight: an analysis of their combined impact and potential for prevention1234

    PubMed Central

    Crozier, Sarah R; Harvey, Nicholas C; Barton, Benjamin D; Law, Catherine M; Godfrey, Keith M; Cooper, Cyrus; Inskip, Hazel M

    2015-01-01

    Background: Early life may be a “critical period” when appetite and regulation of energy balance are programmed, with lifelong consequences for obesity risk. Insight into the potential impact of modifying early-life risk factors on later obesity can be gained by evaluating their combined effects. Objective: The objective was to examine the relation between the number of early-life risk factors and obesity outcomes among children in a prospective birth cohort (Southampton Women's Survey). Design: Five risk factors were defined: maternal obesity [prepregnant body mass index (BMI; in kg/m2) >30], excess gestational weight gain (Institute of Medicine, 2009), smoking during pregnancy, low maternal vitamin D status (<64 nmol/L), and short duration of breastfeeding (none or <1 mo). Obesity outcomes examined when the children were aged 4 and 6 y were BMI, dual-energy X-ray absorptiometry–assessed fat mass, overweight, or obesity (International Obesity Task Force). Data were available for 991 mother-child pairs, with children born between 1998 and 2003. Results: Of the children, 148 (15%) had no early-life risk factors, 330 (33%) had 1, 296 (30%) had 2, 160 (16%) had 3, and 57 (6%) had 4 or 5. At both 4 and 6 y, there were positive graded associations between number of early-life risk factors and each obesity outcome (all P < 0.001). After taking account of confounders, the relative risk of being overweight or obese for children who had 4 or 5 risk factors was 3.99 (95% CI: 1.83, 8.67) at 4 y and 4.65 (95% CI: 2.29, 9.43) at 6 y compared with children who had none (both P < 0.001). Conclusions: Having a greater number of early-life risk factors was associated with large differences in adiposity and risk of overweight and obesity in later childhood. These findings suggest that early intervention to change these modifiable risk factors could make a significant contribution to the prevention of childhood obesity. PMID:25646335

  11. Programmed Application of Transforming Growth Factor β3 and Rac1 Inhibitor NSC23766 Committed Hyaline Cartilage Differentiation of Adipose-Derived Stem Cells for Osteochondral Defect Repair

    PubMed Central

    Zhu, Shouan; Chen, Pengfei; Wu, Yan; Xiong, Si; Sun, Heng; Xia, Qingqing; Shi, Libing

    2014-01-01

    Hyaline cartilage differentiation is always the challenge with application of stem cells for joint repair. Transforming growth factors (TGFs) and bone morphogenetic proteins can initiate cartilage differentiation but often lead to hypertrophy and calcification, related to abnormal Rac1 activity. In this study, we developed a strategy of programmed application of TGFβ3 and Rac1 inhibitor NSC23766 to commit the hyaline cartilage differentiation of adipose-derived stem cells (ADSCs) for joint cartilage repair. ADSCs were isolated and cultured in a micromass and pellet culture model to evaluate chondrogenic and hypertrophic differentiation. The function of Rac1 was investigated with constitutively active Rac1 mutant and dominant negative Rac1 mutant. The efficacy of ADSCs with programmed application of TGFβ3 and Rac1 inhibitor for cartilage repair was studied in a rat model of osteochondral defects. The results showed that TGFβ3 promoted ADSCs chondro-lineage differentiation and that NSC23766 prevented ADSC-derived chondrocytes from hypertrophy in vitro. The combination of ADSCs, TGFβ3, and NSC23766 promoted quality osteochondral defect repair in rats with much less chondrocytes hypertrophy and significantly higher International Cartilage Repair Society macroscopic and microscopic scores. The findings have illustrated that programmed application of TGFβ3 and Rac1 inhibitor NSC23766 can commit ADSCs to chondro-lineage differentiation and improve the efficacy of ADSCs for cartilage defect repair. These findings suggest a promising stem cell-based strategy for articular cartilage repair. PMID:25154784

  12. Effect of an Adipose-Derived Stem Cell and Nerve Growth Factor-Incorporated Hydrogel on Recovery of Erectile Function in a Rat Model of Cavernous Nerve Injury

    PubMed Central

    Kim, In Gul; Piao, Shuyu; Lee, Ji Young; Hong, Sung Hoo; Hwang, Tae-Kon; Kim, Sae Woong; Kim, Choung Soo; Ra, Jeong Chan; Noh, Insup

    2013-01-01

    Postprostatectomy erectile dysfunction (ED) is the major problem for patients with clinically localized prostate cancer. Recently, gene and stem cell-based therapy of the corpus cavernosum has been attempted for postprostatectomy ED, but those therapies are limited by rapid blood flow and disruption of the normal architecture of the corpus cavernosum. In this study, we attempted to regenerate the damaged cavernous nerve (CN), which is the main cause of ED. We investigated the effectiveness of human adipose-derived stem cell (hADSC) and nerve growth factor-incorporated hyaluronic acid-based hydrogel (NGF-hydrogel) application on the CN in a rat model of bilateral cavernous nerve crush injury. Four weeks after the operation, erectile function was assessed by detecting the intracavernous pressure (ICP)/arterial pressure level by CN electrostimulation. The ICP was significantly increased by application of hADSC with NGF-hydrogel compared to the other experimental groups. CN and penile tissue were collected for histological examination. PKH-26 labeled hADSC colocalized with beta III tubulin were shown in CN tissue sections. hADSC/NGF-hydrogel treatment prevented smooth muscle atrophy in the corpus cavernosum. In addition, the hADSC/NGF-hydrogel group showed increased endothelial nitric oxide synthase protein expression. This study suggests that application of hADSCs with NGF-hydrogel on the CN might be a promising treatment for postprostatectomy ED. PMID:22834730

  13. Neurotrophic Effect of Adipose Tissue-Derived Stem Cells on Erectile Function Recovery by Pigment Epithelium-Derived Factor Secretion in a Rat Model of Cavernous Nerve Injury

    PubMed Central

    Chen, Xin; Yang, Qiyun; Zheng, Tao; Bian, Jun; Sun, Xiangzhou; Shi, Yanan; Liang, Xiaoyan; Gao, Guoquan; Liu, Guihua; Deng, Chunhua

    2016-01-01

    The paracrine effect is the major mechanism of stem cell therapy. However, the details of the effect's mechanism remain unknown. The aim of this study is to investigate whether adipose tissue-derived stem cells (ADSCs) can ameliorate cavernous nerve injury-induced erectile dysfunction (CNIED) rats and to determine its mechanism. Twenty-eight days after intracavernous injection of 5-ethynyl-2-deoxyuridine- (EdU-) labeled ADSCs, the erectile function of all the rats was evaluated by intracavernosal pressure (ICP). The ADSCs steadily secreted detectable pigment epithelium-derived factor (PEDF) in vitro. The expression of PEDF increased in the penis of the bilateral cavernous nerve injury (BCNI) group for 14 days and then gradually decreased. On day 28 after the intracavernous injection, the ADSCs group exhibited a significantly increased ICP compared with the phosphate buffered saline- (PBS-) treated group. Moreover, the neuronal nitric oxide synthase (nNOS) and S100 expression in penile dorsal nerves and the smooth muscle content to collagen ratio in penile tissues significantly increased. Furthermore, elevated PEDF, p-Akt, and p-eNOS were identified in the ADSCs group. This study demonstrated that intracavernous injection of ADSCs improved erectile function, repaired the nerve, and corrected penile fibrosis. One potential mechanism is the PEDF secretion of ADSCs and subsequent PI3K/Akt pathway activation. PMID:26783403

  14. Influence of high-normal serum TSH levels on major cardiovascular risk factors and Visceral Adiposity Index in euthyroid type 2 diabetic subjects.

    PubMed

    Giandalia, A; Russo, G T; Romeo, E L; Alibrandi, A; Villari, P; Mirto, A A; Armentano, G; Benvenga, S; Cucinotta, D

    2014-09-01

    Although several observations indicate that serum TSH levels in the high normal range are related to cardiovascular (CVD) risk factors in the general population, similar data are limited in diabetic subjects. The aim of this study was to investigate the potential associations between TSH serum levels within the normal range and major metabolic and non-metabolic CVD risk factors in a cohort of euthyroid type 2 diabetic subjects. Thyroid hormones, TSH levels, anthropometric parameters, lipid profile, glucose control, and blood pressure were measured in 490 euthyroid type 2 diabetic subjects, consecutively attending two outpatient diabetic units in Southern Italy. In all subjects, we also calculated the Visceral Adiposity Index (VAI), an obesity-related index associated with CVD risk. Diabetic women showed higher mean serum TSH levels and lower FT4 concentration than diabetic men, while FT3 levels were comparable in the two genders. Stratifying the study population according to quartiles of TSH levels, subjects in the highest TSH quartile were more likely to be female and younger, with higher values of BMI and waist circumference (P = 0.05 both), higher triglycerides (P = 0.002) and non-HDL cholesterol concentrations (P = 0.01), higher VAI values (P = 0.02), and lower FT4 levels (P = 0.05), when compared to those in the lowest quartile. At multivariate analysis, a younger age, female gender, triglycerides levels, and waist circumference were independently associated with higher TSH levels. In conclusion, in type 2 diabetic subjects with no evidence of thyroid disease, higher TSH concentrations within the normal range were more frequent in women and in younger subjects, and they were associated with visceral obesity and higher triglycerides concentrations, two well-known CVD risk factors. PMID:24385267

  15. Post-mortem stability of RNA in skeletal muscle and adipose tissue and the tissue-specific expression of myostatin, perilipin and associated factors in the horse.

    PubMed

    Morrison, Philippa K; Bing, Chen; Harris, Patricia A; Maltin, Charlotte A; Grove-White, Dai; Argo, Caroline McG

    2014-01-01

    Obesity, a major concern for equine welfare, is highly prevalent in the leisure horse population. Skeletal-muscle and adipose tissues are important determinants of maintenance energy requirements. The myostatin and perilipin pathways play key roles in the regulation of muscle mass and lipolysis respectively and have both been associated with obesity predisposition in other mammalian species. High quality samples, suitable for molecular biology, are an essential prerequisite for detailed investigations of gene and protein expression. Hence, this study has evaluated a) the post-mortem stability of RNA extracted from skeletal-muscle and adipose-tissues collected under commercial conditions and b) the tissue-specific presence of myostatin, the moystatin receptor (activin receptor IIB, ActRIIB), follistatin and perilipin, genes and proteins across a range of equine tissues. Objectives were addressed using tissues from 7 Thoroughbred horses presented for slaughter at a commercial abattoir; a) samples were collected at 7 time-points from Masseter muscle and perirenal adipose from 5 minutes to 6 hours post-mortem. Extracted RN was appraised by Optical Density analysis and agarose-gel electrophoresis. b) Quantitative real time PCR and Western Blotting were used to evaluate gene and protein expression in anatomically-defined samples collected from 17 tissues (6 organs, 4 skeletal muscles and 7 discrete adipose depots). The results indicate that, under the present collection conditions, intact, good quality RNA could be extracted from skeletal-muscle for up to 2 hours post-mortem. However, RNA from adipose tissue may be more susceptible to degradation/contamination and samples should be collected no later than 30 minutes post-mortem. The data also show that myostatin and ActRIIB genes and proteins were almost exclusively expressed in skeletal muscle. The follistatin gene showed a more diverse gene expression profile, with expression evident in several organs, adipose tissue

  16. Post-Mortem Stability of RNA in Skeletal Muscle and Adipose Tissue and the Tissue-Specific Expression of Myostatin, Perilipin and Associated Factors in the Horse

    PubMed Central

    Morrison, Philippa K.; Bing, Chen; Harris, Patricia A.; Maltin, Charlotte A.; Grove-White, Dai; Argo, Caroline McG.

    2014-01-01

    Obesity, a major concern for equine welfare, is highly prevalent in the leisure horse population. Skeletal-muscle and adipose tissues are important determinants of maintenance energy requirements. The myostatin and perilipin pathways play key roles in the regulation of muscle mass and lipolysis respectively and have both been associated with obesity predisposition in other mammalian species. High quality samples, suitable for molecular biology, are an essential prerequisite for detailed investigations of gene and protein expression. Hence, this study has evaluated a) the post-mortem stability of RNA extracted from skeletal-muscle and adipose-tissues collected under commercial conditions and b) the tissue-specific presence of myostatin, the moystatin receptor (activin receptor IIB, ActRIIB), follistatin and perilipin, genes and proteins across a range of equine tissues. Objectives were addressed using tissues from 7 Thoroughbred horses presented for slaughter at a commercial abattoir; a) samples were collected at 7 time-points from Masseter muscle and perirenal adipose from 5 minutes to 6 hours post-mortem. Extracted RN was appraised by Optical Density analysis and agarose-gel electrophoresis. b) Quantitative real time PCR and Western Blotting were used to evaluate gene and protein expression in anatomically-defined samples collected from 17 tissues (6 organs, 4 skeletal muscles and 7 discrete adipose depots). The results indicate that, under the present collection conditions, intact, good quality RNA could be extracted from skeletal-muscle for up to 2 hours post-mortem. However, RNA from adipose tissue may be more susceptible to degradation/contamination and samples should be collected no later than 30 minutes post-mortem. The data also show that myostatin and ActRIIB genes and proteins were almost exclusively expressed in skeletal muscle. The follistatin gene showed a more diverse gene expression profile, with expression evident in several organs, adipose tissue

  17. Chemical and genetic blockade of HDACs enhances osteogenic differentiation of human adipose tissue-derived stem cells by oppositely affecting osteogenic and adipogenic transcription factors.

    PubMed

    Maroni, Paola; Brini, Anna Teresa; Arrigoni, Elena; de Girolamo, Laura; Niada, Stefania; Matteucci, Emanuela; Bendinelli, Paola; Desiderio, Maria Alfonsina

    2012-11-16

    The human adipose-tissue derived stem/stromal cells (hASCs) are an interesting source for bone-tissue engineering applications. Our aim was to clarify in hASCs the role of acetylation in the control of Runt-related transcription factor 2 (Runx2) and Peroxisome proliferator activated receptor (PPAR) γ. These key osteogenic and adipogenic transcription factors are oppositely involved in osteo-differentiation. The hASCs, committed or not towards bone lineage with osteoinductive medium, were exposed to HDACs chemical blockade with Trichostatin A (TSA) or were genetically silenced for HDACs. Alkaline phosphatase (ALP) and collagen/calcium deposition, considered as early and late osteogenic markers, were evaluated concomitantly as index of osteo-differentiation. TSA pretreatment, useful experimental protocol to analyse pan-HDAC-chemical inhibition, and switch to osteogenic medium induced early-osteoblast maturation gene Runx2, while transiently decreased PPARγ and scarcely affected late-differentiation markers. Time-dependent effects were observed after knocking-down of HDAC1 and 3: Runx2 and ALP underwent early activation, followed by late-osteogenic markers increase and by PPARγ/ALP activity diminutions mostly after HDAC3 silencing. HDAC1 and 3 genetic blockade increased and decreased Runx2 and PPARγ target genes, respectively. Noteworthy, HDACs knocking-down favoured the commitment effect of osteogenic medium. Our results reveal a role for HDACs in orchestrating osteo-differentiation of hASCs at transcriptional level, and might provide new insights into the modulation of hASCs-based regenerative therapy. PMID:23085045

  18. Interaction Between Osteoarthritic Chondrocytes and Adipose-Derived Stem Cells Is Dependent on Cell Distribution in Three-Dimension and Transforming Growth Factor-β3 Induction

    PubMed Central

    Lai, Janice H.; Rogan, Heather; Kajiyama, Glen; Goodman, Stuart B.; Smith, R. Lane; Maloney, William

    2015-01-01

    Stem cells hold great promise for treating cartilage degenerative diseases such as osteoarthritis (OA). The efficacy of stem cell-based therapy for cartilage repair is highly dependent on their interactions with local cells in the joint. This study aims at evaluating the interactions between osteoarthritic chondrocytes (OACs) and adipose-derived stem cells (ADSCs) using three dimensional (3D) biomimetic hydrogels. To examine the effects of cell distribution on such interactions, ADSCs and OACs were co-cultured in 3D using three co-culture models: conditioned medium (CM), bi-layered, and mixed co-culture with varying cell ratios. Furthermore, the effect of transforming growth factor (TGF)-β3 supplementation on ADSC–OAC interactions and the resulting cartilage formation was examined. Outcomes were analyzed using quantitative gene expression, cell proliferation, cartilage matrix production, and histology. TGF-β3 supplementation led to a substantial increase in cartilage matrix depositions in all groups, but had differential effects on OAC–ADSC interactions in different co-culture models. In the absence of TGF-β3, CM or bi-layered co-culture had negligible effects on gene expression or cartilage formation. With TGF-β3 supplementation, CM and bi-layered co-culture inhibited cartilage formation by both ADSCs and OACs. In contrast, a mixed co-culture with moderate OAC ratios (25% and 50%) resulted in synergistic interactions with enhanced cartilage matrix deposition and reduced catabolic marker expression. Our results suggested that the interaction between OACs and ADSCs is highly dependent on cell distribution in 3D and soluble factors, which should be taken into consideration when designing stem cell-based therapy for treating OA patients. PMID:25315023

  19. Driving Cartilage Formation in High-Density Human Adipose-Derived Stem Cell Aggregate and Sheet Constructs Without Exogenous Growth Factor Delivery

    PubMed Central

    Dang, Phuong N.; Solorio, Loran D.

    2014-01-01

    An attractive cell source for cartilage tissue engineering, human adipose-derived stem cells (hASCs) can be easily expanded and signaled to differentiate into chondrocytes. This study explores the influence of growth factor distribution and release kinetics on cartilage formation within 3D hASC constructs incorporated with transforming growth factor-β1 (TGF-β1)-loaded gelatin microspheres. The amounts of microspheres, TGF-β1 concentration, and polymer degradation rate were varied within hASC aggregates. Microsphere and TGF-β1 loading concentrations were identified that resulted in glycosaminoglycan (GAG) production comparable to those of control aggregates cultured in TGF-β1-containing medium. Self-assembling hASC sheets were then engineered for the production of larger, more clinically relevant constructs. Chondrogenesis was observed in hASC-only sheets cultured with exogenous TGF-β1 at 3 weeks. Importantly, sheets with incorporated TGF-β1-loaded microspheres achieved GAG production similar to sheets treated with exogenous TGF-β1. Cartilage formation was confirmed histologically via observation of cartilage-like morphology and GAG staining. This is the first demonstration of the self-assembly of hASCs into high-density cell sheets capable of forming cartilage in the presence of exogenous TGF-β1 or with TGF-β1-releasing microspheres. Microsphere incorporation may bypass the need for extended in vitro culture, potentially enabling hASC sheets to be implanted more rapidly into defects to regenerate cartilage in vivo. PMID:24873753

  20. Biochemistry of adipose tissue: an endocrine organ

    PubMed Central

    Coelho, Marisa; Oliveira, Teresa

    2013-01-01

    Adipose tissue is no longer considered to be an inert tissue that stores fat. This tissue is capable of expanding to accommodate increased lipids through hypertrophy of existing adipocytes and by initiating differentiation of pre-adipocytes. Adipose tissue metabolism exerts an impact on whole-body metabolism. As an endocrine organ, adipose tissue is responsible for the synthesis and secretion of several hormones. These are active in a range of processes, such as control of nutritional intake (leptin, angiotensin), control of sensitivity to insulin and inflammatory process mediators (tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), resistin, visfatin, adiponectin, among others) and pathways (plasminogen activator inhibitor 1 (PAI-1) and acylation stimulating protein (ASP) for example). This paper reviews some of the biochemical and metabolic aspects of adipose tissue and its relationship to inflammatory disease and insulin resistance. PMID:23671428

  1. Relationship between the Bertin index to estimate visceral adipose tissue from dual-energy X-ray absorptiometry and cardiometabolic risk factors before and after weight loss.

    PubMed

    Karelis, Antony D; Rabasa-Lhoret, Rémi; Pompilus, Roseline; Messier, Virginie; Strychar, Irene; Brochu, Martin; Aubertin-Leheudre, Mylene

    2012-04-01

    The purpose of this study was to investigate the relationship between visceral adipose tissue (VAT), estimated with the Bertin index obtained from dual-energy X-ray absorptiometry (DXA), with cardiometabolic risk factors before and after a weight loss program and compare it with VAT measured with computed tomography (CT) scan. The study population for this analysis included 92 nondiabetic overweight and obese sedentary postmenopausal women (age: 58.1 ± 4.7 years, BMI: 31.8 ± 4.2 kg/m(2)) participating in a weight loss intervention that consisted of a caloric restricted diet with and without resistance training (RT). We measured (i) VAT using CT scan, (ii) body composition (using DXA) from which the Bertin index was calculated, (iii) cardiometabolic risk factors such as insulin sensitivity (using the hyperinsulinenic-euglycemic clamp technique), peak oxygen consumption, blood pressure, plasma lipids, C-reactive protein as well as fasting glucose and insulin. VAT levels for both methods significantly decreased after the weight loss intervention. Furthermore, no differences in VAT levels between both methods were observed before (88.0 ± 25.5 vs. 83.8 ± 22.0 cm(2)) and after (76.8 ± 27.8 vs. 73.6 ± 23.2 cm(2)) the weight loss intervention. In addition, the percent change in VAT levels after the weight loss intervention was similar between both methods (-13.0 ± 16.5 vs. -12.5 ± 12.6%). Moreover, similar relationships were observed between both measures of VAT with cardiometabolic risk factors before and after the weight loss intervention. Finally, results from the logistic regression analysis consistently showed that fat mass and lean body mass were independent predictors of pre- and post-VAT levels for both methods in our cohort. In conclusion, estimated visceral fat levels using the Bertin index may be able to trace variations of VAT after weight loss. This index also shows comparable relationships with cardiometabolic risk factors when compared to VAT

  2. Fibroblast Growth Factor 21 Improves Insulin Sensitivity and Synergizes with Insulin in Human Adipose Stem Cell-Derived (hASC) Adipocytes

    PubMed Central

    Lee, Darwin V.; Li, Dongmei; Yan, Qingyun; Zhu, Yimin; Goodwin, Bryan; Calle, Roberto; Brenner, Martin B.; Talukdar, Saswata

    2014-01-01

    Fibroblast growth factor 21 (FGF21) has evolved as a major metabolic regulator, the pharmacological administration of which causes weight loss, insulin sensitivity and glucose control in rodents and humans. To understand the molecular mechanisms by which FGF21 exerts its metabolic effects, we developed a human in vitro model of adipocytes to examine crosstalk between FGF21 and insulin signaling. Human adipose stem cell-derived (hASC) adipocytes were acutely treated with FGF21 alone, insulin alone, or in combination. Insulin signaling under these conditions was assessed by measuring tyrosine phosphorylation of insulin receptor (InsR), insulin receptor substrate-1 (IRS-1), and serine 473 phosphorylation of Akt, followed by a functional assay using 14C-2-deoxyglucose [14C]-2DG to measure glucose uptake in these cells. FGF21 alone caused a modest increase of glucose uptake, but treatment with FGF21 in combination with insulin had a synergistic effect on glucose uptake in these cells. The presence of FGF21 also effectively lowered the insulin concentration required to achieve the same level of glucose uptake compared to the absence of FGF21 by 10-fold. This acute effect of FGF21 on insulin signaling was not due to IR, IGF-1R, or IRS-1 activation. Moreover, we observed a substantial increase in basal S473-Akt phosphorylation by FGF21 alone, in contrast to the minimal shift in basal glucose uptake. Taken together, our data demonstrate that acute co-treatment of hASC-adipocytes with FGF21 and insulin can result in a synergistic improvement in glucose uptake. These effects were shown to occur at or downstream of Akt, or separate from the canonical insulin signaling pathway. PMID:25365322

  3. Differential effects of leucine on translation initiation factor activation and protein synthesis in skeletal muscle, renal and adipose tissues of neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In adult rats, protein synthesis in skeletal muscle and adipose tissue increases in response to pharmacological doses of leucine (Leu) administered orally. In neonatal pigs, a physiological increase in plasma leucine stimulates protein synthesis in skeletal muscle without increasing hepatic protein...

  4. Evidence that nesfatin-1 is a satiety factor in the pig and that the hypothalamus controls its expression in adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two experiments (Exp) were conducted to test if nesfatin-1 is part of the adipose tissue-hypothalamic loop regulating appetite and energy balance of the pig. In Exp 1, prepuberal gilts were adapted to a twice-daily feeding schedule (0800 and 1600 h) and received intracerebroventricular (i.c.v.) inje...

  5. TUMOR NECROSIS FACTOR ALPHA AND GLUCOCORTICOID SYNERGISTICALLY INCREASE LEPTIN PRODUCTION IN HUMAN ADIPOSE TISSUE: ROLE FOR P38 MITOGEN-ACTIVATED PROTEIN KINASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TNF increases plasma leptin in humans in vivo, but previous studies showed it decreases leptin in vitro. The objective of this study was to determine the effect of TNF on leptin release from human adipose tissue (AT) from healthy subjects undergoing elective surgery or needle aspirations of AT at a ...

  6. Chemical and genetic blockade of HDACs enhances osteogenic differentiation of human adipose tissue-derived stem cells by oppositely affecting osteogenic and adipogenic transcription factors

    SciTech Connect

    Maroni, Paola; Brini, Anna Teresa; Arrigoni, Elena; Girolamo, Laura de; Niada, Stefania; Matteucci, Emanuela; Bendinelli, Paola; Desiderio, Maria Alfonsina

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Acetylation affected hASCs osteodifferentiation through Runx2-PPAR{gamma}. Black-Right-Pointing-Pointer HDACs knocking-down favoured the commitment effect of osteogenic medium. Black-Right-Pointing-Pointer HDACs silencing early activated Runx2 and ALP. Black-Right-Pointing-Pointer PPAR{gamma} reduction and calcium/collagen deposition occurred later. Black-Right-Pointing-Pointer Runx2/PPAR{gamma} target genes were modulated in line with HDACs role in osteo-commitment. -- Abstract: The human adipose-tissue derived stem/stromal cells (hASCs) are an interesting source for bone-tissue engineering applications. Our aim was to clarify in hASCs the role of acetylation in the control of Runt-related transcription factor 2 (Runx2) and Peroxisome proliferator activated receptor (PPAR) {gamma}. These key osteogenic and adipogenic transcription factors are oppositely involved in osteo-differentiation. The hASCs, committed or not towards bone lineage with osteoinductive medium, were exposed to HDACs chemical blockade with Trichostatin A (TSA) or were genetically silenced for HDACs. Alkaline phosphatase (ALP) and collagen/calcium deposition, considered as early and late osteogenic markers, were evaluated concomitantly as index of osteo-differentiation. TSA pretreatment, useful experimental protocol to analyse pan-HDAC-chemical inhibition, and switch to osteogenic medium induced early-osteoblast maturation gene Runx2, while transiently decreased PPAR{gamma} and scarcely affected late-differentiation markers. Time-dependent effects were observed after knocking-down of HDAC1 and 3: Runx2 and ALP underwent early activation, followed by late-osteogenic markers increase and by PPAR{gamma}/ALP activity diminutions mostly after HDAC3 silencing. HDAC1 and 3 genetic blockade increased and decreased Runx2 and PPAR{gamma} target genes, respectively. Noteworthy, HDACs knocking-down favoured the commitment effect of osteogenic medium. Our results reveal

  7. Short-term exposure to tumor necrosis factor-alpha enables human osteoblasts to direct adipose tissue-derived mesenchymal stem cells into osteogenic differentiation.

    PubMed

    Lu, ZuFu; Wang, Guocheng; Dunstan, Colin R; Zreiqat, Hala

    2012-09-01

    Tumor necrosis factor-alpha (TNF-α) is one major inflammatory factor peaking at 24 h after bone fracture in response to injury; its role in bone healing is controversial. The aims of this study were to investigate whether the duration of exposure to TNF-α is crucial for the initiation of bone regeneration and to determine its underlying mechanism(s). We demonstrated that 24 h of TNF-α treatment significantly abrogated osteocalcin gene expression by human primary osteoblasts (HOBs). However, when TNF-α was withdrawn after 24 h, bone sialoprotein and osteocalcin gene expression levels in HOBs at day 7 were significantly up-regulated compared with the HOBs without TNF-α treatment. In contrast, continuous TNF-α treatment down-regulated bone sialoprotein and osteocalcin gene expression. In addition, in an indirect co-culture system, HOBs pretreated with TNF-α for 24 h induced significantly greater osteogenic differentiation of adipose tissue-derived mesenchymal stem cells (ASCs) than the HOBs without TNF-α treatment. TNF-α treatment also promoted endogenous bone morphogenetic protein 2 (BMP-2) production in HOBs, while blocking the BMP-2 signaling pathway with Noggin inhibited osteogenic differentiation of ASCs in the co-culture system. Furthermore, activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway after TNF-α treatment occurred earlier than BMP-2 protein expression. BMP-2 production by HOBs and osteogenic differentiation of ASCs in the co-culture system with HOBs was significantly decreased when HOBs were pretreated with TNF-α in combination with the p38 MAPK-specific inhibitor (SB203580). Taken together, we provide evidence that exposure duration is a critical element in determining TNF-α's effects on bone regeneration. We also demonstrate that the p38 MAPK signaling pathway regulates the expression of BMP-2 in osteoblasts, which then acts through a paracrine loop, to direct the osteoblast lineage commitment of mesenchymal

  8. Macrophage Elastase Suppresses White Adipose Tissue Expansion with Cigarette Smoking

    PubMed Central

    Tsuji, Takao; Kelly, Neil J.; Takahashi, Saeko; Leme, Adriana S.; McGarry Houghton, A.

    2014-01-01

    Macrophage elastase (MMP12) is a key mediator of cigarette smoke (CS)-induced emphysema, yet its role in other smoking related pathologies remains unclear. The weight suppressing effects of smoking are a major hindrance to cessation efforts, and MMP12 is known to suppress the vascularization on which adipose tissue growth depends by catalyzing the formation of antiangiogenic peptides endostatin and angiostatin. The goal of this study was to determine the role of MMP12 in adipose tissue growth and smoking-related suppression of weight gain. Whole body weights and white adipose depots from wild-type and Mmp12-deficient mice were collected during early postnatal development and after chronic CS exposure. Adipose tissue specimens were analyzed for angiogenic and adipocytic markers and for content of the antiangiogenic peptides endostatin and angiostatin. Cultured 3T3-L1 adipocytes were treated with adipose tissue homogenate to examine its effects on vascular endothelial growth factor (VEGF) expression and secretion. MMP12 content and activity were increased in the adipose tissue of wild-type mice at 2 weeks of age, leading to elevated endostatin production, inhibition of VEGF secretion, and decreased adipose tissue vascularity. By 8 weeks of age, adipose MMP12 levels subsided, and the protein was no longer detectable. However, chronic CS exposure led to macrophage accumulation and restored adipose MMP12 activity, thereby suppressing adipose tissue mass and vascularity. Our results reveal a novel systemic role for MMP12 in postnatal adipose tissue expansion and smoking-associated weight loss by suppressing vascularity within the white adipose tissue depots. PMID:24914890

  9. Brown Adipose Tissue Growth and Development

    PubMed Central

    Symonds, Michael E.

    2013-01-01

    Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP) 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle. PMID:24278771

  10. Novel Approaches to Targeting Visceral and Hepatic Adiposities in HIV-Associated Lipodystrophy.

    PubMed

    Tien, Phyllis C

    2015-12-01

    Visceral and hepatic adiposities have been associated with both cardiovascular and liver disease and are of concern in HIV-infected persons in the modern era of combination antiretroviral therapy (ART). The development of therapeutic targets to reduce visceral and hepatic adiposities in HIV-infected persons has been slow, because of early reports that attributed the excess adiposity to specific antiretroviral drugs. Visceral adiposity was initially thought to occur as part of a protease inhibitor-induced "HIV-associated lipodystrophy syndrome." Subsequent studies show that visceral adiposity is likely a result of effective ART, recovery of health, and the normal aging process. Visceral adiposity is an established risk factor for hepatic adiposity. Identifying drug targets for non-alcoholic fatty liver disease is under active investigation. The present review summarizes the recent literature on the pathogenesis of visceral and hepatic adiposities in HIV-infected persons, current therapeutic strategies, and novel interventions in HIV-infected and uninfected persons. PMID:26493063

  11. Inflammation in depression: is adiposity a cause?

    PubMed Central

    C. Shelton, Richard; H. Miller, Andrew

    2011-01-01

    Mounting evidence indicates that inflammation may play a significant role in the development of depression. Patients with depression exhibit increased inflammatory markers, and administration of cytokines and other inflammatory stimuli can induce depressive symptoms. Mechanisms by which cytokines access the brain and influence neurotransmitter systems relevant to depression have also been described, as have preliminary findings indicating that antagonizing inflammatory pathways may improve depressive symptoms. One primary source of inflammation in depression appears to be adiposity. Adipose tissue is a rich source of inflammatory factors including adipokines, chemokines, and cytokines, and a bidirectional relationship between adiposity and depression has been revealed. Adiposity is associated with the development of depression, and depression is associated with adiposity, reflecting a potentional vicious cycle between these two conditions which appears to center around inflammation. Treatments targeting this vicious cycle may be especially relevant for the treatment and prevention of depression as well as its multiple comorbid disorders such as cardiovascular disease, diabetes, and cancer, all of which have also been associated with both depression and inflammation. PMID:21485745

  12. Habituation to a stressor predicts adolescents' adiposity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and Objectives: Stress is associated with gains in adiposity. One factor that determines how much stress is experienced is how quickly an adolescent reduces responding (habituates) across repeated stressors. The purpose of this study was to determine the association of body mass index pe...

  13. Correlates of adiposity among Latino preschool children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Childhood obesity is at record high levels in the US and disproportionately affects Latino children; however, studies examining Latino preschool children's obesity-related risk factors are sparse. This study determined correlates of Latino preschoolers' (ages 3-5 years) adiposity to inform future ob...

  14. Enzymatic intracrine regulation of white adipose tissue.

    PubMed

    DiSilvestro, David; Petrosino, Jennifer; Aldoori, Ayat; Melgar-Bermudez, Emiliano; Wells, Alexandra; Ziouzenkova, Ouliana

    2014-07-01

    Abdominal fat formation has become a permanent risk factor for metabolic syndrome and various cancers in one-third of the world's population of obese and even lean patients. Formation of abdominal fat involves additional mechanisms beyond an imbalance in energy intake and expenditure, which explains systemic obesity. In this review, we briefly summarized autonomous regulatory circuits that locally produce hormones from inactive precursors or nutrients for intra-/auto-/paracrine signaling in white adipose depots. Enzymatic pathways activating steroid and thyroid hormones in adipose depots were compared with enzymatic production of retinoic acid from vitamin A. We discussed the role of intracrine circuits in fat-depot functions and strategies to reduce abdominal adiposity through thermogenic adipocytes with interrupted generation of retinoic acid. PMID:25390015

  15. Enzymatic intracrine regulation of white adipose tissue

    PubMed Central

    DiSilvestro, David; Petrosino, Jennifer; Aldoori, Ayat; Melgar-Bermudez, Emiliano; Wells, Alexandra; Ziouzenkova, Ouliana

    2015-01-01

    Abdominal fat formation has become a permanent risk factor for metabolic syndrome and various cancers in one-third of the world's population of obese and even lean patients. Formation of abdominal fat involves additional mechanisms beyond an imbalance in energy intake and expenditure, which explains systemic obesity. In this review, we briefly summarized autonomous regulatory circuits that locally produce hormones from inactive precursors or nutrients for intra-/auto-/paracrine signaling in white adipose depots. Enzymatic pathways activating steroid and thyroid hormones in adipose depots were compared with enzymatic production of retinoic acid from vitamin A. We discussed the role of intracrine circuits in fat-depot functions and strategies to reduce abdominal adiposity through thermogenic adipocytes with interrupted generation of retinoic acid. PMID:25390015

  16. Effects of promoting increased duration and exclusivity of breastfeeding on adiposity and insulin-like growth factor-I at age 11.5 years: a randomized trial

    PubMed Central

    Martin, Richard M; Patel, Rita; Kramer, Michael S.; Guthrie, Lauren; Vilchuck, Konstantin; Bogdanovich, Natalia; Sergeichick, Natalia; Gusina, Nina; Foo, Ying; Palmer, Tom; Rifas-Shiman, Sheryl L.; Gillman, Matthew W; Davey Smith, George; Oken, Emily

    2013-01-01

    Importance Evidence that increased duration and exclusivity of breastfeeding reduces child obesity risk is based on observational studies that are prone to confounding. Objective To investigate effects of an intervention to promote increased duration and exclusivity of breastfeeding on child adiposity and circulating insulin-like growth factor (IGF)-I (which regulates growth). Design Cluster-randomized controlled trial. Setting 31 Belarusian maternity hospitals and their affiliated polyclinics, randomized to usual practices (n=15) or a breastfeeding promotion intervention (n=16). Participants 17,046 breastfeeding mother-infant pairs enrolled in 1996/7, of whom 13,879 (81.4%) were followed-up between January 2008 and December 2010 at a median age of 11.5 years. Intervention Breastfeeding promotion intervention modeled on the WHO/UNICEF Baby Friendly Hospital Initiative. Main outcome measures Body mass index (BMI), fat and fat-free mass indices (FMI and FFMI), percent body fat, waist circumference, triceps and subscapular skinfold thicknesses, overweight and obesity, and whole-blood IGF-I. Primary analysis was based on modified intention-to-treat (without imputation), accounting for clustering within hospitals/clinics. Results The experimental intervention substantially increased breastfeeding duration and exclusivity (43% vs. 6% and 7.9% vs. 0.6% exclusively breastfed at 3 and 6 months, respectively) versus the control intervention. Cluster-adjusted mean differences in outcomes at 11.5 years between experimental vs. control groups were: 0.19 kg/m2 (95% 4 CI: −0.09, 0.46) for BMI; 0.12 kg/m2 (−0.03, 0.28) for FMI; 0.04 kg/m2 (−0.11, 0.18) for FFMI; 0.47% (−0.11, 1.05) for % body fat; 0.30 cm (−1.41, 2.01) for waist circumference; −0.07 mm (−1.71, 1.57) for triceps and −0.02 mm (−0.79, 0.75) for subscapular skinfold thicknesses; and −0.02 standard deviations (−0.12, 0.08) for IGF-I. The cluster-adjusted odds ratio for overweight / obesity (BMI

  17. The morphology, proliferation rate, and population doubling time factor of adipose-derived mesenchymal stem cells cultured on to non-aqueous SiO2, TiO2, and hybrid sol-gel-derived oxide coatings.

    PubMed

    Marycz, Krzysztof; Krzak-Roś, Justyna; Donesz-Sikorska, Anna; Śmieszek, Agnieszka

    2014-11-01

    In recent years, much attention has been paid to the development of tissue engineering and regenerative medicine, especially when stem cells of various sources are concerned. In addition to the interest in mesenchymal stem cells isolated from bone marrow, recently more consideration has been given to stem cells isolated from adipose tissue (AdMSCs), due to their less invasive method of collection as well as their ease of isolation and culture. However, the development of regenerative medicine requires both the application of biocompatible material and the stem cells to accelerate the regeneration. In this study, we investigated the morphology, proliferation rate index (PRi), and population doubling time factor of adipose-derived mesenchymal stem cells cultured on non-aqueous sol-gel-derived SiO2, TiO2, and SiO2/TiO2 oxide coatings. The results indicated an increase in PRi of AdMSCs when cultured on to titanium dioxide, suggesting its high attractiveness for AdMSCs. In addition, the proper morphology and the shortest doubling time of AdMSCs were observed when cultured on titanium dioxide coating. PMID:24408867

  18. Role of adipose tissue in haemostasis, coagulation and fibrinolysis.

    PubMed

    Faber, D R; de Groot, Ph G; Visseren, F L J

    2009-09-01

    Obesity is associated with an increased incidence of insulin resistance (IR), type 2 diabetes mellitus and cardiovascular diseases. The increased risk for cardiovascular diseases could partly be caused by a prothrombotic state that exists because of abdominal obesity. Adipose tissue induces thrombocyte activation by the production of adipose tissue-derived hormones, often called adipokines, of which some such as leptin and adiponectin have been shown to directly interfere with platelet function. Increased adipose tissue mass induces IR and systemic low-grade inflammation, also affecting platelet function. It has been demonstrated that adipose tissue directly impairs fibrinolysis by the production of plasminogen activator inhibitor-1 and possibly thrombin-activatable fibrinolysis inhibitor. Adipose tissue may contribute to enhanced coagulation by direct tissue factor production, but hypercoagulability is likely to be primarily caused by affecting hepatic synthesis of the coagulation factors fibrinogen, factor VII, factor VIII and tissue factor, by releasing free fatty acids and pro-inflammatory cytokines (tumour necrosis factor-alpha, interleukin-1beta and interleukin-6) into the portal circulation and by inducing hepatic IR. Adipose tissue dysfunction could thus play a causal role in the prothrombotic state observed in obesity, by directly and indirectly affecting haemostasis, coagulation and fibrinolysis. PMID:19460118

  19. Mechanosensation in an adipose fin.

    PubMed

    Aiello, Brett R; Stewart, Thomas A; Hale, Melina E

    2016-03-16

    Adipose fins are found on approximately 20% of ray-finned fish species. The apparently rudimentary anatomy of adipose fins inspired a longstanding hypothesis that these fins are vestigial and lack function. However, adipose fins have evolved repeatedly within Teleostei, suggesting adaptive function. Recently, adipose fins were proposed to function as mechanosensors, detecting fluid flow anterior to the caudal fin. Here we test the hypothesis that adipose fins are mechanosensitive in the catfish Corydoras aeneus. Neural activity, recorded from nerves that innervate the fin, was shown to encode information on both movement and position of the fin membrane, including the magnitude of fin membrane displacement. Thus, the adipose fin of C. aeneus is mechanosensitive and has the capacity to function as a 'precaudal flow sensor'. These data force re-evaluation of adipose fin clipping, a common strategy for tagging fishes, and inform hypotheses of how function evolves in novel vertebrate appendages. PMID:26984621

  20. Co-methylated genes in different adipose depots of pig are associated with metabolic, inflammatory and immune processes.

    PubMed

    Li, Mingzhou; Wu, Honglong; Wang, Tao; Xia, Yudong; Jin, Long; Jiang, Anan; Zhu, Li; Chen, Lei; Li, Ruiqiang; Li, Xuewei

    2012-01-01

    It is well established that the metabolic risk factors of obesity and its comorbidities are more attributed to adipose tissue distribution rather than total adipose mass. Since emerging evidence suggests that epigenetic regulation plays an important role in the aetiology of obesity, we conducted a genome-wide methylation analysis on eight different adipose depots of three pig breeds living within comparable environments but displaying distinct fat level using methylated DNA immunoprecipitation sequencing. We aimed to investigate the systematic association between anatomical location-specific DNA methylation status of different adipose depots and obesity-related phenotypes. We show here that compared to subcutaneous adipose tissues which primarily modulate metabolic indicators, visceral adipose tissues and intermuscular adipose tissue, which are the metabolic risk factors of obesity, are primarily associated with impaired inflammatory and immune responses. This study presents epigenetic evidence for functionally relevant methylation differences between different adipose depots. PMID:22719223

  1. CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis.

    PubMed

    Park, Jong-Gil; Xu, Xu; Cho, Sungyun; Hur, Kyu Yeon; Lee, Myung-Shik; Kersten, Sander; Lee, Ann-Hwee

    2016-01-01

    Adipose tissue lipolysis produces glycerol and nonesterified fatty acids (NEFA) that serve as energy sources during nutrient scarcity. Adipose tissue lipolysis is tightly regulated and excessive lipolysis causes hepatic steatosis, as NEFA released from adipose tissue constitutes a major source of TG in the liver of patients with nonalcoholic fatty liver diseases. Here we show that the liver-enriched transcription factor CREBH is activated by TG accumulation and induces FGF21, which suppresses adipose tissue lipolysis, ameliorating hepatic steatosis. CREBH-deficient mice developed severe hepatic steatosis due to increased adipose tissue lipolysis, when fasted or fed a high-fat low-carbohydrate ketogenic diet. FGF21 production was impaired in CREBH-deficient mice, and adenoviral overexpression of FGF21 suppressed adipose tissue lipolysis and improved hepatic steatosis in these mice. Thus, our results uncover a negative feedback loop in which CREBH regulates NEFA flux from adipose tissue to the liver via FGF21. PMID:27301791

  2. CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis

    PubMed Central

    Park, Jong-Gil; Xu, Xu; Cho, Sungyun; Hur, Kyu Yeon; Lee, Myung-Shik; Kersten, Sander; Lee, Ann-Hwee

    2016-01-01

    Adipose tissue lipolysis produces glycerol and nonesterified fatty acids (NEFA) that serve as energy sources during nutrient scarcity. Adipose tissue lipolysis is tightly regulated and excessive lipolysis causes hepatic steatosis, as NEFA released from adipose tissue constitutes a major source of TG in the liver of patients with nonalcoholic fatty liver diseases. Here we show that the liver-enriched transcription factor CREBH is activated by TG accumulation and induces FGF21, which suppresses adipose tissue lipolysis, ameliorating hepatic steatosis. CREBH-deficient mice developed severe hepatic steatosis due to increased adipose tissue lipolysis, when fasted or fed a high-fat low-carbohydrate ketogenic diet. FGF21 production was impaired in CREBH-deficient mice, and adenoviral overexpression of FGF21 suppressed adipose tissue lipolysis and improved hepatic steatosis in these mice. Thus, our results uncover a negative feedback loop in which CREBH regulates NEFA flux from adipose tissue to the liver via FGF21. PMID:27301791

  3. More insights into a human adipose tissue GPAT activity assay

    PubMed Central

    Morgan-Bathke, Maria; Chen, Liang; Oberschneider, Elisabeth; Harteneck, Debra; Jensen, Michael D

    2016-01-01

    ABSTRACT Adipose tissue fatty acid storage varies according to sex, adipose tissue depot and degree of fat gain. However, the mechanism(s) for these variations is not completely understood. We recently published findings based on the glycerol 3-phosphate acyltransferase (GPAT) enzyme activity assay we optimized for use with human adipose tissue. These findings include a decrease in total GPAT and GPAT1 as a function of adipocyte size in both omental and subcutaneous adipose tissue and a strong, positive correlations between ACS, GPAT, and DGAT activities for both sexes and depots and between these storage factors and palmitate storage rates into TAG. The aim of this commentary is to expand upon the data from our recent publication. We describe here additional details on the optimization of the GPAT enzyme activity assay, a correlation between DGAT and percentage palmitate in the diacylglycerol fraction, and sex differences in fatty acid storage factors and storage rates into TAG at high palmitate concentrations. PMID:27144101

  4. Independent stem cell lineages regulate adipose organogenesis and adipose homeostasis

    PubMed Central

    Jiang, Yuwei; Berry, Daniel C.; Tang, Wei; Graff, Jonathan M.

    2014-01-01

    Summary Adipose tissues have striking plasticity, highlighted by childhood and adult obesity. Using adipose lineage analyses, smooth muscle actin (SMA)-mural cell fate mapping, and conditional PPARγ deletion to block adipocyte differentiation, we find two phases of adipocyte generation that emanate from two independent adipose progenitor compartments, Developmental and Adult. These two compartments are sequentially required for organ formation and maintenance. Although both Developmental and Adult progenitors are specified during the developmental period and express PPARγ, they have distinct micro-anatomical, functional, morphogenetic and molecular profiles. Further, the two compartments derive from different lineages, while adult adipose progenitors fate map from an SMA+ mural lineage, Developmental progenitors do not. Remarkably, the Adult progenitor compartment appears to be specified earlier than the Developmental cells, and then enters the already developmentally formed adipose depots. Thus, two distinct cell compartments control adipose organ development and organ homeostasis, which may provide discrete therapeutic target for childhood and adult obesity. PMID:25437556

  5. Adipose Tissue - Adequate, Accessible Regenerative Material.

    PubMed

    Kolaparthy, Lakshmi Kanth; Sanivarapu, Sahitya; Moogla, Srinivas; Kutcham, Rupa Sruthi

    2015-11-01

    The potential use of stem cell based therapies for the repair and regeneration of various tissues offers a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. The use of either embryonic stem cells (ESCs) or induced pluripotent stem cells in clinical situations is limited due to cell regulations and to technical and ethical considerations involved in genetic manipulation of human ESCs, even though these cells are highly beneficial. Mesenchymal stem cells seen to be an ideal population of stem cells in particular, Adipose derived stem cells (ASCs) which can be obtained in large number and easily harvested from adipose tissue. It is ubiquitously available and has several advantages compared to other sources as easily accessible in large quantities with minimal invasive harvesting procedure, and isolation of adipose derived mesenchymal stem cells yield a high amount of stem cells which is essential for stem cell based therapies and tissue engineering. Recently, periodontal tissue regeneration using ASCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because various secreted growth factors from ASCs might not only promote the regeneration of periodontal tissues but also encourage neovascularization of the damaged tissues. This review summarizes the sources, isolation and characteristics of adipose derived stem cells and its potential role in periodontal regeneration is discussed. PMID:26634060

  6. Adipose Tissue - Adequate, Accessible Regenerative Material

    PubMed Central

    Kolaparthy, Lakshmi Kanth.; Sanivarapu, Sahitya; Moogla, Srinivas; Kutcham, Rupa Sruthi

    2015-01-01

    The potential use of stem cell based therapies for the repair and regeneration of various tissues offers a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. The use of either embryonic stem cells (ESCs) or induced pluripotent stem cells in clinical situations is limited due to cell regulations and to technical and ethical considerations involved in genetic manipulation of human ESCs, even though these cells are highly beneficial. Mesenchymal stem cells seen to be an ideal population of stem cells in particular, Adipose derived stem cells (ASCs) which can be obtained in large number and easily harvested from adipose tissue. It is ubiquitously available and has several advantages compared to other sources as easily accessible in large quantities with minimal invasive harvesting procedure, and isolation of adipose derived mesenchymal stem cells yield a high amount of stem cells which is essential for stem cell based therapies and tissue engineering. Recently, periodontal tissue regeneration using ASCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because various secreted growth factors from ASCs might not only promote the regeneration of periodontal tissues but also encourage neovascularization of the damaged tissues. This review summarizes the sources, isolation and characteristics of adipose derived stem cells and its potential role in periodontal regeneration is discussed. PMID:26634060

  7. [White adipose tissue dysfunction observed in obesity].

    PubMed

    Lewandowska, Ewa; Zieliński, Andrzej

    2016-05-01

    Obesity is a disease with continuingly increasing prevalence. It occurs worldwide independently of age group, material status or country of origin. At these times the most common reasons for obesity are bad eating habits and dramatic reduction of physical activity, which cause the energy imbalance of organism. Fundamental alteration observed in obese subjects is white adipose tissue overgrowth, which is linked to increased incidence of obesity-related comorbidities, such as: cardiovascular diseases, type 2 diabetes or digestive tract diseases. What is more, obesity is also a risk factor for some cancers. Special risk for diseases linked to excessive weight is associated with overgrowth of visceral type of adipose tissue. Adipose tissue, which is the main energy storehouse in body and acts also as an endocrine organ, undergoes both the morphological and the functional changes in obesity, having a negative impact on whole body function. In this article we summarize the most important alterations in morphology and function of white adipose tissue, observed in obese subjects. PMID:27234867

  8. Tongue Adiposity and Strength in Healthy Older Adults

    PubMed Central

    Butler, Susan G.; Lintzenich, Catherine Rees; Leng, Xiaoyan; Stuart, Andrew; Feng, Xin; Carr, J. Jeffrey; Kritchevsky, Stephen B.

    2012-01-01

    Objectives/Hypothesis To identify treatable risk factors for aspiration in older adults—particularly those associated with sarcopenia – we examined tongue composition. We hypothesized that 1) isometric and swallowing posterior tongue strength would positively correlate with posterior tongue adiposity, and 2) healthy older adults who aspirate would have greater tongue adiposity than healthy older adults who did not aspirate. Study Design Prospective Methods Participants were 40 healthy adults, comprised of 20 aspirators (Mean age = 78 years) and 20 non-aspirators (Mean age = 81 years), as identified via flexible endoscopic evaluation of swallowing. Measures of maximal isometric posterior tongue strength and posterior swallowing tongue strength were acquired via tongue manometry. An index of posterior tongue adiposity was acquired via computed tomography for a 1 cm region of interest. Result(s) Posterior tongue adiposity was correlated with posterior tongue isometric (r = .32, p = 0.05) but not swallowing pressures (p > 0.05) as examined with separate partial correlation analyses. Tongue adiposity did not significantly differ as a function of age, gender, or aspiration status (p > 0.05). Conclusion(s) Lower posterior isometric tongue strength was associated with greater posterior tongue adiposity. However, aspiration in healthy older adults was not affected by posterior tongue adiposity. This finding offers insight into the roles of tongue composition and strength in healthy older adults. PMID:22522371

  9. Perivascular Adipose Tissue

    PubMed Central

    Maille, Nicole; Clas, Darren; Osol, George

    2015-01-01

    Perivascular adipose tissue (PVAT) contributes to vasoregulation. The role of this adipose tissue bed in pregnancy has not been examined. Here, we tested the hypothesis that PVAT in pregnant rats decreases resistance artery tone. Mesenteric arteries from nonpregnant (NP) and late pregnant (LP) rats were exposed to phenylephrine (PHE) or KCl in the presence (+) versus absence (−) of PVAT. The LP PVAT(+) vessels showed a 44% decrease in sensitivity to PHE in the presence of PVAT. There was no attenuation of the contractile response to KCl when PVAT was present. The LP arteries perfused with LP or NP PVAT underwent vasodilation; unexpectedly, NP vessels in the presence of PVAT from LP rats sustained a 48% vasoconstriction. The PVAT attenuates vasoconstriction by a mechanism that involves hyperpolarization. The vasoconstriction observed when nonpregnant vessels were exposed to pregnant PVAT suggests pregnant vessels adapt to the vasoconstricting influence of pregnant PVAT. PMID:25527422

  10. Fibrosis and Adipose Tissue Dysfunction

    PubMed Central

    Sun, Kai; Tordjman, Joan; Clément, Karine; Scherer, Philipp E.

    2013-01-01

    Fibrosis is increasingly appreciated as a major player in adipose tissue dysfunction. In rapidly expanding adipose tissue, pervasive hypoxia leads to an induction of HIF1α that in turn leads to a potent pro-fibrotic transcriptional program. The pathophysiological impact of adipose tissue fibrosis is likely to play an equally important role on systemic metabolic alterations as fibrotic conditions play in the liver, heart and kidney. Here, we discuss recent advances in our understanding of the genesis, modulation and systemic impact of excessive extracellular matrix (ECM) accumulation in adipose tissue of both rodents and humans and the ensuing impact on metabolic dysfunction. PMID:23954640

  11. Sp1 Transcription Factor Interaction with Accumulated Prelamin A Impairs Adipose Lineage Differentiation in Human Mesenchymal Stem Cells: Essential Role of Sp1 in the Integrity of Lipid Vesicles

    PubMed Central

    Ruiz de Eguino, Garbiñe; Infante, Arantza; Schlangen, Karin; Aransay, Ana M.; Fullaondo, Ane; Soriano, Mario; García-Verdugo, José Manuel; Martín, Ángel G.

    2012-01-01

    Lamin A (LMNA)-linked lipodystrophies may be either genetic (associated with LMNA mutations) or acquired (associated with the use of human immunodeficiency virus protease inhibitors [PIs]), and in both cases they share clinical features such as anomalous distribution of body fat or generalized loss of adipose tissue, metabolic alterations, and early cardiovascular complications. Both LMNA-linked lipodystrophies are characterized by the accumulation of the lamin A precursor prelamin A. The pathological mechanism by which prelamin A accumulation induces the lipodystrophy associated phenotypes remains unclear. Since the affected tissues in these disorders are of mesenchymal origin, we have generated an LMNA-linked experimental model using human mesenchymal stem cells treated with a PI, which recapitulates the phenotypes observed in patient biopsies. This model has been demonstrated to be a useful tool to unravel the pathological mechanism of the LMNA-linked lipodystrophies, providing an ideal system to identify potential targets to generate new therapies for drug discovery screening. We report for the first time that impaired adipogenesis is a consequence of the interaction between accumulated prelamin A and Sp1 transcription factor, sequestration of which results in altered extracellular matrix gene expression. In fact, our study shows a novel, essential, and finely tuned role for Sp1 in adipose lineage differentiation in human mesenchymal stem cells. These findings define a new physiological experimental model to elucidate the pathological mechanisms LMNA-linked lipodystrophies, creating new opportunities for research and treatment not only of LMNA-linked lipodystrophies but also of other adipogenesis-associated metabolic diseases. PMID:23197810

  12. Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering.

    PubMed

    Parvizi, Mojtaba; Bolhuis-Versteeg, Lydia A M; Poot, André A; Harmsen, Martin C

    2016-07-01

    Occluding artery disease causes a high demand for bioartificial replacement vessels. We investigated the combined use of biodegradable and creep-free poly (1,3-trimethylene carbonate) (PTMC) with smooth muscle cells (SMC) derived by biochemical or mechanical stimulation of adipose tissue-derived stromal cells (ASC) to engineer bioartificial arteries. Biochemical induction of cultured ASC to SMC was done with TGF-β1 for 7d. Phenotype and function were assessed by qRT-PCR, immunodetection and collagen contraction assays. The influence of mechanical stimulation on non-differentiated and pre-differentiated ASC, loaded in porous tubular PTMC scaffolds, was assessed after culturing under pulsatile flow for 14d. Assays included qRT-PCR, production of extracellular matrix and scanning electron microscopy. ASC adhesion and TGF-β1-driven differentiation to contractile SMC on PTMC did not differ from tissue culture polystyrene controls. Mesenchymal and SMC markers were increased compared to controls. Interestingly, pre-differentiated ASC had only marginal higher contractility than controls. Moreover, in 3D PTMC scaffolds, mechanical stimulation yielded well-aligned ASC-derived SMC which deposited ECM. Under the same conditions, pre-differentiated ASC-derived SMC maintained their SMC phenotype. Our results show that mechanical stimulation can replace TGF-β1 pre-stimulation to generate SMC from ASC and that pre-differentiated ASC keep their SMC phenotype with increased expression of SMC markers. PMID:26989865

  13. The role of GH in adipose tissue: lessons from adipose-specific GH receptor gene-disrupted mice.

    PubMed

    List, Edward O; Berryman, Darlene E; Funk, Kevin; Gosney, Elahu S; Jara, Adam; Kelder, Bruce; Wang, Xinyue; Kutz, Laura; Troike, Katie; Lozier, Nicholas; Mikula, Vincent; Lubbers, Ellen R; Zhang, Han; Vesel, Clare; Junnila, Riia K; Frank, Stuart J; Masternak, Michal M; Bartke, Andrzej; Kopchick, John J

    2013-03-01

    GH receptor (GHR) gene-disrupted mice (GHR-/-) have provided countless discoveries as to the numerous actions of GH. Many of these discoveries highlight the importance of GH in adipose tissue. For example GHR-/- mice are insulin sensitive yet obese with preferential enlargement of the sc adipose depot. GHR-/- mice also have elevated levels of leptin, resistin, and adiponectin, compared with controls leading some to suggest that GH may negatively regulate certain adipokines. To help clarify the role that GH exerts specifically on adipose tissue in vivo, we selectively disrupted GHR in adipose tissue to produce Fat GHR Knockout (FaGHRKO) mice. Surprisingly, FaGHRKOs shared only a few characteristics with global GHR-/- mice. Like the GHR-/- mice, FaGHRKO mice are obese with increased total body fat and increased adipocyte size. However, FaGHRKO mice have increases in all adipose depots with no improvements in measures of glucose homeostasis. Furthermore, resistin and adiponectin levels in FaGHRKO mice are similar to controls (or slightly decreased) unlike the increased levels found in GHR-/- mice, suggesting that GH does not regulate these adipokines directly in adipose tissue in vivo. Other features of FaGHRKO mice include decreased levels of adipsin, a near-normal GH/IGF-1 axis, and minimal changes to a large assortment of circulating factors that were measured such as IGF-binding proteins. In conclusion, specific removal of GHR in adipose tissue is sufficient to increase adipose tissue and decrease circulating adipsin. However, removal of GHR in adipose tissue alone is not sufficient to increase levels of resistin or adiponectin and does not alter glucose metabolism. PMID:23349524

  14. Fascia Origin of Adipose Cells.

    PubMed

    Su, Xueying; Lyu, Ying; Wang, Weiyi; Zhang, Yanfei; Li, Danhua; Wei, Suning; Du, Congkuo; Geng, Bin; Sztalryd, Carole; Xu, Guoheng

    2016-05-01

    Adipocytes might arise from vascular stromal cells, pericytes and endothelia within adipose tissue or from bone marrow cells resident in nonadipose tissue. Here, we identified adipose precursor cells resident in fascia, an uninterrupted sheet of connective tissue that extends throughout the body. The cells and fragments of superficial fascia from the rat hindlimb were highly capable of spontaneous and induced adipogenic differentiation but not myogenic and osteogenic differentiation. Fascial preadipocytes expressed multiple markers of adipogenic progenitors, similar to subcutaneous adipose-derived stromal cells (ASCs) but discriminative from visceral ASCs. Such preadipocytes resided in fascial vasculature and were physiologically active in vivo. In growing rats, adipocytes dynamically arose from the adventitia to form a thin adipose layer in the fascia. Later, some adipocytes appeared to overlay on top of other adipocytes, an early sign for the formation of three-dimensional adipose tissue in fascia. The primitive adipose lobules extended invariably along blood vessels toward the distal fascia areas. At the lobule front, nascent capillaries wrapped and passed ahead of mature adipocytes to form the distal neovasculature niche, which might replenish the pool of preadipocytes and supply nutrients and hormones necessary for continuous adipogenesis. Our findings suggest a novel model for the origin of adipocytes from the fascia, which explains both neogenesis and expansion of adipose tissue. Fascial preadipocytes generate adipose cells to form primitive adipose lobules in superficial fascia, a subcutaneous nonadipose tissue. With continuous adipogenesis, these primitive adipose lobules newly formed in superficial fascia may be the rudiment of subcutaneous adipose tissue. Stem Cells 2016;34:1407-1419. PMID:26867029

  15. n-3 PUFA: bioavailability and modulation of adipose tissue function.

    PubMed

    Kopecky, Jan; Rossmeisl, Martin; Flachs, Pavel; Kuda, Ondrej; Brauner, Petr; Jilkova, Zuzana; Stankova, Barbora; Tvrzicka, Eva; Bryhn, Morten

    2009-11-01

    Adipose tissue has a key role in the development of metabolic syndrome (MS), which includes obesity, type 2 diabetes, dyslipidaemia, hypertension and other disorders. Systemic insulin resistance represents a major factor contributing to the development of MS in obesity. The resistance is precipitated by impaired adipose tissue glucose and lipid metabolism, linked to a low-grade inflammation of adipose tissue and secretion of pro-inflammatory adipokines. Development of MS could be delayed by lifestyle modifications, while both dietary and pharmacological interventions are required for the successful therapy of MS. The n-3 long-chain (LC) PUFA, EPA and DHA, which are abundant in marine fish, act as hypolipidaemic factors, reduce cardiac events and decrease the progression of atherosclerosis. Thus, n-3 LC PUFA represent healthy constituents of diets for patients with MS. In rodents n-3 LC PUFA prevent the development of obesity and impaired glucose tolerance. The effects of n-3 LC PUFA are mediated transcriptionally by AMP-activated protein kinase and by other mechanisms. n-3 LC PUFA activate a metabolic switch toward lipid catabolism and suppression of lipogenesis, i.e. in the liver, adipose tissue and small intestine. This metabolic switch improves dyslipidaemia and reduces ectopic deposition of lipids, resulting in improved insulin signalling. Despite a relatively low accumulation of n-3 LC PUFA in adipose tissue lipids, adipose tissue is specifically linked to the beneficial effects of n-3 LC PUFA, as indicated by (1) the prevention of adipose tissue hyperplasia and hypertrophy, (2) the induction of mitochondrial biogenesis in adipocytes, (3) the induction of adiponectin and (4) the amelioration of adipose tissue inflammation by n-3 LC PUFA. PMID:19698199

  16. Profiling of chicken adipose tissue gene expression by genome array

    PubMed Central

    Wang, Hong-Bao; Li, Hui; Wang, Qi-Gui; Zhang, Xin-Yu; Wang, Shou-Zhi; Wang, Yu-Xiang; Wang, Xiu-Ping

    2007-01-01

    Background Excessive accumulation of lipids in the adipose tissue is a major problem in the present-day broiler industry. However, few studies have analyzed the expression of adipose tissue genes that are involved in pathways and mechanisms leading to adiposity in chickens. Gene expression profiling of chicken adipose tissue could provide key information about the ontogenesis of fatness and clarify the molecular mechanisms underlying obesity. In this study, Chicken Genome Arrays were used to construct an adipose tissue gene expression profile of 7-week-old broilers, and to screen adipose tissue genes that are differentially expressed in lean and fat lines divergently selected over eight generations for high and low abdominal fat weight. Results The gene expression profiles detected 13,234–16,858 probe sets in chicken adipose tissue at 7 weeks, and genes involved in lipid metabolism and immunity such as fatty acid binding protein (FABP), thyroid hormone-responsive protein (Spot14), lipoprotein lipase(LPL), insulin-like growth factor binding protein 7(IGFBP7) and major histocompatibility complex (MHC), were highly expressed. In contrast, some genes related to lipogenesis, such as leptin receptor, sterol regulatory element binding proteins1 (SREBP1), apolipoprotein B(ApoB) and insulin-like growth factor 2(IGF2), were not detected. Moreover, 230 genes that were differentially expressed between the two lines were screened out; these were mainly involved in lipid metabolism, signal transduction, energy metabolism, tumorigenesis and immunity. Subsequently, real-time RT-PCR was performed to validate fifteen differentially expressed genes screened out by the microarray approach and high consistency was observed between the two methods. Conclusion Our results establish the groundwork for further studies of the basic genetic control of growth and development of chicken adipose tissue, and will be beneficial in clarifying the molecular mechanism of obesity in chickens. PMID

  17. Adiposity and spinal cord injury

    PubMed Central

    Gorgey, Ashraf S; Wells, Kathryn M; Austin, Timothy L

    2015-01-01

    The drastic changes in body composition following spinal cord injury (SCI) have been shown to play a significant role in cardiovascular and metabolic health. The pattern of storage and distribution of different types of adipose tissue may impact metabolic health variables similar to carbohydrate, lipid and bone metabolism. The use of magnetic resonance imaging provides insights on the interplay among different regional adipose tissue compartments and their role in developing chronic diseases. Regional adipose tissue can be either distributed centrally or peripherally into subcutaneous and ectopic sites. The primary ectopic adipose tissue sites are visceral, intramuscular and bone marrow. Dysfunction in the central nervous system following SCI impacts the pattern of distribution of adiposity especially between tetraplegia and paraplegia. The current editorial is focused primarily on introducing different types of adipose tissue and establishing scientific basis to develop appropriate dietary, rehabilitation or pharmaceutical interventions to manage the negative consequences of increasing adiposity after SCI. We have also summarized the clinical implications and future recommendations relevant to study adiposity after SCI. PMID:26396933

  18. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells

    PubMed Central

    Graff, Jonathan M.

    2016-01-01

    Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicate that muscle, in a non-autonomous manner, regulates adipose progenitor homeostasis, highlighting a role for muscle-derived secreted factors. These findings support a humoral link between skeletal muscle and adipose progenitors and indicate that manipulation of adipose stem cell function may help address obesity and diabetes. PMID:27015423

  19. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells.

    PubMed

    Zeve, Daniel; Millay, Douglas P; Seo, Jin; Graff, Jonathan M

    2016-01-01

    Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicate that muscle, in a non-autonomous manner, regulates adipose progenitor homeostasis, highlighting a role for muscle-derived secreted factors. These findings support a humoral link between skeletal muscle and adipose progenitors and indicate that manipulation of adipose stem cell function may help address obesity and diabetes. PMID:27015423

  20. Exercise and Adipose Tissue Macrophages: New Frontiers in Obesity Research?

    PubMed

    Goh, Jorming; Goh, Kian Peng; Abbasi, Asghar

    2016-01-01

    Obesity is a major public health problem in the twenty-first century. Mutations in genes that regulate substrate metabolism, subsequent dysfunction in their protein products, and other factors, such as increased adipose tissue inflammation, are some underlying etiologies of this disease. Increased inflammation in the adipose tissue microenvironment is partly mediated by the presence of cells from the innate and adaptive immune system. A subset of the innate immune population in adipose tissue include macrophages, termed adipose tissue macrophages (ATMs), which are central players in adipose tissue inflammation. Being extremely plastic, their responses to diverse molecular signals in the microenvironment dictate their identity and functional properties, where they become either pro-inflammatory (M1) or anti-inflammatory (M2). Endurance exercise training exerts global anti-inflammatory responses in multiple organs, including skeletal muscle, liver, and adipose tissue. The purpose of this review is to discuss the different mechanisms that drive ATM-mediated inflammation in obesity and present current evidence of how exercise training, specifically endurance exercise training, modulates the polarization of ATMs from an M1 to an M2 anti-inflammatory phenotype. PMID:27379017

  1. Short Sleep Duration and Adiposity in Chinese Adolescents

    PubMed Central

    Yu, Yunxian; Lu, Brandon S.; Wang, Binyan; Wang, Hongjian; Yang, Jianhua; Li, Zhiping; Wang, Liuliu; Liu, Xue; Tang, Genfu; Xing, Houxun; Xu, Xiping; Zee, Phyllis C.; Wang, Xiaobin

    2007-01-01

    Objective: To investigate the relationship between sleep duration and adiposity measurements in rural Chinese adolescents. Methods: This report is based on a cross-sectional analysis of 500 Chinese adolescent twins. Anthropometric measurements and direct adiposity measurements using dual-energy X-ray absorptiometry (DEXA) were taken for all subjects. Standard sleep questionnaires and a 7-day diary were administered to assess sleep duration. Results: Sleep duration decreased with increasing age during adolescence, reaching a nadir at approximately 15 years of age. While BMI and body fat increased through the entire range of adolescence for both genders, after the age of 12, females had much higher amounts of total and truncal fat than males. Graphic plots showed that among females, both long and short sleepers tended to have higher adiposity measures than medium duration sleepers. The association of short sleep duration with higher adiposity measures was significant even after adjustment for covariates. This association was stronger for total and truncal fat and waist circumference (P <0.05) than for BMI (P = 0.06). In contrast, consistent relationships between sleep duration and adiposity measures were not seen in males. Conclusion: Even in this relatively lean Chinese adolescent cohort, short sleep duration was significantly associated with higher adiposity measures and lower lean body mass in females. The results of this study indicate that the observed association between short sleep duration and higher BMI is most likely mediated by factors associated with total and central adiposity rather than lean body mass. Citation: Yu Y; Lu BS; Wang B; Wang H; Yang J. Short sleep duration and adiposity in chinese adolescents. SLEEP 2007;30(12):1688-1697. PMID:18246978

  2. Visceral and subcutaneous adiposity measurements in adults: Influence of measurement site

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Excess abdominal adiposity is a known risk factor for cardiovascular diseases. Computed tomography can be used to examine the visceral (VAT) and subcutaneous (SAT) components of abdominal adiposity, but it is unresolved whether single-slice or multi-slice protocols are needed. Nine computed tomograp...

  3. Tree nut consumption is associated with better adiposity measures and cardiovascular and metabolic syndrome health risk factors in U.S adults: NHANES 2005-2010

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research has shown inconsistencies in the association of tree nut consumption with risk factors for cardiovascular disease (CVD) and metabolic syndrome (MetS). To determine the association of tree nut consumption with risk factors for CVD and for MetS in adults. NHANES 2005-2010 data were u...

  4. Equine Metabolic Syndrome Affects Viability, Senescence, and Stress Factors of Equine Adipose-Derived Mesenchymal Stromal Stem Cells: New Insight into EqASCs Isolated from EMS Horses in the Context of Their Aging

    PubMed Central

    Marycz, Krzysztof; Kornicka, Katarzyna; Basinska, Katarzyna; Czyrek, Aleksandra

    2016-01-01

    Currently, equine metabolic syndrome (EMS), an endocrine disease linked to insulin resistance, affects an increasing number of horses. However, little is known about the effect of EMS on mesenchymal stem cells that reside in adipose tissue (ASC). Thus it is crucial to evaluate the viability and growth kinetics of these cells, particularly in terms of their application in regenerative medicine. In this study, we investigated the proliferative capacity, morphological features, and accumulation of oxidative stress factors in mesenchymal stem cells isolated from healthy animals (ASCN) and horses suffering from EMS (ASCEMS). ASCEMS displayed senescent phenotype associated with β-galactosidase accumulation, enlarged cell bodies and nuclei, increased apoptosis, and reduced heterochromatin architecture. Moreover, we observed increased amounts of nitric oxide (NO) and reactive oxygen species (ROS) in these cells, accompanied by reduced superoxide dismutase (SOD) activity. We also found in ASCEMS an elevated number of impaired mitochondria, characterized by membrane raptures, disarrayed cristae, and vacuole formation. Our results suggest that the toxic compounds, accumulating in the mitochondria under oxidative stress, lead to alternations in their morphology and may be partially responsible for the senescent phenotype and decreased proliferation potential of ASCEMS. PMID:26682006

  5. Gene expression profiling in adipose tissue from growing broiler chickens

    PubMed Central

    Hausman, Gary J; Barb, C Rick; Fairchild, Brian D; Gamble, John; Lee-Rutherford, Laura

    2014-01-01

    In this study, total RNA was collected from abdominal adipose tissue samples obtained from ten broiler chickens at 3, 4, 5, and 6 weeks of age and prepared for gene microarray analysis with Affymetrix GeneChip Chicken Genome Arrays (Affymetrix) and quantitative real-time PCR analysis. Studies of global gene expression in chicken adipose tissue were initiated since such studies in many animal species show that adipose tissue expresses and secretes many factors that can influence growth and physiology. Microarray results indicated 333 differentially expressed adipose tissue genes between 3 and 6 wk, 265 differentially expressed genes between 4 and 6 wk and 42 differentially expressed genes between 3 and 4 wk. Enrichment scores of Gene Ontology Biological Process categories indicated strong age upregulation of genes involved in the immune system response. In addition to microarray analysis, quantitative real-time PCR analysis was used to confirm the influence of age on the expression of adipose tissue CC chemokine ligands (CCL), toll-like receptor (TLR)-2, lipopolysaccharide-induced TNF factor (LITAF), chemokine (C-C motif) receptor 8 (CCR8), and several other genes. Between 3 and 6 wk of age CCL5, CCL1, and CCR8 expression increased (P = 0.0001) with age. Furthermore, TLR2, CCL19, and LITAF expression increased between 4 and 6 wk of age (P = 0.001). This is the first demonstration of age related changes in CCL, LITAF, and TLR2 gene expression in chicken adipose tissue. Future studies are needed to elucidate the role of these adipose tissue genes in growth and the immune system. PMID:26317054

  6. Tissue Engineering Chamber Promotes Adipose Tissue Regeneration in Adipose Tissue Engineering Models Through Induced Aseptic Inflammation

    PubMed Central

    Peng, Zhangsong; Dong, Ziqing; Chang, Qiang; Zhan, Weiqing; Zeng, Zhaowei; Zhang, Shengchang

    2014-01-01

    Tissue engineering chamber (TEC) makes it possible to generate significant amounts of mature, vascularized, stable, and transferable adipose tissue. However, little is known about the role of the chamber in tissue engineering. Therefore, to investigate the role of inflammatory response and the change in mechanotransduction started by TEC after implantation, we placed a unique TEC model on the surface of the groin fat pads in rats to study the expression of cytokines and tissue development in the TEC. The number of infiltrating cells was counted, and vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) expression levels in the chamber at multiple time points postimplantation were analyzed by enzyme-linked immunosorbent assay. Tissue samples were collected at various time points and labeled for specific cell populations. The result showed that new adipose tissue formed in the chamber at day 60. Also, the expression of MCP-1 and VEGF in the chamber decreased slightly from an early stage as well as the number of the infiltrating cells. A large number of CD34+/perilipin− perivascular cells could be detected at day 30. Also, the CD34+/perilipin+ adipose precursor cell numbers increased sharply by day 45 and then decreased by day 60. CD34−/perilipin+ mature adipocytes were hard to detect in the chamber content at day 30, but their number increased and then peaked at day 60. Ki67-positive cells could be found near blood vessels and their number decreased sharply over time. Masson's trichrome showed that collagen was the dominant component of the chamber content at early stage and was replaced by newly formed small adipocytes over time. Our findings suggested that the TEC implantation could promote the proliferation of adipose precursor cells derived from local adipose tissue, increase angiogenesis, and finally lead to spontaneous adipogenesis by inducing aseptic inflammation and changing local mechanotransduction. PMID:24559078

  7. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    PubMed Central

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone–fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues – subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT – is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat

  8. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    PubMed

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues

  9. Clearing-factor lipase in adipose tissue. A medium in which the enzyme activity of tissue from starved rats increases in vitro

    PubMed Central

    Salaman, M. R.; Robinson, D. S.

    1966-01-01

    1. When epididymal fat bodies from starved rats are incubated for 3·5hr. at 37° in a defined medium in vitro the total clearing-factor lipase activity rises to approximately twice its initial value. 2. During the incubation period part of the tissue clearing-factor lipase activity appears in the medium. 3. Heparin, glucose, insulin, and HCO3− and K+ ions are shown to be important medium constituents. PMID:5964961

  10. Candy consumption in childhood is not predictive of weight, adiposity measures or cardiovascular risk factors in young adults: the Bogalusa Heart Study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are limited data available on the longitudinal relationship between candy consumption by children on weight and other cardiovascular risk factors (CVRF) in young adults. The present study investigated whether candy consumption in children was predictive of weight and CVRF in young adults. A lo...

  11. Differential effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on gene expression of collagen-modifying enzymes in human adipose tissue-derived mesenchymal stem cells.

    PubMed

    Knippenberg, Marlene; Helder, Marco N; Doulabi, Behrouz Zandieh; Bank, Ruud A; Wuisman, Paul I J M; Klein-Nulend, Jenneke

    2009-08-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) in combination with bone morphogenetic protein-2 (BMP-2) or transforming growth factor-beta1 (TGF-beta1) are under evaluation for bone tissue engineering. Posttranslational modification of type I collagen is essential for functional bone tissue with adequate physical and mechanical properties. We investigated whether BMP-2 (10-100 ng/mL) and/or TGF-beta1 (1-10 ng/mL) affect gene expression of alpha2(I) procollagen and collagen-modifying enzymes, that is, lysyl oxidase and lysyl hydroxylases 1, 2, and 3 (encoded by PLOD1, 2, and 3), by human AT-MSCs. BMP-2, but not TGF-beta1, increased alkaline phosphatase activity after 28 days, indicating osteogenic differentiation of AT-MSCs. At day 4, both BMP-2 and TGF-beta1 upregulated alpha2(I) procollagen and PLOD1, which was downregulated at day 28. TGF-beta1, but not BMP-2, downregulated PLOD3 at day 28. Lysyl oxidase was upregulated by TGF-beta1 at day 4 and by BMP-2 at day 7. Neither BMP-2 nor TGF-beta1 affected PLOD2. In conclusion, these results suggest that AT-MSCs differentially respond to BMP-2 and TGF-beta1 with changes in gene expression of collagen-modifying enzymes. AT-MSCs may thus be able to appropriately modify type I collagen to form a functional bone extracellular matrix for tissue engineering, dependent on the growth factor added. PMID:19231972

  12. Adipose tissue infiltration in normal-weight subjects and its impact on metabolic function.

    PubMed

    Moreno-Indias, Isabel; Oliva-Olivera, Wilfredo; Omiste, Antonio; Castellano-Castillo, Daniel; Lhamyani, Said; Camargo, Antonio; Tinahones, Francisco J

    2016-06-01

    Discordant phenotypes, metabolically healthy obese and unhealthy normal-weight individuals, are always interesting to provide important insights into the mechanistic link between adipose tissue dysfunction and associated metabolic alterations. Macrophages can release factors that impair the proper activity of the adipose tissue. Thus, studying subcutaneous and visceral adipose tissues, we investigated for the first time the differences in monocyte/macrophage infiltration, inflammation, and adipogenesis of normal-weight subjects who differed in their degree of metabolic syndrome. The study included 92 normal-weight subjects who differed in their degree of metabolic syndrome. Their anthropometric and biochemical parameters were measured. RNA from subcutaneous and visceral adipose tissues was isolated, and mRNA expression of monocyte/macrophage infiltration (CD68, CD33, ITGAM, CD163, EMR-1, CD206, MerTK, CD64, ITGAX), inflammation (IL-6, tumor necrosis factor alpha [TNFα], IL-10, IL-1b, CCL2, CCL3), and adipogenic and lipogenic capacity markers (PPARgamma, FABP4) were measured. Taken together, our data provide evidence of a different degree of macrophage infiltration between the adipose tissues, with a higher monocyte/macrophage infiltration in subcutaneous adipose tissue in metabolically unhealthy normal-weight subjects, whereas visceral adipose tissue remained almost unaffected. An increased macrophage infiltration of adipose tissue and its consequences, such as a decrease in adipogenesis function, may explain why both the obese and normal-weight subjects can develop metabolic diseases or remain healthy. PMID:26829067

  13. Xenotransplantation of human fetal adipose tissue: a model of in vivo adipose tissue expansion and adipogenesis

    PubMed Central

    Garcia, Briana; Francois-Vaughan, Heather; Onikoyi, Omobola; Kostadinov, Stefan; De Paepe, Monique E.; Gruppuso, Philip A.; Sanders, Jennifer A.

    2014-01-01

    Obesity during childhood and beyond may have its origins during fetal or early postnatal life. At present, there are no suitable in vivo experimental models to study factors that modulate or perturb human fetal white adipose tissue (WAT) expansion, remodeling, development, adipogenesis, angiogenesis, or epigenetics. We have developed such a model. It involves the xenotransplantation of midgestation human WAT into the renal subcapsular space of immunocompromised SCID-beige mice. After an initial latency period of approximately 2 weeks, the tissue begins expanding. The xenografts are healthy and show robust expansion and angiogenesis for at least 2 months following transplantation. Data and cell size and gene expression are consistent with active angiogenesis. The xenografts maintain the expression of genes associated with differentiated adipocyte function. In contrast to the fetal tissue, adult human WAT does not engraft. The long-term viability and phenotypic maintenance of fetal adipose tissue following xenotransplantation may be a function of its autonomous high rates of adipogenesis and angiogenesis. Through the manipulation of the host mice, this model system offers the opportunity to study the mechanisms by which nutrients and other environmental factors affect human adipose tissue development and biology. PMID:25193996

  14. Xenotransplantation of human fetal adipose tissue: a model of in vivo adipose tissue expansion and adipogenesis.

    PubMed

    Garcia, Briana; Francois-Vaughan, Heather; Onikoyi, Omobola; Kostadinov, Stefan; De Paepe, Monique E; Gruppuso, Philip A; Sanders, Jennifer A

    2014-12-01

    Obesity during childhood and beyond may have its origins during fetal or early postnatal life. At present, there are no suitable in vivo experimental models to study factors that modulate or perturb human fetal white adipose tissue (WAT) expansion, remodeling, development, adipogenesis, angiogenesis, or epigenetics. We have developed such a model. It involves the xenotransplantation of midgestation human WAT into the renal subcapsular space of immunocompromised SCID-beige mice. After an initial latency period of approximately 2 weeks, the tissue begins expanding. The xenografts are healthy and show robust expansion and angiogenesis for at least 2 months following transplantation. Data and cell size and gene expression are consistent with active angiogenesis. The xenografts maintain the expression of genes associated with differentiated adipocyte function. In contrast to the fetal tissue, adult human WAT does not engraft. The long-term viability and phenotypic maintenance of fetal adipose tissue following xenotransplantation may be a function of its autonomous high rates of adipogenesis and angiogenesis. Through the manipulation of the host mice, this model system offers the opportunity to study the mechanisms by which nutrients and other environmental factors affect human adipose tissue development and biology. PMID:25193996

  15. Comparison of human adipose-derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications.

    PubMed

    Russo, Valerio; Yu, Claire; Belliveau, Paul; Hamilton, Andrew; Flynn, Lauren E

    2014-02-01

    Adipose tissue is an abundant source of multipotent progenitor cells that have shown promise in regenerative medicine. In humans, fat is primarily distributed in the subcutaneous and visceral depots, which have varying biochemical and functional properties. In most studies to date, subcutaneous adipose tissue has been investigated as the adipose-derived stem cell (ASC) source. In this study, we sought to develop a broader understanding of the influence of specific adipose tissue depots on the isolated ASC populations through a systematic comparison of donor-matched abdominal subcutaneous fat and omentum, and donor-matched pericardial adipose tissue and thymic remnant samples. We found depot-dependent and donor-dependent variability in the yield, viability, immunophenotype, clonogenic potential, doubling time, and adipogenic and osteogenic differentiation capacities of the ASC populations. More specifically, ASCs isolated from both intrathoracic depots had a longer average doubling time and a significantly higher proportion of CD34(+) cells at passage 2, as compared with cells isolated from subcutaneous fat or the omentum. Furthermore, ASCs from subcutaneous and pericardial adipose tissue demonstrated enhanced adipogenic differentiation capacity, whereas ASCs isolated from the omentum displayed the highest levels of osteogenic markers in culture. Through cell culture analysis under hypoxic (5% O(2)) conditions, oxygen tension was shown to be a key mediator of colony-forming unit-fibroblast number and osteogenesis for all depots. Overall, our results suggest that depot selection is an important factor to consider when applying ASCs in tissue-specific cell-based regenerative therapies, and also highlight pericardial adipose tissue as a potential new ASC source. PMID:24361924

  16. The adipose organ: morphological perspectives of adipose tissues.

    PubMed

    Cinti, S

    2001-08-01

    Anatomically, an organ is defined as a series of tissues which jointly perform one or more interconnected functions. The adipose organ qualifies for this definition as it is made up of two tissue types, the white and brown adipose tissues, which collaborate in partitioning the energy contained in lipids between thermogenesis and the other metabolic functions. In rats and mice the adipose organ consists of several subcutaneous and visceral depots. Some areas of these depots are brown and correspond to brown adipose tissue, while many are white and correspond to white adipose tissue. The number of brown adipocytes found in white areas varies with age, strain of animal and environmental conditions. Brown and white adipocyte precursors are morphologically dissimilar. Together with a rich vascular supply, brown areas receive abundant noradrenergic parenchymal innervation. The gross anatomy and histology of the organ vary considerably in different physiological (cold acclimation, warm acclimation, fasting) and pathological conditions such as obesity; many important genes, such as leptin and uncoupling protein-1, are also expressed very differently in the two cell types. These basic mechanisms should be taken into account when addressing the physiopathology of obesity and its treatment. PMID:11681806

  17. Adipose-derived mesenchymal stem cells from the sand rat: transforming growth factor beta and 3D co-culture with human disc cells stimulate proteoglycan and collagen type I rich extracellular matrix

    PubMed Central

    Tapp, Hazel; Deepe, Ray; Ingram, Jane A; Kuremsky, Marshall; Hanley, Edward N; Gruber, Helen E

    2008-01-01

    Introduction Adult mesenchymal stem cell therapy has a potential application in the biological treatment of disc degeneration. Our objectives were: to direct adipose-derived mesenchymal stem cells (AD-MSC) from the sand rat to produce a proteoglycan and collagen type I extracellular matrix (ECM) rich in known ECM components of the annulus fibrosis of disc; and to stimulate proteoglycan production by co-culture of human annulus cells with AD-MSC. Methods AD-MSC were isolated and characterised by adherence to plastic, appropriate expression of cluster of differentiation (CD) markers, and differentiation to osteoblasts and chondrocytes in vitro. AD-MSC were grown in three-dimensional (3D) culture and treated with or without transforming growth factor beta (TGFβ) to direct them to produce annulus-like ECM as determined by proteoglycan content and collagen expression. AD-MSC were co-cultured with human annulus cells and grown in 3D culture. Results AD-MSC produced a proteoglycan and collagen type I rich ECM after treatment with TGFβ in 3D culture as confirmed by a 48% increase in proteoglycan content assayed by 1,9-dimethylmethylene blue (DMB), and by immunohistochemical identification of ECM components. Co-culture of human annulus and sand rat AD-MSC in 3D culture resulted in a 20% increase in proteoglycan production compared with the predicted value of the sum of the individual cultures. Conclusion Results support the hypothesis that AD-MSC have potential in cell-based therapy for disc degeneration. PMID:18691412

  18. Estimating adipose tissue in the chest wall using ultrasonic and alternate /sup 40/K and biometric measurements

    SciTech Connect

    Anderson, A.L.; Campbell, G.W.

    1982-01-22

    The percentage of adipose (fat) tissue in the chest wall must be known to accurately measure Pu in the human lung. Correction factors of 100% or more in x-ray detection efficiency are common. Methods using simple /sup 40/K and biometric measurement techniques were investigated to determine the adipose content in the human chest wall. These methods predict adipose content to within 15% of the absolute ultrasonic value. These new methods are discussed and compared with conventional ultrasonic measurement techniques. (ERB)

  19. Adiposity, insulin resistance and cardiovascular risk factors in 9-10-year-old Indian children: relationships with birth size and postnatal growth.

    PubMed

    Krishnaveni, G V; Veena, S R; Wills, A K; Hill, J C; Karat, S C; Fall, C H D

    2010-12-01

    Lower birthweight, and rapid childhood weight gain predict elevated cardiovascular risk factors in children. We examined associations between serial, detailed, anthropometric measurements from birth to 9.5 years of age and cardiovascular risk markers in Indian children. Children (n = 663) born at the Holdsworth Memorial Hospital, Mysore, India were measured at birth and 6-12 monthly thereafter. At 9.5 years, 539 (255 boys) underwent a 2-h oral glucose tolerance test, and blood pressure (BP) and fasting lipid concentrations were measured. Insulin resistance was calculated using the HOMA equation. These outcomes were examined in relation to birth measurements and changes in measurements (growth) during infancy (0-2 years), 2-5 years and 5-9.5 years using conditional s.d. scores. Larger current weight, height and skinfold thickness were associated with higher risk markers at 9.5 years (P < 0.05). Lower weight, smaller length and mid-arm circumference at birth were associated with higher fasting glucose concentrations at 9.5 years (P ⩽ 0.01). After adjusting for current weight/height, there were inverse associations between birthweight and/or length and insulin concentrations, HOMA, systolic and diastolic BP and plasma triglycerides (P < 0.05). Increases in conditional weight and height between 0-2, 2-5 and 5-9.5 years were associated with higher insulin concentrations, HOMA and systolic BP. In conclusion, in 9-10-year-old Indian children, as in other studies, cardiovascular risk factors were highest in children who were light or short at birth but heavy or tall at 9 years. Greater infant and childhood weight and height gain were associated with higher risk markers. PMID:22318657

  20. Adiposity, insulin resistance and cardiovascular risk factors in 9–10-year-old Indian children: relationships with birth size and postnatal growth

    PubMed Central

    Krishnaveni, G. V.; Veena, S. R.; Wills, A. K.; Hill, J. C.; Karat, S. C.; Fall, C. H. D.

    2011-01-01

    Lower birthweight, and rapid childhood weight gain predict elevated cardiovascular risk factors in children. We examined associations between serial, detailed, anthropometric measurements from birth to 9.5 years of age and cardiovascular risk markers in Indian children. Children (n = 663) born at the Holdsworth Memorial Hospital, Mysore, India were measured at birth and 6–12 monthly thereafter. At 9.5 years, 539 (255 boys) underwent a 2-h oral glucose tolerance test, and blood pressure (BP) and fasting lipid concentrations were measured. Insulin resistance was calculated using the HOMA equation. These outcomes were examined in relation to birth measurements and changes in measurements (growth) during infancy (0–2 years), 2–5 years and 5–9.5 years using conditional s.d. scores. Larger current weight, height and skinfold thickness were associated with higher risk markers at 9.5 years (P<0.05). Lower weight, smaller length and mid-arm circumference at birth were associated with higher fasting glucose concentrations at 9.5 years (P≤0.01). After adjusting for current weight/height, there were inverse associations between birthweight and/or length and insulin concentrations, HOMA, systolic and diastolic BP and plasma triglycerides (P<0.05). Increases in conditional weight and height between 0–2, 2–5 and 5–9.5 years were associated with higher insulin concentrations, HOMA and systolic BP. In conclusion, in 9–10-year-old Indian children, as in other studies, cardiovascular risk factors were highest in children who were light or short at birth but heavy or tall at 9 years. Greater infant and childhood weight and height gain were associated with higher risk markers. PMID:22318657

  1. Secretory function of adipose tissue.

    PubMed

    Kuryszko, J; Sławuta, P; Sapikowski, G

    2016-01-01

    There are two kinds of adipose tissue in mammals: white adipose tissue - WAT and brown adipose tissue - BAT. The main function of WAT is accumulation of triacylglycerols whereas the function of BAT is heat generation. At present, WAT is also considered to be an endocrine gland that produces bioactive adipokines, which take part in glucose and lipid metabolism. Considering its endocrine function, the adipose tissue is not a homogeneous gland but a group of a few glands which act differently. Studies on the secretory function of WAT began in 1994 after discovery of leptin known as the satiation hormone, which regulates body energy homeostasis and maintainence of body mass. Apart from leptin, the following belong to adipokines: adiponectin, resistin, apelin, visfatin and cytokines: TNF and IL 6. Adiponectin is a polypeptide hormone of antidiabetic, anti-inflammatory and anti-atherogenic activity. It plays a key role in carbohydrate and fat metabolism. Resistin exerts a counter effect compared to adiponectin and its physiological role is to maintain fasting glycaemia. Visfatin stimulates insulin secretion and increases insulin sensitivity and glucose uptake by muscle cells and adipocytes. Apelin probably increases the insulin sensitivity of tissues. TNF evokes insulin resistance by blocking insulin receptors and inhibits insulin secretion. Approximately 30% of circulating IL 6 comes from adipose tissue. It causes insulin resistance by decreasing the expression of insulin receptors, decreases adipogenesis and adiponectin and visfatin secretion, and stimulates hepatic gluconeogenesis. In 2004, Bays introduced the notion of adiposopathy, defined as dysfunction of the adipose tissue, whose main feature is insulin and leptin resistance as well as the production of inflammatory cytokines: TNF and IL 6 and monocyte chemoattractant protein. This means that excess of adipose tissue, especially visceral adipose tissue, leads to the development of a chronic subclinical

  2. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues

    PubMed Central

    Hausman, Gary J; Basu, Urmila; Du, Min; Fernyhough-Culver, Melinda; Dodson, Michael V

    2014-01-01

    Human studies of the influence of aging and other factors on intermuscular fat (INTMF) were reviewed. Intermuscular fat increased with weight loss, weight gain, or with no weight change with age in humans. An increase in INTMF represents a similar threat to type 2 diabetes and insulin resistance as does visceral adipose tissue (VAT). Studies of INTMF in animals covered topics such as quantitative deposition and genetic relationships with other fat depots. The relationship between leanness and higher proportions of INTMF fat in pigs was not observed in human studies and was not corroborated by other pig studies. In humans, changes in muscle mass, strength and quality are associated with INTMF accretion with aging. Gene expression profiling and intrinsic methylation differences in pigs demonstrated that INTMF and VAT are primarily associated with inflammatory and immune processes. It seems that in the pig and humans, INTMF and VAT share a similar pattern of distribution and a similar association of components dictating insulin sensitivity. Studies on intramuscular (IM) adipocyte development in meat animals were reviewed. Gene expression analysis and genetic analysis have identified candidate genes involved in IM adipocyte development. Intramuscular (IM) adipocyte development in human muscle is only seen during aging and some pathological circumstance. Several genetic links between human and meat animal adipogenesis have been identified. In pigs, the Lipin1 and Lipin 2 gene have strong genetic effects on IM accumulation. Lipin1 deficiency results in immature adipocyte development in human lipodystrophy. In humans, overexpression of Perilipin 2 (PLIN2) facilitates intramyocellular lipid accretion whereas in pigs PLIN2 gene expression is associated with IM deposition. Lipins and perilipins may influence intramuscular lipid regardless of species. PMID:26317048

  3. Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice.

    PubMed

    Bing, C; Russell, S; Becket, E; Pope, M; Tisdale, M J; Trayhurn, P; Jenkins, J R

    2006-10-23

    Extensive loss of adipose tissue is a hallmark of cancer cachexia but the cellular and molecular basis remains unclear. This study has examined morphologic and molecular characteristics of white adipose tissue in mice bearing a cachexia-inducing tumour, MAC16. Adipose tissue from tumour-bearing mice contained shrunken adipocytes that were heterogeneous in size. Increased fibrosis was evident by strong collagen-fibril staining in the tissue matrix. Ultrastructure of 'slimmed' adipocytes revealed severe delipidation and modifications in cell membrane conformation. There were major reductions in mRNA levels of adipogenic transcription factors including CCAAT/enhancer binding protein alpha (C/EBPalpha), CCAAT/enhancer binding protein beta, peroxisome proliferator-activated receptor gamma, and sterol regulatory element binding protein-1c (SREBP-1c) in adipose tissue, which was accompanied by reduced protein content of C/EBPalpha and SREBP-1. mRNA levels of SREBP-1c targets, fatty acid synthase, acetyl CoA carboxylase, stearoyl CoA desaturase 1 and glycerol-3-phosphate acyl transferase, also fell as did glucose transporter-4 and leptin. In contrast, mRNA levels of peroxisome proliferators-activated receptor gamma coactivator-1alpha and uncoupling protein-2 were increased in white fat of tumour-bearing mice. These results suggest that the tumour-induced impairment in the formation and lipid storing capacity of adipose tissue occurs in mice with cancer cachexia. PMID:17047651

  4. Engineering of vascularized adipose constructs.

    PubMed

    Wiggenhauser, Paul S; Müller, Daniel F; Melchels, Ferry P W; Egaña, José T; Storck, Katharina; Mayer, Helena; Leuthner, Peter; Skodacek, Daniel; Hopfner, Ursula; Machens, Hans G; Staudenmaier, Rainer; Schantz, Jan T

    2012-03-01

    Adipose tissue engineering offers a promising alternative to the current surgical techniques for the treatment of soft tissue defects. It is a challenge to find the appropriate scaffold that not only represents a suitable environment for cells but also allows fabrication of customized tissue constructs, particularly in breast surgery. We investigated two different scaffolds for their potential use in adipose tissue regeneration. Sponge-like polyurethane scaffolds were prepared by mold casting with methylal as foaming agent, whereas polycaprolactone scaffolds with highly regular stacked-fiber architecture were fabricated with fused deposition modeling. Both scaffold types were seeded with human adipose tissue-derived precursor cells, cultured and implanted in nude mice using a femoral arteriovenous flow-through vessel loop for angiogenesis. In vitro, cells attached to both scaffolds and differentiated into adipocytes. In vivo, angiogenesis and adipose tissue formation were observed throughout both constructs after 2 and 4 weeks, with angiogenesis being comparable in seeded and unseeded constructs. Fibrous tissue formation and adipogenesis were more pronounced on polyurethane foam scaffolds than on polycaprolactone prototyped scaffolds. In conclusion, both scaffold designs can be effectively used for adipose tissue engineering. PMID:21850493

  5. Overeating styles and adiposity among multiethnic youth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reasons for inconsistent associations between overeating styles and adiposity among youth may include differences in effects by age, gender, or ethnicity; failure to control for social desirability of response; or adiposity measurement limitations. This study examined the relationship between overea...

  6. Numerous Genes in Loci Associated With Body Fat Distribution Are Linked to Adipose Function.

    PubMed

    Dahlman, Ingrid; Rydén, Mikael; Brodin, David; Grallert, Harald; Strawbridge, Rona J; Arner, Peter

    2016-02-01

    Central fat accumulation is a strong risk factor for type 2 diabetes. Genome-wide association studies have identified numerous loci associated with body fat distribution. The objectives of the current study are to examine whether genes in genetic loci linked to fat distribution can be linked to fat cell size and number (morphology) and/or adipose tissue function. We show, in a cohort of 114 women, that almost half of the 96 genes in these loci are indeed associated with abdominal subcutaneous adipose tissue parameters. Thus, adipose mRNA expression of the genes is strongly related to adipose morphology, catecholamine-induced lipid mobilization (lipolysis), or insulin-stimulated lipid synthesis in adipocytes (lipogenesis). In conclusion, the genetic influence on body fat distribution could be mediated via several specific alterations in adipose tissue morphology and function, which in turn may influence the development of type 2 diabetes. PMID:26798124

  7. Socio-demographic and lifestyle factors for child’s physical growth and adiposity rebound of Japanese children: a longitudinal study of the 21st century longitudinal survey in newborns

    PubMed Central

    2014-01-01

    Background It is unknown whether childhood physical development in Asian populations differs from western populations, since no longitudinal analysis has been performed in Asian countries yet. Utilizing the 21st Century Longitudinal Survey in Newborns, we studied the timing of adiposity rebound (AR) among Japanese children and determined whether AR occurs earlier in obese children compared to nonobese children. Furthermore, we identified important demographic, social, and lifestyle factors that affect their physical development. Methods We used data from the annual surveillance of Japanese children born in 2001, with 45,392 eligible subjects. We applied survival analysis to evaluate the AR and a trajectory method for the BMI transition across 5 ½ years. Time-dependent and time-independent factors affecting BMI changes were investigated using longitudinal analysis. Accounting for the known difference in prevalence between Japanese and Western children, we adopted a 95th percentile of BMI as criterion for obesity. Results Mean BMI at birth and at ages 1 ½, 2 ½, 3 ½, 4 ½, and 5 ½ years for all subjects were 12.6, 16.3, 16.1, 15.8, 15.5, and 15.4, respectively, showing a progressive reduction after 1 ½ years. However, among obese children at 5 ½ years, 39.6% had experienced AR as early as at age 4 ½ years. Controlling for sex, Cox’s proportional hazards model showed that obese children had a 48.5% higher hazard to experience AR than nonobese children. The difference in BMI transition between obese and non-obese children was also captured by a trajectory method. In longitudinal analysis, BMI was lower for children who had a longer gestational period whereas children who received parental care from non-family members gained higher BMI values. Conclusions With the 95th percentile cutoff for children obesity, obese Japanese children developed AR earlier than nonobese Japanese children, similar to those in Western countries reported in the literature

  8. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues

    SciTech Connect

    Yamada, Tomoya Higuchi, Mikito; Nakanishi, Naoto

    2015-08-07

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere length of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner. - Highlights: • Visceral adipose tissue express higher pref-1 mRNA than other anatomical sites. • Telomere length in visceral adipose tissue is longer than other anatomical sites. • Telomere length of adipose tissue is not associated with adipocyte size. • Pref-1 mRNA is negatively correlated with intramuscular and visceral adipocyte size.

  9. Candy consumption in childhood is not predictive of weight, adiposity measures or cardiovascular risk factors in young adults: the Bogalusa Heart Study

    PubMed Central

    O’Neil, C. E.; Nicklas, T. A.; Liu, Y.; Berenson, G. S.

    2015-01-01

    Background There are limited data available on the longitudinal relationship between candy consumption by children on weight and other cardiovascular risk factors (CVRF) in young adults. The present study investigated whether candy consumption in children was predictive of weight and CVRF in young adults. Methods A longitudinal sample of children 10 years (n = 355; 61% females; 71% European Americans, 29% African Americans) who partici pated in cross sectional surveys from 1973 to 1984 (baseline) and in one of two surveys (follow ups) as young adults [19–38] years; mean (SD) = 23.6 (2.6) years] in Bogalusa, LA, were studied. Dietary data were collected using 24 h dietary recalls at baseline and at one follow up survey; a food frequency questionnaire was used in the other follow up survey. Candy consumers were those consuming any amount of candy. Candy con sumption was calculated (g day−1) from baseline 24 h dietary recalls, and was used as a covariate in the adjusted linear mixed models. Dependent variables included body mass index (BMI) and CVRF measured in young adults. Results At baseline, 92% of children reported consuming candy [46 (45) g day−1]; the percentage decreased to 67% [20 (30) g day−1] at fol low up. No longitudinal relationship was shown between baseline candy consumption and BMI or CVRF in young adults, suggesting that candy consumption was not predictive of health risks later in life. Conclusions The consumption of nutrient rich foods consistent with die tary recommendations is important, although modest amounts of candy can be added to the diet without potential adverse long term consequences to weight or CVRF. Additional studies are needed to confirm these results. PMID:24382141

  10. BROWN ADIPOSE TISSUE FUNCTION IN SHORT-CHAIN ACYL-COA DEHYDROGENASE DEFICIENT MICE

    PubMed Central

    Skilling, Helen; Coen, Paul M.; Fairfull, Liane; Ferrell, Robert E.; Goodpaster, Bret H.; Vockley, Jerry; Goetzman, Eric S.

    2010-01-01

    Brown adipose tissue is a highly specialized organ that uses mitochondrial fatty acid oxidation to fuel nonshivering thermogenesis. In mice, mutations in the acyl-CoA dehydrogenase family of fatty acid oxidation genes are associated with sensitivity to cold. Brown adipose tissue function has not previously been characterized in these knockout strains. Short-chain acyl-CoA dehydrogenase (SCAD) deficient mice were found to have increased brown adipose tissue mass as well as modest cardiac hypertrophy. Uncoupling protein-1 was reduced by 70% in brown adipose tissue and this was not due to a change in mitochondrial number, nor was it due to decreased signal transduction through protein kinase A which is known to be a major regulator of uncoupling protein-1 expression. PKA activity and in vitro lipolysis were normal in brown adipose tissue, although in white adipose tissue a modest increase in basal lipolysis was seen in SCAD−/ − mice. Finally, an in vivo norepinephrine challenge of brown adipose tissue thermogenesis revealed normal heat production in SCAD−/− mice. These results suggest that reduced brown adipose tissue function is not the major factor causing cold sensitivity in acyl-CoA dehydrogenase knockout strains. We speculate that other mechanisms such as shivering capacity, cardiac function, and reduced hepatic glycogen stores are involved. PMID:20727852

  11. Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults

    PubMed Central

    Dordevic, Aimee L.; Pendergast, Felicity J.; Morgan, Han; Villas-Boas, Silas; Caldow, Marissa K.; Larsen, Amy E.; Sinclair, Andrew J.; Cameron-Smith, David

    2015-01-01

    Adipose tissue is a primary site of meta-inflammation. Diet composition influences adipose tissue metabolism and a single meal can drive an inflammatory response in postprandial period. This study aimed to examine the effect lipid and carbohydrate ingestion compared with a non-caloric placebo on adipose tissue response. Thirty-three healthy adults (age 24.5 ± 3.3 year (mean ± standard deviation (SD)); body mass index (BMI) 24.1 ± 3.2 kg/m2, were randomised into one of three parallel beverage groups; placebo (water), carbohydrate (maltodextrin) or lipid (dairy-cream). Subcutaneous, abdominal adipose tissue biopsies and serum samples were collected prior to (0 h), as well as 2 h and 4 h after consumption of the beverage. Adipose tissue gene expression levels of monocyte chemoattractant protein-1 (MCP-1), interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) increased in all three groups, without an increase in circulating TNF-α. Serum leptin (0.6-fold, p = 0.03) and adipose tissue leptin gene expression levels (0.6-fold, p = 0.001) decreased in the hours following the placebo beverage, but not the nutrient beverages. Despite increased inflammatory cytokine gene expression in adipose tissue with all beverages, suggesting a confounding effect of the repeated biopsy method, differences in metabolic responses of adipose tissue and circulating adipokines to ingestion of lipid and carbohydrate beverages were observed. PMID:26140541

  12. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis

    PubMed Central

    Park, Byung Young; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Hong, Yeonhee; Lee, Hee Suk; Park, Eun Kyu; Hahm, Jong Cheon; Kim, Jin Woo; Shin, Soon Shik; Kim, Min-Young; Yoon, Michung

    2015-01-01

    It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS) prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP) activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9), whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors. PMID:26599360

  13. Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults.

    PubMed

    Dordevic, Aimee L; Pendergast, Felicity J; Morgan, Han; Villas-Boas, Silas; Caldow, Marissa K; Larsen, Amy E; Sinclair, Andrew J; Cameron-Smith, David

    2015-07-01

    Adipose tissue is a primary site of meta-inflammation. Diet composition influences adipose tissue metabolism and a single meal can drive an inflammatory response in postprandial period. This study aimed to examine the effect lipid and carbohydrate ingestion compared with a non-caloric placebo on adipose tissue response. Thirty-three healthy adults (age 24.5 ± 3.3 year (mean ± standard deviation (SD)); body mass index (BMI) 24.1 ± 3.2 kg/m2, were randomised into one of three parallel beverage groups; placebo (water), carbohydrate (maltodextrin) or lipid (dairy-cream). Subcutaneous, abdominal adipose tissue biopsies and serum samples were collected prior to (0 h), as well as 2 h and 4 h after consumption of the beverage. Adipose tissue gene expression levels of monocyte chemoattractant protein-1 (MCP-1), interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) increased in all three groups, without an increase in circulating TNF-α. Serum leptin (0.6-fold, p = 0.03) and adipose tissue leptin gene expression levels (0.6-fold, p = 0.001) decreased in the hours following the placebo beverage, but not the nutrient beverages. Despite increased inflammatory cytokine gene expression in adipose tissue with all beverages, suggesting a confounding effect of the repeated biopsy method, differences in metabolic responses of adipose tissue and circulating adipokines to ingestion of lipid and carbohydrate beverages were observed. PMID:26140541

  14. Perivascular adipose tissue, vascular reactivity and hypertension.

    PubMed

    Oriowo, Mabayoje A

    2015-01-01

    Most blood vessels are surrounded by a variable amount of adventitial adipose tissue, perivascular adipose tissue (PVAT), which was originally thought to provide mechanical support for the vessel. It is now known that PVAT secretes a number of bioactive substances including vascular endothelial growth factor, tumor necrosis factor-alpha (TNF-α), leptin, adiponectin, insulin-like growth factor, interleukin-6, plasminogen activator substance, resistin and angiotensinogen. Several studies have shown that PVAT significantly modulated vascular smooth muscle contractions induced by a variety of agonists and electrical stimulation by releasing adipocyte-derived relaxing (ADRF) and contracting factors. The identity of ADRF is not yet known. However, several vasodilators have been suggested including adiponectin, angiotensin 1-7, hydrogen sulfide and methyl palmitate. The anticontractile effect of PVAT is mediated through the activation of potassium channels since it is abrogated by inhibiting potassium channels. Hypertension is characterized by a reduction in the size and amount of PVAT and this is associated with the attenuated anticontractile effect of PVAT in hypertension. However, since a reduction in size and amount of PVAT and the attenuated anticontractile effect of PVAT were already evident in prehypertensive rats with no evidence of impaired release of ADRF, there is the possibility that the anticontractile effect of PVAT was not directly related to an altered function of the adipocytes per se. Hypertension is characterized by low-grade inflammation and infiltration of macrophages. One of the adipokines secreted by macrophages is TNF-α. It has been shown that exogenously administered TNF-α enhanced agonist-induced contraction of a variety of vascular smooth muscle preparations and reduced endothelium-dependent relaxation. Other procontractile factors released by the PVAT include angiotensin II and superoxide. It is therefore possible that the loss could be due

  15. Triacylglycerol metabolism in adipose tissue

    PubMed Central

    Ahmadian, Maryam; Duncan, Robin E; Jaworski, Kathy; Sarkadi-Nagy, Eszter; Sul, Hei Sook

    2009-01-01

    Triacylglycerol (TAG) in adipose tissue serves as the major energy storage form in higher eukaryotes. Obesity, resulting from excess white adipose tissue, has increased dramatically in recent years resulting in a serious public health problem. Understanding of adipocyte-specific TAG synthesis and hydrolysis is critical to the development of strategies to treat and prevent obesity and its closely associated diseases, for example, Type 2 diabetes, hypertension and atherosclerosis. In this review, we present an overview of the major enzymes in TAG synthesis and lipolysis, including the recent discovery of a novel adipocyte TAG hydrolase. PMID:19194515

  16. Regulation of Microvascular Function by Adipose Tissue in Obesity and Type 2 Diabetes: Evidence of an Adipose-Vascular Loop

    PubMed Central

    Zhang, Hanrui; Zhang, Cuihua

    2009-01-01

    In recent years, the general concept has emerged that chronic low-grade inflammation is the condition linking excessive development of adipose tissue and obesity-associated pathologies such as type 2 diabetes and cardiovascular diseases. Obesity and type 2 diabetes are characterized by a diminished production of protective factors such as adiponectin and increased detrimental adipocytokines such as leptin, resistin, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNFα), and monocyte chemoattractant protein-1 (MCP-1) by adipose tissue. Moreover, the evidence that the growth of the fat mass is associated with an accumulation of adipose tissue macrophages and T-lymphocytes has raised the hypothesis that the development of an inflammatory process within the growing fat mass is a primary event involved in the genesis of systemic metabolic and vascular alterations. This crosstalk of adipocyte, macrophage, lymphocyte, endothelial cells, and vascular smooth muscle cells contribute to the production of various cytokines, chemokines, and hormone-like factors, which actively participate in the regulation of vascular function by an endocrine and/or paracrine pattern. Thus, the signaling from perivascular adipose to the blood vessels is emerging as a potential therapeutic target for obesity and diabetes-associated vascular dysfunction. PMID:20098632

  17. Adiposity, obesity, and arterial aging: longitudinal study of aortic stiffness in the Whitehall II cohort.

    PubMed

    Brunner, Eric J; Shipley, Martin J; Ahmadi-Abhari, Sara; Tabak, Adam G; McEniery, Carmel M; Wilkinson, Ian B; Marmot, Michael G; Singh-Manoux, Archana; Kivimaki, Mika

    2015-08-01

    We sought to determine whether adiposity in later midlife is an independent predictor of accelerated stiffening of the aorta. Whitehall II study participants (3789 men; 1383 women) underwent carotid-femoral applanation tonometry at the mean age of 66 and again 4 years later. General adiposity by body mass index, central adiposity by waist circumference and waist:hip ratio, and fat mass percent by body impedance were assessed 5 years before and at baseline. In linear mixed models adjusted for age, sex, ethnicity, and mean arterial pressure, all adiposity measures were associated with aortic stiffening measured as increase in pulse wave velocity (PWV) between baseline and follow-up. The associations were similar in the metabolically healthy and unhealthy, according to Adult Treatment Panel-III criteria excluding waist circumference. C-reactive protein and interleukin-6 levels accounted for part of the longitudinal association between adiposity and PWV change. Adjusting for chronic disease, antihypertensive medication and risk factors, standardized effects of general and central adiposity and fat mass percent on PWV increase (m/s) were similar (0.14, 95% confidence interval: 0.05-0.24, P=0.003; 0.17, 0.08-0.27, P<0.001; 0.14, 0.05-0.22, P=0.002, respectively). Previous adiposity was associated with aortic stiffening independent of change in adiposity, glycaemia, and lipid levels across PWV assessments. We estimated that the body mass index-linked PWV increase will account for 12% of the projected increase in cardiovascular risk because of high body mass index. General and central adiposity in later midlife were strong independent predictors of aortic stiffening. Our findings suggest that adiposity is an important and potentially modifiable determinant of arterial aging. PMID:26056335

  18. Assessment of brown adipose tissue function

    PubMed Central

    Virtue, Sam; Vidal-Puig, Antonio

    2013-01-01

    In this review we discuss practical considerations for the assessment of brown adipose tissue in rodent models, focusing on mice. The central aim of the review is to provide a critical appraisal of the utility of specialized techniques for assessing brown adipose tissue function in vivo. We cover several of the most common specialized methods for analysing brown adipose tissue function in vivo, including assessment of maximal thermogenic capacity by indirect calorimetry and the measurement of sympathetic tone to brown adipose tissue. While these techniques are powerful, they are not readily available to all laboratories; therefore we also cover several simple measurements that, particularly in combination, can be used to determine if a mouse model is likely to have alterations in brown adipose tissue function. Such techniques include: pair feeding, analysis of brown adipose tissue lipid content and mRNA and protein markers of brown adipose tissue activation. PMID:23760815

  19. Quantification of adipose tissue insulin sensitivity.

    PubMed

    Søndergaard, Esben; Jensen, Michael D

    2016-06-01

    In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and weaknesses. PMID:27073214

  20. Exendin-4 enhances the migration of adipose-derived stem cells to neonatal rat ventricular cardiomyocyte-derived conditioned medium via the phosphoinositide 3-kinase/Akt-stromal cell-derived factor-1α/CXC chemokine receptor 4 pathway

    PubMed Central

    ZHOU, HAO; YANG, JUNJIE; XIN, TING; ZHANG, TAO; HU, SHUNYIN; ZHOU, SHANSHAN; CHEN, GUANGHUI; CHEN, YUNDAI

    2015-01-01

    Adipose-derived stem cells (ADSCs) are considered a suitable source of cells for the repair of tissue following acute myocardial infarction (AMI); however, the transplantation efficiency of ADSCs remains low. Therefore, identification of an efficient method to enhance the migration of engrafted cells to the target site is required. The present study used exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist, to optimize the migratory capacity of ADSCs. The aim was to determine the effect and mechanisms of Ex-4 on the migration of ADSCs to neonatal rat ventricular cardiomyocyte-derived conditioned medium (NRVC-CM). The ADSCs and cardiomyocytes were cultured in vitro. Following incubation of the ADSCs with Ex-4, cell proliferation was measured using an MTT assay and the expression levels of CXC chemokine receptor 4 (CXCR4) were investigated by reverse transctiption quantitative polymerase chain reaction (RT-qPCR), western blot analysis and flow cytometry. In addition, the expression levels of stromal cell-derived factor-1α (SDF-1α) were evaluated in the NRVC-CM treated with Ex-4 by ELISA, RT-qPCR and western blot analysis. The migration of the ADSCs to the NRVC-CM was examined using a Transwell assay. Changes in the protein expression levels of phosphorylated (p−)Akt were examined in the two types of cell by western blot analysis. The results suggested that Ex-4 promoted the proliferation and expression of CXCR4 in the ADSCs, increased the secretion of SDF-1α in the cardiomyocytes and increased the expression levels of p-Akt in both cells. However, the alterations to the SDF-1α/C XC R4 cascade in the cells were abrogated following pretreatment with LY-294002, a phosphoinositide 3-kinase(PI3K) inhibitor. Furthermore, a Transwell migration assay revealed marked translocation of the ADSCs through the membranes, towards the NRVC-CM, following treatment with Ex-4. However, these effects were reduced significantly by pretreatment of the cells with the SDF-1

  1. Mechanisms of perivascular adipose tissue dysfunction in obesity.

    PubMed

    Fernández-Alfonso, Maria S; Gil-Ortega, Marta; García-Prieto, Concha F; Aranguez, Isabel; Ruiz-Gayo, Mariano; Somoza, Beatriz

    2013-01-01

    Most blood vessels are surrounded by adipose tissue. Similarly to the adventitia, perivascular adipose tissue (PVAT) was considered only as a passive structural support for the vasculature, and it was routinely removed for isolated blood vessel studies. In 1991, Soltis and Cassis demonstrated for the first time that PVAT reduced contractions to noradrenaline in rat aorta. Since then, an important number of adipocyte-derived factors with physiological and pathophysiological paracrine vasoactive effects have been identified. PVAT undergoes structural and functional changes in obesity. During early diet-induced obesity, an adaptative overproduction of vasodilator factors occurs in PVAT, probably aimed at protecting vascular function. However, in established obesity, PVAT loses its anticontractile properties by an increase of contractile, oxidative, and inflammatory factors, leading to endothelial dysfunction and vascular disease. The aim of this review is to focus on PVAT dysfunction mechanisms in obesity. PMID:24307898

  2. Mechanisms of Perivascular Adipose Tissue Dysfunction in Obesity

    PubMed Central

    Fernández-Alfonso, Maria S.; García-Prieto, Concha F.; Aranguez, Isabel; Ruiz-Gayo, Mariano; Somoza, Beatriz

    2013-01-01

    Most blood vessels are surrounded by adipose tissue. Similarly to the adventitia, perivascular adipose tissue (PVAT) was considered only as a passive structural support for the vasculature, and it was routinely removed for isolated blood vessel studies. In 1991, Soltis and Cassis demonstrated for the first time that PVAT reduced contractions to noradrenaline in rat aorta. Since then, an important number of adipocyte-derived factors with physiological and pathophysiological paracrine vasoactive effects have been identified. PVAT undergoes structural and functional changes in obesity. During early diet-induced obesity, an adaptative overproduction of vasodilator factors occurs in PVAT, probably aimed at protecting vascular function. However, in established obesity, PVAT loses its anticontractile properties by an increase of contractile, oxidative, and inflammatory factors, leading to endothelial dysfunction and vascular disease. The aim of this review is to focus on PVAT dysfunction mechanisms in obesity. PMID:24307898

  3. Adipose Cell Size and Regional Fat Deposition as Predictors of Metabolic Response to Overfeeding in Insulin-Resistant and Insulin-Sensitive Humans.

    PubMed

    McLaughlin, Tracey; Craig, Colleen; Liu, Li-Fen; Perelman, Dalia; Allister, Candice; Spielman, Daniel; Cushman, Samuel W

    2016-05-01

    Obesity is associated with insulin resistance, but significant variability exists between similarly obese individuals, pointing to qualitative characteristics of body fat as potential mediators. To test the hypothesis that obese, insulin-sensitive (IS) individuals possess adaptive adipose cell/tissue responses, we measured subcutaneous adipose cell size, insulin suppression of lipolysis, and regional fat responses to short-term overfeeding in BMI-matched overweight/obese individuals classified as IS or insulin resistant (IR). At baseline, IR subjects exhibited significantly greater visceral adipose tissue (VAT), intrahepatic lipid (IHL), plasma free fatty acids, adipose cell diameter, and percentage of small adipose cells. With weight gain (3.1 ± 1.4 kg), IR subjects demonstrated no significant change in adipose cell size, VAT, or insulin suppression of lipolysis and only 8% worsening of insulin-mediated glucose uptake (IMGU). Alternatively, IS subjects demonstrated significant adipose cell enlargement; decrease in the percentage of small adipose cells; increase in VAT, IHL, and lipolysis; 45% worsening of IMGU; and decreased expression of lipid metabolism genes. Smaller baseline adipose cell size and greater enlargement with weight gain predicted decline in IMGU, as did increase in IHL and VAT and decrease in insulin suppression of lipolysis. Weight gain in IS humans causes maladaptive changes in adipose cells, regional fat distribution, and insulin resistance. The correlation between development of insulin resistance and changes in adipose cell size, VAT, IHL, and insulin suppression of lipolysis highlight these factors as potential mediators between obesity and insulin resistance. PMID:26884438

  4. Lipolytic and thermogenic depletion of adipose tissue in cancer cachexia.

    PubMed

    Tsoli, Maria; Swarbrick, Michael M; Robertson, Graham R

    2016-06-01

    Although muscle wasting is the obvious manifestation of cancer cachexia that impacts on patient quality of life, the loss of lipid reserves and metabolic imbalance in adipose tissue also contribute to the devastating impact of cachexia. Depletion of fat depots in cancer patients is more pronounced than loss of muscle and often precedes, or even occurs in the absence of, reduced lean body mass. Rapid mobilisation of triglycerides stored within adipocytes to supply the body with fatty acids in periods of high-energy demand is normally mediated through a well-defined process of lipolysis involving the lipases ATGL, HSL and MGL. Studies into how these lipases contribute to fat loss in cancer cachexia have revealed the prominent role for ATGL in initiating lipolysis during adipose tissue atrophy, together with links between tumour-derived factors and the signalling pathways that control lipid flux within fat cells. The recent findings of increased thermogenesis in brown fat during cancer cachexia indicate that metabolically active adipose tissue contributes to the imbalance in energy homeostasis involved in catabolic wasting. Such energetically futile use of fatty acids liberated from adipose tissue to generate heat represents a maladaptive response in conjunction with anorexia experienced by cancer patients. As IL-6 release by tumours provokes lipolysis and activates the thermogenic programme in brown fat, this review explores the overlap in dysregulated metabolic processes due to inflammatory mediators in cancer cachexia and other disease states characterised by elevated cytokines such as obesity and diabetes. PMID:26529279

  5. Do Neighborhood Characteristics in Amsterdam Influence Adiposity at Preschool Age?

    PubMed Central

    Hrudey, E. Jessica; Kunst, Anton E.; Stronks, Karien; Vrijkotte, Tanja G.M.

    2015-01-01

    Background: Neighborhood characteristics may contribute to adiposity in young children, but results in the current literature are inconsistent. This study aimed to investigate whether objective (socioeconomic status (SES)) and subjective (perceived safety, satisfaction with green spaces and perceived physical disorder) neighborhood characteristics directly influence child adiposity (as measured by BMI, percent body fat (%BF) and waist-to-height ratio (WHtR)). Methods: Data on child BMI, %BF and WHtR were obtained from the Amsterdam Born Children and their Development cohort at 5–6 years of age. Three thousand four hundred and sixty nine (3469) children were included in the analyses. Mixed models, using random intercepts for postal code area to account for neighborhood clustering effects, were used to analyze the relationships of interest. Results: Associations were observed for both perceived safety and neighborhood SES with %BF after adjustment for maternal education and ethnicity. All relationships were eliminated with the inclusion of individual covariates and parental BMI into the models. Conclusions: In general, child adiposity at age 5–6 years was not independently associated with neighborhood characteristics, although a small relationship between child %BF and both neighborhood SES and perceived safety cannot be ruled out. At this young age, familial and individual factors probably play a more important role in influencing child adiposity than neighborhood characteristics. PMID:26006128

  6. Visceral Adiposity Index: An Indicator of Adipose Tissue Dysfunction

    PubMed Central

    2014-01-01

    The Visceral Adiposity Index (VAI) has recently proven to be an indicator of adipose distribution and function that indirectly expresses cardiometabolic risk. In addition, VAI has been proposed as a useful tool for early detection of a condition of cardiometabolic risk before it develops into an overt metabolic syndrome. The application of the VAI in particular populations of patients (women with polycystic ovary syndrome, patients with acromegaly, patients with NAFLD/NASH, patients with HCV hepatitis, patients with type 2 diabetes, and general population) has produced interesting results, which have led to the hypothesis that the VAI could be considered a marker of adipose tissue dysfunction. Unfortunately, in some cases, on the same patient population, there is conflicting evidence. We think that this could be mainly due to a lack of knowledge of the application limits of the index, on the part of various authors, and to having applied the VAI in non-Caucasian populations. Future prospective studies could certainly better define the possible usefulness of the VAI as a predictor of cardiometabolic risk. PMID:24829577

  7. Hypercholesterolemia Induces Adipose Dysfunction in Conditions of Obesity and Nonobesity1

    PubMed Central

    Aguilar, David; Fernandez, Maria Luz

    2014-01-01

    It is well known that hypercholesterolemia can lead to atherosclerosis and coronary heart disease. Adipose tissue represents an active endocrine and metabolic site, which might be involved in the development of chronic disease. Because adipose tissue is a key site for cholesterol metabolism and the presence of hypercholesterolemia has been shown to induce adipocyte cholesterol overload, it is critical to investigate the role of hypercholesterolemia on normal adipose function. Studies in preadipocytes revealed that cholesterol accumulation can impair adipocyte differentiation and maturation by affecting multiple transcription factors. Hypercholesterolemia has been observed to cause adipocyte hypertrophy, adipose tissue inflammation, and disruption of endocrine function in animal studies. Moreover, these effects can also be observed in obesity-independent conditions as confirmed by clinical trials. In humans, hypercholesterolemia disrupts adipose hormone secretion of visfatin, leptin, and adiponectin, adipokines that play a central role in numerous metabolic pathways and regulate basic physiologic responses such as appetite and satiety. Remarkably, treatment with cholesterol-lowering drugs has been shown to restore adipose tissue endocrine function. In this review the role of hypercholesterolemia on adipose tissue differentiation and maturation, as well as on hormone secretion and physiologic outcomes, in obesity and non–obesity conditions is presented. PMID:25469381

  8. Adipose-Resident Group 1 Innate Lymphoid Cells Promote Obesity-Associated Insulin Resistance.

    PubMed

    O'Sullivan, Timothy E; Rapp, Moritz; Fan, Xiying; Weizman, Orr-El; Bhardwaj, Priya; Adams, Nicholas M; Walzer, Thierry; Dannenberg, Andrew J; Sun, Joseph C

    2016-08-16

    Innate lymphoid cells (ILCs) function to protect epithelial barriers against pathogens and maintain tissue homeostasis in both barrier and non-barrier tissues. Here, utilizing Eomes reporter mice, we identify a subset of adipose group 1 ILC (ILC1) and demonstrate a role for these cells in metabolic disease. Adipose ILC1s were dependent on the transcription factors Nfil3 and T-bet but phenotypically and functionally distinct from adipose mature natural killer (NK) and immature NK cells. Analysis of parabiotic mice revealed that adipose ILC1s maintained long-term tissue residency. Diet-induced obesity drove early production of interleukin (IL)-12 in adipose tissue depots and led to the selective proliferation and accumulation of adipose-resident ILC1s in a manner dependent on the IL-12 receptor and STAT4. ILC1-derived interferon-γ was necessary and sufficient to drive proinflammatory macrophage polarization to promote obesity-associated insulin resistance. Thus, adipose-resident ILC1s contribute to obesity-related pathology in response to dysregulated local proinflammatory cytokine production. PMID:27496734

  9. The adipose organ at a glance.

    PubMed

    Cinti, Saverio

    2012-09-01

    The main parenchymal cells of the adipose organ are adipocytes. White adipocytes store energy, whereas brown adipocytes dissipate energy for thermogenesis. These two cell types with opposing functions can both originate from endothelial cells, and co-exist in the multiple fat depots of the adipose organ - a feature that I propose is crucial for this organ's plasticity. This poster review provides an overview of the adipose organ, describing its anatomy, cytology, physiological function and histopathology in obesity. It also highlights the remarkable plasticity of the adipose organ, explaining theories of adipocyte transdifferentiation during chronic cold exposure, physical exercise or lactation, as well as in obesity. White-to-brown adipocyte transdifferentiation is of particular medical relevance, because animal data indicate that higher amounts of brown adipose tissue are positively associated with resistance to obesity and its co-morbidities, and that 'browning' of the adipose organ curbs these disorders. PMID:22915020

  10. Adipose tissue immunity and cancer

    PubMed Central

    Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Frühbeck, Gema

    2013-01-01

    Inflammation and altered immune response are important components of obesity and contribute greatly to the promotion of obesity-related metabolic complications, especially cancer development. Adipose tissue expansion is associated with increased infiltration of various types of immune cells from both the innate and adaptive immune systems. Thus, adipocytes and infiltrating immune cells secrete pro-inflammatory adipokines and cytokines providing a microenvironment favorable for tumor growth. Accumulation of B and T cells in adipose tissue precedes macrophage infiltration causing a chronic low-grade inflammation. Phenotypic switching toward M1 macrophages and Th1 T cells constitutes an important mechanism described in the obese state correlating with increased tumor growth risk. Other possible synergic mechanisms causing a dysfunctional adipose tissue include fatty acid-induced inflammation, oxidative stress, endoplasmic reticulum stress, and hypoxia. Recent investigations have started to unravel the intricacy of the cross-talk between tumor cell/immune cell/adipocyte. In this sense, future therapies should take into account the combination of anti-inflammatory approaches that target the tumor microenvironment with more sophisticated and selective anti-tumoral drugs. PMID:24106481

  11. Potential of Adipose-Derived Stem Cells for Treatment of Erectile Dysfunction

    PubMed Central

    Lin, Guiting; Banie, Lia; Ning, Hongxiu; Bella, Anthony J.; Lin, Ching-Shwun; Lue, Tom F

    2010-01-01

    Introduction Adipose derived stem cells (ADSCs) are a somatic stem cell population contained in fat tissue that possess the ability for self-renewal, differentiation into one or more phenotypes and functional regeneration of damaged tissue, which will benefit the recovery of erectile function by using a stem cell based therapy. Aim To review available evidence concerning adipose derived stem cell availability, differentiation into functional cells, and the potential of these cells for the treatment of erectile dysfunction (ED). Methods We examined the current data associated with the definition and characterization of adipose derived stem cells, including the differentiation of these cells and the initial effects of adipose derived stem cell therapy in a rat model of erectile dysfunction. Main Outcome Measures There is strong evidence supporting the concept that ADSCs are a potential stem cell therapy source for treatment of erectile dysfunction. Results The adipose derived stem cells are paravascularly localized in the adipose tissue. Under specific induction medium conditions, these cells differentiated into neuron-like cells, smooth muscle cells and endothelium in vitro. The insulin-like growth factor/insulin-like growth factor receptor (IGF/IGFR) pathway participates in neuronal differentiation while the fibroblast growth factor 2 (FGF2) pathway is involved in endothelium differentiation. In addition, the internal ribosomal entry sites (IRES) regulated gene translation is related to these types of differentiation. In a preliminary in-vivo experiment, the adipose derived stem cells functionally recovered the damaged erectile function. Therefore, the underlying mechanism needs be further examined. Conclusion The adipose derived stem cells are a potential source of stem cells for treatment of erectile dysfunction, which highlights the possibility of an effective clinical therapy for ED in the near future. PMID:19267855

  12. Myocardial regeneration potential of adipose tissue-derived stem cells

    SciTech Connect

    Bai, Xiaowen; Alt, Eckhard

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  13. Simple and longstanding adipose tissue engineering in rabbits.

    PubMed

    Tsuji, Wakako; Inamoto, Takashi; Ito, Ran; Morimoto, Naoki; Tabata, Yasuhiko; Toi, Masakazu

    2013-03-01

    Adipose tissue engineering for breast reconstruction can be performed for patients who have undergone breast surgery. We have previously confirmed adipogenesis in mice implanted with type I collagen sponge with controlled release of fibroblast growth factor 2 (FGF2) and human adipose tissue-derived stem cells. However, in order to use this approach to treat breast cancer patients, a large amount of adipose tissue is needed, and FGF2 is not readily available. Thus, we aimed to regenerate large amounts of adipose tissue without FGF2 for a long period. Under general anesthesia, cages made of polypropylene mesh were implanted into the rabbits' bilateral fat pads. Each cage was 10 mm in radius and 10 mm in height. Minced type I collagen sponge was injected as a scaffold into the cage. Regenerated tissue in the cage was examined with ultrasonography, and the cages were harvested 3, 6, and 12 months after the implantation. Ultrasonography revealed a gradually increasing homogeneous high-echo area in the cage. Histology of the specimen was assessed with hematoxylin and eosin staining. The percentages of regenerated adipose tissue area were 76.2 ± 13.0 and 92.8 ± 6.6 % at 6 and 12 months after the implantation, respectively. Our results showed de novo adipogenesis 12 months after the implantation of only type I collagen sponge inside the space. Ultrasonography is a noninvasive and useful method of assessing the growth of the tissue inside the cage. This simple method could be a promising clinical modality in breast reconstruction. PMID:23114565

  14. Circadian Clocks and the Interaction between Stress Axis and Adipose Function

    PubMed Central

    Kolbe, Isa; Dumbell, Rebecca

    2015-01-01

    Many physiological processes and most endocrine functions show fluctuations over the course of the day. These so-called circadian rhythms are governed by an endogenous network of cellular clocks and serve as an adaptation to daily and, thus, predictable changes in the organism's environment. Circadian clocks have been described in several tissues of the stress axis and in adipose cells where they regulate the rhythmic and stimulated release of stress hormones, such as glucocorticoids, and various adipokine factors. Recent work suggests that both adipose and stress axis clock systems reciprocally influence each other and adrenal-adipose rhythms may be key players in the development and therapy of metabolic disorders. In this review, we summarize our current understanding of adrenal and adipose tissue rhythms and clocks and how they might interact to regulate energy homoeostasis and stress responses under physiological conditions. Potential chronotherapeutic strategies for the treatment of metabolic and stress disorders are discussed. PMID:26000016

  15. Glucocorticoid Paradoxically Recruits Adipose Progenitors and Impairs Lipid Homeostasis and Glucose Transport in Mature Adipocytes

    PubMed Central

    Ayala-Sumuano, Jorge-Tonatiuh; Velez-delValle, Cristina; Beltrán-Langarica, Alicia; Marsch-Moreno, Meytha; Hernandez-Mosqueira, Claudia; Kuri-Harcuch, Walid

    2013-01-01

    Chronic treatment with glucocorticoids increases the mass of adipose tissue and promotes metabolic syndrome. However little is known about the molecular effects of dexamethasone on adipose biology. Here, we demonstrated that dexamethasone induces progenitor cells to undergo adipogenesis. In the adipogenic pathway, at least two cell types are found: cells with the susceptibility to undergo staurosporine-induced adipose conversion and cells that require both staurosporine and dexamethasone to undergo adipogenesis. Dexamethasone increased and accelerated the expression of main adipogenic genes such as pparg2, cebpa and srebf1c. Also, dexamethasone altered the phosphorylation pattern of C/EBPβ, which is an important transcription factor during adipogenesis. Dexamethasone also had effect on mature adipocytes mature adipocytes causing the downregulation of some lipogenic genes, promoted a lipolysis state, and decreased the uptake of glucose. These paradoxical effects appear to explain the complexity of the action of glucocorticoids, which involves the hyperplasia of adipose cells and insulin resistance. PMID:23999235

  16. Hair Regeneration Treatment Using Adipose-Derived Stem Cell Conditioned Medium: Follow-up With Trichograms

    PubMed Central

    Suga, Hirotaka

    2015-01-01

    Objective: Adipose-derived stem cells secrete various growth factors that promote hair growth. This study examined the effects of adipose-derived stem cell-conditioned medium on alopecia. Methods: Adipose-derived stem cell-conditioned medium was intradermally injected in 22 patients (11 men and 11 women) with alopecia. Patients received treatment every 3 to 5 weeks for a total of 6 sessions. Hair numbers were counted using trichograms before and after treatment. A half-side comparison study was also performed in 10 patients (8 men and 2 women). Results: Hair numbers were significantly increased after treatment in both male (including those without finasteride administration) and female patients. In the half-side comparison study, the increase in hair numbers was significantly higher on the treatment side than on the placebo side. Conclusion: Treatment using adipose-derived stem cell-conditioned medium appears highly effective for alopecia and may represent a new therapy for hair regeneration. PMID:25834689

  17. Association of Adiposity and Mental Health Functioning across the Lifespan: Findings from Understanding Society (The UK Household Longitudinal Study)

    PubMed Central

    2016-01-01

    Background Evidence on the adiposity-mental health associations is mixed, with studies finding positive, negative or no associations, and less is known about how these associations may vary by age. Objective To examine the association of adiposity -body mass index (BMI), waist circumference (WC) and percentage body fat (BF%)- with mental health functioning across the adult lifespan. Methods Data from 11,257 participants (aged 18+) of Understanding Society: the UK Household Longitudinal Study (waves 2 and 3, 5/2010-7/2013) were employed. Regressions of mental health functioning, assessed by the Mental Component Summary (MCS-12) and the General Health Questionnaire (GHQ-12), on adiposity measures (continuous or dichotomous indicators) were estimated adjusted for covariates. Polynomial age-adiposity interactions were estimated. Results Higher adiposity was associated with poorer mental health functioning. This emerged in the 30s, increased up to mid-40s (all central adiposity and obesity-BF% measures) or early 50s (all BMI measures) and then decreased with age. Underlying physical health generally accounted for these associations except for central adiposity, where associations remained statistically significant from the mid-30s to50s. Cardiovascular, followed by arthritis and endocrine, conditions played the greatest role in attenuating the associations under investigation. Conclusions We found strong age-specific patterns in the adiposity-mental health functioning association that varied across adiposity measures. Underlying physical health had the dominant role in attenuating these associations. Policy makers and health professionals should target increased adiposity, mainly central adiposity, as it is a risk factor for poor mental health functioning in those aged between mid-30s to 50 years. PMID:26849046

  18. Adipose-derived Mesenchymal Stem Cells and Their Reparative Potential in Ischemic Heart Disease.

    PubMed

    Badimon, Lina; Oñate, Blanca; Vilahur, Gemma

    2015-07-01

    Adipose tissue has long been considered an energy storage and endocrine organ; however, in recent decades, this tissue has also been considered an abundant source of mesenchymal cells. Adipose-derived stem cells are easily obtained, show a strong capacity for ex vivo expansion and differentiation to other cell types, release a large variety of angiogenic factors, and have immunomodulatory properties. Thus, adipose tissue is currently the focus of considerable interest in the field of regenerative medicine. In the context of coronary heart disease, numerous experimental studies have supported the safety and efficacy of adipose-derived stem cells in the setting of myocardial infarction. These results have encouraged the clinical use of these stem cells, possibly prematurely. Indeed, the presence of cardiovascular risk factors, such as hypertension, coronary disease, diabetes mellitus, and obesity, alter and reduce the functionality of adipose-derived stem cells, putting in doubt the efficacy of their autologous implantation. In the present article, white adipose tissue is described, the stem cells found in this tissue are characterized, and the use of these cells is discussed according to the preclinical and clinical trials performed so far. PMID:26028258

  19. Mest and Sfrp5 are biomarkers for healthy adipose tissue.

    PubMed

    Jura, Magdalena; Jarosławska, Julia; Chu, Dinh Toi; Kozak, Leslie P

    2016-05-01

    Obesity depends on a close interplay between genetic and environmental factors. However, it is unknown how these factors interact to cause changes in the obese condition during the progression of obesity from the neonatal to the aged individual. We have utilized Mest and Sfrp5 genes, two genes highly correlated with adipose tissue expansion in diet-induced obesity, to characterize the obese condition during development of 2 genetic models of obesity. A model for the early onset of obesity was presented by leptin-deficient mice (ob/ob), whereas late onset of obesity was induced with high-fat diet (HFD) consumption in C57BL/6J mice with inherent risk of obesity (DIO). We correlated obese and diabetic phenotypes with Mest and Sfrp5 gene expression profiles in subcutaneous fat during pre-weaning, pre-adulthood and adulthood. A rapid development of obesity began in ob/ob mice immediately after weaning at 21 days of age, whereas the obesity of DIO mice was not evident until after 2 months of age. Even after 5 months of HFD treatment, the adiposity index of DIO mice was lower than in ob/ob mice at 2 months of age. In both obesity models, the expression of Mest and Sfrp5 genes increased in parallel with fat mass expansion; however, gene expression proceeded to decrease when the adiposity reached a plateau. The reduction in the expression of genes of caveolae structure and glucose metabolism were also suppressed in the aging adipose tissue. The analysis of fat mass and adipocyte size suggests that reduction in Mest and Sfrp5 is more sensitive to the age of the fat than its morphology. The balance of factors controlling fat deposition can be evaluated in part by the differential expression profiles of Mest and Sfrp5 genes with functions linked to fat deposition as long as there is an active accumulation of fat mass. PMID:26001362

  20. Interactive effects of dietary restraint and adiposity on stress-induced eating and the food choice of children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Individual Differences Model posits that individual differences in physiological and psychological factors explain eating behaviors in response to stress. The purpose was to determine the effects of individual differences in adiposity, dietary restraint and stress reactivity on children's energy...

  1. Commonality versus specificity among adiposity traits in normal-weight and moderately overweight adults

    PubMed Central

    Raja, GK; Sarzynski, MA; Katzmarzyk, PT; Johnson, WD; Tchoukalova, Y; Smith, SR; Bouchard, C

    2014-01-01

    BACKGROUND Many adiposity traits have been related to health complications and premature death. These adiposity traits are intercorrelated but their underlying structure has not been extensively investigated. We report on the degree of commonality and specificity among multiple adiposity traits in normal-weight and moderately overweight adult males and females (mean body mass index (BMI) = 22.9 kg m−2, s.d. = 2.4). METHODS A total of 75 healthy participants were assessed for a panel of adiposity traits including leg, arm, trunk, total fat masses and visceral adipose tissue (VAT) derived from dual energy X-ray absorptiometry (DXA), hepatic and muscle lipids from proton magnetic resonance spectroscopy, fat cell volume from an abdominal subcutaneous adipose tissue biopsy (n = 36) and conventional anthropometry (BMI and waist girth). Spearman’s correlations were calculated and were subjected to factor analysis. RESULTS Arm, leg, trunk and total fat masses correlated positively (r = 0.78–0.95) with each other. VAT correlated weakly with fat mass indicators (r = 0.24–0.31). Intrahepatic lipids (IHL) correlated weakly with all fat mass traits (r = 0.09–0.34), whereas correlations between DXA depots and intramyocellular lipids (IMCL) were inconsequential. The four DXA fat mass measures, VAT, IHL and IMCL depots segregated as four independent factors that accounted for 96% of the overall adiposity variance. BMI and waist girth were moderately correlated with the arm, leg, trunk and total fat and weakly with VAT, IHL and IMCL. CONCLUSION Adiposity traits share a substantial degree of commonality, but there is considerable specificity across the adiposity variance space. For instance, VAT, IHL and IMCL are typically poorly correlated with each other and are poorly to weakly associated with the other adiposity traits. The same is true for BMI and waist girth, commonly used anthropometric indicators of adiposity. These results do not support the view that it will be

  2. Pharmacological evaluation of the mechanisms involved in increased adiposity in zebrafish triggered by the environmental contaminant tributyltin.

    PubMed

    Ouadah-Boussouf, Nafia; Babin, Patrick J

    2016-03-01

    One proposed contributing factor to the rise in overweight and obesity is exposure to endocrine disrupting chemicals. Tributyltin chloride (TBT), an organotin, induces adipogenesis in cell culture models and may increases adipose mass in vivo in vertebrate model organisms. It has been hypothesized that TBT acts via the peroxisome proliferator activated receptor (PPAR)γ-dependent pathway. However, the mechanisms involved in the effects of TBT exposure on in vivo adipose tissue metabolism remain unexplored. Semitransparent zebrafish larvae, with their well-developed white adipose tissue, offer a unique opportunity for studying the effects of toxicant chemicals and pharmaceuticals on adipocyte biology and whole-organism adiposity in a vertebrate model. Within hours, zebrafish larvae, treated at environmentally-relevant nanomolar concentrations of TBT, exhibited a remarkable increase in adiposity linked to adipocyte hypertrophy. Under the experimental conditions used, we also demonstrated that zebrafish larvae adipose tissue proved to be highly responsive to selected human nuclear receptor agonists and antagonists. Retinoid X receptor (RXR) homodimers and RXR/liver X receptor heterodimers were suggested to be in vivo effectors of the obesogenic effect of TBT on zebrafish white adipose tissue. RXR/PPARγ heterodimers may be recruited to modulate adiposity in zebrafish but were not a necessary requirement for the short term in vivo TBT obesogenic effect. Together, the present results suggest that TBT may induce the promotion of triacylglycerol storage in adipocytes via RXR-dependent pathways without necessary using PPAR isoforms. PMID:26812627

  3. Sex differences in adipose tissue

    PubMed Central

    Fuente-Martín, Esther; Argente-Arizón, Pilar; Ros, Purificación; Argente, Jesús; Chowen, Julie A

    2013-01-01

    Obesity and its associated secondary complications are active areas of investigation in search of effective treatments. As a result of this intensified research numerous differences between males and females at all levels of metabolic control have come to the forefront. These differences include not only the amount and distribution of adipose tissue, but also differences in its metabolic capacity and functions between the sexes. Here, we review some of the recent advances in our understanding of these dimorphisms and emphasize the fact that these differences between males and females must be taken into consideration in hopes of obtaining successful treatments for both sexes. PMID:23991358

  4. Adipocytes under Assault: Environmental Disruption of Adipose Physiology

    PubMed Central

    Regnier, Shane M.; Sargis, Robert M.

    2013-01-01

    The burgeoning obesity epidemic has placed enormous strains on individual and societal health mandating a careful search for pathogenic factors, including the contributions made by endocrine disrupting chemicals (EDCs). In addition to evidence that some exogenous chemicals have the capacity to modulate classical hormonal signaling axes, there is mounting evidence that several EDCs can also disrupt metabolic pathways and alter energy homeostasis. Adipose tissue appears to be a particularly important target of these metabolic disruptions. A diverse array of compounds has been shown to alter adipocyte differentiation, and several EDCs have been shown to modulate adipocyte physiology, including adipocytic insulin action and adipokine secretion. This rapidly emerging evidence demonstrating that environmental contaminants alter adipocyte function emphasizes the potential role that disruption of adipose physiology by EDCs may play in the global epidemic of metabolic disease. Further work is required to better characterize the molecular targets responsible for mediating the effects of EDCs on adipose tissue. Improved understanding of the precise signaling pathways altered by exposure to environmental contaminants will enhance our understanding of which chemicals pose a threat to metabolic health and how those compounds synergize with lifestyle factors to promote obesity and its associated complications. This knowledge may also improve our capacity to predict which synthetic compounds may alter energy homeostasis before they are released into the environment while also providing critical evidentiary support for efforts to restrict the production and use of chemicals that pose the greatest threat to human metabolic health. PMID:23735214

  5. Heterogeneity of white adipose tissue: molecular basis and clinical implications

    PubMed Central

    Kwok, Kelvin H M; Lam, Karen S L; Xu, Aimin

    2016-01-01

    Adipose tissue is a highly heterogeneous endocrine organ. The heterogeneity among different anatomical depots stems from their intrinsic differences in cellular and physiological properties, including developmental origin, adipogenic and proliferative capacity, glucose and lipid metabolism, insulin sensitivity, hormonal control, thermogenic ability and vascularization. Additional factors that influence adipose tissue heterogeneity are genetic predisposition, environment, gender and age. Under obese condition, these depot-specific differences translate into specific fat distribution patterns, which are closely associated with differential cardiometabolic risks. For instance, individuals with central obesity are more susceptible to developing diabetes and cardiovascular complications, whereas those with peripheral obesity are more metabolically healthy. This review summarizes the clinical and mechanistic evidence for the depot-specific differences that give rise to different metabolic consequences, and provides therapeutic insights for targeted treatment of obesity. PMID:26964831

  6. Transcriptional control of adipose lipid handling by IRF4

    PubMed Central

    Eguchi, Jun; Wang, Xun; Yu, Songtao; Kershaw, Erin E.; Chiu, Patricia C.; Dushay, Joanne; Estall, Jennifer L.; Klein, Ulf; Maratos-Flier, Eleftheria; Rosen, Evan D.

    2011-01-01

    Summary Adipocytes store triglyceride during periods of nutritional affluence and release free fatty acids during fasting through coordinated cycles of lipogenesis and lipolysis. While much is known about the acute regulation of these processes during fasting and feeding, less is understood about the transcriptional basis by which adipocytes control lipid handling. Here we show that interferon regulatory factor 4 (IRF4) is a critical determinant of the transcriptional response to nutrient availability in adipocytes. Fasting induces IRF4 in an insulin- and FoxO1-dependent manner. IRF4 is required for lipolysis, at least in part due to direct effects on the expression of adipocyte triglyceride lipase and hormone-sensitive lipase. Conversely, reduction of IRF4 enhances lipid synthesis. Mice lacking adipocyte IRF4 exhibit increased adiposity and deficient lipolysis. These studies establish a link between IRF4 and the disposition of calories in adipose tissue, with consequences for systemic metabolic homeostasis. PMID:21356515

  7. Id transcriptional regulators in adipogenesis and adipose tissue metabolism

    PubMed Central

    Patil, Mallikarjun; Sharma, Bal Krishan; Satyanarayana, Ande

    2014-01-01

    Id proteins (Id1-Id4) are helix-loop-helix (HLH) transcriptional regulators that lack a basic DNA binding domain. They act as negative regulators of basic helixloop-helix (bHLH) transcription factors by forming heterodimers and inhibit their DNA binding and transcriptional activity. Id proteins are implicated in the regulation of various cellular mechanisms such as cell proliferation, cellular differentiation, cell fate determination, angiogenesis and tumorigenesis. A handful of recent studies also disclosed that Id proteins have critical functions in adipocyte differentiation and adipose tissue metabolism. Here, we reviewed the progress made thus far in understanding the specific functions of Id proteins in adipose tissue differentiation and metabolism. In addition to reviewing the known mechanisms of action, we also discuss possible additional mechanisms in which Id proteins might participate in regulating adipogenic and metabolic pathways. PMID:24896358

  8. Fully automated adipose tissue measurement on abdominal CT

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Sussman, Daniel L.; Summers, Ronald M.

    2011-03-01

    Obesity has become widespread in America and has been associated as a risk factor for many illnesses. Adipose tissue (AT) content, especially visceral AT (VAT), is an important indicator for risks of many disorders, including heart disease and diabetes. Measuring adipose tissue (AT) with traditional means is often unreliable and inaccurate. CT provides a means to measure AT accurately and consistently. We present a fully automated method to segment and measure abdominal AT in CT. Our method integrates image preprocessing which attempts to correct for image artifacts and inhomogeneities. We use fuzzy cmeans to cluster AT regions and active contour models to separate subcutaneous and visceral AT. We tested our method on 50 abdominal CT scans and evaluated the correlations between several measurements.

  9. Hypothalamic control of brown adipose tissue thermogenesis

    PubMed Central

    Labbé, Sebastien M.; Caron, Alexandre; Lanfray, Damien; Monge-Rofarello, Boris; Bartness, Timothy J.; Richard, Denis

    2015-01-01

    It has long been known, in large part from animal studies, that the control of brown adipose tissue (BAT) thermogenesis is insured by the central nervous system (CNS), which integrates several stimuli in order to control BAT activation through the sympathetic nervous system (SNS). SNS-mediated BAT activity is governed by diverse neurons found in brain structures involved in homeostatic regulations and whose activity is modulated by various factors including oscillations of energy fluxes. The characterization of these neurons has always represented a challenging issue. The available literature suggests that the neuronal circuits controlling BAT thermogenesis are largely part of an autonomic circuitry involving the hypothalamus, brainstem and the SNS efferent neurons. In the present review, we recapitulate the latest progresses in regards to the hypothalamic regulation of BAT metabolism. We briefly addressed the role of the thermoregulatory pathway and its interactions with the energy balance systems in the control of thermogenesis. We also reviewed the involvement of the brain melanocortin and endocannabinoid systems as well as the emerging role of steroidogenic factor 1 (SF1) neurons in BAT thermogenesis. Finally, we examined the link existing between these systems and the homeostatic factors that modulate their activities. PMID:26578907

  10. Ethnic Differences in Effects of Maternal Pre-Pregnancy and Pregnancy Adiposity on Offspring Size and Adiposity

    PubMed Central

    Lin, Xinyi; Aris, Izzuddin M.; Tint, Mya Thway; Soh, Shu E.; Godfrey, Keith M.; Yeo, George Seow-Heong; Kwek, Kenneth; Chan, Jerry Kok-Yen; Gluckman, Peter D.; Chong, Yap Seng; Yap, Fabian; Holbrook, Joanna D.

    2015-01-01

    Context: Maternal adiposity and overnutrition, both before and during pregnancy, plays a key role in the subsequent development of obesity and metabolic outcomes in offspring. Objective: We explored the hypothesis that maternal adiposity (pre-pregnancy and at 26–28 weeks' gestation) and mid-pregnancy gestational weight gain (GWG) are independently associated with offspring size and adiposity in early childhood, and determined whether these effects are ethnicity dependent. Design: In a prospective mother-offspring cohort study (N = 976, 56% Chinese, 26% Malay, and 18% Indian), we assessed the associations of offspring size (weight, length) and adiposity (subscapular and triceps skinfolds), measured at birth and age 6, 12, 18, and 24 mo, with maternal pre-pregnancy body mass index (ppBMI), mid-pregnancy GWG, and mid-pregnancy four-site skinfold thicknesses (triceps, biceps, subscapular, suprailiac). Results: ppBMI and mid-pregnancy GWG were independently associated with postnatal weight up to 2 y and skinfold thickness at birth. Weight and subscapular and triceps skinfolds at birth increased by 2.56% (95% confidence interval, 1.68–3.45%), 3.85% (2.16–5.57%), and 2.14% (0.54–3.75%), respectively for every SD increase in ppBMI. Similarly, a one-SD increase in GWG increased weight and subscapular and triceps skinfolds at birth by 2.44% (1.66–3.23%), 3.28% (1.75–4.84%), and 3.23% (1.65–4.84%), respectively. ppBMI and mid-pregnancy suprailiac skinfold independently predicted postnatal skinfold adiposity up to 2 years of age, whereas only GWG predicted postnatal length. The associations of GWG with postnatal weight and length were present only among Chinese and Indians, but not Malays (P < .05 for interaction). Conclusions: ppBMI and GWG are independent modifiable factors for child size and adiposity up to 2 years of age. The associations are ethnic-dependent, and underscore the importance of ethnic specific studies before generalizing the applicability of

  11. Persistent organic pollutants meet adipose tissue hypoxia: does cross-talk contribute to inflammation during obesity?

    PubMed

    Myre, M; Imbeault, P

    2014-01-01

    Lipophilic persistent organic pollutants (POPs) accumulate in lipid-rich tissues such as human adipose tissue. This is particularly problematic in individuals with excess adiposity, a physiological state that may be additionally characterized by local adipose tissue hypoxia. Hypoxic patches occur when oxygen diffusion is insufficient to reach all hypertrophic adipocytes. POPs and hypoxia independently contribute to the development of adipose tissue-specific and systemic inflammation often associated with obesity. Inflammation is induced by increased proinflammatory mediators such as tumour necrosis factor-alpha, interleukin-6, and monocyte chemotactic protein-1, as well as reduced adiponectin release, an anti-inflammatory and insulin-sensitizing adipokine. The aryl hydrocarbon receptor (AhR) mediates the cellular response to some pollutants, while hypoxia responses occur through the oxygen-sensitive transcription factor hypoxia-inducible factor (HIF)-1. There is some overlap between the two signalling pathways since both require a common subunit called the AhR nuclear translocator. As such, it is unclear how adipocytes respond to simultaneous POP and hypoxia exposure. This brief review explores the independent contribution of POPs and adipose tissue hypoxia as factors underlying the inflammatory response from adipocytes during obesity. It also highlights that the combined effect of POPs and hypoxia through the AhR and HIF-1 signalling pathways remains to be tested. PMID:23998203

  12. Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue

    PubMed Central

    Salas, Anna; Noé, Véronique; Ciudad, Carlos J; Romero, M Mar; Remesar, Xavier; Esteve, Montserrat

    2007-01-01

    Background Short-term OE (oleoyl-estrone) treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Results Gene expression in adipose tissue from female treated rats (48 hours) was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL) were decreased by 52%, those of Fatty Acid Synthase (FAS) by 95%, those of Hormone Sensible Lipase (HSL) by 32%, those of Acetyl CoA Carboxylase (ACC) by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b) by 45%, and those of Fatty Acid Transport Protein 1 (FATP1) and Adipocyte Fatty Acid Binding Protein (FABP4) by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNFα) values showed overexpression (198%). Conclusion Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism. PMID:17725831

  13. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue

    PubMed Central

    Kosteli, Aliki; Sugaru, Eiji; Haemmerle, Guenter; Martin, Jayne F.; Lei, Jason; Zechner, Rudolf; Ferrante, Anthony W.

    2010-01-01

    Obesity elicits an immune response characterized by myeloid cell recruitment to key metabolic organs, including adipose tissue. However, the response of immune cells to nonpathologic metabolic stimuli has been less well studied, and the factors that regulate the metabolic-dependent accumulation of immune cells are incompletely understood. Here we characterized the response of adipose tissue macrophages (ATMs) to weight loss and fasting in mice and identified a role for lipolysis in ATM recruitment and accumulation. We found that the immune response to weight loss was dynamic; caloric restriction of high-fat diet–fed mice led to an initial increase in ATM recruitment, whereas ATM content decreased following an extended period of weight loss. The peak in ATM number coincided with the peak in the circulating concentrations of FFA and adipose tissue lipolysis, suggesting that lipolysis drives ATM accumulation. Indeed, fasting or pharmacologically induced lipolysis rapidly increased ATM accumulation, adipose tissue chemoattractant activity, and lipid uptake by ATMs. Conversely, dietary and genetic manipulations that reduced lipolysis decreased ATM accumulation. Depletion of macrophages in adipose tissue cultures increased expression of adipose triglyceride lipase and genes regulated by FFA, and increased lipolysis. These data suggest that local lipid fluxes are central regulators of ATM recruitment and that once recruited, ATMs form lipid-laden macrophages that can buffer local increases in lipid concentration. PMID:20877011

  14. Using an established pre adipose cell line (ATCC CL 173) for studying chromium metabolism and biopotency

    SciTech Connect

    Hendricks, D.G.; Azuka, C. ); Johnson, B. )

    1991-03-15

    Studies concerning the mechanism by which chromium enhances insulin action and identification of chromium compounds which have high glucose tolerance factor activity have been limited by biological testing methods. The isolated rat adipose tissue assay has been commonly used. The pre-adipose cell line (ATCC CL 173) has many advantages over the isolated rat adipose tissue method including: uniformity of cells; increased viability of the cell cultures; can readily be grown in a low chromium media with a cell doubling time of about 18 hours; studies can be made on rapidly multiplying cells or on mature adipose cells and using rate of cell number increase, percent attachment of cells or cultures in an Omni Spec instrument avoid the use of radio labeled compounds. The ATCC CL 173 pre adipose cell line has been used to evaluate various chromium compounds for insulin like and insulin enhancing activity using physiological and pharmacological chromium levels. Rapidly dividing cells and mature adipose cells do not always react similarly with the same chromium compound. Cell response to a chromium compound and/or insulin also differs based on the growth media in which the cells have been maintained. Duration of metabolic studies as well as metabolite chosen also influence cellular response to chromium and insulin. Using this method for biological testing several chromium compounds have shown insulin like activity and a few show actual insulin potentiation.

  15. Curcumin inhibits lipolysis via suppression of ER stress in adipose tissue and prevents hepatic insulin resistance.

    PubMed

    Wang, Lulu; Zhang, Bangling; Huang, Fang; Liu, Baolin; Xie, Yuan

    2016-07-01

    Curcumin is natural polyphenol with beneficial effects on lipid and glucose metabolism and this study aimed to investigate the effects of curcumin on lipolysis and hepatic insulin resistance. Endoplasmic reticulum (ER) stress and lipolysis signaling in adipose and FFA influx, lipid deposits, and glucose production in liver were examined. Palmitate challenge and high-fat diet feeding evoked ER stress-associated lipolysis with cAMP accumulation in adipose tissue. Curcumin treatment inhibited adipose tissue ER stress by dephosphorylation of inositol-requiring enzyme 1α and eukaryotic initiation factor 2α and reduced cAMP accumulation by preserving phosphodiesterase 3B induction. Knockdown of mitogen-activated protein kinase α1/2α with siRNAs diminished such effects of curcumin. As a result from downregulation of cAMP, curcumin blocked protein kinase (PK)A/hormone-sensitive lipase lipolysis signaling, and thereby reduced glycerol and FFA release from adipose tissue. Curcumin reduced FFA influx into the liver by blocking FFA trafficking, and then prevented diacylglycerol deposits and PKCε translocation in the liver, resultantly improving insulin action in the suppression of hepatic gluconeogenesis. Curcumin decreased adipose lipolysis by attenuating ER stress through the cAMP/PKA pathway, reduced FFA influx into the liver by blocking FFA trafficking, and thereby improved insulin sensitivity to inhibit hepatic glucose production. These findings suggested a novel pathway of curcumin to prevent lipid deposits and insulin resistance in liver by beneficial regulation of adipose function. PMID:27220352

  16. Prognostic Impact of Changes in Adipose Tissue Areas after Colectomy in Colorectal Cancer Patients.

    PubMed

    Choe, Eun Kyung; Park, Kyu Joo; Ryoo, Seung Bum; Moon, Sang Hui; Oh, Heung Kwon; Han, Eon Chul

    2016-10-01

    There have been few studies assessing the changes in the body components of patients after colectomy in colorectal cancer (CRC). The purpose of this study was to verify the trends in the adipose tissue areas of CRC patients before and after surgery and to determine their clinical relevance. Computed tomography (CT)-assessed subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) areas were recorded before and after curative resection in stage I to III CRC patients. Changes in the adipose tissue were assessed by calculating the difference in the adipose tissue area between preoperative CT and the most recent postoperative CT, which is disease-free state. Regarding obesity before surgery, there were no prognostic effect of body mass index (BMI), VAT and SAT, and 47.3% of patients had increases in VAT after colectomy. By multivariate analysis, adjusting sex, age, stage, differentiation, VAT change was the only obesity related factor to predict the prognosis, that patients who had increase in VAT after colectomy had better overall survival (HR, 0.557; 95% CI, 0.317-0.880) and disease-free survival (HR, 0.602; 95% CI, 0.391-0.927). BMI and SAT change had no significant association. In subgroup analysis of stage III CRC patients, VAT change had significance for prognosis only in patients who had adjuvant chemotherapy but not in those who did not receive postoperative chemotherapy. Increase in visceral adipose tissue after surgery is a favorable predictor of prognosis for CRC patients. PMID:27550485

  17. Dietary Fructose Activates Insulin Signaling and Inflammation in Adipose Tissue: Modulatory Role of Resveratrol

    PubMed Central

    Pektas, Mehmet Bilgehan; Koca, Halit Bugra; Sadi, Gokhan; Akar, Fatma

    2016-01-01

    The effects of high-fructose diet on adipose tissue insulin signaling and inflammatory process have been poorly documented. In this study, we examined the influences of long-term fructose intake and resveratrol supplementation on the expression of genes involved in insulin signaling and the levels of inflammatory cytokines and sex hormones in the white adipose tissues of male and female rats. Consumption of high-fructose diet for 24 weeks increased the expression of genes involved in insulin signaling including IR, IRS-1, IRS-2, Akt, PI3K, eNOS, mTOR, and PPARγ, despite induction of proinflammatory markers, iNOS, TNFα, IL-1β, IL-18, MDA, and ALT, as well as anti-inflammatory factors, IL-10 and Nrf2 in adipose tissues from males and females. Total and free testosterone concentrations of adipose tissues were impaired in males but increased in females, although there were no changes in their blood levels. Resveratrol supplementation markedly restored the levels of MDA, IL6, IL-10, and IL-18, as well as iNOS, Nrf2, and PI3K mRNA, in adipose tissues of both genders. Dietary fructose activates both insulin signaling and inflammatory pathway in the adipose tissues of male and female rats proposing no correlation between the tissue insulin signaling and inflammation. Resveratrol has partly modulatory effects on fructose-induced changes. PMID:27066503

  18. Alternative measures to BMI: Exploring income-related inequalities in adiposity in Great Britain.

    PubMed

    Davillas, Apostolos; Benzeval, Michaela

    2016-10-01

    Socio-economic inequalities in adiposity are of particular interest themselves but also because they may be associated with inequalities in overall health status. Using cross-sectional representative data from Great Britain (1/2010-3/2012) for 13,138 adults (5652 males and 7486 females) over age 20, we aimed to explore the presence of income-related inequalities in alternative adiposity measures by gender and to identify the underlying factors contributing to these inequalities. For this reason, we employed concentration indexes and regression-based decomposition techniques. To control for non-homogeneity in body composition, we employed a variety of adiposity measures including body fat (absolute and percentage) and central adiposity (waist circumference) in addition to the conventional body mass index (BMI). The body fat measures allowed us to distinguish between the fat- and lean-mass components of BMI. We found that the absence of income-related obesity inequalities for males in the existing literature may be attributed to their focus on BMI-based measures. Pro-rich inequalities were evident for the fat-mass and central adiposity measures for males, while this was not the case for BMI. Irrespective of the adiposity measure applied, pro-rich inequalities were evident for females. The decomposition analysis showed that these inequalities were mainly attributable to subjective financial well-being measures (perceptions of financial strain and material deprivation) and education, with the relative contribution of the former being more evident in females. Our findings have important implications for the measurement of socio-economic inequalities in adiposity and indicate that central adiposity and body composition measures should be included health policy agendas. Psycho-social mechanisms, linked to subjective financial well-being, and education -rather than income itself-are more relevant for tackling inequalities. PMID:27580342

  19. Subcutaneous Adipose Tissue Transplantation in Diet-Induced Obese Mice Attenuates Metabolic Dysregulation While Removal Exacerbates It.

    PubMed

    Foster, M T; Softic, S; Caldwell, J; Kohli, R; de Kloet, A D; Seeley, R J

    2013-08-01

    Adipose tissue distribution is an important determinant of obesity-related comorbidities. It is well established that central obesity (visceral adipose tissue accumulation) is a risk factor for many adverse health consequences such as dyslipidemia, insulin resistance and type-2-diabetes. We hypothesize that the metabolic dysregulation that occurs following high fat diet-induced increases in adiposity are due to alterations in visceral adipose tissue function which influence lipid flux to the liver via the portal vein. This metabolic pathology is not exclusively due to increases in visceral adipose tissue mass but also driven by intrinsic characteristics of this particular depot. In Experiment 1, high fat diet (HFD)-induced obese control (abdominal incision, but no fat manipulation) or autologous (excision and subsequent relocation of adipose tissue) subcutaneous tissue transplantation to the visceral cavity. In Experiment 2 mice received control surgery, subcutaneous fat removal or hetero-transplantation (tissue from obese donor) to the visceral cavity. Body composition analysis and glucose tolerance tests were performed 4 weeks post-surgery. Adipose mass and portal adipokines, cytokines, lipids and insulin were measured from samples collected at 5 weeks post-surgery. Auto- and hetero- transplantation in obese mice improved glucose tolerance, decreased systemic insulin concentration and reduced portal lipids and hepatic triglycerides compared with HFD controls. Hetero-transplantation of subcutaneous adipose tissue to the visceral cavity in obese mice restored hepatic insulin sensitivity and reduced insulin and leptin concentrations to chow control levels. Fat removal, however, as an independent procedure exacerbated obesity-induced increases in leptin and insulin concentrations. Overall subcutaneous adipose tissue protects against aspects of metabolic dysregulation in obese mice. Transplantation-induced improvements do not occur via enhanced storage of lipid in

  20. Impaired Mitochondrial Biogenesis in Adipose Tissue in Acquired Obesity.

    PubMed

    Heinonen, Sini; Buzkova, Jana; Muniandy, Maheswary; Kaksonen, Risto; Ollikainen, Miina; Ismail, Khadeeja; Hakkarainen, Antti; Lundbom, Jesse; Lundbom, Nina; Vuolteenaho, Katriina; Moilanen, Eeva; Kaprio, Jaakko; Rissanen, Aila; Suomalainen, Anu; Pietiläinen, Kirsi H

    2015-09-01

    Low mitochondrial number and activity have been suggested as underlying factors in obesity, type 2 diabetes, and metabolic syndrome. However, the stage at which mitochondrial dysfunction manifests in adipose tissue after the onset of obesity remains unknown. Here we examined subcutaneous adipose tissue (SAT) samples from healthy monozygotic twin pairs, 22.8-36.2 years of age, who were discordant (ΔBMI >3 kg/m(2), mean length of discordance 6.3 ± 0.3 years, n = 26) and concordant (ΔBMI <3 kg/m(2), n = 14) for body weight, and assessed their detailed mitochondrial metabolic characteristics: mitochondrial-related transcriptomes with dysregulated pathways, mitochondrial DNA (mtDNA) amount, mtDNA-encoded transcripts, and mitochondrial oxidative phosphorylation (OXPHOS) protein levels. We report global expressional downregulation of mitochondrial oxidative pathways with concomitant downregulation of mtDNA amount, mtDNA-dependent translation system, and protein levels of the OXPHOS machinery in the obese compared with the lean co-twins. Pathway analysis indicated downshifting of fatty acid oxidation, ketone body production and breakdown, and the tricarboxylic acid cycle, which inversely correlated with adiposity, insulin resistance, and inflammatory cytokines. Our results suggest that mitochondrial biogenesis, oxidative metabolic pathways, and OXPHOS proteins in SAT are downregulated in acquired obesity, and are associated with metabolic disturbances already at the preclinical stage. PMID:25972572

  1. Integrator complex plays an essential role in adipose differentiation

    SciTech Connect

    Otani, Yuichiro; Nakatsu, Yusuke; Sakoda, Hideyuki; Fukushima, Toshiaki; Fujishiro, Midori; Kushiyama, Akifumi; Okubo, Hirofumi; Tsuchiya, Yoshihiro; Ohno, Haruya; Takahashi, Shin-Ichiro; Nishimura, Fusanori; Kamata, Hideaki; Katagiri, Hideki; Asano, Tomoichiro

    2013-05-03

    Highlights: •IntS6 and IntS11 are subunits of the Integrator complex. •Expression levels of IntS6 and IntS11 were very low in 3T3-L1 fibroblast. •IntS6 and IntS11 were upregulated during adipose differentiation. •Suppression of IntS6 or IntS11 expression inhibited adipose differentiation. -- Abstract: The dynamic process of adipose differentiation involves stepwise expressions of transcription factors and proteins specific to the mature fat cell phenotype. In this study, it was revealed that expression levels of IntS6 and IntS11, subunits of the Integrator complex, were increased in 3T3-L1 cells in the period when the cells reached confluence and differentiated into adipocytes, while being reduced to basal levels after the completion of differentiation. Suppression of IntS6 or IntS11 expression using siRNAs in 3T3-L1 preadipocytes markedly inhibited differentiation into mature adipocytes, based on morphological findings as well as mRNA analysis of adipocyte-specific genes such as Glut4, perilipin and Fabp4. Although Pparγ2 protein expression was suppressed in IntS6 or IntS11-siRNA treated cells, adenoviral forced expression of Pparγ2 failed to restore the capacity for differentiation into mature adipocytes. Taken together, these findings demonstrate that increased expression of Integrator complex subunits is an indispensable event in adipose differentiation. Although further study is necessary to elucidate the underlying mechanism, the processing of U1, U2 small nuclear RNAs may be involved in cell differentiation steps.

  2. Sleep deprivation affects inflammatory marker expression in adipose tissue

    PubMed Central

    2010-01-01

    Sleep deprivation has been shown to increase inflammatory markers in rat sera and peripheral blood mononuclear cells. Inflammation is a condition associated with pathologies such as obesity, cancer, and cardiovascular diseases. We investigated changes in the pro and anti-inflammatory cytokines and adipokines in different depots of white adipose tissue in rats. We also assessed lipid profiles and serum levels of corticosterone, leptin, and adiponectin after 96 hours of sleep deprivation. Methods The study consisted of two groups: a control (C) group and a paradoxical sleep deprivation by 96 h (PSD) group. Ten rats were randomly assigned to either the control group (C) or the PSD. Mesenteric (MEAT) and retroperitoneal (RPAT) adipose tissue, liver and serum were collected following completion of the PSD protocol. Levels of interleukin (IL)-6, interleukin (IL)-10 and tumour necrosis factor (TNF)-α were analysed in MEAT and RPAT, and leptin, adiponectin, glucose, corticosterone and lipid profile levels were analysed in serum. Results IL-6 levels were elevated in RPAT but remained unchanged in MEAT after PSD. IL-10 protein concentration was not altered in either depot, and TNF-α levels decreased in MEAT. Glucose, triglycerides (TG), VLDL and leptin decreased in serum after 96 hours of PSD; adiponectin was not altered and corticosterone was increased. Conclusion PSD decreased fat mass and may modulate the cytokine content in different depots of adipose tissue. The inflammatory response was diminished in both depots of adipose tissue, with increased IL-6 levels in RPAT and decreased TNF-α protein concentrations in MEAT and increased levels of corticosterone in serum. PMID:21034496

  3. Brown adipose tissue and bone

    PubMed Central

    Lidell, M E; Enerbäck, S

    2015-01-01

    Brown adipose tissue (BAT) is capable of transforming chemically stored energy, in the form of triglycerides, into heat. Recent studies have shown that metabolically active BAT is present in a large proportion of adult humans, where its activity correlates with a favorable metabolic status. Hence, the tissue is now regarded as an interesting target for therapies against obesity and associated diseases such as type 2 diabetes, the hypothesis being that an induction of BAT would be beneficial for these disease states. Apart from the association between BAT activity and a healthier metabolic status, later studies have also shown a positive correlation between BAT volume and both bone cross-sectional area and bone mineral density, suggesting that BAT might stimulate bone anabolism. The aim of this review is to give the reader a brief overview of the BAT research field and to summarize and discuss recent findings regarding BAT being a potential player in bone metabolism. PMID:27152171

  4. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-{kappa}B pathway

    SciTech Connect

    Wang, Zhiquan; Xue, Liqiong; Guo, Cuicui; Han, Bing; Pan, Chunming; Zhao, Shuangxia; Song, Huaidong; Ma, Qinyun

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Stevioside ameliorates high-fat diet-induced insulin resistance. Black-Right-Pointing-Pointer Stevioside alleviates the adipose tissue inflammation. Black-Right-Pointing-Pointer Stevioside reduces macrophages infiltration into the adipose tissue. Black-Right-Pointing-Pointer Stevioside suppresses the activation of NF-{kappa}B in the adipose tissue. -- Abstract: Accumulating evidence suggests that adipose tissue is the main source of pro-inflammatory molecules that predispose individuals to insulin resistance. Stevioside (SVS) is a widely used sweetener with multiple beneficial effects for diabetic patients. In this study, we investigated the effect of SVS on insulin resistance and the pro-inflammatory state of adipose tissue in mice fed with a high-fat diet (HFD). Oral administration of SVS for 1 month had no effect on body weight, but it significantly improved fasting glucose, basal insulin levels, glucose tolerance and whole body insulin sensitivity. Interestingly, these changes were accompanied with decreased expression levels of several inflammatory cytokines in adipose tissue, including TNF-{alpha}, IL6, IL10, IL1{beta}, KC, MIP-1{alpha}, CD11b and CD14. Moreover, macrophage infiltration in adipose tissue was remarkably reduced by SVS. Finally, SVS significantly suppressed the nuclear factor-kappa b (NF-{kappa}B) signaling pathway in adipose tissue. Collectively, these results suggested that SVS may ameliorate insulin resistance in HFD-fed mice by attenuating adipose tissue inflammation and inhibiting the NF-{kappa}B pathway.

  5. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells

    SciTech Connect

    Timper, Katharina; Seboek, Dalma; Eberhardt, Michael; Linscheid, Philippe; Christ-Crain, Mirjam; Keller, Ulrich; Mueller, Beat; Zulewski, Henryk . E-mail: henryk.zulewski@unibas.ch

    2006-03-24

    Mesenchymal stem cells (MSC) from mouse bone marrow were shown to adopt a pancreatic endocrine phenotype in vitro and to reverse diabetes in an animal model. MSC from human bone marrow and adipose tissue represent very similar cell populations with comparable phenotypes. Adipose tissue is abundant and easily accessible and could thus also harbor cells with the potential to differentiate in insulin producing cells. We isolated human adipose tissue-derived MSC from four healthy donors. During the proliferation period, the cells expressed the stem cell markers nestin, ABCG2, SCF, Thy-1 as well as the pancreatic endocrine transcription factor Isl-1. The cells were induced to differentiate into a pancreatic endocrine phenotype by defined culture conditions within 3 days. Using quantitative PCR a down-regulation of ABCG2 and up-regulation of pancreatic developmental transcription factors Isl-1, Ipf-1, and Ngn3 were observed together with induction of the islet hormones insulin, glucagon, and somatostatin.

  6. IKKβ Is Essential for Adipocyte Survival and Adaptive Adipose Remodeling in Obesity.

    PubMed

    Park, Se-Hyung; Liu, Zun; Sui, Yipeng; Helsley, Robert N; Zhu, Beibei; Powell, David K; Kern, Philip A; Zhou, Changcheng

    2016-06-01

    IκB kinase β (IKKβ), a central coordinator of inflammatory responses through activation of nuclear factor-κB (NF-κB), has been implicated as a critical molecular link between inflammation and metabolic disorders; however, the role of adipocyte IKKβ in obesity and related metabolic disorders remains elusive. Here we report an essential role of IKKβ in the regulation of adipose remodeling and adipocyte survival in diet-induced obesity. Targeted deletion of IKKβ in adipocytes does not affect body weight, food intake, and energy expenditure but results in an exaggerated diabetic phenotype when challenged with a high-fat diet (HFD). IKKβ-deficient mice have multiple histopathologies in visceral adipose tissue, including increased adipocyte death, amplified macrophage infiltration, and defective adaptive adipose remodeling. Deficiency of IKKβ also leads to increased adipose lipolysis, elevated plasma free fatty acid (FFA) levels, and impaired insulin signaling. Mechanistic studies demonstrated that IKKβ is a key adipocyte survival factor and that IKKβ protects murine and human adipocytes from HFD- or FFA-elicited cell death through NF-κB-dependent upregulation of antiapoptotic proteins and NF-κB-independent inactivation of proapoptotic BAD protein. Our findings establish IKKβ as critical for adipocyte survival and adaptive adipose remodeling in obesity. PMID:26993069

  7. Impaired Adipose Tissue Expandability and Lipogenic Capacities as Ones of the Main Causes of Metabolic Disorders

    PubMed Central

    Tinahones, Francisco José

    2015-01-01

    Obesity is considered a major health problem. However, mechanisms involved and its comorbidities are not elucidated. Recent theories concerning the causes of obesity have focused on a limit to the functional capacity of adipose tissue, comparing it with other vital organs. This assumption has been the central point of interest in our laboratory. We proposed that the failure of adipose tissue is initiated by the difficulty of this tissue to increase its cellularity due to excess in fat contribution, owing to genetic or environmental factors. Nevertheless, why the adipose tissue reduces its capacity to make new adipocytes via mesenchymal cells of the stroma has not yet been elucidated. Thus, we suggest that this tissue ceases fulfilling its main function, the storage of excess fat, thereby affecting some of the key factors involved in lipogenesis, some of which are reviewed in this paper (PPARγ, ROR1, FASN, SCD1, Rab18, BrCa1, ZAG, and FABP4). On the other hand, mechanisms involved in adipose tissue expandability are also impaired, predominating hypertrophy via an increase in apoptosis and a decrease in adipogenesis and angiogenesis. However, adipose tissue failure is only part of this great orchestra, only a chapter of this nightmare. PMID:25922847

  8. Animal Models for Adipose Tissue Engineering

    PubMed Central

    Uthamanthil, Rajesh; Beahm, Elisabeth; Frye, Cindy

    2008-01-01

    Abstract There is a critical need for adequate reconstruction of soft tissue defects resulting from tumor resection, trauma, and congenital abnormalities. To be sure, adipose tissue engineering strategies offer promising solutions. However, before clinical translation can occur, efficacy must be proven in animal studies. The aim of this review is to provide an overview of animal models currently employed for adipose tissue engineering. PMID:18544014

  9. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues.

    PubMed

    Yamada, Tomoya; Higuchi, Mikito; Nakanishi, Naoto

    2015-08-01

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere length of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner. PMID:26067555

  10. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice

    PubMed Central

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  11. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice.

    PubMed

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  12. The Effect of Age on Osteogenic and Adipogenic Differentiation Potential of Human Adipose Derived Stromal Stem Cells (hASCs) and the Impact of Stress Factors in the Course of the Differentiation Process.

    PubMed

    Kornicka, Katarzyna; Marycz, Krzysztof; Tomaszewski, Krzysztof Andrzej; Marędziak, Monika; Śmieszek, Agnieszka

    2015-01-01

    Human adipose tissue is a great source of autologous mesenchymal stem cells (hASCs), which are recognized for their vast therapeutic applications. Their ability to self-renew and differentiate into several lineages makes them a promising tool for cell-based therapies in different types of degenerative diseases. Thus it is crucial to evaluate age-related changes in hASCs, as the elderly are a group that will benefit most from their considerable potential. In this study we investigated the effect of donor age on growth kinetics, cellular senescence marker levels, and osteogenic and adipogenic potential of hASCs. It also has been known that, during life, organisms accumulate oxidative damage that negatively affects cell metabolism. Taking this into consideration, we evaluated the levels of nitric oxide, reactive oxygen species, and superoxide dismutase activity. We observed that ROS and NO increase with aging, while SOD activity is significantly reduced. Moreover cells obtained from older patients displayed senescence associated features, for example, β-galactosidase activity, enlarged morphology, and p53 protein upregulation. All of those characteristics seem to contribute to decreased proliferation potential of those cells. Our results suggest that due to aging some cellular modification may be required before applying aged cells efficiently in therapies such as tissue engineering and regenerative medicine. PMID:26246868

  13. The Effect of Age on Osteogenic and Adipogenic Differentiation Potential of Human Adipose Derived Stromal Stem Cells (hASCs) and the Impact of Stress Factors in the Course of the Differentiation Process

    PubMed Central

    Kornicka, Katarzyna; Marycz, Krzysztof; Tomaszewski, Krzysztof Andrzej; Marędziak, Monika; Śmieszek, Agnieszka

    2015-01-01

    Human adipose tissue is a great source of autologous mesenchymal stem cells (hASCs), which are recognized for their vast therapeutic applications. Their ability to self-renew and differentiate into several lineages makes them a promising tool for cell-based therapies in different types of degenerative diseases. Thus it is crucial to evaluate age-related changes in hASCs, as the elderly are a group that will benefit most from their considerable potential. In this study we investigated the effect of donor age on growth kinetics, cellular senescence marker levels, and osteogenic and adipogenic potential of hASCs. It also has been known that, during life, organisms accumulate oxidative damage that negatively affects cell metabolism. Taking this into consideration, we evaluated the levels of nitric oxide, reactive oxygen species, and superoxide dismutase activity. We observed that ROS and NO increase with aging, while SOD activity is significantly reduced. Moreover cells obtained from older patients displayed senescence associated features, for example, β-galactosidase activity, enlarged morphology, and p53 protein upregulation. All of those characteristics seem to contribute to decreased proliferation potential of those cells. Our results suggest that due to aging some cellular modification may be required before applying aged cells efficiently in therapies such as tissue engineering and regenerative medicine. PMID:26246868

  14. Plerocercoid growth factor (PGF), a human growth hormone (hGH) analogue produced by the tapeworm Spirometra mansonoides, has direct insulin-like action in adipose tissue of normal rats in vitro

    SciTech Connect

    Salem, M.A.M.; Phares, C.K.

    1986-03-01

    The metabolic actions of GH can be divided into acute (insulin-like) and chronic (lipolytic/anti-insulin). The insulin-like actions of GH are most readily elicited in GH-deficient animals as GH induces resistance to its own insulin-like action. Like GH, PGF stimulates growth and cross-reacts with anti-hGH antibodies. Independent experiments were conducted comparing the direct actions of PGF to insulin or hGH in vitro. Insulin-like effects were determined by the ability of PGF, insulin or hGH to stimulate (U-/sup 14/C)glucose metabolism in epidydimal fat pads from normal rats and by inhibition of epinephrine-stimulated lipolysis. Direct stimulation of lipolysis was used as anti-insulin activity. To determine if PGF competes for insulin or GH receptors, adipocytes (3 x 10/sup 5/ cells/ml) were incubated with either (/sup 125/I)insulin or (/sup 125/I)hGH +/- PGF, +/- insulin or +/- hGH. PGF stimulated glucose oxidation and /sup 14/C-incorporation into lipids. Insulin, hGH and PGF inhibited lipolysis (33%, 29% and 34%, respectively). Adipose tissue was very sensitive to the lipolytic effect of hGH but PGF was neither lipolytic nor did it confer refractoriness to its insulin-like action. PGF bound to GH but not to insulin receptors. Therefore, PGF had direct insulin-like effects but did not stimulate lipolysis in tissue from normal rats in vitro.

  15. Cold-Induced Changes in Gene Expression in Brown Adipose Tissue, White Adipose Tissue and Liver

    PubMed Central

    Shore, Andrew M.; Karamitri, Angeliki; Kemp, Paul; Speakman, John R.; Graham, Neil S.; Lomax, Michael A.

    2013-01-01

    Cold exposure imposes a metabolic challenge to mammals that is met by a coordinated response in different tissues to prevent hypothermia. This study reports a transcriptomic analysis in brown adipose tissue (BAT), white adipose (WAT) and liver of mice in response to 24 h cold exposure at 8°C. Expression of 1895 genes were significantly (P<0.05) up- or down-regulated more than two fold by cold exposure in all tissues but only 5 of these genes were shared by all three tissues, and only 19, 14 and 134 genes were common between WAT and BAT, WAT and liver, and BAT and liver, respectively. We confirmed using qRT-PCR, the increased expression of a number of characteristic BAT genes during cold exposure. In both BAT and the liver, the most common direction of change in gene expression was suppression (496 genes in BAT and 590 genes in liver). Gene ontology analysis revealed for the first time significant (P<0.05) down regulation in response to cold, of genes involved in oxidoreductase activity, lipid metabolic processes and protease inhibitor activity, in both BAT and liver, but not WAT. The results reveal an unexpected importance of down regulation of cytochrome P450 gene expression and apolipoprotein, in both BAT and liver, but not WAT, in response to cold exposure. Pathway analysis suggests a model in which down regulation of the nuclear transcription factors HNF4α and PPARα in both BAT and liver may orchestrate the down regulation of genes involved in lipoprotein and steroid metabolism as well as Phase I enzymes belonging to the cytochrome P450 group in response to cold stress in mice. We propose that the response to cold stress involves decreased gene expression in a range of cellular processes in order to maximise pathways involved in heat production. PMID:23894377

  16. Adipose VEGF Links the White-to-Brown Fat Switch With Environmental, Genetic, and Pharmacological Stimuli in Male Mice.

    PubMed

    During, Matthew J; Liu, Xianglan; Huang, Wei; Magee, Daniel; Slater, Andrew; McMurphy, Travis; Wang, Chuansong; Cao, Lei

    2015-06-01

    Living in an enriched environment (EE) decreases adiposity, increases energy expenditure, causes resistance to diet induced obesity, and induces brown-like (beige) cells in white fat via activating a hypothalamic-adipocyte axis. Here we report that EE stimulated vascular endothelial growth factor (VEGF) expression in a fat depot-specific manner prior to the emergence of beige cells. The VEGF up-regulation was independent of hypoxia but required intact sympathetic tone to the adipose tissue. Targeted adipose overexpression of VEGF reproduced the browning effect of EE. Adipose-specific VEGF knockout or pharmacological VEGF blockade with antibodies abolished the induction of beige cell by EE. Hypothalamic brain-derived neurotrophic factor stimulated by EE regulated the adipose VEGF expression, and VEGF signaling was essential to the hypothalamic brain-derived neurotrophic factor-induced white adipose tissue browning. Furthermore, VEGF signaling was essential to the beige cells induction by exercise, a β3-adrenergic agonist, and a peroxisome proliferator-activated receptor-γ ligand, suggesting a common downstream pathway integrating diverse upstream mechanisms. Exploiting this pathway may offer potential therapeutic interventions to obesity and metabolic diseases. PMID:25763639

  17. Adipose VEGF Links the White-to-Brown Fat Switch With Environmental, Genetic, and Pharmacological Stimuli in Male Mice

    PubMed Central

    During, Matthew J.; Liu, Xianglan; Huang, Wei; Magee, Daniel; Slater, Andrew; McMurphy, Travis; Wang, Chuansong

    2015-01-01

    Living in an enriched environment (EE) decreases adiposity, increases energy expenditure, causes resistance to diet induced obesity, and induces brown-like (beige) cells in white fat via activating a hypothalamic-adipocyte axis. Here we report that EE stimulated vascular endothelial growth factor (VEGF) expression in a fat depot-specific manner prior to the emergence of beige cells. The VEGF up-regulation was independent of hypoxia but required intact sympathetic tone to the adipose tissue. Targeted adipose overexpression of VEGF reproduced the browning effect of EE. Adipose-specific VEGF knockout or pharmacological VEGF blockade with antibodies abolished the induction of beige cell by EE. Hypothalamic brain-derived neurotrophic factor stimulated by EE regulated the adipose VEGF expression, and VEGF signaling was essential to the hypothalamic brain-derived neurotrophic factor-induced white adipose tissue browning. Furthermore, VEGF signaling was essential to the beige cells induction by exercise, a β3-adrenergic agonist, and a peroxisome proliferator-activated receptor-γ ligand, suggesting a common downstream pathway integrating diverse upstream mechanisms. Exploiting this pathway may offer potential therapeutic interventions to obesity and metabolic diseases. PMID:25763639

  18. Chromosome localization analysis of genes strongly expressed in human visceral adipose tissue.

    PubMed

    Yang, Yi-Sheng; Song, Huai-Dong; Shi, Wen-Jing; Hu, Ren-Ming; Han, Ze-Guang; Chen, Jia-Lun

    2002-06-01

    To understand fully the physiologic functions of visceral adipose tissue and to provide a basis for the identification of novel genes related to obesity and insulin resistance, the gene expression profiling of human visceral adipose tissue was established by using cDNA array. The characterization and chromosome localization of 400 expressed sequence tags (ESTs) strongly expressed in visceral adipose tissue were analyzed by searching PubMed, UniGene, the Human Genome Draft Database, and Location Data Base. Two hundred eighty-nine clones were classified into known genes among the 400 ESTs strongly expressed in the tissue. Among them, <20% have been previously reported to be expressed in adipose tissue. The chromosome localization of 389 ESTs strongly expressed in visceral adipose tissue showed that their relative abundance was significantly increased on chromosomes 1, 16, 19, 20, and 22 compared with the expected distribution of the same number of random genes. The intrachromosome distribution of the genes strongly expressed in visceral adipose tissue was concentrated in certain regions, such as 1p36.2-1p36.3, 6p21.3-6p22.1, 19p13.3 and 19q13.1. Among them, the region of 1p36.2-1p36.3 appeared to be specific for visceral adipose tissue. Interestingly, some genes playing an important role in the pathogenesis of insulin signal transduction and adipocyte differentiation, such as tumor necrosis factor-alpha and its receptors; CCAAT/enhancer-binding proteina; and phosphoinositide-3-kinase, regulatory subunit, polypeptide 2 (p85beta), were also localized in the concentrated regions, which may provide clues to identifying novel genes closely related to adipocyte function with potential pathophysiologic implications. PMID:12166625

  19. Effects of Sit Up Exercise Training on Adipose Cell Size and Adiposity.

    ERIC Educational Resources Information Center

    Katch, Frank I.; And Others

    1984-01-01

    This article reports on an experiment that evaluated the effects of a 27-day sit up exercise training program on adipose cell size and adiposity. Fat biopsies were taken by needle aspiration from male subjects before and after a progressive training regimen. Results are discussed. (Author/DF)

  20. Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue.

    PubMed

    Zhang, Xiaohong; Hirai, Masako; Cantero, Susana; Ciubotariu, Rodica; Dobrila, Ludy; Hirsh, Allen; Igura, Koichi; Satoh, Hitoshi; Yokomi, Izuru; Nishimura, Toshihide; Yamaguchi, Satoru; Yoshimura, Kotaro; Rubinstein, Pablo; Takahashi, Tsuneo A

    2011-04-01

    Human umbilical cord blood (CB) is a potential source for mesenchymal stem cells (MSC) capable of forming specific tissues, for example, bone, cartilage, or muscle. However, difficulty isolating MSC from CB (CB-MSC) has impeded their clinical application. Using more than 450 CB units donated to two public CB banks, we found that successful cell recovery fits a hyper-exponential function of time since birth with very high fidelity. Additionally, significant improvement in the isolation of CB-MSC was achieved by selecting cord blood units having a volume ≥90  ml and time ≤2  h after donor's birth. This resulted in 90% success in isolation of CB-MSC by density gradient purification and without a requirement for immunoaffinity methods as previously reported. Using MSC isolated from bone marrow (BM-MSC) and adipose tissue (AT-MSC) as reference controls, we observed that CB-MSC exhibited a higher proliferation rate and expanded to the order of the 1 × 10(9)  cells required for cell therapies. CB-MSC showed karyotype stability after prolonged expansion. Functionally, CB-MSC could be more readily induced to differentiate into chondrocytes than could BM-MSC and AT-MSC. CB-MSC showed immunosuppressive activity equal to that of BM-MSC and AT-MSC. Collectively, our data indicate that viable CB-MSC could be obtained consistently and that CB should be reconsidered as a practical source of MSC for cell therapy and regenerative medicine using the well established CB banking system. PMID:21312238

  1. Intravenous Transplants of Human Adipose-Derived Stem Cell Protect the Brain from Traumatic Brain Injury-Induced Neurodegeneration and Motor and Cognitive Impairments: Cell Graft Biodistribution and Soluble Factors in Young and Aged Rats

    PubMed Central

    Tajiri, Naoki; Acosta, Sandra A.; Shahaduzzaman, Md; Ishikawa, Hiroto; Shinozuka, Kazutaka; Pabon, Mibel; Hernandez-Ontiveros, Diana; Kim, Dae Won; Metcalf, Christopher; Staples, Meaghan; Dailey, Travis; Vasconcellos, Julie; Franyuti, Giorgio; Gould, Lisa; Patel, Niketa

    2014-01-01

    Traumatic brain injury (TBI) survivors exhibit motor and cognitive symptoms from the primary injury that can become aggravated over time because of secondary cell death. In the present in vivo study, we examined the beneficial effects of human adipose-derived stem cells (hADSCs) in a controlled cortical impact model of mild TBI using young (6 months) and aged (20 months) F344 rats. Animals were transplanted intravenously with 4 × 106 hADSCs (Tx), conditioned media (CM), or vehicle (unconditioned media) at 3 h after TBI. Significant amelioration of motor and cognitive functions was revealed in young, but not aged, Tx and CM groups. Fluorescent imaging in vivo and ex vivo revealed 1,1′ dioactadecyl-3-3-3′,3′-tetramethylindotricarbocyanine iodide-labeled hADSCs in peripheral organs and brain after TBI. Spatiotemporal deposition of hADSCs differed between young and aged rats, most notably reduced migration to the aged spleen. Significant reduction in cortical damage and hippocampal cell loss was observed in both Tx and CM groups in young rats, whereas less neuroprotection was detected in the aged rats and mainly in the Tx group but not the CM group. CM harvested from hADSCs with silencing of either NEAT1 (nuclear enriched abundant transcript 1) or MALAT1 (metastasis associated lung adenocarcinoma transcript 1), long noncoding RNAs (lncRNAs) known to play a role in gene expression, lost the efficacy in our model. Altogether, hADSCs are promising therapeutic cells for TBI, and lncRNAs in the secretome is an important mechanism of cell therapy. Furthermore, hADSCs showed reduced efficacy in aged rats, which may in part result from decreased homing of the cells to the spleen. PMID:24381292

  2. Response of adipose tissue to early infection with Trypanosoma cruzi (Brazil strain).

    PubMed

    Nagajyothi, Fnu; Desruisseaux, Mahalia S; Machado, Fabiana S; Upadhya, Rajendra; Zhao, Dazhi; Schwartz, Gary J; Teixeira, Mauro M; Albanese, Chris; Lisanti, Michael P; Chua, Streamson C; Weiss, Louis M; Scherer, Philipp E; Tanowitz, Herbert B

    2012-03-01

    Brown adipose tissue (BAT) and white adipose tissue (WAT) and adipocytes are targets of Trypanosoma cruzi infection. Adipose tissue obtained from CD-1 mice 15 days after infection, an early stage of infection revealed a high parasite load. There was a significant increase in macrophages in infected adipose tissue and a reduction in lipid accumulation, adipocyte size, and fat mass and increased expression of lipolytic enzymes. Infection increased levels of Toll-like receptor (TLR) 4 and TLR9 and in the expression of components of the mitogen-activated protein kinase pathway. Protein and messenger RNA (mRNA) levels of peroxisome proliferator-activated receptor γ were increased in WAT, whereas protein and mRNA levels of adiponectin were significantly reduced in BAT and WAT. The mRNA levels of cytokines, chemokines, and their receptors were increased. Nuclear Factor Kappa B levels were increased in BAT, whereas Iκκ-γ levels increased in WAT. Adipose tissue is an early target of T. cruzi infection. PMID:22293433

  3. Sex differences in metabolic and adipose tissue responses to juvenile-onset obesity in sheep.

    PubMed

    Bloor, Ian D; Sébert, Sylvain P; Saroha, Vivek; Gardner, David S; Keisler, Duane H; Budge, Helen; Symonds, Michael E; Mahajan, Ravi P

    2013-10-01

    Sex is a major factor determining adipose tissue distribution and the subsequent adverse effects of obesity-related disease including type 2 diabetes. The role of gender on juvenile obesity and the accompanying metabolic and inflammatory responses is not well established. Using an ovine model of juvenile onset obesity induced by reduced physical activity, we examined the effect of gender on metabolic, circulatory, and related inflammatory and energy-sensing profiles of the major adipose tissue depots. Despite a similar increase in fat mass with obesity between genders, males demonstrated a higher storage capacity of lipids within perirenal-abdominal adipocytes and exhibited raised insulin. In contrast, obese females became hypercortisolemic, a response that was positively correlated with central fat mass. Analysis of gene expression in perirenal-abdominal adipose tissue demonstrated the stimulation of inflammatory markers in males, but not females, with obesity. Obese females displayed increased expression of genes involved in the glucocorticoid axis and energy sensing in perirenal-abdominal, but not omental, adipose tissue, indicating a depot-specific mechanism that may be protective from the adverse effects of metabolic dysfunction and inflammation. In conclusion, young males are at a greater risk than females to the onset of comorbidities associated with juvenile-onset obesity. These sex-specific differences in cortisol and adipose tissue could explain the earlier onset of the metabolic-related diseases in males compared with females after obesity. PMID:23885012

  4. Adipose tissue remodeling in a novel domestic porcine model of diet-induced obesity

    PubMed Central

    Pawar, Aditya S.; Zhu, Xiang-Yang; Eirin, Alfonso; Tang, Hui; Jordan, Kyra L.; Woollard, John R.; Lerman, Amir; Lerman, Lilach O.

    2014-01-01

    Objective To establish and characterize a novel domestic porcine model of obesity. Design and Methods Fourteen domestic pigs were fed normal (lean, n=7) or high-fat/high-fructose diet (obese, n=7) for 16 weeks. Subcutaneous abdominal adipose tissue biopsies were obtained after 8, 12 and 16 weeks of diet, and pericardial adipose tissue after 16 weeks, for assessments of adipocyte size, fibrosis, and inflammation. Adipose tissue volume and cardiac function were studied with multi-detector computed-tomography, and oxygenation with magnetic resonance imaging. Plasma lipids profiles, insulin resistance, and markers of inflammation were evaluated. Results Compared with lean, obese pigs had elevated cholesterol and triglycerides levels, blood pressure, and insulin resistance. Both abdominal and pericardial fat volume increased after 16 weeks of obese. In abdominal subcutaneous adipose tissue, adipocyte size and both tumor necrosis factor (TNF)-α expression progressively increased. Macrophage infiltration showed in both abdominal and pericardial adipose tissues. Circulating TNF-α increased in obese only at 16 weeks. Compared with Lean, obese pigs had similar global cardiac function, but myocardial perfusion and oxygenation were significantly impaired. Conclusion A high-fat/high-fructose diet induces in domestic pigs many characteristics of metabolic syndrome, which is useful to investigate the effects of the obesity. PMID:25627626

  5. Rectal tone and compliance affected in patients with fecal incontinence after fistulotomy

    PubMed Central

    Awad, Richard Alexander; Camacho, Santiago; Flores, Francisco; Altamirano, Evelyn; García, Mario Antonio

    2015-01-01

    AIM: To investigate the anal sphincter and rectal factors that may be involved in fecal incontinence that develops following fistulotomy (FIAF). METHODS: Eleven patients with FIAF were compared with 11 patients with idiopathic fecal incontinence and with 11 asymptomatic healthy subjects (HS). All of the study participants underwent anorectal manometry and a barostat study (rectal sensitivity, tone, compliance and capacity). The mean time since surgery was 28 ± 26 mo. The postoperative continence score was 14 ± 2.5 (95%CI: 12.4-15.5, St Mark’s fecal incontinence grading system). RESULTS: Compared with the HS, the FIAF patients showed increased rectal tone (42.63 ± 27.69 vs 103.5 ± 51.13, P = 0.002) and less rectal compliance (4.95 ± 3.43 vs 11.77 ± 6.9, P = 0.009). No significant differences were found between the FIAF patients and the HS with respect to the rectal capacity; thresholds for the non-noxious stimuli of first sensation, gas sensation and urge-to-defecate sensation or the noxious stimulus of pain; anal resting pressure or squeeze pressure; or the frequency or percentage of relaxation of the rectoanal inhibitory reflex. No significant differences were found between the FIAF patients and the patients with idiopathic fecal incontinence. CONCLUSION: In patients with FIAF, normal motor anal sphincter function and rectal sensitivity are preserved, but rectal tone and compliance are impaired. The results suggest that FIAF is not due to alterations in rectal sensitivity and that the rectum is more involved than the anal sphincters in the genesis of FIAF. PMID:25852287

  6. The Circulatory and Metabolic Responses to Hypoxia in Humans - With Special Reference to Adipose Tissue Physiology and Obesity.

    PubMed

    Heinonen, Ilkka H A; Boushel, Robert; Kalliokoski, Kari K

    2016-01-01

    Adipose tissue metabolism and circulation play an important role in human health. It is well-known that adipose tissue mass is increased in response to excess caloric intake leading to obesity and further to local hypoxia and inflammatory signaling. Acute exercise increases blood supply to adipose tissue and mobilization of fat stores for energy. However, acute exercise during systemic hypoxia reduces subcutaneous blood flow in healthy young subjects, but the response in overweight or obese subjects remains to be investigated. Emerging evidence also indicates that exercise training during hypoxic exposure may provide additive benefits with respect to many traditional cardiovascular risk factors as compared to exercise performed in normoxia, but unfavorable effects of hypoxia have also been documented. These topics will be covered in this brief review dealing with hypoxia and adipose tissue physiology. PMID:27621722

  7. The Circulatory and Metabolic Responses to Hypoxia in Humans – With Special Reference to Adipose Tissue Physiology and Obesity

    PubMed Central

    Heinonen, Ilkka H. A.; Boushel, Robert; Kalliokoski, Kari K.

    2016-01-01

    Adipose tissue metabolism and circulation play an important role in human health. It is well-known that adipose tissue mass is increased in response to excess caloric intake leading to obesity and further to local hypoxia and inflammatory signaling. Acute exercise increases blood supply to adipose tissue and mobilization of fat stores for energy. However, acute exercise during systemic hypoxia reduces subcutaneous blood flow in healthy young subjects, but the response in overweight or obese subjects remains to be investigated. Emerging evidence also indicates that exercise training during hypoxic exposure may provide additive benefits with respect to many traditional cardiovascular risk factors as compared to exercise performed in normoxia, but unfavorable effects of hypoxia have also been documented. These topics will be covered in this brief review dealing with hypoxia and adipose tissue physiology. PMID:27621722

  8. (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: Mechanistic insights

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is associated with the metabolic syndrome, a significant risk factor for developing type-2 diabetes and cardiovascular diseases. A chronic low-grade inflammation occurring in the adipose tissue of obese individuals is causally linked to the pathogenesis of insulin resistance and the metaboli...

  9. Increased adiposity induced by high dietary butter oil increases vertebrae trabecular structural indices in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity has been associated with both improved and impaired bone health, and other dietary factors apparently affect the nature of the association. An experiment was performed to determine whether increased adiposity induced by high dietary butter oil impairs bone structure and whether that effect ...

  10. Gooey Stuff, Intra-Activity, and Differential Obesities: Foregrounding Agential Adiposity within Childhood Obesity Stories

    ERIC Educational Resources Information Center

    Land, Nicole

    2015-01-01

    In Canada, forces such as the media, medical discourse, and public policy work to position childhood obesity as increased body fat content or excess adiposity due to various personal, social, and economic factors. Drawing on Barad's "agential realist ontology", this article aims to inhabit-with obesity in an effort to disrupt dominant…

  11. Increased expression of FGF1-mediated signaling molecules in adipose tissue of obese mice.

    PubMed

    Choi, Youngshim; Jang, Suhyeon; Choi, Myung-Sook; Ryoo, Zae Young; Park, Taesun

    2016-06-01

    Fibroblast growth factors (FGFs) are pleiotropic growth factors that control cell proliferation, migration, and differentiation. Herein, we evaluated whether visceral adiposity of mice is accompanied by the alteration of signaling molecules mediated by fibroblast growth factor receptor 1 (FGFR1) induced by using two different male C57BL/6J mice models of obesity namely high-fat diet (HFD)-induced obesity for 12 weeks or mice with genetic deletion of leptin (ob/ob). Both HFD-fed and ob/ob mice exhibited significantly higher messenger RNA (mRNA) levels of FGF1, cyclin D (cycD), transcription factor E2F1, peroxisome proliferator-activated receptor-gamma 2 (PPAR-γ2), CCAAT-enhancer-binding protein alpha (C/EBPα), and adipocyte protein 2 (aP2) genes in their epididymal adipose tissues compared to those of the normal diet (ND)-fed and lean control mice, respectively. In addition, immunoblot analyses of the epididymal adipose tissues revealed that both mice exposed to HFD and ob/ob mice exhibited elevated phosphorylation of FGFR1, extracellular-signal-regulated kinase (ERK), and retinoblastoma (Rb) proteins. These data support the notion that FGF1-mediated signaling represents an important signaling cascade related to adipogenesis, at least partially, among other known signaling pathways. These new findings regarding the molecular mechanisms controlling adipose tissue plasticity provide a novel insight about the functional network with potential therapeutic application against obesity. PMID:26847131

  12. AGING UP-REGULATES EXPRESSION OF INFLAMMATORY MEDIATORS IN MOUSE ADIPOSE TISSUE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is a leading risk factor for type 2 diabetes (T2D). Aging is associated with increase in T2D incidence, which is not totally explained by the much lower prevalence of obesity in the elderly. Low-grade inflammation in adipose tissue (AT) contributes to insulin resistance and T2D. Thus, we det...

  13. Fat body, fat pad and adipose tissues in invertebrates and vertebrates: the nexus

    PubMed Central

    2014-01-01

    The fat body in invertebrates was shown to participate in energy storage and homeostasis, apart from its other roles in immune mediation and protein synthesis to mention a few. Thus, sharing similar characteristics with the liver and adipose tissues in vertebrates. However, vertebrate adipose tissue or fat has been incriminated in the pathophysiology of metabolic disorders due to its role in production of pro-inflammatory cytokines. This has not been reported in the insect fat body. The link between the fat body and adipose tissue was examined in this review with the aim of determining the principal factors responsible for resistance to inflammation in the insect fat body. This could be the missing link in the prevention of metabolic disorders in vertebrates, occasioned by obesity. PMID:24758278

  14. The role of epicardial and perivascular adipose tissue in the pathophysiology of cardiovascular disease

    PubMed Central

    Ouwens, D Margriet; Sell, Henrike; Greulich, Sabrina; Eckel, Juergen

    2010-01-01

    Abstract Obesity, insulin resistance and the metabolic syndrome, are characterized by expansion and inflammation of adipose tissue, including the depots surrounding the heart and the blood vessels. Epicardial adipose tissue (EAT) is a visceral thoracic fat depot located along the large coronary arteries and on the surface of the ventricles and the apex of the heart, whereas perivascular adipose tissue (PVAT) surrounds the arteries. Both fat depots are not separated by a fascia from the underlying tissue. Therefore, factors secreted from epicardial and PVAT, like free fatty acids and adipokines, can directly affect the function of the heart and blood vessels. In this review, we describe the alterations found in EAT and PVAT in pathological states like obesity, type 2 diabetes, the metabolic syndrome and coronary artery disease. Furthermore, we discuss how changes in adipokine expression and secretion associated with these pathological states could contribute to the pathogenesis of cardiac contractile and vascular dysfunction. PMID:20716126

  15. Carotenoids in Adipose Tissue Biology and Obesity.

    PubMed

    Bonet, M Luisa; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2016-01-01

    Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition. PMID:27485231

  16. Contributions of maternal and paternal adiposity and smoking to adult offspring adiposity and cardiovascular risk: the Midspan Family Study

    PubMed Central

    Han, T S; Hart, C L; Haig, C; Logue, J; Upton, M N; Watt, G C M; Lean, M E J

    2015-01-01

    Objective Obesity has some genetic basis but requires interaction with environmental factors for phenotypic expression. We examined contributions of gender-specific parental adiposity and smoking to adiposity and related cardiovascular risk in adult offspring. Design Cross-sectional general population survey. Setting Scotland. Participants 1456 of the 1477 first generation families in the Midspan Family Study: 2912 parents (aged 45–64 years surveyed between 1972 and 1976) who had 1025 sons and 1283 daughters, aged 30–59 years surveyed in 1996. Main measures Offspring body mass index (BMI), waist circumference (WC), cardiometabolic risk (lipids, blood pressure and glucose) and cardiovascular disease as outcome measures, and parental BMI and smoking as determinants. All analyses adjusted for age, socioeconomic status and family clustering and offspring birth weight. Results Regression coefficients for BMI associations between father–son (0.30) and mother–daughter (0.33) were greater than father–daughter (0.23) or mother–son (0.22). Regression coefficient for the non-genetic, shared-environment or assortative-mating relationship between BMIs of fathers and mothers was 0.19. Heritability estimates for BMI were greatest among women with mothers who had BMI either <25 or ≥30 kg/m2. Compared with offspring without obese parents, offspring with two obese parents had adjusted OR of 10.25 (95% CI 6.56 to 13.93) for having WC ≥102 cm for men, ≥88 cm women, 2.46 (95% CI 1.33 to 4.57) for metabolic syndrome and 3.03 (95% CI 1.55 to 5.91) for angina and/or myocardial infarct (p<0.001). Neither parental adiposity nor smoking history determined adjusted offspring individual cardiometabolic risk factors, diabetes or stroke. Maternal, but not paternal, smoking had significant effects on WC in sons (OR=1.50; 95% CI 1.13 to 2.01) and daughters (OR=1.42; 95% CI 1.10 to 1.84) and metabolic syndrome OR=1.68; 95% CI 1.17 to 2.40) in sons. Conclusions There are

  17. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues

    PubMed Central

    Chen, Yu-Jen; Liu, Hui-Yu; Chang, Yun-Tsui; Cheng, Ying-Hung; Mersmann, Harry J.; Kuo, Wen-Hung; Ding, Shih-Torng

    2016-01-01

    Obesity is an unconstrained worldwide epidemic. Unraveling molecular controls in adipose tissue development holds promise to treat obesity or diabetes. Although numerous immortalized adipogenic cell lines have been established, adipose-derived stem cells from the stromal vascular fraction of subcutaneous white adipose tissues provide a reliable cellular system ex vivo much closer to adipose development in vivo. Pig adipose-derived stem cells (pADSC) are isolated from 7- to 9-day old piglets. The dorsal white fat depot of porcine subcutaneous adipose tissues is sliced, minced and collagenase digested. These pADSC exhibit strong potential to differentiate into adipocytes. Moreover, the pADSC also possess multipotency, assessed by selective stem cell markers, to differentiate into various mesenchymal cell types including adipocytes, osteocytes, and chondrocytes. These pADSC can be used for clarification of molecular switches in regulating classical adipocyte differentiation or in direction to other mesenchymal cell types of mesodermal origin. Furthermore, extended lineages into cells of ectodermal and endodermal origin have recently been achieved. Therefore, pADSC derived in this protocol provide an abundant and assessable source of adult mesenchymal stem cells with full multipotency for studying adipose development and application to tissue engineering of regenerative medicine. PMID:27077225

  18. Proline oxidase–adipose triglyceride lipase pathway restrains adipose cell death and tissue inflammation

    PubMed Central

    Lettieri Barbato, D; Aquilano, K; Baldelli, S; Cannata, S M; Bernardini, S; Rotilio, G; Ciriolo, M R

    2014-01-01

    The nutrient-sensing lipolytic enzyme adipose triglyceride lipase (ATGL) has a key role in adipose tissue function, and alterations in its activity have been implicated in many age-related metabolic disorders. In adipose tissue reduced blood vessel density is related to hypoxia state, cell death and inflammation. Here we demonstrate that adipocytes of poorly vascularized enlarged visceral adipose tissue (i.e. adipose tissue of old mice) suffer from limited nutrient delivery. In particular, nutrient starvation elicits increased activity of mitochondrial proline oxidase/dehydrogenase (POX/PRODH) that is causal in triggering a ROS-dependent induction of ATGL. We demonstrate that ATGL promotes the expression of genes related to mitochondrial oxidative metabolism (peroxisome proliferator-activated receptor-α, peroxisome proliferator-activated receptor-γ coactivator-1α), thus setting a metabolic switch towards fat utilization that supplies energy to starved adipocytes and prevents cell death, as well as adipose tissue inflammation. Taken together, these results identify ATGL as a stress resistance mediator in adipocytes, restraining visceral adipose tissue dysfunction typical of age-related metabolic disorders. PMID:24096872

  19. The relationship between adiposity-associated inflammation and coronary artery and abdominal aortic calcium differs by strata of central adiposity: The Multi-Ethnic Study of Atherosclerosis (MESA).

    PubMed

    Hughes-Austin, Jan M; Wassel, Christina L; Jiménez, Jessica; Criqui, Michael H; Ix, Joachim H; Rasmussen-Torvik, Laura J; Budoff, Matthew J; Jenny, Nancy S; Allison, Matthew A

    2014-06-01

    Adipokines regulate metabolic processes linked to coronary artery (CAC) and abdominal aorta calcification (AAC). Because adipokine and other adiposity-associated inflammatory marker (AAIM) secretions differ between visceral and subcutaneous adipose tissue, we hypothesized that central adiposity modifies associations between AAIMs and CAC and AAC. We evaluated 1878 MESA participants with complete measures of AAIMs, anthropometry, CAC, and AAC. Associations of AAIMs with CAC and AAC prevalence and severity were analyzed per standard deviation of predictors (SD) using log binomial and linear regression models. The waist-to-hip ratio (WHR) was dichotomized at median WHR values based on sex/ethnicity. CAC and AAC prevalence were defined as any calcium (Agatston score >0). Severity was defined as ln (Agatston score). Analyses examined interactions with WHR and were adjusted for traditional cardiovascular disease risk factors. Each SD higher interleukin-6 (IL-6), fibrinogen and CRP was associated with 5% higher CAC prevalence; and each SD higher IL-6 and fibrinogen was associated with 4% higher AAC prevalence. Associations of IL-6 and fibrinogen with CAC severity, but not CAC prevalence, were significantly different among WHR strata. Median-and-above WHR: each SD higher IL-6 was associated with 24.8% higher CAC severity. Below-median WHR: no association (p interaction=0.012). Median-and-above WHR: each SD higher fibrinogen was associated with 19.6% higher CAC severity. Below-median WHR: no association (p interaction=0.034). Adiponectin, leptin, resistin, and tumor necrosis factor-alpha were not associated with CAC or AAC prevalence or severity. These results support findings that adiposity-associated inflammation is associated with arterial calcification, and further add that central adiposity may modify this association. PMID:24907349

  20. Adipose tissue and sustainable development: a connection that needs protection

    PubMed Central

    Tremblay, Angelo; Picard-Deland, Éliane; Panahi, Shirin; Marette, André

    2015-01-01

    Obesity is generally considered as an excess body fat that increases the risk to develop ergonomic, metabolic, and psychosocial problems. As suggested in this paper, body fat gain is also a protective adaptation that prevents body lipotoxicity, contributes to the secretion of molecules involved in metabolic regulation, and dilutes lipid soluble persistent organic pollutants. Recent literature shows that this protective role of adipose tissue is more solicited in a modern context in which unsuspected factors can affect energy balance to a much greater extent than what is generally perceived by health care professionals. These factors include short sleep duration, demanding mental work, and chemical pollution whose impact is more detectable in a context dominated by economic productivity and competitiveness. Since these factors might also include the increase in atmospheric CO2, it is likely that obesity prevention will need the support of a promotion in sustainable development, whether it is for human health, and well-being or global ecological protection. PMID:26074821

  1. Maintenance of white adipose tissue in man.

    PubMed

    Hyvönen, Mervi T; Spalding, Kirsty L

    2014-11-01

    Obesity is increasing in an epidemic manner in most countries and constitutes a public health problem by enhancing the risk for diseases such as diabetes, fatty liver disease and atherosclerosis. Together these diseases form a cluster referred to as the metabolic syndrome. Despite the negative health consequences associated with excess adipose tissue, very little is known about the origin and maintenance of white adipose tissue in man. In this review we discuss what is known about the turnover of adult human adipocytes and their precursors, as well as adipose tissue heterogeneity, plasticity and developmental origins. The focus of this review is human tissue, however in many cases human data are missing and are inferred from animal studies. As such, reference to animal studies are made where human data is not available. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation. PMID:25240584

  2. IRF3 promotes adipose inflammation and insulin resistance and represses browning.

    PubMed

    Kumari, Manju; Wang, Xun; Lantier, Louise; Lyubetskaya, Anna; Eguchi, Jun; Kang, Sona; Tenen, Danielle; Roh, Hyun Cheol; Kong, Xingxing; Kazak, Lawrence; Ahmad, Rasheed; Rosen, Evan D

    2016-08-01

    The chronic inflammatory state that accompanies obesity is a major contributor to insulin resistance and other dysfunctional adaptations in adipose tissue. Cellular and secreted factors promote the inflammatory milieu of obesity, but the transcriptional pathways that drive these processes are not well described. Although the canonical inflammatory transcription factor NF-κB is considered to be the major driver of adipocyte inflammation, members of the interferon regulatory factor (IRF) family may also play a role in this process. Here, we determined that IRF3 expression is upregulated in the adipocytes of obese mice and humans. Signaling through TLR3 and TLR4, which lie upstream of IRF3, induced insulin resistance in murine adipocytes, while IRF3 knockdown prevented insulin resistance. Furthermore, improved insulin sensitivity in IRF3-deficient mice was associated with reductions in intra-adipose and systemic inflammation in the high fat-fed state, enhanced browning of subcutaneous fat, and increased adipose expression of GLUT4. Taken together, the data indicate that IRF3 is a major transcriptional regulator of adipose inflammation and is involved in maintaining systemic glucose and energy homeostasis. PMID:27400129

  3. The development and endocrine functions of adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    White adipose tissue is a mesenchymal tissue that begins developing in the fetus. Classically known for storing the body’s fuel reserves, adipose tissue is now recognized as an endocrine organ. As such, the secretions from adipose tissue are known to affect several systems such as the vascular and...

  4. Chronic glucocorticoid exposure-induced epididymal adiposity is associated with mitochondrial dysfunction in white adipose tissue of male C57BL/6J mice.

    PubMed

    Yu, Jie; Yu, Bing; He, Jun; Zheng, Ping; Mao, Xiangbing; Han, Guoquan; Chen, Daiwen

    2014-01-01

    Prolonged and excessive glucocorticoids (GC) exposure resulted from Cushing's syndrome or GC therapy develops central obesity. Moreover, mitochondria are crucial in adipose energy homeostasis. Thus, we tested the hypothesis that mitochondrial dysfunction may contribute to chronic GC exposure-induced epididymal adiposity in the present study. A total of thirty-six 5-week-old male C57BL/6J mice (∼20 g) were administrated with 100 µg/ml corticosterone (CORT) or vehicle through drinking water for 4 weeks. Chronic CORT exposure mildly decreased body weight without altering food and water intake in mice. The epididymal fat accumulation was increased, but adipocyte size was decreased by CORT. CORT also increased plasma CORT, insulin, leptin, and fibroblast growth factor 21 concentrations as measured by RIA or ELISA. Interestingly, CORT increased plasma levels of triacylglycerols and nonesterified fatty acids, and up-regulated the expression of both lipolytic and lipogenic genes as determined by real-time RT-PCR. Furthermore, CORT impaired mitochondrial biogenesis and oxidative function in epididymal WAT. The reactive oxygen species production was increased and the activities of anti-oxidative enzymes were reduced by CORT treatment as well. Taken together, these findings reveal that chronic CORT administration-induced epididymal adiposity is, at least in part, associated with mitochondrial dysfunction in mouse epididymal white adipose tissue. PMID:25389775

  5. Developmental programming, adiposity, and reproduction in ruminants.

    PubMed

    Symonds, M E; Dellschaft, N; Pope, M; Birtwistle, M; Alagal, R; Keisler, D; Budge, H

    2016-07-01

    Although sheep have been widely adopted as an animal model for examining the timing of nutritional interventions through pregnancy on the short- and long-term outcomes, only modest programming effects have been seen. This is due in part to the mismatch in numbers of twins and singletons between study groups as well as unequal numbers of males and females. Placental growth differs between singleton and twin pregnancies which can result in different body composition in the offspring. One tissue that is especially affected is adipose tissue which in the sheep fetus is primarily located around the kidneys and heart plus the sternal/neck region. Its main role is the rapid generation of heat due to activation of the brown adipose tissue-specific uncoupling protein 1 at birth. The fetal adipose tissue response to suboptimal maternal food intake at defined stages of development differs between the perirenal abdominal and pericardial depots, with the latter being more sensitive. Fetal adipose tissue growth may be mediated in part by changes in leptin status of the mother which are paralleled in the fetus. Then, over the first month of life plasma leptin is higher in females than males despite similar adiposity, when fat is the fastest growing tissue with the sternal/neck depot retaining uncoupling protein 1, whereas other depots do not. Future studies should take into account the respective effects of fetal number and sex to provide more detailed insights into the mechanisms by which adipose and related tissues can be programmed in utero. PMID:27173959

  6. Adiposity and Insufficient MVPA Predict Cardiometabolic Abnormalities in Adults

    PubMed Central

    Peterson, Mark D.; Snih, Soham Al; Stoddard, Jonathan; McClain, James; Lee, IMin

    2014-01-01

    Objectives To compare the extent to which different combinations of objectively measured sedentary behavior (SB) and physical activity contribute to cardiometabolic health. Design and Methods A population representative sample of 5,268 individuals, aged 20-85 years, was included from the combined 2003-2006 NHANES datasets. Activity categories were created on the combined basis of objectively measured SB and moderate-to-vigorous physical activity (MVPA) tertiles. Cardiometabolic abnormalities included elevated blood pressure, levels of triglycerides, fasting plasma glucose, C-reactive protein, homeostasis model assessment (HOMA) of insulin resistance value, and low HDL-cholesterol level. BMI, and DXA-derived percent body fat (% BF) and android adiposity were also compared across groups. Predictors for a metabolically abnormal phenotype (≥3 cardiometabolic abnormalities, or insulin resistance) were determined. Results Adults with the least SB and greatest MVPA exhibited the healthiest cardiometabolic profiles, whereas adults with the greatest SB and lowest MVPA were older and had elevated risk. Time spent in SB was not a predictor of the metabolically abnormal phenotype when MVPA was accounted for. Adults with the highest MVPA across SB tertiles did not differ markedly in prevalence of obesity, adiposity, and/or serum cardiometabolic risk factors; however, less MVPA was associated with substantial elevations of obesity and cardiometabolic risk. Android adiposity (per kilogram) was independently associated with the metabolically abnormal phenotype in both men (OR: 2.36 [95% CI, 1.76-3.17], p<0.001) and women (OR: 2.00 [95% CI, 1.63-2.45], p<0.001). Among women, greater SB, and less lifestyle moderate activity and MVPA were each independently associated with the metabolically abnormal phenotype, whereas only less MVPA was associated with it in men. Conclusions MVPA is a strong predictor of cardiometabolic health among adults, independent of time spent in SB. PMID

  7. Catechin and quercetin attenuate adipose inflammation in fructose-fed rats and in 3T3-L1 adipocytes

    PubMed Central

    Vazquez Prieto, Marcela A.; Bettaieb, Ahmed; Rodriguez Lanzi, Cecilia; Soto, Verónica C.; Perdicaro, Diahann J.; Galmarini, Claudio R.; Haj, Fawaz G.; Miatello, Roberto M.; Oteiza, Patricia I.

    2015-01-01

    Scope This study evaluated the capacity of dietary catechin (C), quercetin (Q) and the combination of both (CQ), to attenuate adipose inflammation triggered by high fructose (HFr) consumption in rats and by tumor necrosis factor alpha (TNFα) in 3T3-L1 adipocytes. Methods and results In rats, HFr consumption for 6 wk caused dyslipidemia, insulin resistance, reduced plasma adiponectin, adiposity, and adipose tissue inflammation. Dietary supplementation with 20 mg/kg/d of C, Q and CQ improved all these parameters. In 3T3-L1 adipocytes, C and Q attenuated TNFα-induced elevated protein carbonyls, increased pro-inflammatory cytokine expression (MCP-1, resistin), and decreased adiponectin. The protective effects of C and Q on adipose inflammation are in part associated with their capacity to: i) decrease the activation of the mitogen activated kinases (MAPKs) JNK and p38; and ii) prevent the downregulation of PPARγ. In summary, C and Q, and to a larger extent the combination of both, attenuated adipose pro-inflammatory signaling cascades and regulated the balance of molecules that improve (adiponectin) or impair (TNFα, MCP-1, resistin) insulin sensitivity. Conclusion Together, these findings suggest that dietary Q and C may have potential benefits in mitigating MetS associated adipose inflammation, oxidative stress, and insulin resistance. PMID:25620282

  8. Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism.

    PubMed

    Tang, Yuefeng; Wallace, Martina; Sanchez-Gurmaches, Joan; Hsiao, Wen-Yu; Li, Huawei; Lee, Peter L; Vernia, Santiago; Metallo, Christian M; Guertin, David A

    2016-01-01

    Adipose tissue de novo lipogenesis (DNL) positively influences insulin sensitivity, is reduced in obesity, and predicts insulin resistance. Therefore, elucidating mechanisms controlling adipose tissue DNL could lead to therapies for type 2 diabetes. Here, we report that mechanistic target of rapamycin complex 2 (mTORC2) functions in white adipose tissue (WAT) to control expression of the lipogenic transcription factor ChREBPβ. Conditionally deleting the essential mTORC2 subunit Rictor in mature adipocytes decreases ChREBPβ expression, which reduces DNL in WAT, and impairs hepatic insulin sensitivity. Mechanistically, Rictor/mTORC2 promotes ChREBPβ expression in part by controlling glucose uptake, but without impairing pan-AKT signalling. High-fat diet also rapidly decreases adipose tissue ChREBPβ expression and insulin sensitivity in wild-type mice, and does not further exacerbate insulin resistance in adipose tissue Rictor knockout mice, implicating adipose tissue DNL as an early target in diet-induced insulin resistance. These data suggest mTORC2 functions in WAT as part of an extra-hepatic nutrient-sensing mechanism to control glucose homeostasis. PMID:27098609

  9. Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism

    PubMed Central

    Tang, Yuefeng; Wallace, Martina; Sanchez-Gurmaches, Joan; Hsiao, Wen-Yu; Li, Huawei; Lee, Peter L.; Vernia, Santiago; Metallo, Christian M.; Guertin, David A.

    2016-01-01

    Adipose tissue de novo lipogenesis (DNL) positively influences insulin sensitivity, is reduced in obesity, and predicts insulin resistance. Therefore, elucidating mechanisms controlling adipose tissue DNL could lead to therapies for type 2 diabetes. Here, we report that mechanistic target of rapamycin complex 2 (mTORC2) functions in white adipose tissue (WAT) to control expression of the lipogenic transcription factor ChREBPβ. Conditionally deleting the essential mTORC2 subunit Rictor in mature adipocytes decreases ChREBPβ expression, which reduces DNL in WAT, and impairs hepatic insulin sensitivity. Mechanistically, Rictor/mTORC2 promotes ChREBPβ expression in part by controlling glucose uptake, but without impairing pan-AKT signalling. High-fat diet also rapidly decreases adipose tissue ChREBPβ expression and insulin sensitivity in wild-type mice, and does not further exacerbate insulin resistance in adipose tissue Rictor knockout mice, implicating adipose tissue DNL as an early target in diet-induced insulin resistance. These data suggest mTORC2 functions in WAT as part of an extra-hepatic nutrient-sensing mechanism to control glucose homeostasis. PMID:27098609

  10. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk.

    PubMed

    Iacobellis, Gianluca; Ribaudo, Maria Cristina; Assael, Filippo; Vecci, Elio; Tiberti, Claudio; Zappaterreno, Alessandra; Di Mario, Umberto; Leonetti, Frida

    2003-11-01

    Metabolic syndrome is related to multiple cardiovascular risk factors. Visceral adipose tissue (VAT) plays a key role in metabolic syndrome. Easy detection of VAT could be an important tool to increase knowledge of metabolic syndrome. The objective of this study was to study the relationship of echocardiographic epicardial adipose tissue to anthropometric and clinical parameters of metabolic syndrome. We selected 72 consecutive subjects, 46.5 +/- 17.4 yr of age, with a body mass index between 22 and 47 kg/m(2). Each subject underwent transthoracic echocardiogram to measure epicardial fat thickness on right ventricle and magnetic resonance imaging to calculate visceral adipose tissue. Anthropometric, metabolic, and cardiac parameters were also evaluated. Echocardiographic epicardial adipose tissue showed a very good correlation with magnetic resonance imaging abdominal VAT and epicardial fat measurement (Bland-Altman plot and linear regression). Multiple regression analysis showed that waist circumference (r(2) = 0.428; P = 0.01), diastolic blood pressure (r(2) = 0. 387; P = 0.02), and fasting insulin (r(2) = 0.387; P = 0.03) were the strongest independent variables correlated with epicardial adipose tissue. Echocardiographic epicardial adipose tissue could be applied as an easy and reliable imaging indicator of VAT and cardiovascular risk. PMID:14602744

  11. In vivo adeno-associated viral vector-mediated genetic engineering of white and brown adipose tissue in adult mice.

    PubMed

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-12-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes. PMID:24043756

  12. TNF-alpha, but not IL-6, stimulates plasminogen activator inhibitor-1 expression in human subcutaneous adipose tissue.

    PubMed

    Plomgaard, Peter; Keller, Pernille; Keller, Charlotte; Pedersen, Bente Klarlund

    2005-06-01

    Plasminogen activator inhibitor-1 (PAI-1) is produced by adipose tissue, and elevated PAI-1 levels in plasma are a risk factor in the metabolic syndrome. We investigated the regulatory effects of TNF-alpha and IL-6 on PAI-1 gene induction in human adipose tissue. Twenty healthy men underwent a 3-h infusion of either recombinant human TNF-alpha (n = 8), recombinant human IL-6 (n = 6), or vehicle (n = 6). Biopsies were obtained from the subcutaneous abdominal adipose tissue at preinfusion, at 1, 2, and 3 h during the infusion, and at 2 h after the infusion. The mRNA expression of PAI-1 in the adipose tissue was measured using real-time PCR. The plasma levels of TNF-alpha and IL-6 reached 18 and 99 pg/ml, respectively, during the infusions. During the TNF-alpha infusion, adipose PAI-1 mRNA expression increased 2.5-fold at 1 h, 6-fold at 2 h, 9-fold at 3 h, and declined to 2-fold 2 h after the infusion stopped but did not change during IL-6 infusion and vehicle. These data demonstrate that TNF-alpha rather than IL-6 stimulates an increase in PAI-1 mRNA in the subcutaneous adipose tissue, suggesting that TNF-alpha may be involved in the pathogenesis of related metabolic disorders. PMID:15677734

  13. In Vivo Adeno-Associated Viral Vector–Mediated Genetic Engineering of White and Brown Adipose Tissue in Adult Mice

    PubMed Central

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-01-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes. PMID:24043756

  14. Disposition into Adipose Tissue Determines Accumulation and Elimination Kinetics of the Cholesteryl Ester Transfer Protein Inhibitor Anacetrapib in Mice.

    PubMed

    Hartmann, Georgy; Kumar, Sanjeev; Johns, Douglas; Gheyas, Ferdous; Gutstein, David; Shen, Xiaolan; Burton, Aimee; Lederman, Harmony; Lutz, Ryan; Jackson, Tonya; Chavez-Eng, Cynthia; Mitra, Kaushik

    2016-03-01

    The cholesteryl ester transfer protein (CETP) inhibitor anacetrapib exhibits a long terminal half-life (t½) in humans; however, the dispositional mechanisms that lead to this long t½ are still being elucidated. As it is hypothesized that disposition into adipose tissue and binding to CETP might play a role, we sought to delineate the relative importance of these factors using a preclinical animal model. A multiple-dose pharmacokinetic study was conducted in C57BL6 wild-type (WT) lean, WT diet-induced obese (DIO), natural flanking region (NFR) CETP-transgenic lean, and NFR-DIO mice. Mice were dosed orally with 10 mg/kg anacetrapib daily for 42 days. Drug concentrations in blood, brown and white adipose tissue, liver, and brain were measured up to 35 weeks postdose. During dosing, a 3- to 9-fold accumulation in 72-hour postdose blood concentrations of anacetrapib was observed. Drug concentrations in white adipose tissue accumulated ∼20- to 40-fold, whereas 10- to 17-fold accumulation occurred in brown adipose and approximately 4-fold in liver. Brain levels were very low (<0.1 μM), and a trend of accumulation was not seen. The presence of CETP as well as adiposity seems to play a role in determining the blood concentrations of anacetrapib. The highest blood concentrations were observed in NFR DIO mice, whereas the lowest concentrations were seen in WT lean mice. In adipose and liver tissue, higher concentrations were seen in DIO mice, irrespective of the presence of CETP. This finding suggests that white adipose tissue serves as a potential depot and that disposition into adipose tissue governs the long-term kinetics of anacetrapib in vivo. PMID:26712818

  15. Broiler chicken adipose tissue dynamics during the first two weeks post-hatch.

    PubMed

    Bai, Shiping; Wang, Guoqing; Zhang, Wei; Zhang, Shuai; Rice, Brittany Breon; Cline, Mark Andrew; Gilbert, Elizabeth Ruth

    2015-11-01

    Selection of broiler chickens for growth has led to increased adipose tissue accretion. To investigate the post-hatch development of adipose tissue, the abdominal, clavicular, and subcutaneous adipose tissue depots were collected from broiler chicks at 4 and 14 days post-hatch. As a percent of body weight, abdominal fat increased (P<0.001) with age. At day 4, clavicular and subcutaneous fat depots were heavier (P<0.003) than abdominal fat whereas at day 14, abdominal and clavicular weighed more (P<0.003) than subcutaneous fat. Adipocyte area and diameter were greater in clavicular and subcutaneous than abdominal fat at 4 and 14 days post-hatch (P<0.001). Glycerol-3-phosphate dehydrogenase (G3PDH) activity increased (P<0.001) in all depots from day 4 to 14, and at both ages was greatest in subcutaneous, intermediate in clavicular, and lowest in abdominal fat (P<0.05). In clavicular fat, peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer binding protein (CEBP)α, CEBPβ, fatty acid synthase (FASN), fatty acid binding protein 4 (FABP4), lipoprotein lipase (LPL), neuropeptide Y (NPY), and NPY receptor 5 (NPYR5) mRNA increased and NPYR2 mRNA decreased from day 4 to 14 (P<0.001). Thus, there are site-specific differences in broiler chick adipose development, with larger adipocytes and greater G3PDH activity in subcutaneous fat at day 4, more rapid growth of abdominal fat, and clavicular fat intermediate for most traits. Adipose tissue expansion was accompanied by changes in gene expression of adipose-associated factors. PMID:26263851

  16. Three-dimensional culture model for analyzing crosstalk between adipose tissue and hepatocytes.

    PubMed

    Nishijima-Matsunobu, Aki; Aoki, Shigehisa; Uchihashi, Kazuyoshi; Fujimoto, Kazuma; Toda, Shuji

    2013-06-01

    Systemic adipose tissue is involved in the pathophysiology of obesity-associated liver diseases. However, a method has not been established for analyzing the direct interaction between adipose tissue and hepatocytes. We describe a useful three-dimensional model comprising a collagen gel coculture system in which HepG2 hepatocytes are cultured on a gel layer with visceral adipose tissue fragments (VAT) or subcutaneous tissue samples (SAT). Male adipose tissues were obtained from 5-week-old Wistar rats and human autopsy cases. Cellular behavior was analyzed by electron microscopy, immunohistochemistry, Western blot, real-time reverse transcription plus the polymerase chain reaction and enzyme-linked immunosorbent assay. VAT significantly promoted lipid accumulation and apoptosis in HepG2 cells and suppressed their growth and differentiation compared with SAT. VAT produced higher concentrations of fatty acids (palmitate, oleate, linoleate) than SAT. HepG2 cells significantly decreased the production of these fatty acids in VAT. Only HepG2 cells treated with 250 μM palmitate replicated VAT-induced apoptosis. Neither VAT nor SAT affected lipotoxicity-associated signals of nuclear factor kappa B, c-Jun N-terminal kinase and inositol requiring enzyme-1α in HepG2 cells. HepG2 cells never affected adiponectin, leptin, or resistin production in VAT and SAT. The data indicate that our model actively creates adipose tissue and HepG2 hepatocyte interactions, suggesting that (1) VAT plays more critical roles in hepatocyte lipotoxicity than SAT; (2) palmitate but not adipokines, is partly involved in the mechanisms of VAT-induced lipotoxicity; (3) HepG2 cells might inhibit fatty acid production in VAT to protect themselves against lipotoxicity. Our model should serve in studies of interactions between adipose tissue and hepatocytes and of the mechanisms in obesity-related lipotoxicity and liver diseases. PMID:23512139

  17. Intra-abdominal fat. Part I. The images of the adipose tissue localized beyond organs

    PubMed Central

    Kołaczyk, Katarzyna; Bernatowicz, Elżbieta

    2015-01-01

    Unaltered fat is a permanent component of the abdominal cavity, even in slim individuals. Visceral adiposity is one of the important factors contributing to diabetes, cardiovascular diseases and certain neoplasms. Moreover, the adipose tissue is an important endocrine and immune organ of complex function both when normal and pathological. Its role in plastic surgery, reconstruction and transplantology is a separate issue. The adipose tissue has recently drawn the attention of research institutes owing to being a rich source of stem cells. This review, however, does not include these issues. The identification of fat is relatively easy using computed tomography and magnetic resonance imaging. It can be more difficult in an ultrasound examination for several reasons. The aim of this paper is to present various problems associated with US imaging of unaltered intra-abdominal fat located beyond organs. Based on the literature and experience, it has been demonstrated that the adipose tissue in the abdominal cavity has variable echogenicity, which primarily depends on the amount of extracellular fluid and the number of connective tissue septa, i.e. elements that potentiate the number of areas that reflect and scatter ultrasonic waves. The normal adipose tissue presents itself on a broad gray scale: from a hyperechoic area, through numerous structures of lower reflection intensity, to nearly anechoic regions mimicking the presence of pathological fluid collections. The features that facilitate proper identification of this tissue are: sharp margins, homogeneous structure, high compressibility under transducer pressure, no signs of infiltration of the surrounding structures and no signs of vascularization when examined with the color and power Doppler. The accumulation of fat tissue in the abdominal cavity can be generalized, regional or focal. The identification of the adipose tissue in the abdominal cavity using ultrasonography is not always easy. When in doubt, the

  18. Intra-abdominal fat. Part I. The images of the adipose tissue localized beyond organs.

    PubMed

    Smereczyński, Andrzej; Kołaczyk, Katarzyna; Bernatowicz, Elżbieta

    2015-09-01

    Unaltered fat is a permanent component of the abdominal cavity, even in slim individuals. Visceral adiposity is one of the important factors contributing to diabetes, cardiovascular diseases and certain neoplasms. Moreover, the adipose tissue is an important endocrine and immune organ of complex function both when normal and pathological. Its role in plastic surgery, reconstruction and transplantology is a separate issue. The adipose tissue has recently drawn the attention of research institutes owing to being a rich source of stem cells. This review, however, does not include these issues. The identification of fat is relatively easy using computed tomography and magnetic resonance imaging. It can be more difficult in an ultrasound examination for several reasons. The aim of this paper is to present various problems associated with US imaging of unaltered intra-abdominal fat located beyond organs. Based on the literature and experience, it has been demonstrated that the adipose tissue in the abdominal cavity has variable echogenicity, which primarily depends on the amount of extracellular fluid and the number of connective tissue septa, i.e. elements that potentiate the number of areas that reflect and scatter ultrasonic waves. The normal adipose tissue presents itself on a broad gray scale: from a hyperechoic area, through numerous structures of lower reflection intensity, to nearly anechoic regions mimicking the presence of pathological fluid collections. The features that facilitate proper identification of this tissue are: sharp margins, homogeneous structure, high compressibility under transducer pressure, no signs of infiltration of the surrounding structures and no signs of vascularization when examined with the color and power Doppler. The accumulation of fat tissue in the abdominal cavity can be generalized, regional or focal. The identification of the adipose tissue in the abdominal cavity using ultrasonography is not always easy. When in doubt, the

  19. Vitamin D Deficiency, Adiposity, and Cardiometabolic Risk in Urban Schoolchildren

    PubMed Central

    Sacheck, Jennifer; Goodman, Elizabeth; Chui, Kenneth; Chomitz, Virginia; Must, Aviva; Economos, Christina

    2013-01-01

    Objective To determine the relationship between serum vitamin D levels and cardiometabolic risk factors independent of adiposity in urban schoolchildren. Study design We assessed the relationships among serum 25-hydroxyvitamin D [25(OH)D], adiposity measured by body mass index (BMI) z-score (BMIz), and 6 cardiometabolic risk factors (total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, interleukin-6, and C-reactive protein [CRP]) in a cross-sectional sample of 263 racially and ethnically diverse schoolchildren from the Boston area during late winter. Multivariate regression analyses adjusting for sociodemographic characteristics and BMIz examined associations of 25(OH)D and cardiometabolic risk factors. Results Overall, 74.6% of the children were vitamin D deficient [25(OH)D <50 nmol/L; mean, 41.8 ± 13.7 nmol/L]; 45% were overweight or obese (20%and 25%, respectively; BMIz = 0.75 ± 1.1). The 25(OH)D level was not associated with BMIz, but was positively associated with the cardiometabolic risk factor CRP (β = 0.03; P < .05). BMIz was associated with elevated triglycerides (β = 0.13), CRP (β = 0.58), and interleukin-6 (β= 0.14) and low high-density lipoprotein cholesterol (β = −0.09; all P < .01). Conclusions Vitamin D deficiency is highly prevalent during the late winter months in urban schoolchildren living in the northeastern United States. This widespread deficiency may contribute to the lack of associations between 25(OH)D and both BMIz and cardiometabolic risk factors. The association between 25(OH)D and CRP warrants further study. PMID:21784451

  20. Implantation of Autologous Adipose-Derived Cells Reconstructs Functional Urethral Sphincters in Rabbit Cryoinjured Urethra

    PubMed Central

    Silwal Gautam, Sudha; Ishizuka, Osamu; Lei, Zhang; Yamagishi, Takahiro; Yokoyama, Hitoshi; Minagawa, Tomonori; Ogawa, Teruyuki; Kurizaki, Yoshiki; Kato, Haruaki; Nishizawa, Osamu

    2014-01-01

    We investigated the ability of autologous adipose-derived cells injected into cryoinjured rabbit urethras to improve urinary continence and explored the possible mechanisms by which it occurred. Adipose tissue was harvested from the perivesical region of nine 10-week-old female New Zealand White rabbits and cultured for 7 days. Immediately after harvesting the tissue, we injured the internal urethral orifice by spraying liquid nitrogen for 20 s. The cultured cells expressed the mesenchymal cell marker STRO1, but not muscle cell markers myoglobin or smooth muscle actin (SMA). Just before implantation, the adipose-derived cells were labeled with the PKH26 fluorescent cell linker. Autologous 2.0×106 adipose-derived cells (five rabbits) or a cell-free control solution (four rabbits) was injected around the cryoinjured urethras at 7 days after injury. Fourteen days later, the leak point pressure (LPP) was measured, and the urethras were harvested for immunohistochemical analyses. At 14 days after implantation, LPP of the cell-implanted group was significantly higher compared with the cell-free control group (p<0.05). In immunohistochemical examination, the reconstructed skeletal and smooth muscle areas in the cell-implanted regions were significantly more developed than those in controls (p<0.01). Implanted PKH26-labeled adipose-derived cells were immunohistochemically positive for myoglobin, SMA, and Pax7 antibodies, which are markers for skeletal muscles, smooth muscles, and myoblast progenitor cells, respectively. In addition, these implanted cells were positive for the nerve cell markers, tubulin β3, S100, and the vascular endothelial cell marker, von Willebrand factor. Furthermore, some of the implanted cells were positive for the transforming growth factor β1, nerve growth factor, and vascular endothelial growth factor. In conclusion, implantation of autologous adipose-derived cells into the cryoinjured rabbit urethras promoted the recovery of urethral

  1. Development of a chemically defined serum-free medium for differentiation of rat adipose precursor cells

    SciTech Connect

    Deslex, S.; Negrel, R.; Ailhaud, G.

    1987-01-01

    Stromal-vascular cells from the epididymal fat pad of 4-week-old rats, when cultured in a medium containing insulin or insulin-like growth factor, IFG-I, triiodothyronine and transferrin, were able to undergo adipose conversion. Over ninety percent of the cells accumulated lipid droplets and this proportion was reduced in serum-supplemented medium. The adipose conversion was assessed by the development of lipoprotein lipase (LPL) and glycerol-3-phosphate dehydrogenase (GPDH) activities, (/sup 14/)glucose incorporation into polar and neutral lipids, triacylglycerol accumulation and lipolysis in response to isoproterenol. Similar results were obtained with stromal-vascular cells from rat subcutaneous and retroperitoneal adipose tissues. Stromal-vascular cells required no adipogenic factors in addition to the components of the serum-free medium. Insulin was required within a physiological range of concentrations for the emergence of LPL and at higher concentrations for that of GPDH. When present at concentrations ranging from 2 to 50 nM, IGF-I was able to replace insulin for the expression of both LPL and and GPDH. The development of a serum free, chemically defined medium for the differentiation of diploid adiopose precursor cells opens up the possibility of characterizing inhibitors or activators of the adipose conversion process.

  2. Altered somatotroph feedback regulation improves metabolic efficiency and limits adipose deposition in male mice.

    PubMed

    Romero, Christopher J; Wolfe, Andrew; Law, Yi Ying; Costelloe, ChenChen Z; Miller, Ryan; Wondisford, Fredric; Radovick, Sally

    2016-04-01

    Several transgenic mouse models with disruption in the growth hormone (GH) axis support the role of GH in augmenting metabolic homeostasis. Specifically, interest has focused on GH's lipolytic properties and ability to affect adipose deposition. Furthermore, both GH and insulin growth factor 1 (IGF-1) may also play a direct or indirect role in adipose development. The somatotroph insulin-like growth factor-1 receptor knockout (SIGFRKO) mouse with only a modest increase in serum GH and IGF-1 demonstrates less adipose tissue than controls. In order to characterize the metabolic phenotype of SIGFRKO mice, histologic analysis of fat depots confirmed a smaller average diameter of adipocytes in the SIGFRKO mice compared to controls. These changes were accompanied by an increase in lipolytic gene expression in fat depots. Indirect calorimetry performed on 6-8week old male mice and again at 25weeks of age demonstrated that SIGFRKO mice, at both ages, had a higher VO2 and increased energy expenditure when compared with controls. The calculated respiratory exchange ratio (RER) was lower in the younger SIGFRKO mice compared to controls. No differences in food consumption or in either ambulatory or total activity were seen between SIGFRKO and control mice in either age group. These studies highlight the role of GH in adipose deposition and its influence on the expression of lipolytic genes resulting in an altered metabolic state, thus providing a mechanism for the decrease in weight gain seen in the SIGFRKO mouse model. PMID:26975547

  3. Does bariatric surgery improve adipose tissue function?

    PubMed

    Frikke-Schmidt, H; O'Rourke, R W; Lumeng, C N; Sandoval, D A; Seeley, R J

    2016-09-01

    Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. © 2016 World Obesity. PMID:27272117

  4. Injectable Biomaterials for Adipose Tissue Engineering

    PubMed Central

    Young, D. Adam; Christman, Karen L.

    2012-01-01

    Adipose tissue engineering has recently gained significant attention from materials scientists as a result of the exponential growth of soft tissue filler procedures being performed within the clinic. While several injectable materials are currently being marketed for filling subcutaneous voids, they often face limited longevity due to rapid resorption. Their inability to encourage natural adipose formation or ingrowth necessitates repeated injections for a prolonged effect, and thus classifies them as temporary fillers. As a result, a significant need for injectable materials that not only act as fillers, but also promote in vivo adipogenesis is beginning to be realized. This review will discuss the advantages and disadvantages of commercially available soft tissue fillers. It will then summarize the current state of research using injectable synthetic materials, biopolymers, and extracellular matrix-derived materials for adipose tissue engineering. Furthermore, the successful attributes observed across each of these materials will be outlined along with a discussion of the current difficulties and future directions for adipose tissue engineering. PMID:22456805

  5. Adipose Natural Killer Cells Regulate Adipose Tissue Macrophages to Promote Insulin Resistance in Obesity.

    PubMed

    Lee, Byung-Cheol; Kim, Myung-Sunny; Pae, Munkyong; Yamamoto, Yasuhiko; Eberlé, Delphine; Shimada, Takeshi; Kamei, Nozomu; Park, Hee-Sook; Sasorith, Souphatta; Woo, Ju Rang; You, Jia; Mosher, William; Brady, Hugh J M; Shoelson, Steven E; Lee, Jongsoon

    2016-04-12

    Obesity-induced inflammation mediated by immune cells in adipose tissue appears to participate in the pathogenesis of insulin resistance. We show that natural killer (NK) cells in adipose tissue play an important role. High-fat diet (HFD) increases NK cell numbers and the production of proinflammatory cytokines, notably TNFα, in epididymal, but not subcutaneous, fat depots. When NK cells were depleted either with neutralizing antibodies or genetic ablation in E4bp4(+/-) mice, obesity-induced insulin resistance improved in parallel with decreases in both adipose tissue macrophage (ATM) numbers, and ATM and adipose tissue inflammation. Conversely, expansion of NK cells following IL-15 administration or reconstitution of NK cells into E4bp4(-/-) mice increased both ATM numbers and adipose tissue inflammation and exacerbated HFD-induced insulin resistance. These results indicate that adipose NK cells control ATMs as an upstream regulator potentially by producing proinflammatory mediators, including TNFα, and thereby contribute to the development of obesity-induced insulin resistance. PMID:27050305

  6. Brown adipose tissue: The heat is on the heart.

    PubMed

    Thoonen, Robrecht; Hindle, Allyson G; Scherrer-Crosbie, Marielle

    2016-06-01

    The study of brown adipose tissue (BAT) has gained significant scientific interest since the discovery of functional BAT in adult humans. The thermogenic properties of BAT are well recognized; however, data generated in the last decade in both rodents and humans reveal therapeutic potential for BAT against metabolic disorders and obesity. Here we review the current literature in light of a potential role for BAT in beneficially mediating cardiovascular health. We focus mainly on BAT's actions in obesity, vascular tone, and glucose and lipid metabolism. Furthermore, we discuss the recently discovered endocrine factors that have a potential beneficial role in cardiovascular health. These BAT-secreted factors may have a favorable effect against cardiovascular risk either through their metabolic role or by directly affecting the heart. PMID:27084389

  7. The metabolic syndrome as a concept of adipose tissue disease.

    PubMed

    Oda, Eiji

    2008-07-01

    The metabolic syndrome is a constellation of interrelated metabolic risk factors that appear to directly promote the development of diabetes and cardiovascular disease. However, in 2005, the American Diabetes Association and the European Association for the Study of Diabetes jointly stated that no existing definition of the metabolic syndrome meets the criteria of a syndrome, and there have been endless debates on the pros and cons of using the concept of this syndrome. The controversy may stem from confusion between the syndrome and obesity. Obesity is an epidemic, essentially contagious disease caused by an environment of excess nutritional energy and reinforced by deeply rooted social norms. The epidemic of obesity should be prevented or controlled by social and political means, similar to the approaches now being taken to combat global warming. The diagnosis of metabolic syndrome is useless for this public purpose. The purpose of establishing criteria for diagnosing metabolic syndrome is to find individuals who are at increased risk of diabetes and cardiovascular disease and who require specific therapy including diet and exercise. The syndrome may be an adipose tissue disease different from obesity; in that case, it would be characterized by inflammation clinically detected through systemic inflammatory markers such as high-sensitivity C-reactive protein and insulin resistance reflecting histological changes in adipose tissue. However, many problems in defining the optimal diagnostic criteria remain unresolved. PMID:18957797

  8. Does short sleep duration favor abdominal adiposity in children?

    PubMed

    Chaput, Jean-Philippe; Tremblay, Angelo

    2007-01-01

    The main aim of this cross-sectional study was to determine whether the increased body mass index (BMI) characterizing short-duration sleeping children is related to an increased predisposition to abdominal adiposity. A total of 422 children (211 boys and 211 girls) involved in the "Québec en Forme" Project were tested for body weight, height, waist circumference, and sleep duration. As there was no gender interaction with the other factors, a partial regression of waist circumference on hours of sleep was performed for both genders combined, adjusting for age, sex, BMI, parental obesity, parental education, total annual family income, frequency of taking breakfast, watching television, playing videogames, computer use, and frequency of practicing sports activities outside of school. Sleep duration had an independent effect on waist circumference, with the correlation between these variables remaining significant after adjustment for BMI and the several other covariates (r=- 0.17, p<0.001). In conclusion, these results suggest that short sleep duration favors abdominal adiposity in children. This finding is of particular concern since abdominal obesity is an important feature of the metabolic syndrome. PMID:17999284

  9. Model of adipose tissue cellularity dynamics during food restriction.

    PubMed

    Soula, H A; Géloën, A; Soulage, C O

    2015-01-01

    Adipose tissue and adipocytes play a central role in the pathogenesis of metabolic diseases related to obesity. Size of fat cells depends on the balance of synthesis and mobilization of lipids and can undergo important variations throughout the life of the organism. These variations usually occur when storing and releasing lipids according to energy demand. In particular when confronted to severe food restriction, adipocyte releases its lipid content via a process called lipolysis. We propose a mathematical model that combines cell diameter distribution and lipolytic response to show that lipid release is a surface (radius squared) limited mechanism. Since this size-dependent rate affects the cell׳s shrinkage speed, we are able to predict the cell size distribution evolution when lipolysis is the only factor at work: such as during an important food restriction. Performing recurrent surgical biopsies on rats, we measured the evolution of adipose cell size distribution for the same individual throughout the duration of the food restriction protocol. We show that our microscopic model of size dependent lipid release can predict macroscopic size distribution evolution. PMID:25196549

  10. Impaired mitochondrial function in human placenta with increased maternal adiposity

    PubMed Central

    Mele, James; Muralimanoharan, Sribalasubashini; Maloyan, Alina

    2014-01-01

    The placenta plays a key role in regulation of fetal growth and development and in mediating in utero developmental programming. Obesity, which is associated with chronic inflammation and mitochondrial dysfunction in many tissues, exerts a programming effect in pregnancy. We determined the effect of increasing maternal adiposity and of fetal sex on placental ATP generation, mitochondrial biogenesis, expression of electron transport chain subunits, and mitochondrial function in isolated trophoblasts. Placental tissue was collected from women with prepregnancy BMI ranging from 18.5 to 45 following C-section at term with no labor. Increasing maternal adiposity was associated with excessive production of reactive oxygen species and a significant reduction in placental ATP levels in placentae with male and female fetuses. To explore the potential mechanism of placental mitochondrial dysfunction, levels of transcription factors regulating the expression of genes involved in electron transport and mitochondrial biogenesis were measured. Our in vitro studies showed significant reduction in mitochondrial respiration in cultured primary trophoblasts with increasing maternal obesity along with an abnormal metabolic flexibility of these cells. This reduction in placental mitochondrial respiration in pregnancies complicated by maternal obesity could compromise placental function and potentially underlie the increased susceptibility of these pregnancies to fetal demise in late gestation and to developmental programming. PMID:25028397

  11. Endogenous ways to stimulate brown adipose tissue in humans.

    PubMed

    Broeders, Evie; Bouvy, Nicole D; van Marken Lichtenbelt, Wouter D

    2015-03-01

    Obesity is the result of disequilibrium between energy intake and energy expenditure (EE). Successful long-term weight loss is difficult to achieve with current strategies for the correction of this caloric imbalance. Non-shivering thermogenesis (NST) in brown adipose tissue (BAT) is a possible therapeutic target for the prevention and treatment of obesity and associated metabolic diseases. In recent years, more knowledge about the function and stimulation of bat has been obtained. The sympathetic nervous system (SNS) is currently seen as the main effector for brown fat function. Also, interplay between the thyroid axis and SNS plays an important role in BAT thermogenesis. Almost daily new pathways for the induction of BAT thermogenesis and 'browning' of white adipose tissue (WAT) are identified. Especially the activation of BAT via endogenous pathways has received strong scientific attention. Here we will discuss the relevance of several pathways in activating BAT and their implications for the treatment of obesity. In this review we will focus on the discussion of the most promising endocrine and paracrine pathways to stimulate BAT, by factors and pathways that naturally occur in the human body. PMID:24521443

  12. Transdifferentiation properties of adipocytes in the adipose organ.

    PubMed

    Cinti, Saverio

    2009-11-01

    Mammals have two types of adipocytes, white and brown, but their anatomy and physiology is different. White adipocytes store lipids, and brown adipocytes burn them to produce heat. Previous descriptions implied their localization in distinct sites, but we demonstrated that they are mixed in many depots, raising the concept of adipose organ. We explain the reason for their cohabitation with the hypothesis of reversible physiological transdifferentiation; they are able to convert one into each other. If needed, the brown component of the organ could increase at the expense of the white component and vice versa. This plasticity is important because the brown phenotype of the organ associates with resistance to obesity and related disorders. Another example of physiological transdifferetiation of adipocytes is offered by the mammary gland; the pregnancy hormonal stimuli seems to trigger a reversible transdifferentiation of adipocytes into milk-secreting epithelial glands. The obese adipose organ is infiltrated by macrophages inducing chronic inflamation that is widely considered as a causative factor for insulin resistance. We showed that the vast majority of macrophages infiltrating the obese organ are arranged around dead adipocytes, forming characteristic crown-like structures. We recently found that visceral fat is more infiltrated than the subcutaneous fat despite a smaller size of visceral adipocytes. This suggests a different susceptibility of visceral and subcutaneous adipocytes to death, raising the concept of smaller critical death size that could be important to explain the key role of visceral fat for the metabolic disorders associated with obesity. PMID:19458063

  13. Adipogenic Potential of Adipose Stem Cell Subpopulations

    PubMed Central

    Li, Han; Zimmerlin, Ludovic; Marra, Kacey G.; Donnenberg, Vera S.; Donnenberg, Albert D.; Rubin, J. Peter

    2014-01-01

    Background Adipose stem cells represent a heterogenous population. Understanding the functional characteristics of subpopulations will be useful in developing adipose stem cell–based therapies for regenerative medicine applications. The aim of this study was to define distinct populations within the stromal vascular fraction based on surface marker expression, and to evaluate the ability of each cell type to differentiate to mature adipocytes. Methods Subcutaneous whole adipose tissue was obtained by abdominoplasty from human patients. The stromal vascular fraction was separated and four cell populations were isolated by flow cytometry and studied. Candidate perivascular cells (pericytes) were defined as CD146+/CD31−/CD34−. Two CD31+ endothelial populations were detected and differentiated by CD34 expression. These were tentatively designated as mature endothelial (CD 31+/CD34−), and immature endothelial (CD31+/CD34+). Both endothelial populations were heterogeneous with respect to CD146. The CD31−/CD34+ fraction (preadipocyte candidate) was also CD90+ but lacked CD146 expression. Results Proliferation was greatest in the CD31−/CD34+ group and slowest in the CD146+ group. Expression of adipogenic genes, peroxisome proliferator-activated receptor-γ, and fatty acid binding protein 4, were significantly higher in the CD31−/CD34+ group compared with all other populations after in vitro adipogenic differentiation. This group also demonstrated the highest proportion of AdipoRed lipid staining. Conclusions The authors have isolated four distinct stromal populations from human adult adipose tissue and characterized their adipogenic potential. Of these four populations, the CD31/CD34+ group is the most prevalent and has the greatest potential for adipogenic differentiation. This cell type appears to hold the most promise for adipose tissue engineering. PMID:21572381

  14. Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice.

    PubMed

    Shin, Jin A; Jeong, Sae Im; Kim, Minsuk; Yoon, Joo Chun; Kim, Hee-Sun; Park, Eun-Mi

    2015-11-01

    Visceral adipose tissue is accumulated with aging. An increase in visceral fat accompanied by low-grade inflammation is associated with several adult-onset diseases. However, the effects of visceral adipose tissue inflammation on the normal and ischemic brains of aged are not clearly defined. To examine the role of visceral adipose tissue inflammation, we evaluated inflammatory cytokines in the serum, visceral adipose tissue, and brain as well as blood-brain barrier (BBB) permeability in aged male mice (20 months) underwent sham or visceral fat removal surgery compared with the young mice (2.5 months). Additionally, ischemic brain injury was compared in young and aged mice with sham and visceral fat removal surgery. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in examined organs were increased in aged mice compared with the young mice, and these levels were reduced in the mice with visceral fat removal. Increased BBB permeability with reduced expression of tight junction proteins in aged sham mice were also decreased in mice with visceral fat removal. After focal ischemic injury, aged mice with visceral fat removal showed a reduction in infarct volumes, BBB permeability, and levels of proinflammatory cytokines in the ischemic brain compared with sham mice, although the neurological outcomes were not significantly improved. In addition, further upregulated visceral adipose tissue inflammation in response to ischemic brain injury was attenuated in mice with visceral fat removal. These results suggest that visceral adipose tissue inflammation is associated with age-related changes in the brain and contributes to the ischemic brain damage in the aged mice. We suggest that visceral adiposity should be considered as a factor affecting brain health and ischemic brain damage in the aged population. PMID:26184082

  15. High-fructose diet leads to visceral adiposity and hypothalamic leptin resistance in male rats--do glucocorticoids play a role?

    PubMed

    Bursać, Biljana N; Vasiljević, Ana D; Nestorović, Nataša M; Veličković, Nataša A; Vojnović Milutinović, Danijela D; Matić, Gordana M; Djordjevic, Ana D

    2014-04-01

    Fructose overconsumption has been involved in the genesis and progression of the metabolic syndrome. Hypothalamus and adipose tissue, major organs for control of food intake and energy metabolism, play crucial roles in metabolic homeostasis. We hypothesized that glucocorticoid signaling mediates the effects of a fructose-enriched diet on visceral adiposity by acting on neuropeptide Y (NPY) in the hypothalamus and altering adipogenic transcription factors in the visceral adipose tissue. We analyzed the effects of 9-week consumption of 60% fructose solution on dyslipidemia, insulin and leptin sensitivity, and adipose tissue histology in male Wistar rats. Glucocorticoid signaling was assessed in both hypothalamus and visceral adipose tissue, while the levels of peroxisome-proliferator-activated receptor γ (PPARγ), sterol regulatory element-binding protein-1 (SREBP-1) and lipin-1, together with the levels of their target genes expression, were analyzed in the visceral adipose tissue. The results showed that long-term consumption of highly concentrated liquid fructose led to the development of visceral adiposity, elevated triglycerides and hypothalamic leptin resistance accompanied by stimulated glucocorticoid signaling and NPY mRNA elevation. Results from adipose tissue implied that fructose consumption shifted the balance between glucocorticoid receptor and adipogenic transcriptional factors (PPARγ, SREBP-1 and lipin-1) in favor of adipogenesis judged by distinctly separated populations of small adipocytes observed in this tissue. In summary, we propose that high-fructose-diet-induced alterations of glucocorticoid signaling in both hypothalamus and adipose tissue result in enhanced adipogenesis, possibly serving as an adaptation to energy excess in order to limit deposition of fat in nonadipose tissues. PMID:24565674

  16. Visceral adiposity as a target for the management of the metabolic syndrome.

    PubMed

    Kishida, Ken; Funahashi, Tohru; Matsuzawa, Yuji; Shimomura, Iichiro

    2012-05-01

    Atherosclerosis, the underlying cause of atherosclerotic cardiovascular disease (ACVD), develops due not only to a single cardiovascular risk factor but to a variety of complex factors. The concept of the multiple cardiometabolic risk factor clustering syndrome has been proposed as a highly atherogenic state, independent of hypercholesterolemia and smoking. Body fat distribution, especially visceral fat accumulation, is a major correlate of a cluster of diabetogenic, atherogenic, prothrombotic, and proinflammatory metabolic abnormalities referred to as the metabolic syndrome, with dysfunctional adipocytes and dysregulated production of adipocytokines (hypoadiponectinemia). Medical research has focused on visceral adiposity as an important component of the syndrome in Japanese subjects with a mild degree of adiposity compared with Western subjects. For the prevention of ACVD at least in Japan, it might be practical to stratify subjects with multiple risk factors for atherosclerotic cardiovascular disease based on visceral fat accumulation. Visceral fat reduction through health promotion programs using risk factor-oriented approaches may be effective in reducing ACVD events, as well as producing improvement in risks and hypoadiponectinemia. This review article discusses visceral adiposity as a key player in the syndrome. Visceral fat reduction with life-style modification is a potentially useful strategy in the prevention of ACVD in patients with the metabolic syndrome. PMID:21612331

  17. Psoriasis strikes back! Epicardial adipose tissue: another contributor to the higher cardiovascular risk in psoriasis.

    PubMed

    Raposo, Inês; Torres, Tiago

    2015-10-01

    For many years psoriasis was considered an inflammatory condition restricted to the skin. However, nowadays it is considered an immune-mediated, systemic inflammatory condition associated with numerous medical comorbidities, particularly cardiometabolic diseases, and overall cardiovascular mortality. Several studies have suggested that psoriasis may be an independent risk factor for atherosclerosis, indicating that psoriasis itself poses an intrinsic risk for cardiovascular disease, probably due to the disease's inflammatory burden. However, other causes beyond systemic inflammation and traditional cardiovascular risk factors may be implicated in cardiovascular disease in psoriasis. Recently, epicardial adipose tissue, an emerging cardiovascular risk factor, has been shown to be increased in psoriasis patients and to be associated with subclinical atherosclerosis, providing another possible link between psoriasis and atherosclerosis. The reason for the increase in epicardial adipose tissue in patients with psoriasis is unknown, but it is probably multifactorial, with genetic, immune-mediated and behavioral factors having a role. Thus, along with the increased prevalence of cardiometabolic risk factors and systemic inflammation in psoriasis, epicardial adipose tissue is probably another important contributor to the higher cardiovascular risk observed in psoriasis. PMID:26417656

  18. Classification of different degrees of adiposity in sedentary rats

    PubMed Central

    Leopoldo, A.S.; Lima-Leopoldo, A.P.; Nascimento, A.F.; Luvizotto, R.A.M.; Sugizaki, M.M.; Campos, D.H.S.; da Silva, D.C.T.; Padovani, C.R.; Cicogna, A.C.

    2016-01-01

    In experimental studies, several parameters, such as body weight, body mass index, adiposity index, and dual-energy X-ray absorptiometry, have commonly been used to demonstrate increased adiposity and investigate the mechanisms underlying obesity and sedentary lifestyles. However, these investigations have not classified the degree of adiposity nor defined adiposity categories for rats, such as normal, overweight, and obese. The aim of the study was to characterize the degree of adiposity in rats fed a high-fat diet using cluster analysis and to create adiposity intervals in an experimental model of obesity. Thirty-day-old male Wistar rats were fed a normal (n=41) or a high-fat (n=43) diet for 15 weeks. Obesity was defined based on the adiposity index; and the degree of adiposity was evaluated using cluster analysis. Cluster analysis allowed the rats to be classified into two groups (overweight and obese). The obese group displayed significantly higher total body fat and a higher adiposity index compared with those of the overweight group. No differences in systolic blood pressure or nonesterified fatty acid, glucose, total cholesterol, or triglyceride levels were observed between the obese and overweight groups. The adiposity index of the obese group was positively correlated with final body weight, total body fat, and leptin levels. Despite the classification of sedentary rats into overweight and obese groups, it was not possible to identify differences in the comorbidities between the two groups. PMID:26909787

  19. Methods in Enzymology (MIE): Methods of Adipose Tissue Biology-

    PubMed Central

    Berry, Ryan; Church, Christopher; Gericke, Martin T.; Jeffery, Elise; Colman, Laura; Rodeheffer, Matthew S.

    2014-01-01

    Adipose tissue is an endocrine organ that specializes in lipid metabolism and is distributed throughout the body in distinct white adipose tissue (WAT) and brown adipose tissue (BAT) depots. These tissues have opposing roles in lipid metabolism with WAT storing excessive caloric intake in the form of lipid, and BAT burning lipid through non-shivering thermogenesis. As accumulation of lipid in mature adipocytes of WAT leads to obesity and increased risk of comorbidity (Pi-Sunyer et al., 1998), detailed understanding of the mechanisms of BAT activation and WAT accumulation could produce therapeutic strategies for combatting metabolic pathologies. As morphological changes accompany alterations in adipose function, imaging of adipose tissue is one of the most important tools for understanding how adipose tissue mass fluctuates in response to various physiological contexts. Therefore, this chapter details several methods of processing and imaging adipose tissue, including brightfield colorimetric imaging of paraffin sectioned adipose tissue with a detailed protocol for automated adipocyte size analysis; fluorescent imaging of paraffin and frozen sectioned adipose tissue; and confocal fluorescent microscopy of whole mounted adipose tissue. We have also provided many example images showing results produced using each protocol, as well as commentary on the strengths and limitations of each approach. PMID:24480341

  20. Gene expression changes in adipose tissue with diet- and/or exercise-induced weight loss

    PubMed Central

    Campbell, Kristin L.; Foster-Schubert, Karen E.; Makar, Karen W.; Kratz, Mario; Hagman, Derek; Schur, Ellen A.; Habermann, Nina; Horton, Marc; Abbenhardt, Clare; Kuan, Ling-Yu; Xiao, Liren; Davison, Jerry; Morgan, Martin; Wang, Ching-Yun; Duggan, Catherine; McTiernan, Anne; Ulrich, Cornelia M.

    2013-01-01

    Adipose tissue plays a role in obesity-related cancers via increased production of inflammatory factors, steroid hormones, and altered adipokines. The impact of weight loss on adipose-tissue gene expression may provide insights into pathways linking obesity with cancer risk. We conducted an ancillary study within a randomized trial of diet, exercise, or combined diet+exercise vs. control among overweight/obese postmenopausal women. In 45 women, subcutaneous adipose-tissue biopsies were performed at baseline and after 6 months and changes in adipose-tissue gene expression were determined by microarray with an emphasis on pre-specified candidate pathways, as well as by unsupervised clustering of >37,000 transcripts (Illumina). Analyses were conducted first by randomization group, and then by degree of weight change at 6-months in all women combined. At 6 months, diet, exercise and diet+exercise participants lost a mean of 8.8 kg, 2.5 kg, and 7.9 kg (all p<0.05 vs. no change in controls). There was no significant change in candidate-gene expression by intervention group. In analysis by weight-change category, greater weight loss was associated a decrease in 17β-hydroxysteroid dehydrogenase-1 (HSD17B1, p-trend<0.01) and leptin (LEP, p-trend<0.01) expression, and marginally significant increased expression of estrogen receptor-1 (ESR1, p-trend=0.08) and insulin-like growth factor binding protein-3 (IGFBP3, p-trend=0.08). Unsupervised clustering revealed 83 transcripts with statistically significant changes. Multiple gene-expression changes correlated with changes in associated serum biomarkers. Weight-loss was associated with changes in adipose-tissue gene expression after 6 months, particularly in two pathways postulated to link obesity and cancer, i.e., steroid-hormone metabolism and IGF signaling. PMID:23341572

  1. Paracrine Mechanism of Angiogenesis in Adipose-derived Stem Cell Transplantation

    PubMed Central

    Suga, Hirotaka; Glotzbach, Jason P.; Sorkin, Michael; Longaker, Michael T.; Gurtner, Geoffrey C.

    2012-01-01

    Introduction Adipose-derived stem cells (ASCs) have shown potential for cell-based therapy in the field of plastic surgery. However, the fate of ASCs after transplantation and the mechanism(s) of their biologic capabilities remain unclear. Methods We isolated and cultured ASCs from transgenic mice that express both luciferase and green fluorescent protein (GFP) and injected the cells into the inguinal fat pads of wild-type mice. We tested four experimental groups: ischemic fat pads with/without ASCs and control fat pads with/without ASCs. Results Transplanted ASCs were tracked with bioluminescence imaging. The luminescence gradually decreased over 28 days, indicating cell death after transplantation. More ASCs were retained in ischemic fat pads on day 7 compared to control fat pads. On day 14, adipose tissue vascular density was higher in the ASC transplantation groups compared to those without ASCs. On day 28, there was decreased atrophy of adipose tissue in ASC-treated ischemic fat pads. Transplanted ASCs were detected as non-proliferating GFP+ cells, whereas native endothelial cells adjacent to the transplanted ASCs were proliferative. Protein analysis demonstrated higher expression of hepatocyte growth factor and vascular endothelial growth factor in the ASC transplantation groups, suggesting a paracrine mechanism, which was confirmed by in vitro experiments with conditioned media from ASCs. Conclusions Transplanted ASCs are preferentially retained in ischemic adipose tissue, although most of the cells eventually undergo cell death. They exert an angiogenic effect on adipose tissue mainly through a paracrine mechanism. Increased understanding of these effects will help develop ASCs as a tool for cell-based therapy. PMID:23636112

  2. Origins of metabolic complications in obesity: adipose tissue and free fatty acid trafficking

    PubMed Central

    Mittendorfer, Bettina

    2013-01-01

    Purpose of review Obesity is associated with a number of serious medical complications that are risk factors for cardiovascular disease (e.g., insulin resistance, dyslipidemia and liver fat accumulation). Alterations in fatty acid trafficking, both between tissues and within cells, represent a key feature in the pathophysiology of the metabolic complications in obese subjects. The ways by which fatty acid “re-routing” may affect metabolic function are summarized in this article. Recent findings Ectopic fat accumulation (i.e., fat accumulation in non-adipose tissues) appears to be a key feature distinguishing metabolically healthy from metabolically abnormal subjects. This observation has led to the believe that an imbalance in fatty acid trafficking away from adipose tissue towards non-adipose tissues is a primary cause for the development of metabolic alterations in obese subjects. More recently, however, it has become apparent that fatty acid trafficking with within non-adipose tissues cells (i.e., towards storage - in the form of triglycerides - and oxidation) may be equally important in determining risk for development of metabolic disease. Summary The pathophysiology of the metabolic alterations associated with obesity is probably multifactorial within a complex network of coordinated physiological responses. Only through the integration of multiple concepts will it be possible to further our understanding in this area and to help prevent the metabolic alterations associated with obesity. PMID:21849896

  3. Perivascular adipose tissue: An unique fat compartment relevant for the cardiometabolic syndrome.

    PubMed

    Siegel-Axel, D I; Häring, H U

    2016-03-01

    Type 2 diabetes and its major risk factor, obesity, are an increasing worldwide health problem. The exact mechanisms that link obesity with insulin resistance, type 2 diabetes, hypertension, cardiovascular complications and renal diseases, are still not clarified sufficiently. Adipose tissue in general is an active endocrine and paracrine organ that may influence the development of these disorders. Excessive body fat in general obesity may also cause quantitative and functional alterations of specific adipose tissue compartments. Beside visceral and subcutaneous fat depots which exert systemic effects by the release of adipokines, cytokines and hormones, there are also locally acting fat depots such as peri- and epicardial fat, perivascular fat, and renal sinus fat. Perivascular adipose tissue is in close contact with the adventitia of large, medium and small diameter arteries, possesses unique features differing from other fat depots and may act also independently of general obesity. An increasing number of studies are dealing with the "good" or "bad" characteristics and functions of normally sized and dramatically increased perivascular fat mass in lean or heavily obese individuals. This review describes the origin of perivascular adipose tissue, its different locations, the dual role of a physiological and unphysiological fat mass and its impact on diabetes, cardiovascular and renal diseases. Clinical studies, new imaging methods, as well as basic research in cell culture experiments in the last decade helped to elucidate the various aspects of the unique fat compartment. PMID:26995737

  4. HIV-1 Infection and the PPARγ-Dependent Control of Adipose Tissue Physiology

    PubMed Central

    Giralt, Marta; Domingo, Pere; Villarroya, Francesc

    2009-01-01

    PPARγ is a ligand-dependent master transcription factor controlling adipocyte differentiation as well as multiple biological processes taking place in other cells present in adipose tissue depots such as macrophages. Recent research indicates that HIV-1 infection-related events may alter adipose tissue biology through several mechanisms involving PPARγ, ranging from direct effects of HIV-1-encoded proteins on adipocytes to the promotion of a proinflammatory environment that interferes with PPARγ actions. This effect of HIV-1 on adipose tissue cells can occur even in the absence of direct infection of adipocytes, as soluble HIV-1-encoded proteins such as Vpr may enter cells and inhibit PPARγ action. Moreover, repression of PPARγ actions may relieve inhibitory pathways of HIV-1 gene transcription, thus enhancing HIV-1 effects in infected cells. HIV-1 infection-mediated interference of PPARγ-dependent pathways in adipocytes and other cells inside adipose depots such as macrophages is likely to create an altered local environment that, after antiretroviral treatment, leads to lipodystrophy in HIV-1-infected and HAART-treated patients. PMID:19081837

  5. Constitutive adipocyte mTORC1 activation enhances mitochondrial activity and reduces visceral adiposity in mice.

    PubMed

    Magdalon, Juliana; Chimin, Patricia; Belchior, Thiago; Neves, Rodrigo X; Vieira-Lara, Marcel A; Andrade, Maynara L; Farias, Talita S; Bolsoni-Lopes, Andressa; Paschoal, Vivian A; Yamashita, Alex S; Kowaltowski, Alicia J; Festuccia, William T

    2016-05-01

    Mechanistic target of rapamycin complex 1 (mTORC1) loss of function reduces adiposity whereas partial mTORC1 inhibition enhances fat deposition. Herein we evaluated how constitutive mTORC1 activation in adipocytes modulates adiposity in vivo. Mice with constitutive mTORC1 activation in adipocytes induced by tuberous sclerosis complex (Tsc)1 deletion and littermate controls were evaluated for body mass, energy expenditure, glucose and fatty acid metabolism, mitochondrial function, mRNA and protein contents. Adipocyte-specific Tsc1 deletion reduced visceral, but not subcutaneous, fat mass, as well as adipocyte number and diameter, phenotypes that were associated with increased lipolysis, UCP-1 content (browning) and mRNA levels of pro-browning transcriptional factors C/EBPβ and ERRα. Adipocyte Tsc1 deletion enhanced mitochondrial oxidative activity, fatty acid oxidation and the expression of PGC-1α and PPARα in both visceral and subcutaneous fat. In brown adipocytes, however, Tsc1 deletion did not affect UCP-1 content and basal respiration. Adipocyte Tsc1 deletion also reduced visceral adiposity and enhanced glucose tolerance, liver and muscle insulin signaling and adiponectin secretion in mice fed with purified low- or high-fat diet. In conclusion, adipocyte-specific Tsc1 deletion enhances mitochondrial activity, induces browning and reduces visceral adiposity in mice. PMID:26923434

  6. mRNA Expression of Ovine Angiopoietin-like Protein 4 Gene in Adipose Tissues.

    PubMed

    Zhang, Jing; Jing, Jiong-Jie; Jia, Xia-Li; Qiao, Li-Ying; Liu, Jian-Hua; Liang, Chen; Liu, Wen-Zhong

    2016-05-01

    Angiopoietin-like protein 4 (ANGPTL4) is involved in a variety of functions, including lipoprotein metabolism and angiogenesis. To reveal the role of ANGPTL4 in fat metabolism of sheep, ovine ANGPTL4 mRNA expression was analyzed in seven adipose tissues from two breeds with distinct tail types. Forty-eight animals with the gender ratio of 1:1 for both Guangling Large Tailed (GLT) and Small Tailed Han (STH) sheep were slaughtered at 2, 4, 6, 8, 10, and 12 months of age, respectively. Adipose tissues were collected from greater and lesser omental, subcutaneous, retroperitoneal, perirenal, mesenteric, and tail fats. Ontogenetic mRNA expression of ANGPTL4 in these adipose tissues from GTL and STH was studied by quantitative real time polymerase chain reaction. The results showed that ANGPTL4 mRNA expressed in all adipose tissues studied with the highest in subcutaneous and the lowest in mesenteric fat depots. Months of age, tissue and breed are the main factors that significantly influence the mRNA expression. These results provide new insights into ovine ANGPTL4 gene expression and clues for its function mechanism. PMID:26954186

  7. mRNA Expression of Ovine Angiopoietin-like Protein 4 Gene in Adipose Tissues

    PubMed Central

    Zhang, Jing; Jing, Jiong-Jie; Jia, Xia-Li; Qiao, Li-Ying; Liu, Jian-Hua; Liang, Chen; Liu, Wen-Zhong

    2016-01-01

    Angiopoietin-like protein 4 (ANGPTL4) is involved in a variety of functions, including lipoprotein metabolism and angiogenesis. To reveal the role of ANGPTL4 in fat metabolism of sheep, ovine ANGPTL4 mRNA expression was analyzed in seven adipose tissues from two breeds with distinct tail types. Forty-eight animals with the gender ratio of 1:1 for both Guangling Large Tailed (GLT) and Small Tailed Han (STH) sheep were slaughtered at 2, 4, 6, 8, 10, and 12 months of age, respectively. Adipose tissues were collected from greater and lesser omental, subcutaneous, retroperitoneal, perirenal, mesenteric, and tail fats. Ontogenetic mRNA expression of ANGPTL4 in these adipose tissues from GTL and STH was studied by quantitative real time polymerase chain reaction. The results showed that ANGPTL4 mRNA expressed in all adipose tissues studied with the highest in subcutaneous and the lowest in mesenteric fat depots. Months of age, tissue and breed are the main factors that significantly influence the mRNA expression. These results provide new insights into ovine ANGPTL4 gene expression and clues for its function mechanism. PMID:26954186

  8. Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion

    PubMed Central

    Senol-Cosar, Ozlem; Flach, Rachel J. Roth; DiStefano, Marina; Chawla, Anil; Nicoloro, Sarah; Straubhaar, Juerg; Hardy, Olga T.; Noh, Hye Lim; Kim, Jason K.; Wabitsch, Martin; Scherer, Philipp E.; Czech, Michael P.

    2016-01-01

    Proper regulation of energy storage in adipose tissue is crucial for maintaining insulin sensitivity and molecules contributing to this process have not been fully revealed. Here we show that type II transmembrane protein tenomodulin (TNMD) is upregulated in adipose tissue of insulin-resistant versus insulin-sensitive individuals, who were matched for body mass index (BMI). TNMD expression increases in human preadipocytes during differentiation, whereas silencing TNMD blocks adipogenesis. Upon high-fat diet feeding, transgenic mice overexpressing Tnmd develop increased epididymal white adipose tissue (eWAT) mass, and preadipocytes derived from Tnmd transgenic mice display greater proliferation, consistent with elevated adipogenesis. In Tnmd transgenic mice, lipogenic genes are upregulated in eWAT, as is Ucp1 in brown fat, while liver triglyceride accumulation is attenuated. Despite expanded eWAT, transgenic animals display improved systemic insulin sensitivity, decreased collagen deposition and inflammation in eWAT, and increased insulin stimulation of Akt phosphorylation. Our data suggest that TNMD acts as a protective factor in visceral adipose tissue to alleviate insulin resistance in obesity. PMID:26880110

  9. Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion.

    PubMed

    Senol-Cosar, Ozlem; Flach, Rachel J Roth; DiStefano, Marina; Chawla, Anil; Nicoloro, Sarah; Straubhaar, Juerg; Hardy, Olga T; Noh, Hye Lim; Kim, Jason K; Wabitsch, Martin; Scherer, Philipp E; Czech, Michael P

    2016-01-01

    Proper regulation of energy storage in adipose tissue is crucial for maintaining insulin sensitivity and molecules contributing to this process have not been fully revealed. Here we show that type II transmembrane protein tenomodulin (TNMD) is upregulated in adipose tissue of insulin-resistant versus insulin-sensitive individuals, who were matched for body mass index (BMI). TNMD expression increases in human preadipocytes during differentiation, whereas silencing TNMD blocks adipogenesis. Upon high-fat diet feeding, transgenic mice overexpressing Tnmd develop increased epididymal white adipose tissue (eWAT) mass, and preadipocytes derived from Tnmd transgenic mice display greater proliferation, consistent with elevated adipogenesis. In Tnmd transgenic mice, lipogenic genes are upregulated in eWAT, as is Ucp1 in brown fat, while liver triglyceride accumulation is attenuated. Despite expanded eWAT, transgenic animals display improved systemic insulin sensitivity, decreased collagen deposition and inflammation in eWAT, and increased insulin stimulation of Akt phosphorylation. Our data suggest that TNMD acts as a protective factor in visceral adipose tissue to alleviate insulin resistance in obesity. PMID:26880110

  10. Hdac3 Deficiency Increases Marrow Adiposity and Induces Lipid Storage and Glucocorticoid Metabolism in Osteochondroprogenitor Cells.

    PubMed

    McGee-Lawrence, Meghan E; Carpio, Lomeli R; Schulze, Ryan J; Pierce, Jessica L; McNiven, Mark A; Farr, Joshua N; Khosla, Sundeep; Oursler, Merry Jo; Westendorf, Jennifer J

    2016-01-01

    Bone loss and increased marrow adiposity are hallmarks of aging skeletons. Conditional deletion of histone deacetylase 3 (Hdac3) in murine osteochondroprogenitor cells causes osteopenia and increases marrow adiposity, even in young animals, but the origins of the increased adiposity are unclear. To explore this, bone marrow stromal cells (BMSCs) from Hdac3-depleted and control mice were cultured in osteogenic medium. Hdac3-deficient cultures accumulated lipid droplets in greater abundance than control cultures and expressed high levels of genes related to lipid storage (Fsp27/Cidec, Plin1) and glucocorticoid metabolism (Hsd11b1) despite normal levels of Pparγ2. Approximately 5% of the lipid containing cells in the wild-type cultures expressed the master osteoblast transcription factor Runx2, but this population was threefold greater in the Hdac3-depleted cultures. Adenoviral expression of Hdac3 restored normal gene expression, indicating that Hdac3 controls glucocorticoid activation and lipid storage within osteoblast lineage cells. HDAC3 expression was reduced in bone cells from postmenopausal as compared to young women, and in osteoblasts from aged as compared to younger mice. Moreover, phosphorylation of S424 in Hdac3, a posttranslational mark necessary for deacetylase activity, was suppressed in osseous cells from old mice. Thus, concurrent declines in transcription and phosphorylation combine to suppress Hdac3 activity in aging bone, and reduced Hdac3 activity in osteochondroprogenitor cells contributes to increased marrow adiposity associated with aging. © 2015 American Society for Bone and Mineral Research. PMID:26211746

  11. Hdac3 Deficiency Increases Marrow Adiposity and Induces Lipid Storage and Glucocorticoid Metabolism in Osteochondroprogenitor Cells

    PubMed Central

    McGee-Lawrence, Meghan E; Carpio, Lomeli R; Schulze, Ryan J; Pierce, Jessica L; McNiven, Mark A; Farr, Joshua N; Khosla, Sundeep; Oursler, Merry Jo; Westendorf, Jennifer J

    2016-01-01

    Bone loss and increased marrow adiposity are hallmarks of aging skeletons. Conditional deletion of histone deacetylase 3 (Hdac3) in murine osteochondroprogenitor cells causes osteopenia and increases marrow adiposity, even in young animals, but the origins of the increased adiposity are unclear. To explore this, bone marrow stromal cells (BMSCs) from Hdac3-depleted and control mice were cultured in osteogenic medium. Hdac3-deficient cultures accumulated lipid droplets in greater abundance than control cultures and expressed high levels of genes related to lipid storage (Fsp27/Cidec, Plin1) and glucocorticoid metabolism (Hsd11b1) despite normal levels of Pparγ2. Approximately 5% of the lipid containing cells in the wild-type cultures expressed the master osteoblast transcription factor Runx2, but this population was threefold greater in the Hdac3-depleted cultures. Adenoviral expression of Hdac3 restored normal gene expression, indicating that Hdac3 controls glucocorticoid activation and lipid storage within osteoblast lineage cells. HDAC3 expression was reduced in bone cells from postmenopausal as compared to young women, and in osteoblasts from aged as compared to younger mice. Moreover, phosphorylation of S424 in Hdac3, a posttranslational mark necessary for deacetylase activity, was suppressed in osseous cells from old mice. Thus, concurrent declines in transcription and phosphorylation combine to suppress Hdac3 activity in aging bone, and reduced Hdac3 activity in osteochondroprogenitor cells contributes to increased marrow adiposity associated with aging. PMID:26211746

  12. Longitudinal displacement of the carotid wall and cardiovascular risk factors: associations with aging, adiposity, blood pressure and periodontal disease independent of cross-sectional distensibility and intima-media thickness.

    PubMed

    Zahnd, Guillaume; Vray, Didier; Sérusclat, André; Alibay, Djhianne; Bartold, Mark; Brown, Alex; Durand, Marion; Jamieson, Lisa M; Kapellas, Kostas; Maple-Brown, Louise J; O'Dea, Kerin; Moulin, Philippe; Celermajer, David S; Skilton, Michael R

    2012-10-01

    The recently discovered longitudinal displacement of the common carotid arterial wall (i.e., the motion along the same plane as the blood flow), may be associated with incident cardiovascular events and represents a novel and relevant clinical information. At present, there have only been a few studies that have been conducted to investigate this longitudinal movement. We propose here a method to assess noninvasively the wall bi-dimensional (two-dimensional [2-D], cross-sectional and longitudinal) motion and present an original approach that combines a robust speckle tracking scheme to guidance by minimal path contours segmentation. Our method is well suited to large clinical population studies as it does not necessitate strong imaging prerequisites. The aim of this study is to describe the association between the longitudinal displacement of the carotid arterial wall and cardiovascular risk factors, among which periodontal disease. Some 126 Indigenous Australians with periodontal disease, an emerging risk factor, and 27 healthy age- and sex-matched non-indigenous control subjects had high-resolution ultrasound scans of the common carotid artery. Carotid intima-media thickness and arterial wall 2-D motion were then assessed using our method in ultrasound B-mode sequences. Carotid longitudinal displacement was markedly lower in the periodontal disease group than the control group (geometric mean (IQR): 0.15 mm (0.13) vs. 0.42 mm (0.30), respectively; p < 0.0001), independent of cardiovascular risk factors, cross-sectional distensibility and carotid intima-media thickness (p < 0.0001). A multivariable model indicated that the strongest correlates of carotid longitudinal displacement in adults with periodontal disease were age (β-coefficient = -.235, p = .03), waist (β-coefficient = -.357, p = 0.001), and pulse pressure (β-coefficient = .175, p = 0.07), independent of other cardiovascular risk factors, cross-sectional distensibility and pulse wave velocity. Carotid

  13. Relationships between Rodent White Adipose Fat Pads and Human White Adipose Fat Depots

    PubMed Central

    Chusyd, Daniella E.; Wang, Donghai; Huffman, Derek M.; Nagy, Tim R.

    2016-01-01

    The objective of this review was to compare and contrast the physiological and metabolic profiles of rodent white adipose fat pads with white adipose fat depots in humans. Human fat distribution and its metabolic consequences have received extensive attention, but much of what has been tested in translational research has relied heavily on rodents. Unfortunately, the validity of using rodent fat pads as a model of human adiposity has received less attention. There is a surprisingly lack of studies demonstrating an analogous relationship between rodent and human adiposity on obesity-related comorbidities. Therefore, we aimed to compare known similarities and disparities in terms of white adipose tissue (WAT) development and distribution, sexual dimorphism, weight loss, adipokine secretion, and aging. While the literature supports the notion that many similarities exist between rodents and humans, notable differences emerge related to fat deposition and function of WAT. Thus, further research is warranted to more carefully define the strengths and limitations of rodent WAT as a model for humans, with a particular emphasis on comparable fat depots, such as mesenteric fat. PMID:27148535

  14. Oestrogen signalling in white adipose progenitor cells inhibits differentiation into brown adipose and smooth muscle cells.

    PubMed

    Lapid, Kfir; Lim, Ajin; Clegg, Deborah J; Zeve, Daniel; Graff, Jonathan M

    2014-01-01

    Oestrogen, often via oestrogen receptor alpha (ERα) signalling, regulates metabolic physiology, highlighted by post-menopausal temperature dysregulation (hot flashes), glucose intolerance, increased appetite and reduced metabolic rate. Here we show that ERα signalling has a role in adipose lineage specification in mice. ERα regulates adipose progenitor identity and potency, promoting white adipogenic lineage commitment. White adipose progenitors lacking ERα reprogramme and enter into smooth muscle and brown adipogenic fates. Mechanistic studies highlight a TGFβ programme involved in progenitor reprogramming downstream of ERα signalling. The observed reprogramming has profound metabolic outcomes; both female and male adipose-lineage ERα-mutant mice are lean, have improved glucose sensitivity and are resistant to weight gain on a high-fat diet. Further, they are hypermetabolic, hyperphagic and hyperthermic, all consistent with a brown phenotype. Together, these findings indicate that ERα cell autonomously regulates adipose lineage commitment, brown fat and smooth muscle cell formation, and systemic metabolism, in a manner relevant to prevalent metabolic diseases. PMID:25330806

  15. Oestrogen signalling in white adipose progenitor cells inhibits differentiation into brown adipose and smooth muscle cells

    PubMed Central

    Clegg, Deborah J.; Zeve, Daniel; Graff, Jonathan M.

    2016-01-01

    Oestrogen, often via oestrogen receptor alpha (ERα) signalling, regulates metabolic physiology, highlighted by post-menopausal temperature dysregulation (hot flashes), glucose intolerance, increased appetite and reduced metabolic rate. Here we show that ERα signalling has a role in adipose lineage specification in mice. ERα regulates adipose progenitor identity and potency, promoting white adipogenic lineage commitment. White adipose progenitors lacking ERα reprogramme and enter into smooth muscle and brown adipogenic fates. Mechanistic studies highlight a TGFβ programme involved in progenitor reprogramming downstream of ERα signalling. The observed reprogramming has profound metabolic outcomes; both female and male adipose-lineage ERα-mutant mice are lean, have improved glucose sensitivity and are resistant to weight gain on a high-fat diet. Further, they are hypermetabolic, hyperphagic and hyperthermic, all consistent with a brown phenotype. Together, these findings indicate that ERα cell autonomously regulates adipose lineage commitment, brown fat and smooth muscle cell formation, and systemic metabolism, in a manner relevant to prevalent metabolic diseases. PMID:25330806

  16. [Cancer cachexia and white adipose tissue browning].

    PubMed

    Zhang, S T; Yang, H M

    2016-08-01

    Cancer cachexia occurs in a majority of advanced cancer patients. These patients with impaired physical function are unable to tolerance cancer treatment well and have a significantly reduced survival rate. Currently, there is no effective clinical treatment available for cancer cachexia, therefore, it is necessary to clarify the molecular mechanisms of cancer cachexia, moreover, new therapeutic targets for cancer cachexia treatment are urgently needed. Very recent studies suggest that, during cancer cachexia, white adipose tissue undergo a 'browning' process, resulting in increased lipid mobilization and energy expenditure, which may be necessary for the occurrence of cancer cachexia. In this article, we summarize the definition and characteristics of cancer cachexia and adipose tissue 'browning', then, we discuss the new study directions presented in latest research. PMID:27531474

  17. Marrow Adipose Tissue: Trimming the Fat.

    PubMed

    Scheller, Erica L; Cawthorn, William P; Burr, Aaron A; Horowitz, Mark C; MacDougald, Ormond A

    2016-06-01

    Marrow adipose tissue (MAT) is a unique fat depot, located in the skeleton, that has the potential to contribute to both local and systemic metabolic processes. In this review we highlight several recent conceptual developments pertaining to the origin and function of MAT adipocytes; consider the relationship of MAT to beige, brown, and white adipose depots; explore MAT expansion and turnover in humans and rodents; and discuss future directions for MAT research in the context of endocrine function and metabolic disease. MAT has the potential to exert both local and systemic effects on metabolic homeostasis, skeletal remodeling, hematopoiesis, and the development of bone metastases. The diversity of these functions highlights the breadth of the potential impact of MAT on health and disease. PMID:27094502

  18. Prohibitin in Adipose and Immune Functions.

    PubMed

    Ande, Sudharsana R; Nguyen, K Hoa; Nyomba, B L Grégoire; Mishra, Suresh

    2016-08-01

    Prohibitin (PHB) was discovered in a quest to find genes with antiproliferative functions. However, the attribute of PHB that is responsible for its antiproliferative function remains elusive. Meanwhile, recent studies have established PHB as a pleiotropic protein with roles in metabolism, immunity, and senescence. PHB has cell compartment-specific functions, acting as a scaffolding protein in mitochondria, an adaptor molecule in membrane signaling, and a transcriptional coregulator in the nucleus. However, it remains unclear whether different functions and locations of PHB are interrelated or independent from each other, or if PHB works in a tissue-specific manner. Here, we discuss new findings on the role of PHB in adipose-immune interaction and an unexpected role in sex differences in adipose and immune functions. PMID:27312736

  19. Hair regeneration using adipose-derived stem cells.

    PubMed

    Jin, Su-Eon; Sung, Jong-Hyuk

    2016-03-01

    Adipose-derived stem cells (ASCs) have been used in tissue repair and regeneration. Recently, it was reported that ASC transplantation promotes hair growth in animal experiments, and a conditioned medium of ASCs (ASC-CM) induced the proliferation of hair-compositing cells in vitro. However, ASCs and their conditioned medium have shown limited effectiveness in clinical settings. ASC preconditioning is one strategy that can be used to enhance the efficacy of ASCs and ASC-CM. Therefore, we highlighted the functional role of ASCs in hair cycle progression and also the advantages and disadvantages of their application in hair regeneration. In addition, we introduced novel ASC preconditioning methods to enhance hair regeneration using ASC stimulators, such as vitamin C, platelet-derived growth factor, hypoxia, and ultraviolet B. PMID:26536569

  20. Estimation of limb adiposity by bioimpedance spectroscopy in lymphoedema

    NASA Astrophysics Data System (ADS)

    Ward, L. C.; Essex, T.; Gaw, R.; Czerniec, S.; Dylke, E.; Abell, B.; Kilbreath, S. L.

    2013-04-01

    Lymphoedema is a chronic debilitating condition that may occur in approximately 25% of women treated for breast cancer. As the condition progresses, accumulated lymph fluid becomes fibrotic with infiltration of adipose tissue. Bioelectrical impedance spectroscopy is the preferred method for early detection of lymphoedema based on the measurement of impedance of extracellular fluid. The present study assessed whether these impedance measurements could also be used to estimate the adipose tissue content of the arm based on a model previously used to predict whole body composition. Estimates of arm adipose tissue in a cohort of women with lymphoedema were found to be highly correlated (r > 0.82) with measurements of adipose tissue obtained using the reference method of dual energy X-ray absorptiometry. Paired t-tests confirmed that there was no significant difference between the adipose tissue volumes obtained by the two methods. These results support the view that the method shows promise for the estimation of arm adiposity in lymphoedema.

  1. Increased GIP signaling induces adipose inflammation via a HIF-1α-dependent pathway and impairs insulin sensitivity in mice.

    PubMed

    Chen, Shu; Okahara, Fumiaki; Osaki, Noriko; Shimotoyodome, Akira

    2015-03-01

    Glucose-dependent insulinotropic polypeptide (GIP) is a gut hormone secreted in response to dietary fat and glucose. The blood GIP level is elevated in obesity and diabetes. GIP stimulates proinflammatory gene expression and impairs insulin sensitivity in cultured adipocytes. In obesity, hypoxia within adipose tissue can induce inflammation. The aims of this study were 1) to examine the proinflammatory effect of increased GIP signaling in adipose tissues in vivo and 2) to clarify the association between GIP and hypoxic signaling in adipose tissue inflammation. We administered GIP intraperitoneally to misty (lean) and db/db (obese) mice and examined adipose tissue inflammation and insulin sensitivity. We also examined the effects of GIP and hypoxia on expression of the GIP receptor (GIPR) gene and proinflammatory genes in 3T3-L1 adipocytes. GIP administration increased monocyte chemoattractant protein-1 (MCP-1) expression and macrophage infiltration into adipose tissue and increased blood glucose in db/db mice. GIPR and hypoxia-inducible factor-1α (HIF-1α) expressions were positively correlated in the adipose tissue in mice. GIPR expression increased dramatically in differentiated adipocytes. GIP treatment of adipocytes increased MCP-1 and interleukin-6 (IL-6) production. Adipocytes cultured either with RAW 264 macrophages or under hypoxia expressed more GIPR and HIF-1α, and GIP treatment increased gene expression of plasminogen activator inhibitor 1 and IL-6. HIF-1α gene silencing diminished both macrophage- and hypoxia-induced GIPR expression and GIP-induced IL-6 expression in adipocytes. Thus, increased GIP signaling plays a significant role in adipose tissue inflammation and thereby insulin resistance in obese mice, and HIF-1α may contribute to this process. PMID:25537494

  2. Poor sleep quality potentiates stress-induced cytokine reactivity in postmenopausal women with high visceral abdominal adiposity

    PubMed Central

    Prather, Aric A.; Puterman, Eli; Epel, Elissa S.; Dhabhar, Firdaus S.

    2013-01-01

    Sleep disturbance is a key behavioral risk factor for chronic medical conditions observed at high rates among overweight and obese individuals. Systemic inflammation, including that induced by stress, may serve as a common biological mechanism linking sleep, adiposity, and disease risk. To investigate these relationships, 48 postmenopausal women (mean age=61.8) completed a standardized laboratory stress task during which time blood was collected at baseline and 30+, 50+ and 90+ minutes after stressor onset to assess circulating levels of interleukin (IL)-6, IL-10, and IL-6/IL-10 ratio. Self-reported global sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) while adiposity was estimated by body mass index. Sagittal diameter was obtained in clinic to estimate visceral abdominal adiposity. Multi-level growth curve models revealed that poorer self-reported sleep quality was associated with greater stress-induced increases in IL-6/IL-10 ratio. In terms of adiposity, higher sagittal diameter, but not BMI, was associated with greater IL-6 reactivity (p’s<0.05). Further, associations between sleep quality and cytokine reactivity varied as a function of sagittal diameter. Among poor sleepers (1 SD above mean of PSQI score), stress-induced increases in IL-6 and IL-6/IL-10 ratio were significantly steeper in those with high visceral adiposity (1 SD above the mean of sagittal diameter) compared to those with low visceral adiposity (1 SD below the mean of sagittal diameter). In sum, poorer sleep quality and greater visceral adiposity, separately and especially in combination, are associated with greater stress-related increases in systemic inflammation. This research may help elucidate the complex link between sleep, obesity and inflammatory disease risk. PMID:24060585

  3. Epicardial adipose tissue and atrial fibrillation.

    PubMed

    Hatem, Stéphane N; Sanders, Prashanthan

    2014-05-01

    Atrial fibrillation (AF) is the most frequent cardiac arrhythmia in clinical practice. AF is often associated with profound functional and structural alterations of the atrial myocardium that compose its substrate. Recently, a relationship between the thickness of epicardial adipose tissue (EAT) and the incidence and severity of AF has been reported. Adipose tissue is a biologically active organ regulating the metabolism of neighbouring organs. It is also a major source of cytokines. In the heart, EAT is contiguous with the myocardium without fascia boundaries resulting in paracrine effects through the release of adipokines. Indeed, Activin A, which is produced in abundance by EAT during heart failure or diabetes, shows a marked fibrotic effect on the atrial myocardium. The infiltration of adipocytes into the atrial myocardium could also disorganize the depolarization wave front favouring micro re-entry circuits and local conduction block. Finally, EAT contains progenitor cells in abundance and therefore could be a source of myofibroblasts producing extracellular matrix. The study on the role played by adipose tissue in the pathogenesis of AF is just starting and is highly likely to uncover new biomarkers and therapeutic targets for AF. PMID:24648445

  4. Peptides from adipose tissue in mental disorders

    PubMed Central

    Wędrychowicz, Andrzej; Zając, Andrzej; Pilecki, Maciej; Kościelniak, Barbara; Tomasik, Przemysław J

    2014-01-01

    Adipose tissue is a dynamic endocrine organ that is essential to regulation of metabolism in humans. A new approach to mental disorders led to research on involvement of adipokines in the etiology of mental disorders and mood states and their impact on the health status of psychiatric patients, as well as the effects of treatment for mental health disorders on plasma levels of adipokines. There is evidence that disturbances in adipokine secretion are important in the pathogenesis, clinical presentation and outcome of mental disorders. Admittedly leptin and adiponectin are involved in pathophysiology of depression. A lot of disturbances in secretion and plasma levels of adipokines are observed in eating disorders with a significant impact on the symptoms and course of a disease. It is still a question whether observed dysregulation of adipokines secretion are primary or secondary. Moreover findings in this area are somewhat inconsistent, owing to differences in patient age, sex, socioeconomic status, smoking habits, level of physical activity, eating pathology, general health or medication. This was the rationale for our detailed investigation into the role of the endocrine functions of adipose tissue in mental disorders. It seems that we are continually at the beginning of understanding of the relation between adipose tissue and mental disorders. PMID:25540725

  5. Aquaglyceroporins: implications in adipose biology and obesity.

    PubMed

    Madeira, Ana; Moura, Teresa F; Soveral, Graça

    2015-02-01

    Aquaporins (AQPs) are membrane water/glycerol channels that are involved in many physiological processes. Their primary function is to facilitate the bidirectional transfer of water and small solutes across biological membranes in response to osmotic gradients. Aquaglyceroporins, a subset of the AQP family, are the only mammalian proteins with the ability to permeate glycerol. For a long time, AQP7 has been the only aquaglyceroporin associated with the adipose tissue, which is the major source of circulating glycerol in response to the energy demand. AQP7 dysregulation was positively correlated with obesity onset and adipocyte glycerol permeation through AQP7 was appointed as a novel regulator of adipocyte metabolism and whole-body fat mass. Recently, AQP3, AQP9, AQP10 and AQP11 were additionally identified in human adipocytes and proposed as additional glycerol pathways in these cells. This review contextualizes the importance of aquaglyceroporins in adipose tissue biology and highlights aquaglyceroporins' unique structural features which are relevant for the design of effective therapeutic compounds. We also refer to the latest advances in the identification and characterization of novel aquaporin isoforms in adipose tissue. Finally, considerations on the actual progress of aquaporin research and its implications on obesity therapy are suggested. PMID:25359234

  6. Increased Adipose Protein Carbonylation in Human Obesity

    PubMed Central

    Frohnert, Brigitte I.; Sinaiko, Alan R.; Serrot, Federico J.; Foncea, Rocio E.; Moran, Antoinette; Ikramuddin, Sayeed; Choudry, Umar; Bernlohr, David A.

    2015-01-01

    Insulin resistance is associated with obesity but mechanisms controlling this relationship in humans are not fully understood. Studies in animal models suggest a linkage between adipose reactive oxygen species (ROS) and insulin resistance. ROS oxidize cellular lipids to produce a variety of lipid hydroperoxides that in turn generate reactive lipid aldehydes that covalently modify cellular proteins in a process termed carbonylation. Mammalian cells defend against reactive lipid aldehydes and protein carbonylation by glutathionylation using glutathione-S-transferase A4 (GSTA4) or carbonyl reduction/oxidation via reductases and/or dehydrogenases. Insulin resistance in mice is linked to ROS production and increased level of protein carbonylation, mitochondrial dysfunction, decreased insulin-stimulated glucose transport, and altered adipokine secretion. To assess protein carbonylation and insulin resistance in humans, eight healthy participants underwent subcutaneous fat biopsy from the periumbilical region for protein analysis and frequently sampled intravenous glucose tolerance testing to measure insulin sensitivity. Soluble proteins from adipose tissue were analyzed using two-dimensional gel electrophoresis and the major carbonylated proteins identified as the adipocyte and epithelial fatty acid–binding proteins. The level of protein carbonylation was directly correlated with adiposity and serum free fatty acids (FFAs). These results suggest that in human obesity oxidative stress is linked to protein carbonylation and such events may contribute to the development of insulin resistance. PMID:21593812

  7. Adipose-derived stem cell differentiation as a basic tool for vascularized adipose tissue engineering.

    PubMed

    Volz, Ann-Cathrin; Huber, Birgit; Kluger, Petra J

    2016-01-01

    The development of in vitro adipose tissue constructs is highly desired to cope with the increased demand for substitutes to replace damaged soft tissue after high graded burns, deformities or tumor removal. To achieve clinically relevant dimensions, vascularization of soft tissue constructs becomes inevitable but still poses a challenge. Adipose-derived stem cells (ASCs) represent a promising cell source for the setup of vascularized fatty tissue constructs as they can be differentiated into adipocytes and endothelial cells in vitro and are thereby available in sufficiently high cell numbers. This review summarizes the currently known characteristics of ASCs and achievements in adipogenic and endothelial differentiation in vitro. Further, the interdependency of adipogenesis and angiogenesis based on the crosstalk of endothelial cells, stem cells and adipocytes is addressed at the molecular level. Finally, achievements and limitations of current co-culture conditions for the construction of vascularized adipose tissue are evaluated. PMID:26976717

  8. Chemerin gene expression is regulated by food restriction and food restriction-refeeding in rat adipose tissue but not in liver.

    PubMed

    Stelmanska, Ewa; Sledzinski, Tomasz; Turyn, Jacek; Presler, Malgorzata; Korczynska, Justyna; Swierczynski, Julian

    2013-02-10

    Chemerin is an adipokine that regulates adipocyte development and metabolism as well as inflammatory and immune function of some cells. Although chemerin may be linked to obesity and related diseases, little is known about the nutritional regulation of chemerin gene expression. We investigated the effect of prolonged food restriction, a common approach in treating obesity and related diseases, and prolonged food restriction-refeeding on chemerin gene expression in rat white adipose tissue and liver. The prolonged food restriction was accompanied by an approximately 2-fold decrease in chemerin mRNA level in rat white adipose tissue. Upon refeeding, an increase (approximately 8-fold as compared to rats maintained on restricted diet and 4-fold as compared to control) in chemerin mRNA level in white adipose tissue was found. Surprisingly, no effect of food restriction and food restriction-refeeding on chemerin mRNA level in the liver was found. Chemerin mRNA level in adipose tissue was positively correlated with serum insulin concentration. Moreover insulin increased significantly chemerin gene expression in primary rat adipocytes. The changes in chemerin mRNA level in adipose tissue and serum chemerin concentrations were associated with changes in serum leptin and free fatty acid concentrations. Collectively, the data presented here indicate that chemerin gene expression is regulated by nutritional status in rat adipose tissue but not in liver. It seems that insulin plays important role in stimulation of chemerin gene expression in adipose tissue. However, changes in serum leptin and free fatty acids concentrations after food restriction-refeeding suggest that the role of these factors in the regulation of chemerin gene expression in adipose tissue cannot be excluded. Lack of the effect of food restriction and food restriction-refeeding on liver chemerin gene expression suggests that adipose tissue is the dietary modifiable source of serum chemerin concentration. PMID

  9. Abalation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show ...

  10. Surgical injury induces local and distant adipose tissue browning.

    PubMed

    Longchamp, Alban; Tao, Ming; Bartelt, Alexander; Ding, Kui; Lynch, Lydia; Hine, Christopher; Corpataux, Jean-Marc; Kristal, Bruce S; Mitchell, James R; Ozaki, C Keith

    2016-01-01

    The adipose organ, which comprises brown, white and beige adipocytes, possesses remarkable plasticity in response to feeding and cold exposure. The development of beige adipocytes in white adipose tissue (WAT), a process called browning, represents a promising route to treat metabolic disorders. While surgical procedures constantly traumatize adipose tissue, its impact on adipocyte phenotype remains to be established. Herein, we studied the effect of trauma on adipocyte phenotype one day after sham, incision control, or surgical injury to the left inguinal adipose compartment. Caloric restriction was used to control for surgery-associated body temperature changes and weight loss. We characterized the trauma-induced cellular and molecular changes in subcutaneous, visceral, interscapular, and perivascular adipose tissue using histology, immunohistochemistry, gene expression, and flow cytometry analysis. After one day, surgical trauma stimulated adipose tissue browning at the site of injury and, importantly, in the contralateral inguinal depot. Browning was not present after incision only, and was largely independent of surgery-associated body temperature and weight loss. Adipose trauma rapidly recruited monocytes to the injured site and promoted alternatively activated macrophages. Conversely, PDGF receptor-positive beige progenitors were reduced. In this study, we identify adipose trauma as an unexpected driver of selected local and remote adipose tissue browning, holding important implications for the biologic response to surgical injury. PMID:27386152

  11. Growth Hormone Regulates the Balance Between Bone Formation and Bone Marrow Adiposity

    PubMed Central

    Menagh, Philip J; Turner, Russell T; Jump, Donald B; Wong, Carmen P; Lowry, Malcolm B; Yakar, Shoshana; Rosen, Clifford J; Iwaniec, Urszula T

    2010-01-01

    Cancellous bone decreases and bone marrow fat content increases with age. Osteoblasts and adipocytes are derived from a common precursor, and growth hormone (GH), a key hormone in integration of energy metabolism, regulates the differentiation and function of both cell lineages. Since an age-related decline in GH is associated with bone loss, we investigated the relationship between GH and bone marrow adiposity in hypophysectomized (HYPOX) rats and in mice with defects in GH signaling. HYPOX dramatically reduced body weight gain, bone growth and mineralizing perimeter, serum insulin-like growth factor 1 (IGF-1) levels, and mRNA levels for IGF-1 in liver and bone. Despite reduced body mass and adipocyte precursor pool size, HYPOX resulted in a dramatic increase in bone lipid levels, as reflected by increased bone marrow adiposity and bone triglyceride and cholesterol content. GH replacement normalized bone marrow adiposity and precursor pool size, as well as mineralizing perimeter in HYPOX rats. In contrast, 17β -estradiol, IGF-1, thyroxine, and cortisone were ineffective. Parathyroid hormone (PTH) reversed the inhibitory effects of HYPOX on mineralizing perimeter but had no effect on adiposity. Finally, bone marrow adiposity was increased in mice deficient in GH and IGF-1 but not in mice deficient in serum IGF-1. Taken together, our findings indicate that the reciprocal changes in bone and fat mass in GH signaling-deficient rodents are not directly coupled with one another. Rather, GH enhances adipocyte as well as osteoblast precursor pool size. However, GH increases osteoblast differentiation while suppressing bone marrow lipid accumulation. © 2010 American Society for Bone and Mineral Research PMID:19821771

  12. Diurnal variation of the human adipose transcriptome and the link to metabolic disease

    PubMed Central

    Loboda, Andrey; Kraft, Walter K; Fine, Bernard; Joseph, Jeffrey; Nebozhyn, Michael; Zhang, Chunsheng; He, Yudong; Yang, Xia; Wright, Christopher; Morris, Mark; Chalikonda, Ira; Ferguson, Mark; Emilsson, Valur; Leonardson, Amy; Lamb, John; Dai, Hongyue; Schadt, Eric; Greenberg, Howard E; Lum, Pek Yee

    2009-01-01

    Background Circadian (diurnal) rhythm is an integral part of the physiology of the body; specifically, sleep, feeding behavior and metabolism are tightly linked to the light-dark cycle dictated by earth's rotation. Methods The present study examines the effect of diurnal rhythm on gene expression in the subcutaneous adipose tissue of overweight to mildly obese, healthy individuals. In this well-controlled clinical study, adipose biopsies were taken in the morning, afternoon and evening from individuals in three study arms: treatment with the weight loss drug sibutramine/fasted, placebo/fed and placebo/fasted. Results The results indicated that diurnal rhythm was the most significant driver of gene expression variation in the human adipose tissue, with at least 25% of the genes having had significant changes in their expression levels during the course of the day. The mRNA expression levels of core clock genes at a specific time of day were consistent across multiple subjects on different days in all three arms, indicating robust diurnal regulation irrespective of potential confounding factors. The genes essential for energy metabolism and tissue physiology were part of the diurnal signature. We hypothesize that the diurnal transition of the expression of energy metabolism genes reflects the shift in the adipose tissue from an energy-expending state in the morning to an energy-storing state in the evening. Consistent with this hypothesis, the diurnal transition was delayed by fasting and treatment with sibutramine. Finally, an in silico comparison of the diurnal signature with data from the publicly-available Connectivity Map demonstrated a significant association with transcripts that were repressed by mTOR inhibitors, suggesting a possible link between mTOR signaling, diurnal gene expression and metabolic regulation. Conclusion Diurnal rhythm plays an important role in the physiology and regulation of energy metabolism in the adipose tissue and should be

  13. Development of automated quantification of visceral and subcutaneous adipose tissue volumes from abdominal CT scans

    NASA Astrophysics Data System (ADS)

    Mensink, Sanne D.; Spliethoff, Jarich W.; Belder, Ruben; Klaase, Joost M.; Bezooijen, Roland; Slump, Cornelis H.

    2011-03-01

    This contribution describes a novel algorithm for the automated quantification of visceral and subcutaneous adipose tissue volumes from abdominal CT scans of patients referred for colorectal resection. Visceral and subcutaneous adipose tissue volumes can accurately be measured with errors of 1.2 and 0.5%, respectively. Also the reproducibility of CT measurements is good; a disadvantage is the amount of radiation. In this study the diagnostic CT scans in the work - up of (colorectal) cancer were used. This implied no extra radiation. For the purpose of segmentation alone, a low dose protocol can be applied. Obesity is a well known risk factor for complications in and after surgery. Body Mass Index (BMI) is a widely accepted indicator of obesity, but it is not specific for risk assessment of colorectal surgery. We report on an automated method to quantify visceral and subcutaneous adipose tissue volumes as a basic step in a clinical research project concerning preoperative risk assessment. The outcomes are to be correlated with the surgery results. The hypothesis is that the balance between visceral and subcutaneous adipose tissue together with the presence of calcifications in the major bloodvessels, is a predictive indicator for post - operatieve complications such as anastomotic leak. We start with four different computer simulated humanoid abdominal volumes with tissue values in the appropriate Hounsfield range at different dose levels. With satisfactory numerical results for this test, we have applied the algorithm on over a 100 patient scans and have compared results with manual segmentations by an expert for a smaller pilot group. The results are within a 5% difference. Compared to other studies reported in the literature, reliable values are obtained for visceral and subcutaneous adipose tissue areas.

  14. Forkhead box A3 mediates glucocorticoid receptor function in adipose tissue.

    PubMed

    Ma, Xinran; Xu, Lingyan; Mueller, Elisabetta

    2016-03-22

    Glucocorticoids (GCs) are widely prescribed anti-inflammatory agents, but their chronic use leads to undesirable side effects such as excessive expansion of adipose tissue. We have recently shown that the forkhead box protein A3 (Foxa3) is a calorie-hoarding factor that regulates the selective enlargement of epididymal fat depots and suppresses energy expenditure in a nutritional- and age-dependent manner. It has been demonstrated that Foxa3 levels are elevated in adipose depots in response to high-fat diet regimens and during the aging process; however no studies to date have elucidated the mechanisms that control Foxa3's expression in fat. Given the established effects of GCs in increasing visceral adiposity and in reducing thermogenesis, we assessed the existence of a possible link between GCs and Foxa3. Computational prediction analysis combined with molecular studies revealed that Foxa3 is regulated by the glucocorticoid receptor (GR) in preadipocytes, adipocytes, and adipose tissues and is required to facilitate the binding of the GR to its target gene promoters in fat depots. Analysis of the long-term effects of dexamethasone treatment in mice revealed that Foxa3 ablation protects mice specifically against fat accretion but not against other pathological side effects elicited by this synthetic GC in tissues such as liver, muscle, and spleen. In conclusion our studies provide the first demonstration, to our knowledge, that Foxa3 is a direct target of GC action in adipose tissues and point to a role of Foxa3 as a mediator of the side effects induced in fat tissues by chronic treatment with synthetic steroids. PMID:26957608

  15. Spontaneous hypertension occurs with adipose tissue dysfunction in perilipin-1 null mice.

    PubMed

    Zou, Liangqiang; Wang, Weiyi; Liu, Shangxin; Zhao, Xiaojing; Lyv, Ying; Du, Congkuo; Su, Xueying; Geng, Bin; Xu, Guoheng

    2016-02-01

    Perilipin-1 (Plin1) coats lipid droplets exclusively in adipocytes and regulates two principle functions of adipose tissue, triglyceride storage and hydrolysis, which are disrupted upon Plin1 deficiency. In the present study, we investigated the alterations in systemic metabolites and hormones, vascular function and adipose function in spontaneous hypertensive mice lacking perilipin-1 (Plin1-/-). Plin1-/- mice developed spontaneous hypertension without obvious alterations in systemic metabolites and hormones. Plin1 expressed only in adipose cells but not in vascular cells, so its ablation would have no direct effect in situ on blood vessels. Instead, Plin1-/- mice showed dysfunctions of perivascular adipose tissue (PVAT), a fat depot that anatomically surrounds systemic arteries and has an anticontractile effect. In Plin1-/- mice, aortic and mesenteric PVAT were reduced in mass and adipocyte derived relaxing factor secretion, but increased in basal lipolysis, angiotensin II secretion, macrophage infiltration and oxidative stress. Such multiple culprits impaired the anticontractile effect of PVAT to promote vasoconstriction of aortic and mesenteric arteries of Plin1-/- mice. Furthermore, arterial vessels of Plin1-/- mice showed increasing angiotensin II receptor type 1, monocyte chemotactic protein-1 and interlukin-6 expression, structural damage of endothelial and smooth muscle cells, along with impaired endothelium-dependent relaxation. Hypertension in Plin1-/- mice might occur as a deleterious consequence of PVAT dysfunction. This finding provides the direct evidence that links dysfunctional PVAT to vascular dysfunction and hypertension, particularly in pathophysiological states. This hypertensive mouse model might mimic and explain the hypertension occurring in patients with adipose tissue dysfunction, particularly with Plin1 mutations. PMID:26521150

  16. Association between risk behaviors and adiposity indicators in adolescents from Southern Brazil: A methodological approach.

    PubMed

    Silva, Danilo Rp; Ohara, David; Tomeleri, Crisieli M; Batista, Mariana B; Fernandes, Rômulo A; Ronque, Enio Rv; Sardinha, Luís B; Cyrino, Edilson S

    2016-09-01

    The aim of this study was to analyze the association between risk behaviors and adiposity indicators in adolescents and to discuss some methodological aspects related to this relationship. We evaluated 1,321 adolescents (55.2% female) aged 10-16 years. Relative body fat (%fat) by measurement of triceps and subscapular skinfold thickness and waist circumference (WC) were used as total and central adiposity indicators, respectively. Physical inactivity, time spent in front of the TV, the consumption of soda and/or chocolate, alcohol, and tobacco smoking were analyzed as risk behaviors. Information about the socioeconomic status (categorized into three levels) and nutritional status of the mother (overweight or normal weight) were used as adjustment factors in the analyses of prevalence ratio (PR) of the outcomes and their associated 95% confidence intervals (95% CI). The chi-square test and Poisson regression were used for statistical analyses. Low associations were found between risk behaviors and adiposity indicators. Tobacco smoking was the most positively correlated behavior with adiposity in girls (%fat: PR = 1.61; 95% CI = 1.04-2.47; WC: PR = 1.90; 95% CI = 1.17-3.08) and in adolescents whose mothers were normal weight (%fat: PR = 2.31; 95% CI = 1.33-4.03; WC: PR: 2.31; CI: 1.19-4.46). Additionally, as an important methodological issue, we highlighted the assessment of risk behaviors in adolescents as crucial to producing more robust evidence on the subject. Of the investigated behaviors, we concluded that tobacco smoking is the behavior most associated with adiposity indicators. PMID:26311484

  17. Efficient Targeting of Adipose Tissue Macrophages in Obesity with Polysaccharide Nanocarriers.

    PubMed

    Ma, Liang; Liu, Tzu-Wen; Wallig, Matthew A; Dobrucki, Iwona T; Dobrucki, Lawrence W; Nelson, Erik R; Swanson, Kelly S; Smith, Andrew M

    2016-07-26

    Obesity leads to an increased risk for type 2 diabetes, heart disease, stroke, and cancer. The causal link between obesity and these pathologies has recently been identified as chronic low-grade systemic inflammation initiated by pro-inflammatory macrophages in visceral adipose tissue. Current medications based on small-molecule drugs yield significant off-target side effects with long-term use, and therefore there is a major need for targeted therapies. Here we report that nanoscale polysaccharides based on biocompatible glucose polymers can efficiently target adipose macrophages in obese mice. We synthesized a series of dextran conjugates with tunable size linked to contrast agents for positron emission tomography, fluorophores for optical microscopy, and anti-inflammatory drugs for therapeutic modulation of macrophage phenotype. We observed that larger conjugates efficiently distribute to visceral adipose tissue and selectively associate with macrophages after regional peritoneal administration. Up to 63% of the injected dose remained in visceral adipose tissue 24 h after administration, resulting in >2-fold higher local concentration compared to liver, the dominant site of uptake for most nanomedicines. Furthermore, a single-dose treatment of anti-inflammatory conjugates significantly reduced pro-inflammatory markers in adipose tissue of obese mice. Importantly, all components of these therapeutic agents are approved for clinical use. This work provides a promising nanomaterials-based delivery strategy to inhibit critical factors leading to obesity comorbidities and demonstrates a unique transport mechanism for drug delivery to visceral tissues. This approach may be further applied for high-efficiency targeting of other inflammatory diseases of visceral organs. PMID:27281538

  18. Effects of adipocyte lipoprotein lipase on de novo lipogenesis and white adipose tissue browning.

    PubMed

    Bartelt, Alexander; Weigelt, Clara; Cherradi, M Lisa; Niemeier, Andreas; Tödter, Klaus; Heeren, Joerg; Scheja, Ludger

    2013-05-01

    Efficient storage of dietary and endogenous fatty acids is a prerequisite for a healthy adipose tissue function. Lipoprotein lipase (LPL) is the master regulator of fatty acid uptake from triglyceride-rich lipoproteins. In addition to LPL-mediated fatty acid uptake, adipocytes are able to synthesize fatty acids from non-lipid precursor, a process called de novo lipogenesis (DNL). As the physiological relevance of fatty acid uptake versus DNL for brown and white adipocyte function remains unclear, we studied the role of adipocyte LPL using adipocyte-specific LPL knockout animals (aLKO). ALKO mice displayed a profound increase in DNL-fatty acids, especially palmitoleate and myristoleate in brown adipose tissue (BAT) and white adipose tissue (WAT) depots while essential dietary fatty acids were markedly decreased. Consequently, we found increased expression in adipose tissues of genes encoding DNL enzymes (Fasn, Scd1, and Elovl6) as well as the lipogenic transcription factor carbohydrate response element binding protein-β. In a high-fat diet (HFD) study aLKO mice were characterized by reduced adiposity and improved plasma insulin and adipokines. However, neither glucose tolerance nor inflammatory markers were ameliorated in aLKO mice compared to controls. No signs of increased BAT activation or WAT browning were detected in aLKO mice either on HFD or after 1 week of β3-adrenergic stimulation using CL316,243. We conclude that despite a profound increase in DNL-derived fatty acids, proposed to be metabolically favorable, aLKO mice are not protected from metabolic disease per se. In addition, induction of DNL alone is not sufficient to promote browning of WAT. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease. PMID:23228690

  19. Forkhead box A3 mediates glucocorticoid receptor function in adipose tissue

    PubMed Central

    Ma, Xinran; Xu, Lingyan; Mueller, Elisabetta

    2016-01-01

    Glucocorticoids (GCs) are widely prescribed anti-inflammatory agents, but their chronic use leads to undesirable side effects such as excessive expansion of adipose tissue. We have recently shown that the forkhead box protein A3 (Foxa3) is a calorie-hoarding factor that regulates the selective enlargement of epididymal fat depots and suppresses energy expenditure in a nutritional- and age-dependent manner. It has been demonstrated that Foxa3 levels are elevated in adipose depots in response to high-fat diet regimens and during the aging process; however no studies to date have elucidated the mechanisms that control Foxa3’s expression in fat. Given the established effects of GCs in increasing visceral adiposity and in reducing thermogenesis, we assessed the existence of a possible link between GCs and Foxa3. Computational prediction analysis combined with molecular studies revealed that Foxa3 is regulated by the glucocorticoid receptor (GR) in preadipocytes, adipocytes, and adipose tissues and is required to facilitate the binding of the GR to its target gene promoters in fat depots. Analysis of the long-term effects of dexamethasone treatment in mice revealed that Foxa3 ablation protects mice specifically against fat accretion but not against other pathological side effects elicited by this synthetic GC in tissues such as liver, muscle, and spleen. In conclusion our studies provide the first demonstration, to our knowledge, that Foxa3 is a direct target of GC action in adipose tissues and point to a role of Foxa3 as a mediator of the side effects induced in fat tissues by chronic treatment with synthetic steroids. PMID:26957608

  20. Shaping fat distribution: new insights into the molecular determinants of depot- and sex-dependent adipose biology

    PubMed Central

    Fried, Susan K.; Lee, Mi-Jeong; Karastergiou, Kalypso

    2015-01-01

    Objective To review recent advances in understanding the cellular mechanisms that regulate fat distribution. Methods We highlight new insights into depot- and sex-differences in the developmental origins and growth of adipose tissues as revealed by studies that use new methods, including lineage tracing. Results Variations in fat distribution during normal growth and in response to alterations in nutritional or hormonal status are driven by intrinsic differences in cells found in each adipose depot. Adipose progenitor cells and preadipocytes in different anatomical adipose tissues derive from cell lineages that determine their capacity for proliferation and differentiation. As a result, rates of hypertrophy and hyperplasia during growth and remodeling vary among depots. The capacities of adipose cells are also determined by variations in the expression of key transcription factors and non-coding RNAs. These developmental events are influenced by sex chromosomes, hormonal and nutrient signals that determine the adipogenic, metabolic, and functional properties of each depot. Conclusions These new developments in our understanding of fat distribution provide a sound basis for understanding the association of body shape and health in non-obese and obese men and women. PMID:26054752

  1. Comparison of Stromal/Stem Cells Isolated from Human Omental and Subcutaneous Adipose Depots: Differentiation and Immunophenotypic Characterization.

    PubMed

    Shah, Forum S; Li, Jie; Dietrich, Marilyn; Wu, Xiying; Hausmann, Mark G; LeBlanc, Karl A; Wade, James W; Gimble, Jeffrey M

    2014-01-01

    The emerging field of regenerative medicine has identified adipose tissue as an abundant source of stromal/stem cells for tissue engineering applications. Therefore, we have compared the differentiation and immunophenotypic features of adipose-derived stromal/stem cells (ASC) isolated from either omental or subcutaneous adipose depots. Human tissue samples were obtained from bariatric and plastic surgical practices at a university-affiliated teaching hospital and a private practice, respectively, with informed patient consent. Primary cultures of human ASC were isolated from adipose specimens within 24 h of surgery and culture expanded in vitro. The passaged ASC were induced to undergo adipogenic or osteogenic differentiation as assessed by histochemical methods or evaluated for surface antigen expression profiles by flow cytometry. ASC yields per unit weight of tissue were comparable between omental and subcutaneous depots. At passage 0, the immunophenotype of omental and subcutaneous ASC were not significantly different with the exception of CD105 and endoglin, a component of the transforming growth factor β receptor. The adipogenic differentiation of omental ASC was less robust than that of subcutaneous ASC based on in vitro histochemical and PCR assays. Although the yield and immunophenotype of ASC from omental adipose depots resembled that of subcutaneous ASC, omental ASC displayed significantly reduced adipogenic differentiation capacity following chemical induction. Further studies are necessary to evaluate and optimize the differentiation function of omental ASC in vitro and in vivo. Pending such analyses, omental ASC should not be used interchangeably with subcutaneous ASC for regenerative medical applications. PMID:26089088

  2. Human adipose tissue macrophages display activation of cancer-related pathways.

    PubMed

    Mayi, Thérèse Hérvée; Daoudi, Mehdi; Derudas, Bruno; Gross, Barbara; Bories, Gael; Wouters, Kristiaan; Brozek, John; Caiazzo, Robert; Raverdi, Violeta; Pigeyre, Marie; Allavena, Paola; Mantovani, Alberto; Pattou, François; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2012-06-22

    Obesity is associated with a significantly increased risk for cancer suggesting that adipose tissue dysfunctions might play a crucial role therein. Macrophages play important roles in adipose tissue as well as in cancers. Here, we studied whether human adipose tissue macrophages (ATM) modulate cancer cell function. Therefore, ATM were isolated and compared with monocyte-derived macrophages (MDM) from the same obese patients. ATM, but not MDM, were found to secrete factors inducing inflammation and lipid accumulation in human T47D and HT-29 cancer cells. Gene expression profile comparison of ATM and MDM revealed overexpression of functional clusters, such as cytokine-cytokine receptor interaction (especially CXC-chemokine) signaling as well as cancer-related pathways, in ATM. Comparison with gene expression profiles of human tumor-associated macrophages showed that ATM, but not MDM resemble tumor-associated macrophages. Indirect co-culture experiments demonstrated that factors secreted by preadipocytes, but not mature adipocytes, confer an ATM-like phenotype to MDM. Finally, the concentrations of ATM-secreted factors related to cancer are elevated in serum of obese subjects. In conclusion, ATM may thus modulate the cancer cell phenotype. PMID:22511784

  3. Pref-1 and adipokine expression in adipose tissues of GK and Zucker rats.

    PubMed

    Barbu, Andreea; Hedlund, Gabriella Persdotter; Lind, Jenny; Carlsson, Carina

    2009-02-27

    In view of the central role of preadipocyte factor-1, adiponectin and leptin in white adipose tissue function, the aim of the present study was to analyze the mRNA expression of these proteins and of the inflammatory markers interleukin-6 and tumor necrosis factor-alpha in visceral and subcutaneous fat pads of rats with different metabolic disorders. We demonstrated highly divergent expression of preadipocyte factor-1, upregulated expression of adiponectin, interleukin-6 and TNF-alpha mRNA in adipose tissues of the diabetic Goto Kakizaki rat compared to the obese Zucker rat. This was correlated to an increased number of large adipocytes and serum levels of adiponectin. Furthermore, in all four strains studied (as above plus Wistar Furth and Zucker Lean), significant heterogeneity was evident in adipokine expression within specific adipose tissues previously defined as belonging to the visceral or subcutaneous fat depots. These results suggest that significantly increased levels of inflammation and redistribution of adipocyte size are mechanisms contributing to the development of type 2 diabetes in the GK rat. PMID:19084046

  4. EATING OURSELVES TO DEATH AND DESPAIR: THE CONTRIBUTION OF ADIPOSITY AND INFLAMMATION TO DEPRESSION

    PubMed Central

    Shelton, Richard C.; Miller, Andrew H.

    2010-01-01

    Obesity and related metabolic conditions are of epidemic proportions in most of the world, affecting both adults and children. The accumulation of lipids in the body in the form of white adipose tissue in the abdomen is now known to activate innate immune mechanisms. Lipid accumulation causes adipocytes to directly secrete the cytokines interleukin (IL) 6 and tumor necrosis factor α (TNFα), but also monocyte chemoattractant protein 1 (MCP-1), which results in the accumulation of leukocytes in fat tissue. This sets up a chronic inflammatory state which is known to mediate the association between obesity and conditions such as cardiovascular disease, type 2 diabetes, and cancer. There is also a substantial literature linking inflammation with risk for depression. This includes the observations that: 1. People with inflammatory diseases such as multiple sclerosis, cardiovascular disease, and psoriasis have elevated rates of depression; 2. Many people administered inflammatory cytokines such as interferon α develop depression that is indistinguishable from depression in non-medically ill populations; 3. A significant proportion of depressed persons show upregulation of inflammatory factors such as IL-6, C-reactive protein, and TNFα; and 4) Inflammatory cytokines can interact with virtually every pathophysiologic domain relevant to depression, including neurotransmitter metabolism, neuroendocrine function, and synaptic plasticity. While many factors may contribute to the association between inflammatory mediators and depression, we hypothesize that increased adiposity may be one causal pathway. Mediational analysis suggests a bi-directional association between adiposity and depression, with inflammation possibly playing an intermediary role. PMID:20417247

  5. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    SciTech Connect

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo; Horiuchi, Masatsugu

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  6. Relationship between adiposity and cognitive performance in 9-10 year old children in south India

    PubMed Central

    Veena, Sargoor R; Hegde, Bhavya G; Ramachandraiah, Somashekara; Krishnaveni, Ghattu V; Fall, Caroline HD; Srinivasan, Krishnamachari

    2014-01-01

    Background Studies in high-income countries have shown inverse associations between adiposity and cognitive performance in children. We aimed to examine the relationship between adiposity and cognitive function in Indian children. Methods At a mean age of 9.7 years, height, weight, triceps and subscapular skinfold thicknesses and waist circumference were recorded for 540 children born in Mysore, India. Body fat percentage was estimated using bio-impedance. Cognitive function was assessed using 3 core tests from the Kaufman Assessment Battery for children-II edition and additional tests measuring learning, short-term memory, reasoning, verbal and visuo-spatial abilities, attention and concentration. Data on the parents’ socio-economic status, education, occupation and income were collected. Results According to WHO definitions, 3.5% of the children were overweight/obese (BMI>+1SD) and 27% underweight (BMI<−2SD). Compared to normal children, overweight/obese children scored higher in tests of learning/long-term retrieval, reasoning and verbal ability (unadjusted p<0.05 for all). All the cognitive test scores increased with increase in BMI and skinfold thickness, (unadjusted β=0.10 to 0.20 SD; p<0.05 for all). The effects, though attenuated, remained mainly significant after adjustment for age, sex and socio-economic factors. Similar associations were found for waist circumference and percentage body fat. Conclusions In this Indian population, in which obesity was uncommon, greater adiposity predicted higher cognitive ability. These associations were only partly explained by socio-economic factors. Our findings suggest that better nutrition is associated with better cognitive function, and that inverse associations between adiposity and cognitive function in high-income countries reflect confounding by socio-economic factors. PMID:24146284

  7. Adipose-Derived Stromal Cells Promote Allograft Tolerance Induction

    PubMed Central

    Anam, Khairul; Lazdun, Yelena; Gimble, Jeffrey M.; Elster, Eric A.

    2014-01-01

    Amputations and unsalvageable injuries with devastating tissue loss are common in the combat wounded. Reconstructive transplantation in the civilian setting using vascular composite allotransplants (VCAs) with multiple tissues (skin, muscle, nerve, bone) combined with long-term multidrug immunosuppression has been encouraging. However, skin rejection remains a critical complication. Adipose-derived stromal/stem cells (ASCs) are easily obtained from normal individuals in high numbers, precluding ex vivo expansion. The reparative function and paracrine immunomodulatory capacity of ASCs has gained considerable attention. The present study investigated whether ASCs facilitate long-term skin allograft survival. ASCs were isolated from fresh human subcutaneous adipose lipoaspirate. Full-thickness skin grafts from BALB/c mice were transplanted onto the dorsal flanks of C57BL/6 mice treated with five doses of anti-CD4/CD8 monoclonal antibodies (10 mg/kg) on days 0, +2, +5, +7, and +14 relative to skin grafting. A single nonmyeloablative low dose of busulfan (5 mg/kg) was given on day +5. Seven days after skin transplantation, ASCs (3 × 106) were infused i.v. with or without donor bone marrow cells (BMCs; 5 × 105). ASC+BMC coinfusion with minimal conditioning led to stable lymphoid and myeloid macrochimerism, deletion of alloreactive T cells, expansion of regulatory T cells, and long-term allograft survival (>200 days). ASCs constitutively produced high levels of anti-inflammatory/immunoregulatory factors such as prostaglandin E2, indoleamine 2,3-dioxygenase, APO-1/Fas (CD95), and programmed cell death-1 ligand-2. These findings serve as a foundation for developing a translational advanced VCA protocol, embodying both ASCs and low-dose donor BMCs, in nonhuman primates, with the goal of enhancing functional outcomes and eliminating the complications associated with long-term immunosuppression. PMID:25411475

  8. Ovariectomy in mature mice does not increase food intake, but increases adiposity and adipose tissue inflammation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Menopause, characterized by reduced estrogen (E2), is associated with increased adiposity and metabolic pathology. Molecular mechanisms underlying this association between low E2 status and metabolic disease are not fully elucidated. When mice are fed a high fat diet (HFD) to induce obesity and diab...

  9. Differential responses of white adipose tissue and brown adipose tissue to caloric restriction in rats.

    PubMed

    Okita, Naoyuki; Hayashida, Yusuke; Kojima, Yumiko; Fukushima, Mayumi; Yuguchi, Keiko; Mikami, Kentaro; Yamauchi, Akiko; Watanabe, Kyoko; Noguchi, Mituru; Nakamura, Megumi; Toda, Toshifusa; Higami, Yoshikazu

    2012-05-01

    Caloric restriction (CR) slows the aging process and extends longevity, but the exact underlying mechanisms remain debatable. It has recently been suggested that the beneficial action of CR may be mediated in part by adipose tissue remodeling. Mammals have two types of adipose tissue: white adipose tissue (WAT) and brown adipose tissue (BAT). In this study, proteome analysis using two-dimensional gel electrophoresis combined with MALDI-TOF MS, and subsequent analyses were performed on both WAT and BAT from 9-month-old male rats fed ad libitum or subjected to CR for 6 months. Our findings suggest that CR activates mitochondrial energy metabolism and fatty acid biosynthesis in WAT. It is likely that in CR animals WAT functions as an energy transducer from glucose to energy-dense lipid. In contrast, in BAT CR either had no effect on, or down-regulated, the mitochondrial electron transport chain, but enhanced fatty acid biosynthesis. This suggests that in CR animals BAT may change its function from an energy consuming system to an energy reservoir system. Based on our findings, we conclude that WAT and BAT cooperate to use energy effectively via a differential response of mitochondrial function to CR. PMID:22414572

  10. Adipose Tissue Residing Progenitors (Adipocyte Lineage Progenitors and Adipose Derived Stem Cells (ADSC)

    PubMed Central

    Berry, Ryan; Rodeheffer, Matthew S.; Rosen, Clifford J.; Horowitz, Mark C.

    2015-01-01

    The formation of brown, white and beige adipocytes have been a subject of intense scientific interest in recent years due to the growing obesity epidemic in the United States and around the world. This interest has led to the identification and characterization of specific tissue resident progenitor cells that give rise to each adipocyte population in vivo. However, much still remains to be discovered about each progenitor population in terms of their “niche” within each tissue and how they are regulated at the cellular and molecular level during healthy and diseased states. While our knowledge of brown, white and beige adipose tissue is rapidly increasing, little is still known about marrow adipose tissue and its progenitor despite recent studies demonstrating possible roles for marrow adipose tissue in regulating the hematopoietic space and systemic metabolism at large. This chapter focuses on our current knowledge of brown, white, beige and marrow adipose tissue with a specific focus on the formation of each tissue from tissue resident progenitor cells. PMID:26526875

  11. Altered autophagy in human adipose tissues in obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Context: Autophagy is a housekeeping mechanism, involved in metabolic regulation and stress response, shown recently to regulate lipid droplets biogenesis/breakdown and adipose tissue phenotype. Objective: We hypothesized that in human obesity autophagy may be altered in adipose tissue in a fat d...

  12. Adipose tissue and the reproductive axis: biological aspects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The discovery of leptin clearly demonstrated a relationship between body fat and the neuroendocrine axis since leptin influences appetite and the reproductive axis. Since adipose tissue is a primary source of leptin, adipose tissue is no longer considered as simply a depot to store fat. Recent find...

  13. Ontogeny of adipokine expression in neonatal pig adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined ontogeny of development for a range of adipokines in neonatal adipose tissue. Pigs were selected across six litters for sampling at d1, d4, d7 or d21 of age. Subcutaneous (SQ) and perirenal (PR) adipose tissue were collected and extracted for total RNA. SQ was also collected f...

  14. Albumin induced cytokine expression in porcine adipose tissue explants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Albumin has historically been included in medium designed for use with adipose tissue when evaluating metabolism, gene expression or protein secretion. However, recent studies with mouse adipocytes (Ruan et al., J. Biol. Chem. 278:47585-47593, 2003) and human adipose tissue (Schlesinger et al., Ame...

  15. Identification of progesterone receptor in human subcutaneous adipose tissue.

    PubMed

    O'Brien, S N; Welter, B H; Mantzke, K A; Price, T M

    1998-02-01

    Sex steroids are postulated to play a role in adipose tissue regulation and distribution, because the amount and location of adipose tissue changes during puberty and menopause. Because of the nature of adipose tissue, receptors for the female sex steroids have been difficult to demonstrate. To date, estrogen receptor messenger RNA and protein have been identified in human subcutaneous adipose tissue, but the presence of progesterone receptor (PR) has not been reported. In this study, we demonstrate PR message by Northern blot analysis in RNA isolated from the abdominal subcutaneous adipose tissue of premenopausal women. These preliminary studies revealed that PR messenger RNA levels are higher in the stromal-vascular fraction as opposed to the adipocyte fraction. Western blot analysis demonstrates both PR protein isoforms (human PR-A and human PR-B) in human subcutaneous adipose tissue. Using an enzyme-linked immunosorbent assay, total PR could be quantitated. These studies substantiate that sex steroid receptors are present in human adipose tissue, thereby providing a direct route for regulation of adipose tissue by female sex steroids. PMID:9467566

  16. Cell supermarket: Adipose tissue as a source of stem cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  17. Adipose tissue as a medium for epidemiologic exposure assessment.

    PubMed Central

    Kohlmeier, L; Kohlmeier, M

    1995-01-01

    In the United States, adipose tissue is rarely used as a medium for assessment of prior exposures in epidemiologic studies. Adipose tissue aspirations are in general less invasive and carry less risk than phlebotomy. Tissue samples can be analyzed for a wide number of epidemiologically important exposures. Beyond reflecting long-term energy balance, this tissue offers a relatively stable depot of triglyceride and fat-soluble substances, such as fat-soluble vitamins, and pesticides. As a tissue it represents the greatest reservoir of carotenoids in the body. Halogenated hydrocarbons may be measured in concentrations of hundreds-fold greater than those in blood of the same individuals. The composition of adipose tissue also reflects the long-term dietary intakes of a number of essential fatty acids. The turnover times of all of these substances in adipose tissue remain under-researched. Sampling and storage of adipose tissue, homogeneity of sampling sites, turnover times, and the effects of diet, age, gender, race, hormones, and disease on adipose tissue composition are discussed in this review of current knowledge about adipose tissue stability. Experience in the use of adipose tissue sampling in epidemiologic studies in various countries has shown that it is simple to conduct, requires little training, carries little risk, and does not result in excessive participant refusal. PMID:7635122

  18. Adiposity and sex hormones in girls.

    PubMed

    Baer, Heather J; Colditz, Graham A; Willett, Walter C; Dorgan, Joanne F

    2007-09-01

    Greater body fatness during childhood is associated with reduced risk of premenopausal breast cancer, but few studies have addressed the relation of adiposity with sex hormones in girls. We prospectively examined associations between adiposity and circulating levels of sex hormones and sex hormone-binding globulin (SHBG) among 286 girls in the Dietary Intervention Study in Children. Participants were 8 to 10 years old at baseline and were followed for an average of 7 years. Anthropometric measurements were taken at baseline and at subsequent annual visits, and blood samples were collected every 2 years. Concentrations of dehydroepiandrosterone sulfate (DHEAS) during follow-up were higher among girls with greater body mass index (BMI) at baseline. The mean for the lowest BMI quartile was 63.0 microg/dL compared with 78.8 microg/dL for the highest quartile, and each kg/m(2) increment in baseline BMI was associated with a 4.3% increase (95% confidence interval, 1.6-7.0%) in DHEAS levels during follow-up (P(trend) = 0.002). Concentrations of SHBG during follow-up were lower among girls with greater BMI at baseline. The mean for the lowest BMI quartile was 94.8 nmol compared with 57.5 nmol for the highest quartile, and each kg/m(2) increment in baseline BMI was associated with an 8.8% decrease (95% confidence interval, 7.0-10.6%) in SHBG levels during follow-up (P(trend) < 0.0001). Estrogen and progesterone concentrations were similar across BMI quartiles. These findings suggest that adiposity may alter DHEAS and SHBG levels in girls. Whether and how these differences affect breast development and carcinogenesis requires further research. PMID:17855709

  19. The Infrapatellar Adipose Body: A Histotopographic Study.

    PubMed

    Macchi, Veronica; Porzionato, Andrea; Sarasin, Gloria; Petrelli, Lucia; Guidolin, Diego; Rossato, Marco; Fontanella, Chiara Giulia; Natali, Arturo; De Caro, Raffaele

    2016-01-01

    The infrapatellar fat pad (IFP) can be regarded as a peculiar form of fibro-adipose tissue localized close to the synovial membrane and articular cartilage. The aims of the present study were to analyze the microscopic anatomy of the IFP through histological and ultrastructural methods, comparing it with that of the subcutaneous tissue of the abdomen and of the knee. Ten specimens of IFP were sampled from bodies of the Donation Program of the University of Padua without a history of osteoarthritis. The IFP consisted of white adipose tissue, of lobular type, with lobules delimited by thin connective septa. The IFP lobule areas were smaller (p < 0.05) and the interlobular septa were thicker (p > 0.05) than those of subcutaneous tissues of the abdomen, whereas the IFP lobule areas were larger (p < 0.05) and the interlobular septa were thinner than those of the subcutaneous tissue of the knee (p < 0.05). The IFP adipocytes present a mean area of 3,708 ± 976 µm2 with a large intercellular space, whereas the mean area of the abdominal tissues was greater (6,082 ± 628 µm2; p < 0.05). At scanning electron microscopy the IFP adipocytes were covered by thick fibrillary sheaths, creating a basket around the adipocytes. The structural characteristics of the IFP (lobular aspect of the adipose tissue, thickness of the septa with scarce elastic fibers) could act as a plastic portion aimed at the absorption of pressure variation during knee articular activity. The extensive distribution of nerves suggests a possible role of the IFP as a mechanoreceptor, corresponding to a tridimensional connective mesh working in the proprioceptive regulation of the activity of the knee joint. PMID:26796341

  20. Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity

    PubMed Central

    Verdeguer, Francisco; Soustek, Meghan S.; Hatting, Maximilian; Blättler, Sharon M.; McDonald, Devin; Barrow, Joeva J.

    2015-01-01

    Mitochondrial oxidative and thermogenic functions in brown and beige adipose tissues modulate rates of energy expenditure. It is unclear, however, how beige or white adipose tissue contributes to brown fat thermogenic function or compensates for partial deficiencies in this tissue and protects against obesity. Here, we show that the transcription factor Yin Yang 1 (YY1) in brown adipose tissue activates the canonical thermogenic and uncoupling gene expression program. In contrast, YY1 represses a series of secreted proteins, including fibroblast growth factor 21 (FGF21), bone morphogenetic protein 8b (BMP8b), growth differentiation factor 15 (GDF15), angiopoietin-like 6 (Angptl6), neuromedin B, and nesfatin, linked to energy expenditure. Despite substantial decreases in mitochondrial thermogenic proteins in brown fat, mice lacking YY1 in this tissue are strongly protected against diet-induced obesity and exhibit increased energy expenditure and oxygen consumption in beige and white fat depots. The increased expression of secreted proteins correlates with elevation of energy expenditure and promotion of beige and white fat activation. These results indicate that YY1 in brown adipose tissue controls antagonistic gene expression programs associated with energy balance and maintenance of body weight. PMID:26503783

  1. Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity.

    PubMed

    Verdeguer, Francisco; Soustek, Meghan S; Hatting, Maximilian; Blättler, Sharon M; McDonald, Devin; Barrow, Joeva J; Puigserver, Pere

    2016-01-01

    Mitochondrial oxidative and thermogenic functions in brown and beige adipose tissues modulate rates of energy expenditure. It is unclear, however, how beige or white adipose tissue contributes to brown fat thermogenic function or compensates for partial deficiencies in this tissue and protects against obesity. Here, we show that the transcription factor Yin Yang 1 (YY1) in brown adipose tissue activates the canonical thermogenic and uncoupling gene expression program. In contrast, YY1 represses a series of secreted proteins, including fibroblast growth factor 21 (FGF21), bone morphogenetic protein 8b (BMP8b), growth differentiation factor 15 (GDF15), angiopoietin-like 6 (Angptl6), neuromedin B, and nesfatin, linked to energy expenditure. Despite substantial decreases in mitochondrial thermogenic proteins in brown fat, mice lacking YY1 in this tissue are strongly protected against diet-induced obesity and exhibit increased energy expenditure and oxygen consumption in beige and white fat depots. The increased expression of secreted proteins correlates with elevation of energy expenditure and promotion of beige and white fat activation. These results indicate that YY1 in brown adipose tissue controls antagonistic gene expression programs associated with energy balance and maintenance of body weight. PMID:26503783

  2. Analysis of gene networks in white adipose tissue development reveals a role for ETS2 in adipogenesis.

    PubMed

    Birsoy, Kivanç; Berry, Ryan; Wang, Tim; Ceyhan, Ozge; Tavazoie, Saeed; Friedman, Jeffrey M; Rodeheffer, Matthew S

    2011-11-01

    Obesity is characterized by an expansion of white adipose tissue mass that results from an increase in the size and the number of adipocytes. However, the mechanisms responsible for the formation of adipocytes during development and the molecular mechanisms regulating their increase and maintenance in adulthood are poorly understood. Here, we report the use of leptin-luciferase BAC transgenic mice to track white adipose tissue (WAT) development and guide the isolation and molecular characterization of adipocytes during development using DNA microarrays. These data reveal distinct transcriptional programs that are regulated during murine WAT development in vivo. By using a de novo cis-regulatory motif discovery tool (FIRE), we identify two early gene clusters whose promoters show significant enrichment for NRF2/ETS transcription factor binding sites. We further demonstrate that Ets transcription factors, but not Nrf2, are regulated during early adipogenesis and that Ets2 is essential for the normal progression of the adipocyte differentiation program in vitro. These data identify ETS2 as a functionally important transcription factor in adipogenesis and its possible role in regulating adipose tissue mass in adults can now be tested. Our approach also provides the basis for elucidating the function of other gene networks during WAT development in vivo. Finally these data confirm that although gene expression during adipogenesis in vitro recapitulates many of the patterns of gene expression in vivo, there are additional developmental transitions in pre and post-natal adipose tissue that are not evident in cell culture systems. PMID:21989915

  3. Breastfeeding and Subsequent Maternal Visceral Adiposity

    PubMed Central

    McClure, Candace K.; Schwarz, Eleanor B.; Conroy, Molly B.; Tepper, Ping G.; Janssen, Imke; Sutton-Tyrrell, Kim C.

    2013-01-01

    Women gain visceral fat during pregnancy. Studies examining the impact of breastfeeding on maternal body composition are inconclusive. We examined the extent to which breastfeeding was associated with visceral adiposity in a sample of US women. This was a cross-sectional analysis of 351 women aged 45–58 years, who were free of clinical cardiovascular disease and had not used oral contraceptives or hormone replacement therapy in the 3 months prior to enrollment in the Study of Women’s Health Across the Nation (SWAN)-Heart Study (2001–2003). History of breastfeeding was self-reported. Computed tomography was used to assess abdominal adiposity. Among premenopausal/early-peri-menopausal mothers, those who never breastfed had 28% greater visceral adiposity (95% confidence interval (CI): 11–49, P = 0.001), 4.7% greater waist-hip ratio (95% CI: 1.9–7.4, P < 0.001), and 6.49 cm greater waist circumference (95% CI: 3.71–9.26, P < 0.001) than mothers who breastfed all of their children for ≥3 months in models adjusting for study site; age; parity; years since last birth; socioeconomic, lifestyle, and family history variables; early adult BMI; and current BMI. In comparison to women who were nulliparous, mothers who breastfed all of their children for ≥3 months had similar amounts of visceral fat (P > 0.05). In contrast, premenopausal/early-peri-menopausal mothers who had never breastfed had significantly greater visceral adiposity (42% (95% CI: 17–70), P < 0.001), waist circumference (6.15 cm (95% CI: 2.75–9.56), P < 0.001), and waist-hip ratio (3.7% (95% CI: 0.69–6.8), P = 0.02) than nulliparous women. No significant relationships were observed among late peri-menopausal/postmenopausal women. In conclusion, until menopause, mothers who did not breastfeed all of their children for ≥3 months exhibit significantly greater amounts of metabolically active visceral fat than mothers who had breastfed all of their children for ≥3 months. PMID:21720436

  4. Pulsed electric breakdown in adipose tissue

    NASA Astrophysics Data System (ADS)

    Kolb, Juergen F.; Scully, Noah; Paithankar, Dilip

    2011-08-01

    High voltage pulses of sub-microsecond duration can instigate electrical breakdown in adipose tissue, which is followed by a spark discharge. Breakdown voltages are generally lower than observed for purified lipids but higher than for air. Development of breakdown for the repetitive application of pulses resembles a gradual and stochastic process as reported for partial discharges in solid dielectrics. The inflicted tissue damage itself is confined to the gap between electrodes, providing a method to use spark discharges as a precise surgical technique.

  5. Regulation of systemic energy homeostasis by serotonin in adipose tissues.

    PubMed

    Oh, Chang-Myung; Namkung, Jun; Go, Younghoon; Shong, Ko Eun; Kim, Kyuho; Kim, Hyeongseok; Park, Bo-Yoon; Lee, Ho Won; Jeon, Yong Hyun; Song, Junghan; Shong, Minho; Yadav, Vijay K; Karsenty, Gerard; Kajimura, Shingo; Lee, In-Kyu; Park, Sangkyu; Kim, Hail

    2015-01-01

    Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis. PMID:25864946

  6. Adipose progenitor cells increase fibronectin matrix strain and unfolding in breast tumors

    NASA Astrophysics Data System (ADS)

    Chandler, E. M.; Saunders, M. P.; Yoon, C. J.; Gourdon, D.; Fischbach, C.

    2011-02-01

    Increased stiffness represents a hallmark of breast cancer that has been attributed to the altered physicochemical properties of the extracellular matrix (ECM). However, the role of fibronectin (Fn) in modulating the composition and mechanical properties of the tumor-associated ECM remains unclear. We have utilized a combination of biochemical and physical science tools to evaluate whether paracrine signaling between breast cancer cells and adipose progenitor cells regulates Fn matrix assembly and stiffness enhancement in the tumor stroma. In particular, we utilized fluorescence resonance energy transfer imaging to map the molecular conformation and stiffness of Fn that has been assembled by 3T3-L1 preadipocytes in response to conditioned media from MDA-MB231 breast cancer cells. Our results reveal that soluble factors secreted by tumor cells promote Fn expression, unfolding, and stiffening by adipose progenitor cells and that transforming growth factor-β serves as a soluble cue underlying these changes. In vivo experiments using orthotopic co-transplantation of primary human adipose-derived stem cells and MDA-MB231 into SCID mice support the pathological relevance of our results. Insights gained by these studies advance our understanding of the role of Fn in mammary tumorigenesis and may ultimately lead to improved anti-cancer therapies.

  7. Adipose tissue and adipokines--energy regulation from the human perspective.

    PubMed

    Trayhurn, Paul; Bing, Chen; Wood, I Stuart

    2006-07-01

    There has been a rapid rise in the incidence of obesity, primarily as a result of changes in lifestyle (diet and activity levels). Obesity has provided considerable impetus for the investigation of the fundamental mechanisms involved in the regulation of energy balance. Important developments include the identification of novel factors involved in the control of appetite, such as ghrelin, orexin A, and the endogenous cannabinoids, and the emergence of the concept of "nonexercise activity thermogenesis" (NEAT) provided new perspectives on energy expenditure. Studies on white adipose tissue have led to the recognition that it is an important endocrine organ, communicating with the brain and peripheral tissues through the secretion of leptin and other adipokines. There is a rapidly expanding list of protein factors released by white adipose tissue, including the key hormone, adiponectin. Of particular note is the range of cytokines, chemokines, and other inflammation-related proteins secreted by white fat as tissue mass rises; indeed, obesity is characterized by chronic mild inflammation. The adipokines provide an extensive network of communication both within adipose tissue and with other organs, and some are implicated directly in the pathologies associated with obesity, particularly the metabolic syndrome. Although the focus remains very much on obesity in humans, the disorder and its sequelae are also a growing concern in companion animals. PMID:16772463

  8. Evidence for the intra-uterine programming of adiposity in later life

    PubMed Central

    Fall, Caroline HD

    2012-01-01

    Research in animals has shown that altering fetal nutrition by under-nourishing or over-nourishing the mother or rendering her diabetic, or fetal exposure to glucocorticoids and toxins, can programme obesity in later life. The increased adiposity is mediated by permanent changes in appetite, food choices, physical activity and energy metabolism. In humans, increased adiposity has been shown in people who experienced fetal under-nutrition due to maternal famine, or over-nutrition due to maternal diabetes. Lower birth weight (a proxy for fetal under-nutrition) is associated with a reduced adult lean mass and increased intra-abdominal fat. Higher birthweight caused by maternal diabetes is associated with increased total fat mass and obesity in later life. There is growing evidence that maternal obesity, without diabetes, is also a risk factor for obesity in the child, due to fetal over-nutrition effects. Maternal smoking is associated with an increased risk of obesity in the children, though a causal link has not been proven. Other fetal exposures associated with increased adiposity in animals include glucocorticoids and endocrine disruptors. Reversing the current obesity epidemic will require greater attention to, and better understanding of, these inter-generational (mother-offspring) factors that programme body composition during early development. PMID:21682572

  9. Identification of zinc finger protein Bcl6 as a novel regulator of early adipose commitment

    PubMed Central

    Hu, Xiaoming; Zhou, Yuanfei; Yang, Yang; Peng, Jie; Song, Tongxing; Xu, Tao; Wei, Hongkui; Jiang, Siwen; Peng, Jian

    2016-01-01

    Adipose tissue is a key determinant of whole-body metabolism and energy homeostasis. Unravelling the transcriptional regulatory process during adipogenesis is therefore highly relevant from a biomedical perspective. In these studies, zinc finger protein B-cell lymphoma 6 (Bcl6) was demonstrated to have a role in early adipogenesis of mesenchymal stem cells. Bcl6 is enriched in preadipose versus non-preadipose fibroblasts and shows upregulated expression in the early stage of adipogenesis. Gain- and loss-of-function studies revealed that Bcl6 acts as a key regulator of adipose commitment and differentiation both in vitro and ex vivo. RNAi-mediated knockdown of Bcl6 in C3H10T1/2 cells greatly inhibited adipogenic potential, whereas Bcl6 overexpression enhanced adipogenic differentiation. This transcription factor also directly or indirectly targets and controls the expression of some early and late adipogenic regulators (i.e. Zfp423, Zfp467, KLF15, C/EBPδ, C/EBPα and PPARγ). We further identified that Bcl6 transactivated the signal transducers and activators of transcription 1 (STAT1), which was determined as a required factor for adipogenesis. Moreover, overexpression of STAT1 rescued the impairment of adipogenic commitment and differentiation induced by Bcl6 knockdown in C3H10T1/2 cells, thereby confirming that STAT1 is a downstream direct target of Bcl6. This study identifies Bcl6 as a positive transcriptional regulator of early adipose commitment. PMID:27251748

  10. Identification of zinc finger protein Bcl6 as a novel regulator of early adipose commitment.

    PubMed

    Hu, Xiaoming; Zhou, Yuanfei; Yang, Yang; Peng, Jie; Song, Tongxing; Xu, Tao; Wei, Hongkui; Jiang, Siwen; Peng, Jian

    2016-06-01

    Adipose tissue is a key determinant of whole-body metabolism and energy homeostasis. Unravelling the transcriptional regulatory process during adipogenesis is therefore highly relevant from a biomedical perspective. In these studies, zinc finger protein B-cell lymphoma 6 (Bcl6) was demonstrated to have a role in early adipogenesis of mesenchymal stem cells. Bcl6 is enriched in preadipose versus non-preadipose fibroblasts and shows upregulated expression in the early stage of adipogenesis. Gain- and loss-of-function studies revealed that Bcl6 acts as a key regulator of adipose commitment and differentiation both in vitro and ex vivo RNAi-mediated knockdown of Bcl6 in C3H10T1/2 cells greatly inhibited adipogenic potential, whereas Bcl6 overexpression enhanced adipogenic differentiation. This transcription factor also directly or indirectly targets and controls the expression of some early and late adipogenic regulators (i.e. Zfp423, Zfp467, KLF15, C/EBPδ, C/EBPα and PPARγ). We further identified that Bcl6 transactivated the signal transducers and activators of transcription 1 (STAT1), which was determined as a required factor for adipogenesis. Moreover, overexpression of STAT1 rescued the impairment of adipogenic commitment and differentiation induced by Bcl6 knockdown in C3H10T1/2 cells, thereby confirming that STAT1 is a downstream direct target of Bcl6. This study identifies Bcl6 as a positive transcriptional regulator of early adipose commitment. PMID:27251748

  11. The role of perivascular adipose tissue in vasoconstriction, arterial stiffness, and aneurysm

    PubMed Central

    Villacorta, Luis

    2015-01-01

    Since the “rediscovery” of brown adipose tissue in adult humans, significant scientific efforts are being pursued to identify the molecular mechanisms to promote a phenotypic change of white adipocytes into brown-like cells, a process called “browning”. It is well documented that white adipose tissue (WAT) mass and factors released from WAT influence the vascular function and positively correlate with cardiac arrest, stroke, and other cardiovascular complications. Similar to other fat depots, perivascular adipose tissue (PVAT) is an active endocrine organ and anatomically surrounds vessels. Both brown-like and white-like PVAT secrete various adipokines, cytokines, and growth factors that either prevent or promote the development of cardiovascular diseases (CVDs) depending on the relative abundance of each type and their bioactivity in the neighboring vasculature. Notably, pathophysiological conditions, such as obesity, hypertension, or diabetes, induce the imbalance of PVAT-derived vasoactive products that promote the infiltration of inflammatory cells. This then triggers derangements in vascular smooth muscle cells and endothelial cell dysfunction, resulting in the development of vascular diseases. In this review, we discuss the recent advances on the contribution of PVAT in CVDs. Specifically, we summarize the current proposed roles of PVAT in relationship with vascular contractility, endothelial dysfunction, neointimal formation, arterial stiffness, and aneurysm. PMID:25719334

  12. In vitro effects of chorionic gonadotropin hormone on human adipose development.

    PubMed

    Dos Santos, Esther; Dieudonné, Marie-Noëlle; Leneveu, Marie-Christine; Pecquery, René; Serazin, Valérie; Giudicelli, Yves

    2007-08-01

    It is well known that pregnancy is associated with fat weight gain. However, the mechanisms whereby fat mass accumulation is controlled during this period are poorly understood. Therefore, we attempted to determine whether human chorionic gonadotropin (HCG), in vitro, influences human adipose tissue development and/or metabolism. For the first time, HCG/LH receptor was characterized in human adipose cells. We also demonstrated that physiological concentrations of HCG, while unaltering both lipolysis and expression of two markers of lipogenesis (FAS and ADD1) in human mature adipocytes, stimulate human preadipocyte growth via the activation of a protein kinase A-independent mitogen-activated protein kinase/c-fos signaling pathway. HCG also moderately increases the preadipocyte differentiation capacity as reflected by enhanced glycerophosphate dehydrogenase activity and expression of key adipogenic transcriptional factors (C/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma 2). Finally, HCG significantly stimulates the secretion of the pro-adipogenic factor, leptin, from human adipose tissue. Taken altogether, these data suggest that the pro-adipogenic effect of HCG in human preadipocytes contributes to explain why increased fat storage occurs during the first trimester of pregnancy. PMID:17641281

  13. Aromatase overexpression in dysfunctional adipose tissue links obesity to postmenopausal breast cancer.

    PubMed

    Wang, Xuyi; Simpson, Evan R; Brown, Kristy A

    2015-09-01

    The number of breast cancer cases has increased in the last a few decades and this is believed to be associated with the increased prevalence of obesity worldwide. The risk of breast cancer increases with age beyond menopause and the relationship between obesity and the risk of breast cancer in postmenopausal women is well established. The majority of postmenopausal breast cancers are estrogen receptor (ER) positive and estrogens produced in the adipose tissue promotes tumor formation. Obesity results in the secretion of inflammatory factors that stimulate the expression of the aromatase enzyme, which converts androgens into estrogens in the adipose tissue. Evidence demonstrating a link between obesity and breast cancer has led to the investigation of metabolic pathways as novel regulators of estrogen production, including pathways that can be targeted to inhibit aromatase specifically within the breast. This review aims to present some of the key findings in this regard. PMID:26209254

  14. Redox implications in adipose tissue (dys)function—A new look at old acquaintances

    PubMed Central

    Jankovic, Aleksandra; Korac, Aleksandra; Buzadzic, Biljana; Otasevic, Vesna; Stancic, Ana; Daiber, Andreas; Korac, Bato

    2015-01-01

    Obesity is an energy balance disorder associated with dyslipidemia, insulin resistance and diabetes type 2, also summarized with the term metabolic syndrome or syndrome X. Increasing evidence points to “adipocyte dysfunction”, rather than fat mass accretion per se, as the key pathophysiological factor for metabolic complications in obesity. The dysfunctional fat tissue in obesity characterizes a failure to safely store metabolic substrates into existing hypertrophied adipocytes and/or into new preadipocytes recruited for differentiation. In this review we briefly summarize the potential of redox imbalance in fat tissue as an instigator of adipocyte dysfunction in obesity. We reveal the challenge of the adipose redox changes, insights in the regulation of healthy expansion of adipose tissue and its reduction, leading to glucose and lipids overflow. PMID:26177468

  15. Adipose tissue dysfunction and its effects on tumor metabolism

    PubMed Central

    Diedrich, Jonathan; Gusky, Halina Chkourko; Podgorski, Izabela

    2016-01-01

    Growing by an alarming rate in the Western world, obesity has become a condition associated with a multitude of diseases such as diabetes, metabolic syndrome and various cancers. Generally viewed as an abnormal accumulation of hypertrophied adipocytes, obesity is also a poor prognostic factor for recurrence and chemoresistance in cancer patients. With more than two-thirds of the adult population in the United States considered clinically overweight or obese, it is critical that the relationship between obesity and cancer is further emphasized and elucidated. Adipocytes are highly metabolically active cells, which, through release of adipokines and cytokines and activation of endocrine and paracrine pathways, affect processes in neighboring and distant cells, altering their normal homeostasis. This work will examine specifically how adipocyte-derived factors regulate the cellular metabolism of malignant cells within the tumor niche. Briefly, tumor cells undergo metabolic pressure towards a more glycolytic and hypoxic state through a variety of metabolic regulators and signaling pathways, i.e., phosphoinositol-3 kinase (PI3K), hypoxia-inducible factor-1 alpha (HIF-1α), and c-MYC signaling. Enhanced glycolysis and high lactate production are hallmarks of tumor progression largely because of a process known as the Warburg effect. Herein, we review the latest literature pertaining to the body of work on the interactions between adipose and tumor cells, and underlining the changes in cancer cell metabolism that have been targeted by the currently available treatments. PMID:25781550

  16. Angiotensin II Reduces Lipoprotein Lipase Expression in Visceral Adipose Tissue via Phospholipase C β4 Depending on Feeding but Increases Lipoprotein Lipase Expression in Subcutaneous Adipose Tissue via c-Src.

    PubMed

    Uchiyama, Tsuyoshi; Tomono, Shoichi; Sato, Koichi; Nakamura, Tetsuya; Kurabayashi, Masahiko; Okajima, Fumikazu

    2015-01-01

    Metabolic syndrome is characterized by visceral adiposity, insulin resistance, high triglyceride (TG)- and low high-density lipoprotein cholesterol-levels, hypertension, and diabetes-all of which often cause cardiovascular and cerebrovascular diseases. It remains unclear, however, why visceral adiposity but not subcutaneous adiposity causes insulin resistance and other pathological situations. Lipoprotein lipase (LPL) catalyzes hydrolysis of TG in plasma lipoproteins. In the present study, we investigated whether the effects of angiotensin II (AngII) on TG metabolism are mediated through an effect on LPL expression. Adipose tissues were divided into visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) for comparison. AngII accelerated LPL expression in SAT but, on the contrary, suppressed its expression in VAT. In both SAT and VAT, AngII signaled through the same type 1 receptor. In SAT, AngII increased LPL expression via c-Src and p38 MAPK signaling. In VAT, however, AngII reduced LPL expression via the Gq class of G proteins and the subsequent phospholipase C β4 (PLCβ4), protein kinase C β1, nuclear factor κB, and inducible nitric oxide synthase signaling pathways. PLCβ4 small interfering RNA experiments showed that PLCβ4 expression is important for the AngII-induced LPL reduction in VAT, in which PLCβ4 expression increases in the evening and falls at night. Interestingly, PLCβ4 expression in VAT decreased with fasting, while AngII did not decrease LPL expression in VAT in a fasting state. In conclusion, AngII reduces LPL expression through PLCβ4, the expression of which is regulated by feeding in VAT, whereas AngII increases LPL expression in SAT. The different effects of AngII on LPL expression and, hence, TG metabolism in VAT and SAT may partly explain their different contributions to the development of metabolic syndrome. PMID:26447765

  17. Angiotensin II Reduces Lipoprotein Lipase Expression in Visceral Adipose Tissue via Phospholipase C β4 Depending on Feeding but Increases Lipoprotein Lipase Expression in Subcutaneous Adipose Tissue via c-Src

    PubMed Central

    Uchiyama, Tsuyoshi; Tomono, Shoichi; Sato, Koichi; Nakamura, Tetsuya; Kurabayashi, Masahiko; Okajima, Fumikazu

    2015-01-01

    Metabolic syndrome is characterized by visceral adiposity, insulin resistance, high triglyceride (TG)- and low high-density lipoprotein cholesterol-levels, hypertension, and diabetes—all of which often cause cardiovascular and cerebrovascular diseases. It remains unclear, however, why visceral adiposity but not subcutaneous adiposity causes insulin resistance and other pathological situations. Lipoprotein lipase (LPL) catalyzes hydrolysis of TG in plasma lipoproteins. In the present study, we investigated whether the effects of angiotensin II (AngII) on TG metabolism are mediated through an effect on LPL expression. Adipose tissues were divided into visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) for comparison. AngII accelerated LPL expression in SAT but, on the contrary, suppressed its expression in VAT. In both SAT and VAT, AngII signaled through the same type 1 receptor. In SAT, AngII increased LPL expression via c-Src and p38 MAPK signaling. In VAT, however, AngII reduced LPL expression via the Gq class of G proteins and the subsequent phospholipase C β4 (PLCβ4), protein kinase C β1, nuclear factor κB, and inducible nitric oxide synthase signaling pathways. PLCβ4 small interfering RNA experiments showed that PLCβ4 expression is important for the AngII-induced LPL reduction in VAT, in which PLCβ4 expression increases in the evening and falls at night. Interestingly, PLCβ4 expression in VAT decreased with fasting, while AngII did not decrease LPL expression in VAT in a fasting state. In conclusion, AngII reduces LPL expression through PLCβ4, the expression of which is regulated by feeding in VAT, whereas AngII increases LPL expression in SAT. The different effects of AngII on LPL expression and, hence, TG metabolism in VAT and SAT may partly explain their different contributions to the development of metabolic syndrome. PMID:26447765

  18. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our data demonstrate that estrogens, estrogen receptor-alpha (ERalpha), and estrogen receptor-ßeta (ERßeta) regulate adipose tissue distribution, inflammation, fibrosis, and glucose homeostasis, by determining that alphaERKO mice have increased adipose tissue inflammation and fibrosis prior to obesi...

  19. Weight loss-induced stress in subcutaneous adipose tissue is related to weight regain.

    PubMed

    Roumans, Nadia J T; Camps, Stefan G; Renes, Johan; Bouwman, Freek G; Westerterp, Klaas R; Mariman, Edwin C M

    2016-03-14

    Initial successful weight loss is often followed by weight regain after the dietary intervention. Compared with lean people, cellular stress in adipose tissue is increased in obese subjects. However, the relation between cellular stress and the risk for weight regain after weight loss is unclear. Therefore, we determined the expression levels of stress proteins during weight loss and weight maintenance in relation to weight regain. In vivo findings were compared with results from in vitro cultured human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. In total, eighteen healthy subjects underwent an 8-week diet programme with a 10-month follow-up. Participants were categorised as weight maintainers or weight regainers (WR) depending on their weight changes during the intervention. Abdominal subcutaneous adipose tissue biopsies were obtained before and after the diet and after the follow-up. In vitro differentiated SGBS adipocytes were starved for 96 h with low (0·55 mm) glucose. Levels of stress proteins were determined by Western blotting. WR showed increased expressions of β-actin, calnexin, heat shock protein (HSP) 27, HSP60 and HSP70. Changes of β-actin, HSP27 and HSP70 are linked to HSP60, a proposed key factor in weight regain after weight loss. SGBS adipocytes showed increased levels of β-actin and HSP60 after 96 h of glucose restriction. The increased level of cellular stress proteins in the adipose tissue of WR probably resides in the adipocytes as shown by in vitro experiments. Cellular stress accumulated in adipose tissue during weight loss may be a risk factor for weight regain. PMID:26759119

  20. Maternal smoking in pregnancy association with childhood adiposity and blood pressure

    PubMed Central

    Peters, H.; Gama, A.; Carvalhal, M. I. M.; Nogueira, H. G. M.; Rosado‐Marques, V.; Padez, C.

    2015-01-01

    Summary Background Maternal smoking during pregnancy has been associated with increased risk of childhood overweight/obesity defined by body mass index (BMI). We examined its association with a range of adiposity measures and cardiovascular indicators in children aged 3–10 years. Methods We used data from a cross‐sectional study of schoolchildren across mainland Portuguese districts (2009–2010). We applied quantile regressions to examine maternal smoking associations with adiposity (n = 17 286), blood pressure (BP) and resting pulse rate (RPR) (n ≈ 2500) measures across the age range, adjusting for prenatal and early life factors. Results Maternal smoking during pregnancy was associated with increases in offspring adiposity levels. The difference in median BMI between children of smokers and non‐smokers was 0.39 kg m−2 (95% confidence interval: 0.25, 0.53) in boys and 0.46 kg m−2 (0.31, 0.62) in girls; 0.55 cm (0.24, 0.87) and 0.82 cm (0.45, 1.19), respectively, in median waist circumference; and 0.94 mm (0.49, 1.40) and 1.47 mm (0.87, 2.07) in median sum of (triceps, subscapular, suprailiac) skin‐folds. The associations appeared to be stronger with increasing age. The differences in the 90th centile tended to be greater than those in median. There was no consistent association of maternal smoking with BP and RPR. Conclusions Children whose mother smoked during pregnancy had higher adiposity levels than children of non‐smokers, across several measures, particularly among older children. Although there was no consistent association with cardiovascular indicators, maternal smoking association with childhood obesity may have implications for cardiovascular risk factors over the life course. PMID:26178147

  1. Mechanisms Linking Excess Adiposity and Carcinogenesis Promotion

    PubMed Central

    Pérez-Hernández, Ana I.; Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Frühbeck, Gema

    2014-01-01

    Obesity constitutes one of the most important metabolic diseases being associated to insulin resistance development and increased cardiovascular risk. Association between obesity and cancer has also been well established for several tumor types, such as breast cancer in post-menopausal women, colorectal, and prostate cancer. Cancer is the first death cause in developed countries and the second one in developing countries, with high incidence rates around the world. Furthermore, it has been estimated that 15–20% of all cancer deaths may be attributable to obesity. Tumor growth is regulated by interactions between tumor cells and their tissue microenvironment. In this sense, obesity may lead to cancer development through dysfunctional adipose tissue and altered signaling pathways. In this review, three main pathways relating obesity and cancer development are examined: (i) inflammatory changes leading to macrophage polarization and altered adipokine profile; (ii) insulin resistance development; and (iii) adipose tissue hypoxia. Since obesity and cancer present a high prevalence, the association between these conditions is of great public health significance and studies showing mechanisms by which obesity lead to cancer development and progression are needed to improve prevention and management of these diseases. PMID:24829560

  2. Mechanisms linking excess adiposity and carcinogenesis promotion.

    PubMed

    Pérez-Hernández, Ana I; Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Frühbeck, Gema

    2014-01-01

    Obesity constitutes one of the most important metabolic diseases being associated to insulin resistance development and increased cardiovascular risk. Association between obesity and cancer has also been well established for several tumor types, such as breast cancer in post-menopausal women, colorectal, and prostate cancer. Cancer is the first death cause in developed countries and the second one in developing countries, with high incidence rates around the world. Furthermore, it has been estimated that 15-20% of all cancer deaths may be attributable to obesity. Tumor growth is regulated by interactions between tumor cells and their tissue microenvironment. In this sense, obesity may lead to cancer development through dysfunctional adipose tissue and altered signaling pathways. In this review, three main pathways relating obesity and cancer development are examined: (i) inflammatory changes leading to macrophage polarization and altered adipokine profile; (ii) insulin resistance development; and (iii) adipose tissue hypoxia. Since obesity and cancer present a high prevalence, the association between these conditions is of great public health significance and studies showing mechanisms by which obesity lead to cancer development and progression are needed to improve prevention and management of these diseases. PMID:24829560

  3. Rare adipose disorders (RADs) masquerading as obesity

    PubMed Central

    Herbst, Karen L

    2012-01-01

    Rare adipose disorders (RADs) including multiple symmetric lipomatosis (MSL), lipedema and Dercum's disease (DD) may be misdiagnosed as obesity. Lifestyle changes, such as reduced caloric intake and increased physical activity are standard care for obesity. Although lifestyle changes and bariatric surgery work effectively for the obesity component of RADs, these treatments do not routinely reduce the abnormal subcutaneous adipose tissue (SAT) of RADs. RAD SAT likely results from the growth of a brown stem cell population with secondary lymphatic dysfunction in MSL, or by primary vascular and lymphatic dysfunction in lipedema and DD. People with RADs do not lose SAT from caloric limitation and increased energy expenditure alone. In order to improve recognition of RADs apart from obesity, the diagnostic criteria, histology and pathophysiology of RADs are presented and contrasted to familial partial lipodystrophies, acquired partial lipodystrophies and obesity with which they may be confused. Treatment recommendations focus on evidence-based data and include lymphatic decongestive therapy, medications and supplements that support loss of RAD SAT. Associated RAD conditions including depression, anxiety and pain will improve as healthcare providers learn to identify and adopt alternative treatment regimens for the abnormal SAT component of RADs. Effective dietary and exercise regimens are needed in RAD populations to improve quality of life and construct advanced treatment regimens for future generations. PMID:22301856

  4. Adiposity significantly modifies genetic risk for dyslipidemia.

    PubMed

    Cole, Christopher B; Nikpay, Majid; Lau, Paulina; Stewart, Alexandre F R; Davies, Robert W; Wells, George A; Dent, Robert; McPherson, Ruth

    2014-11-01

    Recent genome-wide association studies have identified multiple loci robustly associated with plasma lipids, which also contribute to extreme lipid phenotypes. However, these common genetic variants explain <12% of variation in lipid traits. Adiposity is also an important determinant of plasma lipoproteins, particularly plasma TGs and HDL cholesterol (HDLc) concentrations. Thus, interactions between genes and clinical phenotypes may contribute to this unexplained heritability. We have applied a weighted genetic risk score (GRS) for both plasma TGs and HDLc in two large cohorts at the extremes of BMI. Both BMI and GRS were strongly associated with these lipid traits. A significant interaction between obese/lean status and GRS was noted for each of TG (P(Interaction) = 2.87 × 10(-4)) and HDLc (P(Interaction) = 1.05 × 10(-3)). These interactions were largely driven by SNPs tagging APOA5, glucokinase receptor (GCKR), and LPL for TG, and cholesteryl ester transfer protein (CETP), GalNAc-transferase (GALNT2), endothelial lipase (LIPG), and phospholipid transfer protein (PLTP) for HDLc. In contrast, the GRSLDL cholesterol × adiposity interaction was not significant. Sexual dimorphism was evident for the GRSHDL on HDLc in obese (P(Interaction) = 0.016) but not lean subjects. SNP by BMI interactions may provide biological insight into specific genetic associations and missing heritability. PMID:25225679

  5. Rare adipose disorders (RADs) masquerading as obesity.

    PubMed

    Herbst, Karen L

    2012-02-01

    Rare adipose disorders (RADs) including multiple symmetric lipomatosis (MSL), lipedema and Dercum's disease (DD) may be misdiagnosed as obesity. Lifestyle changes, such as reduced caloric intake and increased physical activity are standard care for obesity. Although lifestyle changes and bariatric surgery work effectively for the obesity component of RADs, these treatments do not routinely reduce the abnormal subcutaneous adipose tissue (SAT) of RADs. RAD SAT likely results from the growth of a brown stem cell population with secondary lymphatic dysfunction in MSL, or by primary vascular and lymphatic dysfunction in lipedema and DD. People with RADs do not lose SAT from caloric limitation and increased energy expenditure alone. In order to improve recognition of RADs apart from obesity, the diagnostic criteria, histology and pathophysiology of RADs are presented and contrasted to familial partial lipodystrophies, acquired partial lipodystrophies and obesity with which they may be confused. Treatment recommendations focus on evidence-based data and include lymphatic decongestive therapy, medications and supplements that support loss of RAD SAT. Associated RAD conditions including depression, anxiety and pain will improve as healthcare providers learn to identify and adopt alternative treatment regimens for the abnormal SAT component of RADs. Effective dietary and exercise regimens are needed in RAD populations to improve quality of life and construct advanced treatment regimens for future generations. PMID:22301856

  6. Laser-induced lipolysis on adipose cells

    NASA Astrophysics Data System (ADS)

    Solarte, Efrain; Gutierrez, O.; Neira, Rodrigo; Arroyave, J.; Isaza, Carolina; Ramirez, Hugo; Rebolledo, Aldo F.; Criollo, Willian; Ortiz, C.

    2004-10-01

    Recently, a new liposuction technique, using a low-level laser (LLL) device and Ultrawet solution prior to the procedure, demonstrated the movement of fat from the inside to the outside of the adipocyte (Neira et al., 2002). To determine the mechanisms involved, we have performed Scanning and Transmission Electron Microscopy studies; Light transmittance measurements on adipocyte dilutions; and a study of laser light propagation in adipose tissue. This studies show: 1. Cellular membrane alterations. 2. LLL is capable to reach the deep adipose tissue layer, and 3. The tumescence solution enhances the light propagation by clearing the tissue. MRI studies demonstrated the appearance of fat on laser treated abdominal tissue. Besides, adipocytes were cultivated and irradiated to observe the effects on isolated cells. These last studies show: 1. 635 nm-laser alone is capable of mobilizing cholesterol from the cell membrane; this action is enhanced by the presence of adrenaline and lidocaine. 2. Intracellular fat is released from adipocytes by co joint action of adrenaline, aminophyline and 635 nm-laser. Results are consistent with a laser induced cellular process, which causes fat release from the adipocytes into the intercellular space, besides the modification of the cellular membranes.

  7. Endothelial dysfunction in adipose triglyceride lipase deficiency.

    PubMed

    Schrammel, Astrid; Mussbacher, Marion; Wölkart, Gerald; Stessel, Heike; Pail, Karoline; Winkler, Sarah; Schweiger, Martina; Haemmerle, Guenter; Al Zoughbi, Wael; Höfler, Gerald; Lametschwandtner, Alois; Zechner, Rudolf; Mayer, Bernd

    2014-06-01

    Systemic knockout of adipose triglyceride lipase (ATGL), the pivotal enzyme of triglyceride lipolysis, results in a murine phenotype that is characterized by progredient cardiac steatosis and severe heart failure. Since cardiac and vascular dysfunction have been closely related in numerous studies we investigated endothelium-dependent and -independent vessel function of ATGL knockout mice. Aortic relaxation studies and Langendorff perfusion experiments of isolated hearts showed that ATGL knockout mice suffer from pronounced micro- and macrovascular endothelial dysfunction. Experiments with agonists directly targeting vascular smooth muscle cells revealed the functional integrity of the smooth muscle cell layer. Loss of vascular reactivity was restored ~50% upon treatment of ATGL knockout mice with the PPARα agonist Wy14,643, indicating that this phenomenon is partly a consequence of impaired cardiac contractility. Biochemical analysis revealed that aortic endothelial NO synthase expression and activity were significantly reduced in ATGL deficiency. Enzyme activity was fully restored in ATGL mice treated with the PPARα agonist. Biochemical analysis of perivascular adipose tissue demonstrated that ATGL knockout mice suffer from perivascular inflammatory oxidative stress which occurs independent of cardiac dysfunction and might contribute to vascular defects. Our results reveal a hitherto unrecognized link between disturbed lipid metabolism, obesity and cardiovascular disease. PMID:24657704

  8. Sex and depot differences in ex vivo adipose tissue fatty acid storage and glycerol-3-phosphate acyltransferase activity

    PubMed Central

    Morgan-Bathke, Maria; Chen, Liang; Oberschneider, Elisabeth; Harteneck, Debra

    2015-01-01

    Adipose tissue fatty acid storage varies according to sex, adipose tissue depot, and degree of fat gain. However, the mechanism(s) for these variations is not completely understood. We examined whether differences in adipose tissue glycerol-3-phosphate acyltransferase (GPAT) might play a role in these variations. We optimized an enzyme activity assay for total GPAT and GPAT1 activity in human adipose tissue and measured GPAT activity. Omental and subcutaneous adipose tissue was collected from obese and nonobese adults for measures of GPAT and GPAT1 activities, ex vivo palmitate storage, acyl-CoA synthetase (ACS) and diacylglycerol-acyltransferase (DGAT) activities, and CD36 protein. Total GPAT and GPAT1 activities decreased as a function of adipocyte size in both omental (r = −0.71, P = 0.003) and subcutaneous (r = −0.58, P = 0.04) fat. The relative contribution of GPAT1 to total GPAT activity increased as a function of adipocyte size, accounting for up to 60% of GPAT activity in those with the largest adipocytes. We found strong, positive correlations between ACS, GPAT, and DGAT activities for both sexes and depots (r values 0.58–0.91) and between these storage factors and palmitate storage rates into TAG (r values 0.55–0.90). We conclude that: 1) total GPAT activity decreases as a function of adipocyte size; 2) GPAT1 can account for over half of adipose GPAT activity in hypertrophic obesity; and 3) ACS, GPAT, and DGAT are coordinately regulated. PMID:25738782

  9. Android Adiposity and Lack of Moderate and Vigorous Physical Activity Are Associated With Insulin Resistance and Diabetes in Aging Adults

    PubMed Central

    Al Snih, Soham; Serra-Rexach, José A.; Burant, Charles

    2015-01-01

    Background. Physical inactivity and excess adiposity are thought to be interdependent “lifestyle” factors and thus, many older adults are at exaggerated risk for preventable diseases. The purposes of this study were to determine the degree of discordance between body mass index (BMI) and adiposity among adults older than 50 years, and to determine the extent to which direct measures of adiposity, and objectively measured sedentary behavior (SB) and physical activity (PA) are associated with insulin resistance (IR) or diabetes. Methods. A population representative sample of 2,816 individuals, aged 50–85 years, was included from the combined 2003–2006 National Health and Nutrition Examination Survey (NHANES) datasets. BMI, percent body fat (%BF) and android adiposity as determined by dual energy x-ray absorptiometry, objectively measured SB and PA, established markers of cardiometabolic risk, IR, and type 2 diabetes were analyzed. Results. Approximately 50% of the men and 64% of the women who were normal weight according to BMI had excessive %BF. Adults with the least SB and greatest moderate and vigorous PA exhibited the healthiest cardiometabolic profiles, whereas adults with the greatest SB and lowest activity had highest risk. Greater android adiposity stores were robustly associated with IR or diabetes in all adults, independent of SB and activity. Among men, less moderate-to-vigorous PA was associated with IR or diabetes; whereas among women, less lifestyle moderate activity was associated with IR or diabetes. Conclusions. Android adiposity and low moderate and vigorous PA are the strongest predictors of IR or diabetes among aging adults. PMID:25711528

  10. Maternal Corticotropin-Releasing Hormone Levels during Pregnancy and Offspring Adiposity

    PubMed Central

    Gillman, Matthew W.; Rich-Edwards, Janet W.; Huh, Susanna; Majzoub, Joseph A.; Oken, Emily; Taveras, Elsie M.; Rifas-Shiman, Sheryl L.

    2007-01-01

    Objective Animal models suggest that fetal exposure to glucocorticoids can program adiposity, especially central adiposity, later in life. We examined associations of maternal corticotropin-releasing hormone (CRH) levels in the late 2nd trimester of pregnancy, a marker of fetal glucocorticoid exposure, with child adiposity at age 3 years. Research Methods and Procedures We analyzed data from 199 participants in Project Viva, a prospective cohort study of pregnant women and their children, At age 3 years, the main outcomes were age-sex-specific BMI z score and the sum of subscapular (SS) and triceps (TR) skinfold thicknesses to represent overall adiposity, and ratio of SS to TR (SS:TR) to represent central adiposity. Results Mean (standard deviation) maternal 2nd trimester log CRH was 4.94 (0.56) pg/mL. At age 3, mean (standard deviation) for BMI z score was 0.52 (1.02); for SS + TR, 16.51 (3.94) mm; and for SS:TR, 0.67 (0.17). Log CRH was mildly inversely correlated with birth weight (r = −0.08), chiefly because of its association with length of gestation (r = −0.21) rather than fetal growth (r = −0.004). After adjustment for sociodemographic factors, maternal smoking, BMI, and gestational weight gain, fetal growth, length of gestation, breastfeeding duration, and (for SS:TR only) child’s 3-year BMI, each increment of 1 unit of log CRH was associated with a reduction in BMI z score [−0.43; 95% confidence interval (CI), −0.73, −0.14; p = 0.004] and possible reduction in SS + TR (−1.10; 95% CI, −2.33, 0.14; p = 0.08). In contrast, log CRH was associated with higher SS:TR (0.07; 95% CI, 0.02, 0.13; p = 0.007). Discussion Fetal exposure to glucocorticoids, although associated with an overall decrease in body size, may cause an increase in central adiposity. PMID:17030976

  11. Adipose tissue and skeletal muscle blood flow during mental stress

    SciTech Connect

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  12. Does Adipose Tissue Thermogenesis Play a Role in Metabolic Health?

    PubMed Central

    Porter, Craig; Børsheim, Elisabet; Sidossis, Labros S.

    2013-01-01

    The function ascribed to brown adipose tissue in humans has long been confined to thermoregulation in neonates, where this thermogenic capacity was thought lost with maturation. Recently, brown adipose tissue depots have been identified in adult humans. The significant oxidative capacity of brown adipocytes and the ability of their mitochondria to respire independently of ATP production, has led to renewed interest in the role that these adipocytes play in human energy metabolism. In our view, there is a need for robust physiological studies determining the relationship between molecular signatures of brown adipose tissue, adipose tissue mitochondrial function, and whole body energy metabolism, in order to elucidate the significance of thermogenic adipose tissue in humans. Until such information is available, the role of thermogenic adipose tissue in human metabolism and the potential that these adipocytes may prevent or treat obesity and metabolic diseases in humans will remain unknown. In this article, we summarize the recent literature pertaining to brown adipose tissue function with the aims of drawing the readers' attention to the lack of data concerning the role of brown adipocytes in human physiology, and to the potential limitations of current research strategies. PMID:23691283

  13. Our Fat Future: Translating Adipose Stem Cell Therapy

    PubMed Central

    Nordberg, Rachel C.

    2015-01-01

    Summary Human adipose stem cells (hASCs) have the potential to treat patients with a variety of clinical conditions. Recent advancements in translational research, regulatory policy, and industry have positioned hASCs on the threshold of clinical translation. We discuss the progress and challenges of bringing adipose stem cell therapy into mainstream clinical use. Significance This article details the advances made in recent years that have helped move human adipose stem cell therapy toward mainstream clinical use from a translational research, regulatory policy, and industrial standpoint. Four recurrent themes in translational technology as they pertain to human adipose stem cells are discussed: automated closed-system operations, biosensors and real-time monitoring, biomimetics, and rapid manufacturing. In light of recent FDA guidance documents, regulatory concerns about adipose stem cell therapy are discussed. Finally, an update is provided on the current state of clinical trials and the emerging industry that uses human adipose stem cells. This article is expected to stimulate future studies in translational adipose stem cell research. PMID:26185256

  14. Adipose Tissue Promotes a Serum Cytokine Profile Related to Lower Insulin Sensitivity after Chronic Central Leptin Infusion

    PubMed Central

    Burgos-Ramos, Emma; Canelles, Sandra; Perianes-Cachero, Arancha; Arilla-Ferreiro, Eduardo; Argente, Jesús; Barrios, Vicente

    2012-01-01

    Obesity is an inflammatory state characterized by an augment in circulating inflammatory factors. Leptin may modulate the synthesis of these factors by white adipose tissue decreasing insulin sensitivity. We have examined the effect of chronic central administration of leptin on circulating levels of cytokines and the possible relationship with cytokine expression and protein content as well as with leptin and insulin signaling in subcutaneous and visceral adipose tissues. In addition, we analyzed the possible correlation between circulating levels of cytokines and peripheral insulin resistance. We studied 18 male Wistar rats divided into controls (C), those treated icv for 14 days with a daily dose of 12 μg of leptin (L) and a pair-fed group (PF) that received the same food amount consumed by the leptin group. Serum leptin and insulin were measured by ELISA, mRNA levels of interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-4, IL-6, IL-10 and tumor necrosis factor-α (TNF-α) by real time PCR and serum and adipose tissue levels of these cytokines by multiplexed bead immunoassay. Serum leptin, IL-2, IL-4, IFN-γ and HOMA-IR were increased in L and TNF-α was decreased in PF and L. Serum leptin and IL-2 levels correlate positively with HOMA-IR index and negatively with serum glucose levels during an ip insulin tolerance test. In L, an increase in mRNA levels of IL-2 was found in both adipose depots and IFN-γ only in visceral tissue. Activation of leptin signaling was increased and insulin signaling decreased in subcutaneous fat of L. In conclusion, leptin mediates the production of inflammatory cytokines by adipose tissue independent of its effects on food intake, decreasing insulin sensitivity. PMID:23056516

  15. Cross-sectional and prospective associations between moderate to vigorous physical activity and sedentary time with adiposity in children

    PubMed Central

    Marques, Adilson; Minderico, Cláudia; Martins, Sandra; Palmeira, António; Ekelund, Ulf; Sardinha, Luís B.

    2016-01-01

    Background Physical activity (PA) and sedentary time (SED) have both been suggested as potential risk factors for adiposity in children. However, there is paucity of data examining the temporal associations between these variables. Objective This study aimed to analyze the cross-sectional and prospective associations between PA, SED and body composition in children. Methods 510 children (age at baseline 10.1±0.8, age at follow up 11.8±0.9) from 6 Portuguese schools from the Oeiras Municipality participated in this study. PA and SED were measured by accelerometry and trunk fat mass (TFM) and body fat mass (BFM) were measured by Dual energy X-ray absorptiometry (DXA). Fat mass index (FMI) was calculated as BFM divided by height squared. Several regression models adjusted for age, sex, maturity status, follow-up duration, baseline levels of the outcome variable, and SED or MVPA were performed. Results Moderate to vigorous PA (MVPA) (min/d) was cross-sectionally inversely associated with adiposity indexes (FMI, TFM, BFM). Adiposity indexes were inversely associated with time in MVPA. In prospective analyses, MVPA was associated with a lower levels of FMI (β=−0.37, 95% CI: −0.49 to −0.26, p<0.001), TFM (β=−0.20, 95% CI: −0.29 to −0.10, p<0.001), and BFM (β=−0.37, 95% CI: −0.49 to −0.26, p<0.001). When the model was adjusted for age, sex, maturity status and for baseline levels of the outcome variables MVPA remained a significant predictor of lower adiposity indexes (FMI: β=−0.09, 95% CI: −0.16 to −0.01, p<0.05; TFM: β=−0.08, 95% CI: −0.15 to −0.01, p<0.05; BFM: β=−0.07, 95% CI: −0.15 to 0.00, p<0.05). Adiposity was not associated with MVPA when modeled as the exposure in prospective analyses. SED was not related with adiposity indexes, except for the relationship with FMI. Conclusions In cross-sectional and prospective analyses, MVPA is associated with lower adiposity independent of covariates and SED. Results suggest that

  16. Adiposity and human regional body temperature123

    PubMed Central

    Savastano, David M; Gorbach, Alexander M; Eden, Henry S; Brady, Sheila M; Reynolds, James C

    2009-01-01

    Background: Human obesity is associated with increased heat production; however, subcutaneous adipose tissue provides an insulating layer that impedes heat loss. To maintain normothermia, therefore, obese individuals must increase their heat dissipation. Objective: The objective was to test the hypothesis that temperature in a heat-dissipating region of the hand is elevated in obese adults. Design: Obese [body mass index (in kg/m2) ≥ 30] and normal-weight (NW; body mass index = 18–25) adults were studied under thermoneutral conditions at rest. Core body temperature was measured by using ingested telemetric capsules. The temperatures of the third fingernail bed of the right hand and of abdominal skin from an area 1.5 cm inferior to the umbilicus were determined by using infrared thermography. Abdominal skin temperatures were also measured via adhesive thermistors that were placed over a prominent skin-surface blood vessel and over an adjacent nonvessel location. The groups were compared by analysis of covariance with age, sex, race, and room temperature as covariates. Results: Core temperature did not differ significantly between the 23 obese and 13 NW participants (P = 0.74). However, infrared thermography–measured fingernail-bed temperature was significantly higher in obese subjects than in NW subjects (33.9 ± 0.7°C compared with 28.6 ± 0.9°C; P < 0.001). Conversely, infrared thermography–measured abdominal skin temperature was significantly lower in obese subjects than in NW subjects (31.8 ± 0.2°C compared with 32.8 ± 0.3°C; P = 0.02). Nonvessel abdominal skin temperatures measured by thermistors were also lower in obese subjects (P = 0.04). Conclusions: Greater subcutaneous abdominal adipose tissue in obese adults may provide a significant insulating layer that blunts abdominal heat transfer. Augmented heat release from the hands may offset heat retention in areas of the body with greater adiposity, thereby helping to maintain normothermia in

  17. Epigenetic and Transcriptional Alterations in Human Adipose Tissue of Polycystic Ovary Syndrome.

    PubMed

    Kokosar, Milana; Benrick, Anna; Perfilyev, Alexander; Fornes, Romina; Nilsson, Emma; Maliqueo, Manuel; Behre, Carl Johan; Sazonova, Antonina; Ohlsson, Claes; Ling, Charlotte; Stener-Victorin, Elisabet

    2016-01-01

    Genetic and epigenetic factors may predispose women to polycystic ovary syndrome (PCOS), a common heritable disorder of unclear etiology. Here we investigated differences in genome-wide gene expression and DNA methylation in adipose tissue from 64 women with PCOS and 30 controls. In total, 1720 unique genes were differentially expressed (Q < 0.05). Six out of twenty selected genes with largest expression difference (CYP1B1, GPT), genes linked to PCOS (RAB5B) or type 2 diabetes (PPARG, SVEP1), and methylation (DMAP1) were replicated in a separate case-control study. In total, 63,213 sites (P < 0.05) and 440 sites (Q < 0.15) were differently methylated. Thirty differentially expressed genes had corresponding changes in 33 different DNA methylation sites. Moreover, a total number of 1913 pairs of differentially expressed "gene-CpG" probes were significantly correlated after correction for multiple testing and corresponded with 349 unique genes. In conclusion, we identified a large number of genes and pathways that are affected in adipose tissue from women with PCOS. We also identified specific DNA methylation pathways that may affect mRNA expression. Together, these novel findings show that women with PCOS have multiple transcriptional and epigenetic changes in adipose tissue that are relevant for development of the disease. PMID:26975253

  18. Impact of Doxorubicin Treatment on the Physiological Functions of White Adipose Tissue.

    PubMed

    Biondo, Luana Amorim; Lima Junior, Edson Alves; Souza, Camila Oliveira; Cruz, Maysa Mariana; Cunha, Roberta D C; Alonso-Vale, Maria Isabel; Oyama, Lila Missae; Nascimento, Claudia M Oller; Pimentel, Gustavo Duarte; Dos Santos, Ronaldo V T; Lira, Fabio Santos; Rosa Neto, José Cesar

    2016-01-01

    White adipose tissue (WAT) plays a fundamental role in maintaining energy balance and important endocrine functions. The loss of WAT modifies adipokine secretion and disrupts homeostasis, potentially leading to severe metabolic effects and a reduced quality of life. Doxorubicin is a chemotherapeutic agent used clinically because of its good effectiveness against various types of cancer. However, doxorubicin has deleterious effects in many healthy tissues, including WAT, liver, and skeletal and cardiac muscles. Our objective was to investigate the effects of doxorubicin on white adipocytes through in vivo and in vitro experiments. Doxorubicin reduced the uptake of glucose by retroperitoneal adipocytes and 3T3-L1 cells via the inhibition of AMP-activated protein kinase Thr172 phosphorylation and glucose transporter 4 content. Doxorubicin also reduced the serum level of adiponectin and, to a greater extent, the expression of genes encoding lipogenic (Fas and Acc) and adipogenic factors (Pparg, C/ebpa, and Srebp1c) in retroperitoneal adipose tissue. In addition, doxorubicin inhibited both lipogenesis and lipolysis and reduced the hormone-sensitive lipase and adipose tissue triacylglycerol lipase protein levels. Therefore, our results demonstrate the impact of doxorubicin on WAT. These results are important to understand some side effects observed in patients receiving chemotherapy and should encourage new adjuvant treatments that aim to inhibit these side effects. PMID:27015538

  19. Lower socioeconomic status, adiposity and negative health behaviours in youth: a cross-sectional observational study

    PubMed Central

    Lord, Sarah; Manlhiot, Cedric; Tyrrell, Pascal N; Dobbin, Stafford; Gibson, Don; Chahal, Nita; Stearne, Karen; Fisher, Amanda; McCrindle, Brian W

    2015-01-01

    Objective Understanding obesity and its modifiable risk factors in youth is key to addressing the burden of cardiovascular disease later in life. Our aim was to examine the associations among adiposity, negative health behaviours and socioeconomic status in youth from the Niagara Region. Design, setting and participants Cross-sectional observational study of 3467 grade 9 students during their mandatory health and physical education class to investigate the association between socioeconomic status (postal code), self-reported health behaviour and adiposity in the Niagara Region, Ontario, Canada. Results Median household income was $63 696 and overall percentage below the after-tax low-income cut-off was 4.2%. Negative health behaviours (especially skipped meals, lower fruit and vegetable consumption, higher screen time) were associated with lower income neighbourhoods, however, the absolute effect was small. Those participants in the lowest income quintile had a significantly greater body mass index z-score than those in the highest (0.72±1.19 vs 0.53±1.12), but the overall trend across quintiles was not statistically significant. A similar trend was noted for waist-to-height ratio. The lowest income neighbourhoods according to after-tax low-income cut-off had small but statistically significant associations with higher adiposity compared with the middle or highest income neighbourhoods. Conclusions Obesity prevention efforts should target modifiable behaviours, with particular attention to adolescents from lower income families and neighbourhoods. PMID:25986642

  20. Ultrastructural study of mouse adipose-derived stromal cells induced towards osteogenic direction.

    PubMed

    Tsupykov, Oleg; Ustymenko, Alina; Kyryk, Vitaliy; Smozhanik, Ekaterina; Yatsenko, Kateryna; Butenko, Gennadii; Skibo, Galina

    2016-06-01

    We investigated the ultrastructural characteristics of mouse adipose-derived stem/stromal cells (ASCs) induced towards osteogenic lineage. ASCs were isolated from adipose tissue of FVB-Cg-Tg(GFPU)5Nagy/J mice and expanded in monolayer culture. Flow cytometry, histochemical staining, and electron microscopy techniques were used to characterize the ASCs with respect to their ability for osteogenic differentiation capacity. Immunophenotypically, ASCs were characterized by high expression of the CD44 and CD90 markers, while the relative content of cells expressing CD45, CD34 and CD117 markers was <2%. In assays of differentiation, the positive response to osteogenic differentiation factors was observed and characterized by deposition of calcium in the extracellular matrix and alkaline phosphatase production. Electron microscopy analysis revealed that undifferentiated ASCs had a rough endoplasmic reticulum with dilated cisterns and elongated mitochondria. At the end of the osteogenic differentiation, the ASCs transformed from their original fibroblast-like appearance to having a polygonal osteoblast-like morphology. Ultrastructurally, these cells were characterized by large euchromatic nucleus and numerous cytoplasm containing elongated mitochondria, a very prominent rough endoplasmic reticulum, Golgi apparatus and intermediate filament bundles. Extracellular matrix vesicles of variable size similar to the calcification nodules were observed among collagen fibrils. Our data provide the ultrastructural basis for further studies on the cellular mechanisms involved in osteogenic differentiation of mouse adipose-derived stem/stromal cells. Microsc. Res. Tech. 79:557-564, 2016. © 2016 Wiley Periodicals, Inc. PMID:27087359

  1. The Adipose Transcriptional Response to Insulin Is Determined by Obesity, Not Insulin Sensitivity.

    PubMed

    Rydén, Mikael; Hrydziuszko, Olga; Mileti, Enrichetta; Raman, Amitha; Bornholdt, Jette; Boyd, Mette; Toft, Eva; Qvist, Veronica; Näslund, Erik; Thorell, Anders; Andersson, Daniel P; Dahlman, Ingrid; Gao, Hui; Sandelin, Albin; Daub, Carsten O; Arner, Peter

    2016-08-30

    Metabolically healthy obese subjects display preserved insulin sensitivity and a beneficial white adipose tissue gene expression pattern. However, this observation stems from fasting studies when insulin levels are low. We investigated adipose gene expression by 5'Cap-mRNA sequencing in 17 healthy non-obese (NO), 21 insulin-sensitive severely obese (ISO), and 30 insulin-resistant severely obese (IRO) subjects, before and 2 hr into a hyperinsulinemic euglycemic clamp. ISO and IRO subjects displayed a clear but globally similar transcriptional response to insulin, which differed from the small effects observed in NO subjects. In the obese, 231 genes were altered; 71 were enriched in ISO subjects (e.g., phosphorylation processes), and 52 were enriched in IRO subjects (e.g., cellular stimuli). Common cardio-metabolic risk factors and gender do not influence these findings. This study demonstrates that differences in the acute transcriptional response to insulin are primarily driven by obesity per se, challenging the notion of healthy obese adipose tissue, at least in severe obesity. PMID:27545890

  2. The role of complement system in adipose tissue-related inflammation.

    PubMed

    Vlaicu, Sonia I; Tatomir, Alexandru; Boodhoo, Dallas; Vesa, Stefan; Mircea, Petru A; Rus, Horea

    2016-06-01

    As the common factor linking adipose tissue to the metabolic context of obesity, insulin resistance and atherosclerosis are associated with a low-grade chronic inflammatory status, to which the complement system is an important contributor. Adipose tissue synthesizes complement proteins and is a target of complement activation. C3a-desArg/acylation-stimulating protein stimulates lipogenesis and affects lipid metabolism. The C3a receptor and C5aR are involved in the development of adipocytes' insulin resistance through macrophage infiltration and the activation of adipose tissue. The terminal complement pathway has been found to be instrumental in promoting hyperglycemia-associated tissue damage, which is characteristic of the major vascular complications of diabetes mellitus and diabetic ketoacidosis. As a mediator of the effects of the terminal complement complex C5b-9, RGC-32 has an impact on energy expenditure as well as lipid and glucose metabolic homeostasis. All of this evidence, taken together, indicates an important role for complement activation in metabolic diseases. PMID:26754764

  3. Interleukin-15 Modulates Adipose Tissue by Altering Mitochondrial Mass and Activity

    PubMed Central

    Barra, Nicole G.; Palanivel, Rengasamy; Denou, Emmanuel; Chew, Marianne V.; Gillgrass, Amy; Walker, Tina D.; Kong, Josh; Richards, Carl D.; Jordana, Manel; Collins, Stephen M.; Trigatti, Bernardo L.; Holloway, Alison C.; Raha, Sandeep; Steinberg, Gregory R.; Ashkar, Ali A.

    2014-01-01

    Interleukin-15 (IL-15) is an immunomodulatory cytokine that affects body mass regulation independent of lymphocytes; however, the underlying mechanism(s) involved remains unknown. In an effort to investigate these mechanisms, we performed metabolic cage studies, assessed intestinal bacterial diversity and macronutrient absorption, and examined adipose mitochondrial activity in cultured adipocytes and in lean IL-15 transgenic (IL-15tg), overweight IL-15 deficient (IL-15−/−), and control C57Bl/6 (B6) mice. Here we show that differences in body weight are not the result of differential activity level, food intake, or respiratory exchange ratio. Although intestinal microbiota differences between obese and lean individuals are known to impact macronutrient absorption, differing gut bacteria profiles in these murine strains does not translate to differences in body weight in colonized germ free animals and macronutrient absorption. Due to its contribution to body weight variation, we examined mitochondrial factors and found that IL-15 treatment in cultured adipocytes resulted in increased mitochondrial membrane potential and decreased lipid deposition. Lastly, IL-15tg mice have significantly elevated mitochondrial activity and mass in adipose tissue compared to B6 and IL-15−/− mice. Altogether, these results suggest that IL-15 is involved in adipose tissue regulation and linked to altered mitochondrial function. PMID:25517731

  4. Increased Gs Signaling in Osteoblasts Reduces Bone Marrow and Whole-Body Adiposity in Male Mice.

    PubMed

    Cain, Corey J; Valencia, Joel T; Ho, Samantha; Jordan, Kate; Mattingly, Aaron; Morales, Blanca M; Hsiao, Edward C

    2016-04-01

    Bone is increasingly recognized as an endocrine organ that can regulate systemic hormones and metabolism through secreted factors. Although bone loss and increased adiposity appear to be linked clinically, whether conditions of increased bone formation can also change systemic metabolism remains unclear. In this study, we examined how increased osteogenesis affects metabolism by using an engineered G protein-coupled receptor, Rs1, to activate Gs signaling in osteoblastic cells in ColI(2.3)(+)/Rs1(+) transgenic mice. We previously showed that these mice have dramatically increased bone formation resembling fibrous dysplasia of the bone. We found that total body fat was significantly reduced starting at 3 weeks of age. Furthermore, ColI(2.3)(+)/Rs1(+) mice showed reduced O2 consumption and respiratory quotient measures without effects on food intake and energy expenditure. The mice had significantly decreased serum triacylglycerides, leptin, and adiponectin. Resting glucose and insulin levels were unchanged; however, glucose and insulin tolerance tests revealed increased sensitivity to insulin. The mice showed resistance to fat accumulation from a high-fat diet. Furthermore, ColI(2.3)(+)/Rs1(+) mouse bones had dramatically reduced mature adipocyte differentiation, increased Wingless/Int-1 (Wnt) signaling, and higher osteoblastic glucose utilization than controls. These findings suggest that osteoblasts can influence both local and peripheral adiposity in conditions of increased bone formation and suggest a role for osteoblasts in the regulation of whole-body adiposity and metabolic homeostasis. PMID:26901092

  5. Effect of T3 hormone on neural differentiation of human adipose derived stem cells.

    PubMed

    Razavi, Shahnaz; Mostafavi, Fatemeh Sadat; Mardani, Mohammad; Zarkesh Esfahani, Hamid; Kazemi, Mohammad; Esfandiari, Ebrahim

    2014-12-01

    Human adult stem cells, which are capable of self-renewal and differentiation into other cell types, can be isolated from various tissues. There are no ethical and rejection problems as in the case of embryonic stem cells, so they are a promising source for cell therapy. The human body contains a great amount of adipose tissue that contains high numbers of mesenchymal stem cells. Human adipose-derived stem cells (hADSCs) could be easily induced to form neuron-like cells, and because of its availability and abundance, we can use it for clinical cell therapy. On the other hand, T3 hormone as a known neurotropic factor has important impressions on the nervous system. The aim of this study was to explore the effects of T3 treatment on neural differentiation of hADSCs. ADSCs were harvested from human adipose tissue, after neurosphere formation, and during final differentiation, treatment with T3 was performed. Immunocytochemistry, real-time RT-PCR, Western blotting techniques were used for detection of nestin, MAP2, and GFAP markers in order to confirm the effects of T3 on neural differentiation of hADSCs. Our results showed an increase in the number of glial cells but reduction in neuronal cells number fallowing T3 treatment. PMID:25431112

  6. CDKN2B expression in adipose tissue of familial combined hyperlipidemia patients[S

    PubMed Central

    Horswell, Stuart D.; Fryer, Lee G. D.; Hutchison, Claire E.; Zindrou, Dlear; Speedy, Helen E.; Town, Margaret-M.; Duncan, Emma J.; Sivapackianathan, Rasheeta; Patel, Hetal N.; Jones, Emma L.; Braithwaite, Adam; Salm, Max P. A.; Neuwirth, Claire K. Y.; Potter, Elizabeth; Anderson, Jonathan R.; Taylor, Kenneth M.; Seed, Mary; Betteridge, D. John; Crook, Martin A.; Wierzbicki, Anthony S.; Scott, James; Naoumova, Rossi P.; Shoulders, Carol C.

    2013-01-01

    The purpose of this study was to determine the core biological processes perturbed in the subcutaneous adipose tissue of familial combined hyperlipidemia (FCHL) patients. Annotation of FCHL and control microarray datasets revealed a distinctive FCHL transcriptome, characterized by gene expression changes regulating five overlapping systems: the cytoskeleton, cell adhesion and extracellular matrix; vesicular trafficking; lipid homeostasis; and cell cycle and apoptosis. Expression values for the cell-cycle inhibitor CDKN2B were increased, replicating data from an independent FCHL cohort. In 3T3-L1 cells, CDKN2B knockdown induced C/EBPα expression and lipid accumulation. The minor allele at SNP site rs1063192 (C) was predicted to create a perfect seed for the human miRNA-323b-5p. A miR-323b-5p mimic significantly reduced endogenous CDKN2B protein levels and the activity of a CDKN2B 3′UTR luciferase reporter carrying the rs1063192 C allele. Although the allele displayed suggestive evidence of association with reduced CDKN2B mRNA in the MuTHER adipose tissue dataset, family studies suggest the association between increased CDKN2B expression and FCHL-lipid abnormalities is driven by factors external to this gene locus. In conclusion, from a comparative annotation analysis of two separate FCHL adipose tissue transcriptomes and a subsequent focus on CDKN2B, we propose that dysfunctional adipogenesis forms an integral part of FCHL pathogenesis. PMID:24103848

  7. Epigenetic and Transcriptional Alterations in Human Adipose Tissue of Polycystic Ovary Syndrome

    PubMed Central

    Kokosar, Milana; Benrick, Anna; Perfilyev, Alexander; Fornes, Romina; Nilsson, Emma; Maliqueo, Manuel; Behre, Carl Johan; Sazonova, Antonina; Ohlsson, Claes; Ling, Charlotte; Stener-Victorin, Elisabet

    2016-01-01

    Genetic and epigenetic factors may predispose women to polycystic ovary syndrome (PCOS), a common heritable disorder of unclear etiology. Here we investigated differences in genome-wide gene expression and DNA methylation in adipose tissue from 64 women with PCOS and 30 controls. In total, 1720 unique genes were differentially expressed (Q < 0.05). Six out of twenty selected genes with largest expression difference (CYP1B1, GPT), genes linked to PCOS (RAB5B) or type 2 diabetes (PPARG, SVEP1), and methylation (DMAP1) were replicated in a separate case-control study. In total, 63,213 sites (P < 0.05) and 440 sites (Q < 0.15) were differently methylated. Thirty differentially expressed genes had corresponding changes in 33 different DNA methylation sites. Moreover, a total number of 1913 pairs of differentially expressed “gene-CpG” probes were significantly correlated after correction for multiple testing and corresponded with 349 unique genes. In conclusion, we identified a large number of genes and pathways that are affected in adipose tissue from women with PCOS. We also identified specific DNA methylation pathways that may affect mRNA expression. Together, these novel findings show that women with PCOS have multiple transcriptional and epigenetic changes in adipose tissue that are relevant for development of the disease. PMID:26975253

  8. Impact of Doxorubicin Treatment on the Physiological Functions of White Adipose Tissue

    PubMed Central

    Cruz, Maysa Mariana; Cunha, Roberta D. C.; Alonso-Vale, Maria Isabel; Oyama, Lila Missae; Nascimento, Claudia M. Oller; Pimentel, Gustavo Duarte; dos Santos, Ronaldo V. T.; Lira, Fabio Santos

    2016-01-01

    White adipose tissue (WAT) plays a fundamental role in maintaining energy balance and important endocrine functions. The loss of WAT modifies adipokine secretion and disrupts homeostasis, potentially leading to severe metabolic effects and a reduced quality of life. Doxorubicin is a chemotherapeutic agent used clinically because of its good effectiveness against various types of cancer. However, doxorubicin has deleterious effects in many healthy tissues, including WAT, liver, and skeletal and cardiac muscles. Our objective was to investigate the effects of doxorubicin on white adipocytes through in vivo and in vitro experiments. Doxorubicin reduced the uptake of glucose by retroperitoneal adipocytes and 3T3-L1 cells via the inhibition of AMP-activated protein kinase Thr172 phosphorylation and glucose transporter 4 content. Doxorubicin also reduced the serum level of adiponectin and, to a greater extent, the expression of genes encoding lipogenic (Fas and Acc) and adipogenic factors (Pparg, C/ebpa, and Srebp1c) in retroperitoneal adipose tissue. In addition, doxorubicin inhibited both lipogenesis and lipolysis and reduced the hormone-sensitive lipase and adipose tissue triacylglycerol lipase protein levels. Therefore, our results demonstrate the impact of doxorubicin on WAT. These results are important to understand some side effects observed in patients receiving chemotherapy and should encourage new adjuvant treatments that aim to inhibit these side effects. PMID:27015538

  9. VEGFB/VEGFR1-Induced Expansion of Adipose Vasculature Counteracts Obesity and Related Metabolic Complications.

    PubMed

    Robciuc, Marius R; Kivelä, Riikka; Williams, Ian M; de Boer, Jan Freark; van Dijk, Theo H; Elamaa, Harri; Tigistu-Sahle, Feven; Molotkov, Dmitry; Leppänen, Veli-Matti; Käkelä, Reijo; Eklund, Lauri; Wasserman, David H; Groen, Albert K; Alitalo, Kari

    2016-04-12

    Impaired angiogenesis has been implicated in adipose tissue dysfunction and the development of obesity and associated metabolic disorders. Here, we report the unexpected finding that vascular endothelial growth factor B (VEGFB) gene transduction into mice inhibits obesity-associated inflammation and improves metabolic health without changes in body weight or ectopic lipid deposition. Mechanistically, the binding of VEGFB to VEGF receptor 1 (VEGFR1, also known as Flt1) activated the VEGF/VEGFR2 pathway and increased capillary density, tissue perfusion, and insulin supply, signaling, and function in adipose tissue. Furthermore, endothelial Flt1 gene deletion enhanced the effect of VEGFB, activating the thermogenic program in subcutaneous adipose tissue, which increased the basal metabolic rate, thus preventing diet-induced obesity and related metabolic complications. In obese and insulin-resistant mice, Vegfb gene transfer, together with endothelial Flt1 gene deletion, induced weight loss and mitigated the metabolic complications, demonstrating the therapeutic potential of the VEGFB/VEGFR1 pathway. PMID:27076080

  10. Differential Roles of Insulin and IGF-1 Receptors in Adipose Tissue Development and Function.

    PubMed

    Boucher, Jeremie; Softic, Samir; El Ouaamari, Abdelfattah; Krumpoch, Megan T; Kleinridders, Andre; Kulkarni, Rohit N; O'Neill, Brian T; Kahn, C Ronald

    2016-08-01

    To determine the roles of insulin and insulin-like growth factor 1 (IGF-1) action in adipose tissue, we created mice lacking the insulin receptor (IR), IGF-1 receptor (IGF1R), or both using Cre-recombinase driven by the adiponectin promoter. Mice lacking IGF1R only (F-IGFRKO) had a ∼25% reduction in white adipose tissue (WAT) and brown adipose tissue (BAT), whereas mice lacking both IR and IGF1R (F-IR/IGFRKO) showed an almost complete absence of WAT and BAT. Interestingly, mice lacking only the IR (F-IRKO) had a 95% reduction in WAT, but a paradoxical 50% increase in BAT with accumulation of large unilocular lipid droplets. Both F-IRKO and F-IR/IGFRKO mice were unable to maintain body temperature in the cold and developed severe diabetes, ectopic lipid accumulation in liver and muscle, and pancreatic islet hyperplasia. Leptin treatment normalized blood glucose levels in both groups. Glucose levels also improved spontaneously by 1 year of age, despite sustained lipodystrophy and insulin resistance. Thus, loss of IR is sufficient to disrupt white fat formation, but not brown fat formation and/or maintenance, although it is required for normal BAT function and temperature homeostasis. IGF1R has only a modest contribution to both WAT and BAT formation and function. PMID:27207537

  11. Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents.

    PubMed

    Bayes-Genis, Antoni; Soler-Botija, Carolina; Farré, Jordi; Sepúlveda, Pilar; Raya, Angel; Roura, Santiago; Prat-Vidal, Cristina; Gálvez-Montón, Carolina; Montero, José Anastasio; Büscher, Dirk; Izpisúa Belmonte, Juan Carlos

    2010-11-01

    Myocardial infarction caused by vascular occlusion results in the formation of nonfunctional fibrous tissue. Cumulative evidence indicates that cell therapy modestly improves cardiac function; thus, novel cell sources with the potential to repair injured tissue are actively sought. Here, we identify and characterize a cell population of cardiac adipose tissue-derived progenitor cells (ATDPCs) from biopsies of human adult cardiac adipose tissue. Cardiac ATDPCs express a mesenchymal stem cell-like marker profile (strongly positive for CD105, CD44, CD166, CD29 and CD90) and have immunosuppressive capacity. Moreover, cardiac ATDPCs have an inherent cardiac-like phenotype and were able to express de novo myocardial and endothelial markers in vitro but not to differentiate into adipocytes. In addition, when cardiac ATDPCs were transplanted into injured myocardium in mouse and rat models of myocardial infarction, the engrafted cells expressed cardiac (troponin I, sarcomeric α-actinin) and endothelial (CD31) markers, vascularization increased, and infarct size was reduced in mice and rats. Moreover, significant differences between control and cell-treated groups were found in fractional shortening and ejection fraction, and the anterior wall remained significantly thicker 30days after cardiac delivery of ATDPCs. Finally, cardiac ATDPCs secreted proangiogenic factors under in vitro hypoxic conditions, suggesting a paracrine effect to promote local vascularization. Our results indicate that the population of progenitor cells isolated from human cardiac adipose tissue (cardiac ATDPCs) may be valid candidates for future use in cell therapy to regenerate injured myocardium. PMID:20713059

  12. Total DDT and dieldrin content of human adipose tissue

    SciTech Connect

    Ahmad, N.; Harsas, W.; Marolt, R.S.; Morton, M.; Pollack, J.K.

    1988-12-01

    As far as the authors could ascertain only 4 well-documented analytical studies have been carried out in Australia determining the total DDT and dieldrin content of human adipose tissue. The latest of these studies was published over 16 years ago. Therefore it is timely and important to re-examine the total DDT and dieldrin concentration within the adipose tissue of the Australian population. The present investigation has analyzed 290 samples of human adipose tissue obtained from Westmead Hospital situated in an outer suburb of Sydney, New South Wales for their content of total DDT and dieldrin.

  13. Adipose-derived stem cells: Implications in tissue regeneration

    PubMed Central

    Tsuji, Wakako; Rubin, J Peter; Marra, Kacey G

    2014-01-01

    Adipose-derived stem cells (ASCs) are mesenchymal stem cells (MSCs) that are obtained from abundant adipose tissue, adherent on plastic culture flasks, can be expanded in vitro, and have the capacity to differentiate into multiple cell lineages. Unlike bone marrow-derived MSCs, ASCs can be obtained from abundant adipose tissue by a minimally invasive procedure, which results in a high number of cells. Therefore, ASCs are promising for regenerating tissues and organs damaged by injury and diseases. This article reviews the implications of ASCs in tissue regeneration. PMID:25126381

  14. IMMUNOLOGICAL GOINGS-ON IN VISCERAL ADIPOSE TISSUE

    PubMed Central

    Mathis, Diane

    2014-01-01

    Chronic, low-grade inflammation of visceral adipose tissue, and systemically, is a critical link between recent strikingly parallel rises in the incidence of obesity and type-2 diabetes. Macrophages have been recognized for some time to be critical participants in obesity-induced inflammation of adipose-tissue. Of late, a score of other cell-types of the innate and adaptive arms of the immune system have been suggested to play a positive or negative role in adipose-tissue infiltrates. This piece reviews the existing data on these new participants; discusses experimental uncertainties, inconsistencies and complexities; and puts forward a minimalist synthetic scheme. PMID:23747244

  15. Laser light propagation in adipose tissue and laser effects on adipose cell membranes

    NASA Astrophysics Data System (ADS)

    Solarte, Efraín; Rebolledo, Aldo; Gutierrez, Oscar; Criollo, William; Neira, Rodrigo; Arroyave, José; Ramírez, Hugo

    2006-01-01

    Recently Neira et al. have presented a new liposuction technique that demonstrated the movement of fat from inside to outside of the cell, using a low-level laser device during a liposuction procedure with Ultrawet solution. The clinical observations, allowed this new surgical development, started a set of physical, histological and pharmacological studies aimed to determine the mechanisms involved in the observed fat mobilization concomitant to external laser application in liposuction procedures. Scanning and Transmission Electron Microscopy, studies show that the cellular arrangement of normal adipose tissue changes when laser light from a diode laser: 10 mW, 635 nm is applied. Laser exposures longer than 6 minutes cause the total destruction of the adipocyte panicles. Detailed observation of the adipose cells show that by short irradiation times (less than four minutes) the cell membrane exhibits dark zones, that collapse by longer laser exposures. Optical measurements show that effective penetration length depends on the laser intensity. Moreover, the light scattering is enhanced by diffraction and subsequent interference effects, and the tumescent solution produces a clearing of the tissue optical medium. Finally, isolate adipose cell observation show that fat release from adipocytes is a concomitant effect between the tumescent solution (adrenaline) and laser light, revealing a synergism which conduces to the aperture, and maybe the disruption, of the cell membrane. All these studies were consistent with a laser induced cellular process, which causes fat release from inside the adipocytes into the intercellular space, besides a strong modification of the cellular membranes.

  16. Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue.

    PubMed

    Šram, Miroslav; Vrselja, Zvonimir; Lekšan, Igor; Ćurić, Goran; Selthofer-Relatić, Kristina; Radić, Radivoje

    2015-01-01

    Introduction. Adipose tissue is the largest endocrine organ, composed of subcutaneous (SAT) and visceral adipose tissue (VAT), the latter being highly associated with coronary artery disease (CAD). Expansion of epicardial adipose tissue (EAT) is linked to CAD. One way of assessing the CAD risk is with low-cost anthropometric measures, although they are inaccurate and cannot discriminate between VAT and SAT. The aim of this study is to evaluate (1) the relationship between EAT thickness, SAT thickness and anthropometric measures in a cohort of patients assessed at the cardiology unit and (2) determine predictive power of anthropometric measures and EAT and SAT thickness in establishment of CAD. Methods. Anthropometric measures were obtained from 53 CAD and 42 non-CAD patients. Vascular and structural statuses were obtained with coronarography and echocardiography, as well as measurements of the EAT and SAT thickness. Results. Anthropometric measures showed moderate positive correlation with EAT and SAT thickness. Anthropometric measures and SAT follow nonlinear S curve relationship with EAT. Strong nonlinear power curve relationship was observed between EAT and SAT thinner than 10 mm. Anthropometric measures and EAT and SAT were poor predictors of CAD. Conclusion. Anthropometric measures and SAT have nonlinear relationship with EAT. EAT thickness and anthropometric measures have similar CAD predictive value. PMID:26124828

  17. Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue

    PubMed Central

    Šram, Miroslav; Vrselja, Zvonimir; Lekšan, Igor; Ćurić, Goran; Selthofer-Relatić, Kristina; Radić, Radivoje

    2015-01-01

    Introduction. Adipose tissue is the largest endocrine organ, composed of subcutaneous (SAT) and visceral adipose tissue (VAT), the latter being highly associated with coronary artery disease (CAD). Expansion of epicardial adipose tissue (EAT) is linked to CAD. One way of assessing the CAD risk is with low-cost anthropometric measures, although they are inaccurate and cannot discriminate between VAT and SAT. The aim of this study is to evaluate (1) the relationship between EAT thickness, SAT thickness and anthropometric measures in a cohort of patients assessed at the cardiology unit and (2) determine predictive power of anthropometric measures and EAT and SAT thickness in establishment of CAD. Methods. Anthropometric measures were obtained from 53 CAD and 42 non-CAD patients. Vascular and structural statuses were obtained with coronarography and echocardiography, as well as measurements of the EAT and SAT thickness. Results. Anthropometric measures showed moderate positive correlation with EAT and SAT thickness. Anthropometric measures and SAT follow nonlinear S curve relationship with EAT. Strong nonlinear power curve relationship was observed between EAT and SAT thinner than 10 mm. Anthropometric measures and EAT and SAT were poor predictors of CAD. Conclusion. Anthropometric measures and SAT have nonlinear relationship with EAT. EAT thickness and anthropometric measures have similar CAD predictive value. PMID:26124828

  18. Conjugated linoleic acid supplementation caused reduction of perilipin1 and aberrant lipolysis in epididymal adipose tissue

    SciTech Connect

    Cai, Demin; Li, Hongji; Zhou, Bo; Han, Liqiang; Zhang, Xiaomei; Yang, Guoyu; Yang, Guoqing

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Conjugated linoleic acid supplementation suppresses perilipin1 in epididymal fat. Black-Right-Pointing-Pointer Conjugated linoleic acid inhibits promoter activity of perilipin1 in 3T3-L1 cells. Black-Right-Pointing-Pointer Conjugated linoleic acids elevate basal but blunt hormone-stimulated lipolysis. -- Abstract: Perilipin1, a coat protein of lipid droplet, plays a key role in adipocyte lipolysis and fat formation of adipose tissues. However, it is not clear how the expression of perilipin1 is affected in the decreased white adipose tissues (WAT) of mice treated with dietary supplement of conjugated linoleic acids (CLA). Here we obtained lipodystrophic mice by dietary administration of CLA which exhibited reduced epididymal (EPI) WAT, aberrant adipocytes and decreased expression of leptin in this tissue. We found both transcription and translation of perilipin1 was suppressed significantly in EPI WAT of CLA-treated mice compared to that of control mice. The gene expression of negative regulator tumor necrosis factor {alpha} (TNF{alpha}) and the positive regulator Peroxisome Proliferator-Activated Receptor-{gamma} (PPAR{gamma}) of perilipin1 was up-regulated and down-regulated, respectively. In cultured 3T3-L1 cells the promoter activity of perilipin1 was dramatically inhibited in the presence of CLA. Using ex vivo experiment we found that the basal lipolysis was elevated but the hormone-stimulated lipolysis blunted in adipose explants of CLA-treated mice compared to that of control mice, suggesting that the reduction of perilipin1 in white adipose tissues may at least in part contribute to CLA-mediated alternation of lipolysis of WAT.

  19. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche1

    PubMed Central

    Templeton, Zach S.; Lie, Wen-Rong; Wang, Weiqi; Rosenberg-Hasson, Yael; Alluri, Rajiv V.; Tamaresis, John S.; Bachmann, Michael H.; Lee, Kitty; Maloney, William J.; Contag, Christopher H.; King, Bonnie L.

    2015-01-01

    BACKGROUND/OBJECTIVES: Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. METHODS: Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. RESULTS: Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. CONCLUSIONS: Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche. PMID:26696367

  20. Association between adiposity and systemic atherosclerosis: a protocol of a cross-sectional autopsy study

    PubMed Central

    Nishizawa, Aline; Suemoto, Claudia Kimie; Farias, Daniela Souza; Campos, Fernanda Marinho; da Silva, Karen Cristina Souza; Cuelho, Anderson; Leite, Renata Elaine Paraízo; Ferretti-Rebustini, Renata Eloah de Lucena; Grinberg, Lea Tenenholz; Farfel, José Marcelo; Jacob-Filho, Wilson; Pasqualucci, Carlos Augusto

    2016-01-01

    Introduction Adiposity has been associated with atherosclerosis in clinical studies. However, few autopsy studies have investigated this association, and they had only examined the coronary artery disease. Moreover, most studies had small sample sizes and were limited to middle-aged or young adults. Our aim is to investigate the association between adiposity and systemic atherosclerosis in an autopsy study. Methods and analysis A sample of 240 deceased with 30 years or more will be evaluated. The sample size was calculated using the lowest correlation coefficient found in previous studies (r=0.109), assuming a power of 90% and α=0.05. We will collect information about sociodemographics, frequency of previous contact of the deceased's next of kin and cardiovascular risk factors. We will measure neck, waist and hip circumferences, weight, height and abdominal subcutaneous tissue thickness, and then we will calculate the body mass index, waist-to-hip ratio, waist-to-height ratio and body shape index. We will also weigh the pericardial and abdominal visceral fat, the heart, and we will measure the left ventricular wall thickness. We will evaluate the presence of myocardial infarction, the degree of atherosclerosis in the aorta, carotid, coronary and cerebral arteries and plaque composition in carotid, coronary and cerebral arteries. For each individual, we will fix arterial and adipose tissue samples in 10% formalin and freeze another adipose tissue sample at −80°C for future studies. Ethics and dissemination Ethical approval was granted by the Ethics Committee of University of Sao Paulo Medical School, Brazil. Results will be submitted for publication in a peer-reviewed journal. PMID:27621828

  1. Group 2 innate lymphoid cells promote beiging of adipose and limit obesity

    PubMed Central

    Brestoff, Jonathan R.; Kim, Brian S.; Saenz, Steven A.; Stine, Rachel R.; Monticelli, Laurel A.; Sonnenberg, Gregory F.; Thome, Joseph J.; Farber, Donna L.; Lutfy, Kabirullah; Seale, Patrick; Artis, David

    2015-01-01

    Obesity is an increasingly prevalent disease regulated by genetic and environmental factors. Emerging studies indicate that immune cells, including monocytes, granulocytes and lymphocytes, regulate metabolic homeostasis and are dysregulated in obesity1,2. Group 2 innate lymphoid cells (ILC2s) can regulate adaptive immunity3,4 and eosinophil and alternatively-activated macrophage responses5, and were recently identified in murine white adipose tissue (WAT)5 where they may act to limit the development of obesity6. However, ILC2s have not been identified in human adipose tissue, and the mechanisms by which ILC2s regulate metabolic homeostasis remain unknown. Here, we identify ILC2s in human WAT and demonstrate that decreased ILC2 responses in WAT are a conserved characteristic of obesity in humans and mice. Interleukin (IL)-33 was found to be critical for the maintenance of ILC2s in WAT and in limiting adiposity in mice by increasing caloric expenditure. This was associated with recruitment of uncoupling protein 1 (UCP1)+ beige adipocytes in WAT, a process known as beiging or browning that regulates caloric expenditure7–9. IL-33-induced beiging was dependent on ILC2s, and IL-33 treatment or transfer of IL-33-elicited ILC2s was sufficient to drive beiging independently of the adaptive immune system, eosinophils or IL-4 receptor signaling. We found that ILC2s produce methionine-enkephalin peptides that can act directly on adipocytes to upregulate Ucp1 expression in vitro and that promote beiging in vivo. Collectively, these studies indicate that in addition to responding to infection or tissue damage, ILC2s can regulate adipose function and metabolic homeostasis in part via production of enkephalin peptides that elicit beiging. PMID:25533952

  2. Beta-Carotene Reduces Body Adiposity of Mice via BCMO1

    PubMed Central

    Hessel, Susanne; Ribot, Joan; Kramer, Evelien; Kiec-Wilk, Beata; Razny, Ursula; Lietz, Georg; Wyss, Adrian; Dembinska-Kiec, Aldona; Palou, Andreu; Keijer, Jaap; Landrier, Jean François; Bonet, M. Luisa; von Lintig, Johannes

    2011-01-01

    Evidence from cell culture studies indicates that β-carotene-(BC)-derived apocarotenoid signaling molecules can modulate the activities of nuclear receptors that regulate many aspects of adipocyte physiology. Two BC metabolizing enzymes, the BC-15,15′-oxygenase (Bcmo1) and the BC-9′,10′-oxygenase (Bcdo2) are expressed in adipocytes. Bcmo1 catalyzes the conversion of BC into retinaldehyde and Bcdo2 into β-10′-apocarotenal and β-ionone. Here we analyzed the impact of BC on body adiposity of mice. To genetically dissect the roles of Bcmo1 and Bcdo2 in this process, we used wild-type and Bcmo1-/- mice for this study. In wild-type mice, BC was converted into retinoids. In contrast, Bcmo1-/- mice showed increased expression of Bcdo2 in adipocytes and β-10′-apocarotenol accumulated as the major BC derivative. In wild-type mice, BC significantly reduced body adiposity (by 28%), leptinemia and adipocyte size. Genome wide microarray analysis of inguinal white adipose tissue revealed a generalized decrease of mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ) target genes. Consistently, the expression of this key transcription factor for lipogenesis was significantly reduced both on the mRNA and protein levels. Despite β-10′-apocarotenoid production, this effect of BC was absent in Bcmo1-/- mice, demonstrating that it was dependent on the Bcmo1-mediated production of retinoids. Our study evidences an important role of BC for the control of body adiposity in mice and identifies Bcmo1 as critical molecular player for the regulation of PPARγ activity in adipocytes PMID:21673813

  3. A Prospective Study of Organochlorines in Adipose Tissue and Risk of Non-Hodgkin Lymphoma

    PubMed Central

    Bräuner, Elvira Vaclavik; Sørensen, Mette; Gaudreau, Eric; LeBlanc, Alain; Eriksen, Kirsten Thorup; Tjønneland, Anne; Overvad, Kim

    2011-01-01

    Background: Exposure to organochlorines has been examined as a potential risk factor for non-Hodgkin lymphoma (NHL), with inconsistent results that may be related to limited statistical power or to imprecise exposure measurements. Objective: Our purpose was to examine associations between organochlorine concentrations in prediagnostic adipose tissue samples and the risk of NHL. Methods: We conducted a case–cohort study using a prospective Danish cohort of 57,053 persons enrolled between 1993 and 1997. Within the cohort we identified 256 persons diagnosed with NHL in the population-based nationwide Danish Cancer Registry and randomly selected 256 subcohort persons. We measured concentrations of 8 pesticides and 10 polychlorinated biphenyl (PCB) congeners in adipose tissue collected upon enrollment. Associations between the 18 organochlorines and NHL were analyzed in Cox regression models, adjusting for body mass index. Results: Incidence rate ratios and confidence intervals (CIs) for interquartile range increases in concentrations of dichlorodiphenyltrichlorethane (DDT), cis-nonachlor, and oxychlordane were 1.35 (95% CI: 1.10, 1.66), 1.13 (95% CI: 0.94, 1.36), and 1.11 (95% CI: 0.89, 1.38), respectively, with monotonic dose–response trends for DDT and cis-nonachlor based on categorical models. The relative risk estimates were higher for men than for women. In contrast, no clear association was found between NHL and PCBs. Conclusion: We found a higher risk of NHL in association with higher adipose tissue levels of DDT, cis-nonachlor, and oxychlordane, but no association with PCBs. This is the first study of organochlorines and NHL using prediagnostic adipose tissue samples in the exposure assessment and provides new environmental health evidence that these organochlorines contribute to NHL risk. PMID:22328999

  4. Adipose-derived stromal cells mediate in vivo adipogenesis, angiogenesis and inflammation in decellularized adipose tissue bioscaffolds.

    PubMed

    Han, Tim Tian Y; Toutounji, Sandra; Amsden, Brian G; Flynn, Lauren E

    2015-12-01

    Decellularized adipose tissue (DAT) has shown promise as an adipogenic bioscaffold for soft tissue augmentation and reconstruction. The objective of the current study was to investigate the effects of allogeneic adipose-derived stem/stromal cells (ASCs) on in vivo fat regeneration in DAT bioscaffolds using an immunocompetent rat model. ASC seeding significantly enhanced angiogenesis and adipogenesis, with cell tracking studies indicating that the newly-forming tissues were host-derived. Incorporating ASCs also mediated the inflammatory response and promoted a more constructive macrophage phenotype. A fraction of the CD163(+) macrophages in the implants expressed adipogenic markers, with higher levels of this "adipocyte-like" phenotype in proximity to the developing adipose tissues. Our results indicate that the combination of ASCs and adipose extracellular matrix (ECM) provides an inductive microenvironment for adipose regeneration mediated by infiltrating host cell populations. The DAT scaffolds are a useful tissue-specific model system for investigating the mechanisms of in vivo adipogenesis that may help to develop a better understanding of this complex process in the context of both regeneration and disease. Overall, combining adipose-derived matrices with ASCs is a highly promising approach for the in situ regeneration of host-derived adipose tissue. PMID:26360790

  5. Isoliquiritigenin Attenuates Adipose Tissue Inflammation in vitro and Adipose Tissue Fibrosis through Inhibition of Innate Immune Responses in Mice

    PubMed Central

    Watanabe, Yasuharu; Nagai, Yoshinori; Honda, Hiroe; Okamoto, Naoki; Yamamoto, Seiji; Hamashima, Takeru; Ishii, Yoko; Tanaka, Miyako; Suganami, Takayoshi; Sasahara, Masakiyo; Miyake, Kensuke; Takatsu, Kiyoshi

    2016-01-01

    Isoliquiritigenin (ILG) is a flavonoid derived from Glycyrrhiza uralensis and potently suppresses NLRP3 inflammasome activation resulting in the improvement of diet-induced adipose tissue inflammation. However, whether ILG affects other pathways besides the inflammasome in adipose tissue inflammation is unknown. We here show that ILG suppresses adipose tissue inflammation by affecting the paracrine loop containing saturated fatty acids and TNF-α by using a co-culture composed of adipocytes and macrophages. ILG suppressed inflammatory changes induced by the co-culture through inhibition of NF-κB activation. This effect was independent of either inhibition of inflammasome activation or activation of peroxisome proliferator-activated receptor-γ. Moreover, ILG suppressed TNF-α-induced activation of adipocytes, coincident with inhibition of IκBα phosphorylation. Additionally, TNF-α-mediated inhibition of Akt phosphorylation under insulin signaling was alleviated by ILG in adipocytes. ILG suppressed palmitic acid-induced activation of macrophages, with decreasing the level of phosphorylated Jnk expression. Intriguingly, ILG improved high fat diet-induced fibrosis in adipose tissue in vivo. Finally, ILG inhibited TLR4- or Mincle-stimulated expression of fibrosis-related genes in stromal vascular fraction from obese adipose tissue and macrophages in vitro. Thus, ILG can suppress adipose tissue inflammation by both inflammasome-dependent and -independent manners and attenuate adipose tissue fibrosis by targeting innate immune sensors. PMID:26975571

  6. Determinants of bone marrow adiposity: the modulation of peroxisome proliferator-activated receptor-γ2 activity as a central mechanism.

    PubMed

    Sadie-Van Gijsen, H; Hough, F S; Ferris, W F

    2013-10-01

    Although the presence of adipocytes in the bone marrow is a normal physiological phenomenon, the role of these cells in bone homeostasis and during pathological states has not yet been fully delineated. As osteoblasts and adipocytes originate from a common progenitor, with an inverse relationship existing between osteoblastogenesis and adipogenesis, bone marrow adiposity often negatively correlates with osteoblast number and bone mineral density. Bone adiposity can be affected by several physiological and pathophysiological factors, with abnormal, elevated marrow fat resulting in a pathological state. This review focuses on the regulation of bone adiposity by physiological factors, including aging, mechanical loading and growth factor expression, as well as the pathophysiological factors, including diseases such as anorexia nervosa and dyslipidemia, and pharmacological agents such as thiazolidinediones and statins. Although these factors regulate bone marrow adiposity via a plethora of different intracellular signaling pathways, these diverse pathways often converge on the modulation of the expression and/or activity of the pro-adipogenic transcription factor peroxisome proliferator-activated receptor (PPAR)-γ2, suggesting that any factor that affects PPAR-γ2 may have an impact on the fat content of bone. PMID:23800517

  7. The Ontogeny of Brown Adipose Tissue.

    PubMed

    Symonds, Michael E; Pope, Mark; Budge, Helen

    2015-01-01

    There are three different types of adipose tissue (AT)-brown, white, and beige-that differ with stage of development, species, and anatomical location. Of these, brown AT (BAT) is the least abundant but has the greatest potential impact on energy balance. BAT is capable of rapidly producing large amounts of heat through activation of the unique uncoupling protein 1 (UCP1) located within the inner mitochondrial membrane. White AT is an endocrine organ and site of lipid storage, whereas beige AT is primarily white but contains some cells that possess UCP1. BAT first appears in the fetus around mid-gestation and is then gradually lost through childhood, adolescence, and adulthood. We focus on the interrelationships between adipocyte classification, anatomical location, and impact of diet in early life together with the extent to which fat development differs between the major species examined. Ultimately, novel dietary interventions designed to reactivate BAT could be possible. PMID:26076904

  8. Brown Adipose Tissue in Cetacean Blubber

    PubMed Central

    Hashimoto, Osamu; Ohtsuki, Hirofumi; Kakizaki, Takehiko; Amou, Kento; Sato, Ryo; Doi, Satoru; Kobayashi, Sara; Matsuda, Ayaka; Sugiyama, Makoto; Funaba, Masayuki; Matsuishi, Takashi; Terasawa, Fumio; Shindo, Junji; Endo, Hideki

    2015-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall’s and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during

  9. Adipose tissue-derived stem cells as a therapeutic tool for cardiovascular disease

    PubMed Central

    Suzuki, Etsu; Fujita, Daishi; Takahashi, Masao; Oba, Shigeyoshi; Nishimatsu, Hiroaki

    2015-01-01

    Adipose tissue-derived stem cells (ADSCs) are adult stem cells that can be easily harvested from subcutaneous adipose tissue. Many studies have demonstrated that ADSCs differentiate into vascular endothelial cells (VECs), vascular smooth muscle cells (VSMCs), and cardiomyocytes in vitro and in vivo. However, ADSCs may fuse with tissue-resident cells and obtain the corresponding characteristics of those cells. If fusion occurs, ADSCs may express markers of VECs, VSMCs, and cardiomyocytes without direct differentiation into these cell types. ADSCs also produce a variety of paracrine factors such as vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor-1 that have proangiogenic and/or antiapoptotic activities. Thus, ADSCs have the potential to regenerate the cardiovascular system via direct differentiation into VECs, VSMCs, and cardiomyocytes, fusion with tissue-resident cells, and the production of paracrine factors. Numerous animal studies have demonstrated the efficacy of ADSC implantation in the treatment of acute myocardial infarction (AMI), ischemic cardiomyopathy (ICM), dilated cardiomyopathy, hindlimb ischemia, and stroke. Clinical studies regarding the use of autologous ADSCs for treating patients with AMI and ICM have recently been initiated. ADSC implantation has been reported as safe and effective so far. Therefore, ADSCs appear to be useful for the treatment of cardiovascular disease. However, the tumorigenic potential of ADSCs requires careful evaluation before their safe clinical application. PMID:26322185

  10. PAFR in adipose tissue macrophages is associated with anti-inflammatory phenotype and metabolic homoeostasis.

    PubMed

    Filgueiras, Luciano Ribeiro; Koga, Marianna Mainardi; Quaresma, Paula G; Ishizuka, Edson Kiyotaka; Montes, Marlise B A; Prada, Patricia O; Saad, Mario J; Jancar, Sonia; Rios, Francisco J

    2016-04-01

    Metabolic dysfunction is associated with adipose tissue inflammation and macrophage infiltration. PAFR (platelet-activating factor receptor) is expressed in several cell types and binds to PAF (platelet-activating factor) and oxidized phospholipids. Engagement of PAFR in macrophages drives them towards the anti-inflammatory phenotype. In the present study, we investigated whether genetic deficiency of PAFR affects the phenotype of ATMs (adipose tissue macrophages) and its effect on glucose and insulin metabolism. PARFKO (PAFR-knockout) and WT (wild-type) mice were fed on an SD (standard diet) or an HFD (high-fat diet). Glucose and insulin tolerance tests were performed by blood monitoring. ATMs were evaluated by FACS for phenotypic markers. Gene and protein expression was investigated by real-time reverse transcription-quantitative PCR and Western blotting respectively. Results showed that the epididymal adipose tissue of PAFRKO mice had increased gene expression of Ccr7, Nos2, Il6 and Il12, associated with pro-inflammatory mediators, and reduced expression of the anti-inflammatory Il10. Moreover, the adipose tissue of PAFRKO mice presented more pro-inflammatory macrophages, characterized by an increased frequency of F4/80(+)CD11c(+) cells. Blood monocytes of PAFRKO mice also exhibited a pro-inflammatory phenotype (increased frequency of Ly6C(+) cells) and PAFR ligands were detected in the serum of both PAFRKO and WT mice. Regarding metabolic parameters, compared with WT, PAFRKO mice had: (i) higher weight gain and serum glucose concentration levels; (ii) decreased insulin-stimulated glucose disappearance; (iii) insulin resistance in the liver; (iv) increased expression of Ldlr in the liver. In mice fed on an HFD, some of these changes were potentiated, particularly in the liver. Thus it seems that endogenous ligands of PAFR are responsible for maintaining the anti-inflammatory profile of blood monocytes and ATMs under physiological conditions. In the absence of

  11. Regional Differences of Proteins Expressing in Adipose Depots Isolated from Cows, Steers and Bulls as Identified by a Proteomic Approach.

    PubMed

    Cho, Jin Hyoung; Jeong, Jin Young; Lee, Ra Ham; Park, Mi Na; Kim, Seok-Ho; Park, Seon-Min; Shin, Jae-Cheon; Jeon, Young-Joo; Shim, Jung-Hyun; Choi, Nag-Jin; Seo, Kang Seok; Cho, Young Sik; Kim, MinSeok S; Ko, Sungho; Seo, Jae-Min; Lee, Seung-Youp; Chae, Jung-Il; Lee, Hyun-Jeong

    2016-08-01

    Adipose tissue in the loin muscle area of beef cattle as a marbling factor is directly associated with beef quality. To elucidate whether properties of proteins involved in depot specific adipose tissue were sex-dependent, we analyzed protein expression of intramuscular adipose tissue (IMAT) and omental adipose tissue (OMAT) from Hanwoo cows, steers, and bulls of Korean native beef cattle by liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis, quantitative polymerase chain reaction (PCR) and western blot analysis. Two different adipose depots (i.e. intramuscular and omental) were collected from cows (n = 7), steers (n = 7), or bulls (n = 7). LC-MS/MS revealed a total of 55 and 35 proteins in IMAT and OMAT, respectively. Of the 55 proteins identified, 44, 40, and 42 proteins were confirmed to be differentially expressed in IMAT of cows, steers, and bulls, respectively. In OMAT of cows, steers, and bulls, 33, 33, and 22 were confirmed to be differentially expressed, respectively. Tropomyosin (TPM) 1, TPM 2, and TPM3 were subjected to verification by quantitative PCR and western blot analysis in IMAT and OMAT of Hanwoo cows, steers, and bulls as key factors closely associated with muscle development. Both mRNA levels and protein levels of TPM1, TPM2, and TPM3 in IMAT were lower in bulls compared to in cows or steers suggesting that they were positively correlated with marbling score and quality grade. Our results may aid the regulation of marbling development and improvement of meat quality grades in beef cattle. PMID:27165017

  12. Regional Differences of Proteins Expressing in Adipose Depots Isolated from Cows, Steers and Bulls as Identified by a Proteomic Approach

    PubMed Central

    Cho, Jin Hyoung; Jeong, Jin Young; Lee, Ra Ham; Park, Mi Na; Kim, Seok-Ho; Park, Seon-Min; Shin, Jae-Cheon; Jeon, Young-Joo;