Science.gov

Sample records for adipose insulin resistance

  1. Visceral adiposity, insulin resistance and cancer risk

    PubMed Central

    2011-01-01

    Background There is a well established link between obesity and cancer. Emerging research is characterising this relationship further and delineating the specific role of excess visceral adiposity, as opposed to simple obesity, in promoting tumorigenesis. This review summarises the evidence from an epidemiological and pathophysiological perspective. Methods Relevant medical literature was identified from searches of PubMed and references cited in appropriate articles identified. Selection of articles was based on peer review, journal and relevance. Results Numerous epidemiological studies consistently identify increased risk of developing carcinoma in the obese. Adipose tissue, particularly viscerally located fat, is metabolically active and exerts systemic endocrine effects. Putative pathophysiological mechanisms linking obesity and carcinogenesis include the paracrine effects of adipose tissue and systemic alterations associated with obesity. Systemic changes in the obese state include chronic inflammation and alterations in adipokines and sex steroids. Insulin and the insulin-like growth factor axis influence tumorigenesis and also have a complex relationship with adiposity. There is evidence to suggest that insulin and the IGF axis play an important role in mediating obesity associated malignancy. Conclusions There is much evidence to support a role for obesity in cancer progression, however further research is warranted to determine the specific effect of excess visceral adipose tissue on tumorigenesis. Investigation of the potential mechanisms underpinning the association, including the role of insulin and the IGF axis, will improve understanding of the obesity and cancer link and may uncover targets for intervention. PMID:21696633

  2. Natural killer T cells in adipose tissue prevent insulin resistance

    PubMed Central

    Schipper, Henk S.; Rakhshandehroo, Maryam; van de Graaf, Stan F.J.; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E.S.; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-01-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell–deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue–resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue–resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance. PMID:22863618

  3. Natural killer T cells in adipose tissue prevent insulin resistance.

    PubMed

    Schipper, Henk S; Rakhshandehroo, Maryam; van de Graaf, Stan F J; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E S; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-09-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell-deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue-resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue-resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance.

  4. Adipose proteome analysis: focus on mediators of insulin resistance

    PubMed Central

    Chen, Xiaoli; Hess, Sonja

    2009-01-01

    As is well known, adipose tissue is an important site for lipid metabolism and insulin-responsive glucose uptake. The recent discovery of the endocrine function of adipose tissue and the association of obesity with chronic low-grade inflammation in adipose tissue has reinforced the concept of the central role of adipose tissue in mediating obesity-linked insulin resistance and metabolic dysregulation. The study of adipose cells has provided new insights into the mechanism underlying insulin resistance as well as the therapeutic strategies for diabetes. Numerous efforts have been made in identifying key molecular regulators of insulin action and metabolism, including the utilization of advanced proteomics technology. Various proteomic approaches have been applied to identify the adipose secretome, protein-expression profiling and post-translational modifications in adipose cells in the pathological state. In this review, we summarize the recent advances in the proteomics of adipose tissue, and discuss the identified proteins that potentially play important roles in insulin resistance and diabetes. PMID:19086862

  5. Related factors of insulin resistance in Korean children: adiposity and maternal insulin resistance.

    PubMed

    Cho, Young-Gyu; Kang, Jae-Heon; Hur, Yang-Im; Song, Jihyun; Lee, Kang-Sook

    2011-12-01

    Increased adiposity and unhealthy lifestyle augment the risk for type 2 diabetes in children with familial predisposition. Insulin resistance (IR) is an excellent clinical marker for identifying children at high risk for type 2 diabetes. This study was conducted to investigate parental, physiological, behavioral and socio-economic factors related to IR in Korean children. This study is a cross-sectional study using data from 111 children aged 7 years and their parents. Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated using fasting glucose and insulin level as a marker of IR. All children's adiposity indices (r = 0.309-0.318, all P-value = 0.001) and maternal levels of fasting insulin (r = 0.285, P-value = 0.003) and HOMA-IR (r = 0.290, P-value = 0.002) were positively correlated with children's HOMA-IR level. There was no statistical difference of children's HOMA-IR level according to children's lifestyle habits and socioeconomic status of families. An increase of 1 percentage point in body fat was related to 2.7% increase in children's HOMA-IR (P-value < 0.001) and an increase of 1% of maternal level of HOMA-IR was related to 0.2% increase in children's HOMA-IR (P-value = 0.002). This study shows that children's adiposity and maternal IR are positively associated with children's IR.

  6. Adropin deficiency is associated with increased adiposity and insulin resistance.

    PubMed

    Ganesh Kumar, K; Zhang, Jingying; Gao, Su; Rossi, Jari; McGuinness, Owen P; Halem, Heather H; Culler, Michael D; Mynatt, Randall L; Butler, Andrew A

    2012-07-01

    Adropin is a secreted peptide that improves hepatic steatosis and glucose homeostasis when administered to diet-induced obese mice. It is not clear if adropin is a peptide hormone regulated by signals of metabolic state. Moreover, the significance of a decline in adropin expression with obesity with respect to metabolic disease is also not clear. We investigated the regulation of serum adropin by metabolic status and diet. Serum adropin levels were high in chow-fed conditions and were suppressed by fasting and diet-induced obesity (DIO). High adropin levels were observed in mice fed a high-fat low carbohydrate diet, whereas lower levels were observed in mice fed a low-fat high carbohydrate diet. To investigate the role of adropin deficiency in metabolic homeostasis, we generated adropin knockout mice (AdrKO) on the C57BL/6J background. AdrKO displayed a 50%-increase in increase in adiposity, although food intake and energy expenditure were normal. AdrKO also exhibited dyslipidemia and impaired suppression of endogenous glucose production (EndoR(a)) in hyperinsulinemic-euglycemic clamp conditions, suggesting insulin resistance. While homo- and heterozygous carriers of the null adropin allele exhibited normal DIO relative to controls, impaired glucose tolerance associated with weight gain was more severe in both groups. In summary, adropin is a peptide hormone regulated by fasting and feeding. In fed conditions, adropin levels are regulated dietary macronutrients, and increase with dietary fat content. Adropin is not required for regulating food intake, however, its functions impact on adiposity and are involved in preventing insulin resistance, dyslipidemia, and impaired glucose tolerance.

  7. Adropin Deficiency Is Associated With Increased Adiposity and Insulin Resistance

    PubMed Central

    Kumar, K. Ganesh; Zhang, Jingying; Gao, Su; Rossi, Jari; McGuinness, Owen P.; Halem, Heather H.; Culler, Michael D.; Mynatt, Randall L.; Butler, Andrew A.

    2014-01-01

    Adropin is a secreted peptide that improves hepatic steatosis and glucose homeostasis when administered to diet-induced obese mice. It is not clear if adropin is a peptide hormone regulated by signals of metabolic state. Moreover, the significance of a decline in adropin expression with obesity with respect to metabolic disease is also not clear. We investigated the regulation of serum adropin by metabolic status and diet. Serum adropin levels were high in chow-fed conditions and were suppressed by fasting and diet-induced obesity (DIO). High adropin levels were observed in mice fed a high-fat low carbohydrate diet, whereas lower levels were observed in mice fed a low-fat high carbohydrate diet. To investigate the role of adropin deficiency in metabolic homeostasis, we generated adropin knockout mice (AdrKO) on the C57BL/6J background. AdrKO displayed a 50%-increase in increase in adiposity, although food intake and energy expenditure were normal. AdrKO also exhibited dyslipidemia and impaired suppression of endogenous glucose production (EndoRa) in hyperinsulinemic–euglycemic clamp conditions, suggesting insulin resistance. While homo- and heterozygous carriers of the null adropin allele exhibited normal DIO relative to controls, impaired glucose tolerance associated with weight gain was more severe in both groups. In summary, adropin is a peptide hormone regulated by fasting and feeding. In fed conditions, adropin levels are regulated dietary macronutrients, and increase with dietary fat content. Adropin is not required for regulating food intake, however, its functions impact on adiposity and are involved in preventing insulin resistance, dyslipidemia, and impaired glucose tolerance. PMID:22318315

  8. Lipokines and oxysterols: novel adipose-derived lipid hormones linking adipose dysfunction and insulin resistance.

    PubMed

    Murdolo, Giuseppe; Bartolini, Desirée; Tortoioli, Cristina; Piroddi, Marta; Iuliano, Luigi; Galli, Francesco

    2013-12-01

    The expansion of adipose tissue (AT) is, by definition, a hallmark of obesity. However, not all increases in fat mass are associated with pathophysiological cues. Indeed, whereas a "healthy" fat mass accrual, mainly in the subcutaneous depots, preserves metabolic homeostasis, explaining the occurrence of the metabolically healthy obese phenotype, "unhealthy" AT expansion is importantly associated with insulin resistance/type 2 diabetes and the metabolic syndrome. The development of a dysfunctional adipose organ may find mechanistic explanation in a reduced ability to recruit new and functional (pre)adipocytes from undifferentiated precursor cells. Such a failure of the adipogenic process underlies the "AT expandability" paradigm. The inability of AT to expand further to store excess nutrients, rather than obesity per se, induces a diabetogenic milieu by promoting the overflow and the ectopic deposition of fatty acids in insulin-dependent organs (i.e., lipotoxicity), the secretion of various metabolically detrimental adipose-derived hormones (i.e., adipokines and lipokines), and the occurrence of local and systemic inflammation and oxidative stress. Hitherto, fatty acids (i.e., lipokines) and the oxidation by-products of cholesterol and polyunsaturated fatty acids, such as nonenzymatic oxysterols and reactive aldehyde species, respectively, emerge as key modulators of (pre)adipocyte signaling through Wnt/β-catenin and MAPK pathways and potential regulators of glucose homeostasis. These and other mechanistic insights linking adipose dysfunction, oxidative stress, and impairment of glucose homeostasis are discussed in this review article, which focuses on adipose peroxidation as a potential instigator of, and a putative therapeutic target for, obesity-associated metabolic dysfunctions.

  9. Ginsenoside Rg5 Inhibits Succinate-Associated Lipolysis in Adipose Tissue and Prevents Muscle Insulin Resistance

    PubMed Central

    Xiao, Na; Yang, Le-Le; Yang, Yi-Lin; Liu, Li-Wei; Li, Jia; Liu, Baolin; Liu, Kang; Qi, Lian-Wen; Li, Ping

    2017-01-01

    Endoplasmic reticulum (ER) stress, inflammation, and lipolysis occur simultaneously in adipose dysfunction and contribute to insulin resistance. This study was designed to investigate whether ginsenoside Rg5 could ameliorate adipose dysfunction and prevent muscle insulin resistance. Short-term high-fat diet (HFD) feeding induced hypoxia with ER stress in adipose tissue, leading to succinate accumulation due to the reversal of succinate dehydrogenase (SDH) activity. Rg5 treatment reduced cellular energy charge, suppressed ER stress and then prevented succinate accumulation in adipose tissue. Succinate promoted IL-1β production through NLRP3 inflammasome activation and then increased cAMP accumulation by impairing PDE3B expression, leading to increased lipolysis. Ginsenoside Rg5 treatment suppressed NLRP3 inflammasome activation, preserved PDE3B expression and then reduced cAMP accumulation, contributing to inhibition of lipolysis. Adipose lipolysis increased FFAs trafficking from adipose tissue to muscle. Rg5 reduced diacylglycerol (DAG) and ceramides accumulation, inhibited protein kinase Cθ translocation, and prevented insulin resistance in muscle. In conclusion, succinate accumulation in hypoxic adipose tissue acts as a metabolic signaling to link ER stress, inflammation and cAMP/PKA activation, contributing to lipolysis and insulin resistance. These findings establish a previously unrecognized role of ginsenosides in the regulation of lipid and glucose homeostasis and suggest that adipose succinate-associated NLRP3 inflammasome activation might be targeted therapeutically to prevent lipolysis and insulin resistance. PMID:28261091

  10. Subcutaneous Adipose Cell Size and Distribution: Relationship to Insulin Resistance and Body Fat

    PubMed Central

    McLaughlin, T; Lamendola, C; Coghlan, N; Liu, TC; Lerner, K; Sherman, A; Cushman, SW

    2015-01-01

    Metabolic heterogeneity among obese individuals may be attributable to differences in adipose cell size. We sought to clarify this by quantifying adipose cell-size distribution, body fat, and insulin-mediated glucose uptake in overweight/moderately-obese individuals. 148 healthy nondiabetic subjects with BMI 25–38 kg/m2 underwent subcutaneous adipose tissue biopsies and quantification of insulin-mediated glucose uptake with steady-state plasma glucose concentrations (SSPG) during the modified insulin suppression test. Cell-size distributions were obtained with Beckman Coulter Multisizer. Primary endpoints included % small adipose cells and diameter of large adipose cells. Cell-size and metabolic parameters were compared by regression for the whole group; according to IR and IS subgroups; and by body fat quintile. Both large and small adipose cells were present in nearly equal proportions. Percent small cells was associated with SSPG (r=0.26, p=0.003). Compared to BMI-matched IS individuals, IR counterparts demonstrated fewer, but larger large adipose cells, and a greater proportion of small-to-large adipose cells. Diameter of the large adipose cells was associated with %body fat (r=0.26, p=0.014), female sex (r=0.21, p=0.036), and SSPG (r=0.20, p=0.012). In the highest vs lowest % body fat quintile, adipose cell size increased by only 7% whereas adipose cell number increased by 74%. Recruitment of adipose cells is required for expansion of body fat mass beyond BMI of 25 kg/m2. Insulin resistance is associated with accumulation of small adipose cells and enlargement of large adipose cells. These data support the notion that impaired adipogenesis may underlie insulin resistance. PMID:23666871

  11. The adaptive immune system as a fundamental regulator of adipose tissue inflammation and insulin resistance.

    PubMed

    Winer, Shawn; Winer, Daniel A

    2012-09-01

    Over the past decade, chronic inflammation in visceral adipose tissue (VAT) has gained acceptance as a lead promoter of insulin resistance in obesity. A great deal of evidence has pointed to the role of adipokines and innate immune cells, in particular, adipose tissue macrophages, in the regulation of fat inflammation and glucose homeostasis. However, more recently, cells of the adaptive immune system, specifically B and T lymphocytes, have emerged as unexpected promoters and controllers of insulin resistance. These adaptive immune cells infiltrate obesity expanded VAT and through cytokine secretion and macrophage modulation dictate the extent of the local inflammatory response, thereby directly impacting insulin resistance. The remarkable ability of our adaptive immune system to regulate insulin sensitivity and metabolism has unmasked a novel physiological function of this system, and promises new diagnostic and therapeutic strategies to manage the disease. This review highlights critical roles of adipose tissue lymphocytes in governing glucose homeostasis.

  12. Dietary patterns, insulin sensitivity and adiposity in the multi-ethnic Insulin Resistance Atherosclerosis Study population.

    PubMed

    Liese, Angela D; Schulz, Mandy; Moore, Charity G; Mayer-Davis, Elizabeth J

    2004-12-01

    Epidemiological investigations increasingly employ dietary-pattern techniques to fully integrate dietary data. The present study evaluated the relationship of dietary patterns identified by cluster analysis with measures of insulin sensitivity (SI) and adiposity in the multi-ethnic, multi-centre Insulin Resistance Atherosclerosis Study (IRAS, 1992-94). Cross-sectional data from 980 middle-aged adults, of whom 67 % had normal and 33 % had impaired glucose tolerance, were analysed. Usual dietary intake was obtained by an interviewer-administered, validated food-frequency questionnaire. Outcomes included SI, fasting insulin (FI), BMI and waist circumference. The relationship of dietary patterns to log(SI+1), log(FI), BMI and waist circumference was modelled with multivariable linear regressions. Cluster analysis identified six distinct diet patterns--'dark bread', 'wine', 'fruits', 'low-frequency eaters', 'fries' and 'white bread'. The 'white bread' and the 'fries' patterns over-represented the Hispanic IRAS population predominantly from two centres, while the 'wine' and 'dark bread' groups were dominated by non-Hispanic whites. The dietary patterns were associated significantly with each of the outcomes first at the crude, clinical level (P<0.001). Furthermore, they were significantly associated with FI, BMI and waist circumference independent of age, sex, race or ethnicity, clinic, family history of diabetes, smoking and activity (P<0.004), whereas significance was lost for SI. Studying the total dietary behaviour via a pattern approach allowed us to focus both on the qualitative and quantitative dimensions of diet. The present study identified highly consistent associations of distinct dietary patterns with measures of insulin resistance and adiposity, which are risk factors for diabetes and heart disease.

  13. Crif1 Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice

    PubMed Central

    Ryu, Min Jeong; Kim, Soung Jung; Kim, Yong Kyung; Choi, Min Jeong; Tadi, Surendar; Lee, Min Hee; Lee, Seong Eun; Chung, Hyo Kyun; Jung, Saet Byel; Kim, Hyun-Jin; Jo, Young Suk; Kim, Koon Soon; Lee, Sang-Hee; Kim, Jin Man; Kweon, Gi Ryang; Park, Ki Cheol; Lee, Jung Uee; Kong, Young Yun; Lee, Chul-Ho; Chung, Jongkyeong; Shong, Minho

    2013-01-01

    Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance. PMID:23516375

  14. Increased adipose tissue expression of Grb14 in several models of insulin resistance.

    PubMed

    Cariou, Bertrand; Capitaine, Nadège; Le Marcis, Véronique; Vega, Nathalie; Béréziat, Véronique; Kergoat, Micheline; Laville, Martine; Girard, Jean; Vidal, Hubert; Burnol, Anne-Françoise

    2004-06-01

    Grb14 is an effector of insulin signaling, which directly inhibits insulin receptor catalytic activity in vitro. Here, we investigated whether the expression of Grb14 and its binding partner ZIP (PKC zeta interacting protein) is regulated during insulin resistance in type 2 diabetic rodents and humans. Grb14 expression was increased in adipose tissue of both ob/ob mice and Goto-Kakizaki (GK) rats, whereas there was no difference in liver. An increase was also observed in subcutaneous adipose tissue of type 2 diabetic subjects when compared with controls. ZIP expression was increased in adipose tissue of ob/ob mice and type 2 diabetic patients, but it did not vary in GK rats. Hormonal regulation of Grb14 and ZIP expression was then investigated in 3T3-F442A adipocytes. In this model, insulin stimulated Grb14 expression, while TNF-alpha increased ZIP expression. Moreover, the insulin-sensitizing drugs thiazolidinediones (TZDs) decreased Grb14 expression in 3T3-F442A adipocytes. Finally, we investigated the dynamic regulation of Grb14 expression in ob/ob mice in several conditions improving their insulin sensitivity. Prolonged fasting and treatment with metformin significantly decreased Grb14 expression in peri-epidydimal adipose tissue, while there was only a trend to a diminution after TZD treatment. Taken together, these results suggest that the regulation of Grb14 expression in adipose tissue may play a physiological role in insulin sensitivity.

  15. Amelioration of insulin resistance by rosiglitazone is associated with increased adipose cell size in obese type 2 diabetic patients

    PubMed Central

    Eliasson, Bjorn; Smith, Ulf; Mullen, Shawn; Cushman, Samuel W; Sherman, Arthur S; Yang, Jian

    2014-01-01

    Early studies reported that the size of adipose cells positively correlates with insulin resistance, but recent evidence suggests that the relationship between adipose cell size and insulin resistance is more complex. We previously reported that among BMI-matched moderately obese subjects who were either insulin sensitive or resistant insulin resistance correlated with the proportion of small adipose cells, rather than the size of the large adipose cells, whereas the size of large adipose cells was found to be a predictor of insulin resistance in the first-degree relatives of type 2 diabetic (T2D) patients. The relationship between adipose cellularity and insulin resistance thus appears to depend on the metabolic state of the individual. We did a longitudinal study with T2D patients treated with the insulin-sensitizer rosiglitazone to test the hypothesis that improved insulin sensitivity is associated with increased adipocyte size. Eleven T2D patients were recruited and treated with rosiglitazone for 90 days. Blood samples and needle biopsies of abdominal subcutaneous fat were taken at six time points and analyzed for cell size distributions. Rosiglitazone treatment ameliorated insulin resistance as evidenced by significantly decreased fasting plasma glucose and increased index of insulin sensitivity, QUICKI. In association with this, we found significantly increased size of the large adipose cells and, with a weaker effect, increased proportion of small adipose cells. We conclude rosiglitazone treatment both enlarges existing large adipose cells and recruits new small adipose cells in T2D patients, improving fat storage capacity in adipose tissue and thus systemic insulin sensitivity. PMID:26317056

  16. Insulin Resistance in Adipose Tissue but Not in Liver Is Associated with Aortic Valve Calcification.

    PubMed

    Jorge-Galarza, Esteban; Posadas-Romero, Carlos; Torres-Tamayo, Margarita; Medina-Urrutia, Aida X; Rodas-Díaz, Marco A; Posadas-Sánchez, Rosalinda; Vargas-Alarcón, Gilberto; González-Salazar, María Del Carmen; Cardoso-Saldaña, Guillermo C; Juárez-Rojas, Juan G

    2016-01-01

    Background. Insulin resistance is involved in the pathogenesis of cardiovascular disease, but its relationship with cardiovascular calcification has yielded conflicting results. The purpose of the present study was to investigate the role of hepatic and adipose tissue insulin resistance on the presence of coronary artery (CAC > 0) and aortic valve calcification (AVC > 0). Methods. In 1201 subjects (52% women, 53.6 ± 9.3 years old) without familiar and personal history of coronary heart disease, CAC and AVC were assessed by multidetector-computed tomography. Cardiovascular risk factors were documented and lipid profile, inflammation markers, glucose, insulin, and free fatty acids were measured. Hepatic insulin resistance (HOMA-IR) and adipose tissue insulin resistance (Adipo-IR) indices were calculated. Results. There was a significant relationship between HOMA-IR and Adipo-IR indices (r = 0.758, p < 0.001). Participants in the highest quartiles of HOMA-IR and Adipo-IR indices had a more adverse cardiovascular profile and higher prevalence of CAC > 0 and AVC > 0. After full adjustment, subjects in the highest quartile of Adipo-IR index had higher odds of AVC > 0 (OR: 2.40; 95% CI: 1.30-4.43), as compared to those in the lowest quartile. Conclusions. Adipo-IR was independently associated with AVC > 0. This suggests that abnormal adipose tissue function favors insulin resistance that may promote the development and progression of AVC.

  17. Insulin Resistance in Adipose Tissue but Not in Liver Is Associated with Aortic Valve Calcification

    PubMed Central

    Jorge-Galarza, Esteban; Torres-Tamayo, Margarita; Rodas-Díaz, Marco A.; Posadas-Sánchez, Rosalinda; González-Salazar, María del Carmen; Cardoso-Saldaña, Guillermo C.

    2016-01-01

    Background. Insulin resistance is involved in the pathogenesis of cardiovascular disease, but its relationship with cardiovascular calcification has yielded conflicting results. The purpose of the present study was to investigate the role of hepatic and adipose tissue insulin resistance on the presence of coronary artery (CAC > 0) and aortic valve calcification (AVC > 0). Methods. In 1201 subjects (52% women, 53.6 ± 9.3 years old) without familiar and personal history of coronary heart disease, CAC and AVC were assessed by multidetector-computed tomography. Cardiovascular risk factors were documented and lipid profile, inflammation markers, glucose, insulin, and free fatty acids were measured. Hepatic insulin resistance (HOMA-IR) and adipose tissue insulin resistance (Adipo-IR) indices were calculated. Results. There was a significant relationship between HOMA-IR and Adipo-IR indices (r = 0.758, p < 0.001). Participants in the highest quartiles of HOMA-IR and Adipo-IR indices had a more adverse cardiovascular profile and higher prevalence of CAC > 0 and AVC > 0. After full adjustment, subjects in the highest quartile of Adipo-IR index had higher odds of AVC > 0 (OR: 2.40; 95% CI: 1.30–4.43), as compared to those in the lowest quartile. Conclusions. Adipo-IR was independently associated with AVC > 0. This suggests that abnormal adipose tissue function favors insulin resistance that may promote the development and progression of AVC. PMID:28127113

  18. B Lymphocytes in obesity related adipose tissue inflammation and insulin resistance

    PubMed Central

    Winer, Daniel A.; Winer, Shawn; Chng, Melissa H. Y.; Shen, Lei; Engleman, Edgar G.

    2013-01-01

    Obesity related insulin resistance is a chronic inflammatory condition that often gives rise to type 2 diabetes (T2D). Much evidence supports a role for pro-inflammatory T cells and macrophages in promoting local inflammation in tissues such as visceral adipose tissue (VAT) leading to insulin resistance. More recently, B cells have emerged as an additional critical player in orchestrating these processes. B cells infiltrate VAT and display functional and phenotypic changes in response to diet induced obesity. B cells contribute to insulin resistance by presenting antigens to T cells, secreting inflammatory cytokines and producing pathogenic antibodies. B cell manipulation represents a novel approach to the treatment of obesity related insulin resistance and potentially to the prevention of T2D. This review summarizes the roles of B cells in governing VAT inflammation and the mechanisms by which these cells contribute to altered glucose homeostasis in insulin resistance. PMID:24127133

  19. Impaired tethering and fusion of GLUT4 vesicles in insulin-resistant human adipose cells.

    PubMed

    Lizunov, Vladimir A; Lee, Jo-Ping; Skarulis, Monica C; Zimmerberg, Joshua; Cushman, Samuel W; Stenkula, Karin G

    2013-09-01

    Systemic glucose homeostasis is profoundly influenced by adipose cell function. Here we investigated GLUT4 dynamics in living adipose cells from human subjects with varying BMI and insulin sensitivity index (Si) values. Cells were transfected with hemagglutinin (HA)-GLUT4-green fluorescent protein (GFP)/mCherry (red fluorescence), and were imaged live using total internal reflection fluorescence and confocal microscopy. HA-GLUT4-GFP redistribution to the plasma membrane (PM) was quantified by surface-exposed HA epitope. In the basal state, GLUT4 storage vesicle (GSV) trafficking to and fusion with the PM were invariant with donor subject Si, as was total cell-surface GLUT4. In cells from insulin-sensitive subjects, insulin augmented GSV tethering and fusion approximately threefold, resulting in a corresponding increase in total PM GLUT4. However, with decreasing Si, these effects diminished progressively. All insulin-induced effects on GLUT4 redistribution and trafficking correlated strongly with Si and only weakly with BMI. Thus, while basal GLUT4 dynamics and total cell-surface GLUT4 are intact in human adipose cells, independent of donor Si, cells from insulin-resistant donors show markedly impaired GSV tethering and fusion responses to insulin, even after overnight culture. This altered insulin responsiveness is consistent with the hypothesis that adipose cellular dysfunction is a primary contributor to systemic metabolic dysfunction.

  20. (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: Mechanistic insights

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is associated with the metabolic syndrome, a significant risk factor for developing type-2 diabetes and cardiovascular diseases. A chronic low-grade inflammation occurring in the adipose tissue of obese individuals is causally linked to the pathogenesis of insulin resistance and the metaboli...

  1. Impact of Adiposity on Incident Hypertension Is Modified by Insulin Resistance in Adults: Longitudinal Observation From the Bogalusa Heart Study.

    PubMed

    Zhang, Tao; Zhang, Huijie; Li, Shengxu; Li, Ying; Liu, Yaozhong; Fernandez, Camilo; Harville, Emily; Bazzano, Lydia; He, Jiang; Chen, Wei

    2016-01-01

    Adiposity and insulin resistance are closely associated with hypertension. This study aims to investigate whether the association between adiposity and hypertension is modified by insulin resistance. The cohort consisted of 1624 middle-aged normotensive black and white adults aged 18 to 43 years at baseline who followed for 16 years on average. Overweight/obesity at baseline was defined as body mass index (BMI) ≥25, and insulin resistance was measured using homeostasis model assessment of insulin resistance. Prevalence of incident hypertension was compared between the insulin-sensitive adiposity and insulin-resistant adiposity groups. The prevalence of incident hypertension was higher in the insulin-resistant adiposity than in the insulin-sensitive adiposity group (32.1% versus 22.1%, P<0.001). In multivariable logistic analyses, adjusted for baseline age, race, sex, follow-up years, and smoking, baseline insulin-resistant obesity was associated with incident hypertension (odds ratio, 1.9; P=0.008). Odds ratios did not differ between blacks and whites (P=0.238). Of note, the odds ratios of BMI associated with hypertension significantly increased with increasing quartiles of baseline homeostasis model assessment (odds ratio, 1.3, 1.1, 1.5, and 2.5 in quartiles I, II, III, and IV, respectively; P=0.006 for trend). Slopes of increasing follow-up blood pressure with baseline BMI, measured as regression coefficients (β), were significantly greater in insulin-resistant than in insulin-sensitive individuals (β=0.74 versus β=0.35 for systolic blood pressure, P=0.004 for difference; β=0.51 versus β=0.23 for diastolic blood pressure, P=0.001 for difference). These findings suggest that insulin resistance has a synergistic effect on the obesity-hypertension association in young adults, indicating that the role of adiposity in the development of hypertension is modified by insulin resistance.

  2. Insulin resistance is associated with altered amino acid metabolism and adipose tissue dysfunction in normoglycemic women

    PubMed Central

    Wiklund, Petri; Zhang, Xiaobo; Pekkala, Satu; Autio, Reija; Kong, Lingjia; Yang, Yifan; Keinänen-Kiukaanniemi, Sirkka; Alen, Markku; Cheng, Sulin

    2016-01-01

    Insulin resistance is associated adiposity, but the mechanisms are not fully understood. In this study, we aimed to identify early metabolic alterations associated with insulin resistance in normoglycemic women with varying degree of adiposity. One-hundred and ten young and middle-aged women were divided into low and high IR groups based on their median HOMA-IR (0.9 ± 0.4 vs. 2.8 ± 1.2). Body composition was assessed using DXA, skeletal muscle and liver fat by proton magnetic resonance spectroscopy, serum metabolites by nuclear magnetic resonance spectroscopy and adipose tissue and skeletal muscle gene expression by microarrays. High HOMA-IR subjects had higher serum branched-chain amino acid concentrations (BCAA) (p < 0.05 for both). Gene expression analysis of subcutaneous adipose tissue revealed significant down-regulation of genes related to BCAA catabolism and mitochondrial energy metabolism and up-regulation of several inflammation-related pathways in high HOMA-IR subjects (p < 0.05 for all), but no differentially expressed genes in skeletal muscle were found. In conclusion, in normoglycemic women insulin resistance was associated with increased serum BCAA concentrations, down-regulation of mitochondrial energy metabolism and increased expression of inflammation-related genes in the adipose tissue. PMID:27080554

  3. IRF3 promotes adipose inflammation and insulin resistance and represses browning

    PubMed Central

    Wang, Xun; Lyubetskaya, Anna; Eguchi, Jun; Kang, Sona; Tenen, Danielle; Roh, Hyun Cheol; Kong, Xingxing; Kazak, Lawrence; Ahmad, Rasheed; Rosen, Evan D.

    2016-01-01

    The chronic inflammatory state that accompanies obesity is a major contributor to insulin resistance and other dysfunctional adaptations in adipose tissue. Cellular and secreted factors promote the inflammatory milieu of obesity, but the transcriptional pathways that drive these processes are not well described. Although the canonical inflammatory transcription factor NF-κB is considered to be the major driver of adipocyte inflammation, members of the interferon regulatory factor (IRF) family may also play a role in this process. Here, we determined that IRF3 expression is upregulated in the adipocytes of obese mice and humans. Signaling through TLR3 and TLR4, which lie upstream of IRF3, induced insulin resistance in murine adipocytes, while IRF3 knockdown prevented insulin resistance. Furthermore, improved insulin sensitivity in IRF3-deficient mice was associated with reductions in intra-adipose and systemic inflammation in the high fat–fed state, enhanced browning of subcutaneous fat, and increased adipose expression of GLUT4. Taken together, the data indicate that IRF3 is a major transcriptional regulator of adipose inflammation and is involved in maintaining systemic glucose and energy homeostasis. PMID:27400129

  4. Adipose tissue α-linolenic acid is inversely associated with insulin resistance in adults1

    PubMed Central

    Sabaté, Joan

    2016-01-01

    Background: There is emerging evidence of the beneficial effects of n–3 (ω-3) fatty acids (FAs) on cardiometabolic risk factors. Nevertheless, not much is known about the association between adipose tissue α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) and insulin resistance. Objective: We determined the association between adipose tissue n–3 FAs (total n–3 FAs, ALA, and EPA plus DHA) and insulin resistance in healthy adults. Design: In this cross-sectional study, multivariable analyses were used to assess the association between adipose tissue FAs (ALA, EPA plus DHA, and total n–3 FAs) and the homeostasis model assessment of insulin resistance (HOMA-IR) in a subset of adult participants (n = 716; mean age: 58 y) from the Adventist Health Study-2 (AHS-2) cohort. Results: Compared with the lowest tertile, the third tertile (β = −0.13; 95% CI: −0.24, −0.01) of adipose tissue ALA was inversely associated with the HOMA-IR. When stratified by waist circumference, ALA continued to be inversely associated [third tertile: β = −0.17 (95% CI: −0.31, −0.02)] with the HOMA-IR in subjects with a waist circumference ≤88 cm in women or ≤102 cm in men but not in those with a larger waist circumference. No significant association was noted between adipose tissue EPA plus DHA and HOMA-IR. Conclusions: Higher adipose tissue ALA was inversely associated with insulin resistance in this cohort of healthy adult men and women. This finding appears to be more pronounced in individuals with a normal waist circumference. PMID:26912497

  5. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance.

    PubMed

    Lotta, Luca A; Gulati, Pawan; Day, Felix R; Payne, Felicity; Ongen, Halit; van de Bunt, Martijn; Gaulton, Kyle J; Eicher, John D; Sharp, Stephen J; Luan, Jian'an; De Lucia Rolfe, Emanuella; Stewart, Isobel D; Wheeler, Eleanor; Willems, Sara M; Adams, Claire; Yaghootkar, Hanieh; Forouhi, Nita G; Khaw, Kay-Tee; Johnson, Andrew D; Semple, Robert K; Frayling, Timothy; Perry, John R B; Dermitzakis, Emmanouil; McCarthy, Mark I; Barroso, Inês; Wareham, Nicholas J; Savage, David B; Langenberg, Claudia; O'Rahilly, Stephen; Scott, Robert A

    2017-01-01

    Insulin resistance is a key mediator of obesity-related cardiometabolic disease, yet the mechanisms underlying this link remain obscure. Using an integrative genomic approach, we identify 53 genomic regions associated with insulin resistance phenotypes (higher fasting insulin levels adjusted for BMI, lower HDL cholesterol levels and higher triglyceride levels) and provide evidence that their link with higher cardiometabolic risk is underpinned by an association with lower adipose mass in peripheral compartments. Using these 53 loci, we show a polygenic contribution to familial partial lipodystrophy type 1, a severe form of insulin resistance, and highlight shared molecular mechanisms in common/mild and rare/severe insulin resistance. Population-level genetic analyses combined with experiments in cellular models implicate CCDC92, DNAH10 and L3MBTL3 as previously unrecognized molecules influencing adipocyte differentiation. Our findings support the notion that limited storage capacity of peripheral adipose tissue is an important etiological component in insulin-resistant cardiometabolic disease and highlight genes and mechanisms underpinning this link.

  6. Short-term in vivo inhibition of insulin receptor substrate-1 expression leads to insulin resistance, hyperinsulinemia, and increased adiposity.

    PubMed

    Araújo, Eliana P; De Souza, Cláudio T; Gasparetti, Alessandra L; Ueno, Mirian; Boschero, Antonio C; Saad, Mário J A; Velloso, Lício A

    2005-03-01

    Insulin receptor substrate-1 (IRS-1) has an important role as an early intermediary between the insulin and IGF receptors and downstream molecules that participate in insulin and IGF-I signal transduction. Here we employed an antisense oligonucleotide (IRS-1AS) to inhibit whole-body expression of IRS-1 in vivo and evaluate the consequences of short-term inhibition of IRS-1 in Wistar rats. Four days of treatment with IRS-1AS reduced the expression of IRS-1 by 80, 75, and 65% (P < 0.05) in liver, skeletal muscle, and adipose tissue, respectively. This was accompanied by a 40% (P < 0.05) reduction in the constant of glucose decay during an insulin tolerance test, a 78% (P < 0.05) reduction in glucose consumption during a hyperinsulinemic-euglycemic clamp, and a 90% (P < 0.05) increase in basal plasma insulin level. The metabolic effects produced by IRS-1AS were accompanied by a significant reduction in insulin-induced [Ser (473)] Akt phosphorylation in liver (85%, P < 0.05), skeletal muscle (40%, P < 0.05), and adipose tissue (85%, P < 0.05) and a significant reduction in insulin-induced tyrosine phosphorylation of ERK in liver (20%, P < 0.05) and skeletal muscle (30%, P < 0.05). However, insulin-induced tyrosine phosphorylation of ERK was significantly increased (60%, P < 0.05) in adipose tissue of IRS-1AS-treated rats. In rats treated with IRS-1AS for 8 d, a 100% increase (P < 0.05) in relative epididymal fat weight and a 120% (P < 0.05) increase in nuclear expression of peroxisome proliferator-activated receptor-gamma were observed. Thus, acute inhibition of IRS-1 expression in rats leads to insulin resistance accompanied by activation of a growth-related pathway exclusively in white adipose tissue.

  7. CXCL5 is an adipose tissue derived factor that links obesity to insulin resistance

    PubMed Central

    Chavey, Carine; Lazennec, Gwendal; Lagarrigue, Sylviane; Clapé, Cyrielle; Iankova, Irena; Teyssier, Jacques; Annicotte, Jean-Sébastien; Schmidt, Julien; Mataki, Chikage; Yamamoto, Hiroyasu; Sanches, Rosario; Guma, Anna; Stich, Vladimir; Vitkova, Michaela; Jardin-Watelet, Bénédicte; Renard, Eric; Strieter, Robert; Tuthill, Antoinette; Hotamisligil, Gôkhan S.; Vidal-Puig, Toni; Zorzano, Antonio; Langin, Dominique; Fajas, Lluis

    2009-01-01

    We show here high levels of expression and secretion of the chemokine CXCL5 in the macrophage fraction of white adipose tissue (WAT). Moreover, we find that CXCL5 is dramatically increased in serum of human obese compared to lean subjects. Conversely, CXCL5 concentration is decreased in obese subjects after a weight reduction program, or in obese non-insulin resistant, compared to insulin resistant obese subjects. Most importantly we demonstrate that treatment with recombinant CXCL5 blocks insulin-stimulated glucose uptake in muscle in mice. CXCL5 blocks insulin signaling by activating the Jak2/STAT5/SOCS2 pathway. Finally, by treating obese, insulin resistant mice with either anti-CXCL5 neutralizing antibodies or antagonists of CXCR2, which is the CXCL5 receptor we demonstrate that CXCL5 mediates insulin resistance. Furthermore CXCR2−/− mice are protected against obesity-induced insulin resistance. Taken together, these results show that secretion of CXCL5 by WAT resident macrophages represents a link between obesity, inflammation, and insulin resistance. PMID:19356715

  8. Glucose transporter isoform-3-null heterozygous mutation causes sexually dimorphic adiposity with insulin resistance.

    PubMed

    Ganguly, Amit; Devaskar, Sherin U

    2008-06-01

    We examined male and female glucose transporter isoform-3 (GLUT3; placenta)-null heterozygous(+/-) mutation-carrying mice and compared them with age- and sex-matched wild-type(+/+) littermates. No difference in postnatal (1-2 days, 6-7 days, 12-13 days, 20-21 days), postsuckling (1-2 mo), and adult (3-6 mo) growth pattern was seen except for an increase in body weight of 9- to 11-mo-old male but not female GLUT3(+/-) mice. This change in male mutant mice was associated with increased total body fat mass, perirenal and epididymal white adipose tissue weight, and hepatic lipid infiltration. These minimally glucose-intolerant male mutant mice demonstrated no change in caloric intake but a decline in basal metabolic rate and insulin resistance. No perturbation in basal circulating glucose concentrations but an increase in insulin concentrations, triglycerides, and total cholesterol was observed in GLUT3(+/-) male mice. Tissue analysis in males and females demonstrated diminished GLUT3 protein in GLUT3(+/-) brain and skeletal muscle with no change in brain and adipose tissue GLUT1 protein concentrations. Furthermore, the male GLUT3(+/-) mice expressed decreased insulin-responsive GLUT4 in white adipose tissue and skeletal muscle sarcolemma. We conclude that the GLUT3(+/-) male mice develop adult-onset adiposity with insulin resistance.

  9. Loss of Oncostatin M Signaling in Adipocytes Induces Insulin Resistance and Adipose Tissue Inflammation in Vivo.

    PubMed

    Elks, Carrie M; Zhao, Peng; Grant, Ryan W; Hang, Hardy; Bailey, Jennifer L; Burk, David H; McNulty, Margaret A; Mynatt, Randall L; Stephens, Jacqueline M

    2016-08-12

    Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor β (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMR(FKO) mice). The effects of OSM on gene expression were also assessed in vitro and in vivo OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMR(FKO) mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMR(FKO) mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMR(FKO) mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation.

  10. Irisin and Myonectin Regulation in the Insulin Resistant Muscle: Implications to Adipose Tissue: Muscle Crosstalk

    PubMed Central

    Gamas, Luis; Seiça, Raquel

    2015-01-01

    Myokines are peptides produced and secreted by the skeletal muscle, with autocrine, paracrine, and endocrine actions. Many of them are overexpressed during physical exercise and appear to contribute to the benefits of exercise to metabolic homeostasis. Irisin, resulting from the cleavage of the membrane protein FNDC5, was shown to induce adipocyte browning, with increased lipid oxidation and thermogenesis. Myonectin was only recently discovered and initial studies revealed a role in fatty acid uptake and oxidation in adipose tissue and liver. However, the mechanisms of their regulation by exercise are not entirely established. Impaired secretion and action of myokines, such as irisin and myonectin, may have a role in the establishment of insulin resistance. On the other hand, several studies have shown that insulin resistance in the skeletal muscle may change myokines expression and secretion. This may have consequences on lipid and glucose metabolism in adipose tissue and lead to a vicious cycle between impaired myokines production and insulin resistance. This review summarizes the current knowledge about the influence of skeletal muscle insulin resistance on the secretion of irisin and myonectin, as well as its impact on adipose tissue metabolism. PMID:26075283

  11. Alteration of local adipose tissue trace element homeostasis as a possible mechanism of obesity-related insulin resistance.

    PubMed

    Tinkov, Alexey A; Sinitskii, Anton I; Popova, Elizaveta V; Nemereshina, Olga N; Gatiatulina, Evgenia R; Skalnaya, Margarita G; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-09-01

    The mechanisms of association between obesity and the related metabolic disturbances in general and insulin resistance in particular are extensively studied. Taking into account a key role of adipose tissue insulin resistance in the development of systemic obesity-related insulin resistance, the estimation of mechanisms linking increased adiposity and impaired insulin signaling in adipocytes will allow to develop novel prophylactic and therapeutic approaches to treatment of these states. A number of trace elements like chromium, zinc, and vanadium have been shown to take part in insulin signaling via various mechanisms. Taking into account a key role of adipocyte in systemic carbohydrate homeostasis it can be asked if trace element homeostasis in adipose tissue may influence regulatory mechanisms of glucose metabolism. We hypothesize that caloric excess through currently unknown mechanisms results in decreased chromium, vanadium, and zinc content in adipocytes. Decreased content of trace elements in the adipose tissue causes impairment of intra-adipocyte insulin signaling subsequently leading to adipose tissue insulin resistance. The latter significantly contributes to systemic insulin resistance and further metabolic disruption in obesity. It is also possible that decreased adipose tissue trace element content is associated with dysregulation of insulin-sensitizing and proinflammatory adipokines also leading to insulin resistance. We hypothesize that insulin resistance and adipokine dysbalance increase the severity of obesity subsequently aggravating alteration of adipose tissue trace element balance. Single indications of high relative adipose tissue trace element content, decreased Cr, V, and Zn content in obese adipose tissue, and tight association between fat tissue chromium, vanadium, and zinc levels and metabolic parameters in obesity may be useful for hypothesis validation. If our hypothesis will be confirmed by later studies, adipose tissue chromium

  12. Nutrition, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome

    PubMed Central

    Paniagua, Juan Antonio

    2016-01-01

    Obesity is an excessive accumulation of body fat that may be harmful to health. Today, obesity is a major public health problem, affecting in greater or lesser proportion all demographic groups. Obesity is estimated by body mass index (BMI) in a clinical setting, but BMI reports neither body composition nor the location of excess body fat. Deaths from cardiovascular diseases, cancer and diabetes accounted for approximately 65% of all deaths, and adiposity and mainly abdominal adiposity are associated with all these disorders. Adipose tissue could expand to inflexibility levels. Then, adiposity is associated with a state of low-grade chronic inflammation, with increased tumor necrosis factor-α and interleukin-6 release, which interfere with adipose cell differentiation, and the action pattern of adiponectin and leptin until the adipose tissue begins to be dysfunctional. In this state the subject presents insulin resistance and hyperinsulinemia, probably the first step of a dysfunctional metabolic system. Subsequent to central obesity, insulin resistance, hyperglycemia, hypertriglyceridemia, hypoalphalipoproteinemia, hypertension and fatty liver are grouped in the so-called metabolic syndrome (MetS). In subjects with MetS an energy balance is critical to maintain a healthy body weight, mainly limiting the intake of high energy density foods (fat). However, high-carbohydrate rich (CHO) diets increase postprandial peaks of insulin and glucose. Triglyceride-rich lipoproteins are also increased, which interferes with reverse cholesterol transport lowering high-density lipoprotein cholesterol. In addition, CHO-rich diets could move fat from peripheral to central deposits and reduce adiponectin activity in peripheral adipose tissue. All these are improved with monounsaturated fatty acid-rich diets. Lastly, increased portions of ω-3 and ω-6 fatty acids also decrease triglyceride levels, and complement the healthy diet that is recommended in patients with MetS. PMID

  13. The Role of Adipose Tissue in Insulin Resistance in Women of African Ancestry

    PubMed Central

    Goedecke, Julia H.; Levitt, Naomi S.; Evans, Juliet; Ellman, Nicole; Hume, David John; Kotze, Liske; Tootla, Mehreen; Victor, Hendriena; Keswell, Dheshnie

    2013-01-01

    Women of African ancestry, particularly those living in industrialized countries, experience a disproportionately higher prevalence of type 2 diabetes (T2D) compared to their white counterparts. Similarly, obesity and insulin resistance, which are major risk factors for T2D, are greater in black compared to white women. The exact mechanisms underlying these phenomena are not known. This paper will focus on the role of adipose tissue biology. Firstly, the characteristic body fat distribution of women of African ancestry will be discussed, followed by the depot-specific associations with insulin resistance. Factors involved in adipose tissue biology and their relation to insulin sensitivity will then be explored, including the role of sex hormones, glucocorticoid metabolism, lipolysis and adipogenesis, and their consequent effects on adipose tissue hypoxia, oxidative stress, and inflammation. Finally the role of ectopic fat deposition will be discussed. The paper proposes directions for future research, in particular highlighting the need for longitudinal and/or intervention studies to better understand the mechanisms underlying the high prevalence of insulin resistance and T2D in women of African ancestry. PMID:23401754

  14. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice.

    PubMed

    Zhou, Linkang; Park, Shi-Young; Xu, Li; Xia, Xiayu; Ye, Jing; Su, Lu; Jeong, Kyeong-Hoon; Hur, Jang Ho; Oh, Hyunhee; Tamori, Yoshikazu; Zingaretti, Cristina M; Cinti, Saverio; Argente, Jesús; Yu, Miao; Wu, Lizhen; Ju, Shenghong; Guan, Feifei; Yang, Hongyuan; Choi, Cheol Soo; Savage, David B; Li, Peng

    2015-01-07

    Fsp27 is a lipid droplet-associated protein almost exclusively expressed in adipocytes where it facilitates unilocular lipid droplet formation. In mice, Fsp27 deficiency is associated with increased basal lipolysis, 'browning' of white fat and a healthy metabolic profile, whereas a patient with congenital CIDEC deficiency manifested an adverse lipodystrophic phenotype. Here we reconcile these data by showing that exposing Fsp27-null mice to a substantial energetic stress by crossing them with ob/ob mice or BATless mice, or feeding them a high-fat diet, results in hepatic steatosis and insulin resistance. We also observe a striking reduction in adipose inflammation and increase in adiponectin levels in all three models. This appears to reflect reduced activation of the inflammasome and less adipocyte death. These findings highlight the importance of Fsp27 in facilitating optimal energy storage in adipocytes and represent a rare example where adipose inflammation and hepatic insulin resistance are disassociated.

  15. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice

    PubMed Central

    Zhou, Linkang; Park, Shi-Young; Xu, Li; Xia, Xiayu; Ye, Jing; Su, Lu; Jeong, Kyeong-Hoon; Hur, Jang Ho; Oh, Hyunhee; Tamori, Yoshikazu; Zingaretti, Cristina M.; Cinti, Saverio; Argente, Jesús; Yu, Miao; Wu, Lizhen; Ju, Shenghong; Guan, Feifei; Yang, Hongyuan; Choi, Cheol Soo; Savage, David B.; Li, Peng

    2015-01-01

    Fsp27 is a lipid droplet-associated protein almost exclusively expressed in adipocytes where it facilitates unilocular lipid droplet formation. In mice, Fsp27 deficiency is associated with increased basal lipolysis, ‘browning’ of white fat and a healthy metabolic profile, whereas a patient with congenital CIDEC deficiency manifested an adverse lipodystrophic phenotype. Here we reconcile these data by showing that exposing Fsp27-null mice to a substantial energetic stress by crossing them with ob/ob mice or BATless mice, or feeding them a high-fat diet, results in hepatic steatosis and insulin resistance. We also observe a striking reduction in adipose inflammation and increase in adiponectin levels in all three models. This appears to reflect reduced activation of the inflammasome and less adipocyte death. These findings highlight the importance of Fsp27 in facilitating optimal energy storage in adipocytes and represent a rare example where adipose inflammation and hepatic insulin resistance are disassociated. PMID:25565658

  16. Disruption of inducible 6-phosphofructo-2-kinase ameliorates diet-induced adiposity but exacerbates systemic insulin resistance and adipose tissue inflammatory response.

    PubMed

    Huo, Yuqing; Guo, Xin; Li, Honggui; Wang, Huan; Zhang, Weiyu; Wang, Ying; Zhou, Huaijun; Gao, Zhanguo; Telang, Sucheta; Chesney, Jason; Chen, Y Eugene; Ye, Jianping; Chapkin, Robert S; Wu, Chaodong

    2010-02-05

    Adiposity is commonly associated with adipose tissue dysfunction and many overnutrition-related metabolic diseases including type 2 diabetes. Much attention has been paid to reducing adiposity as a way to improve adipose tissue function and systemic insulin sensitivity. PFKFB3/iPFK2 is a master regulator of adipocyte nutrient metabolism. Using PFKFB3(+/-) mice, the present study investigated the role of PFKFB3/iPFK2 in regulating diet-induced adiposity and systemic insulin resistance. On a high-fat diet (HFD), PFKFB3(+/-) mice gained much less body weight than did wild-type littermates. This was attributed to a smaller increase in adiposity in PFKFB3(+/-) mice than in wild-type controls. However, HFD-induced systemic insulin resistance was more severe in PFKFB3(+/-) mice than in wild-type littermates. Compared with wild-type littermates, PFKFB3(+/-) mice exhibited increased severity of HFD-induced adipose tissue dysfunction, as evidenced by increased adipose tissue lipolysis, inappropriate adipokine expression, and decreased insulin signaling, as well as increased levels of proinflammatory cytokines in both isolated adipose tissue macrophages and adipocytes. In an in vitro system, knockdown of PFKFB3/iPFK2 in 3T3-L1 adipocytes caused a decrease in the rate of glucose incorporation into lipid but an increase in the production of reactive oxygen species. Furthermore, knockdown of PFKFB3/iPFK2 in 3T3-L1 adipocytes inappropriately altered the expression of adipokines, decreased insulin signaling, increased the phosphorylation states of JNK and NFkappaB p65, and enhanced the production of proinflammatory cytokines. Together, these data suggest that PFKFB3/iPFK2, although contributing to adiposity, protects against diet-induced insulin resistance and adipose tissue inflammatory response.

  17. Adipose Expression of Tumor Necrosis Factor-α: Direct Role in Obesity-Linked Insulin Resistance

    NASA Astrophysics Data System (ADS)

    Hotamisligil, Gokhan S.; Shargill, Narinder S.; Spiegelman, Bruce M.

    1993-01-01

    Tumor necrosis factor-α (TNF-α) has been shown to have certain catabolic effects on fat cells and whole animals. An induction of TNF-α messenger RNA expression was observed in adipose tissue from four different rodent models of obesity and diabetes. TNF-α protein was also elevated locally and systemically. Neutralization of TNF-α in obese fa/fa rats caused a significant increase in the peripheral uptake of glucose in response to insulin. These results indicate a role for TNF-α in obesity and particularly in the insulin resistance and diabetes that often accompany obesity.

  18. Adipose tissue hormones and appetite and body weight regulators in insulin resistance.

    PubMed

    Koleva, Daniela Iv; Orbetzova, Maria M; Atanassova, Pepa K

    2013-01-01

    Impaired sensitivity to insulin (the so called insulin resistance, IR) occurs in a number of genetic and acquired conditions, including obesity, non-insulin dependent diabetes mellitus, polycystic ovary syndrome (PCOS) and metabolic syndrome (MS). In this review we discuss the correlation between IR, the adipose tissue hormones and appetite and body weight regulators. Leptin acts as a major adipostat: it suppresses food intake and activates catabolic pathways associated with increased energy production. It improves the peripheral insulin sensitivity and affects beta-cell function. Adiponectin is the only adipocytokine discovered so far that has anti-atherogenic properties. There is a reverse correlation between the serum adiponectin levels and the degree of obesity, IR, impaired glucose tolerance, dyslipidemia and atherosclerosis. Ghrelin stimulates food intake; of all circulating orexigenic hormones ghrelin is the most thoroughly studied. Ghrelin levels are decreased in MS and PCOS patients as this hormone is negatively correlated with body mass. Resistin is a hormone secreted by adipose tissues; a growing body of evidence suggests that it might be implicated in the link between obesity and diabetes. It has been found that the hormone's levels are significantly higher in obese people than those in normal body mass people. The recently discovered adipose tissue hormones, vaspin, visfatin, omentin-1 and their effect on IR development, have been increasingly researched.

  19. Adiponectin: a biomarker of obesity-induced insulin resistance in adipose tissue and beyond.

    PubMed

    Lu, Jin-Ying; Huang, Kuo-Chin; Chang, Lin-Chau; Huang, Ying-Shing; Chi, Yu-Chiao; Su, Ta-Chan; Chen, Chi-Ling; Yang, Wei-Shiung

    2008-09-01

    Adiponectin is one of the most thoroughly studied adipocytokines. Low plasma levels of adiponectin are found to associate with obesity, metabolic syndrome, diabetes and many other human diseases. From animal experiments and human studies, adiponectin has been shown to be a key regulator of insulin sensitivity. In this article, we review the evidence and propose that hypo-adiponectinemia is not a major cause of obesity. Instead, it is the result of obesity-induced insulin resistance in the adipose tissue. Hypo-adiponectinemia then mediates the metabolic effects of obesity on the other peripheral tissues, such as liver and skeletal muscle and may also exert some direct effects on end-organ damage. We propose that deciphering the molecular details governing the adiponectin gene expression and protein secretion will lead us to more comprehensive understanding of the mechanisms of insulin resistance in the adipose tissue and provide us new avenues for the therapeutic intervention of obesity and insulin resistance-related human disorders.

  20. Tofogliflozin Improves Insulin Resistance in Skeletal Muscle and Accelerates Lipolysis in Adipose Tissue in Male Mice.

    PubMed

    Obata, Atsushi; Kubota, Naoto; Kubota, Tetsuya; Iwamoto, Masahiko; Sato, Hiroyuki; Sakurai, Yoshitaka; Takamoto, Iseki; Katsuyama, Hisayuki; Suzuki, Yoshiyuki; Fukazawa, Masanori; Ikeda, Sachiya; Iwayama, Kaito; Tokuyama, Kumpei; Ueki, Kohjiro; Kadowaki, Takashi

    2016-03-01

    Sodium glucose cotransporter 2 inhibitors have attracted attention as they exert antidiabetic and antiobesity effects. In this study, we investigated the effects of tofogliflozin on glucose homeostasis and its metabolic consequences and clarified the underlying molecular mechanisms. C57BL/6 mice were fed normal chow containing tofogliflozin (0.005%) for 20 weeks or a high-fat diet containing tofogliflozin (0.005%) for 8 weeks ad libitum. In addition, the animals were pair-fed in relation to controls to exclude the influence of increased food intake. Tofogliflozin reduced the body weight gain, mainly because of fat mass reduction associated with a diminished adipocyte size. Glucose tolerance and insulin sensitivity were ameliorated. The serum levels of nonesterified fatty acid and ketone bodies were increased and the respiratory quotient was decreased in the tofogliflozin-treated mice, suggesting the acceleration of lipolysis in the white adipose tissue and hepatic β-oxidation. In fact, the phosphorylation of hormone-sensitive lipase and the adipose triglyceride lipase protein levels in the white adipose tissue as well as the gene expressions related to β-oxidation, such as Cpt1α in the liver, were significantly increased. The hepatic triglyceride contents and the expression levels of lipogenic genes were decreased. Pair-fed mice exhibited almost the same results as mice fed an high-fat diet ad libitum. Moreover, a hyperinsulinemic-euglycemic clamp revealed that tofogliflozin improved insulin resistance by increasing glucose uptake, especially in the skeletal muscle, in pair-fed mice. Taken together, these results suggest tofogliflozin ameliorates insulin resistance and obesity by increasing glucose uptake in skeletal muscle and lipolysis in adipose tissue.

  1. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    SciTech Connect

    Fujii, Masakazu; Inoguchi, Toyoshi; Batchuluun, Battsetseg; Sugiyama, Naonobu; Kobayashi, Kunihisa; Sonoda, Noriyuki; Takayanagi, Ryoichi

    2013-08-16

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophage polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.

  2. Testing the fetal overnutrition hypothesis; the relationship of maternal and paternal adiposity to adiposity, insulin resistance and cardiovascular risk factors in Indian children

    PubMed Central

    Veena, Sargoor R; Krishnaveni, Ghattu V; Karat, Samuel C; Osmond, Clive; Fall, Caroline HD

    2012-01-01

    Objective We aimed to test the fetal overnutrition hypothesis by comparing the associations of maternal and paternal adiposity (sum of skinfolds) with adiposity and cardiovascular risk factors in children. Design Children from a prospective birth cohort had anthropometry, fat percentage (bio-impedance), plasma glucose, insulin and lipid concentrations and blood pressure measured at 9·5 years of age. Detailed anthropometric measurements were recorded for mothers (at 30 ± 2 weeks’ gestation) and fathers (5 years following the index pregnancy). Setting Holdsworth Memorial Hospital, Mysore, India. Subjects Children (n 504), born to mothers with normal glucose tolerance during pregnancy. Results Twenty-eight per cent of mothers and 38 % of fathers were overweight/obese (BMI ≥ 25·0 kg/m2), but only 4 % of the children were overweight/obese (WHO age- and sex-specific BMI ≥ 18·2 kg/m2). The children’s adiposity (BMI, sum of skinfolds, fat percentage and waist circumference), fasting insulin concentration and insulin resistance increased with increasing maternal and paternal sum of skinfolds adjusted for the child’s sex, age and socio-economic status. Maternal and paternal effects were similar. The associations with fasting insulin and insulin resistance were attenuated after adjusting for the child’s current adiposity. Conclusions In this population, both maternal and paternal adiposity equally predict adiposity and insulin resistance in the children. This suggests that shared family environment and lifestyle, or genetic/epigenetic factors, influence child adiposity. Our findings do not support the hypothesis that there is an intrauterine overnutrition effect of maternal adiposity in non-diabetic pregnancies, although we cannot rule out such an effect in cases of extreme maternal obesity, which is rare in our population. PMID:22895107

  3. The Metabolic Syndrome and Inflammation: 
Role of Insulin Resistance and Increased Adiposity

    PubMed Central

    Farooq, Wajiha; Farwa, Umme; Khan, Faisal Rashid

    2015-01-01

    Objectives We sought to determine the role of obesity and insulin resistance (IR) in the pathogenesis of inflammation in metabolic syndrome (MetS). Methods Our study included 100 patients with MetS and 100 age and gender matched control patients who attended a tertiary care laboratory in Rawalpindi, Pakistan. Anthropometric data was obtained including height and weight to calculate body mass index. A record of patient’s blood pressure (BP), waist circumference (WC) and hip circumference (HC) was made. Biochemical analysis included measurements of fasting glucose, triglycerides (TG), high-density lipoprotein cholesterol (HDL-c), insulin, and high-sensitivity C reactive protein (hsCRP). IR was determined by the homeostasis mode assessment insulin resistance (HOMA-IR) method. Results The levels of hs-CRP were found to be elevated in all patients with MetS where it correlated significantly with all its components including measures of obesity, fasting insulin and glucose levels, IR, TG and HDL-c. However, on linear regression analysis only WC, fasting insulin, and HOMA-IR remained significantly correlated with hs-CRP. Conclusion MetS is a condition characterized by chronic low-grade inflammation, which arises because of increased abdominal adiposity and IR. Large multicenter studies are needed to gain insight into its pathogenesis and derive treatment strategies. PMID:25960834

  4. Adipose Tissue Overexpression of Vascular Endothelial Growth Factor Protects Against Diet-Induced Obesity and Insulin Resistance

    PubMed Central

    Elias, Ivet; Franckhauser, Sylvie; Ferré, Tura; Vilà, Laia; Tafuro, Sabrina; Muñoz, Sergio; Roca, Carles; Ramos, David; Pujol, Anna; Riu, Efren; Ruberte, Jesús; Bosch, Fatima

    2012-01-01

    During the expansion of fat mass in obesity, vascularization of adipose tissue is insufficient to maintain tissue normoxia. Local hypoxia develops and may result in altered adipokine expression, proinflammatory macrophage recruitment, and insulin resistance. We investigated whether an increase in adipose tissue angiogenesis could protect against obesity-induced hypoxia and, consequently, insulin resistance. Transgenic mice overexpressing vascular endothelial growth factor (VEGF) in brown adipose tissue (BAT) and white adipose tissue (WAT) were generated. Vessel formation, metabolism, and inflammation were studied in VEGF transgenic mice and wild-type littermates fed chow or a high-fat diet. Overexpression of VEGF resulted in increased blood vessel number and size in both WAT and BAT and protection against high-fat diet–induced hypoxia and obesity, with no differences in food intake. This was associated with increased thermogenesis and energy expenditure. Moreover, whole-body insulin sensitivity and glucose tolerance were improved. Transgenic mice presented increased macrophage infiltration, with a higher number of M2 anti-inflammatory and fewer M1 proinflammatory macrophages than wild-type littermates, thus maintaining an anti-inflammatory milieu that could avoid insulin resistance. These studies suggest that overexpression of VEGF in adipose tissue is a potential therapeutic strategy for the prevention of obesity and insulin resistance. PMID:22522611

  5. Differential Development of Inflammation and Insulin Resistance in Different Adipose Tissue Depots Along Aging in Wistar Rats: Effects of Caloric Restriction.

    PubMed

    Sierra Rojas, Johanna X; García-San Frutos, Miriam; Horrillo, Daniel; Lauzurica, Nuria; Oliveros, Eva; Carrascosa, Jose María; Fernández-Agulló, Teresa; Ros, Manuel

    2016-03-01

    The prevalence of insulin resistance and type 2 diabetes increases with aging and these disorders are associated with inflammation. Insulin resistance and inflammation do not develop at the same time in all tissues. Adipose tissue is one of the tissues where inflammation and insulin resistance are established earlier during aging. Nevertheless, the existence of different fat depots states the possibility of differential roles for these depots in the development of age-associated inflammation and insulin resistance. To explore this, we analyzed insulin signaling and inflammation in epididymal, perirenal, subcutaneous, and brown adipose tissues during aging in Wistar rats. Although all tissues showed signs of inflammation and insulin resistance with aging, epididymal fat was the first to develop signs of inflammation and insulin resistance along aging among white fat tissues. Subcutaneous adipose tissue presented the lowest degree of inflammation and insulin resistance that developed latter with age. Brown adipose tissue also presented latter insulin resistance and inflammation but with lower signs of macrophage infiltration. Caloric restriction ameliorated insulin resistance and inflammation in all tissues, being more effective in subcutaneous and brown adipose tissues. These data demonstrate differential susceptibility of the different adipose depots to the development of age-associated insulin resistance and inflammation.

  6. Associations of Different Adipose Tissue Depots with Insulin Resistance: A Systematic Review and Meta-analysis of Observational Studies.

    PubMed

    Zhang, Mingzhi; Hu, Tian; Zhang, Shaoyan; Zhou, Li

    2015-12-21

    Fat distribution is strongly associated with insulin resistance, a risk factor for type 2 diabetes and cardiovascular diseases. However, associations of different adipose tissue depots or/and obesity indices with insulin resistance have not been systematically evaluated. In this study we examined associations of different adipose tissue depots/obesity indices with insulin resistance, as measured by homeostatic model assessment of insulin resistance (HOMA-IR) in observational studies. A total of 40 studies with 56 populations and 29 adipose tissue depots/obesity indices were included in the meta-analysis. There were strong correlation between HOMA-IR and visceral fat mass (r = 0.570, 95% confidence interval(CI): 0.424~0.687), total fat mass (r = 0.492, 95%CI: 0.407~0.570), body mass index (r = 0.482, 95%CI: 0.445~0.518) and waist circumference (r = 0.466, 95%CI: 0.432~0.500), except lower extremity fat (r = 0.088, 95%CI: -0.116~0.285). Sample size, diabetic status, gender, mean of body mass index, and race contributed to heterogeneity of these associations. This study showed a positive correlation between insulin resistance and most adipose tissue depots/obesity indices, and the strongest association is for visceral fat mass.

  7. Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro.

    PubMed

    Bastard, Jean-Philippe; Maachi, Mustapha; Van Nhieu, Jeanne Tran; Jardel, Claude; Bruckert, Eric; Grimaldi, André; Robert, Jean-Jacques; Capeau, Jacqueline; Hainque, Bernard

    2002-05-01

    Obesity and type 2 diabetes are associated with insulin resistance, the mechanisms of which remain poorly understood. A significant correlation between circulating IL-6 level and insulin sensitivity has recently been found in humans. Because adipose tissue could be a significant source of IL-6, we analyzed the relationship between the levels of adipose tissue IL-6 and insulin action in vivo, during a hyperinsulinemic normoglycemic clamp, and in vitro by measuring glucose transport in adipocytes from 12 obese subjects with (n = 7) or without (n = 5) diabetes. We observed an inverse correlation between adipose tissue IL-6 content and maximal insulin-responsiveness measured in vivo (P < 0.02) and in vitro (P < 0.02). Conversely, there was no significant correlation between these two later parameters and adipose tissue leptin or tumor necrosis factor-alpha protein contents. Furthermore, we showed, for the first time, the presence of immunoreactive IL-6 receptors in the plasma membrane of human abdominal sc adipocytes. This suggests that locally secreted IL-6 could act on adipocytes by an autocrine/paracrine mechanism. In conclusion, increased IL-6 production by sc adipose cells might participate to the insulin-resistant state observed in human obesity.

  8. Adipose Tissue Insulin Resistance in Peripubertal Girls with First-Degree Family History of Polycystic Ovary Syndrome

    PubMed Central

    Trottier, Andréanne; Battista, Marie-Claude; Geller, David H; Moreau, Brigitte; Carpentier, André C; Simoneau-Roy, Judith; Baillargeon, Jean-Patrice

    2014-01-01

    Objective To assess metabolic and endocrine defects in girls genetically predisposed to polycystic ovary syndrome (PCOS). Design Controlled cross-sectional study. Setting University hospital. Patients Nine girls aged 8–14 years having a first-degree relative diagnosed with PCOS (PCOSr) and 10 age-matched girls unrelated to PCOS. Intervention None. Main outcome measure Insulin sensitivity determined by frequently sampled intravenous glucose tolerance testing (ISFSivGTT) and insulin-induced non-esterified fatty acid suppression (NEFAsupp), estimated by the log-linear slope of NEFA levels during the first 20 min of FSivGTT. Results In comparison to controls, PCOSr had higher body mass index Z-score (BMI-z), waist circumference and waist/height ratio. Levels of the androgen 17α-hydroxyprogesterone (17OHPg) were significantly increased in PCOSr, independently of adiposity, and inversely correlated with ISFSivGTT. ISFSivGTT was decreased and NEFAsupp was less steep in PCOSr as compared to controls, independently of BMI-z and 17OHPg. NEFAsupp was more pronounced with increasing ISFSivGTT, independently of adiposity. Conclusions Girls at high risk of developing PCOS display increased adiposity and 17OHPg levels, but are mainly characterized by global insulin resistance and resistance to insulin-induced suppression of lipolysis that were independent of adiposity and 17OHPg levels. Therefore, genetic predisposition to PCOS may be related to early insulin resistance and adipocyte dysfunction. PMID:22985947

  9. Insulin-resistant subjects have normal angiogenic response to aerobic exercise training in skeletal muscle, but not in adipose tissue.

    PubMed

    Walton, R Grace; Finlin, Brian S; Mula, Jyothi; Long, Douglas E; Zhu, Beibei; Fry, Christopher S; Westgate, Philip M; Lee, Jonah D; Bennett, Tamara; Kern, Philip A; Peterson, Charlotte A

    2015-06-01

    Reduced vessel density in adipose tissue and skeletal muscle is associated with obesity and may result in decreased perfusion, decreased oxygen consumption, and insulin resistance. In the presence of VEGFA, Angiopoietin-2 (Angpt2) and Angiopoietin-1 (Angpt1) are central determinants of angiogenesis, with greater Angpt2:Angpt1 ratios promoting angiogenesis. In skeletal muscle, exercise training stimulates angiogenesis and modulates transcription of VEGFA, Angpt1, and Angpt2. However, it remains unknown whether exercise training stimulates vessel growth in human adipose tissue, and it remains unknown whether adipose angiogenesis is mediated by angiopoietin signaling. We sought to determine whether insulin-resistant subjects would display an impaired angiogenic response to aerobic exercise training. Insulin-sensitive (IS, N = 12) and insulin-resistant (IR, N = 14) subjects had subcutaneous adipose and muscle (vastus lateralis) biopsies before and after 12 weeks of cycle ergometer training. In both tissues, we measured vessels and expression of pro-angiogenic genes. Exercise training did not increase insulin sensitivity in IR Subjects. In skeletal muscle, training resulted in increased vessels/muscle fiber and increased Angpt2:Angpt1 ratio in both IR and IS subjects. However, in adipose, exercise training only induced angiogenesis in IS subjects, likely due to chronic suppression of VEGFA expression in IR subjects. These results indicate that skeletal muscle of IR subjects exhibits a normal angiogenic response to exercise training. However, the same training regimen is insufficient to induce angiogenesis in adipose tissue of IR subjects, which may help to explain why we did not observe improved insulin sensitivity following aerobic training.

  10. Role of resistant starch in improving gut health, adiposity, and insulin resistance.

    PubMed

    Keenan, Michael J; Zhou, June; Hegsted, Maren; Pelkman, Christine; Durham, Holiday A; Coulon, Diana B; Martin, Roy J

    2015-03-01

    The realization that low-glycemic index diets were formulated using resistant starch led to more than a decade of research on the health effects of resistant starch. Determination of the metabolizable energy of the resistant starch product allowed for the performance of isocaloric studies. Fermentation of resistant starch in rodent studies results in what appears to be a healthier gut, demonstrated by increased amounts of short-chain fatty acids, an apparent positive change in the microbiota, and increased gene expression for gene products involved in normal healthy proliferation and apoptosis of potential cancer cells. Additionally, consumption of resistant starch was associated with reduced abdominal fat and improved insulin sensitivity. Increased serum glucagon-like peptide 1 (GLP-1) likely plays a role in promoting these health benefits. One rodent study that did not use isocaloric diets demonstrated that the use of resistant starch at 8% of the weight of the diet reduced body fat. This appears to be approximately equivalent to the human fiber requirement. In human subjects, insulin sensitivity is increased with the feeding of resistant starch. However, only 1 of several studies reports an increase in serum GLP-1 associated with resistant starch added to the diet. This means that other mechanisms, such as increased intestinal gluconeogenesis or increased adiponectin, may be involved in the promotion of improved insulin sensitivity. Future research may confirm that there will be improved health if human individuals consume the requirement for dietary fiber and a large amount of the fiber is fermentable.

  11. Role of Resistant Starch in Improving Gut Health, Adiposity, and Insulin Resistance1234

    PubMed Central

    Keenan, Michael J; Zhou, June; Hegsted, Maren; Pelkman, Christine; Durham, Holiday A; Coulon, Diana B; Martin, Roy J

    2015-01-01

    The realization that low–glycemic index diets were formulated using resistant starch led to more than a decade of research on the health effects of resistant starch. Determination of the metabolizable energy of the resistant starch product allowed for the performance of isocaloric studies. Fermentation of resistant starch in rodent studies results in what appears to be a healthier gut, demonstrated by increased amounts of short-chain fatty acids, an apparent positive change in the microbiota, and increased gene expression for gene products involved in normal healthy proliferation and apoptosis of potential cancer cells. Additionally, consumption of resistant starch was associated with reduced abdominal fat and improved insulin sensitivity. Increased serum glucagon-like peptide 1 (GLP-1) likely plays a role in promoting these health benefits. One rodent study that did not use isocaloric diets demonstrated that the use of resistant starch at 8% of the weight of the diet reduced body fat. This appears to be approximately equivalent to the human fiber requirement. In human subjects, insulin sensitivity is increased with the feeding of resistant starch. However, only 1 of several studies reports an increase in serum GLP-1 associated with resistant starch added to the diet. This means that other mechanisms, such as increased intestinal gluconeogenesis or increased adiponectin, may be involved in the promotion of improved insulin sensitivity. Future research may confirm that there will be improved health if human individuals consume the requirement for dietary fiber and a large amount of the fiber is fermentable. PMID:25770258

  12. Resveratrol ameliorates the chemical and microbial induction of inflammation and insulin resistance in human placenta, adipose tissue and skeletal muscle

    PubMed Central

    Tran, Ha T.; Liong, Stella; Lim, Ratana; Barker, Gillian

    2017-01-01

    Gestational diabetes mellitus (GDM), which complicates up to 20% of all pregnancies, is associated with low-grade maternal inflammation and peripheral insulin resistance. Sterile inflammation and infection are key mediators of this inflammation and peripheral insulin resistance. Resveratrol, a stilbene-type phytophenol, has been implicated to exert beneficial properties including potent anti-inflammatory and antidiabetic effects in non-pregnant humans and experimental animal models of GDM. However, studies showing the effects of resveratrol on inflammation and insulin resistance associated with GDM in human tissues have been limited. In this study, human placenta, adipose (omental and subcutaneous) tissue and skeletal muscle were stimulated with pro-inflammatory cytokines TNF-α and IL-1β, the bacterial product lipopolysaccharide (LPS) and the synthetic viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) to induce a GDM-like model. Treatment with resveratrol significantly reduced the expression and secretion of pro-inflammatory cytokines IL-6, IL-1α, IL-1β and pro-inflammatory chemokines IL-8 and MCP-1 in human placenta and omental and subcutaneous adipose tissue. Resveratrol also significantly restored the defects in the insulin signalling pathway and glucose uptake induced by TNF-α, LPS and poly(I:C). Collectively, these findings suggest that resveratrol reduces inflammation and insulin resistance induced by chemical and microbial products. Resveratrol may be a useful preventative therapeutic for pregnancies complicated by inflammation and insulin resistance, like GDM. PMID:28278187

  13. Activation of AMPK improves inflammation and insulin resistance in adipose tissue and skeletal muscle from pregnant women.

    PubMed

    Liong, Stella; Lappas, Martha

    2015-12-01

    Gestational diabetes mellitus (GDM) is characterised by maternal peripheral insulin resistance and inflammation. Sterile inflammation and bacterial infection are key mediators of this enhanced inflammatory response. Adenosine monophosphate (AMP)-activated kinase (AMPK), which is decreased in insulin resistant states, possesses potent pro-inflammatory actions. There are, however, no studies on the role of AMPK in pregnancies complicated by GDM. Thus, the aims of this study were (i) to compare the expression of AMPK in adipose tissue and skeletal muscle from women with GDM and normal glucose-tolerant (NGT) pregnant women; and (ii) to investigate the effect of AMPK activation on inflammation and insulin resistance induced by the bacterial endotoxin lipopolysaccharide (LPS) and the pro-inflammatory cytokine IL-1β. When compared to NGT pregnant women, AMPKα activity was significantly lower in women with GDM as evidenced by a decrease in threonine phosphorylation of AMPKα. Activation of AMPK, using two pharmacologically distinct compounds, AICAR or phenformin, significantly suppressed LPS- or IL-1β-induced gene expression and secretion of pro-inflammatory cytokine IL-6, the chemokines IL-8 and MCP-1, and COX-2 and subsequent prostaglandin release from adipose tissue and skeletal muscle. In addition, activators of AMPK decreased skeletal muscle insulin resistance induced by LPS or IL-1β as evidenced by increased insulin-stimulated phosphorylation of IRS-1, GLUT-4 expression and glucose uptake. These findings suggest that AMPK may play an important role in inflammation and insulin resistance.

  14. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation.

    PubMed

    Spencer, Michael; Yao-Borengasser, Aiwei; Unal, Resat; Rasouli, Neda; Gurley, Catherine M; Zhu, Beibei; Peterson, Charlotte A; Kern, Philip A

    2010-12-01

    Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose macrophages, the extracellular matrix, and adipocyte-macrophage interactions, gene expression from adipose tissue and the stromal vascular fraction was assessed for markers of inflammation and fibrosis, and macrophages from obese and lean subjects were counted and characterized immunohistochemically. Coculture experiments examined the effects of adipocyte-macrophage interaction. Collagen VI gene expression was associated with insulin sensitivity and CD68 (r = -0.56 and 0.60, P < 0.0001) and with other markers of inflammation and fibrosis. Compared with adipose tissue from lean subjects, adipose tissue from obese subjects contained increased areas of fibrosis, which correlated inversely with insulin sensitivity (r = -0.58, P < 0.02) and positively with macrophage number (r = 0.70, P < 0.01). Although macrophages in crownlike structures (CLS) were more abundant in obese adipose tissue, the majority of macrophages were associated with fibrosis and were not organized in CLS. Macrophages in CLS were predominantly M1, but most other macrophages, particularly those in fibrotic areas, were M2 and also expressed CD150, a marker of M2c macrophages. Coculture of THP-1 macrophages with adipocytes promoted the M2 phenotype, with a lower level of IL-1 expression and a higher ratio of IL-10 to IL-12. Transforming growth factor-β (TGF-β) was more abundant in M2 macrophages and was further increased by coculture with adipocytes. Downstream effectors of TGF-β, such as plasminogen activator inhibitor-1, collagen VI, and phosphorylated Smad, were increased in macrophages and adipocytes. Thus adipose tissue of insulin-resistant humans demonstrated increased fibrosis, M2 macrophage abundance, and TGF-β activity.

  15. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-{kappa}B pathway

    SciTech Connect

    Wang, Zhiquan; Xue, Liqiong; Guo, Cuicui; Han, Bing; Pan, Chunming; Zhao, Shuangxia; Song, Huaidong; Ma, Qinyun

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Stevioside ameliorates high-fat diet-induced insulin resistance. Black-Right-Pointing-Pointer Stevioside alleviates the adipose tissue inflammation. Black-Right-Pointing-Pointer Stevioside reduces macrophages infiltration into the adipose tissue. Black-Right-Pointing-Pointer Stevioside suppresses the activation of NF-{kappa}B in the adipose tissue. -- Abstract: Accumulating evidence suggests that adipose tissue is the main source of pro-inflammatory molecules that predispose individuals to insulin resistance. Stevioside (SVS) is a widely used sweetener with multiple beneficial effects for diabetic patients. In this study, we investigated the effect of SVS on insulin resistance and the pro-inflammatory state of adipose tissue in mice fed with a high-fat diet (HFD). Oral administration of SVS for 1 month had no effect on body weight, but it significantly improved fasting glucose, basal insulin levels, glucose tolerance and whole body insulin sensitivity. Interestingly, these changes were accompanied with decreased expression levels of several inflammatory cytokines in adipose tissue, including TNF-{alpha}, IL6, IL10, IL1{beta}, KC, MIP-1{alpha}, CD11b and CD14. Moreover, macrophage infiltration in adipose tissue was remarkably reduced by SVS. Finally, SVS significantly suppressed the nuclear factor-kappa b (NF-{kappa}B) signaling pathway in adipose tissue. Collectively, these results suggested that SVS may ameliorate insulin resistance in HFD-fed mice by attenuating adipose tissue inflammation and inhibiting the NF-{kappa}B pathway.

  16. Imidacloprid Promotes High Fat Diet-Induced Adiposity and Insulin Resistance in Male C57BL/6J Mice

    PubMed Central

    2016-01-01

    Imidacloprid, a neonicotinoid insecticide widely used in agriculture worldwide, has been reported to promote adipogenesis and cause insulin resistance in vitro. The purpose of the current study was to determine the effects of imidacloprid and its interaction with dietary fat in the development of adiposity and insulin resistance using male C57BL/6J mice. Imidacloprid (0.06, 0.6, or 6 mg/kg bw/day) was mixed in a low-fat (4% w/w) or high-fat (20% w/w) diet and given to mice ad libitum for 12 weeks. Imidacloprid significantly promoted high fat diet-induced body weight gain and adiposity. In addition, imidacloprid treatment with the high fat diet resulted in impaired glucose metabolism. Consistently, there were significant effects of imidacloprid on genes regulating lipid and glucose metabolisms, including the AMP-activated protein kinase-α (AMPKα) pathway in white adipose tissue and liver. These results suggest that imidacloprid may potentiate high fat diet-induced adiposity and insulin resistance in male C57BL/6J mice. PMID:27960282

  17. Imidacloprid Promotes High Fat Diet-Induced Adiposity and Insulin Resistance in Male C57BL/6J Mice.

    PubMed

    Sun, Quancai; Xiao, Xiao; Kim, Yoo; Kim, Daeyoung; Yoon, Kyoon Sup; Clark, John M; Park, Yeonhwa

    2016-12-14

    Imidacloprid, a neonicotinoid insecticide widely used in agriculture worldwide, has been reported to promote adipogenesis and cause insulin resistance in vitro. The purpose of the current study was to determine the effects of imidacloprid and its interaction with dietary fat in the development of adiposity and insulin resistance using male C57BL/6J mice. Imidacloprid (0.06, 0.6, or 6 mg/kg bw/day) was mixed in a low-fat (4% w/w) or high-fat (20% w/w) diet and given to mice ad libitum for 12 weeks. Imidacloprid significantly promoted high fat diet-induced body weight gain and adiposity. In addition, imidacloprid treatment with the high fat diet resulted in impaired glucose metabolism. Consistently, there were significant effects of imidacloprid on genes regulating lipid and glucose metabolisms, including the AMP-activated protein kinase-α (AMPKα) pathway in white adipose tissue and liver. These results suggest that imidacloprid may potentiate high fat diet-induced adiposity and insulin resistance in male C57BL/6J mice.

  18. Primary Hyperparathyroidism: The Influence of Bone Marrow Adipose Tissue on Bone Loss and of Osteocalcin on Insulin Resistance

    PubMed Central

    Mendonça, Maira L.; Batista, Sérgio L.; Nogueira-Barbosa, Marcello H.; Salmon, Carlos E.G.; de Paula, Francisco J.A.

    2016-01-01

    OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT) and 21 controls (CG). Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01). Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%). The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005), but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity. PMID:27626477

  19. Activation of the hexosamine signaling pathway in adipose tissue results in decreased serum adiponectin and skeletal muscle insulin resistance.

    PubMed

    Hazel, Mark; Cooksey, Robert C; Jones, Deborah; Parker, Glendon; Neidigh, John L; Witherbee, Bryan; Gulve, Eric A; McClain, Donald A

    2004-05-01

    Overexpression of the rate-limiting enzyme for hexosamine synthesis (glutamine:fructose-6-phosphate amidotransferase) in muscle and adipose tissue of transgenic mice was previously shown to result in insulin resistance and hyperleptinemia. Explanted muscle from transgenic mice was not insulin resistant in vitro, suggesting that muscle insulin resistance could be mediated by soluble factors from fat tissue. To dissect the relative contributions of muscle and fat to hexosamine-induced insulin resistance, we overexpressed glutamine:fructose-6-phosphate amidotransferase 2.5-fold, specifically in fat under control of the aP2 promoter. Fasting glucose, insulin, and triglycerides were unchanged in the transgenic mice; leptin and beta-hydroxybutyrate levels were 91% and 29% higher, respectively. Fasted transgenic mice have mild glucose intolerance and skeletal muscle insulin resistance in vivo. In fasting transgenic mice, glucose disposal rates with hyperinsulinemia were decreased 27% in females and 10% in males. Uptake of 2-deoxy-D-glucose into muscle was diminished by 45% in female and 21% in male transgenics. Serum adiponectin was also lower in the fasted transgenics, by 37% in females and 22% in males. TNF alpha and resistin mRNA levels in adipose tissue were not altered in the fasted transgenics; levels of mRNA for leptin were increased and peroxisome proliferator-activated receptor gamma decreased. To further explore the relationship between adiponectin and insulin sensitivity, we examined mice that have been refed for 6 h after a 24-h fast. Refeeding wild-type mice resulted in decreased serum adiponectin and increased leptin. In transgenic mice, however, the regulation of these hormones by refeeding was lost for adiponectin and diminished for leptin. Refed transgenic female and male mice no longer exhibited decreased serum adiponectin in the refed state, and they were no longer insulin resistant as by lower or unchanged insulin and glucose levels. We conclude that

  20. Biochemical hyperandrogenism is associated with metabolic syndrome independently of adiposity and insulin resistance in Romanian polycystic ovary syndrome patients.

    PubMed

    Albu, Alice; Radian, Serban; Fica, Simona; Barbu, Carmen Gabriela

    2015-03-01

    The aim of the study was to determine whether Romanian polycystic ovary syndrome (PCOS) patients have an increased prevalence of metabolic syndrome (MetS) and to study the involvement of adiposity, insulin resistance and hyperandrogenism in the pathogenesis of MetS in PCOS. A total of 398 PCOS patients and 126 controls were evaluated between January 2006 and December 2012. MetS was defined by National Cholesterol Education Program, Adult Treatment Panel III criteria. Principal component analysis (PCA) was used to analyze the correlations among variables of interest by grouping them in few components, and principal component (PCs) scores were saved and used as independent variables in logistic regression. The prevalence of MetS was higher among patients with PCOS (20.4 %) than in controls (11.1 %, p < 0.05). In PCOS patients, PCA extracted three PCs from the analyzed variables. First PC aggregated variables related to adiposity and insulin resistance, with factor loadings showing strong relationship between these parameters. The second PC included markers of hyperandrogenemia and was best represented by free androgen index (FAI) which correlated strongly and exclusively with this PC. The third component was best represented by hirsutism. Logistic regression analysis revealed that in PCOS patients, the first and the second PCs were independently associated with MetS, whereas the third component was not. Romanian PCOS patients have an increased risk for MetS; adiposity, insulin resistance and hyperandrogenemia, but not hirsutism, are independent predictors of MetS presence. Our data also suggest that insulin resistance is only secondary to increased adiposity and FAI is a good marker of biochemical hyperandrogenism with little influences from the metabolic component.

  1. Relations among Adiposity and Insulin Resistance with Flow-Mediated Dilation, Carotid Intima-Media Thickness, and Arterial Stiffness in Children

    PubMed Central

    Ryder, Justin R.; Dengel, Donald R.; Jacobs, David R.; Sinaiko, Alan; Kelly, Aaron S.; Steinberger, Julia

    2015-01-01

    Objective To determine the associations of adiposity and insulin resistance with measures of vascular structure and function in children. Study design A cross-sectional study included 252 children (age 15.1±2.4 yrs; body mass index (BMI)-percentile 68.2±26.5%; Tanner 2–5). Measurements of body fat percentage (BF%) were obtained with dual-energy X-ray absorptiometry (DXA) and visceral fat (VAT) with computed tomography (CT). Insulin resistance was measured with hyperinsulinemic euglycemic clamp. Vascular measurements for endothelial function (brachial artery flow-mediated dilation [FMD]), vascular structure (carotid intima-media thickness [cIMT]), vascular stiffness (carotid incremental elastic modulus [cIEM]), and pulse wave velocity (PWV) were analyzed by tertiles of adiposity and insulin resistance. Additional analyses with ANCOVA and linear regression, were adjusted for Tanner, sex, race, and family relationship; FMD was also adjusted for baseline artery diameter. Results FMD was positively associated with high adiposity (BMI, BF%, and VAT) (p<0.01 all). Insulin resistance was not associated with FMD. cIMT was significantly, positively related to obesity, VAT, and insulin resistance (p<0.05 all). No differences in cIEM and PWV were observed in relation to adiposity or insulin resistance. Conclusions The findings suggest that adiposity is associated with higher FMD, and insulin resistance and VAT are associated with higher cIMT in children. Further research is needed to clarify the progression of these relations. PMID:26427963

  2. New insights into adipose tissue VEGF-A actions in the control of obesity and insulin resistance

    PubMed Central

    Elias, Ivet; Franckhauser, Sylvie; Bosch, Fatima

    2013-01-01

    Vascular endothelial growth factor A (VEGF-A) is classically viewed as a key factor in angiogenesis and tissue remodeling. However, recent evidence suggests a potential role of this growth factor in the control of energy metabolism and adipose tissue function. In this regard, we and others have described the effects of the up and downregulation of VEGF-A in adipose tissue on the control of energy homeostasis. VEGF-A overexpression protects against diet-induced obesity and insulin resistance. The observation that VEGF-A overexpression leads to an increase in brown adipose tissue (BAT) thermogenesis and also promotes a “BAT-like” phenotype in white adipose tissue depots is of particular relevance for the understanding of the mechanisms underlying obesity development. In addition, VEGF-A may not only have pro-inflammatory but also anti-inflammatory properties, with a chemotactic activity specific for M2 anti-inflammatory macrophages. This new scientific evidence highlights the importance that VEGF-A actions on metabolism could have on the design of new treatments for obesity, insulin resistance and obesity-related disorders. PMID:23805408

  3. Pharmacological inhibition of adipose triglyceride lipase corrects high-fat diet-induced insulin resistance and hepatosteatosis in mice

    PubMed Central

    Schweiger, Martina; Romauch, Matthias; Schreiber, Renate; Grabner, Gernot F.; Hütter, Sabrina; Kotzbeck, Petra; Benedikt, Pia; Eichmann, Thomas O.; Yamada, Sohsuke; Knittelfelder, Oskar; Diwoky, Clemens; Doler, Carina; Mayer, Nicole; De Cecco, Werner; Breinbauer, Rolf; Zimmermann, Robert; Zechner, Rudolf

    2017-01-01

    Elevated circulating fatty acids (FAs) contribute to the development of obesity-associated metabolic complications such as insulin resistance (IR) and non-alcoholic fatty liver disease (NAFLD). Hence, reducing adipose tissue lipolysis to diminish the mobilization of FAs and lower their respective plasma concentrations represents a potential treatment strategy to counteract obesity-associated disorders. Here we show that specific inhibition of adipose triglyceride lipase (Atgl) with the chemical inhibitor, Atglistatin, effectively reduces adipose tissue lipolysis, weight gain, IR and NAFLD in mice fed a high-fat diet. Importantly, even long-term treatment does not lead to lipid accumulation in ectopic tissues such as the skeletal muscle or heart. Thus, the severe cardiac steatosis and cardiomyopathy that is observed in genetic models of Atgl deficiency does not occur in Atglistatin-treated mice. Our data validate the pharmacological inhibition of Atgl as a potentially powerful therapeutic strategy to treat obesity and associated metabolic disorders. PMID:28327588

  4. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    SciTech Connect

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  5. Adipose Tissue CIDEA Is Associated, Independently of Weight Variation, to Change in Insulin Resistance during a Longitudinal Weight Control Dietary Program in Obese Individuals

    PubMed Central

    Montastier, Emilie; Déjean, Sébastien; Le Gall, Caroline; Saris, Wim H. M.; Langin, Dominique; Viguerie, Nathalie

    2014-01-01

    Aim Weight loss reduces risk factors associated with obesity. However, long-term metabolic improvement remains a challenge. We investigated quantitative gene expression of subcutaneous adipose tissue in obese individuals and its relationship with low calorie diet and long term weight maintenance induced changes in insulin resistance. Research Design Three hundred eleven overweight and obese individuals followed a dietary protocol consisting of an 8-week low calorie diet followed by a 6-month ad libitum weight-maintenance diet. Individuals were clustered according to insulin resistance trajectories assessed using homeostasis model assessment of insulin resistance (HOMA-IR) index. Adipose tissue mRNA levels of 267 genes selected for regulation according to obesity, metabolic status and response to dieting was assessed using high throughput RT-qPCR. A combination of discriminant analyses was used to identify genes with regulation according to insulin resistance trajectories. Partial correlation was used to control for change in body mass index. Results Three different HOMA-IR profile groups were determined. HOMA-IR improved during low calorie diet in the 3 groups. At the end of the 6-month follow-up, groups A and B had reduced HOMA-IR by 50%. In group C, HOMA-IR had returned to baseline values. Genes were differentially expressed in the adipose tissue of individuals according to groups but a single gene, CIDEA, was common to all phases of the dietary intervention. Changes in adipose tissue CIDEA mRNA levels paralleled variations in insulin sensitivity independently of change in body mass index. Overall, CIDEA was up-regulated in adipose tissue of individuals with successful long term insulin resistance relapse and not in adipose tissue of unsuccessful individuals. Conclusion The concomitant change in adipose tissue CIDEA mRNA levels and insulin sensitivity suggests a beneficial role of adipose tissue CIDEA in long term glucose homeostasis, independently of weight

  6. Diethylcarbamazine citrate ameliorates insulin resistance in high-fat diet-induced obese mice via modulation of adipose tissue inflammation.

    PubMed

    Abdel-Latif, Mahmoud

    2015-12-01

    Diethylcarbamazine citrate (DEC) had been known as anti-inflammatory drug but its effect on obesity-induced insulin resistance as a result of released inflammatory mediators from adipose tissue (AT) was not known. White male albino mice were fed with high fat diet (HFD) for 18weeks to induce obesity. DEC at different three doses (12, 50 and 200mg/kg) was orally administered twice a week starting at week 6. Body, liver and adipose tissue weights were taken, while glucose tolerance, insulin resistance, blood triglycerides and levels of adipokines (leptin, TNF-α, IL-6 and MCP-1) were tested. The activity of cyclooxygenase (COX) in the liver tissue homogenate was also tested. In addition, NF-κBp65 localization in liver cell cytoplasmic and nuclear fractions was detected using Western blotting. The only effective anti-inflammatory dose was 50mg/kg to reduce (p<0.05) the high levels of glucose, insulin and triglycerides in serum. DEC was not anti-obesity drug because the weights of body, liver and adipose tissues were not changed. Hyperleptinemia was decreased (p<0.001) and associated with a reduction in serum levels of TNF-α, IL-6 and MCP-1 (p<0.001). In addition, the activity of COX in DEC treatment decreased significantly (p<0.01), while NF-κBp65 localization in nuclear extracts was obviously inhibited in 50mg/kg treated group. It could be concluded that DEC was the only effective dose against mouse insulin resistance but not lipid accumulation.

  7. Angiopoietin Like Protein 2 (ANGPTL2) Promotes Adipose Tissue Macrophage and T lymphocyte Accumulation and Leads to Insulin Resistance

    PubMed Central

    Sasaki, Yusuke; Ohta, Masayuki; Desai, Dhruv; Figueiredo, Jose-Luiz; Whelan, Mary C.; Sugano, Tomohiro; Yamabi, Masaki; Yano, Wataru; Faits, Tyler; Yabusaki, Katsumi; Zhang, Hengmin; Mlynarchik, Andrew K.; Inoue, Keisuke; Mizuno, Ken; Aikawa, Masanori

    2015-01-01

    Objectives Angiopoietin-like protein 2 (ANGPTL2), a recently identified pro-inflammatory cytokine, is mainly secreted from the adipose tissue. This study aimed to explore the role of ANGPTL2 in adipose tissue inflammation and macrophage activation in a mouse model of diabetes. Methodology/Principal Findings Adenovirus mediated lacZ (Ad-LacZ) or human ANGPTL2 (Ad-ANGPTL2) was delivered via tail vein in diabetic db/db mice. Ad-ANGPTL2 treatment for 2 weeks impaired both glucose tolerance and insulin sensitivity as compared to Ad-LacZ treatment. Ad-ANGPTL2 treatment significantly induced pro-inflammatory gene expression in white adipose tissue. We also isolated stromal vascular fraction from epididymal fat pad and analyzed adipose tissue macrophage and T lymphocyte populations by flow cytometry. Ad-ANGPTL2 treated mice had more adipose tissue macrophages (F4/80+CD11b+) and a larger M1 macrophage subpopulation (F4/80+CD11b+CD11c+). Moreover, Ad-ANGPTL2 treatment increased a CD8-positive T cell population in adipose tissue, which preceded increased macrophage accumulation. Consistent with our in vivo results, recombinant human ANGPTL2 protein treatment increased mRNA levels of pro-inflammatory gene products and production of TNF-α protein in the human macrophage-like cell line THP-1. Furthermore, Ad-ANGPTL2 treatment induced lipid accumulation and increased fatty acid synthesis, lipid metabolism related gene expression in mouse liver. Conclusion ANGPTL2 treatment promotes macrophage accumulation and activation. These results suggest potential mechanisms for insulin resistance. PMID:26132105

  8. Insulin and Insulin Resistance

    PubMed Central

    2005-01-01

    As obesity and diabetes reach epidemic proportions in the developed world, the role of insulin resistance and its consequences are gaining prominence. Understanding the role of insulin in wide-ranging physiological processes and the influences on its synthesis and secretion, alongside its actions from the molecular to the whole body level, has significant implications for much chronic disease seen in Westernised populations today. This review provides an overview of insulin, its history, structure, synthesis, secretion, actions and interactions followed by a discussion of insulin resistance and its associated clinical manifestations. Specific areas of focus include the actions of insulin and manifestations of insulin resistance in specific organs and tissues, physiological, environmental and pharmacological influences on insulin action and insulin resistance as well as clinical syndromes associated with insulin resistance. Clinical and functional measures of insulin resistance are also covered. Despite our incomplete understanding of the complex biological mechanisms of insulin action and insulin resistance, we need to consider the dramatic social changes of the past century with respect to physical activity, diet, work, socialisation and sleep patterns. Rapid globalisation, urbanisation and industrialisation have spawned epidemics of obesity, diabetes and their attendant co-morbidities, as physical inactivity and dietary imbalance unmask latent predisposing genetic traits. PMID:16278749

  9. Elevated fasting plasma ghrelin in prader-willi syndrome adults is not solely explained by their reduced visceral adiposity and insulin resistance.

    PubMed

    Goldstone, Anthony P; Thomas, E Louise; Brynes, Audrey E; Castroman, Gabriela; Edwards, Ray; Ghatei, Mohammad A; Frost, Gary; Holland, Anthony J; Grossman, Ashley B; Korbonits, Márta; Bloom, Stephen R; Bell, Jimmy D

    2004-04-01

    Plasma ghrelin is elevated in Prader-Willi syndrome (PWS). This might contribute to obesity or GH deficiency in such patients. Visceral adiposity and insulin resistance are reduced in PWS, which might lead to hyperghrelinemia. We measured fasting plasma ghrelin in control female (n = 39), PWS female (n = 12), and PWS male (n = 6) adults. In controls and PWS, ghrelin was negatively correlated with visceral adiposity, fasting insulin, and homeostasis model insulin resistance index. There was no significant correlation with serum IGF-I in PWS. In stepwise linear regression, visceral adiposity (P < 0.02) had a stronger inverse correlation with ghrelin than sc fat depots in controls and PWS, possibly through hyperinsulinemia, as the correlations with insulin resistance were even stronger (P < 0.01). PWS females had significantly (P < 0.001) elevated ghrelin (mean +/- SD, 661 +/- 360 pg/ml), compared with both nonobese (363 +/- 163) and obese (191 +/- 66) controls. Ghrelin was increased 3.4- to 3.6-fold in PWS females adjusting for total adiposity, 3.2- to 3.4-fold adjusting for visceral adiposity, and 3.0-fold adjusting for insulin resistance. Fasting plasma glucagon-like peptide-1 was normal in PWS females. The hyperghrelinemia in PWS adults is therefore not solely explained by their reduced visceral adiposity and relative hypoinsulinemia. Its cause and consequences await further elucidation.

  10. CONTRAST-ENHANCED ULTRASOUND ASSESSMENT OF IMPAIRED ADIPOSE TISSUE AND MUSCLE PERFUSION IN INSULIN-RESISTANT MICE

    PubMed Central

    Belcik, J. Todd; Davidson, Brian P.; Foster, Ted; Qi, Yue; Zhao, Yan; Peters, Dawn; Lindner, Jonathan R.

    2015-01-01

    Background In diabetes mellitus reduced perfusion and capillary surface area in skeletal muscle, which is a major glucose storage site, contributes to abnormal glucose homeostasis. Using contrast-enhanced ultrasound (CEU) we investigated whether abdominal adipose tissue perfusion is abnormal in insulin resistance (IR) and correlates with glycemic control. Methods and Results Abdominal adipose tissue and skeletal muscle CEU perfusion imaging was performed in obese IR (db/db) mice at 11-12 or 14-16 weeks of age, and in control lean mice. Time-intensity data were analyzed to quantify microvascular blood flow (MBF) and capillary blood volume (CBV). Blood glucose response over one hour was measured after insulin challenge (1 u/Kg, I.P.). Compared to control mice, db/db mice at 11-12 and 14-16 weeks had a higher glucose concentration area-under-the-curve after insulin (11.8±2.8, 20.6±4.3, and 28.4±5.9 mg·min/dL [×1000], respectively, p=0.0002), and also had lower adipose MBF (0.094±0.038, 0.035±0.010, and 0.023±0.01 mL/min/g, p=0.0002) and CBV (1.6±0.6, 1.0±0.3, and 0.5±0.1 mL/100 g, p=0.0017). The glucose area-under-the-curve correlated in a non-linear fashion with both adipose and skeletal muscle MBF and CBV. There were significant linear correlations between adipose and muscle MBF (r=0.81) and CBV (r=0.66). Adipocyte cell volume on histology was 25-fold higher in 14-16 week db/db versus control mice. Conclusions Abnormal adipose MBF and CBV in IR can be detected by CEU and correlates with the degree of impairment in glucose storage. Abnormalities in adipose tissue and muscle appear to be coupled. Impaired adipose tissue perfusion is in part explained by an increase in adipocyte size without proportional vascular response. PMID:25855669

  11. Abdominal adiposity and obstructive airway disease: testing insulin resistance and sleep disordered breathing mechanisms

    PubMed Central

    2012-01-01

    Background This study examined associations of abdominal adiposity with lung function, asthma symptoms and current doctor-diagnosed asthma and mediation by insulin resistance (IR) and sleep disordered breathing (SDB). Methods A random sample of 2500 households was drawn from the community of Whyalla, South Australia (The Whyalla Intergenerational Study of Health, WISH February 2008 - July 2009). Seven-hundred twenty-two randomly selected adults (≥18 years) completed clinical protocols (32.2% response rate). Lung function was measured by spirometry. Post-bronchodilator FEV1/FVC was used to measure airway obstruction and reversibility of FEV1 was calculated. Current asthma was defined by self-reported doctor-diagnosis and evidence of currently active asthma. Symptom scores for asthma (CASS) and SDB were calculated. Intra-abdominal fat (IAF) was estimated using dual-energy x-ray absorptiometry (DXA). IR was calculated from fasting glucose and insulin concentrations. Results The prevalence of current doctor-diagnosed asthma was 19.9% (95% CI 16.7 – 23.5%). The ratio of observed to expected cases given the age and sex distribution of the population was 2.4 (95%CI 2.1, 2.9). IAF was not associated with current doctor-diagnosed asthma, FEV1/FVC or FEV1 reversibility in men or women but was positively associated with CASS independent of IR and SDB in women. A 1% increase in IAF was associated with decreases of 12 mL and 20 mL in FEV1 and FVC respectively in men, and 4 mL and 7 mL respectively in women. SDB mediated 12% and 26% of these associations respectively in men but had minimal effects in women. Conclusions In this population with an excess of doctor-diagnosed asthma, IAF was not a major factor in airway obstruction or doctor-diagnosed asthma, although women with higher IAF perceived more severe asthma symptoms which did not correlate with lower FEV1. Higher IAF was significantly associated with lower FEV1 and FVC and in men SDB mechanisms may

  12. Progression from high insulin resistance to type 2 diabetes does not entail additional visceral adipose tissue inflammation.

    PubMed

    Barbarroja, Nuria; Lopez-Pedrera, Chary; Garrido-Sanchez, Lourdes; Mayas, Maria Dolores; Oliva-Olivera, Wilfredo; Bernal-Lopez, Maria Rosa; El Bekay, Rajaa; Tinahones, Francisco Jose

    2012-01-01

    Obesity is associated with a low-grade chronic inflammation state. As a consequence, adipose tissue expresses pro-inflammatory cytokines that propagate inflammatory responses systemically elsewhere, promoting whole-body insulin resistance and consequential islet β-cell exhaustation. Thus, insulin resistance is considered the early stage of type 2 diabetes. However, there is evidence of obese individuals that never develop diabetes indicating that the mechanisms governing the association between the increase of inflammatory factors and type 2 diabetes are much more complex and deserve further investigation. We studied for the first time the differences in insulin signalling and inflammatory pathways in blood and visceral adipose tissue (VAT) of 20 lean healthy donors and 40 equal morbidly obese (MO) patients classified in high insulin resistance (high IR) degree and diabetes state. We studied the changes in proinflammatory markers and lipid content from serum; macrophage infiltration, mRNA expression of inflammatory cytokines and transcription factors, activation of kinases involved in inflammation and expression of insulin signalling molecules in VAT. VAT comparison of these experimental groups revealed that type 2 diabetic-MO subjects exhibit the same pro-inflammatory profile than the high IR-MO patients, characterized by elevated levels of IL-1β, IL-6, TNFα, JNK1/2, ERK1/2, STAT3 and NFκB. Our work rules out the assumption that the inflammation should be increased in obese people with type 2 diabetes compared to high IR obese. These findings indicate that some mechanisms, other than systemic and VAT inflammation must be involved in the development of type 2 diabetes in obesity.

  13. Progression from High Insulin Resistance to Type 2 Diabetes Does Not Entail Additional Visceral Adipose Tissue Inflammation

    PubMed Central

    Barbarroja, Nuria; Lopez-Pedrera, Chary; Garrido-Sanchez, Lourdes; Mayas, Maria Dolores; Oliva-Olivera, Wilfredo; Bernal-Lopez, Maria Rosa; El Bekay, Rajaa; Tinahones, Francisco Jose

    2012-01-01

    Obesity is associated with a low-grade chronic inflammation state. As a consequence, adipose tissue expresses pro-inflammatory cytokines that propagate inflammatory responses systemically elsewhere, promoting whole-body insulin resistance and consequential islet β-cell exhaustation. Thus, insulin resistance is considered the early stage of type 2 diabetes. However, there is evidence of obese individuals that never develop diabetes indicating that the mechanisms governing the association between the increase of inflammatory factors and type 2 diabetes are much more complex and deserve further investigation. We studied for the first time the differences in insulin signalling and inflammatory pathways in blood and visceral adipose tissue (VAT) of 20 lean healthy donors and 40 equal morbidly obese (MO) patients classified in high insulin resistance (high IR) degree and diabetes state. We studied the changes in proinflammatory markers and lipid content from serum; macrophage infiltration, mRNA expression of inflammatory cytokines and transcription factors, activation of kinases involved in inflammation and expression of insulin signalling molecules in VAT. VAT comparison of these experimental groups revealed that type 2 diabetic-MO subjects exhibit the same pro-inflammatory profile than the high IR-MO patients, characterized by elevated levels of IL-1β, IL-6, TNFα, JNK1/2, ERK1/2, STAT3 and NFκB. Our work rules out the assumption that the inflammation should be increased in obese people with type 2 diabetes compared to high IR obese. These findings indicate that some mechanisms, other than systemic and VAT inflammation must be involved in the development of type 2 diabetes in obesity. PMID:23110196

  14. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance

    PubMed Central

    Poher, Anne-Laure; Altirriba, Jordi; Veyrat-Durebex, Christelle; Rohner-Jeanrenaud, Françoise

    2015-01-01

    Presence of brown adipose tissue (BAT), characterized by the expression of the thermogenic uncoupling protein 1 (UCP1), has recently been described in adult humans. UCP1 is expressed in classical brown adipocytes, as well as in “beige cells” in white adipose tissue (WAT). The thermogenic activity of BAT is mainly controlled by the sympathetic nervous system. Endocrine factors, such as fibroblast growth factor 21 (FGF21) and bone morphogenic protein factor-9 (BMP-9), predominantly produced in the liver, were shown to lead to activation of BAT thermogenesis, as well as to “browning” of WAT. This was also observed in response to irisin, a hormone secreted by skeletal muscles. Different approaches were used to delineate the impact of UCP1 on insulin sensitivity. When studied under thermoneutral conditions, UCP1 knockout mice exhibited markedly increased metabolic efficiency due to impaired thermogenesis. The impact of UCP1 deletion on insulin sensitivity in these mice was not reported. Conversely, several studies in both rodents and humans have shown that BAT activation (by cold exposure, β3-agonist treatment, transplantation and others) improves glucose tolerance and insulin sensitivity. Interestingly, similar results were obtained by adipose tissue-specific overexpression of PR-domain-containing 16 (PRDM16) or BMP4 in mice. The mediators of such beneficial effects seem to include FGF21, interleukin-6, BMP8B and prostaglandin D2 synthase. Interestingly, some of these molecules can be secreted by BAT itself, indicating the occurrence of autocrine effects. Stimulation of BAT activity and/or recruitment of UCP1-positive cells are therefore relevant targets for the treatment of obesity/type 2 diabetes in humans. PMID:25688211

  15. 12/15-Lipoxygenase Is Required for the Early Onset of High Fat Diet-Induced Adipose Tissue Inflammation and Insulin Resistance in Mice

    PubMed Central

    Sears, Dorothy D.; Miles, Philip D.; Chapman, Justin; Ofrecio, Jachelle M.; Almazan, Felicidad; Thapar, Divya; Miller, Yury I.

    2009-01-01

    Background Recent understanding that insulin resistance is an inflammatory condition necessitates searching for genes that regulate inflammation in insulin sensitive tissues. 12/15-lipoxygenase (12/15LO) regulates the expression of proinflammatory cytokines and chemokines and is implicated in the early development of diet-induced atherosclerosis. Thus, we tested the hypothesis that 12/15LO is involved in the onset of high fat diet (HFD)-induced insulin resistance. Methodology/Principal Findings Cells over-expressing 12/15LO secreted two potent chemokines, MCP-1 and osteopontin, implicated in the development of insulin resistance. We assessed adipose tissue inflammation and whole body insulin resistance in wild type (WT) and 12/15LO knockout (KO) mice after 2–4 weeks on HFD. In adipose tissue from WT mice, HFD resulted in recruitment of CD11b+, F4/80+ macrophages and elevated protein levels of the inflammatory markers IL-1β, IL-6, IL-10, IL-12, IFNγ, Cxcl1 and TNFα. Remarkably, adipose tissue from HFD-fed 12/15LO KO mice was not infiltrated by macrophages and did not display any increase in the inflammatory markers compared to adipose tissue from normal chow-fed mice. WT mice developed severe whole body (hepatic and skeletal muscle) insulin resistance after HFD, as measured by hyperinsulinemic euglycemic clamp. In contrast, 12/15LO KO mice exhibited no HFD-induced change in insulin-stimulated glucose disposal rate or hepatic glucose output during clamp studies. Insulin-stimulated Akt phosphorylation in muscle tissue from HFD-fed mice was significantly greater in 12/15LO KO mice than in WT mice. Conclusions These results demonstrate that 12/15LO mediates early stages of adipose tissue inflammation and whole body insulin resistance induced by high fat feeding. PMID:19787041

  16. Associations of organochlorine pesticides and polychlorinated biphenyls in visceral vs. subcutaneous adipose tissue with type 2 diabetes and insulin resistance.

    PubMed

    Kim, Ki-Su; Lee, Yu-Mi; Kim, Sang Geol; Lee, In-Kyu; Lee, Hyo-Jeong; Kim, Ji-Hyun; Kim, Jeongkook; Moon, Hyo-Bang; Jacobs, David R; Lee, Duk-Hee

    2014-01-01

    Background exposure to organochlorine (OC) pesticides and polychlorinated biphenyls (PCBs) has been linked to type 2 diabetes. As OC pesticides and PCBs mainly accumulate in adipose tissue and there are physiological and clinical differences between visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT), we explored if there were associations of OC pesticides and PCBs in VAT or SAT with type 2 diabetes and insulin resistance. Participants were 50 patients with or without type 2 diabetes who underwent surgery for either cancer or benign liver or gallbladder lesions. We analyzed 14 OC pesticides and 22 PCB congeners in both VAT and SAT. Insulin resistance was estimated using homeostasis model assessment (HOMA). Although concentrations of OC pesticides and PCBs were strongly correlated between VAT and SAT, absolute concentrations differed substantially between them. In particular, concentrations of all PCBs were consistently about 5-10 times higher in VAT than SAT, but these patterns were independent of diabetes status. Some OC pesticides or PCBs, such as dichlorodiphenyltrichloroethanes (DDTs), chlordanes, and PCBs with 5 or less chlorides showed significant associations with diabetes or insulin resistance. For example, when tertiles of concentration-based summary measures were used, adjusted ORs were 1.0, 2.3, and 9.0 (P trend=0.02) for DDTs in VAT and 1.0, 2.1, and 5.7 (P trend=0.08) for PCBs with 5 or less chlorides. This study generally confirmed previous findings using serum concentrations. It would be useful to study pharmacodynamics of POPs in VAT and SAT further.

  17. Adipose tissue macrophages in the Development of Obesity-induced Inflammation, Insulin Resistance and Type 2 Diabetes

    PubMed Central

    Lee, Jongsoon

    2014-01-01

    It has been increasingly accepted that chronic subacute inflammation plays an important role in the development of insulin resistance and Type 2 Diabetes in animals and humans. Particularly supporting this is that suppression of systemic inflammation in Type 2 Diabetes improves glycemic control; this also points to a new potential therapeutic target for the treatment of Type 2 Diabetes. Recent studies strongly suggest that obesity-induced inflammation is mainly mediated by tissue resident immune cells, with particular attention being focused on adipose tissue macrophages (ATMs). This review delineates the current progress made in understanding obesity-induced inflammation and the roles ATMs play in this process. PMID:23397293

  18. Inhibition of Gastric Inhibitory Polypeptide Receptor Signaling in Adipose Tissue Reduces Insulin Resistance and Hepatic Steatosis in High-Fat Diet-Fed Mice.

    PubMed

    Joo, Erina; Harada, Norio; Yamane, Shunsuke; Fukushima, Toru; Taura, Daisuke; Iwasaki, Kanako; Sankoda, Akiko; Shibue, Kimitaka; Harada, Takanari; Suzuki, Kazuyo; Hamasaki, Akihiro; Inagaki, Nobuya

    2017-04-01

    Gastric inhibitory polypeptide receptor (GIPR) directly induces energy accumulation in adipose tissue in vitro. However, the importance of the direct effect of GIPR signaling on adipose tissue in vivo remains unclear. In the current study, we generated adipose tissue-specific GIPR knockout (GIPR(adipo-/-)) mice and investigated the direct actions of GIP in adipose tissue. Under high-fat diet (HFD)-fed conditions, GIPR(adipo-/-) mice had significantly lower body weight and lean body mass compared with those in floxed GIPR (GIPR(fl/fl)) mice, although the fat volume was not significantly different between the two groups. Interestingly, insulin resistance, liver weight, and hepatic steatosis were reduced in HFD-fed GIPR(adipo-/-) mice. Plasma levels of interleukin-6 (IL-6), a proinflammatory cytokine that induces insulin resistance, were reduced in HFD-fed GIPR(adipo-/-) mice compared with those in HFD-fed GIPR(fl/fl) mice. Suppressor of cytokine signaling 3 (SOCS3) signaling is located downstream of the IL-6 receptor and is associated with insulin resistance and hepatic steatosis. Expression levels of SOCS3 mRNA were significantly lower in adipose and liver tissues of HFD-fed GIPR(adipo-/-) mice compared with those of HFD-fed GIPR(fl/fl) mice. Thus, GIPR signaling in adipose tissue plays a critical role in HFD-induced insulin resistance and hepatic steatosis in vivo, which may involve IL-6 signaling.

  19. AMPK Activation by Metformin Suppresses Abnormal Extracellular Matrix Remodeling in Adipose Tissue and Ameliorates Insulin Resistance in Obesity.

    PubMed

    Luo, Ting; Nocon, Allison; Fry, Jessica; Sherban, Alex; Rui, Xianliang; Jiang, Bingbing; Xu, X Julia; Han, Jingyan; Yan, Yun; Yang, Qin; Li, Qifu; Zang, Mengwei

    2016-08-01

    Fibrosis is emerging as a hallmark of metabolically dysregulated white adipose tissue (WAT) in obesity. Although adipose tissue fibrosis impairs adipocyte plasticity, little is known about how aberrant extracellular matrix (ECM) remodeling of WAT is initiated during the development of obesity. Here we show that treatment with the antidiabetic drug metformin inhibits excessive ECM deposition in WAT of ob/ob mice and mice with diet-induced obesity, as evidenced by decreased collagen deposition surrounding adipocytes and expression of fibrotic genes including the collagen cross-linking regulator LOX Inhibition of interstitial fibrosis by metformin is likely attributable to the activation of AMPK and the suppression of transforming growth factor-β1 (TGF-β1)/Smad3 signaling, leading to enhanced systemic insulin sensitivity. The ability of metformin to repress TGF-β1-induced fibrogenesis is abolished by the dominant negative AMPK in primary cells from the stromal vascular fraction. TGF-β1-induced insulin resistance is suppressed by AMPK agonists and the constitutively active AMPK in 3T3L1 adipocytes. In omental fat depots of obese humans, interstitial fibrosis is also associated with AMPK inactivation, TGF-β1/Smad3 induction, aberrant ECM production, myofibroblast activation, and adipocyte apoptosis. Collectively, integrated AMPK activation and TGF-β1/Smad3 inhibition may provide a potential therapeutic approach to maintain ECM flexibility and combat chronically uncontrolled adipose tissue expansion in obesity.

  20. Obesity-associated insulin resistance is correlated to adipose tissue vascular endothelial growth factors and metalloproteinase levels

    PubMed Central

    2012-01-01

    Background The expansion of adipose tissue is linked to the development of its vasculature, which appears to have the potential to regulate the onset of obesity. However, at present, there are no studies highlighting the relationship between human adipose tissue angiogenesis and obesity-associated insulin resistance (IR). Results Our aim was to analyze and compare angiogenic factor expression levels in both subcutaneous (SC) and omentum (OM) adipose tissues from morbidly obese patients (n = 26) with low (OB/L-IR) (healthy obese) and high (OB/H-IR) degrees of IR, and lean controls (n = 17). Another objective was to examine angiogenic factor correlations with obesity and IR. Here we found that VEGF-A was the isoform with higher expression in both OM and SC adipose tissues, and was up-regulated 3-fold, together with MMP9 in OB/L-IR as compared to leans. This up-regulation decreased by 23% in OB/-H-IR compared to OB/L-IR. On the contrary, VEGF-B, VEGF-C and VEGF-D, together with MMP15 was down-regulated in both OB/H-IR and OB/L-IR compared to lean patients. Moreover, MMP9 correlated positively and VEGF-C, VEGF-D and MMP15 correlated negatively with HOMA-IR, in both SC and OM. Conclusion We hereby propose that the alteration in MMP15, VEGF-B, VEGF-C and VEGF-D gene expression may be caused by one of the relevant adipose tissue processes related to the development of IR, and the up-regulation of VEGF-A in adipose tissue could have a relationship with the prevention of this pathology. PMID:22471305

  1. Chronic Sleep Disruption Alters Gut Microbiota, Induces Systemic and Adipose Tissue Inflammation and Insulin Resistance in Mice

    PubMed Central

    Poroyko, Valeriy A.; Carreras, Alba; Khalyfa, Abdelnaby; Khalyfa, Ahamed A.; Leone, Vanessa; Peris, Eduard; Almendros, Isaac; Gileles-Hillel, Alex; Qiao, Zhuanhong; Hubert, Nathaniel; Farré, Ramon; Chang, Eugene B.; Gozal, David

    2016-01-01

    Chronic sleep fragmentation (SF) commonly occurs in human populations, and although it does not involve circadian shifts or sleep deprivation, it markedly alters feeding behaviors ultimately promoting obesity and insulin resistance. These symptoms are known to be related to the host gut microbiota. Mice were exposed to SF for 4 weeks and then allowed to recover for 2 weeks. Taxonomic profiles of fecal microbiota were obtained prospectively, and conventionalization experiments were performed in germ-free mice. Adipose tissue insulin sensitivity and inflammation, as well as circulating measures of inflammation, were assayed. Effect of fecal water on colonic epithelial permeability was also examined. Chronic SF-induced increased food intake and reversible gut microbiota changes characterized by the preferential growth of highly fermentative members of Lachnospiraceae and Ruminococcaceae and a decrease of Lactobacillaceae families. These lead to systemic and visceral white adipose tissue inflammation in addition to altered insulin sensitivity in mice, most likely via enhanced colonic epithelium barrier disruption. Conventionalization of germ-free mice with SF-derived microbiota confirmed these findings. Thus, SF-induced metabolic alterations may be mediated, in part, by concurrent changes in gut microbiota, thereby opening the way for gut microbiome-targeted therapeutics aimed at reducing the major end-organ morbidities of chronic SF. PMID:27739530

  2. Altered glucose and lipid homeostasis in liver and adipose tissue pre-dispose inducible NOS knockout mice to insulin resistance

    PubMed Central

    Kanuri, Babu Nageswararao; Kanshana, Jitendra S.; Rebello, Sanjay C.; Pathak, Priya; Gupta, Anand P.; Gayen, Jiaur R.; Jagavelu, Kumaravelu; Dikshit, Madhu

    2017-01-01

    On the basis of diet induced obesity and KO mice models, nitric oxide is implied to play an important role in the initiation of dyslipidemia induced insulin resistance. However, outcomes using iNOS KO mice have so far remained inconclusive. The present study aimed to assess IR in iNOS KO mice after 5 weeks of LFD feeding by monitoring body composition, energy homeostasis, insulin sensitivity/signaling, nitrite content and gene expressions changes in the tissues. We found that body weight and fat content in KO mice were significantly higher while the respiratory exchange ratio (RER), volume of carbon dioxide (VCO2), and heat production were lower as compared to WT mice. Furthermore, altered systemic glucose tolerance, tissue insulin signaling, hepatic gluconeogenesis, augmented hepatic lipids, adiposity, as well as gene expression regulating lipid synthesis, catabolism and efflux were evident in iNOS KO mice. Significant reduction in eNOS and nNOS gene expression, hepatic and adipose tissue nitrite content, circulatory nitrite was also observed. Oxygen consumption rate of mitochondrial respiration has remained unaltered in KO mice as measured using extracellular flux analyzer. Our findings establish a link between the NO status with systemic and tissue specific IR in iNOS KO mice at 5 weeks. PMID:28106120

  3. Randomized Control Trial to Improve Adiposity and Insulin Resistance in Overweight Latino Adolescents

    PubMed Central

    Davis, Jaimie N.; Kelly, Louise A.; Lane, Christianne J.; Ventura, Emily E.; Byrd-Williams, Courtney E.; Alexandar, Katharine A.; Azen, Stanley P.; Chou, Chih-Ping; Spruijt-Metz, Donna; Weigensberg, Marc J.; Berhane, Kiros; Goran, Michael I.

    2010-01-01

    Few randomized trials attempt to improve insulin sensitivity and associated metabolic risks in overweight Latino youth. The purpose of this study is to examine the effects of a modified carbohydrate nutrition program combined with strength training on insulin sensitivity, adiposity, and other type 2 diabetes risk factors in overweight Latino adolescents. In a 16-week randomized trial, 54 overweight Latino adolescents (15.5 ± 1.0 years) were randomly assigned to: (i) Control (C; n = 16), (ii) Nutrition (N; n = 21), or (iii) Nutrition + Strength training (N+ST; n = 17). The N group received modified carbohydrate nutrition classes (once per week), while the N+ST received the same nutrition classes plus strength training (twice per week). The following were measured at pre- and postintervention: strength by 1-repetition maximum, dietary intake by 3-day records, body composition by dual-energy X-ray absorptiometry, glucose/insulin indices by oral glucose tolerance test (OGTT) and intravenous glucose tolerance test with minimal modeling. Across intervention group effects were tested using analysis of covariance with post hoc pairwise comparisons. A significant overall intervention effect was found for improvement in bench press (P < 0.001) and reductions in energy (P = 0.05), carbohydrate (P = 0.04) and fat intake (P = 0.03). There were no significant intervention effects on insulin sensitivity, body composition, or most glucose/insulin indices with the exception of glucose incremental area under the curve (IAUC) (P = 0.05), which decreased in the N and N+ST group by 18 and 6.3% compared to a 32% increase in the C group. In conclusion, this intense, culturally tailored intervention resulted in no significant intervention effects on measured risk factors with the exception of a beneficial effect on glycemic response to oral glucose. PMID:19247280

  4. Ghrelin receptor regulates HFCS-induced adipose inflammation and insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High fructose corn syrup (HFCS) is the most commonly used sweetener in the United States. Some studies show that HFCS consumption correlates with obesity and insulin resistance, while other studies are in disagreement. Owing to conflicting and insufficient scientific evidence, the safety of HFCS con...

  5. Chitosan reduces plasma adipocytokines and lipid accumulation in liver and adipose tissues and ameliorates insulin resistance in diabetic rats.

    PubMed

    Hsieh, Yu-Lin; Yao, Hsien-Tsung; Cheng, Ron-Shan; Chiang, Meng-Tsan

    2012-05-01

    Chitosan is a natural product derived from chitin. To investigate the hypoglycemic and anti-obesity effects of chitosan, male Sprague-Dawley rats were divided into four groups: normal control, diabetic, and diabetic fed 5% or 7% chitosan. Diabetes was induced in rats by injecting streptozotocin/nicotinamide. After 10 weeks of feeding, the elevated plasma glucose, tumor necrosis factor-α, and interleukin-6 and lower adiponetin levels caused by diabetes were effectively reversed by chitosan treatment. In addition, 7% chitosan feeding also elevated plasma glucagon-like peptide-1 levels and lowered the insulin resistance index (homeostasis model assessment) in diabetic rats. Lower adipocyte granular intensities and higher lipolysis rates in adipose tissues were noted in the 7% chitosan group. Moreover, chitosan feeding reduced hepatic triglyceride and cholesterol contents and increased hepatic peroxisomal proliferator-activated receptor α expression in diabetic rats. Our results indicate that long-term administration of chitosan may reduce insulin resistance through suppression of lipid accumulation in liver and adipose tissues and amelioration of chronic inflammation in diabetic rats.

  6. Hyperhomocysteinemia promotes insulin resistance and adipose tissue inflammation in PCOS mice through modulating M2 macrophage polarization via estrogen suppression.

    PubMed

    Qi, Xinyu; Zhang, Bochun; Zhao, Yue; Li, Rong; Chang, Hsun-Ming; Pang, Yanli; Qiao, Jie

    2017-03-15

    It has been shown that serum homocycteine (Hcy) levels are higher in women with polycystic ovary syndrome (PCOS). However, the specific role of hyperhomocycteinemia (HHcy) in the development of PCOS has never been reported. Adipose tissue inflammation is featured by the infiltration of macrophages that plays a critical role in the pathogenesis of glucose and insulin intolerance. In this study, C57BL/6 mice were treated with dehydroepiandrosterone (DHEA) and/or high methionine diet to induce PCOS and HHcy mice models. We showed that DHEA induced a PCOS-like phenotypes, irregular estrous cycles, weight gain, abnormal sex hormone production, glucose and insulin resistance, and polycyctic ovaries. HHcy further intensified the effects DHEA on the metabolic, endocrinal, hormonal, and morphological changes in PCOS-like mice. In addition, the HHcy attenuated the DHEA-induced increase in serum estrogen levels in mice. Furthermore, HHcy may exacerbate the insulin resistance in the PCOS-like mice, most likely through modulating the macrophage M1/M2 polarization pathways via the suppression of estrogen. Most importantly, our clinical data showed that there were increases in serum Hcy levels in PCOS patients. These findings deepen our understanding of the pathological roles of HHcy in the development of PCOS and provide a promising target for PCOS therapy in clinical application.

  7. trans-10,cis-12 conjugated linoleic acid prevents adiposity but not insulin resistance induced by an atherogenic diet in hamsters.

    PubMed

    Simón, Edurne; Macarulla, M Teresa; Churruca, Itziar; Fernández-Quintela, Alfredo; Portillo, María P

    2006-02-01

    While conjugated linoleic acid (CLA) has received a great deal of attention as a supplement that can favourably modify body composition, its potential impact on insulin sensitivity has not received equal attention. The aim of the present work was to analyse the effects of trans-10,cis-12 CLA isomer on insulin sensitivity in hamsters fed an atherogenic diet. Hamsters were divided into three groups: one group was fed a chow diet (control) and the other two a semipurified atherogenic diet supplemented with 0.5% linoleic acid (LA) or trans-10,cis-12 CLA, respectively. Serum glucose, FFAs, insulin, leptin and adiponectin were measured using commercial kits. HOMA-IR was calculated using the formula of Matthews et al. PPARgamma mRNA was assessed in epididymal adipose tissue by reverse transcription-polymerase chain reaction (RT-PCR). After 6 weeks, atherogenic feeding produced an increase in body fat accumulation as compared with control feeding. The addition of trans-10,cis-12 CLA to the atherogenic diet avoided this feature. Atherogenic feeding also led to significantly higher serum concentrations of glucose, insulin, FFAs, as well as greater HOMA-IR values. trans-10,cis-12 CLA did not prevent these effects. No significant differences were found among experimental groups in serum leptin and adiponectin concentrations, nor in PPARgamma expression. In summary, although the addition of trans-10,cis-12 CLA to an atherogenic diet reduces fat accumulation, it does not improve the impairment of insulin action associated with this feeding. The maintenance of insulin resistance in hamsters fed the atherogenic CLA-enriched diet is probably due to the high serum FFA concentration observed in these animals.

  8. Adipocyte lipolysis and insulin resistance.

    PubMed

    Morigny, Pauline; Houssier, Marianne; Mouisel, Etienne; Langin, Dominique

    2016-06-01

    Obesity-induced insulin resistance is a major risk factor for the development of type 2 diabetes. Basal fat cell lipolysis (i.e., fat cell triacylglycerol breakdown into fatty acids and glycerol in the absence of stimulatory factors) is elevated during obesity and is closely associated with insulin resistance. Inhibition of adipocyte lipolysis may therefore be a promising therapeutic strategy for treating insulin resistance and preventing obesity-associated type 2 diabetes. In this review, we explore the relationship between adipose lipolysis and insulin sensitivity. After providing an overview of the components of fat cell lipolytic machinery, we describe the hypotheses that may support the causality between lipolysis and insulin resistance. Excessive circulating fatty acids may ectopically accumulate in insulin-sensitive tissues and impair insulin action. Increased basal lipolysis may also modify the secretory profile of adipose tissue, influencing whole body insulin sensitivity. Finally, excessive fatty acid release may also worsen adipose tissue inflammation, a well-known parameter contributing to insulin resistance. Partial genetic or pharmacologic inhibition of fat cell lipases in mice as well as short term clinical trials using antilipolytic drugs in humans support the benefit of fat cell lipolysis inhibition on systemic insulin sensitivity and glucose metabolism, which occurs without an increase of fat mass. Modulation of fatty acid fluxes and, putatively, of fat cell secretory pattern may explain the amelioration of insulin sensitivity whereas changes in adipose tissue immune response do not seem involved.

  9. The CCR2 Inhibitor Propagermanium Attenuates Diet-Induced Insulin Resistance, Adipose Tissue Inflammation and Non-Alcoholic Steatohepatitis

    PubMed Central

    van den Hoek, Anita M.; Kleemann, Robert

    2017-01-01

    Background and aim Obese patients with chronic inflammation in white adipose tissue (WAT) have an increased risk of developing non-alcoholic steatohepatitis (NASH). The C-C chemokine receptor-2 (CCR2) has a crucial role in the recruitment of immune cells to WAT and liver, thereby promoting the inflammatory component of the disease. Herein, we examined whether intervention with propagermanium, an inhibitor of CCR2, would attenuate tissue inflammation and NASH development. Methods Male C57BL/6J mice received a high-fat diet (HFD) for 0, 6, 12 and 24 weeks to characterize the development of early disease symptoms of NASH, i.e. insulin resistance and WAT inflammation (by hyperinsulinemic-euglycemic clamp and histology, respectively) and to define the optimal time point for intervention. In a separate study, mice were pretreated with HFD followed by propagermanium treatment (0.05% w/w) after 6 weeks (early intervention) or 12 weeks (late intervention). NASH was analyzed after 24 weeks of diet feeding. Results Insulin resistance in WAT developed after 6 weeks of HFD, which was paralleled by modest WAT inflammation. Insulin resistance and inflammation in WAT intensified after 12 weeks of HFD, and preceded NASH development. The subsequent CCR2 intervention experiment showed that early, but not late, propagermanium treatment attenuated insulin resistance. Only the early treatment significantly decreased Mcp-1 and CD11c gene expression in WAT, indicating reduced WAT inflammation. Histopathological analysis of liver demonstrated that propagermanium treatment decreased macrovesicular steatosis and tended to reduce lobular inflammation, with more pronounced effects in the early intervention group. Propagermanium improved the ratio between pro-inflammatory (M1) and anti-inflammatory (M2) macrophages, quantified by CD11c and Arginase-1 gene expression in both intervention groups. Conclusions Overall, early propagermanium administration was more effective to improve insulin

  10. The Roles of Adipokines, Proinflammatory Cytokines, and Adipose Tissue Macrophages in Obesity-Associated Insulin Resistance in Modest Obesity and Early Metabolic Dysfunction

    PubMed Central

    Kim, Ji Min; Joung, Kyong Hye; Lee, Ju Hee; You, Bo Ram; Choi, Min Jeong; Ryu, Min Jeong; Ko, Young Bok; Lee, Min A.; Lee, Junguee; Ku, Bon Jeong; Shong, Minho; Lee, Ki Hwan; Kim, Hyun Jin

    2016-01-01

    The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance have been explored in both animal and human studies. However, our current understanding of obesity-associated insulin resistance relies on studies of artificial metabolic extremes. The purpose of this study was to explore the roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in human patients with modest obesity and early metabolic dysfunction. We obtained omental adipose tissue and fasting blood samples from 51 females undergoing gynecologic surgery. We investigated serum concentrations of proinflammatory cytokines and adipokines as well as the mRNA expression of proinflammatory and macrophage phenotype markers in visceral adipose tissue using ELISA and quantitative RT-PCR. We measured adipose tissue inflammation and macrophage infiltration using immunohistochemical analysis. Serum levels of adiponectin and leptin were significantly correlated with HOMA-IR and body mass index. The levels of expression of MCP-1 and TNF-α in visceral adipose tissue were also higher in the obese group (body mass index ≥ 25). The expression of mRNA MCP-1 in visceral adipose tissue was positively correlated with body mass index (r = 0.428, p = 0.037) but not with HOMA-IR, whereas TNF-α in visceral adipose tissue was correlated with HOMA-IR (r = 0.462, p = 0.035) but not with body mass index. There was no obvious change in macrophage phenotype or macrophage infiltration in patients with modest obesity or early metabolic dysfunction. Expression of mRNA CD163/CD68 was significantly related to mitochondrial-associated genes and serum inflammatory cytokine levels of resistin and leptin. These results suggest that changes in the production of inflammatory biomolecules precede increased immune cell infiltration and induction of a macrophage phenotype switch in visceral adipose tissue. Furthermore, serum resistin and leptin have specific

  11. Increased serum resistin levels in patients with type 2 diabetes are not linked with markers of insulin resistance and adiposity.

    PubMed

    Hasegawa, G; Ohta, M; Ichida, Y; Obayashi, H; Shigeta, M; Yamasaki, M; Fukui, M; Yoshikawa, T; Nakamura, N

    2005-06-01

    The role of resistin in human biology remains uncertain. We measured serum resistin levels in Japanese patients with (n=111) and without (n=98) type 2 diabetes mellitus and investigated the significance of this hormone in the pathophysiology of diabetes. The levels of serum adiponectin and leptin were also measured. Resistin levels were increased significantly in patients with type 2 diabetes compared with non-diabetic subjects (24.7+/-2.6 vs. 15.0+/-1.2 ng/ml, p=0.0013). However, there was no correlation in either patient group between serum resistin levels and markers of insulin resistance, obesity or hyperlipidaemia. These results were in direct contrast to the data of leptin or adiponectin, both of which were closely related to these clinical markers of diabetes. Multivariate regression analysis on the combined data of the two groups demonstrated that the presence of diabetes and HDL cholesterol levels were significant predictors of serum resistin levels (diabetes: beta=0.159, p=0.035; HDL: beta=-0.172, p=0.039). No correlation was observed between C-reactive protein and resistin adjusted for BMI. Taken together, these findings demonstrate that serum resistin levels are increased in patients with type 2 diabetes, but this increase is not linked to markers of insulin resistance or adiposity. Further studies are necessary to elucidate the significance of serum resistin concentration in human pathophysiology.

  12. Key Role of STAT4 Deficiency in the Hematopoietic Compartment in Insulin Resistance and Adipose Tissue Inflammation

    PubMed Central

    Ma, Kaiwen; Glenn, Lindsey M.; Hatcher, Margaret A.; Haynes, Bronson A.; Lehrer, Eric J.; Kaplan, Mark H.

    2017-01-01

    Visceral adipose tissue (AT) inflammation is linked to the complications of obesity, including insulin resistance (IR) and type 2 diabetes. Recent data from our lab showed that germline deficiency in STAT4 reduces inflammation and improves IR in obese mice. The objective of this study was to determine the contribution of selective STAT4 deficiency in subsets of hematopoietic cells to IR and AT inflammation. To determine the contribution of hematopoietic lineage, we sublethally irradiated Stat4−/−C57Bl6 mice and reconstituted them with bone marrow cells (BMC) from Stat4+/+C57Bl6 congenic donors. We also established the contribution of selective STAT4 deficiency in CD4+ or CD8+ T cells using adoptive transfer in Rag1−/− mice. All mice received a HFD for 15 weeks (n = 7–12 mice/group). BMC that expressed STAT4 induced increases in glucose intolerance and IR compared to STAT4-deficient cells. Also, AT inflammation was increased and the numbers of CD8+ cells infiltrating AT were higher in mice with STAT4 expressing BMC. Studies in Rag1−/− mice further confirmed the prominent role of CD8+ cells expressing STAT4 in insulin resistance and AT and islet inflammation. Collectively our results show specific and dominant contribution of STAT4 in the hematopoietic compartment to metabolic health and inflammation in diet-induced obesity.

  13. 5'AMP-activated protein kinase activity is increased in adipose tissue of northern elephant seal pups during prolonged fasting-induced insulin resistance.

    PubMed

    Viscarra, Jose A; Champagne, Cory D; Crocker, Daniel E; Ortiz, Rudy M

    2011-06-01

    Northern elephant seals endure a 2- to 3-month fast characterized by sustained hyperglycemia, hypoinsulinemia, and increased plasma cortisol and free fatty acids, conditions often seen in insulin-resistant humans. We had previously shown that adipose Glut4 expression and 5'AMP-activated protein kinase (AMPK) activity increase and plasma glucose decreases in fasting seals suggesting that AMPK activity contributes to glucose regulation during insulin-resistant conditions. To address the hypothesis that AMPK activity increases during fasting-induced insulin resistance, we performed glucose tolerance tests (GTT) on early (n=5) and late (n=8)-fasted seal pups and compared adipose tissue expression of insulin signaling proteins, peroxisome proliferator-activated receptor γ (PPARγ), and AMPK, in addition to plasma adiponectin, leptin, cortisol, insulin, and non-esterified fatty acid (NEFA) levels. Fasting was associated with decreased glucose clearance, plasma insulin and adiponectin, and intracellular insulin signaling, as well as increased plasma cortisol and NEFAs, supporting the suggestion that seals develop insulin resistance late in the fast. The expression of Glut4 and VAMP2 increased (52 and 63% respectively) with fasting but did not change significantly during the GTT. PPARγ and phosphorylated AMPK did not change in the early fasted seals, but increased significantly (73 and 50% respectively) in the late-fasted seals during the GTT. Increased AMPK activity along with the reduction in the activity of insulin-signaling proteins supports our hypothesis that AMPK activity is increased following the onset of insulin resistance. The association between increased AMPK activity and Glut4 expression suggests that AMPK plays a greater role in regulating glucose metabolism in mammals adapted to prolonged fasting than in non-fasting mammals.

  14. Corepressor SMRT promotes oxidative phosphorylation in adipose tissue and protects against diet-induced obesity and insulin resistance

    PubMed Central

    Fang, Sungsoon; Suh, Jae Myoung; Atkins, Annette R.; Hong, Suk-Hyun; Leblanc, Mathias; Nofsinger, Russell R.; Yu, Ruth T.; Downes, Michael; Evans, Ronald M.

    2011-01-01

    The ligand-dependent competing actions of nuclear receptor (NR)-associated transcriptional corepressor and coactivator complexes allow for the precise regulation of NR-dependent gene expression in response to both temporal and environmental cues. Here we report the mouse model termed silencing mediator of retinoid and thyroid hormone receptors (SMRT)mRID1 in which targeted disruption of the first receptor interaction domain (RID) of the nuclear corepressor SMRT disrupts interactions with a subset of NRs and leads to diet-induced superobesity associated with a depressed respiratory exchange ratio, decreased ambulatory activity, and insulin resistance. Although apparently normal when chow fed, SMRTmRID1 mice develop multiple metabolic dysfunctions when challenged by a high-fat diet, manifested by marked lipid accumulation in white and brown adipose tissue and the liver. The increased weight gain of SMRTmRID1 mice on a high-fat diet occurs predominantly in fat with adipocyte hypertrophy evident in both visceral and s.c. depots. Importantly, increased inflammatory gene expression was detected only in the visceral depots. SMRTmRID1 mice are both insulin-insensitive and refractory to the glucose-lowering effects of TZD and AICAR. Increased serum cholesterol and triglyceride levels were observed, accompanied by increased leptin and decreased adiponectin levels. Aberrant storage of lipids in the liver occurred as triglycerides and cholesterol significantly compromised hepatic function. Lipid accumulation in brown adipose tissue was associated with reduced thermogenic capacity and mitochondrial biogenesis. Collectively, these studies highlight the essential role of NR corepressors in maintaining metabolic homeostasis and describe an essential role for SMRT in regulating the progression, severity, and therapeutic outcome of metabolic diseases. PMID:21300871

  15. Abdominal adipose tissue: early metabolic dysfunction associated to insulin resistance and oxidative stress induced by an unbalanced diet.

    PubMed

    Rebolledo, O R; Marra, C A; Raschia, A; Rodriguez, S; Gagliardino, J J

    2008-11-01

    The possible contribution of early changes in lipid composition, function, and antioxidant status of abdominal adipose tissue (AAT) induced by a fructose-rich diet (FRD) to the development of insulin resistance (IR) and oxidative stress (OS) was studied. Wistar rats were fed with a commercial diet with (FRD) or without 10% fructose in the drinking water for 3 weeks. The glucose (G), triglyceride (TG), and insulin (I) plasma levels, and the activity of antioxidant enzymes, lyposoluble antioxidants, total glutathione (GSH), lipid peroxidation as TBARS, fatty acid (FA) composition of AAT-TG as well as their release by incubated pieces of AAT were measured. Rats fed with a FRD have significantly higher plasma levels of G, TG, and I. Their AAT showed a marked increase in content and ratios of saturated to monounsaturated and polyunsaturated FAs, TBARS, and catalase, GSH-transferase and GSH-reductase, together with a decrease in superoxide dismutase and GSH-peroxidase activity, and total GSH, alpha-tocopherol, beta-carotene and lycopene content. Incubated AAT from FRD released in vitro higher amount of free fatty acids (FFAs) with higher ratios of saturated to monounsaturated and polyunsaturated FAs. Our data suggest that FRD induced an early prooxidative state and metabolic dysfunction in AAT that would favor the overall development of IR and OS and further development of pancreatic beta-cell failure; therefore, its early control would represent an appropriate strategy to prevent alterations such as the development of type 2 diabetes.

  16. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity.

    PubMed

    Cui, Ju; Pang, Jing; Lin, Ya-Jun; Gong, Huan; Wang, Zhen-He; Li, Yun-Xuan; Li, Jin; Wang, Zai; Jiang, Ping; Dai, Da-Peng; Li, Jian; Cai, Jian-Ping; Huang, Jian-Dong; Zhang, Tie-Mei

    2017-02-27

    Recent studies have shown that KIF5B (conventional kinesin heavy chain) mediates glucose transporter type 4 translocation and adiponectin secretion in 3T3-L1 adipocytes, suggesting an involvement of KIF5B in the homeostasis of metabolism. However, the in vivo physiologic function of KIF5B in adipose tissue remains to be determined. In this study, adipose-specific Kif5b knockout (F-K5bKO) mice were generated using the Cre-LoxP strategy. F-K5bKO mice had similar body weights to controls fed on a standard chow diet. However, F-K5bKO mice had hyperlipidemia and significant glucose intolerance and insulin resistance. Deletion of Kif5b aggravated the deleterious impact of a high-fat diet (HFD) on body weight gain, hepatosteatosis, glucose tolerance, and systematic insulin sensitivity. These changes were accompanied by impaired insulin signaling, decreased secretion of adiponectin, and increased serum levels of leptin and proinflammatory adipokines. F-K5bKO mice fed on a HFD exhibited lower energy expenditure and thermogenic dysfunction as a result of whitening of brown adipose due to decreased mitochondria biogenesis and down-regulation of key thermogenic gene expression. In conclusion, selective deletion of Kif5b in adipose tissue exacerbates HFD-induced obesity and its associated metabolic disorders, partly through a decrease in energy expenditure, dysregulation of adipokine secretion, and insulin signaling.-Cui, J., Pang, J., Lin, Y.-J., Gong, H., Wang, Z.-H., Li, Y.-X., Li, J., Wang, Z., Jiang, P., Dai, D.-P., Li, J., Cai, J.-P., Huang, J.-D., Zhang, T.-M. Adipose-specific deletion of Kif5b exacerbates obesity and insulin resistance in a mouse model of diet-induced obesity.

  17. Obesogenic memory can confer long-term increases in adipose tissue but not liver inflammation and insulin resistance after weight loss

    PubMed Central

    Schmitz, J.; Evers, N.; Awazawa, M.; Nicholls, H.T.; Brönneke, H.S.; Dietrich, A.; Mauer, J.; Blüher, M.; Brüning, J.C.

    2016-01-01

    Objective Obesity represents a major risk factor for the development of type 2 diabetes mellitus, atherosclerosis and certain cancer entities. Treatment of obesity is hindered by the long-term maintenance of initially reduced body weight, and it remains unclear whether all pathologies associated with obesity are fully reversible even upon successfully maintained weight loss. Methods We compared high fat diet-fed, weight reduced and lean mice in terms of body weight development, adipose tissue and liver insulin sensitivity as well as inflammatory gene expression. Moreover, we assessed similar parameters in a human cohort before and after bariatric surgery. Results Compared to lean animals, mice that demonstrated successful weight reduction showed increased weight gain following exposure to ad libitum control diet. However, pair-feeding weight-reduced mice with lean controls efficiently stabilized body weight, indicating that hyperphagia was the predominant cause for the observed weight regain. Additionally, whereas glucose tolerance improved rapidly after weight loss, systemic insulin resistance was retained and ameliorated only upon prolonged pair-feeding. Weight loss enhanced insulin action and resolved pro-inflammatory gene expression exclusively in the liver, whereas visceral adipose tissue displayed no significant improvement of metabolic and inflammatory parameters compared to obese mice. Similarly, bariatric surgery in humans (n = 55) resulted in massive weight reduction, improved hepatic inflammation and systemic glucose homeostasis, while adipose tissue inflammation remained unaffected and adipocyte-autonomous insulin action only exhibit minor improvements in a subgroup of patients (42%). Conclusions These results demonstrate that although sustained weight loss improves systemic glucose homeostasis, primarily through improved inflammation and insulin action in liver, a remarkable obesogenic memory can confer long-term increases in adipose tissue

  18. ALOX5AP Overexpression in Adipose Tissue Leads to LXA4 Production and Protection Against Diet-Induced Obesity and Insulin Resistance.

    PubMed

    Elias, Ivet; Ferré, Tura; Vilà, Laia; Muñoz, Sergio; Casellas, Alba; Garcia, Miquel; Molas, Maria; Agudo, Judith; Roca, Carles; Ruberte, Jesús; Bosch, Fatima; Franckhauser, Sylvie

    2016-08-01

    Eicosanoids, such as leukotriene B4 (LTB4) and lipoxin A4 (LXA4), may play a key role during obesity. While LTB4 is involved in adipose tissue inflammation and insulin resistance, LXA4 may exert anti-inflammatory effects and alleviate hepatic steatosis. Both lipid mediators derive from the same pathway, in which arachidonate 5-lipoxygenase (ALOX5) and its partner, arachidonate 5-lipoxygenase-activating protein (ALOX5AP), are involved. ALOX5 and ALOX5AP expression is increased in humans and rodents with obesity and insulin resistance. We found that transgenic mice overexpressing ALOX5AP in adipose tissue had higher LXA4 rather than higher LTB4 levels, were leaner, and showed increased energy expenditure, partly due to browning of white adipose tissue (WAT). Upregulation of hepatic LXR and Cyp7a1 led to higher bile acid synthesis, which may have contributed to increased thermogenesis. In addition, transgenic mice were protected against diet-induced obesity, insulin resistance, and inflammation. Finally, treatment of C57BL/6J mice with LXA4, which showed browning of WAT, strongly suggests that LXA4 is responsible for the transgenic mice phenotype. Thus, our data support that LXA4 may hold great potential for the future development of therapeutic strategies for obesity and related diseases.

  19. Calcium supplementation reverts central adiposity, leptin, and insulin resistance in adult offspring programed by neonatal nicotine exposure.

    PubMed

    Nobre, J L; Lisboa, P C; Santos-Silva, A P; Lima, N S; Manhães, A C; Nogueira-Neto, J F; Cabanelas, A; Pazos-Moura, C C; Moura, E G; de Oliveira, E

    2011-09-01

    Obesity is a worldwide epidemic. Calcium influences energy metabolism regulation, causing body weight loss. Because maternal nicotine exposure during lactation programs for obesity, hyperleptinemia, insulin resistance (IR), and hypothyroidism, we decided to evaluate the possible effect of dietary calcium supplementation on these endocrine dysfunctions in this experimental model. Osmotic minipumps containing nicotine solution (N: 6 mg/kg per day for 14 days) or saline (C) were s.c. implanted in lactating rats 2 days after giving birth (P2). At P120, N and C offspring were subdivided into four groups: 1) C - standard diet; 2) C with calcium supplementation (CCa, 10 g calcium carbonate/kg rat chow); 3) N - standard diet; and 4) N with calcium supplementation (NCa). Rats were killed at P180. As expected, N offspring showed higher visceral and total body fat, hyperleptinemia, lower hypothalamus leptin receptor (OB-R) content, hyperinsulinemia, and higher IR index. Also, higher tyrosine hydroxylase (TH) expression (+51%), catecholamine content (+37%), and serum 25-hydroxyvitamin D(3) (+76%) were observed in N offspring. Dietary calcium supplementation reversed adiposity, hyperleptinemia, OB-R underexpression, IR, TH overexpression, and vitamin D. However, this supplementation did not reverse hypothyroidism. In NCa offspring, Sirt1 mRNA was lower in visceral fat (-37%) and higher in liver (+42%). In conclusion, dietary calcium supplementation seems to revert most of the metabolic syndrome parameters observed in adult offspring programed by maternal nicotine exposure during lactation. It is conceivable that the reduction in fat mass per se, induced by calcium therapy, is the main mechanism that leads to the increment of insulin action.

  20. Differential impact of changes in adiposity distribution on insulin resistance and adiponectin variations over 4 years in normal weight young adults.

    PubMed

    Lacerte, G; Langlois, M-F; Doyon, M; Brown, C; Carpentier, A C; Hivert, M-F

    2014-05-01

    The aim of the study was to evaluate the influence of weight gain and changes in adiposity distribution on insulin resistance and circulating adiponectin variations over 4 years in free-living normal weight young adults. In this prospective observational cohort (n=42 women, 18 men), anthropometric measurements and blood samples were collected in the fasting state at baseline and at 4 years. Insulin resistance was estimated using the homeostatic model assessment (HOMA-IR). Circulating adiponectin levels were determined by radioimmunoassay. To investigate increase in adiposity more specifically, subsidiary analyses were performed in a subgroup of individuals (n=31) who gained adiposity over the course of the 4-year follow-up (defined as gain >1% in percent body fat). Regression analyses were performed to adjust for sex, age, parental education, lifestyle, and fitness levels. At baseline, the participants were young adults (age=20.0 years old) in the normal weight range [body mass index (BMI)=22.7 kg/m2 (IQR=21.1-24.4)]. Median change in body fat percentage was +1.4% (IQR=-0.3-3.4; p=0.01) and in waist circumference was +1.2 cm (IQR=-2.6-5.3; p=0.05). In the subgroup of individuals who gained more than 1% body fat, increase in HOMA-IR was associated with an increase in BMI (r=0.44; p=0.01; p<0.01 in fully adjusted model), while decrease in adiponectin levels was associated with an increase in waist circumference (r=-0.38; p=0.03) but this was no longer significant after adjustment for sex and other potential confounders (p=0.14). In a population of young adults, small variations in adiposity within the normal weight range were associated with increase in insulin resistance.

  1. Adipogenic miR-27a in adipose tissue upregulates macrophage activation via inhibiting PPARγ of insulin resistance induced by high-fat diet-associated obesity.

    PubMed

    Yao, Fan; Yu, Yang; Feng, Linjing; Li, Junnan; Zhang, Meishuang; Lan, Xiaoxin; Yan, Xin; Liu, Yilun; Guan, Fengying; Zhang, Ming; Chen, Li

    2017-03-30

    Chronic low degree inflammation caused by macrophage activation is a crucial factor underlying insulin resistance induced by obesity. To illustrate the mechanism of regulating of macrophage activation in adipose tissue, the role of adipogenic miR-27a activating M1 macrophage polarization via blocking PPARγ was evaluated. Obese mice model and miR-27a overexpression or knockdown mice model were established and related biochemical index were examined. Raw264.7 and 3T3-L1 were cultured and co-cultured for mimicking the microenvironment of local inflammation. Macrophage infiltration was observed. MiR-27a and cytokines levels in serum and adipose tissue were measured. Macrophage polarization markers and protein expression in insulin or inflammatory signaling pathways were observed. Impaired glucose tolerance and insulin tolerance was observed in 4w, 8w and 12w of high fat diet and miR-27a overexpression mice. Concurrently, miR-27a was increased in serum in a time-dependent manner, along with M1 cytokines and M1 macrophages increasing in adipose tissue clearly. Insulin signaling pathway was blocked, and PPARγ was suppressed. However, NF-κB was activated. On the other hand, activated macrophages and hypertrophic adipocytes induced by miR-27a could increase the ratio of Raw264.7 migration, including improving cytokines generation, and blocking PPARγ expression markedly. The present studies are conducted to clarify that miR-27a has increased along with up-regulation in the process of proinflammatory cytokines generation, macrophage influx and M1 macrophage polarization in obesity. These indicate that miR-27a gives the novel target of intervention for inflammation and insulin resistance in obesity.

  2. Insulin signaling and insulin resistance.

    PubMed

    Beale, Elmus G

    2013-01-01

    Insulin resistance or its sequelae may be the common etiology of maladies associated with metabolic syndrome (eg, hypertension, type 2 diabetes, atherosclerosis, heart attack, stroke, and kidney failure). It is thus important to understand those factors that affect insulin sensitivity. This review stems from the surprising discovery that interference with angiotensin signaling improves insulin sensitivity, and it provides a general overview of insulin action and factors that control insulin sensitivity.

  3. HMGA1 overexpression in adipose tissue impairs adipogenesis and prevents diet-induced obesity and insulin resistance.

    PubMed

    Arce-Cerezo, Altamira; García, Miquel; Rodríguez-Nuevo, Aida; Crosa-Bonell, Mireia; Enguix, Natalia; Peró, Albert; Muñoz, Sergio; Roca, Carles; Ramos, David; Franckhauser, Sylvie; Elias, Ivet; Ferre, Tura; Pujol, Anna; Ruberte, Jesús; Villena, Josep A; Bosch, Fàtima; Riu, Efrén

    2015-09-28

    High-Mobility-Group-A1 (HMGA1) proteins are non-histone proteins that regulate chromatin structure and gene expression during embryogenesis, tumourigenesis and immune responses. In vitro studies suggest that HMGA1 proteins may be required to regulate adipogenesis. To examine the role of HMGA1 in vivo, we generated transgenic mice overexpressing HMGA1 in adipose tissues. HMGA1 transgenic mice showed a marked reduction in white and brown adipose tissue mass that was associated with downregulation of genes involved in adipogenesis and concomitant upregulation of preadipocyte markers. Reduced adipogenesis and decreased fat mass were not associated with altered glucose homeostasis since HMGA1 transgenic mice fed a regular-chow diet exhibited normal glucose tolerance and insulin sensitivity. However, when fed a high-fat diet, overexpression of HMGA1 resulted in decreased body-weight gain, reduced fat mass, but improved insulin sensitivity and glucose tolerance. Although HMGA1 transgenic mice exhibited impaired glucose uptake in adipose tissue due to impaired adipogenesis, the increased glucose uptake observed in skeletal muscle may account for the improved glucose homeostasis. Our results indicate that HMGA1 plays an important function in the regulation of white and brown adipogenesis in vivo and suggests that impaired adipocyte differentiation and decreased fat mass is not always associated with impaired whole-body glucose homeostasis.

  4. Dietary soy protein improves adipose tissue dysfunction by modulating parameters related with oxidative stress in dyslipidemic insulin-resistant rats.

    PubMed

    Illesca, Paola G; Álvarez, Silvina M; Selenscig, Dante A; Ferreira, María Del R; Giménez, María S; Lombardo, Yolanda B; D'Alessandro, María E

    2017-04-01

    The present study investigates the benefits of the dietary intake of soy protein on adipose tissue dysfunction in a rat model that mimics several aspects of the human metabolic syndrome. Wistar rats were fed a sucrose-rich diet (SRD) for 4 months. After that, half of the animals continued with SRD until month 8 while in the other half, casein protein was replaced by isolated soy protein for 4 months (SRD-S). A reference group consumed a control diet all the time. In adipose tissue we determined: i) the activities of antioxidant enzymes, gene expression of Mn-superoxide dismutase (SOD) and glutathione peroxidase (GPx), and glutathione redox state ii) the activity of xanthine oxidase (XO), ROS levels and the gene expression of NAD(P)H oxidase iii) the expression of the nuclear factor erythroid-2 related factor-2 (Nrf2). Besides, adiposity visceral index, insulin sensitivity, and tumor necrosis factor-α (TNF-α) in plasma were determined. Compared with the SRD-fed rats, the animals fed a SRD-S showed: activity normalization of SOD and glutathione reductase, improvement of mRNA SOD and normalization of mRNA GPx without changes in the expression of the Nrf2, and improvement of glutathione redox state. These results were accompanied by a normalization of XO activity and improvement of both the ROS production as well as TNF-α levels in plasma. Besides, adipocyte size distribution, adiposity visceral index and insulin sensitivity improved. The results suggest that soy protein can be a complementary nutrient for treating some signs of the metabolic syndrome.

  5. An observational study of the association among interatrial adiposity by computed tomography measure, insulin resistance, and left atrial electromechanical disturbances in heart failure

    PubMed Central

    Hung, Chung-Lieh; Yun, Chun-Ho; Lai, Yau-Huei; Sung, Kuo-Tzu; Bezerra, Hiram G.; Kuo, Jen-Yuan; Hou, Charles Jia-Yin; Chao, Tze-Fan; Bulwer, Bernard E.; Yeh, Hung-I.; Shih, Shou-Chuan; Lin, Shing-Jong; Cury, Ricardo C.

    2016-01-01

    Abstract Excessive visceral adiposity, hypothesized to be a key mediator in metabolic derangements, has recently been shown to exert toxic effects on cardiac structure and function. Data regarding the mechanistic link between regional adiposity, left atrial (LA) electromechanical remodeling, and heart failure with preserved ejection fraction (HFpEF) have been lacking. Various visceral adiposity measures, including pericardial fat (PCF), thoracic periaortic (TAT) fat, regional inter-atrial fat (IAF), and atrioventricular groove fat (AV Groove Fat), were assessed by multidetector computed tomography in 2 study cohorts (an annual health survey cohort and an outpatient cohort). We related such measures to cardiometabolic profiles in health survey cohort and LA electromechanical indices in our outpatient cohort, with Cox proportional hazards performed to examine the temporal trends of heart failure (HF). In our annual health survey cohort (n = 362), all 4 adiposity measures were positively related to unfavorable anthropometrics and systemic inflammation (high-sensitivity C-reactive protein) (all P < 0.05). In addition, both greater IAF and AV Groove Fat were positively associated with higher fasting glucose, HbA1c levels, and insulin resistance (all P < 0.05). In the outpatient cohort, the HFpEF group demonstrated the greatest adiposity measures, with greater IAF (≥8.2 mm, hazard ratio: 4.11, 95% confidence interval: 1.50–11.32) associated with reduced LA strain (ß-coef: –0.28), higher LA stiffness (ß-coef: 0.23), and longer P wave duration (ß-coef: 0.23) in multivariate models (all P < 0.05), and further related to higher HF hospitalization during follow-up. We therefore propose a possible pathophysiologic link among greater visceral adiposity, systemic inflammation, cardiometabolic risks, and HFpEF. Regional adiposity, especially IAF, was tightly linked to altered LA electromechanical properties and likely plays a key role in HF prognosis. PMID

  6. Associations of Vitamin D with Inter- and Intra-Muscular Adipose Tissue and Insulin Resistance in Women with and without Polycystic Ovary Syndrome.

    PubMed

    Scott, David; Joham, Anju; Teede, Helena; Gibson-Helm, Melanie; Harrison, Cheryce; Cassar, Samantha; Hutchison, Samantha; Ebeling, Peter R; Stepto, Nigel; de Courten, Barbora

    2016-11-30

    Low vitamin D and insulin resistance are common in polycystic ovary syndrome (PCOS) and associated with higher inter- and intra-muscular adipose tissue (IMAT). We investigated associations between vitamin D, IMAT and insulin resistance in a cross-sectional study of 40 women with PCOS and 30 women without PCOS, and pre- and post-exercise in a 12-week intervention in 16 overweight participants (10 with PCOS and six without PCOS). A non-classical body mass index (BMI) threshold was used to differentiate lean and overweight women (BMI ≥ 27 kg/m²). Measurements included plasma 25-hydroxyvitamin D (25OHD), insulin resistance (glucose infusion rate (GIR; mg/m²/min), fasting glucose and insulin, and glycated haemoglobin), visceral fat, mid-thigh IMAT (computed tomography) and total body fat (dual-energy X-ray absorptiometry). Women with both PCOS and low 25OHD levels had the lowest GIR (all p < 0.05). Higher IMAT was associated with lower 25OHD (B = -3.95; 95% CI -6.86, -1.05) and GIR (B = -21.3; 95% CI -37.16, -5.44) in women with PCOS. Overweight women with pre-exercise 25OHD ≥30 nmol/L had significant increases in GIR, and decreases in total and visceral fat (all p < 0.044), but no associations were observed when stratified by PCOS status. Women with PCOS and low 25OHD levels have increased insulin resistance which may be partly explained by higher IMAT. Higher pre-training 25OHD levels may enhance exercise-induced changes in body composition and insulin resistance in overweight women.

  7. Associations of Vitamin D with Inter- and Intra-Muscular Adipose Tissue and Insulin Resistance in Women with and without Polycystic Ovary Syndrome

    PubMed Central

    Scott, David; Joham, Anju; Teede, Helena; Gibson-Helm, Melanie; Harrison, Cheryce; Cassar, Samantha; Hutchison, Samantha; Ebeling, Peter R.; Stepto, Nigel; de Courten, Barbora

    2016-01-01

    Low vitamin D and insulin resistance are common in polycystic ovary syndrome (PCOS) and associated with higher inter- and intra-muscular adipose tissue (IMAT). We investigated associations between vitamin D, IMAT and insulin resistance in a cross-sectional study of 40 women with PCOS and 30 women without PCOS, and pre- and post-exercise in a 12-week intervention in 16 overweight participants (10 with PCOS and six without PCOS). A non-classical body mass index (BMI) threshold was used to differentiate lean and overweight women (BMI ≥ 27 kg/m2). Measurements included plasma 25-hydroxyvitamin D (25OHD), insulin resistance (glucose infusion rate (GIR; mg/m2/min), fasting glucose and insulin, and glycated haemoglobin), visceral fat, mid-thigh IMAT (computed tomography) and total body fat (dual-energy X-ray absorptiometry). Women with both PCOS and low 25OHD levels had the lowest GIR (all p < 0.05). Higher IMAT was associated with lower 25OHD (B = −3.95; 95% CI −6.86, −1.05) and GIR (B = −21.3; 95% CI −37.16, −5.44) in women with PCOS. Overweight women with pre-exercise 25OHD ≥30 nmol/L had significant increases in GIR, and decreases in total and visceral fat (all p < 0.044), but no associations were observed when stratified by PCOS status. Women with PCOS and low 25OHD levels have increased insulin resistance which may be partly explained by higher IMAT. Higher pre-training 25OHD levels may enhance exercise-induced changes in body composition and insulin resistance in overweight women. PMID:27916865

  8. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance.

    PubMed

    Yang, Hyunwon; Youm, Yun-Hee; Vandanmagsar, Bolormaa; Ravussin, Anthony; Gimble, Jeffrey M; Greenway, Frank; Stephens, Jacqueline M; Mynatt, Randall L; Dixit, Vishwa Deep

    2010-08-01

    Emerging evidence suggests that increases in activated T cell populations in adipose tissue may contribute toward obesity-associated metabolic syndrome. The present study investigates three unanswered questions: 1) Do adipose-resident T cells (ARTs) from lean and obese mice have altered cytokine production in response to TCR ligation?; 2) Do the extralymphoid ARTs possess a unique TCR repertoire compared with lymphoid-resident T cells and whether obesity alters the TCR diversity in specific adipose depots?; and 3) Does short-term elimination of T cells in epididymal fat pad without disturbing the systemic T cell homeostasis regulate inflammation and insulin-action during obesity? We found that obesity reduced the frequency of naive ART cells in s.c. fat and increased the effector-memory populations in visceral fat. The ARTs from diet-induced obese (DIO) mice had a higher frequency of IFN-gamma(+), granzyme B(+) cells, and upon TCR ligation, the ARTs from DIO mice produced increased levels of proinflammatory mediators. Importantly, compared with splenic T cells, ARTs exhibited markedly restricted TCR diversity, which was further compromised by obesity. Acute depletion of T cells from epididymal fat pads improved insulin action in young DIO mice but did not reverse obesity-associated feed forward cascade of chronic systemic inflammation and insulin resistance in middle-aged DIO mice. Collectively, these data establish that ARTs have a restricted TCR-Vbeta repertoire, and T cells contribute toward the complex proinflammatory microenvironment of adipose tissue in obesity. Development of future long-term T cell depletion protocols specific to visceral fat may represent an additional strategy to manage obesity-associated comorbidities.

  9. Obesity Increases the Production of Proinflammatory Mediators from Adipose Tissue T Cells and Compromises TCR Repertoire Diversity: Implications for Systemic Inflammation and Insulin Resistance

    PubMed Central

    Yang, Hyunwon; Youm, Yun-Hee; Vandanmagsar, Bolormaa; Ravussin, Anthony; Gimble, Jeffrey M.; Greenway, Frank; Stephens, Jacqueline M.; Mynatt, Randall L.; Dixit, Vishwa Deep

    2016-01-01

    Emerging evidence suggests that increases in activated T cell populations in adipose tissue may contribute toward obesity-associated metabolic syndrome. The present study investigates three unanswered questions: 1) Do adipose-resident T cells (ARTs) from lean and obese mice have altered cytokine production in response to TCR ligation?; 2) Do the extralymphoid ARTs possess a unique TCR repertoire compared with lymphoid-resident T cells and whether obesity alters the TCR diversity in specific adipose depots?; and 3) Does short-term elimination of T cells in epididymal fat pad without disturbing the systemic T cell homeostasis regulate inflammation and insulin-action during obesity? We found that obesity reduced the frequency of naive ART cells in s.c. fat and increased the effector-memory populations in visceral fat. The ARTs from diet-induced obese (DIO) mice had a higher frequency of IFN-γ+, granzyme B+ cells, and upon TCR ligation, the ARTs from DIO mice produced increased levels of proinflammatory mediators. Importantly, compared with splenic T cells, ARTs exhibited markedly restricted TCR diversity, which was further compromised by obesity. Acute depletion of T cells from epididymal fat pads improved insulin action in young DIO mice but did not reverse obesity-associated feed forward cascade of chronic systemic inflammation and insulin resistance in middle-aged DIO mice. Collectively, these data establish that ARTs have a restricted TCR-Vβ repertoire, and T cells contribute toward the complex proinflammatory microenvironment of adipose tissue in obesity. Development of future long-term T cell depletion protocols specific to visceral fat may represent an additional strategy to manage obesity-associated comorbidities. PMID:20581149

  10. Leptin selectively decreases visceral adiposity and enhances insulin action.

    PubMed Central

    Barzilai, N; Wang, J; Massilon, D; Vuguin, P; Hawkins, M; Rossetti, L

    1997-01-01

    Intraabdominal adiposity and insulin resistance are risk factors for diabetes mellitus, dyslipidemia, arteriosclerosis, and mortality. Leptin, a fat-derived protein encoded by the ob gene, has been postulated to be a sensor of energy storage in adipose tissue capable of mediating a feedback signal to sites involved in the regulation of energy homeostasis. Here, we provide evidence for specific effects of leptin on fat distribution and in vivo insulin action. Leptin (LEP) or vehicle (CON) was administered by osmotic minipumps for 8 d to pair-fed adult rats. During the 8 d of the study, body weight and total fat mass decreased similarly in LEP and in CON. However, while moderate calorie restriction (CON) resulted in similar decreases in whole body (by 20%) and visceral (by 21%) fat, leptin administration led to a specific and marked decrease (by 62%) in visceral adiposity. During physiologic hyperinsulinemia (insulin clamp), leptin markedly enhanced insulin action on both inhibition of hepatic glucose production and stimulation of glucose uptake. Finally, leptin exerted complex effects on the hepatic gene expression of key metabolic enzymes and on the intrahepatic partitioning of metabolic fluxes, which are likely to represent a defense against excessive storage of energy in adipose depots. These studies demonstrate novel actions of circulating leptin in the regulation of fat distribution, insulin action, and hepatic gene expression and suggest that it may play a role in the pathophysiology of abdominal obesity and insulin resistance. PMID:9399957

  11. Adverse Fat Depots and Marrow Adiposity Are Associated With Skeletal Deficits and Insulin Resistance in Long-Term Survivors of Pediatric Hematopoietic Stem Cell Transplantation.

    PubMed

    Mostoufi-Moab, Sogol; Magland, Jeremy; Isaacoff, Elizabeth J; Sun, Wenli; Rajapakse, Chamith S; Zemel, Babette; Wehrli, Felix; Shekdar, Karuna; Baker, Joshua; Long, Jin; Leonard, Mary B

    2015-09-01

    Allogeneic hematopoietic stem-cell transplantation (alloHSCT) survivors treated with total body irradiation (TBI) exhibit bone deficits and excess adiposity, potentially related to altered mesenchymal stem cell differentiation into osteoblasts or adipocytes. We examined associations among fat distribution, bone microarchitecture, and insulin resistance in alloHSCT survivors after TBI. This was a cross-sectional observational study of 25 alloHSCT survivors (aged 12 to 25 years) a median of 9.7 (4.3 to 19.3) years after alloHSCT compared to 25 age-, race-, and sex-matched healthy controls. Vertebral MR spectroscopic imaging and tibia micro-MRI were used to quantify marrow adipose tissue (MAT) and trabecular microarchitecture. Additional measures included DXA whole-body fat mass (WB-FM), leg lean mass (Leg-LM), trunk visceral adipose tissue (VAT), and CT calf muscle density. Insulin resistance in alloHSCT survivors was estimated by HOMA-IR. AlloHSCT survivors had lower Leg-LM (p < 0.001) and greater VAT (p < 0.01), MAT (p < 0.001), and fat infiltration of muscle (p = 0.04) independent of WB-FM, versus matched controls; BMI did not differ. Survivors had lower bone volume fraction and abnormal microarchitecture including greater erosion and more rod-like structure versus controls (all p = 0.04); 14 had vertebral deformities and two had compression fractures. Greater WB-FM, VAT, MAT, and muscle fat infiltration were associated with abnormal trabecular microarchitecture (p < 0.04 for all). AlloHSCT HOMA-IR was elevated, associated with younger age at transplantation (p < 0.01), and positively correlated with WB-FM and VAT (both p < 0.01). In conclusion, the markedly increased marrow adiposity, abnormal bone microarchitecture, and abnormal fat distribution highlight the risks of long-term treatment-related morbidity and mortality in alloHSCT recipients after TBI. Trabecular deterioration was associated with marrow and visceral adiposity. Furthermore, long-term survivors

  12. Eicosapentaenoic acid reduces high-fat diet-induced insulin resistance by altering adipose tissue glycolytic and inflammatory function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported Eicosapentaenoic Acid (EPA)'s ability to prevent high-fat (HF) diet-induced obesity, insulin resistance, and inflammation. In this study, we dissected mechanisms mediating anti-inflammatory and anti-lipogenic actions of EPA, using histology/ immunohistochemistry, transcriptomi...

  13. Berberine-improved visceral white adipose tissue insulin resistance associated with altered sterol regulatory element-binding proteins, liver x receptors, and peroxisome proliferator-activated receptors transcriptional programs in diabetic hamsters.

    PubMed

    Li, Guo-Sheng; Liu, Xu-Han; Zhu, Hua; Huang, Lan; Liu, Ya-Li; Ma, Chun-Mei; Qin, Chuan

    2011-01-01

    The diabetic "lipotoxicity" hypothesis presents that fat-induced visceral white adipose tissue insulin resistance plays a central role in the pathogenesis of type 2 diabetes. Berberine, a hypolipidemic agent, has been reported to have antidiabetic activities. The molecular mechanisms for this property are, however, not well clarified. Therefore in this study type 2 diabetic hamsters were induced by high-fat diet with low-dose streptozotocin. Then, we investigated the gene expression alterations and explored the molecular mechanisms underlying the therapeutic effect of berberine on fat-induced visceral white adipose tissue insulin resistance in diabetic hamsters by microarray analysis followed by real-time reverse transcription-polymerase chain reaction (RT-PCR) confirmation. Type 2 diabetic hamsters exhibited hyperglycemia and relative hyperinsulinemia, glucose intolerance, insulin resistance, intra-adipocyte lipid accumulation, significant increase in body weight and visceral white adipose tissue weight, abnormal serum adipokines levels, and deleterious dyslipidemia. Furthermore, they had increased sterol regulatory element-binding proteins (SREBPs) expression and decreased liver X receptors (LXRs) and peroxisome proliferator-activated receptors (PPARs) expression in visceral white adipose tissue. After 9-week berberine treatment, fat-induced insulin resistance and diabetic phenotype in type 2 diabetic hamsters were significantly improved. Compared with diabetic hamsters, expression of LXRs and PPARs significantly increased and SREBPs significantly decreased in visceral white adipose tissue from berberine-treated diabetic hamsters. These results suggest that altered visceral white adipose tissue LXRs, PPARs, and SREBPs transcriptional programs are involved in the therapeutic mechanisms of berberine on fat-induced visceral white adipose tissue insulin resistance in type 2 diabetic hamsters.

  14. Fetuin-A, adiposity-linked insulin resistance and responsiveness to an educational-based weight excess reduction program: a population-based survey in prepubertal schoolchildren.

    PubMed

    Murdolo, Giuseppe; Tortoioli, Cristina; Celi, Federica; Bini, Vittorio; Papi, Francesco; Brozzetti, Annalisa; Falorni, Alberto

    2016-07-07

    The secreted hepatokine fetuin-A emerges as an independent predictor of type 2 diabetes in adulthood. The overall aims of this study were: (1) to investigate the associations of fetuin-A with adiposity and insulin resistance, as well as its relationship with adipokines, in prepubertal children, and, (2) to evaluate whether, in prepubertal obesity, serum fetuin-A levels may either change or predict the responsiveness to an educational-based weight excess reduction program. We studied 200 prepubertal children (boys/girls: 89/111; Tanner stage 1; age: 5-13 years), included in a cohort of 44,231 adolescents who participated in an extensive Italian school-based survey. According to Cole's criteria, 100 individuals were lean (boys/girls: 57/43) and 100 obese (boys/girls: 54/46). A subset of 53 obese individuals (boys/girls: 28/25; age: 6-12 years) were also evaluated after a weight excess reduction program. Serum fetuin-A, leptin, total and high molecular weight adiponectin levels, as well as homeostasis model assessment of insulin resistance were assessed. When compared with lean, obese children exhibited higher ( p < 0.0001) fetuin-A concentrations, without differences between sex. Fetuin-A was positively associated with adiposity, homeostasis model assessment of insulin resistance, and leptin levels. In multivariate analysis, the associations between fetuin-A and leptin or homeostasis model assessment of insulin resistance lost the significance after adjustment for BMI Z-score, which, in turn, represented an independent determinant of fetuin-A (R (2)adj 0.327; p < 0.0001). Notably, after weight excess reduction program, fetuin-A levels dropped ( p < 0.0001 vs. basal). Interestingly, no significant differences of fetuin-A concentrations between responders and no responders were found. In prepubertal children, fetuin-A represents an early marker of adiposity, and its reduction after lifestyle intervention may partly contribute to the beneficial effects

  15. Molecular mechanisms of insulin resistance in diabetes.

    PubMed

    Soumaya, Kouidhi

    2012-01-01

    Molecular components of impaired insulin signaling pathway have emerged with growing interest to understand how the environment and genetic susceptibility combine to cause defects in this fundamental pathway that lead to insulin resistance. When insulin resistance is combined with beta-cell defects in glucose-stimulated insulin secretion, impaired glucose tolerance, hyperglycemia, or Type 2 diabetes can result. The most common underlying cause is obesity, although primary insulin resistance in normal-weight individuals is also possible. The adipose tissue releases free fatty acids that contribute to insulin resistance and also acts as a relevant endocrine organ producing mediators (adipokines) that can modulate insulin signalling. This chapter deals with the core elements promoting, insulin resistance, associated with impaired insulin signalling pathway and adipocyte dysfunction. A detailed understanding of these basic pathophysiological mechanisms is critical for the development of novel therapeutic strategies to treat diabetes.

  16. Insulin action in adipose tissue in type 1 diabetes

    PubMed Central

    Arrieta-Blanco, Francisco; Botella-Carretero, Jose Ignacio; Iglesias, Pedro; Balsa, José Antonio; Zamarrón, Isabel; De la Puerta, Cristina; Arrieta, Juan José; Ramos, Francisco; Vázquez, Clotilde; Rovira, Adela

    2011-01-01

    Background: Insulin action has been reported to be normal in type 1 diabetic patients. However, some studies have reported an insulin resistance state in these patients. The aim of this study was to investigate insulin resistance in a group of type 1 diabetic patients. We studied the insulin action in adipose tissue and analyzed the effects of duration of disease, body mass index (BMI), and glycosylated hemoglobin on insulin action at the receptor and postreceptor levels in adipocytes. Methods: Nine female type 1 diabetic patients with different durations of disease and eight nondiabetic female patients of comparable age and BMI were studied. 125I-insulin binding and U-[14C]-D-glucose transport was measured in a sample of subcutaneous gluteus adipose tissue obtained by open surgical biopsy from each subject. Results: The duration of disease was negatively correlated with both 125I-insulin binding capacity (r = −0.70, P < 0.05) and basal and maximum insulin-stimulated glucose transport (r = −0.87, P < 0.01, and r = −0.88, P < 0.01, respectively). Maximum specific 125I-insulin binding to the receptors in adipocytes was higher in the group of patients with a shorter duration of disease (P < 0.01). Basal and maximum insulin-stimulated glucose transport was significantly higher in the group with less than 5 years of disease (P < 0.01). No correlation was found between BMI and insulin action. Conclusion: Female type 1 diabetic patients have normal insulin action. There is a high glucose uptake in the early phase of the disease, although a longer duration of disease appears to be a contributing factor to a decrease in insulin action in these patients, and involving both receptor and postreceptor mechanisms. PMID:21475629

  17. Blueberry intake alters skeletal muscle and adipose tissue peroxisome proliferator-activated receptor activity and reduces insulin resistance in obese rats.

    PubMed

    Seymour, E Mitchell; Tanone, Ignasia I; Urcuyo-Llanes, Daniel E; Lewis, Sarah K; Kirakosyan, Ara; Kondoleon, Michael G; Kaufman, Peter B; Bolling, Steven F

    2011-12-01

    Metabolic syndrome can precede the development of type 2 diabetes and cardiovascular disease and includes phenotypes such as obesity, systemic inflammation, insulin resistance, and hyperlipidemia. A recent epidemiological study indicated that blueberry intake reduced cardiovascular mortality in humans, but the possible genetic mechanisms of this effect are unknown. Blueberries are a rich source of anthocyanins, and anthocyanins can alter the activity of peroxisome proliferator-activated receptors (PPARs), which affect energy substrate metabolism. The effect of blueberry intake was assessed in obesity-prone rats. Zucker Fatty and Zucker Lean rats were fed a higher-fat diet (45% of kcal) or a lower-fat diet (10% of kcal) containing 2% (wt/wt) freeze-dried whole highbush blueberry powder or added sugars to match macronutrient and calorie content. In Zucker Fatty rats fed a high-fat diet, the addition of blueberry reduced triglycerides, fasting insulin, homeostasis model index of insulin resistance, and glucose area under the curve. Blueberry intake also reduced abdominal fat mass, increased adipose and skeletal muscle PPAR activity, and affected PPAR transcripts involved in fat oxidation and glucose uptake/oxidation. In Zucker Fatty rats fed a low-fat diet, the addition of blueberry also significantly reduced liver weight, body weight, and total fat mass. Finally, Zucker Lean rats fed blueberry had higher body weight and reduced triglycerides, but all other measures were unaffected. In conclusion, whole blueberry intake reduced phenotypes of metabolic syndrome in obesity-prone rats and affected PPAR gene transcripts in adipose and muscle tissue involved in fat and glucose metabolism.

  18. Plasma Lactoferrin Levels Positively Correlate with Insulin Resistance despite an Inverse Association with Total Adiposity in Lean and Severely Obese Patients

    PubMed Central

    Pouliot, Yves; Lamarche, Benoît; Beaulieu, Jean-François; Hould, Frédéric S.; Richard, Denis; Tchernof, André; Levy, Emile

    2016-01-01

    Context Lactoferrin (Lf) is an important protein found on mucosal surfaces, within neutrophils and various cells, and in biological fluids. It displays multiple functions, including iron-binding as well as antimicrobial, immunomodulatory and anti-inflammatory activities. Although Lf ingestion has been suggested to cause adiposity reduction in murine models and humans, its relationship with insulin resistance (IR) has not been studied thoroughly. Objective To establish the association between circulating Lf levels, glucose status and blood lipid/lipoprotein profile. Methods Two independent cohorts were examined: lean to moderately obese women admitted for gynecological surgery (n = 53) and severely obese subjects undergoing biliopancreatic diversion (n = 62). Results Although body mass index (BMI) and total body fat mass were negatively associated with Lf, IR (assessed by the HOMA-IR index) was positively and independently associated with plasma Lf concentrations of the first cohort of lean to moderately obese women. These observations were validated in the second cohort in view of the positive correlation between plasma Lf concentrations and the HOMA-IR index, but without a significant association with the body mass index (BMI) of severely obese subjects. In subsamples of severely obese subjects matched for sex, age and BMI, but with either relatively low (1.89 ± 0.73) or high (13.77 ± 8.81) IR states (according to HOMA-IR), higher plasma Lf levels were noted in insulin-resistant vs insulin-sensitive subjects (P<0.05). Finally, Lf levels were significantly higher in lean to moderately obese women than in severely obese subjects (P<0.05). Conclusion Our findings revealed that plasma Lf levels are strongly associated with IR independently of total adiposity, which suggests an intriguing Lf regulation mechanism in conditions of obesity and IR. PMID:27902700

  19. Divergent mechanisms for the insulin resistant and hyperresponsive glucose transport in adipose cells from fasted and refed rats. Alterations in both glucose transporter number and intrinsic activity.

    PubMed Central

    Kahn, B B; Simpson, I A; Cushman, S W

    1988-01-01

    The effects of fasting and refeeding on the glucose transport response to insulin in isolated rat adipose cells have been examined using 3-O-methylglucose transport in intact cells and cytochalasin B binding and Western blotting in subcellular membrane fractions. After a 72-h fast, basal glucose transport activity decreases slightly and insulin-stimulated activity decreases greater than 85%. Following 48 h of fasting, insulin-stimulated glucose transport activity is diminished from 3.9 +/- 0.5 to 1.3 +/- 0.3 fmol/cell per min (mean +/- SEM). Similarly, the concentrations of glucose transporters are reduced with fasting in both the plasma membranes from insulin-stimulated cells from 38 +/- 5 to 18 +/- 3 pmol/mg of membrane protein and the low density microsomes from basal cells from 68 +/- 8 to 34 +/- 9 pmol/mg of membrane protein. Ad lib. refeeding for 6 d after a 48-h fast results in up to twofold greater maximally insulin-stimulated glucose transport activity compared with the control level (7.1 +/- 0.4 vs. 4.5 +/- 0.2 fmol/cell per min), before returning to baseline at 10 d. However, the corresponding concentration of glucose transporters in the plasma membranes is restored only to the control level (45 +/- 5 vs. 50 +/- 5 pmol/mg of membrane protein). Although the concentration of glucose transporters in the low density microsomes of basal cells remains decreased, the total number is restored to the control level due to an increase in low density microsomal protein. Thus, the insulin-resistant glucose transport in adipose cells from fasted rats can be explained by a decreased translocation of glucose transporters to the plasma membrane due to a depleted intracellular pool. In contrast, the insulin hyperresponsive glucose transport observed with refeeding appears to result from (a) a restored translocation of glucose transporters to the plasma membrane from a repleted intracellular pool and (b) enhanced plasma membrane glucose transporter intrinsic activity

  20. Beneficial effects of rosuvastatin on insulin resistance, adiposity, inflammatory markers and non-alcoholic fatty liver disease in mice fed on a high-fat diet.

    PubMed

    Fraulob, Julio Cesar; Souza-Mello, Vanessa; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos Alberto

    2012-08-01

    The aim of the present study was to evaluate the effects of ST (rosuvastatin) and GZ (rosiglitazone) on IR (insulin resistance) and on liver as well as adipose tissue in mice fed on an HF (high-fat) diet. Our data show that treatment with ST resulted in a marked improvement in insulin sensitivity characterized by enhanced glucose clearance during the insulin tolerance test and a 70% decrease in the HOMA-IR (homoeostasis model assessment of insulin resistance) index level (P=0.0008). The ST-treated mice exhibited lower gains in BM (body mass; -8%; P<0.01) and visceral fat pad thickness (-60%; P<0.01) compared with the untreated HF group. In comparison with HF-diet-fed mice, HF+ST-treated mice showed a significant reduction in hepatomegaly and liver steatosis (-6%, P<0.05; and -21%, P<0.01 respectively). In HF+ST-treated mice, the hepatic TAG (triacylglycerol) levels were reduced by 58% compared with the HF group (P<0.01). In addition, the expression of SREBP-1c (sterol-regulatory-element-binding protein-1c) was decreased by 50% in the livers of HF+ST-treated mice (P<0.01) relative to the HF-diet-fed mice. The levels of resistin were lower in the HF+ST-treated group compared with the HF group (44% less, P< 0.01). In conclusion, we demonstrated that ST treatment improved insulin sensitivity and decreased liver steatosis in mice fed on an HF diet. Furthermore, ST reduced BM gains, improved the circulating levels of plasma cholesterol and TAG, and reduced hepatic TAG, which was concomitant with lower resistin levels.

  1. All about Insulin Resistance

    MedlinePlus

    Toolkit No. 2 All About Insulin Resistance Insulin resistance is a condition that raises your risk for type 2 diabetes and heart disease. ... Diabetes Association, Inc. 1/15 Toolkit No. 2: All About Insulin Resistance continued J Order the smallest ...

  2. Sex-Specific Mediating Role of Insulin Resistance and Inflammation in the Effect of Adiposity on Blood Pressure of Prepubertal Children

    PubMed Central

    Correia-Costa, Liane; Santos, Ana Cristina; Severo, Milton; Guerra, António; Schaefer, Franz; Caldas Afonso, Alberto; Barros, Henrique; Azevedo, Ana

    2015-01-01

    Objective To evaluate the association between obesity indices and blood pressure (BP) at 4 years of age, in each sex, and to quantify to which extent this association is mediated by inflammation and insulin resistance (IR). Materials and Methods We studied 1250 4-year-old children selected from the population-based birth cohort Generation XXI. Associations between body mass index (BMI) z-score and waist-to-height ratio (WHtR), office BP, inflammation (high sensitivity C-reactive protein) and IR (HOMA-IR index) were assessed. Path Analysis, a modified multivariate regression approach, was applied to test causal models and quantify direct and indirect effects of predictors of systolic (SBP) and diastolic BP (DBP). Results SBP and DBP increased significantly with BMI and WHtR in both sexes. There was a strong direct association (explaining 74.1-93.2% of the total association) of both measures of adiposity with SBP, in both sexes. This association was additionally indirectly mediated by IR, particularly regarding WHtR (20.5% in girls and 9.4% in boys). Mediation by inflammation did not reach statistical significance in either sex. Regarding DBP, the direct effect of adiposity was strong (>95% for BMI and WHtR in boys) and the mediation by IR was much smaller in boys than in girls. Discussion The direct association between adiposity and BP in healthy 4-year-old children is strong and IR plays an important mediating role. The strength of effects of IR and inflammation suggests sex differences in the complex interplay between BP, adiposity and inflammation. PMID:26125190

  3. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle.

    PubMed

    He, Weimin; Barak, Yaacov; Hevener, Andrea; Olson, Peter; Liao, Debbie; Le, Jamie; Nelson, Michael; Ong, Estelita; Olefsky, Jerrold M; Evans, Ronald M

    2003-12-23

    Syndrome X, typified by obesity, insulin resistance (IR), dyslipidemia, and other metabolic abnormalities, is responsive to antidiabetic thiazolidinediones (TZDs). Peroxisome proliferator-activated receptor (PPAR) gamma, a target of TZDs, is expressed abundantly in adipocytes, suggesting an important role for this tissue in the etiology and treatment of IR. Targeted deletion of PPARgamma in adipose tissue resulted in marked adipocyte hypocellularity and hypertrophy, elevated levels of plasma free fatty acids and triglyceride, and decreased levels of plasma leptin and ACRP30. In addition, increased hepatic glucogenesis and IR were observed. Despite these defects, blood glucose, glucose and insulin tolerance, and insulin-stimulated muscle glucose uptake were all comparable to those of control mice. However, targeted mice were significantly more susceptible to high-fat diet-induced steatosis, hyperinsulinemia, and IR. Surprisingly, TZD treatment effectively reversed liver IR, whereas it failed to lower plasma free fatty acids. These results suggest that syndrome X may be comprised of separable PPARgamma-dependent components whose origins and therapeutic sites may reside in distinct tissues.

  4. Socioeconomic status is positively associated with measures of adiposity and insulin resistance, but inversely associated with dyslipidaemia in Colombian children

    PubMed Central

    Buitrago-Lopez, Adriana; van den Hooven, Edith H; Rueda-Clausen, Christian F; Serrano, Norma; Ruiz, Alvaro J; Pereira, Mark A; Mueller, Noel T

    2015-01-01

    Background Low socioeconomic status (SES) has been associated with higher risk of cardiometabolic diseases in developed societies, but investigation of SES and cardiometabolic risk in children in less economically developed populations is sparse. We aimed to examine associations among SES and cardiometabolic risk factors in Colombian children. Methods We used data from a population-based study of 1282 children aged 6–10 years from Bucaramanga, Colombia. SES was classified according to household wealth, living conditions and access to public utilities. Anthropometric and biochemical parameters were measured at a clinic visit. Cardiometabolic risk factors were analysed continuously using linear regression and as binary outcomes—according to established paediatric cut points—using logistic regression to calculate OR and 95% CIs. Results Mean age of the children was 8.4 (SD 1.4) and 51.1% of the sample were boys. Odds of overweight/obesity, abdominal obesity and insulin resistance were greater among higher SES. Compared with the lowest SES stratum, children in the highest SES had higher odds of overweight/obesity (OR=3.25, 95% CI 1.89 to 5.57), abdominal obesity (OR=2.74, 95% CI 1.41 to 5.31) and insulin resistance (OR=2.60, 95% CI 1.81 to 3.71). In contrast, children in the highest SES had lower odds of hypertriglyceridaemia (triglycerides ≥90th centile; OR=0.28, 95% CI 0.14 to 0.54) and low (≤10th centile) high-density lipoprotein (HDL) cholesterol (OR=0.35, 95% CI 0.15 to 0.78). Conclusions In Colombian children, SES is directly associated with obesity and insulin resistance, but inversely associated with dyslipidaemia (hypertriglyceridaemia and low HDL cholesterol). Our findings highlight the need to analyse cardiometabolic risk factors separately in children and to carefully consider a population's level of economic development when studying their social determinants of cardiometabolic disease. PMID:25691273

  5. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  6. Evidence of early alterations in adipose tissue biology and function and its association with obesity-related inflammation and insulin resistance in children.

    PubMed

    Landgraf, Kathrin; Rockstroh, Denise; Wagner, Isabel V; Weise, Sebastian; Tauscher, Roy; Schwartze, Julian T; Löffler, Dennis; Bühligen, Ulf; Wojan, Magdalena; Till, Holger; Kratzsch, Jürgen; Kiess, Wieland; Blüher, Matthias; Körner, Antje

    2015-04-01

    Accumulation of fat mass in obesity may result from hypertrophy and/or hyperplasia and is frequently associated with adipose tissue (AT) dysfunction in adults. Here we assessed early alterations in AT biology and function by comprehensive experimental and clinical characterization of 171 AT samples from lean and obese children aged 0 to 18 years. We show an increase in adipocyte size and number in obese compared with lean children beginning in early childhood. These alterations in AT composition in obese children were accompanied by decreased basal lipolytic activity and significantly enhanced stromal vascular cell proliferation in vitro, potentially underlying the hypertrophy and hyperplasia seen in obese children, respectively. Furthermore, macrophage infiltration, including the formation of crown-like structures, was increased in AT of obese children from 6 years on and was associated with higher hs-CRP serum levels. Clinically, adipocyte hypertrophy was not only associated with leptin serum levels but was highly and independently correlated with HOMA-IR as a marker of insulin resistance in children. In summary, we show that adipocyte hypertrophy is linked to increased inflammation in AT in obese children, thereby providing evidence that obesity-associated AT dysfunction develops in early childhood and is related to insulin resistance.

  7. Dietary fish oil reverse epididymal tissue adiposity, cell hypertrophy and insulin resistance in dyslipemic sucrose fed rat model small star, filled.

    PubMed

    Soria, Ana; Chicco, Adriana; Eugenia D'Alessandro, María; Rossi, Andrea; Lombardo, Yolanda B.

    2002-04-01

    The present work was designed to assess the possible benefits of (7% w/w) dietary fish oil in reversing the morphological and metabolic changes present in the adipose tissue of rats fed an SRD for a long time. With this purpose, in the epididymal fat tissue, we investigated the effect of dietary fish oil upon: i) the number, size and distribution of cells, ii) the basal and stimulated lipolysis, iii) the lipoprotein lipase (LPL) and the glucose 6-phosphate dehydrogenase activities, and iv) the antilipolytic action of insulin. The study was conducted on rats fed an SRD during 120 days with fish oil being isocaloric substituted for corn oil for 90-120 days in half the animals. Permanent hypertriglyceridemia, insulin resistance and abnormal glucose homeostasis were present in the rats before the source of fat in the diet was replaced. The major new findings of this study are the following: i) Dietary fish oil markedly reduced the fat pads mass, the hypertrophy of fat cells and improved the altered cell size distribution. ii) The presence of fish oil in the diet corrected the inhibitory effect of high sucrose diet upon the antilipolytic action of insulin, reduced the "in vitro" enhanced basal lipolysis and normalized isoproterenol-stimulated lipolysis. Fat pads lipoprotein lipase activity decreased reaching values similar to those observed in age-matched controls fed a control diet (CD). These effects were not accompanied by any change in rat body weight. All these data suggest that the dyslipemic rats fed a moderate amount of dietary fish oil constitute a useful animal model to study diet-regulated insulin action.

  8. Epigenetic markers to further understand insulin resistance.

    PubMed

    Ling, Charlotte; Rönn, Tina

    2016-11-01

    Epigenetic variation in human adipose tissue has been linked to type 2 diabetes and its related risk factors including age and obesity. Insulin resistance, a key risk factor for type 2 diabetes, may also be associated with altered DNA methylation in visceral and subcutaneous adipose tissue. Furthermore, linking epigenetic variation in target tissues to similar changes in blood cells may identify new blood-based biomarkers. In this issue of Diabetologia, Arner et al studied the transcriptome and methylome in subcutaneous and visceral adipose tissue of 80 obese women who were either insulin-sensitive or -resistant (DOI 10.1007/s00125-016-4074-5 ). While they found differences in gene expression between the two groups, no alterations in DNA methylation were found after correction for multiple testing. Nevertheless, based on nominal p values, their methylation data overlapped with methylation differences identified in adipose tissue of individuals with type 2 diabetes compared with healthy individuals. Differential methylation of these overlapping CpG sites may predispose to diabetes by occurring already in the insulin-resistant state. Furthermore, some methylation changes may contribute to an inflammatory process in adipose tissue since the identified CpG sites were annotated to genes encoding proteins involved in inflammation. Finally, the methylation pattern in circulating leucocytes did not mirror the adipose tissue methylome of these 80 women. Together, identifying novel molecular mechanisms contributing to insulin resistance and type 2 diabetes may help advance the search for new therapeutic alternatives.

  9. Vitamin D inadequacy is widespread in Tunisian active boys and is related to diet but not to adiposity or insulin resistance

    PubMed Central

    Bezrati, Ikram; Ben Fradj, Mohamed Kacem; Ouerghi, Nejmeddine; Feki, Moncef; Chaouachi, Anis; Kaabachi, Naziha

    2016-01-01

    Background Vitamin D inadequacy is widespread in children and adolescents worldwide. The present study was undertaken to assess the vitamin D status in active children living in a sunny climate and to identify the main determinants of the serum concentration of 25-hydroxyvitamin D (25-OHD). Methods This cross-sectional study included 225 children aged 7–15 years practicing sports in a football academy. Anthropometric measures were performed to calculate body mass index (BMI), fat mass, and maturity status. A nutritional enquiry was performed including 3-day food records and food frequency questionnaire. Plasma 25-OHD and insulin were assessed by immunoenzymatic methods ensuring categorization of vitamin D status and calculation of insulin sensitivity/resistance indexes. A logistic regression model was applied to identify predictors for vitamin D inadequacy. Results Vitamin D deficiency (25-OHD<12 µg/L) was observed in 40.9% of children and insufficiency (12<25-OHD<20 µg/L) was observed in 44% of children. In a multivariate analysis, vitamin D deficiency and insufficiency were associated with a lower dietary intake of vitamin D, proteins, milk, red meat, fish, and eggs. However, no significant relationship was observed with maturation status, adiposity, or insulin resistance. Conclusions Tunisian children and adolescents are exposed to a high risk of vitamin D inadequacy despite living in a sunny climate. Circulating 25-OHD concentrations are related to the intake of vitamin D food sources but not to maturation status or body composition. Ensuring sufficient and safe sun exposure and adequate vitamin D intake may prevent vitamin D inadequacy in children from sunny environments. PMID:27113441

  10. Diabetes and pre-diabetes are associated with cardiovascular risk factors and carotid/femoral intima-media thickness independently of markers of insulin resistance and adiposity

    PubMed Central

    Faeh, David; William, Julita; Yerly, Patrick; Paccaud, Fred; Bovet, Pascal

    2007-01-01

    IGR is also mediated by factors other than the considered markers of adiposity and insulin resistance. The results also imply that IGR and associated major CVD risk factors should be systematically screened and appropriately managed. PMID:17958881

  11. Insulin resistance and atherosclerosis

    PubMed Central

    Semenkovich, Clay F.

    2006-01-01

    Considerable evidence supports the association between insulin resistance and vascular disease, and this has led to wide acceptance of the clustering of hyperlipidemia, glucose intolerance, hypertension, and obesity as a clinical entity, the metabolic syndrome. While insulin resistance, by promoting dyslipidemia and other metabolic abnormalities, is part of the proatherogenic milieu, it is possible that insulin resistance itself in the vascular wall does not promote atherosclerosis. Recent findings suggest that insulin resistance and atherosclerosis could represent independent and ultimately maladaptive responses to the disruption of cellular homeostasis caused by the excess delivery of fuel. PMID:16823479

  12. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance.

    PubMed

    Chen, Yen-Hao; Heneidi, Saleh; Lee, Jung-Min; Layman, Lawrence C; Stepp, David W; Gamboa, Gloria Mabel; Chen, Bo-Shiun; Chazenbalk, Gregorio; Azziz, Ricardo

    2013-07-01

    Approximately 70% of women with polycystic ovary syndrome (PCOS) have intrinsic insulin resistance (IR) above and beyond that associated with body mass, including dysfunctional glucose metabolism in adipose tissue (AT). In AT, analysis of the IRS/PI3-K/AKT pathway signaling components identified only GLUT4 expression to be significantly lower in PCOS patients and in control subjects with IR. We examined the role of miRNAs, particularly in the regulation of GLUT4, the insulin-sensitive glucose transporter, in the AT of PCOS and matched control subjects. PCOS AT was determined to have a differentially expressed miRNA profile, including upregulated miR-93, -133, and -223. GLUT4 is a highly predicted target for miR-93, while miR-133 and miR-223 have been demonstrated to regulate GLUT4 expression in cardiomyocytes. Expression of miR-93 revealed a strong correlation between the homeostasis model assessment of IR in vivo values and GLUT4 and miR-93 but not miR-133 and -223 expression in human AT. Overexpression of miR-93 resulted in downregulation of GLUT4 gene expression in adipocytes through direct targeting of the GLUT4 3'UTR, while inhibition of miR-93 activity led to increased GLUT4 expression. These results point to a novel mechanism for regulating insulin-stimulated glucose uptake via miR-93 and demonstrate upregulated miR-93 expression in all PCOS, and in non-PCOS women with IR, possibly accounting for the IR of the syndrome. In contrast, miR-133 and miR-223 may have a different, although yet to be defined, role in the IR of PCOS.

  13. Timed-daily ingestion of whey protein and exercise training reduces visceral adipose tissue mass and improves insulin resistance: the PRISE study.

    PubMed

    Arciero, Paul J; Baur, Daniel; Connelly, Scott; Ormsbee, Michael J

    2014-07-01

    The present study examined the effects of timed ingestion of supplemental protein (20-g servings of whey protein, 3×/day), added to the habitual diet of free-living overweight/obese adults and subsequently randomized to either whey protein only (P; n = 24), whey protein and resistance exercise (P + RT; n = 27), or a whey protein and multimode exercise training program [protein and resistance exercise, intervals, stretching/yoga/Pilates, endurance exercise (PRISE); n = 28]. Total and regional body composition and visceral adipose tissue (VAT) mass (dual-energy X-ray absorptiometry), insulin sensitivity [homeostasis model assessment-estimated insulin resistance (HOMA-IR)], plasma lipids and adipokines, and feelings of hunger and satiety (visual analog scales) were measured before and after the 16-wk intervention. All groups lost body weight, fat mass (FM), and abdominal fat; however, PRISE lost significantly (P < 0.01) more body weight (3.3 ± 0.7 vs. 1.1 ± 0.7 kg, P + RT) and FM (2.8 ± 0.7 vs. 0.9 ± 0.5 kg, P + RT) and gained (P < 0.05) a greater percentage of lean body mass (2 ± 0.5 vs. 0.9 ± 0.3 and 0.6 ± 0.4%, P + RT and P, respectively). Only P + RT (0.1 ± 0.04 kg) and PRISE (0.21 ± 0.07 kg) lost VAT mass (P < 0.05). Fasting glucose decreased only in P + RT (5.1 ± 2.5 mg/dl) and PRISE (15.3 ± 2.1 mg/dl), with the greatest decline occurring in PRISE (P < 0.05). Similarly, HOMA-IR improved (0.6 ± 0.3, 0.6 ± 0.4 units), and leptin decreased (4.7 ± 2.2, 4.7 ± 3.1 ng/dl), and adiponectin increased (3.8 ± 1.1, 2.4 ± 1.1 μg/ml) only in P + RT and PRISE, respectively, with no change in P. In conclusion, we find evidence to support exercise training and timed ingestion of whey protein added to the habitual diet of free-living overweight/obese adults, independent of caloric restriction on total and regional body fat distribution, insulin resistance, and adipokines.

  14. The Shc locus regulates insulin signaling and adiposity in mammals

    PubMed Central

    Tomilov, Alexey A.; Ramsey, Jon J.; Hagopian, Kevork; Giorgio, Marco; Kim, Kyoungmi M.; Lam, Adam; Migliaccio, Enrica; Lloyd, Kent C.; Berniakovich, Ina; Prolla, Tomas A.; Pelicci, PierGiuseppe; Cortopassi, Gino A.

    2014-01-01

    Summary Longevity of a p66Shc knockout strain (ShcP) was previously attributed to increased stress resistance and altered mitochondria. Microarrays of ShcP tissues indicated alterations in insulin signaling. Consistent with this observation, ShcP mice were more insulin sensitive and glucose tolerant at organismal and tissue levels, as was a novel p66Shc knockout (ShcL). Increasing and decreasing Shc expression in cell lines decreased and increased insulin sensitivity, respectively – consistent with p66Shc's function as a repressor of insulin signaling. However, differences between the two p66Shc knockout strains were also observed. ShcL mice were fatter and susceptible to fatty diets, and their fat was more insulin sensitive than controls. On the other hand, ShcP mice were leaner and resisted fatty diets, and their adipose was less insulin sensitive than controls. ShcL and ShcP strains are both highly inbred on the C57Bl/6 background, so we investigated gene expression at the Shc locus, which encodes three isoforms, p66, p52, and p46. Isoform p66 is absent in both strains; thus, the remaining difference to which to attribute the ‘lean’ phenotype is expression of the other two isoforms. ShcL mice have a precise deletion of p66Shc and normal expression of p52 and p46Shc isoforms in all tissues; thus, a simple deletion of p66Shc results in a ‘fat’ phenotype. However, ShcP mice in addition to p66Shc deletion have a fourfold increase in p46Shc expression in white fat. Thus, p46Shc overexpression in fat, rather than p66Shc deletion, is the likely cause of decreased adiposity and reduced insulin sensitivity in the fat of ShcP mice, which has implications for the longevity of the strain. PMID:21040401

  15. Estimation of ellagic acid and/or repaglinide effects on insulin signaling, oxidative stress, and inflammatory mediators of liver, pancreas, adipose tissue, and brain in insulin resistant/type 2 diabetic rats.

    PubMed

    Amin, Mohamed M; Arbid, Mahmoud S

    2017-02-01

    Even though ellagic acid has previously been valued in many models of cancer, so far its full mechanistic effect as a natural antiapoptotic agent in the prevention of type 2 diabetes complications has not been completely elucidated, which was the goal of this study. We fed albino rats a high-fat fructose diet (HFFD) for 2 months to induce insulin resistance/type 2 diabetes and then treated the rats with ellagic acid (10 mg/kg body weight, orally) and/or repaglinide (0.5 mg/kg body weight, orally) for 2 weeks. At the serum level, ellagic acid challenged the consequences of HFFD, significantly improving the glucose/insulin balance, liver enzymes, lipid profile, inflammatory cytokines, redox level, adipokines, ammonia, and manganese. At the tissue level (liver, pancreas, adipose tissue, and brain), ellagic acid significantly enhanced insulin signaling, autophosphorylation, adiponectin receptors, glucose transporters, inflammatory mediators, and apoptotic markers. Remarkably, combined treatment with both ellagic acid and repaglinide had a more pronounced effect than treatment with either alone. These outcomes give new insight into the promising molecular mechanisms by which ellagic acid modulates numerous factors induced in the progression of diabetes.

  16. Nutritional Modulation of Insulin Resistance

    PubMed Central

    Weickert, Martin O.

    2012-01-01

    Insulin resistance has been proposed as the strongest single predictor for the development of Type 2 Diabetes (T2DM). Chronic oversupply of energy from food, together with inadequate physical activity, have been recognized as the most relevant factors leading to overweight, abdominal adiposity, insulin resistance, and finally T2DM. Conversely, energy reduced diets almost invariably to facilitate weight loss and reduce abdominal fat mass and insulin resistance. However, sustained weight loss is generally difficult to achieve, and distinct metabolic characteristics in patients with T2DM further compromise success. Therefore, investigating the effects of modulating the macronutrient composition of isoenergetic diets is an interesting concept that may lead to additional important insights. Metabolic effects of various different dietary concepts and strategies have been claimed, but results from randomized controlled studies and particularly from longer-term-controlled interventions in humans are often lacking. However, some of these concepts are supported by recent research, at least in animal models and short-term studies in humans. This paper provides an update of the current literature regarding the role of nutrition in the modulation of insulin resistance, which includes the discussion of weight-loss-independent metabolic effects of commonly used dietary concepts. PMID:24278690

  17. Additional effect of metformin and celecoxib against lipid dysregulation and adipose tissue inflammation in high-fat fed rats with insulin resistance and fatty liver.

    PubMed

    Lu, Chieh-Hua; Hung, Yi-Jen; Hsieh, Po-Shiuan

    2016-10-15

    We investigated the effects of metformin and celecoxib on obesity-induced adipose tissue inflammation, insulin resistance (IR), fatty liver, and high blood pressure in high-fat (HF) fed rats. Male Sprague-Dawley rats were fed with either regular or HF diet for 8 weeks. Rats fed with regular diet were treated with vehicle for further 4 weeks. HF fed rats were divided into 6 groups, namely, vehicle, celecoxib (30mg/kg/day), metformin (300mg/kg/day), metformin (150mg/kg/day), metformin (300mg/kg/day) with celecoxib (30mg/kg/day), and metformin (150mg/kg/day) with celecoxib (15mg/kg/day) for additional 4 weeks. Increased body weight in HF fed rats was significantly reduced by metformin alone and metformin combined with celecoxib. The increases in the HOMA-IR value and the area under the curve of glucose following an oral glucose tolerance test, systolic blood pressure, and adipocyte size were significantly diminished in treated rats, especially rats undergoing combined treatment. Treatments with either celecoxib or in combination with metformin resulted in a reduction in AT macrophage infiltration and decreases in levels of adipose tissue TNF-α, MCP-1, and leptin levels in high-fat (HF) fed rats. Furthermore, the elevated hepatic triglycerides content was significantly decreased in the combined treatment group compared to that of groups of celecoxib or metformin alone. Celecoxib exerts a synergistic beneficial effect with metformin on and obesity-associated metabolic and cardiovascular disorders in high-fat fed rats.

  18. High intensity interval training improves liver and adipose tissue insulin sensitivity

    PubMed Central

    Marcinko, Katarina; Sikkema, Sarah R.; Samaan, M. Constantine; Kemp, Bruce E.; Fullerton, Morgan D.; Steinberg, Gregory R.

    2015-01-01

    Objective Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. Methods In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine–alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. Results HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. Conclusions These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC. PMID:26909307

  19. Infliximab and insulin resistance.

    PubMed

    Ursini, Francesco; Naty, Saverio; Grembiale, Rosa Daniela

    2010-06-01

    Insulin resistance is the most important pathophysiologic feature of obesity, type 2 diabetes mellitus and prediabetic states. TNF-alpha, a proinflammatory cytokine, plays a pivotal role in the pathogenesis of inflammation-associated insulin resistance during the course of rheumatic diseases. Therapies aimed at neutralizing TNF-alpha, such as the monoclonal antibody infliximab, represent a novel approach for the treatment of rheumatic diseases and allow to obtain significant results in terms of control of the inflammatory process. In this article we reviewed the scientific evidence published in the literature about a potential role of TNF-alpha blockade in improving insulin resistance in non-diabetic rheumatic patients.

  20. Insulin Resistance and Prediabetes

    MedlinePlus

    ... especially sleep apnea; and cigarette smoking. Does sleep matter? Yes. Studies show that untreated sleep problems, especially ... a severe form of insulin resistance may have dark patches of skin, usually on the back of ...

  1. Overexpressing the novel autocrine/endocrine adipokine WISP2 induces hyperplasia of the heart, white and brown adipose tissues and prevents insulin resistance

    PubMed Central

    Grünberg, John R.; Hoffmann, Jenny M.; Hedjazifar, Shahram; Nerstedt, Annika; Jenndahl, Lachmi; Elvin, Johannes; Castellot, John; Wei, Lan; Movérare-Skrtic, Sofia; Ohlsson, Claes; Holm, Louise Mannerås; Bäckhed, Fredrik; Syed, Ismail; Bosch, Fatima; Saghatelian, Alan; Kahn, Barbara B.; Hammarstedt, Ann; Smith, Ulf

    2017-01-01

    WISP2 is a novel adipokine, most highly expressed in the adipose tissue and primarily in undifferentiated mesenchymal cells. As a secreted protein, it is an autocrine/paracrine activator of canonical WNT signaling and, as an intracellular protein, it helps to maintain precursor cells undifferentiated. To examine effects of increased WISP2 in vivo, we generated an aP2-WISP2 transgenic (Tg) mouse. These mice had increased serum levels of WISP2, increased lean body mass and whole body energy expenditure, hyperplastic brown/white adipose tissues and larger hyperplastic hearts. Obese Tg mice remained insulin sensitive, had increased glucose uptake by adipose cells and skeletal muscle in vivo and ex vivo, increased GLUT4, increased ChREBP and markers of adipose tissue lipogenesis. Serum levels of the novel fatty acid esters of hydroxy fatty acids (FAHFAs) were increased and transplantation of Tg adipose tissue improved glucose tolerance in recipient mice supporting a role of secreted FAHFAs. The growth-promoting effect of WISP2 was shown by increased BrdU incorporation in vivo and Tg serum increased mesenchymal precursor cell proliferation in vitro. In contrast to conventional canonical WNT ligands, WISP2 expression was inhibited by BMP4 thereby allowing normal induction of adipogenesis. WISP2 is a novel secreted regulator of mesenchymal tissue cellularity. PMID:28240264

  2. Overexpressing the novel autocrine/endocrine adipokine WISP2 induces hyperplasia of the heart, white and brown adipose tissues and prevents insulin resistance.

    PubMed

    Grünberg, John R; Hoffmann, Jenny M; Hedjazifar, Shahram; Nerstedt, Annika; Jenndahl, Lachmi; Elvin, Johannes; Castellot, John; Wei, Lan; Movérare-Skrtic, Sofia; Ohlsson, Claes; Holm, Louise Mannerås; Bäckhed, Fredrik; Syed, Ismail; Bosch, Fatima; Saghatelian, Alan; Kahn, Barbara B; Hammarstedt, Ann; Smith, Ulf

    2017-02-27

    WISP2 is a novel adipokine, most highly expressed in the adipose tissue and primarily in undifferentiated mesenchymal cells. As a secreted protein, it is an autocrine/paracrine activator of canonical WNT signaling and, as an intracellular protein, it helps to maintain precursor cells undifferentiated. To examine effects of increased WISP2 in vivo, we generated an aP2-WISP2 transgenic (Tg) mouse. These mice had increased serum levels of WISP2, increased lean body mass and whole body energy expenditure, hyperplastic brown/white adipose tissues and larger hyperplastic hearts. Obese Tg mice remained insulin sensitive, had increased glucose uptake by adipose cells and skeletal muscle in vivo and ex vivo, increased GLUT4, increased ChREBP and markers of adipose tissue lipogenesis. Serum levels of the novel fatty acid esters of hydroxy fatty acids (FAHFAs) were increased and transplantation of Tg adipose tissue improved glucose tolerance in recipient mice supporting a role of secreted FAHFAs. The growth-promoting effect of WISP2 was shown by increased BrdU incorporation in vivo and Tg serum increased mesenchymal precursor cell proliferation in vitro. In contrast to conventional canonical WNT ligands, WISP2 expression was inhibited by BMP4 thereby allowing normal induction of adipogenesis. WISP2 is a novel secreted regulator of mesenchymal tissue cellularity.

  3. Adipose tissue inflammation and reduced insulin sensitivity in ovariectomized mice occurs in the absence of increased adiposity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Menopause promotes central obesity, adipose tissue (AT) inflammation and insulin resistance (IR). Both obesity and the loss of estrogen can activate innate and adaptive immune cells (macrophages (M's), T-cells). The respective impacts of weight gain and loss of ovarian hormones on AT inflammation an...

  4. Insulin Receptor Signaling in Normal and Insulin-Resistant States

    PubMed Central

    Boucher, Jérémie; Kleinridders, André; Kahn, C. Ronald

    2014-01-01

    In the wake of the worldwide increase in type-2 diabetes, a major focus of research is understanding the signaling pathways impacting this disease. Insulin signaling regulates glucose, lipid, and energy homeostasis, predominantly via action on liver, skeletal muscle, and adipose tissue. Precise modulation of this pathway is vital for adaption as the individual moves from the fed to the fasted state. The positive and negative modulators acting on different steps of the signaling pathway, as well as the diversity of protein isoform interaction, ensure a proper and coordinated biological response to insulin in different tissues. Whereas genetic mutations are causes of rare and severe insulin resistance, obesity can lead to insulin resistance through a variety of mechanisms. Understanding these pathways is essential for development of new drugs to treat diabetes, metabolic syndrome, and their complications. PMID:24384568

  5. Changes in adiponectin and inflammatory genes in response to hormonal imbalances in female mice and exacerbation of depot selective visceral adiposity by high-fat diet: implications for insulin resistance.

    PubMed

    Zhang, Hui; Chen, Xinlei; Aravindakshan, Jayaprakash; Sairam, M Ram

    2007-12-01

    Early obesity and late onset of insulin resistance associated with hormonal imbalances occur in FSH receptor-deficient follitropin receptor knockout female mice. This study tests the hypothesis that chronic high-fat diet aggravates obesogenic changes in a depot-specific manner and explores some molecular links of hormone imbalances with insulin resistance. In SV 129 mice, hormonal imbalances seem obligatory for exacerbation of diet-induced obesity. Visceral adiposity, glucose intolerance, and lipid disturbances in 9-month follitropin receptor knockout females were associated with decrease in adiponectin signaling. High-molecular-weight plasma adiponectin and adipose tissue adiponectin mRNA were decreased. Adiponectin receptors R1 and R2 mRNA was selectively altered in mesenteric fat but not periuterine fat. R2 decreased in the liver and R1 was higher in muscle. Whereas hepatic adenosine monophosphate T-activated protein kinase activity was down-regulated, both phosphoenolpyruvate carboxykinase and glucose-6-phosphatase enzymes were up-regulated. Longitudinally, diminishing sex hormone signaling in adipose tissue was associated with progressive down-regulation of adiponectin activity and gradual impaired glucose tolerance. Chronic high-fat diet in SV129 wild-type mice did not produce overt obesity but induced visceral fat depot changes accompanied by liver lipid accumulation, high cholesterol, and up-regulation of inflammation gene mRNAs. Thus, TNF-alpha, C-C motif chemokine receptor-2, and C-C motif chemokine ligand-2 were selectively elevated in mesenteric fat without altering glucose tolerance and adiponectin signaling. Our study highlights adiponectin signaling and regulation to be involved in hormone imbalance-induced insulin resistance and demonstrates selective visceral adipose depot alterations by chronic high-fat diet and induction of inflammatory genes.

  6. Chromium and insulin resistance.

    PubMed

    Anderson, Richard A

    2003-12-01

    Insulin resistance leads to the inability of insulin to control the utilization and storage of glucose. It is associated initially with elevated levels of circulating insulin followed by glucose intolerance which may progress to type 2 diabetes, hyperlipidaemia, hypertension, obesity and cardiovascular diseases. While the causes of these diseases are multifactorial, one nutrient that is associated with all of these abnormalities is Cr. In the presence of Cr, in a biologically active form, much lower levels of insulin are required. Modern diets, which are often high in refined carbohydrates, are not only low in Cr, but lead to enhanced Cr losses. In response to the consumption of refined carbohydrates, there is a rapid rise in blood sugar leading to elevations in insulin that cause a mobilization of Cr. Once mobilized, Cr is not reabsorbed but lost via the urine leading to decreased Cr stores. Several studies involving both human subjects and experimental animals have reported improvements in insulin sensitivity, blood glucose, insulin, lipids, haemoglobin A1c, lean body mass and related variables in response to improved Cr nutrition. However, not all studies have reported beneficial effects associated with improved Cr nutrition. Well-controlled human studies are needed to document an unequivocal effect of Cr on insulin sensitivity in human subjects. Studies need to involve a significant number of subjects with insulin resistance, glucose intolerance or early stages of diabetes, who have not been taking supplements containing Cr for at least 4 months, and involve at least 400 to 600 microg supplemental Cr daily or more. Studies should be at least 4 months to document sustained effects of supplemental Cr on insulin resistance and related variables. Cr is a nutrient and not a therapeutic agent and therefore will only be of benefit to those whose problems are due to suboptimal intake of Cr.

  7. Transcriptomic identification of ADH1B as a novel candidate gene for obesity and insulin resistance in human adipose tissue in Mexican Americans from the Veterans Administration Genetic Epidemiology Study (VAGES).

    PubMed

    Winnier, Deidre A; Fourcaudot, Marcel; Norton, Luke; Abdul-Ghani, Muhammad A; Hu, Shirley L; Farook, Vidya S; Coletta, Dawn K; Kumar, Satish; Puppala, Sobha; Chittoor, Geetha; Dyer, Thomas D; Arya, Rector; Carless, Melanie; Lehman, Donna M; Curran, Joanne E; Cromack, Douglas T; Tripathy, Devjit; Blangero, John; Duggirala, Ravindranath; Göring, Harald H H; DeFronzo, Ralph A; Jenkinson, Christopher P

    2015-01-01

    Type 2 diabetes (T2D) is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect common patterns of gene regulation associated with obesity and insulin resistance. We used phenotypic and genotypic data from 308 Mexican American participants from the Veterans Administration Genetic Epidemiology Study (VAGES). Basal fasting RNA was extracted from adipose tissue biopsies from a subset of 75 unrelated individuals, and gene expression data generated on the Illumina BeadArray platform. The number of gene probes with significant expression above baseline was approximately 31,000. We performed multiple regression analysis of all probes with 15 metabolic traits. Adipose tissue had 3,012 genes significantly associated with the traits of interest (false discovery rate, FDR ≤ 0.05). The significance of gene expression changes was used to select 52 genes with significant (FDR ≤ 10(-4)) gene expression changes across multiple traits. Gene sets/Pathways analysis identified one gene, alcohol dehydrogenase 1B (ADH1B) that was significantly enriched (P < 10(-60)) as a prime candidate for involvement in multiple relevant metabolic pathways. Illumina BeadChip derived ADH1B expression data was consistent with quantitative real time PCR data. We observed significant inverse correlations with waist circumference (2.8 x 10(-9)), BMI (5.4 x 10(-6)), and fasting plasma insulin (P < 0.001). These findings are consistent with a central role for ADH1B in obesity and insulin resistance and provide evidence for a novel genetic regulatory mechanism for human metabolic diseases related to these traits.

  8. Transcriptomic Identification of ADH1B as a Novel Candidate Gene for Obesity and Insulin Resistance in Human Adipose Tissue in Mexican Americans from the Veterans Administration Genetic Epidemiology Study (VAGES)

    PubMed Central

    Winnier, Deidre A.; Fourcaudot, Marcel; Norton, Luke; Abdul-Ghani, Muhammad A.; Hu, Shirley L.; Farook, Vidya S.; Coletta, Dawn K.; Kumar, Satish; Puppala, Sobha; Chittoor, Geetha; Dyer, Thomas D.; Arya, Rector; Carless, Melanie; Lehman, Donna M.; Curran, Joanne E.; Cromack, Douglas T.; Tripathy, Devjit; Blangero, John; Duggirala, Ravindranath; Göring, Harald H. H.; DeFronzo, Ralph A.; Jenkinson, Christopher P.

    2015-01-01

    Type 2 diabetes (T2D) is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect common patterns of gene regulation associated with obesity and insulin resistance. We used phenotypic and genotypic data from 308 Mexican American participants from the Veterans Administration Genetic Epidemiology Study (VAGES). Basal fasting RNA was extracted from adipose tissue biopsies from a subset of 75 unrelated individuals, and gene expression data generated on the Illumina BeadArray platform. The number of gene probes with significant expression above baseline was approximately 31,000. We performed multiple regression analysis of all probes with 15 metabolic traits. Adipose tissue had 3,012 genes significantly associated with the traits of interest (false discovery rate, FDR ≤ 0.05). The significance of gene expression changes was used to select 52 genes with significant (FDR ≤ 10-4) gene expression changes across multiple traits. Gene sets/Pathways analysis identified one gene, alcohol dehydrogenase 1B (ADH1B) that was significantly enriched (P < 10-60) as a prime candidate for involvement in multiple relevant metabolic pathways. Illumina BeadChip derived ADH1B expression data was consistent with quantitative real time PCR data. We observed significant inverse correlations with waist circumference (2.8 x 10-9), BMI (5.4 x 10-6), and fasting plasma insulin (P < 0.001). These findings are consistent with a central role for ADH1B in obesity and insulin resistance and provide evidence for a novel genetic regulatory mechanism for human metabolic diseases related to these traits. PMID:25830378

  9. Dietary chia seed (Salvia hispanica L.) rich in alpha-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats.

    PubMed

    Chicco, Adriana G; D'Alessandro, Maria E; Hein, Gustavo J; Oliva, Maria E; Lombardo, Yolanda B

    2009-01-01

    The present study investigates the benefits of the dietary intake of chia seed (Salvia hispanica L.) rich in alpha-linolenic acid and fibre upon dyslipidaemia and insulin resistance (IR), induced by intake of a sucrose-rich (62.5 %) diet (SRD). To achieve these goals two sets of experiments were designed: (i) to study the prevention of onset of dyslipidaemia and IR in Wistar rats fed during 3 weeks with a SRD in which chia seed was the dietary source of fat; (ii) to analyse the effectiveness of chia seed in improving or reversing the metabolic abnormalities described above. Rats were fed a SRD during 3 months; by the end of this period, stable dyslipidaemia and IR were present in the animals. From months 3-5, half the animals continued with the SRD and the other half were fed a SRD in which the source of fat was substituted by chia seed (SRD+chia). The control group received a diet in which sucrose was replaced by maize starch. The results showed that: (i) dietary chia seed prevented the onset of dyslipidaemia and IR in the rats fed the SRD for 3 weeks--glycaemia did not change; (ii) dyslipidaemia and IR in the long-term SRD-fed rats were normalised without changes in insulinaemia when chia seed provided the dietary fat during the last 2 months of the feeding period. Dietary chia seed reduced the visceral adiposity present in the SRD rats. The present study provides new data regarding the beneficial effect of chia seed upon lipid and glucose homeostasis in an experimental model of dislipidaemia and IR.

  10. Dietary Salba (Salvia hispanica L) seed rich in α-linolenic acid improves adipose tissue dysfunction and the altered skeletal muscle glucose and lipid metabolism in dyslipidemic insulin-resistant rats.

    PubMed

    Oliva, M E; Ferreira, M R; Chicco, A; Lombardo, Y B

    2013-10-01

    This work reports the effect of dietary Salba (chia) seed rich in n-3 α-linolenic acid on the morphological and metabolic aspects involved in adipose tissue dysfunction and the mechanisms underlying the impaired glucose and lipid metabolism in the skeletal muscle of rats fed a sucrose-rich diet (SRD). Rats were fed a SRD for 3 months. Thereafter, half the rats continued with SRD while in the other half, corn oil (CO) was replaced by chia seed for 3 months (SRD+chia). In control group, corn starch replaced sucrose. The replacement of CO by chia seed in the SRD reduced adipocyte hypertrophy, cell volume and size distribution, improved lipogenic enzyme activities, lipolysis and the anti-lipolytic action of insulin. In the skeletal muscle lipid storage, glucose phosphorylation and oxidation were normalized. Chia seed reversed the impaired insulin stimulated glycogen synthase activity, glycogen, glucose-6-phosphate and GLUT-4 protein levels as well as insulin resistance and dyslipidemia.

  11. Immunologic insulin resistance.

    PubMed

    Davidson, J K; DeBra, D W

    1978-03-01

    The efficacy of sulfated beef insulin for plasma glucose control in 35 patients with immunologic insulin resistance was studied. Patients were on a mean dose of 550 U./day (range 200--2,000) of U-500 regular beef insulin. Mean maximum 125I-insulin-binding capacity was 191 mU./ml. serum (range 13--1,080). Mean in vivo half-life (T 1/2) of 125I-regular beef insulin was 614 minutes (range 114--1,300), as against a mean T 1/2 of 13.9 minutes (range 11.8--16.5) in normal controls. Treatment was successful in 34 patients and unsuccessful in one with lipoatrophic diabetes. The mean initial dose of sulfated insulin was 89 U./day (range 15--400) and at three months was 66 U./day (range 20--400). Twenty-eight patients who responded and survived have been on sulfated insulin for a mean of 39 months (range 2-66) and are on a mean dose of 25 U./day (range 0--100). The mean maximum binding capacity fell to 9 mU./ml. (range 0--34) during therapy (p less than 0.01). Mean 125I-insulin T 1/2 fell from 614 to 249 minutes after sulfated insulin therapy (p less than 0.001). A comparative study of 15 patients on consecutive days showed a 35 sulfated insulin T 1/2 of 60 minutes (range 15--94) and a mean 125I-regular insulin T 1/2 of 246 minutes (range 62--560, p less than 0.001). These results indicate that sulfated insulin is less antigenic than regular beef insulin and combines less avidly with human antibodies to regular beef insulin. The response to sulfated insulin therapy was significantly better than the response reported by other investigators to pork insulin or to steroid therapy in similar patients.

  12. Insulin-Mediated FFA Suppression Is Associated with Triglyceridemia and Insulin Sensitivity Independent of Adiposity

    PubMed Central

    Bush, Nikki C.; Basu, Rita; Rizza, Robert A.; Nair, K. Sreekumaran; Khosla, Sundeep

    2012-01-01

    Context: A central/visceral fat distribution and excess free fatty acid (FFA) availability are associated with dyslipidemia and insulin resistance. However, these two characteristics often coexist, making it difficult to detect the independent contributions of each. Whether FFA suppression is more closely linked to metabolic abnormalities is not clear. Objective: The aim of the study was to examine the relationship between FFA suppression, body fat distribution, and fitness as contributors toward insulin resistance and hypertriglyceridemia. Design: We measured systemic palmitate turnover using an iv infusion of [9,10-3H]palmitate; upper body sc adipose tissue (UBSQ) and visceral adipose tissue (VAT) with dual-energy x-ray absorptiometry and a single-slice abdominal computed tomography scan; fitness with a graded exercise treadmill test; and insulin sensitivity with both the iv glucose tolerance test (IVGTT) (SIIVGTT) and mixed meal tolerance test (SIMeal). Setting: The study was conducted at a General Clinical Research Center. Participants: Baseline data were obtained from 140 elderly adults (age, 60–88 yr; 83 males) and 60 young adults (age, 18–31 yr; 31 males) who participated in a previously published trial assessing the effects of 2-yr supplementation of dehydroepiandrosterone or testosterone on body composition, glucose metabolism, and bone density. Interventions: There were no interventions. Main Outcome Measures: We measured fasting plasma triglyceride (TG) concentrations, SIIVGTT, and SIMeal. Results: Using multivariate regression analysis, the strongest combined predictors of TG concentrations were VAT, postmeal nadir FFA concentrations, sex, and age. The best predictors of SIIVGTT were IVGTT nadir palmitate concentration, VAT, UBSQ fat, fitness, and age, whereas the best predictors of SIMeal were meal nadir palmitate concentration, UBSQ fat, fitness, and sex. Conclusions: FFA suppression is associated with both fasting TG concentrations and insulin

  13. Gender Differences in Insulin Resistance, Body Composition, and Energy Balance

    PubMed Central

    Geer, Eliza B.; Shen, Wei

    2010-01-01

    Background Men and women differ substantially in regard to degrees of insulin resistance, body composition, and energy balance. Adipose tissue distribution, in particular the presence of elevated visceral and hepatic adiposity, plays a central role in the development of insulin resistance and obesity-related complications. Objective This review summarizes published data on gender differences in insulin resistance, body composition, and energy balance, to provide insight into novel gender-specific avenues of research as well as gender-tailored treatments of insulin resistance, visceral adiposity, and obesity. Methods English-language articles were identified from searches of the PubMed database through November 2008, and by reviewing the references cited in these reports. Searches included combinations of the following terms: gender, sex, insulin resistance, body composition, energy balance, and hepatic adipose tissue. Results For a given body mass index, men were reported to have more lean mass, women to have higher adiposity. Men were also found to have more visceral and hepatic adipose tissue, whereas women had more peripheral or subcutaneous adipose tissue. These differences, as well as differences in sex hormones and adipokines, may contribute to a more insulin-sensitive environment in women than in men. When normalized to kilograms of lean body mass, men and women had similar resting energy expenditure, but physical energy expenditure was more closely related to percent body fat in men than in women. Conclusion Greater amounts of visceral and hepatic adipose tissue, in conjunction with the lack of a possible protective effect of estrogen, may be related to higher insulin resistance in men compared with women. PMID:19318219

  14. Inverse regulation of inflammation and mitochondrial function in adipose tissue defines extreme insulin sensitivity in morbidly obese patients.

    PubMed

    Qatanani, Mohammed; Tan, Yejun; Dobrin, Radu; Greenawalt, Danielle M; Hu, Guanghui; Zhao, Wenqing; Olefsky, Jerrold M; Sears, Dorothy D; Kaplan, Lee M; Kemp, Daniel M

    2013-03-01

    Obesity is associated with insulin resistance, a major risk factor for type 2 diabetes and cardiovascular disease. However, not all obese individuals are insulin resistant, which confounds our understanding of the mechanistic link between these conditions. We conducted transcriptome analyses on 835 obese subjects with mean BMI of 48.8, on which we have previously reported genetic associations of gene expression. Here, we selected ~320 nondiabetic (HbA(1c) <7.0) subjects and further stratified the cohort into insulin-resistant versus insulin-sensitive subgroups based on homeostasis model assessment-insulin resistance. An unsupervised informatics analysis revealed that immune response and inflammation-related genes were significantly downregulated in the omental adipose tissue of obese individuals with extreme insulin sensitivity and, to a much lesser extent, in subcutaneous adipose tissue. In contrast, genes related to β-oxidation and the citric acid cycle were relatively overexpressed in adipose of insulin-sensitive patients. These observations were verified by querying an independent cohort of our published dataset of 37 subjects whose subcutaneous adipose tissue was sampled before and after treatment with thiazolidinediones. Whereas the immune response and inflammation pathway genes were downregulated by thiazolidinedione treatment, β-oxidation and citric acid cycle genes were upregulated. This work highlights the critical role that omental adipose inflammatory pathways might play in the pathophysiology of insulin resistance, independent of body weight.

  15. Estimation of truncal adiposity using waist circumference or the sum of trunk skinfolds: a pilot study for insulin resistance screening in hirsute patients with or without polycystic ovary syndrome.

    PubMed

    Toscani, Mariana; Migliavacca, Raphaella; Sisson de Castro, José Augusto; Spritzer, Poli Mara

    2007-07-01

    Insulin resistance (IR) is an independent risk factor for cardiovascular disease and is a prevalent metabolic disturbance among women with polycystic ovary syndrome (PCOS). Central adiposity, a marker of IR and an accurate anthropometric method to estimate truncal adiposity, may represent a key clinical tool for IR screening in subpopulations at higher metabolic and cardiovascular risk, such as women with PCOS. The aims of the present study were (1) to investigate the influence of androgens on IR and central obesity in overweight or obese hirsute women with or without PCOS and (2) to test the reliability of the sum of trunk skinfolds (subscapular, suprailiac, and abdominal) to estimate truncal adiposity. This observational, cross-sectional study included 37 hirsute patients with body mass index of 25 kg/m(2) or greater and aged between 14 and 41 years. Twenty-four had PCOS, and 13 had ovulatory cycles, normal androgen levels, and isolated hirsutism, named idiopathic hirsutism (IH). Nutritional, anthropometric, clinical, and laboratory evaluations were performed. Body composition was assessed by measurement of waist circumference and skinfold thickness and by dual-energy x-ray absorptiometry (DXA). Both groups presented similar ages, body mass index, and hirsutism score. The PCOS group had higher androgen levels, homeostasis model assessment (HOMA) index, and fasting insulin levels. Free androgen index was positively associated with HOMA, independent of truncal adiposity (r = 0.441, P = .009). Strong correlations were also observed between truncal adiposity measured by DXA and both the sum of trunk skinfolds (r = 0.863, P = .0001) and waist circumference in hirsute patients (r = 0.947, P = .0001). In our study, IR (HOMA index >/=3.8) was associated with truncal obesity, with a more androgenic profile, and with an unfavorable lipid profile. In conclusion, hirsutism per se appears not to be a risk for IR and related cardiovascular disease unless there is presence of

  16. Predictors of Whole-Body Insulin Sensitivity Across Ages and Adiposity in Adult Humans

    PubMed Central

    Lalia, Antigoni Z.; Dasari, Surendra; Johnson, Matthew L.; Robinson, Matthew M.; Konopka, Adam R.; Distelmaier, Klaus; Port, John D.; Glavin, Maria T.; Esponda, Raul Ruiz; Nair, K. Sreekumaran

    2016-01-01

    Context: Numerous factors are purported to influence insulin sensitivity including age, adiposity, mitochondrial function, and physical fitness. Univariate associations cannot address the complexity of insulin resistance or the interrelationship among potential determinants. Objective: The objective of the study was to identify significant independent predictors of insulin sensitivity across a range of age and adiposity in humans. Design, Setting, and Participants: Peripheral and hepatic insulin sensitivity were measured by two stage hyperinsulinemic-euglycemic clamps in 116 men and women (aged 19–78 y). Insulin-stimulated glucose disposal, the suppression of endogenous glucose production during hyperinsulinemia, and homeostatic model assessment of insulin resistance were tested for associations with 11 potential predictors. Abdominal subcutaneous fat, visceral fat (AFVISC), intrahepatic lipid, and intramyocellular lipid (IMCL) were quantified by magnetic resonance imaging and spectroscopy. Skeletal muscle mitochondrial respiratory capacity (state 3), coupling efficiency, and reactive oxygen species production were evaluated from muscle biopsies. Aerobic fitness was measured from whole-body maximum oxygen uptake (VO2 peak), and metabolic flexibility was determined using indirect calorimetry. Results: Multiple regression analysis revealed that AFVISC (P < .0001) and intrahepatic lipid (P = .002) were independent negative predictors of peripheral insulin sensitivity, whereas VO2 peak (P = .0007) and IMCL (P = .023) were positive predictors. Mitochondrial capacity and efficiency were not independent determinants of peripheral insulin sensitivity. The suppression of endogenous glucose production during hyperinsulinemia model of hepatic insulin sensitivity revealed percentage fat (P < .0001) and AFVISC (P = .001) as significant negative predictors. Modeling homeostatic model assessment of insulin resistance identified AFVISC (P < .0001), VO2 peak (P = .001), and IMCL

  17. Adipocyte SIRT1 controls systemic insulin sensitivity by modulating macrophages in adipose tissue.

    PubMed

    Hui, Xiaoyan; Zhang, Mingliang; Gu, Ping; Li, Kuai; Gao, Yuan; Wu, Donghai; Wang, Yu; Xu, Aimin

    2017-03-07

    Adipose tissue inflammation, characterized by augmented infiltration and altered polarization of macrophages, contributes to insulin resistance and its associated metabolic diseases. The NAD(+)-dependent deacetylase SIRT1 serves as a guardian against metabolic disorders in multiple tissues. To dissect the roles of SIRT1 in adipose tissues, metabolic phenotypes of mice with selective ablation of SIRT1 in adipocytes and myeloid cells were monitored. Compared to myeloid-specific SIRT1 depletion, mice with adipocyte-selective deletion of SIRT1 are more susceptible to diet-induced insulin resistance. The phenotypic changes in adipocyte-selective SIRT1 knockout mice are associated with an increased number of adipose-resident macrophages and their polarization toward the pro-inflammatory M1 subtype. Mechanistically, SIRT1 in adipocytes modulates expression and secretion of several adipokines, including adiponectin, MCP-1, and interleukin 4, which in turn alters recruitment and polarization of the macrophages in adipose tissues. In adipocytes, SIRT1 deacetylates the transcription factor NFATc1 and thereby enhances the binding of NFATc1 to the Il4 gene promoter. These findings suggest that adipocyte SIRT1 controls systemic glucose homeostasis and insulin sensitivity via the cross talk with adipose-resident macrophages.

  18. Insulin Resistance in Alzheimer's Disease

    PubMed Central

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  19. CCL2 Serum Levels and Adiposity Are Associated with the Polymorphic Phenotypes -2518A on CCL2 and 64ILE on CCR2 in a Mexican Population with Insulin Resistance.

    PubMed

    Guzmán-Ornelas, Milton-Omar; Petri, Marcelo Heron; Vázquez-Del Mercado, Mónica; Chavarría-Ávila, Efraín; Corona-Meraz, Fernanda-Isadora; Ruíz-Quezada, Sandra-Luz; Madrigal-Ruíz, Perla-Monserrat; Castro-Albarrán, Jorge; Sandoval-García, Flavio; Navarro-Hernández, Rosa-Elena

    2016-01-01

    Genetic susceptibility has been described in insulin resistance (IR). Chemokine (C-C motif) ligand-2 (CCL2) is overexpressed in white adipose tissue and is the ligand of C-C motif receptor-2 (CCR2). The CCL2 G-2518A polymorphism is known to regulate gene expression, whereas the physiological effects of the CCR2Val64Ile polymorphism are unknown. The aim of the study is to investigate the relationship between these polymorphisms with soluble CCL2 levels (sCCL2), metabolic markers, and adiposity. In a cross-sectional study we included 380 Mexican-Mestizo individuals, classified with IR according to Stern criteria. Polymorphism was identified using PCR-RFLP/sequence-specific primers. Anthropometrics and metabolic markers were measured by routine methods and adipokines and sCCL2 by ELISA. The CCL2 polymorphism was associated with IR (polymorphic A+ phenotype frequencies were 70.9%, 82.6%, in individuals with and without IR, resp.). Phenotype carriers CCL2 (A+) displayed lower body mass and fat indexes, insulin and HOMA-IR, and higher adiponectin levels. Individuals with IR presented higher sCCL2 compared to individuals without IR and was associated with CCR2 (Ile+) phenotype. The double-polymorphic phenotype carriers (A+/Ile+) exhibited higher sCCL2 than double-wild-type phenotype carriers (A-/Ile-). The present findings suggest that sCCL2 production possibly will be associated with the adiposity and polymorphic phenotypes of CCL2 and CCR2, in Mexican-Mestizos with IR.

  20. CCL2 Serum Levels and Adiposity Are Associated with the Polymorphic Phenotypes -2518A on CCL2 and 64ILE on CCR2 in a Mexican Population with Insulin Resistance

    PubMed Central

    Guzmán-Ornelas, Milton-Omar; Petri, Marcelo Heron; Vázquez-Del Mercado, Mónica; Chavarría-Ávila, Efraín; Corona-Meraz, Fernanda-Isadora; Ruíz-Quezada, Sandra-Luz; Madrigal-Ruíz, Perla-Monserrat; Castro-Albarrán, Jorge; Sandoval-García, Flavio; Navarro-Hernández, Rosa-Elena

    2016-01-01

    Genetic susceptibility has been described in insulin resistance (IR). Chemokine (C-C motif) ligand-2 (CCL2) is overexpressed in white adipose tissue and is the ligand of C-C motif receptor-2 (CCR2). The CCL2 G-2518A polymorphism is known to regulate gene expression, whereas the physiological effects of the CCR2Val64Ile polymorphism are unknown. The aim of the study is to investigate the relationship between these polymorphisms with soluble CCL2 levels (sCCL2), metabolic markers, and adiposity. In a cross-sectional study we included 380 Mexican-Mestizo individuals, classified with IR according to Stern criteria. Polymorphism was identified using PCR-RFLP/sequence-specific primers. Anthropometrics and metabolic markers were measured by routine methods and adipokines and sCCL2 by ELISA. The CCL2 polymorphism was associated with IR (polymorphic A+ phenotype frequencies were 70.9%, 82.6%, in individuals with and without IR, resp.). Phenotype carriers CCL2 (A+) displayed lower body mass and fat indexes, insulin and HOMA-IR, and higher adiponectin levels. Individuals with IR presented higher sCCL2 compared to individuals without IR and was associated with CCR2 (Ile+) phenotype. The double-polymorphic phenotype carriers (A+/Ile+) exhibited higher sCCL2 than double-wild-type phenotype carriers (A−/Ile−). The present findings suggest that sCCL2 production possibly will be associated with the adiposity and polymorphic phenotypes of CCL2 and CCR2, in Mexican-Mestizos with IR. PMID:26839895

  1. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity.

    PubMed

    Guo, Tingqing; Jou, William; Chanturiya, Tatyana; Portas, Jennifer; Gavrilova, Oksana; McPherron, Alexandra C

    2009-01-01

    Myostatin (Mstn) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Mstn(-/-) mice have a dramatic increase in muscle mass, reduction in fat mass, and resistance to diet-induced and genetic obesity. To determine how Mstn deletion causes reduced adiposity and resistance to obesity, we analyzed substrate utilization and insulin sensitivity in Mstn(-/-) mice fed a standard chow. Despite reduced lipid oxidation in skeletal muscle, Mstn(-/-) mice had no change in the rate of whole body lipid oxidation. In contrast, Mstn(-/-) mice had increased glucose utilization and insulin sensitivity as measured by indirect calorimetry, glucose and insulin tolerance tests, and hyperinsulinemic-euglycemic clamp. To determine whether these metabolic effects were due primarily to the loss of myostatin signaling in muscle or adipose tissue, we compared two transgenic mouse lines carrying a dominant negative activin IIB receptor expressed specifically in adipocytes or skeletal muscle. We found that inhibition of myostatin signaling in adipose tissue had no effect on body composition, weight gain, or glucose and insulin tolerance in mice fed a standard diet or a high-fat diet. In contrast, inhibition of myostatin signaling in skeletal muscle, like Mstn deletion, resulted in increased lean mass, decreased fat mass, improved glucose metabolism on standard and high-fat diets, and resistance to diet-induced obesity. Our results demonstrate that Mstn(-/-) mice have an increase in insulin sensitivity and glucose uptake, and that the reduction in adipose tissue mass in Mstn(-/-) mice is an indirect result of metabolic changes in skeletal muscle. These data suggest that increasing muscle mass by administration of myostatin antagonists may be a promising therapeutic target for treating patients with obesity or diabetes.

  2. Mouse models of insulin resistance.

    PubMed

    Hribal, Marta Letizia; Oriente, Francesco; Accili, Domenico

    2002-05-01

    The hallmarks of type 2 diabetes are impaired insulin action in peripheral tissues and decreased pancreatic beta-cell function. Classically, the two defects have been viewed as separate entities, with insulin resistance arising primarily from impaired insulin-dependent glucose uptake in skeletal muscle, and beta-cell dysfunction arising from impaired coupling of glucose sensing to insulin secretion. Targeted mutagenesis and transgenesis involving components of the insulin action pathway have changed our understanding of these phenomena. It appears that the role of insulin signaling in the pathogenesis of type 2 diabetes has been overestimated in classic insulin target tissues, such as skeletal muscle, whereas it has been overlooked in liver, pancreatic beta-cells, and brain, which had been thought not to be primary insulin targets. We review recent progress and try to reconcile areas of apparent controversy surrounding insulin signaling in skeletal muscle and pancreatic beta-cells.

  3. Monomeric Tartrate Resistant Acid Phosphatase Induces Insulin Sensitive Obesity

    PubMed Central

    Lång, Pernilla; van Harmelen, Vanessa; Rydén, Mikael; Kaaman, Maria; Parini, Paolo; Carneheim, Claes; Cassady, A. Ian; Hume, David A.; Andersson, Göran; Arner, Peter

    2008-01-01

    Background Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP) is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer. Principal Findings Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity. Conclusion Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity. PMID:18320034

  4. Modulation of age-related insulin sensitivity by VEGF-dependent vascular plasticity in adipose tissues

    PubMed Central

    Honek, Jennifer; Seki, Takahiro; Iwamoto, Hideki; Fischer, Carina; Li, Jingrong; Lim, Sharon; Samani, Nilesh J.; Zang, Jingwu; Cao, Yihai

    2014-01-01

    Mechanisms underlying age-related obesity and insulin resistance are generally unknown. Here, we report age-related adipose vascular changes markedly modulated fat mass, adipocyte functions, blood lipid composition, and insulin sensitivity. Notably, VEGF expression levels in various white adipose tissues (WATs) underwent changes uninterruptedly in different age populations. Anti-VEGF and anti- VEGF receptor 2 treatment in different age populations showed marked variations of vascular regression, with midaged mice exhibiting modest sensitivity. Interestingly, anti-VEGF treatment produced opposing effects on WAT adipocyte sizes in different age populations and affected vascular density and adipocyte sizes in brown adipose tissue. Consistent with changes of vasculatures and adipocyte sizes, anti-VEGF treatment increased insulin sensitivity in young and old mice but had no effects in the midaged group. Surprisingly, anti-VEGF treatment significantly improved insulin sensitivity in midaged obese mice fed a high-fat diet. Our findings demonstrate that adipose vasculatures show differential responses to anti-VEGF treatment in various age populations and have therapeutic implications for treatment of obesity and diabetes with anti-VEGF-based antiangiogenic drugs. PMID:25271320

  5. [Obesity, inflammation and insulin resistance: which role for adipokines].

    PubMed

    Antuna-Puente, Barbara; Feve, Bruno; Fellahi, Soraya; Bastard, Jean-Philippe

    2007-01-01

    Adipose tissue is now recognized as an endocrine organ involved in regulating physiologic and pathologic processes including inflammation. It synthesizes and secretes hormones such as leptin and adiponectin. It can secrete other products namely adipokines including cytokines and chemokines. The release of adipokines by either adipocytes or adipose tissue-infiltrated macrophages leads to a chronic sub-inflammatory state that likely plays a major role in cardiovascular complications linked to obesity and insulin resistance.

  6. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

    PubMed

    Carrasco-Benso, Maria P; Rivero-Gutierrez, Belen; Lopez-Minguez, Jesus; Anzola, Andrea; Diez-Noguera, Antoni; Madrid, Juan A; Lujan, Juan A; Martínez-Augustin, Olga; Scheer, Frank A J L; Garaulet, Marta

    2016-09-01

    In humans, insulin sensitivity varies according to time of day, with decreased values in the evening and at night. Mechanisms responsible for the diurnal variation in insulin sensitivity are unclear. We investigated whether human adipose tissue (AT) expresses intrinsic circadian rhythms in insulin sensitivity that could contribute to this phenomenon. Subcutaneous and visceral AT biopsies were obtained from extremely obese participants (body mass index, 41.8 ± 6.3 kg/m(2); 46 ± 11 y) during gastric-bypass surgery. To assess the rhythm in insulin signaling, AKT phosphorylation was determined every 4 h over 24 h in vitro in response to different insulin concentrations (0, 1, 10, and 100 nM). Data revealed that subcutaneous AT exhibited robust circadian rhythms in insulin signaling (P < 0.00001). Insulin sensitivity reached its maximum (acrophase) around noon, being 54% higher than during midnight (P = 0.009). The amplitude of the rhythm was positively correlated with in vivo sleep duration (r = 0.53; P = 0.023) and negatively correlated with in vivo bedtime (r = -0.54; P = 0.020). No circadian rhythms were detected in visceral AT (P = 0.643). Here, we demonstrate the relevance of the time of the day for how sensitive AT is to the effects of insulin. Subcutaneous AT shows an endogenous circadian rhythm in insulin sensitivity that could provide an underlying mechanism for the daily rhythm in systemic insulin sensitivity.-Carrasco-Benso, M. P., Rivero-Gutierrez, B., Lopez-Minguez, J., Anzola, A., Diez-Noguera, A., Madrid, J. A., Lujan, J. A., Martínez-Augustin, O., Scheer, F. A. J. L., Garaulet, M. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

  7. B-1a Lymphocytes Attenuate Insulin Resistance

    PubMed Central

    Shen, Lei; Chng, MH; Alonso, Michael N.; Yuan, Robert

    2015-01-01

    Obesity-associated insulin resistance, a common precursor of type 2 diabetes, is characterized by chronic inflammation of tissues, including visceral adipose tissue (VAT). Here we show that B-1a cells, a subpopulation of B lymphocytes, are novel and important regulators of this process. B-1a cells are reduced in frequency in obese high-fat diet (HFD)-fed mice, and EGFP interleukin-10 (IL-10) reporter mice show marked reductions in anti-inflammatory IL-10 production by B cells in vivo during obesity. In VAT, B-1a cells are the dominant producers of B cell–derived IL-10, contributing nearly half of the expressed IL-10 in vivo. Adoptive transfer of B-1a cells into HFD-fed B cell–deficient mice rapidly improves insulin resistance and glucose tolerance through IL-10 and polyclonal IgM-dependent mechanisms, whereas transfer of B-2 cells worsens metabolic disease. Genetic knockdown of B cell–activating factor (BAFF) in HFD-fed mice or treatment with a B-2 cell–depleting, B-1a cell–sparing anti-BAFF antibody attenuates insulin resistance. These findings establish B-1a cells as a new class of immune regulators that maintain metabolic homeostasis and suggest manipulation of these cells as a potential therapy for insulin resistance. PMID:25249575

  8. Whole-Body and Hepatic Insulin Resistance in Obese Children

    PubMed Central

    Ibarra-Reynoso, Lorena del Rocío; Pisarchyk, Liudmila; Pérez-Luque, Elva Leticia; Garay-Sevilla, Ma. Eugenia; Malacara, Juan Manuel

    2014-01-01

    Background Insulin resistance may be assessed as whole body or hepatic. Objective To study factors associated with both types of insulin resistance. Methods Cross-sectional study of 182 obese children. Somatometric measurements were registered, and the following three adiposity indexes were compared: BMI, waist-to-height ratio and visceral adiposity. Whole-body insulin resistance was evaluated using HOMA-IR, with 2.5 as the cut-off point. Hepatic insulin resistance was considered for IGFBP-1 level quartiles 1 to 3 (<6.67 ng/ml). We determined metabolite and hormone levels and performed a liver ultrasound. Results The majority, 73.1%, of obese children had whole-body insulin resistance and hepatic insulin resistance, while 7% did not have either type. HOMA-IR was negatively associated with IGFBP-1 and positively associated with BMI, triglycerides, leptin and mother's BMI. Girls had increased HOMA-IR. IGFBP-1 was negatively associated with waist-to-height ratio, age, leptin, HOMA-IR and IGF-I. We did not find HOMA-IR or IGFBP-1 associated with fatty liver. Conclusion In school-aged children, BMI is the best metric to predict whole-body insulin resistance, and waist-to-height ratio is the best predictor of hepatic insulin resistance, indicating that central obesity is important for hepatic insulin resistance. The reciprocal negative association of IGFBP-1 and HOMA-IR may represent a strong interaction of the physiological processes of both whole-body and hepatic insulin resistance. PMID:25411786

  9. Lipid mediators of insulin resistance.

    PubMed

    Holland, William L; Knotts, Trina A; Chavez, Jose A; Wang, Li-Ping; Hoehn, Kyle L; Summers, Scott A

    2007-06-01

    Lipid abnormalities such as obesity, increased circulating free fatty acid levels, and excess intramyocellular lipid accumulation are frequently associated with insulin resistance. These observations have prompted investigators to speculate that the accumulation of lipids in tissues not suited for fat storage (e.g., skeletal muscle and liver) is an underlying component of insulin resistance and the metabolic syndrome. We review the metabolic fates of lipids in insulin-responsive tissues and discuss the roles of specific lipid metabolites (e.g., ceramides, GM3 ganglioside, and diacylglycerol) as antagonists of insulin signaling and action.

  10. Adiposity, insulin resistance and cardiovascular risk factors in 9–10-year-old Indian children: relationships with birth size and postnatal growth

    PubMed Central

    Krishnaveni, G. V.; Veena, S. R.; Wills, A. K.; Hill, J. C.; Karat, S. C.; Fall, C. H. D.

    2011-01-01

    Lower birthweight, and rapid childhood weight gain predict elevated cardiovascular risk factors in children. We examined associations between serial, detailed, anthropometric measurements from birth to 9.5 years of age and cardiovascular risk markers in Indian children. Children (n = 663) born at the Holdsworth Memorial Hospital, Mysore, India were measured at birth and 6–12 monthly thereafter. At 9.5 years, 539 (255 boys) underwent a 2-h oral glucose tolerance test, and blood pressure (BP) and fasting lipid concentrations were measured. Insulin resistance was calculated using the HOMA equation. These outcomes were examined in relation to birth measurements and changes in measurements (growth) during infancy (0–2 years), 2–5 years and 5–9.5 years using conditional s.d. scores. Larger current weight, height and skinfold thickness were associated with higher risk markers at 9.5 years (P<0.05). Lower weight, smaller length and mid-arm circumference at birth were associated with higher fasting glucose concentrations at 9.5 years (P≤0.01). After adjusting for current weight/height, there were inverse associations between birthweight and/or length and insulin concentrations, HOMA, systolic and diastolic BP and plasma triglycerides (P<0.05). Increases in conditional weight and height between 0–2, 2–5 and 5–9.5 years were associated with higher insulin concentrations, HOMA and systolic BP. In conclusion, in 9–10-year-old Indian children, as in other studies, cardiovascular risk factors were highest in children who were light or short at birth but heavy or tall at 9 years. Greater infant and childhood weight and height gain were associated with higher risk markers. PMID:22318657

  11. Platycodon grandiflorus Root Extract Attenuates Body Fat Mass, Hepatic Steatosis and Insulin Resistance through the Interplay between the Liver and Adipose Tissue

    PubMed Central

    Kim, Ye Jin; Choi, Ji-Young; Ryu, Ri; Lee, Jeonghyeon; Cho, Su-Jung; Kwon, Eun-Young; Lee, Mi-Kyung; Liu, Kwang-Hyeon; Rina, Yu; Sung, Mi-Kyung; Choi, Myung-Sook

    2016-01-01

    The Platycodon grandiflorus root, a Korean medicinal food, is well known to have beneficial effects on obesity and diabetes. In this study, we demonstrated the metabolic effects of P. grandiflorus root ethanol extract (PGE), which is rich in platycodins, on diet-induced obesity. C57BL/6J mice (four-week-old males) were fed a normal diet (16.58% of kilocalories from fat), high-fat diet (HFD, 60% of kilocalories from fat), and HFD supplemented with 5% (w/w) PGE. In the HFD-fed mice, PGE markedly suppressed the body weight gain and white fat mass to normal control level, with simultaneous increase in the expression of thermogenic genes (such as SIRT1, PPARα, PGC1α, and UCP1), that accompanied changes in fatty acid oxidation (FAO) and energy expenditure. In addition, PGE improved insulin sensitivity through activation of the PPARγ expression, which upregulates adiponectin while decreasing leptin gene expression in adipocytes. Furthermore, PGE improved hepatic steatosis by suppressing hepatic lipogenesis while increasing expression of FAO-associated genes such as PGC1α. PGE normalized body fat and body weight, which is likely associated with the increased energy expenditure and thermogenic gene expression. PGE can protect from HFD-induced insulin resistance, and hepatic steatosis by controlling lipid and glucose metabolism. PMID:27589792

  12. Effects of SLC22A1 Polymorphisms on Metformin-Induced Reductions in Adiposity and Metformin Pharmacokinetics in Obese Children with Insulin Resistance

    PubMed Central

    Sam, Wai Johnn; Roza, Orsolya; Hon, Yuen Yi; Alfaro, Raul M.; Calis, Karim A; Reynolds, James C; Yanovski, Jack A

    2016-01-01

    Steady state population pharmacokinetics of a non-commercial immediate release metformin (hydrochloride) drug product were characterized in 28 severely obese children with insulin resistance. The concentration-time profiles with double peaks were well described by a one-compartment model with two absorption sites. Mean population apparent clearance (CL/F) was 68.1 L/hr and mean apparent volume of distribution (V/F) was 28.8 L. Body weight was a covariate of CL/F and V/F. Estimated glomerular filtration rate was a significant covariate of CL/F (p<0.001). SLC22A1genotype did not significantly affect metformin pharmacokinetics. The response to 6 months of metformin treatment (HbA1c, HOMA IR, fasting insulin, and glucose changes) was not different between SLC22A1 wild type subjects and carriers of presumably low activity SLC22A1 alleles. However, SLC22A1 variant carriers had smaller reductions in percentage of total trunk fat after metformin therapy, although the percentage reduction in trunk fat was small. The median % change in trunk fat was −2.20 % (−9.00 % – 0.900 %) and −1.20 % (−2.40 % – 7.30 %) for the SLC22A1 wild-type subjects and variant carriers, respectively. Future study is needed to evaluate the effects of SLC22A1 polymorphisms on metformin-mediated weight reduction in obese children. PMID:27407018

  13. Syndromic insulin resistance: Models for the therapeutic basis of the metabolic syndrome and other targets of insulin resistance

    PubMed Central

    Gorden, Phillip; Zadeh, Elika Safar; Cochran, Elaine; Brown, Rebecca J.

    2013-01-01

    Objective Insulin resistance is the key feature of the “metabolic syndrome,” a cluster of risk factors for cardiovascular disease and diabetes that includes hypertension, dyslipidemia, obesity, and hyperglycemia. Existing treatments target individual metabolic syndrome components, and act non-specifically with respect to disease pathophysiology. Our goal is to understand the link between insulin resistance and the metabolic syndrome, and how to develop treatment approaches. Methods We present three cases of extreme, syndromic insulin resistance: lipodystrophy, autoantibodies to the insulin receptor, and mutations of the insulin receptor, with discussion of pathophysiology and treatment. Results In lipodystrophy, insulin resistance is a direct consequence of leptin deficiency, and thus leptin replacement reverses metabolic syndrome abnormalities, including diabetes and hypertriglyeridemia. The insulin “receptoropathies”, including autoantibodies to the insulin receptor and insulin receptor mutations, are characterized by extreme insulin resistance and ovarian hyperandrogenism, without dyslipidemia or fatty liver disease. Autoantibodies to the insulin receptor can be treated using an immunosuppressive paradigm adapted from treatment of other autoimmune and neoplastic conditions. Leptin treatment has shown some success in treating hyperglycemia in insulin receptor mutations. Treatment for this condition remains inadequate, and novel therapies that bypass insulin receptor signaling, such as enhancers of brown adipose tissue, are needed. Conclusion We presented a clinical approach to treatment of syndromic insulin resistance. The study of rare diseases that replicate the metabolic syndrome, with clear-cut pathophysiology, allows the opportunity to understand novel physiology, and develop targeted therapies that may be applicable to the broader population with obesity, insulin resistance, and diabetes. PMID:23047930

  14. Immunity as a link between obesity and insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Type-2 diabetes mellitus (T2DM) is a major health problem in the United States and worldwide. Obesity is causally linked to the pathogenesis of insulin resistance, metabolic syndrome and T2DM. A chronic low-grade inflammation occurring in adipose tissue is at least in part responsible for the obesit...

  15. [Chromium and insulin resistance].

    PubMed

    Kleefstra, N; Bilo, H J; Bakker, S J; Houweling, S T

    2004-01-31

    Since as early as the 50s of the last century, it has been known that chromium is essential for normal glucose metabolism. Too little chromium in the diet may lead to insulin resistance. However, there is still no standard against which chromium deficiency can be established. Nevertheless, chromium supplements are becoming increasingly popular. Various systematic reviews have been unable to demonstrate any effects of chromium on glycaemic regulation (possibly due partly to the low dosages used), but there is a slight reduction in body weight averaging 1 kg. In a double-blind randomised placebo-controlled trial in a Chinese population with type-2 diabetes mellitus, supplementation with 1000 micrograms of chromium led to a fall in the glycosylated haemoglobin level (HbA1c) by 2%. Toxic effects of chromium are seldom seen; recently, however, the safety of one of the dosage forms of chromium, chromium picolinate, has been questioned. One should be aware that individual patients with type-2 diabetes mellitus may have an increased risk of hypoglycaemic episodes when taking chromium supplements as self-medication.

  16. Caloric restriction increases adiponectin expression by adipose tissue and prevents the inhibitory effect of insulin on circulating adiponectin in rats.

    PubMed

    Ding, Qi; Ash, Catherine; Mracek, Tomas; Merry, Brian; Bing, Chen

    2012-08-01

    Aging is associated with redistribution of body fat and the development of insulin resistance. White adipose tissue emerges as an important organ in controlling life span. Caloric restriction (CR) delays the rate of aging possibly modulated partly by altering the amount and function of adipose tissue. Adiponectin is a major adipose-derived adipokine that has anti-inflammatory and insulin-sensitizing properties. This study examined the effects of CR on adiposity and gene expression of adiponectin, its receptors (AdipoR1 and AdipoR2) in adipose tissue and in isolated adipocytes of Brown Norway rats that had undergone CR for 4 months or fed ad libitum. The study also determined plasma concentrations of adiponectin and insulin in these animals and whether insulin infusion for 7 days affects adiponectin expression and its circulating concentrations under CR conditions. CR markedly reduced body weight as anticipated, epididymal fat mass and adipocyte size. CR led to an increase in plasma free fatty acid and glycerol (both twofold), and adipose triglyceride lipase messenger RNA (mRNA) in adipose tissue and isolated adipocytes (both >2-fold). Adiponectin mRNA levels were elevated in adipose tissue and adipocytes (both >2-fold) as was plasma adiponectin concentration (2.8-fold) in CR rats. However, CR did not alter tissue or cellular AdipoR1 and AdipoR2 expression. Seven days of insulin infusion decreased adiponectin mRNA in adipose tissue but did not reverse the CR-induced up-regulation of circulating adiponectin levels. Our results suggest that the benefits of CR could be, at least in part, dependent on enhanced expression and secretion of adiponectin by adipocytes.

  17. PEDF expression is inhibited by insulin treatment in adipose tissue via suppressing 11β-HSD1.

    PubMed

    Zhou, Yinli; Xu, Fen; Deng, Hongrong; Bi, Yan; Sun, Weiping; Zhao, Yi; Chen, Zonglan; Weng, Jianping

    2013-01-01

    Early intensive insulin therapy improves insulin sensitivity in type 2 diabetic patients; while the underlying mechanism remains largely unknown. Pigment epithelium-derived factor (PEDF), an anti-angiogenic factor, is believed to be involved in the pathogenesis of insulin resistance. Here, we hypothesize that PEDF might be down regulated by insulin and then lead to the improved insulin resistance in type 2 diabetic patients during insulin therapy. We addressed this issue by investigating insulin regulation of PEDF expression in diabetic conditions. The results showed that serum PEDF was reduced by 15% in newly diagnosed type 2 diabetic patients after insulin therapy. In adipose tissue of diabetic Sprague-Dawley rats, PEDF expression was associated with TNF-α elevation and it could be decreased both in serum and in adipose tissue by insulin treatment. In adipocytes, PEDF was induced by TNF-α through activation of NF-κB. The response was inhibited by knockdown and enhanced by over expression of NF-κB p65. However, PEDF expression was indirectly, not directly, induced by NF-κB which promoted 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) expression in adipocytes. 11β-HSD1 is likely to stimulate PEDF expression through production of active form of glucocorticoids as dexamethasone induced PEDF expression in adipose tissue. Insulin inhibited PEDF by down-regulating 11β-HSD1 expression. The results suggest that PEDF activity is induced by inflammation and decreased by insulin through targeting 11β-HSD1/glucocorticoid pathway in adipose tissue of diabetic patients.

  18. High levels of dietary stearate promote adiposity and deteriorate hepatic insulin sensitivity

    PubMed Central

    2010-01-01

    Background Relatively little is known about the role of specific saturated fatty acids in the development of high fat diet induced obesity and insulin resistance. Here, we have studied the effect of stearate in high fat diets (45% energy as fat) on whole body energy metabolism and tissue specific insulin sensitivity. Methods C57Bl/6 mice were fed a low stearate diet based on palm oil or one of two stearate rich diets, one diet based on lard and one diet based on palm oil supplemented with tristearin (to the stearate level of the lard based diet), for a period of 5 weeks. Ad libitum fed Oxidative metabolism was assessed by indirect calorimetry at week 5. Changes in body mass and composition was assessed by DEXA scan analysis. Tissue specific insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp analysis and Western blot at the end of week 5. Results Indirect calorimetry analysis revealed that high levels of dietary stearate resulted in lower caloric energy expenditure characterized by lower oxidation of fatty acids. In agreement with this metabolic phenotype, mice on the stearate rich diets gained more adipose tissue mass. Whole body and tissue specific insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp and analysis of insulin induced PKBser473 phosphorylation. Whole body insulin sensitivity was decreased by all high fat diets. However, while insulin-stimulated glucose uptake by peripheral tissues was impaired by all high fat diets, hepatic insulin sensitivity was affected only by the stearate rich diets. This tissue-specific pattern of reduced insulin sensitivity was confirmed by similar impairment in insulin-induced phosphorylation of PKBser473 in both liver and skeletal muscle. Conclusion In C57Bl/6 mice, 5 weeks of a high fat diet rich in stearate induces a metabolic state favoring low oxidative metabolism, increased adiposity and whole body insulin resistance characterized by severe hepatic insulin resistance. These results

  19. A Model of Insulin Resistance and Nonalcoholic Steatohepatitis in Rats

    PubMed Central

    Svegliati-Baroni, Gianluca; Candelaresi, Cinzia; Saccomanno, Stefania; Ferretti, Gianna; Bachetti, Tiziana; Marzioni, Marco; De Minicis, Samuele; Nobili, Liliana; Salzano, Renata; Omenetti, Alessia; Pacetti, Deborah; Sigmund, Soeren; Benedetti, Antonio; Casini, Alessandro

    2006-01-01

    Insulin resistance induces nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NASH). We used a high-fat, high-calorie solid diet (HFD) to create a model of insulin resistance and NASH in nongenetically modified rats and to study the relationship between visceral adipose tissue and liver. Obesity and insulin resistance occurred in HFD rats, accompanied by a progressive increase in visceral adipose tissue tumor necrosis factor (TNF)-α mRNA and in circulating free fatty acids. HFD also decreased adiponectin mRNA and peroxisome proliferator-activated receptor (PPAR)-α expression in the visceral adipose tissue and the liver, respectively, and induced hepatic insulin resistance through TNF-α-mediated c-Jun N-terminal kinase (JNK)-dependent insulin receptor substrate-1Ser307 phosphorylation. These modifications lead to hepatic steatosis accompanied by oxidative stress phenomena, necroinflammation, and hepatocyte apoptosis at 4 weeks and by pericentral fibrosis at 6 months. Supplementation of n-3 polyunsaturated fatty acid, a PPARα ligand, to HFD-treated animals restored hepatic adiponectin and PPARα expression, reduced TNF-α hepatic levels, and ameliorated fatty liver and the degree of liver injury. Thus, our model mimics the most common features of NASH in humans and provides an ideal tool to study the role of individual pathogenetic events (as for PPARα down-regulation) and to define any future experimental therapy, such as n-3 polyunsaturated fatty acid, which ameliorated the degree of liver injury. PMID:16936261

  20. Is Insulin Resistance a Feature of or a Primary Risk Factor for Cardiovascular Disease?

    PubMed

    Laakso, Markku

    2015-12-01

    The two major pathophysiological abnormalities in type 2 diabetes are insulin resistance and impaired insulin secretion. Insulin resistance is a general term meaning that insulin does not exert its normal effects in insulin-sensitive target tissues, such as skeletal muscle, adipose tissue, and liver, the major target tissues for insulin action in glucose metabolism. Insulin resistance (IR) promotes cardiovascular disease via multiple mechanisms, including changes in classic cardiovascular risk factors and downregulation of the insulin signaling pathways in different tissues. This review presents evidence for the association of insulin resistance with cardiovascular disease from clinical and population-based studies. The causality of the association of insulin resistance with cardiovascular disease is discussed on the basis of recent findings from the Mendelian randomization studies.

  1. Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation.

    PubMed

    Nelson, O Lynne; Jansen, Heiko T; Galbreath, Elizabeth; Morgenstern, Kurt; Gehring, Jamie Lauren; Rigano, Kimberly Scott; Lee, Jae; Gong, Jianhua; Shaywitz, Adam J; Vella, Chantal A; Robbins, Charles T; Corbit, Kevin C

    2014-08-05

    The confluence of obesity and diabetes as a worldwide epidemic necessitates the discovery of new therapies. Success in this endeavor requires translatable preclinical studies, which traditionally employ rodent models. As an alternative approach, we explored hibernation where obesity is a natural adaptation to survive months of fasting. Here we report that grizzly bears exhibit seasonal tripartite insulin responsiveness such that obese animals augment insulin sensitivity but only weeks later enter hibernation-specific insulin resistance (IR) and subsequently reinitiate responsiveness upon awakening. Preparation for hibernation is characterized by adiposity coupled to increased insulin sensitivity via modified PTEN/AKT signaling specifically in adipose tissue, suggesting a state of "healthy" obesity analogous to humans with PTEN haploinsufficiency. Collectively, we show that bears reversibly cope with homeostatic perturbations considered detrimental to humans and describe a mechanism whereby IR functions not as a late-stage metabolic adaptation to obesity, but rather a gatekeeper of the fed-fasting transition.

  2. Myeloid cell-restricted insulin receptor deficiency protects against obesity-induced inflammation and systemic insulin resistance.

    PubMed

    Mauer, Jan; Chaurasia, Bhagirath; Plum, Leona; Quast, Thomas; Hampel, Brigitte; Blüher, Matthias; Kolanus, Waldemar; Kahn, C Ronald; Brüning, Jens C

    2010-05-06

    A major component of obesity-related insulin resistance is the establishment of a chronic inflammatory state with invasion of white adipose tissue by mononuclear cells. This results in the release of pro-inflammatory cytokines, which in turn leads to insulin resistance in target tissues such as skeletal muscle and liver. To determine the role of insulin action in macrophages and monocytes in obesity-associated insulin resistance, we conditionally inactivated the insulin receptor (IR) gene in myeloid lineage cells in mice (IR(Deltamyel)-mice). While these animals exhibit unaltered glucose metabolism on a normal diet, they are protected from the development of obesity-associated insulin resistance upon high fat feeding. Euglycemic, hyperinsulinemic clamp studies demonstrate that this results from decreased basal hepatic glucose production and from increased insulin-stimulated glucose disposal in skeletal muscle. Furthermore, IR(Deltamyel)-mice exhibit decreased concentrations of circulating tumor necrosis factor (TNF) alpha and thus reduced c-Jun N-terminal kinase (JNK) activity in skeletal muscle upon high fat feeding, reflecting a dramatic reduction of the chronic and systemic low-grade inflammatory state associated with obesity. This is paralleled by a reduced accumulation of macrophages in white adipose tissue due to a pronounced impairment of matrix metalloproteinase (MMP) 9 expression and activity in these cells. These data indicate that insulin action in myeloid cells plays an unexpected, critical role in the regulation of macrophage invasion into white adipose tissue and in the development of obesity-associated insulin resistance.

  3. PPARγ Antagonist Gleevec Improves Insulin Sensitivity and Promotes the Browning of White Adipose Tissue

    PubMed Central

    Choi, Sun-Sil; Kim, Eun-Sun; Jung, Ji-Eun; Marciano, David P.; Jo, Ala; Koo, Ja Young; Choi, Soo Youn; Yang, Yong Ryoul; Jang, Hyun-Jun; Kim, Eung-Kyun; Park, Jiyoung; Kwon, Hyug Moo; Lee, In Hee; Park, Seung Bum; Myung, Kyung-Jae; Suh, Pann-Ghill; Griffin, Patrick R.

    2016-01-01

    Blocking phosphorylation of peroxisome proliferator–activated receptor (PPAR)γ at Ser273 is one of the key mechanisms for antidiabetes drugs to target PPARγ. Using high-throughput phosphorylation screening, we here describe that Gleevec blocks cyclin-dependent kinase 5–mediated PPARγ phosphorylation devoid of classical agonism as a PPARγ antagonist ligand. In high fat–fed mice, Gleevec improved insulin sensitivity without causing severe side effects associated with other PPARγ-targeting drugs. Furthermore, Gleevec reduces lipogenic and gluconeogenic gene expression in liver and ameliorates inflammation in adipose tissues. Interestingly, Gleevec increases browning of white adipose tissue and energy expenditure. Taken together, the results indicate that Gleevec exhibits greater beneficial effects on both glucose/lipid metabolism and energy homeostasis by blocking PPARγ phosphorylation. These data illustrate that Gleevec could be a novel therapeutic agent for use in insulin resistance and type 2 diabetes. PMID:26740599

  4. Uncoupling Proteins: Role in Insulin Resistance and Insulin Insufficiency

    PubMed Central

    Chan, Catherine B.; Harper, Mary-Ellen

    2010-01-01

    Uncoupling proteins (UCPs) are modulators of mitochondrial metabolism that have been implicated in the development of both insulin resistance and insulin insufficiency, the two major pathophysiological events associated with type 2 diabetes. UCP2 mRNA is expressed in a wide range of tissues; however UCP2 protein expression is restricted to fewer tissues, including the endocrine pancreas, spleen, stomach, brain and the lung. To date, its role in the pathophysiology of diabetes has been most strongly associated with impaired glucose-stimulated insulin secretion from the β-cell, particularly after its induction by free fatty acids. The physiological role of UCP2 remains controversial, but it may act as a downstream signal transducer of superoxide. UCP3 mRNA and protein are expressed in relatively few tissues, predominately skeletal muscle, brown adipose tissue and heart. Increased expression of UCP3 in skeletal muscle is associated with protection from diet-induced insulin resistance in mice. In patients with type 2 diabetes UCP3 protein in muscle is reduced by 50% compared to healthy controls. The primary physiological role of the novel UCPs does not appear to be protection against positive energy balance and obesity; this is based largely on findings from studies of UCP2 and UCP3 knockout mice and from observed increases in UCP3 expression with fasting. The mechanism(s) of action of UCP2 and UCP3 are poorly understood. However, findings support roles for UCP2 and UCP3 as modifiers of fatty acid metabolism and in mitigating damage from reactive oxygen species. PMID:18220632

  5. KK/Ta Mice Administered Lactobacillus plantarum Strain No. 14 Have Lower Adiposity and Higher Insulin Sensitivity.

    PubMed

    Okubo, Takuma; Takemura, Naoki; Yoshida, Ayako; Sonoyama, Kei

    2013-01-01

    Excess accumulation of white adipose tissue can lead to obesity-related metabolic abnormalities such as insulin resistance. We previously reported that intragastric administration of Lactobacillus plantarum No. 14 reduced adipocyte size in diet-induced obese C57BL/6 mice. The present study tested whether L. plantarum No. 14 affects adiposity and insulin sensitivity in an animal model of type-2 diabetes mellitus. Male KK/Ta mice were fed a normal-fat diet and intragastrically given L. plantarum No. 14 (10(8) CFU/mouse) or vehicle daily for 10 weeks. Interscapular brown adipose tissue and inguinal, mesenteric, and retroperitoneal white adipose tissue weights, serum leptin and insulin concentrations, and insulin resistance index (HOMA-IR) were significantly lower in L. plantarum No. 14-fed mice than in vehicle-fed mice. The sum of the inguinal, epididymal, mesenteric and retroperitoneal white adipose tissue weights correlated with serum leptin and non-esterified fatty acid concentrations and HOMA-IR. The mesenteric adipose tissue mRNA levels of monocyte chemoattractant protein-1 and tumor necrosis factor-α were significantly lower in L. plantarum No. 14-fed mice than in vehicle-fed mice. Mesenteric adipose tissue weight correlated with interleukin-6, monocyte chemoattractant protein-1, and tumor necrosis factor-α mRNA levels. HOMA-IR correlated with monocyte chemoattractant protein-1 and tumor necrosis factor-α mRNA levels. These data suggest that L. plantarum No. 14 prevents the development of insulin resistance, which is at least partly attributable to the prevention of obesity, in KK/Ta mice.

  6. Postreceptor defects causing insulin resistance in normoinsulinemic non-insulin-dependent diabetes mellitus

    SciTech Connect

    Bolinder, J.; Ostman, J.; Arner, P.

    1982-10-01

    The mechanisms of the diminished hypoglycemic response to insulin in non-insulin-dependent diabetes mellitus (NIDDM) with normal levels of circulating plasma insulin were investigated. Specific binding of mono-/sup 125/I (Tyr A14)-insulin to isolated adipocytes and effects of insulin (5--10,000 microunits/ml) on glucose oxidation and lipolysis were determined simultaneously in subcutaneous adipose tissue of seven healthy subjects of normal weight and seven untreated NIDDM patients with normal plasma insulin levels. The two groups were matched for age, sex, and body weight. Insulin binding, measured in terms of receptor number and affinity, was normal in NIDDM, the total number of receptors averaging 350,000 per cell. Neither sensitivity nor the maximum antilipolytic effect of insulin was altered in NIDDM patients as compared with control subjects; the insulin concentration producing half the maximum effect (ED50) was 10 microunits/ml. As regards the effect of insulin on glucose oxidation, for the control subjects ED50 was 30 microunits/ml, whereas in NIDDM patients, insulin exerted no stimulatory effect. The results obtained suggest that the effect of insulin on glucose utilization in normoinsulinemic NIDDM may be diminished in spite of normal insulin binding to receptors. The resistance may be due solely to postreceptor defects, and does not involve antilipolysis.

  7. Hypertension genes are genetic markers for insulin sensitivity and resistance.

    PubMed

    Guo, Xiuqing; Cheng, Suzanne; Taylor, Kent D; Cui, Jinrui; Hughes, Randall; Quiñones, Manuel J; Bulnes-Enriquez, Isabel; De la Rosa, Roxana; Aurea, George; Yang, Huiying; Hsueh, Willa; Rotter, Jerome I

    2005-04-01

    Insulin resistance is a determinant of blood pressure variation and risk factor for hypertension. Because insulin resistance and blood pressure cosegregate in Mexican American families, we thus investigated the association between variations in 9 previously reported hypertension genes (ACE, AGT, AGTRI, ADDI, NPPA, ADDRB2, SCNN1A, GNB3, and NOS3) and insulin resistance. Families were ascertained via a coronary artery disease proband in the Mexican American Coronary Artery Disease Project. Individuals from 100 Mexican American families (n=656) were genotyped for 14 polymorphisms in the 9 genes and all adult offspring and offspring spouses were phenotyped for insulin sensitivity by hyperinsulinemic euglycemic clamp (n=449). AGT M235T and NOS3 A(-922)G and E298D polymorphisms were significantly associated with insulin sensitivity (P=0.018, 0.036, 0.039) but were not significant after adjusting for body mass index. ADD1 G460W was associated with insulin sensitivity only after adjusting for body mass index. The NPPA T2238C and SCNN1A A663T were associated with decreased fasting insulin levels after adjusting for body mass index (P=0.015 and 0.028). In conclusion, AGT, NOS3, NPPA, ADRB2, ADD1, and SCNN1A may well be genetic markers for insulin resistance, and adiposity was a potential modifier for only some gene/trait combinations. Our data support the hypothesis that genes in the blood pressure pathway may play a role in insulin resistance in Mexican Americans.

  8. AgRP Neurons Control Systemic Insulin Sensitivity via Myostatin Expression in Brown Adipose Tissue.

    PubMed

    Steculorum, Sophie M; Ruud, Johan; Karakasilioti, Ismene; Backes, Heiko; Engström Ruud, Linda; Timper, Katharina; Hess, Martin E; Tsaousidou, Eva; Mauer, Jan; Vogt, Merly C; Paeger, Lars; Bremser, Stephan; Klein, Andreas C; Morgan, Donald A; Frommolt, Peter; Brinkkötter, Paul T; Hammerschmidt, Philipp; Benzing, Thomas; Rahmouni, Kamal; Wunderlich, F Thomas; Kloppenburg, Peter; Brüning, Jens C

    2016-03-24

    Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis.

  9. B lymphocytes as emerging mediators of insulin resistance

    PubMed Central

    Winer, D A; Winer, S; Shen, L; Chng, M H Y; Engleman, E G

    2012-01-01

    Obesity is associated with chronic inflammation of various tissues including visceral adipose tissue (VAT), which contributes to insulin resistance. T cells and macrophages infiltrate VAT in obesity and orchestrate this inflammation. Recently, we made the surprising discovery that B cells are important contributors to this process. Thus, some B cells and the antibodies they produce can promote VAT-associated and systemic inflammation, leading to insulin resistance. This report will focus on the properties of these B cells, and how they contribute to insulin resistance through T-cell modulation and production of pathogenic autoantibodies. Understanding the mechanisms by which B cells contribute to insulin resistance should lead to new antibody-based diagnostics and B-cell modulating therapeutics to manage this increasingly prevalent disease. PMID:25089193

  10. Rab5 activity regulates GLUT4 sorting into insulin-responsive and non-insulin-responsive endosomal compartments: a potential mechanism for development of insulin resistance.

    PubMed

    Tessneer, Kandice L; Jackson, Robert M; Griesel, Beth A; Olson, Ann Louise

    2014-09-01

    Glucose transporter isoform 4 (GLUT4) is the insulin-responsive glucose transporter mediating glucose uptake in adipose and skeletal muscle. Reduced GLUT4 translocation from intracellular storage compartments to the plasma membrane is a cause of peripheral insulin resistance. Using a chronic hyperinsulinemia (CHI)-induced cell model of insulin resistance and Rab5 mutant overexpression, we determined these manipulations altered endosomal sorting of GLUT4, thus contributing to the development of insulin resistance. We found that CHI induced insulin resistance in 3T3-L1 adipocytes by retaining GLUT4 in a Rab5-activity-dependent compartment that is unable to equilibrate with the cell surface in response to insulin. Furthermore, CHI-mediated retention of GLUT4 in this non-insulin-responsive compartment impaired filling of the transferrin receptor (TfR)-positive and TfR-negative insulin-responsive storage compartments. Our data suggest that hyperinsulinemia may inhibit GLUT4 by chronically maintaining GLUT4 in the Rab5 activity-dependent endosomal pathway and impairing formation of the TfR-negative and TfR-positive insulin-responsive GLUT4 pools. This model suggests that an early event in the development of insulin-resistant glucose transport in adipose tissue is to alter the intracellular localization of GLUT4 to a compartment that does not efficiently equilibrate with the cell surface when insulin levels are elevated for prolonged periods of time.

  11. Fatty acid binding protein expression in different human adipose tissue depots in relation to rates of lipolysis and insulin concentration in obese individuals.

    PubMed

    Fisher, R M; Thörne, A; Hamsten, A; Arner, P

    2002-10-01

    Two fatty acid binding proteins (FABPs) are expressed in adipose tissue, adipocyte lipid binding protein (ALBP) and keratinocyte lipid binding protein (KLBP). This study investigated FABP expression in visceral and subcutaneous human adipose tissue depots and associations with lipolytic differences between the depots and circulating insulin concentrations. ALBP and KLBP (protein and RNA) were quantified in subcutaneous and omental adipose tissue from obese individuals and expressed relative to actin. ALBP RNA and protein expression was significantly higher in subcutaneous compared to omental adipose tissue (both p < 0.05), whereas KLBP RNA and protein expression was no different between the two sites. There were significant inverse correlations between serum insulin concentrations and the ALBP/KLBP RNA ratio in both subcutaneous and omental adipose tissue (both p < 0.02). Basal rates of glycerol and fatty acid release measured in adipocytes isolated from subcutaneous and omental adipose tissue were significantly higher in the former (p < or = 0.02). Therefore the relative ALBP/KLBP content of human adipose tissue is different in different adipose tissue depots and at the RNA level is related to the circulating insulin concentration, at least in obese subjects. The higher rates of basal lipolysis in adipocytes isolated from subcutaneous compared to omental adipose tissue might be related to the increased ALBP content of the former. Therefore adipose tissue FABPs are interesting candidates for investigation to further our understanding of the insulin resistance syndrome and regulation of lipolysis.

  12. Biomarkers of insulin sensitivity and insulin resistance: Past, present and future.

    PubMed

    Park, Se Eun; Park, Cheol-Young; Sweeney, Gary

    2015-01-01

    Insulin resistance in insulin target tissues including liver, skeletal muscle and adipose tissue is an early step in the progression towards type 2 diabetes. Accurate diagnostic parameters reflective of insulin resistance are essential. Longstanding tests for fasting blood glucose and HbA1c are useful and although the hyperinsulinemic euglycemic clamp remains a "gold standard" for accurately determining insulin resistance, it cannot be implemented on a routine basis. The study of adipokines, and more recently myokines and hepatokines, as potential biomarkers for insulin sensitivity is now an attractive and relatively straightforward approach. This review discusses potential biomarkers including adiponectin, RBP4, chemerin, A-FABP, FGF21, fetuin-A, myostatin, IL-6, and irisin, all of which may play significant roles in determining insulin sensitivity. We also review potential future directions of new biological markers for measuring insulin resistance, including metabolomics and gut microbiome. Collectively, these approaches will provide clinicians with the tools for more accurate, and perhaps personalized, diagnosis of insulin resistance.

  13. Insulin Mediated 14C-Glucose Incorporation Into Adipose Tissue: An Undergraduate Biochemistry Experiment

    ERIC Educational Resources Information Center

    Landman, A. D.; Eskin, N. A. M.

    1975-01-01

    Describes an experiment in which rat adipose tissue samples are exposed to labeled glucose; insulin is added to one sample. Subsequent scintillation counting demonstrates the ability of insulin to facilitate the entry of glucose into the tissue. (MLH)

  14. Adipocyte JAK2 mediates growth hormone–induced hepatic insulin resistance

    PubMed Central

    Corbit, Kevin C.; Camporez, João Paulo G.; Tran, Jennifer L.; Wilson, Camella G.; Lowe, Dylan A.; Nordstrom, Sarah M.; Ganeshan, Kirthana; Perry, Rachel J.; Weiss, Ethan J.

    2017-01-01

    For nearly 100 years, growth hormone (GH) has been known to affect insulin sensitivity and risk of diabetes. However, the tissue governing the effects of GH signaling on insulin and glucose homeostasis remains unknown. Excess GH reduces fat mass and insulin sensitivity. Conversely, GH insensitivity (GHI) is associated with increased adiposity, augmented insulin sensitivity, and protection from diabetes. Here, we induce adipocyte-specific GHI through conditional deletion of Jak2 (JAK2A), an obligate transducer of GH signaling. Similar to whole-body GHI, JAK2A mice had increased adiposity and extreme insulin sensitivity. Loss of adipocyte Jak2 augmented hepatic insulin sensitivity and conferred resistance to diet-induced metabolic stress without overt changes in circulating fatty acids. While GH injections induced hepatic insulin resistance in control mice, the diabetogenic action was absent in JAK2A mice. Adipocyte GH signaling directly impinged on both adipose and hepatic insulin signal transduction. Collectively, our results show that adipose tissue governs the effects of GH on insulin and glucose homeostasis. Further, we show that JAK2 mediates liver insulin sensitivity via an extrahepatic, adipose tissue–dependent mechanism. PMID:28194444

  15. Bioactives in blueberries improve insulin sensitivity in obese, insulin-resistant men and women.

    PubMed

    Stull, April J; Cash, Katherine C; Johnson, William D; Champagne, Catherine M; Cefalu, William T

    2010-10-01

    Dietary supplementation with whole blueberries in a preclinical study resulted in a reduction in glucose concentrations over time. We sought to evaluate the effect of daily dietary supplementation with bioactives from blueberries on whole-body insulin sensitivity in men and women. A double-blinded, randomized, and placebo-controlled clinical study design was used. After screening to resolve study eligibility, baseline (wk 0) insulin sensitivity was measured on 32 obese, nondiabetic, and insulin-resistant subjects using a high-dose hyperinsulinemic-euglycemic clamp (insulin infusion of 120 mU(861 pmol)⋅m(-2)⋅min(-1)). Serum inflammatory biomarkers and adiposity were measured at baseline. At the end of the study, insulin sensitivity, inflammatory biomarkers, and adiposity were reassessed. Participants were randomized to consume either a smoothie containing 22.5 g blueberry bioactives (blueberry group, n = 15) or a smoothie of equal nutritional value without added blueberry bioactives (placebo group, n = 17) twice daily for 6 wk. Both groups were instructed to maintain their body weight by reducing ad libitum intake by an amount equal to the energy intake of the smoothies. Participants' body weights were evaluated weekly and 3-d food records were collected at baseline, the middle, and end of the study. The mean change in insulin sensitivity improved more in the blueberry group (1.7 ± 0.5 mg⋅kg FFM(-1)⋅min(-1)) than in the placebo group (0.4 ± 0.4 mg⋅kg FFM(-1)⋅min(-1)) (P = 0.04). Insulin sensitivity was enhanced in the blueberry group at the end of the study without significant changes in adiposity, energy intake, and inflammatory biomarkers. In conclusion, daily dietary supplementation with bioactives from whole blueberries improved insulin sensitivity in obese, nondiabetic, and insulin-resistant participants.

  16. Insulin resistance and hypertension: new insights.

    PubMed

    Soleimani, Manoocher

    2015-03-01

    Insulin resistance is associated with hypertension. Nakamura et al. demonstrate in rodents and humans with insulin resistance that while the stimulatory effect of insulin on glucose uptake in adipocytes, mediated via insulin receptor substrate 1 (IRS1), was severely diminished, its effect on salt reabsorption in the kidney proximal tubule, mediated via IRS2, was preserved. Compensatory hyperinsulinemia in individuals with insulin resistance may enhance salt absorption in the proximal tubule, resulting in a state of salt overload and hypertension.

  17. Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation.

    PubMed

    Tanti, Jean-François; Jager, Jennifer

    2009-12-01

    Insulin receptor substrates (IRS) serine phosphorylation is a time-controlled physiological feedback mechanism in insulin signaling that is hijacked by metabolic and inflammatory stresses to promote insulin resistance. Kinases, including IKKbeta, JNK, ERK, mTOR, and S6K, activated by the inducers of insulin resistance induce uncontrolled IRS serine phosphorylation. Studies with genetically modified mice reveal that these kinases integrate signals from metabolic and inflammatory stresses in adipose tissue, liver, and hypothalamus leading to peripheral and central insulin resistance. Moreover, IKKbeta/NF-kappaB and JNK1 pathways in myeloid cells represent a core mechanism involved in inflammation linked to obesity. These kinases are thus potential drug targets against insulin resistance and the targeting of the IKKbeta/NF-kappaB or the JNK pathway may evolve into future diabetes medication.

  18. Adipose Tissue Promotes a Serum Cytokine Profile Related to Lower Insulin Sensitivity after Chronic Central Leptin Infusion

    PubMed Central

    Burgos-Ramos, Emma; Canelles, Sandra; Perianes-Cachero, Arancha; Arilla-Ferreiro, Eduardo; Argente, Jesús; Barrios, Vicente

    2012-01-01

    Obesity is an inflammatory state characterized by an augment in circulating inflammatory factors. Leptin may modulate the synthesis of these factors by white adipose tissue decreasing insulin sensitivity. We have examined the effect of chronic central administration of leptin on circulating levels of cytokines and the possible relationship with cytokine expression and protein content as well as with leptin and insulin signaling in subcutaneous and visceral adipose tissues. In addition, we analyzed the possible correlation between circulating levels of cytokines and peripheral insulin resistance. We studied 18 male Wistar rats divided into controls (C), those treated icv for 14 days with a daily dose of 12 μg of leptin (L) and a pair-fed group (PF) that received the same food amount consumed by the leptin group. Serum leptin and insulin were measured by ELISA, mRNA levels of interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-4, IL-6, IL-10 and tumor necrosis factor-α (TNF-α) by real time PCR and serum and adipose tissue levels of these cytokines by multiplexed bead immunoassay. Serum leptin, IL-2, IL-4, IFN-γ and HOMA-IR were increased in L and TNF-α was decreased in PF and L. Serum leptin and IL-2 levels correlate positively with HOMA-IR index and negatively with serum glucose levels during an ip insulin tolerance test. In L, an increase in mRNA levels of IL-2 was found in both adipose depots and IFN-γ only in visceral tissue. Activation of leptin signaling was increased and insulin signaling decreased in subcutaneous fat of L. In conclusion, leptin mediates the production of inflammatory cytokines by adipose tissue independent of its effects on food intake, decreasing insulin sensitivity. PMID:23056516

  19. [Relationship between obesity, inflammation and insulin resistance: new concepts].

    PubMed

    Fève, Bruno; Bastard, Jean-Philippe; Vidal, Hubert

    2006-08-01

    White adipose tissue is the main site of energy storage, but it is now recognized as an active participant in regulating physiologic and pathologic processes including immunity and inflammation. It has an endocrine function by secreting at least two main hormones, leptin and adiponectin. It can secrete other products, named adipokines, including cytokines and chemokines, involved in inflammation process. The release of adipokines by either adipocytes or adipose tissue infiltrated macrophages lead to a chronic sub-inflammatory state that could play a central role in cardiovascular complications linked to obesity and insulin resistance, a risk factor to develop type-2 diabetes.

  20. Ablation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues.

    PubMed

    Lin, Ligen; Saha, Pradip K; Ma, Xiaojun; Henshaw, Iyabo O; Shao, Longjiang; Chang, Benny H J; Buras, Eric D; Tong, Qiang; Chan, Lawrence; McGuinness, Owen P; Sun, Yuxiang

    2011-12-01

    Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show that ablation of the ghrelin receptor (growth hormone secretagogue receptor, GHS-R) improves insulin sensitivity during aging. Compared to wild-type (WT) mice, old Ghsr(-/-) mice have reduced fat and preserve a healthier lipid profile. Old Ghsr(-/-) mice also exhibit elevated energy expenditure and resting metabolic rate, yet have similar food intake and locomotor activity. While GHS-R expression in white and brown adipose tissues was below the detectable level in the young mice, GHS-R expression was readily detectable in visceral white fat and interscapular brown fat of the old mice. Gene expression profiles reveal that Ghsr ablation reduced glucose/lipid uptake and lipogenesis in white adipose tissues but increased thermogenic capacity in brown adipose tissues. Ghsr ablation prevents age-associated decline in thermogenic gene expression of uncoupling protein 1 (UCP1). Cell culture studies in brown adipocytes further demonstrate that ghrelin suppresses the expression of adipogenic and thermogenic genes, while GHS-R antagonist abolishes ghrelin's effects and increases UCP1 expression. Hence, GHS-R plays an important role in thermogenic impairment during aging. Ghsr ablation improves aging-associated obesity and insulin resistance by reducing adiposity and increasing thermogenesis. Growth hormone secretagogue receptor antagonists may be a new means of combating obesity by shifting the energy balance from obesogenesis to thermogenesis.

  1. Role of leptin and adiponectin in insulin resistance.

    PubMed

    Yadav, Amita; Kataria, Megha A; Saini, Vandana; Yadav, Anil

    2013-02-18

    Adipose tissue is a major source of energy for the human body. It is also a source of major adipocytokines adiponectin and leptin. Insulin resistance is a condition in which insulin action is impaired in adipose tissue and is more strongly linked to intra-abdominal fat than to fat in other depots. The expression of adiponectin decreases with increase in the adiposity. Adiponectin mediates insulin-sensitizing effect through binding to its receptors AdipoR1 and AdipoR2, leading to activation of adenosine monophosphate dependent kinase (AMPK), PPAR-α, and presumably other yet-unknown signalling pathways. Weight loss significantly elevates plasma adiponectin levels. Reduction of adiponectin has been associated with insulin resistance, dyslipidemia, and atherosclerosis in humans. The other major adipokine is leptin. Leptin levels increase in obesity and subcutaneous fat has been a major determinant of circulating leptin levels. The leptin signal is transmitted by the Janus kinase, signal transducer and activator of transcription ((JAK-STAT) pathway. The net action of leptin is to inhibit appetite, stimulate thermogenesis, enhance fatty acid oxidation, decrease glucose, and reduce body weight and fat.

  2. Chenodeoxycholic acid, an endogenous FXR ligand alters adipokines and reverses insulin resistance.

    PubMed

    Shihabudeen, Mohamed Sham; Roy, Debasish; James, Joel; Thirumurugan, Kavitha

    2015-10-15

    Adipose tissue secretes adipokines that regulate insulin sensitivity in adipocytes and other peripheral tissues critical to glucose metabolism. Insulin resistance is associated with severe alterations in adipokines characterized by release of increased pro-inflammatory cytokines and decreased anti-inflammatory cytokines from adipose tissue. The role of Farnesoid X receptor (FXR) activation on adipokines in relation to adipose tissue inflammation and insulin resistance is not completely explored. For the first time, we have evaluated the ability of Chenodeoxycholic acid (CDCA), an endogenous FXR ligand, in restoring the disturbance in adipokine secretion and insulin resistance in palmitate treated 3T3-L1 cells and adipose tissues of High fat diet (HFD) rats. CDCA suppressed several of the tested pro-inflammatory adipokines (TNF-α, MCP-1, IL-6, Chemerin, PAI, RBP4, resistin, vaspin), and enhanced the major anti-inflammatory and insulin sensitizing adipokines (adiponectin, leptin). CDCA suppressed the activation of critical inflammatory regulators such as NF-κB and IKKβ which are activated by palmitate treatment in differentiated cells and HFD in rats. We show the altered adipokines in insulin resistance, its association with inflammatory regulators, and the role of CDCA in amelioration of insulin resistance by modulation of adipokines.

  3. Insulin Clearance Is Associated with Hepatic Lipase Activity and Lipid and Adiposity Traits in Mexican Americans

    PubMed Central

    Labadzhyan, Artak; Cui, Jinrui; Péterfy, Miklós; Guo, Xiuqing; Chen, Yii-Der I.; Hsueh, Willa A.; Rotter, Jerome I.; Goodarzi, Mark O.

    2016-01-01

    Reduction in insulin clearance plays an important role in the compensatory response to insulin resistance. Given the importance of this trait to the pathogenesis of diabetes, a deeper understanding of its regulation is warranted. Our goal was to identify metabolic and cardiovascular traits that are independently associated with metabolic clearance rate of insulin (MCRI). We conducted a cross-sectional analysis of metabolic and cardiovascular traits in 765 participants from the Mexican-American Coronary Artery Disease (MACAD) project who had undergone blood sampling, oral glucose tolerance test, euglycemic-hyperinsulinemic clamp, dual-energy X-ray absorptiometry, and carotid ultrasound. We assessed correlations of MCRI with traits from seven domains, including anthropometry, biomarkers, cardiovascular, glucose homeostasis, lipase activity, lipid profile, and liver function tests. We found inverse independent correlations between MCRI and hepatic lipase (P = 0.0004), insulin secretion (P = 0.0002), alanine aminotransferase (P = 0.0045), total fat mass (P = 0.014), and diabetes (P = 0.03). MCRI and apolipoprotein A-I exhibited a positive independent correlation (P = 0.035). These results generate a hypothesis that lipid and adiposity associated traits related to liver function may play a role in insulin clearance. PMID:27846285

  4. Nitrosative stress and pathogenesis of insulin resistance.

    PubMed

    Kaneki, Masao; Shimizu, Nobuyuki; Yamada, Daisuke; Chang, Kyungho

    2007-03-01

    Insulin resistance is a major causative factor for type 2 diabetes and is associated with increased risk of cardiovascular disease. Despite intense investigation for a number of years, molecular mechanisms underlying insulin resistance remain to be determined. Recently, chronic inflammation has been highlighted as a culprit for obesity-induced insulin resistance. Nonetheless, upstream regulators and downstream effectors of chronic inflammation in insulin resistance remain unclarified. Inducible nitric oxide synthase (iNOS), a mediator of inflammation, has emerged as an important player in insulin resistance. Obesity is associated with increased iNOS expression in insulin-sensitive tissues in rodents and humans. Inhibition of iNOS ameliorates obesity-induced insulin resistance. However, molecular mechanisms by which iNOS mediates insulin resistance remain largely unknown. Protein S-nitrosylation, a covalent attachment of NO moiety to thiol sulfhydryls, has emerged as a major mediator of a broad array of NO actions. S-nitrosylation is elevated in patients with type 2 diabetes, and increased S-nitrosylation of insulin signaling molecules, including insulin receptor, insulin receptor substrate-1, and Akt/PKB, has been shown in skeletal muscle of obese, diabetic mice. Akt/PKB is reversibly inactivated by S-nitrosylation. Based on these findings, S-nitrosylation has recently been proposed to play an important role in the pathogenesis of insulin resistance.

  5. Obesity and insulin resistance in resistant hypertension: implications for the kidney.

    PubMed

    Rao, Akhilesh; Pandya, Vishwam; Whaley-Connell, Adam

    2015-05-01

    There is recognition that the obesity epidemic contributes substantially to the increasing incidence of CKD and resistant hypertension (HTN). The mechanisms by which obesity promotes resistance are an area of active interest and intense investigation. It is thought that increases in visceral adiposity lead to a proinflammatory, pro-oxidative milieu that promote resistance to the metabolic actions of insulin. This resistance to insulin at the level of skeletal muscle tissue impairs glucose disposal/utilization through actions on the endothelium that include vascular rarefaction, reductions in vascular relaxation, and vascular remodeling. Insulin resistance derived from increased adipose tissue and obesity has system-wide implications for other tissue beds such as the kidney that affects blood pressure regulation. The additional autocrine and paracrine activities of adipose tissue contribute to inappropriate activation of the renin-angiotensin-aldosterone system and the sympathetic nervous system that promote kidney microvascular remodeling, stiffness, and sodium (Na(+)) retention that in turn promote HTN and in the CKD patient, resistance. In this review, we will summarize the important mechanisms that link obesity to CKD as they relate to resistant HTN.

  6. Mechanisms of insulin resistance in obesity.

    PubMed

    Ye, Jianping

    2013-03-01

    Obesity increases the risk for type 2 diabetes through induction of insulin resistance. Treatment of type 2 diabetes has been limited by little translational knowledge of insulin resistance although there have been several well-documented hypotheses for insulin resistance. In those hypotheses, inflammation, mitochondrial dysfunction, hyperinsulinemia and lipotoxicity have been the major concepts and have received a lot of attention. Oxidative stress, endoplasmic reticulum (ER) stress, genetic background, aging, fatty liver, hypoxia and lipodystrophy are active subjects in the study of these concepts. However, none of those concepts or views has led to an effective therapy for type 2 diabetes. The reason is that there has been no consensus for a unifying mechanism of insulin resistance. In this review article, literature is critically analyzed and reinterpreted for a new energy-based concept of insulin resistance, in which insulin resistance is a result of energy surplus in cells. The energy surplus signal is mediated by ATP and sensed by adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Decreasing ATP level by suppression of production or stimulation of utilization is a promising approach in the treatment of insulin resistance. In support, many of existing insulin sensitizing medicines inhibit ATP production in mitochondria. The effective therapies such as weight loss, exercise, and caloric restriction all reduce ATP in insulin sensitive cells. This new concept provides a unifying cellular and molecular mechanism of insulin resistance in obesity, which may apply to insulin resistance in aging and lipodystrophy.

  7. Seipin deficiency alters brown adipose tissue thermogenesis and insulin sensitivity in a non-cell autonomous mode

    PubMed Central

    Dollet, L.; Magré, J.; Joubert, M.; Le May, C.; Ayer, A.; Arnaud, L.; Pecqueur, C.; Blouin, V.; Cariou, B.; Prieur, X.

    2016-01-01

    Loss-of-function mutations in BSCL2 are responsible for Berardinelli-Seip congenital lipodystrophy, a rare disorder characterized by near absence of adipose tissue associated with insulin resistance. Seipin-deficient (Bscl2−/−) mice display an almost total loss of white adipose tissue (WAT) with residual brown adipose tissue (BAT). Previous cellular studies have shown that seipin deficiency alters white adipocyte differentiation. In this study, we aimed to decipher the consequences of seipin deficiency in BAT. Using a brown adipocyte cell-line, we show that seipin knockdown had very little effect on adipocyte differentiation without affecting insulin sensitivity and oxygen consumption. However, when submitted to cold acclimation or chronic β3 agonist treatment, Bscl2−/− mice displayed altered thermogenic capacity, despite several signs of BAT remodeling. Under cold activation, Bscl2−/− mice were able to maintain their body temperature when fed ad libitum, but not under short fasting. At control temperature (i.e. 21 °C), fasting worsened Bscl2−/− BAT properties. Finally, Bscl2−/− BAT displayed obvious signs of insulin resistance. Our results in these lipodystrophic mice strongly suggest that BAT activity relies on WAT as an energetic substrate provider and adipokine-producing organ. Therefore, the WAT/BAT dialogue is a key component of BAT integrity in guaranteeing its response to insulin and cold-activated adrenergic signals. PMID:27748422

  8. Perpetuating Effects of Androgen Deficiency on Insulin-resistance

    PubMed Central

    Cameron, Judy L.; Jain, Ruhee; Rais, Maham; White, Ashley E.; Beer, Tomasz M.; Kievit, Paul; Winters-Stone, Kerri; Messaoudi, Ilhem; Varlamov, Oleg

    2016-01-01

    Background/Objectives Androgen deprivation therapy (ADT) is commonly used for treatment of prostate cancer, but is associated with side effects such as sarcopenia and insulin resistance. The role of lifestyle factors such as diet and exercise on insulin sensitivity and body composition in testosterone-deficient males is poorly understood. The aim of the present study was to examine the relationships between androgen status, diet, and insulin sensitivity. Subjects/Methods Middle-aged (11–12-yo) intact and orchidectomized male rhesus macaques were maintained for two months on a standard chow diet, and then exposed for six months to a Western-style, high-fat/calorie-dense diet (WSD) followed by four months of caloric restriction (CR). Body composition, insulin sensitivity, physical activity, serum cytokine levels, and adipose biopsies were evaluated before and after each dietary intervention. Results Both intact and orchidectomized animals gained similar proportions of body fat, developed visceral and subcutaneous adipocyte hypertrophy, and became insulin resistant in response to the WSD. CR reduced body fat in both groups, but reversed insulin resistance only in intact animals. Orchidectomized animals displayed progressive sarcopenia, which persisted after the switch to CR. Androgen deficiency was associated with increased levels of interleukin-6 and macrophage-derived chemokine (CCL22), both of which were elevated during CR. Physical activity levels showed a negative correlation with body fat and insulin sensitivity. Conclusion Androgen deficiency exacerbated the negative metabolic side effects of the WSD, such that CR alone was not sufficient to improve altered insulin sensitivity, suggesting that ADT patients will require additional interventions to reverse insulin resistance and sarcopenia. PMID:27534842

  9. Adipose Estrogen and Increased Breast Cancer Risk in Obesity: Regulation by Leptin and Insulin

    DTIC Science & Technology

    2006-09-01

    associated with insulin resistance we had also proposed to determine the induction of Aromatase and βHSD5 mRNA expression in response to insulin and...Metabolic insulin resistance was determined by measuring insulin mediated glucose uptake. Glucose uptake was reduced by 50-70% in adipocytes...conditions in our cell culture system to mimic metabolic insulin resistance . These “insulin-resistant” adipocytes are currently being used to

  10. Effects of salicylic acid-induced wine rich in anthocyanins on metabolic parameters and adipose insulin signaling in high-fructose fed rats.

    PubMed

    Rodriguez Lanzi, Cecilia; de Rosas, Inés; Perdicaro, Diahann J; Ponce, María Teresa; Martinez, Liliana; Miatello, Roberto M; Cavagnaro, Bruno; Vazquez Prieto, Marcela A

    2016-12-01

    We evaluated the effects of Syrah red wine treated with salicylic acid (RW SA) and its control red wine (RW) on metabolic parameters, systolic blood pressure and adipose tissue insulin signaling in high-fructose (F) fed rats. Grape treated with SA increased the anthocyanin (ANTs) levels in RW. F induced increased systolic blood pressure, dislipidemia and insulin resistance (HOMA:IR). F rats treated with RW significantly prevented these alterations while RW SA partially attenuated triglycerides levels and HOMA:IR without modifications in HDL cholesterol levels. F impaired the adipose tissue response to insulin. Supplementation with RW and RW SA partially attenuated these alterations. Rats supplemented with RW SA had lesser beneficial effects on metabolic alterations than control RW, while both RW and RW SA attenuated altered adipose response to insulin. More studies are necessary to deeply evaluate the effect on SA-induced RW rich in ANTs levels on metabolic alterations associated to MetS.

  11. Insulin Resistance and Skin Diseases

    PubMed Central

    Napolitano, Maddalena; Megna, Matteo; Monfrecola, Giuseppe

    2015-01-01

    In medical practice, almost every clinician may encounter patients with skin disease. However, it is not always easy for physicians of all specialties to face the daily task of determining the nature and clinical implication of dermatologic manifestations. Are they confined to the skin, representing a pure dermatologic event? Or are they also markers of internal conditions relating to the patient's overall health? In this review, we will discuss the principal cutaneous conditions which have been linked to metabolic alterations. Particularly, since insulin has an important role in homeostasis and physiology of the skin, we will focus on the relationships between insulin resistance (IR) and skin diseases, analyzing strongly IR-associated conditions such as acanthosis nigricans, acne, and psoriasis, without neglecting emerging and potential scenarios as the ones represented by hidradenitis suppurativa, androgenetic alopecia, and hirsutism. PMID:25977937

  12. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    SciTech Connect

    Permana, Paska A. . E-mail: Paska.Permana@med.va.gov; Menge, Christopher; Reaven, Peter D.

    2006-03-10

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-{kappa}B) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-{kappa}B inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity.

  13. Insulin signaling in type 2 diabetes: experimental and modeling analyses reveal mechanisms of insulin resistance in human adipocytes.

    PubMed

    Brännmark, Cecilia; Nyman, Elin; Fagerholm, Siri; Bergenholm, Linnéa; Ekstrand, Eva-Maria; Cedersund, Gunnar; Strålfors, Peter

    2013-04-05

    Type 2 diabetes originates in an expanding adipose tissue that for unknown reasons becomes insulin resistant. Insulin resistance reflects impairments in insulin signaling, but mechanisms involved are unclear because current research is fragmented. We report a systems level mechanistic understanding of insulin resistance, using systems wide and internally consistent data from human adipocytes. Based on quantitative steady-state and dynamic time course data on signaling intermediaries, normally and in diabetes, we developed a dynamic mathematical model of insulin signaling. The model structure and parameters are identical in the normal and diabetic states of the model, except for three parameters that change in diabetes: (i) reduced concentration of insulin receptor, (ii) reduced concentration of insulin-regulated glucose transporter GLUT4, and (iii) changed feedback from mammalian target of rapamycin in complex with raptor (mTORC1). Modeling reveals that at the core of insulin resistance in human adipocytes is attenuation of a positive feedback from mTORC1 to the insulin receptor substrate-1, which explains reduced sensitivity and signal strength throughout the signaling network. Model simulations with inhibition of mTORC1 are comparable with experimental data on inhibition of mTORC1 using rapamycin in human adipocytes. We demonstrate the potential of the model for identification of drug targets, e.g. increasing the feedback restores insulin signaling, both at the cellular level and, using a multilevel model, at the whole body level. Our findings suggest that insulin resistance in an expanded adipose tissue results from cell growth restriction to prevent cell necrosis.

  14. Insulin differentially modulates the peripheral endocannabinoid system in human subcutaneous abdominal adipose tissue from lean and obese individuals.

    PubMed

    Murdolo, G; Kempf, K; Hammarstedt, A; Herder, C; Smith, U; Jansson, P-A

    2007-09-01

    Human obesity has been associated with a dysregulation of the peripheral and adipose tissue (AT) endocannabinoid system (ES). The aim of this study was to elucidate the acute in vivo effects of insulin on gene expression of the cannabinoid type 1 (CB-1) and type 2 (CB-2) receptors, as well as of the fatty acid amide hydrolase (FAAH) in the sc abdominal adipose tissue (SCAAT). Nine lean (L) and 9 obese (OB), but otherwise healthy males were studied in the fasting state and during a euglycemic hyperinsulinemic clamp (40 mU/m2 * min(-1)). SCAAT biopsies were obtained at baseline and after 270 min of i.v. maintained hyperinsulinemia. The basal SCAAT gene expression pattern revealed an upregulation of the FAAH in the OB (p=0.03 vs L), whereas similar CB-1 and CB-2 mRNA levels were seen. Following hyperinsulinemia, the FAAH mRNA levels significantly increased approximately 2-fold in the L (p=0.01 vs baseline) but not in the OB. In contrast, insulin failed to significantly change both the adipose CB-1 and CB-2 gene expression. Finally, the FAAH gene expression positively correlated with the fasting serum insulin concentration (r 0.66; p=0.01), whereas an inverse association with the whole-body glucose disposal (r -0.58; p<0.05) was seen. Taken together, these first time observations demonstrate that the ES-related genes in the SCAAT differentially respond to hyperinsulinemia in lean/insulin-sensitive and in obese/insulin-resistant individuals. We suggest that insulin may play a key role in the obesity-linked dysregulation of the adipose ES at the gene level.

  15. Integrative mRNA-microRNA analyses reveal novel interactions related to insulin sensitivity in human adipose tissue.

    PubMed

    Kirby, Tyler J; Walton, R Grace; Finlin, Brian; Zhu, Beibei; Unal, Resat; Rasouli, Neda; Peterson, Charlotte A; Kern, Philip A

    2016-02-01

    Adipose tissue has profound effects on whole-body insulin sensitivity. However, the underlying biological processes are quite complex and likely multifactorial. For instance, the adipose transcriptome is posttranscriptionally modulated by microRNAs, but the relationship between microRNAs and insulin sensitivity in humans remains to be determined. To this end, we utilized an integrative mRNA-microRNA microarray approach to identify putative molecular interactions that regulate the transcriptome in subcutaneous adipose tissue of insulin-sensitive (IS) and insulin-resistant (IR) individuals. Using the NanoString nCounter Human v1 microRNA Expression Assay, we show that 17 microRNAs are differentially expressed in IR vs. IS. Of these, 16 microRNAs (94%) are downregulated in IR vs. IS, including miR-26b, miR-30b, and miR-145. Using Agilent Human Whole Genome arrays, we identified genes that were predicted targets of miR-26b, miR-30b, and miR-145 and were upregulated in IR subjects. This analysis produced ADAM22, MYO5A, LOX, and GM2A as predicted gene targets of these microRNAs. We then validated that miR-145 and miR-30b regulate these mRNAs in differentiated human adipose stem cells. We suggest that use of bioinformatic integration of mRNA and microRNA arrays yields verifiable mRNA-microRNA pairs that are associated with insulin resistance and can be validated in vitro.

  16. Dietary fish oil positively regulates plasma leptin and adiponectin levels in sucrose-fed, insulin-resistant rats.

    PubMed

    Rossi, Andrea S; Lombardo, Yolanda B; Lacorte, Jean-Marc; Chicco, Adriana G; Rouault, Christine; Slama, Gérard; Rizkalla, Salwa W

    2005-08-01

    Insulin resistance and adiposity induced by a long-term sucrose-rich diet (SRD) in rats could be reversed by fish oil (FO). Regulation of plasma leptin and adiponectin levels, as well as their gene expression, by FO might be implicated in these findings. This study was designed to evaluate the long-term regulation of leptin and adiponectin by dietary FO in a dietary model of insulin resistance induced by long-term SRD in rats and to determine their impact on adiposity and insulin sensitivity. Rats were randomized to consume a control diet (CD; n = 25) or an SRD (n = 50) for 7 mo. Subsequently, the SRD-fed rats were randomized to consume SRD+FO or to continue on SRD for an additional 2 mo. Long-term SRD induced overweight and decreased both plasma leptin and adiponectin levels without change in gene expression. Dyslipidemia, adiposity, and insulin resistance accompanied these modifications. Shifting the source of fat to FO for 2 mo increased plasma levels of both adipokines, reversed insulin resistance and dyslipidemia, and improved adiposity. These results were not associated with modifications in gene expression. These results suggest that increasing both adipokines by dietary FO might play an essential role in the normalization of insulin resistance and adiposity in dietary-induced, insulin-resistant models.

  17. Animal models of insulin resistance: A review.

    PubMed

    Sah, Sangeeta Pilkhwal; Singh, Barinder; Choudhary, Supriti; Kumar, Anil

    2016-12-01

    Insulin resistance can be seen as a molecular and genetic mystery, with a role in the pathophysiology of type 2 diabetes mellitus. It is a basis for a number of chronic diseases like hypertension, dyslipidemia, glucose intolerance, coronary heart disease, cerebral vascular disease along with T2DM, thus the key is to cure and prevent insulin resistance. Critical perspicacity into the etiology of insulin resistance have been gained by the use of animal models where insulin action has been modulated by various transgenic and non-transgenic models which is not possible in human studies. The following review comprises the pathophysiology involved in insulin resistance, various factors causing insulin resistance, their screening and various genetic and non-genetic animal models highlighting the pathological and metabolic characteristics of each.

  18. Glucose delays the insulin-induced increase in thyroid hormone-mediated signaling in adipose of prolong-fasted elephant seal pups.

    PubMed

    Martinez, Bridget; Soñanez-Organis, José G; Viscarra, Jose A; Jaques, John T; MacKenzie, Duncan S; Crocker, Daniel E; Ortiz, Rudy M

    2016-03-15

    Prolonged food deprivation in mammals typically reduces glucose, insulin, and thyroid hormone (TH) concentrations, as well as tissue deiodinase (DI) content and activity, which, collectively, suppress metabolism. However, in elephant seal pups, prolonged fasting does not suppress TH levels; it is associated with upregulation of adipose TH-mediated cellular mechanisms and adipose-specific insulin resistance. The functional relevance of this apparent paradox and the effects of glucose and insulin on TH-mediated signaling in an insulin-resistant tissue are not well defined. To address our hypothesis that insulin increases adipose TH signaling in pups during extended fasting, we assessed the changes in TH-associated genes in response to an insulin infusion in early- and late-fasted pups. In late fasting, insulin increased DI1, DI2, and THrβ-1 mRNA expression by 566%, 44%, and 267% at 60 min postinfusion, respectively, with levels decreasing by 120 min. Additionally, we performed a glucose challenge in late-fasted pups to differentiate between insulin- and glucose-mediated effects on TH signaling. In contrast to the insulin-induced effects, glucose infusion did not increase the expressions of DI1, DI2, and THrβ-1 until 120 min, suggesting that glucose delays the onset of the insulin-induced effects. The data also suggest that fasting duration increases the sensitivity of adipose TH-mediated mechanisms to insulin, some of which may be mediated by increased glucose. These responses appear to be unique among mammals and to have evolved in elephant seals to facilitate their adaptation to tolerate an extreme physiological condition.

  19. Steroids and insulin resistance in pregnancy.

    PubMed

    Vejrazkova, Daniela; Vcelak, Josef; Vankova, Marketa; Lukasova, Petra; Bradnova, Olga; Halkova, Tereza; Kancheva, Radmila; Bendlova, Bela

    2014-01-01

    Metabolism of glucose during pregnancy reflects the equilibrium between lactogenic hormones stimulating insulin production and counterregulatory hormones inducing insulin resistance. In physiological pregnancies, insulin-mediated glucose uptake is substantially decreased and insulin secretion increased to maintain euglycemia. This common state of peripheral insulin resistance arises also due to steroid spectra changes. In this review article, we have focused on the role of steroid hormones (androgens, estrogens, gestagens, mineralocorticoids, glucocorticoids, as well as secosteroid vitamin D) in the impairment of glucose tolerance in pregnancy and in the pathogenesis of gestational diabetes mellitus. This article is part of a Special Issue entitled 'Pregnancy and Steroids'.

  20. ADIPOQ polymorphisms are associated with insulin resistance in Japanese women.

    PubMed

    Kitamoto, Aya; Kitamoto, Takuya; So, Rina; Matsuo, Tomoaki; Nakata, Yoshio; Hyogo, Hideyuki; Ochi, Hidenori; Nakamura, Takahiro; Kamohara, Seika; Miyatake, Nobuyuki; Kotani, Kazuaki; Mineo, Ikuo; Wada, Jun; Ogawa, Yuji; Yoneda, Masato; Nakajima, Atsushi; Funahashi, Tohru; Miyazaki, Shigeru; Tokunaga, Katsuto; Masuzaki, Hiroaki; Ueno, Takato; Chayama, Kazuaki; Hamaguchi, Kazuyuki; Yamada, Kentaro; Hanafusa, Toshiaki; Oikawa, Shinichi; Sakata, Toshiie; Tanaka, Kiyoji; Matsuzawa, Yuji; Hotta, Kikuko

    2015-01-01

    Visceral fat accumulation contributes to the development of insulin resistance, leading to metabolic syndrome. Adiponectin provides a link between visceral fat accumulation and insulin resistance. In addition to environmental factors, genetic factors play important roles in visceral fat accumulation and circulating adiponectin levels. Genome-wide association studies (GWASs) have identified genetic variations in the adiponectin, C1Q and collagen domain containing (ADIPOQ) gene that are associated with adiponectin levels. In this study, we investigated whether ADIPOQ single nucleotide polymorphisms (SNPs) were associated with visceral fat accumulation and insulin resistance. We measured the visceral fat area (VFA) by computed tomography (CT) and examined the presence of the insulin resistance-related phenotype (fasting plasma glucose, fasting insulin, and homeostasis model assessment-insulin resistance [HOMA-IR]) in a set of Japanese individuals (731 men and 864 women) who were genotyped for seven ADIPOQ SNPs reported by recent GWASs (namely, rs6810075, rs10937273, rs1648707, rs864265, rs182052, rs17366568, and rs6773957). SNPs associated with the phenotype (P < 0.05) were then evaluated by association analysis using a second set of the study participants (383 men and 510 women). None of the SNPs was associated with body mass index (BMI) or VFA in men or women. However, the adiponectin-decreasing alleles of rs10937273 and rs1648707 were significantly associated with HOMA-IR (P = 0.0030 and P = 0.00074, respectively) in women, independently of BMI. These SNPs were significantly associated with decreased adiponectin levels in women. Our results suggested that rs10937273 and rs1648707 may affect insulin sensitivity by regulating adiponectin production by adipose tissue in women.

  1. Selective Insulin Resistance in the Kidney

    PubMed Central

    Horita, Shoko; Nakamura, Motonobu; Suzuki, Masashi; Satoh, Nobuhiko; Suzuki, Atsushi; Seki, George

    2016-01-01

    Insulin resistance has been characterized as attenuation of insulin sensitivity at target organs and tissues, such as muscle and fat tissues and the liver. The insulin signaling cascade is divided into major pathways such as the PI3K/Akt pathway and the MAPK/MEK pathway. In insulin resistance, however, these pathways are not equally impaired. For example, in the liver, inhibition of gluconeogenesis by the insulin receptor substrate (IRS) 2 pathway is impaired, while lipogenesis by the IRS1 pathway is preserved, thus causing hyperglycemia and hyperlipidemia. It has been recently suggested that selective impairment of insulin signaling cascades in insulin resistance also occurs in the kidney. In the renal proximal tubule, insulin signaling via IRS1 is inhibited, while insulin signaling via IRS2 is preserved. Insulin signaling via IRS2 continues to stimulate sodium reabsorption in the proximal tubule and causes sodium retention, edema, and hypertension. IRS1 signaling deficiency in the proximal tubule may impair IRS1-mediated inhibition of gluconeogenesis, which could induce hyperglycemia by preserving glucose production. In the glomerulus, the impairment of IRS1 signaling deteriorates the structure and function of podocyte and endothelial cells, possibly causing diabetic nephropathy. This paper mainly describes selective insulin resistance in the kidney, focusing on the proximal tubule. PMID:27247938

  2. Adipose Estrogen and Increased Breast Cancer Risk in Obesity: Regulation by Leptin and Insulin

    DTIC Science & Technology

    2007-09-07

    usually associated with insulin resistance we had also proposed to determine the induction of Aromatase and βHSD5 mRNA expression in response to...3 days. Metabolic insulin resistance was determined by measuring insulin mediated glucose uptake. Glucose uptake was reduced by 50-70% in...standardize conditions in our cell culture system to mimic metabolic insulin resistance . These “insulin-resistant” adipocytes are currently being used to

  3. Insulin resistance in young, lean male subjects with essential hypertension.

    PubMed

    Penesova, A; Cizmarova, E; Belan, V; Blazicek, P; Imrich, R; Vlcek, M; Vigas, M; Selko, D; Koska, J; Radikova, Z

    2011-06-01

    Impaired insulin action, frequently found in essential hypertension (HT), is modified by other factors, such as higher age, accumulation of body fat, dyslipidaemia, impaired glucose metabolism and endothelial dysfunction. In addition, antihypertensive and insulin-sensitizing medication itself may significantly affect cardiovascular and metabolic milieu. The aim of this study was to assess insulin sensitivity, acute insulin response, lipidaemic status and the adipokines' concentrations with regard to abdominal fat distribution in young, lean male subjects with treatment-naïve essential HT and in matched healthy normotensive (NT) subjects. We studied 27 HT patients (age: 19.9±0.6 years; body mass index (BMI): 22.9±0.5 kg m(-2)) and 15 NT controls (age: 22.3±1.0 years; BMI: 23.7±0.6 kg m(-2)). The subjects underwent an oral and an intravenous glucose tolerance test (OGTT, IVGTT) on separate days in random order. Higher fasting insulin (P<0.001), non-esterified fatty acids (P<0.05) and plasminogen activator inhibitor factor 1 concentrations (P<0.05) were found in HT patients when compared with NT patients. Despite comparable anthropometric parameters and body fat distribution assessed by magnetic resonance imaging in both groups, newly diagnosed untreated young hypertensive male subjects showed decreased insulin sensitivity, augmented insulin response to both oral and intravenous glucose load (P<0.01; P<0.05 respectively) and 'higher still normal' 2-h plasma glucose levels during OGTT. Untreated, young, lean hypertensive male subjects, with distribution of abdominal adipose tissue and lipid profile comparable with their healthy NT matched counterparts, showed considerable signs of insulin resistance and hyperinsulinaemia. We hypothesize that insulin resistance is the initial feature, which is influenced by several environmental factors, and HT is one of their common consequences.

  4. Angiotensin and insulin resistance: conspiracy theory.

    PubMed

    Townsend, Raymond R

    2003-04-01

    Resistance to the metabolic effects of insulin is a contender for the short list of major cardiovascular risk factors. Since the elements of the syndrome of insulin resistance were first articulated together in 1988, numerous epidemiologic investigations and treatment endeavors have established a relationship between the metabolic disarray of impaired insulin action and cardiovascular disease. Angiotensin II, the primary effector of the renin-angiotensin system, has also achieved a place in the chronicles of cardiovascular risk factors. Conspiracy mechanisms by which angiotensin II and insulin resistance interact in the pathogenesis of cardiovascular disease are reviewed, with particular attention to recent developments in this engaging area of human research.

  5. Dietary Fructose Activates Insulin Signaling and Inflammation in Adipose Tissue: Modulatory Role of Resveratrol

    PubMed Central

    Pektas, Mehmet Bilgehan; Koca, Halit Bugra; Sadi, Gokhan; Akar, Fatma

    2016-01-01

    The effects of high-fructose diet on adipose tissue insulin signaling and inflammatory process have been poorly documented. In this study, we examined the influences of long-term fructose intake and resveratrol supplementation on the expression of genes involved in insulin signaling and the levels of inflammatory cytokines and sex hormones in the white adipose tissues of male and female rats. Consumption of high-fructose diet for 24 weeks increased the expression of genes involved in insulin signaling including IR, IRS-1, IRS-2, Akt, PI3K, eNOS, mTOR, and PPARγ, despite induction of proinflammatory markers, iNOS, TNFα, IL-1β, IL-18, MDA, and ALT, as well as anti-inflammatory factors, IL-10 and Nrf2 in adipose tissues from males and females. Total and free testosterone concentrations of adipose tissues were impaired in males but increased in females, although there were no changes in their blood levels. Resveratrol supplementation markedly restored the levels of MDA, IL6, IL-10, and IL-18, as well as iNOS, Nrf2, and PI3K mRNA, in adipose tissues of both genders. Dietary fructose activates both insulin signaling and inflammatory pathway in the adipose tissues of male and female rats proposing no correlation between the tissue insulin signaling and inflammation. Resveratrol has partly modulatory effects on fructose-induced changes. PMID:27066503

  6. Effect of fensuccinal on experimental insulin resistance.

    PubMed

    Gorbenko, N I; Poltorak, V V; Gladkikh, A I; Ivanova, O V

    2000-07-01

    The effects of new antioxidant fensuccinal on dexamethasone-induced insulin resistance in rats were studied. Oral administration of fensuccinal in a dose of 25 mg/kg for 2 weeks prevented basal hyperinsulinemia and insulin insensitivity of peripheral tissues. Fensuccinal also attenuated oxidative stress by decreasing the concentrations of primary and secondary lipid peroxidation products in liver homogenates. The ability of fensuccinal to prevent dexamethasone-induced insulin resistance is probably due to its antioxidant properties.

  7. Common genetic variation near MC4R is associated with waist circumference and insulin resistance.

    PubMed

    Chambers, John C; Elliott, Paul; Zabaneh, Delilah; Zhang, Weihua; Li, Yun; Froguel, Philippe; Balding, David; Scott, James; Kooner, Jaspal S

    2008-06-01

    We carried out a genome-wide association study (318,237 SNPs) for insulin resistance and related phenotypes in 2,684 Indian Asians, with further testing in 11,955 individuals of Indian Asian or European ancestry. We found associations of rs12970134 near MC4R with waist circumference (P = 1.7 x 10(-9)) and, independently, with insulin resistance. Homozygotes for the risk allele of rs12970134 have approximately 2 cm increased waist circumference. Common genetic variation near MC4R is associated with risk of adiposity and insulin resistance.

  8. Obesity, insulin resistance, NASH and hepatocellular carcinoma.

    PubMed

    Yu, Jun; Shen, Jiayun; Sun, Ting Ting; Zhang, Xiang; Wong, Nathalie

    2013-12-01

    Epidemiological and clinical data have clearly demonstrated that non-alcoholic steatohepatitis (NASH) predisposes risk to the development of hepatocellular carcinoma (HCC). NASH is the liver manifestation of metabolic syndrome, which constellates obesity, insulin resistance and dyslipidemia. Although the percentage of patients diagnosed annually with NASH-associated HCC is still relatively low, this number signifies a large population due to the rapidly increasing incidence of obesity and diabetes globally. Fundamental studies on lipid storage, regulation of adipose factors, inflammatory cytokine recruitments and oxidative stress have provided insights into NASH as well as metabolic syndrome. Recent evidence also indicates the significant role of genetic factors in contributing to the pathogenesis of NASH and induced hepatic malignancy. In this review, we attempt to collate current research on NASH biology that lead to our understandings on how metabolic disorders may intersect with cancer development. We also discuss study models that have supported discoveries of molecular and cellular defects, and offered a perspective on therapeutic developments. These studies have collectively increased our knowledge on the complex signaling pathways involved in NASH and cancer, and provided the foundation for improved clinical management of patients with metabolic diseases.

  9. Defective NOD2 peptidoglycan sensing promotes diet-induced inflammation, dysbiosis, and insulin resistance.

    PubMed

    Denou, Emmanuel; Lolmède, Karine; Garidou, Lucile; Pomie, Celine; Chabo, Chantal; Lau, Trevor C; Fullerton, Morgan D; Nigro, Giulia; Zakaroff-Girard, Alexia; Luche, Elodie; Garret, Céline; Serino, Matteo; Amar, Jacques; Courtney, Michael; Cavallari, Joseph F; Henriksbo, Brandyn D; Barra, Nicole G; Foley, Kevin P; McPhee, Joseph B; Duggan, Brittany M; O'Neill, Hayley M; Lee, Amanda J; Sansonetti, Philippe; Ashkar, Ali A; Khan, Waliul I; Surette, Michael G; Bouloumié, Anne; Steinberg, Gregory R; Burcelin, Rémy; Schertzer, Jonathan D

    2015-03-01

    Pattern recognition receptors link metabolite and bacteria-derived inflammation to insulin resistance during obesity. We demonstrate that NOD2 detection of bacterial cell wall peptidoglycan (PGN) regulates metabolic inflammation and insulin sensitivity. An obesity-promoting high-fat diet (HFD) increased NOD2 in hepatocytes and adipocytes, and NOD2(-/-) mice have increased adipose tissue and liver inflammation and exacerbated insulin resistance during a HFD. This effect is independent of altered adiposity or NOD2 in hematopoietic-derived immune cells. Instead, increased metabolic inflammation and insulin resistance in NOD2(-/-) mice is associated with increased commensal bacterial translocation from the gut into adipose tissue and liver. An intact PGN-NOD2 sensing system regulated gut mucosal bacterial colonization and a metabolic tissue dysbiosis that is a potential trigger for increased metabolic inflammation and insulin resistance. Gut dysbiosis in HFD-fed NOD2(-/-) mice is an independent and transmissible factor that contributes to metabolic inflammation and insulin resistance when transferred to WT, germ-free mice. These findings warrant scrutiny of bacterial component detection, dysbiosis, and protective immune responses in the links between inflammatory gut and metabolic diseases, including diabetes.

  10. Defective NOD2 peptidoglycan sensing promotes diet-induced inflammation, dysbiosis, and insulin resistance

    PubMed Central

    Denou, Emmanuel; Lolmède, Karine; Garidou, Lucile; Pomie, Celine; Chabo, Chantal; Lau, Trevor C; Fullerton, Morgan D; Nigro, Giulia; Zakaroff-Girard, Alexia; Luche, Elodie; Garret, Céline; Serino, Matteo; Amar, Jacques; Courtney, Michael; Cavallari, Joseph F; Henriksbo, Brandyn D; Barra, Nicole G; Foley, Kevin P; McPhee, Joseph B; Duggan, Brittany M; O'Neill, Hayley M; Lee, Amanda J; Sansonetti, Philippe; Ashkar, Ali A; Khan, Waliul I; Surette, Michael G; Bouloumié, Anne; Steinberg, Gregory R; Burcelin, Rémy; Schertzer, Jonathan D

    2015-01-01

    Pattern recognition receptors link metabolite and bacteria-derived inflammation to insulin resistance during obesity. We demonstrate that NOD2 detection of bacterial cell wall peptidoglycan (PGN) regulates metabolic inflammation and insulin sensitivity. An obesity-promoting high-fat diet (HFD) increased NOD2 in hepatocytes and adipocytes, and NOD2−/− mice have increased adipose tissue and liver inflammation and exacerbated insulin resistance during a HFD. This effect is independent of altered adiposity or NOD2 in hematopoietic-derived immune cells. Instead, increased metabolic inflammation and insulin resistance in NOD2−/− mice is associated with increased commensal bacterial translocation from the gut into adipose tissue and liver. An intact PGN-NOD2 sensing system regulated gut mucosal bacterial colonization and a metabolic tissue dysbiosis that is a potential trigger for increased metabolic inflammation and insulin resistance. Gut dysbiosis in HFD-fed NOD2−/− mice is an independent and transmissible factor that contributes to metabolic inflammation and insulin resistance when transferred to WT, germ-free mice. These findings warrant scrutiny of bacterial component detection, dysbiosis, and protective immune responses in the links between inflammatory gut and metabolic diseases, including diabetes. PMID:25666722

  11. An Immunomodulatory Device Improves Insulin Resistance in Obese Porcine Model of Metabolic Syndrome

    PubMed Central

    Westover, Angela J.

    2016-01-01

    Obesity is associated with tissue inflammation which is a crucial etiology of insulin resistance. This inflammation centers around circulating monocytes which form proinflammatory adipose tissue macrophages (ATM). Specific approaches targeting monocytes/ATM may improve insulin resistance without the adverse side effects of generalized immunosuppression. In this regard, a biomimetic membrane leukocyte processing device, called the selective cytopheretic device (SCD), was evaluated in an Ossabaw miniature swine model of insulin resistance with metabolic syndrome. Treatment with the SCD in this porcine model demonstrated a decline in circulating neutrophil activation parameters and monocyte counts. These changes were associated with improvements in insulin resistance as determined with intravenous glucose tolerance testing. These improvements were also reflected in lowering of homeostatic model assessment- (HOMA-) insulin resistant (IR) scores for up to 2 weeks after SCD therapy. These results allow for the planning of first-in-man studies in obese type 2 diabetic patients. PMID:27819007

  12. Treatment Approach to Patients With Severe Insulin Resistance

    PubMed Central

    Church, Timothy J.

    2016-01-01

    In Brief Patients with severe insulin resistance require >2 units/kg of body weight or 200 units/day of insulin. Yet, many patients do not achieve glycemic targets despite using very high doses of insulin. Insulin can cause weight gain, which further contributes to worsening insulin resistance. This article describes the pharmacological options for managing patients with severe insulin resistance, including the use of U-500 insulin and newer agents in combination with insulin. PMID:27092020

  13. Excessive caloric intake acutely causes oxidative stress, GLUT4 carbonylation, and insulin resistance in healthy men.

    PubMed

    Boden, Guenther; Homko, Carol; Barrero, Carlos A; Stein, T Peter; Chen, Xinhua; Cheung, Peter; Fecchio, Chiara; Koller, Sarah; Merali, Salim

    2015-09-09

    Obesity-linked insulin resistance greatly increases the risk for type 2 diabetes, hypertension, dyslipidemia, and non-alcoholic fatty liver disease, together known as the metabolic or insulin resistance syndrome. How obesity promotes insulin resistance remains incompletely understood. Plasma concentrations of free fatty acids and proinflammatory cytokines, endoplasmic reticulum ( ER) stress, and oxidative stress are all elevated in obesity and have been shown to induce insulin resistance. However, they may be late events that only develop after chronic excessive nutrient intake. The nature of the initial event that produces insulin resistance at the beginning of excess caloric intake and weight gain remains unknown. We show that feeding healthy men with ~6000 kcal/day of the common U.S. diet [~50% carbohydrate (CHO), ~ 35% fat, and ~15% protein] for 1 week produced a rapid weight gain of 3.5 kg and the rapid onset (after 2 to 3 days) of systemic and adipose tissue insulin resistance and oxidative stress but no inflammatory or ER stress. In adipose tissue, the oxidative stress resulted in extensive oxidation and carbonylation of numerous proteins, including carbonylation of GLUT4 near the glucose transport channel, which likely resulted in loss of GLUT4 activity. These results suggest that the initial event caused by overnutrition may be oxidative stress, which produces insulin resistance, at least in part, via carbonylation and oxidation-induced inactivation of GLUT4.

  14. Increased insulin translation from an insulin splice-variant overexpressed in diabetes, obesity, and insulin resistance.

    PubMed

    Minn, Alexandra H; Lan, Hong; Rabaglia, Mary E; Harlan, David M; Peculis, Brenda A; Attie, Alan D; Shalev, Anath

    2005-03-01

    Type 2 diabetes occurs when pancreatic beta-cells become unable to compensate for the underlying insulin resistance. Insulin secretion requires beta-cell insulin stores to be replenished by insulin biosynthesis, which is mainly regulated at the translational level. Such translational regulation often involves the 5'-untranslated region. Recently, we identified a human insulin splice-variant (SPV) altering only the 5'-untranslated region and conferring increased translation efficiency. We now describe a mouse SPV (mSPV) that is found in the cytoplasm and exhibits increased translation efficiency resulting in more normal (prepro)insulin protein per RNA. The RNA stability of mSPV is not increased, but the predicted secondary RNA structure is altered, which may facilitate translation. To determine the role of mSPV in insulin resistance and diabetes, mSPV expression was measured by quantitative real-time RT-PCR in islets from three diabetic and/or insulin-resistant, obese and nonobese, mouse models (BTBRob/ob, C57BL/6ob/ob, and C57BL/6azip). Interestingly, mSPV expression was significantly higher in all diabetic/insulin-resistant mice compared with wild-type littermates and was dramatically induced in primary mouse islets incubated at high glucose. This raises the possibility that the mSPV may represent a compensatory beta-cell mechanism to enhance insulin biosynthesis when insulin requirements are elevated by hyperglycemia/insulin resistance.

  15. Role of reduced insulin-stimulated bone blood flow in the pathogenesis of metabolic insulin resistance and diabetic bone fragility.

    PubMed

    Hinton, Pamela S

    2016-08-01

    Worldwide, 387 million adults live with type 2 diabetes (T2D) and an additional 205 million cases are projected by 2035. Because T2D has numerous complications, there is significant morbidity and mortality associated with the disease. Identification of early events in the pathogenesis of insulin resistance and T2D might lead to more effective treatments that would mitigate health and monetary costs. Here, we present our hypothesis that impaired bone blood flow is an early event in the pathogenesis of whole-body metabolic insulin resistance that ultimately leads to T2D. Two recent developments in different fields form the basis for this hypothesis. First, reduced vascular function has been identified as an early event in the development of T2D. In particular, before the onset of tissue or whole body metabolic insulin resistance, insulin-stimulated, endothelium-mediated skeletal muscle blood flow is impaired. Insulin resistance of the vascular endothelium reduces delivery of insulin and glucose to skeletal muscle, which leads to tissue and whole-body metabolic insulin resistance. Second is the paradigm-shifting discovery that the skeleton has an endocrine function that is essential for maintenance of whole-body glucose homeostasis. Specifically, in response to insulin signaling, osteoblasts secret osteocalcin, which stimulates pancreatic insulin production and enhances insulin sensitivity in skeletal muscle, adipose, and liver. Furthermore, the skeleton is not metabolically inert, but contributes to whole-body glucose utilization, consuming 20% that of skeletal muscle and 50% that of white adipose tissue. Without insulin signaling or without osteocalcin activity, experimental animals become hyperglycemic and insulin resistant. Currently, it is not known if insulin-stimulated, endothelium-mediated blood flow to bone plays a role in the development of whole body metabolic insulin resistance. We hypothesize that it is a key, early event. Microvascular dysfunction is a

  16. Plasma obestatin is lower at fasting and not suppressed by insulin in insulin-resistant humans.

    PubMed

    Anderwald-Stadler, Marietta; Krebs, Michael; Promintzer, Miriam; Mandl, Martina; Bischof, Martin G; Nowotny, Peter; Kästenbauer, Thomas; Luger, Anton; Prager, Rudolf; Anderwald, Christian

    2007-11-01

    Obestatin, a recently discovered 23-amino acid peptide, is involved in the regulation of appetite and body weight in antagonistic fashion to ghrelin, both deriving from a common precursor peptide. Ghrelin was shown to be associated with insulin resistance, which may also affect obestatin. We investigated the association between insulin resistance and plasma concentrations of obestatin and ghrelin in nondiabetic individuals with high (IS; n = 18, 13 females and 5 males, age 47 +/- 2 yr, BMI = 25.5 +/- 0.9 kg/m(2)) and low (IR; n = 18, 12 females and 6 males, age 45 +/- 2 yr, P = 0.49, BMI = 27.5 +/- 1.1 kg/m(2), P = 0.17) insulin-stimulated glucose disposal (M), measured by 2-h hyperinsulinemic (40 mU.min(-1).m(-2)) isoglycemic clamp tests. M(100-120 min) was higher in IS (10.7 +/- 0.7) than in IR (4.4 +/- 0.2 mg.min(-1).kg(-1), P < 10(-9)), whereas insulin-dependent suppression of free fatty acids (FFA) in plasma was reduced in IR (71 +/- 6% vs. IS: 82 +/- 5%, P < 0.02). In both groups, plasma ghrelin concentrations were comparable at fasting and similarly reduced by 24-28% during insulin infusion. IR had lower fasting plasma obestatin levels (383 +/- 26 pg/ml vs. IS: 469 +/- 23 pg/ml, P < 0.02). Clamp insulin infusion reduced plasma obestatin to approximately 81% of basal values in IS (P < 0.00002), but not in IR. Fasting plasma obestatin was correlated positively with M (r = 0.34, P = 0.04), HDL cholesterol (r = 0.45, P = 0.01), and plasma ghrelin concentrations (r = 0.80, P < 0.000001) and negatively with measures of adiposity, plasma FFA during clamp (r = -0.42, P < 0.01), and systolic blood pressure (r = -0.33, P < 0.05). In conclusion, fasting plasma concentrations of obestatin, but not of ghrelin, are reduced in insulin resistance and are positively associated with whole body insulin sensitivity in nondiabetic humans. Furthermore, plasma obestatin is reduced by insulin in insulin-sensitive but not in insulin-resistant persons.

  17. Fas (CD95) expression in myeloid cells promotes obesity-induced muscle insulin resistance

    PubMed Central

    Wueest, Stephan; Mueller, Rouven; Blüher, Matthias; Item, Flurin; Chin, Annie S H; Wiedemann, Michael S F; Takizawa, Hitoshi; Kovtonyuk, Larisa; Chervonsky, Alexander V; Schoenle, Eugen J; Manz, Markus G; Konrad, Daniel

    2014-01-01

    Low-grade inflammation in adipose tissue and liver has been implicated in obesity-associated insulin resistance and type 2 diabetes. Yet, the contribution of inflammatory cells to the pathogenesis of skeletal muscle insulin resistance remains elusive. In a large cohort of obese human individuals, blood monocyte Fas (CD95) expression correlated with systemic and skeletal muscle insulin resistance. To test a causal role for myeloid cell Fas expression in the development of skeletal muscle insulin resistance, we generated myeloid/haematopoietic cell-specific Fas-depleted mice. Myeloid/haematopoietic Fas deficiency prevented the development of glucose intolerance in high fat-fed mice, in ob/ob mice, and in mice acutely challenged by LPS. In vivo, ex vivo and in vitro studies demonstrated preservation of muscle insulin responsiveness with no effect on adipose tissue or liver. Studies using neutralizing antibodies demonstrated a role for TNFα as mediator between myeloid Fas and skeletal muscle insulin resistance, supported by significant correlations between monocyte Fas expression and circulating TNFα in humans. In conclusion, our results demonstrate an unanticipated crosstalk between myeloid cells and skeletal muscle in the development of obesity-associated insulin resistance. PMID:24203314

  18. Steroidogenic acute regulatory protein (StAR) overexpression reduces inflammation and insulin resistance in obese mice.

    PubMed

    Qiu, Yanyan; Sui, Xianxian; Cao, Shengxuan; Li, Xiaobo; Ning, Yanxia; Wang, Songmei; Yin, Lianhua; Zhi, Xiuling

    2017-04-12

    Steroidogenic acute regulatory protein (StAR), a mitochondrial cholesterol delivery protein, plays a beneficial role in hyperlipidemia, NAFLD and endothelial inflammation. Elevated circulating fatty acids and low grade inflammation are known as key risk factors of insulin resistance and type 2 diabetes. In the present study, C57BL/6J mice were fed with a HFD and infected with recombinant adenovirus expressing StAR by tail-vein injection. Intraperitoneal glucose/insulin tolerance test was performed to assess the insulin sensitivity. Morphological analysis and intramuscular lipid determination were used to illustrate the adipose hypertrophy and ectopic fat accumulation in skeletal muscle. The levels of inflammatory factor and nitric oxide were determined by ELISA and classic Griess reagent methods respectively. The fatty acids composition was analysis using gas chromatography -mass spectrometry (GC-MS). The expression of genes associated with inflammation and insulin resistance were determined by Western blotting and qPCR to elucidate the underlying mechanism.We demonstrated that StAR overexpression ameliorated insulin resistance and systemic inflammatory response with the reduction of adipose hypertrophy and intramuscular lipid in HFD fed mice. In addition, StAR overexpression increased serum unsaturated fatty acids and PPARγ expression in muscle and adipose tissue of obese mice. In conclusion, StAR may activate PPARγ by increasing unsaturated fatty acids, which leads to a protective role in systemic inflammation and insulin resistance in obese mice. This article is protected by copyright. All rights reserved.

  19. Insulin resistance in porphyria cutanea tarda.

    PubMed

    Calcinaro, F; Basta, G; Lisi, P; Cruciani, C; Pietropaolo, M; Santeusanio, F; Falorni, A; Calafiore, R

    1989-06-01

    It has been reported that patients with porphyria cutanea tarda (PCT) develop carbohydrate (CHO) intolerance and manifest diabetes melitus (DM) more frequently than the normal population. In order to verify whether this is due to insulin resistance we studied 5 patients with PCT and 5 normal subjects matched for age, sex and weight. In all the patients an evaluation consisted of the glycemic curve and insulin response to an iv glucose tolerance test (IVGTT: 0.33 g/kg) as well as of an evaluation of the circulating monocyte insulin receptors. Blood samples were drawn in the basal state to measure plasma levels of NEFA, glycerol, and intermediate metabolites. The patients with PCT showed normal glucose tolerance which was obtained, however, at the expense of the elevated insulin levels: therefore a condition of insulin resistance was demonstrated in these subjects. An involvement of the lipid metabolism, observed by the raised levels of plasma NEFA and glycerol, was also evident. The insulin binding to circulating monocytes was reduced but not enough to justify the degree of insulin resistance observed. Therefore, it could be hypothesized, in agreement with similar studies, that a postreceptor defect is responsible for the insulin-resistance observed in patients with PCT and that the reduction of insulin receptors is determined by the down regulation in response to elevated insulinemic levels. An alteration of the porphyrin metabolism might be responsible for this disorder.

  20. Developmental Programming: Impact of Gestational Steroid and Metabolic Milieus on Adiposity and Insulin Sensitivity in Prenatal Testosterone-Treated Female Sheep

    PubMed Central

    Cardoso, Rodolfo C.; Veiga-Lopez, Almudena; Moeller, Jacob; Beckett, Evan; Pease, Anthony; Keller, Erica; Madrigal, Vanessa; Chazenbalk, Gregorio; Dumesic, Daniel

    2016-01-01

    Prenatally testosterone (T)-treated sheep present metabolic disruptions similar to those seen in women with polycystic ovary syndrome. These females exhibit an increased ratio of small to large adipocytes, which may be the earliest event in the development of adult insulin resistance. Additionally, our longitudinal studies suggest the existence of a period of compensatory adaptation during development. This study tested whether 1) in utero cotreatment of prenatally T-treated sheep with androgen antagonist (flutamide) or insulin sensitizer (rosiglitazone) prevents juvenile insulin resistance and adult changes in adipocyte size; and 2) visceral adiposity and insulin sensitivity are both unaltered during early adulthood, confirming the predicted developmental trajectory in this animal model. Insulin sensitivity was tested during juvenile development and adipose tissue distribution, adipocyte size, and concentrations of adipokines were determined during early adulthood. Prenatal T-treated females manifested juvenile insulin resistance, which was prevented by prenatal rosiglitazone cotreatment. Neither visceral adiposity nor insulin sensitivity differed between groups during early adulthood. Prenatal T-treated sheep presented an increase in the relative proportion of small adipocytes, which was not substantially prevented by either prenatal intervention. A large effect size was observed for increased leptin concentrations in prenatal T-treated sheep compared with controls, which was prevented by prenatal rosiglitazone. In conclusion, gestational alterations in insulin-glucose homeostasis likely play a role in programming insulin resistance, but not adipocyte size distribution, in prenatal T-treated sheep. Furthermore, these results support the notion that a period of compensatory adaptation of the metabolic system to prenatal T exposure occurs between puberty and adulthood. PMID:26650569

  1. Developmental Programming: Impact of Gestational Steroid and Metabolic Milieus on Adiposity and Insulin Sensitivity in Prenatal Testosterone-Treated Female Sheep.

    PubMed

    Cardoso, Rodolfo C; Veiga-Lopez, Almudena; Moeller, Jacob; Beckett, Evan; Pease, Anthony; Keller, Erica; Madrigal, Vanessa; Chazenbalk, Gregorio; Dumesic, Daniel; Padmanabhan, Vasantha

    2016-02-01

    Prenatally testosterone (T)-treated sheep present metabolic disruptions similar to those seen in women with polycystic ovary syndrome. These females exhibit an increased ratio of small to large adipocytes, which may be the earliest event in the development of adult insulin resistance. Additionally, our longitudinal studies suggest the existence of a period of compensatory adaptation during development. This study tested whether 1) in utero cotreatment of prenatally T-treated sheep with androgen antagonist (flutamide) or insulin sensitizer (rosiglitazone) prevents juvenile insulin resistance and adult changes in adipocyte size; and 2) visceral adiposity and insulin sensitivity are both unaltered during early adulthood, confirming the predicted developmental trajectory in this animal model. Insulin sensitivity was tested during juvenile development and adipose tissue distribution, adipocyte size, and concentrations of adipokines were determined during early adulthood. Prenatal T-treated females manifested juvenile insulin resistance, which was prevented by prenatal rosiglitazone cotreatment. Neither visceral adiposity nor insulin sensitivity differed between groups during early adulthood. Prenatal T-treated sheep presented an increase in the relative proportion of small adipocytes, which was not substantially prevented by either prenatal intervention. A large effect size was observed for increased leptin concentrations in prenatal T-treated sheep compared with controls, which was prevented by prenatal rosiglitazone. In conclusion, gestational alterations in insulin-glucose homeostasis likely play a role in programming insulin resistance, but not adipocyte size distribution, in prenatal T-treated sheep. Furthermore, these results support the notion that a period of compensatory adaptation of the metabolic system to prenatal T exposure occurs between puberty and adulthood.

  2. Selective insulin resistance in hepatocyte senescence

    SciTech Connect

    Aravinthan, Aloysious; Challis, Benjamin; Shannon, Nicholas; Hoare, Matthew; Heaney, Judith; Alexander, Graeme J.M.

    2015-02-01

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied in three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance.

  3. [Beyond immunopathogenesis. Insulin resistance and "epidermal dysfunction"].

    PubMed

    Boehncke, W-H; Boehncke, S; Buerger, C

    2012-03-01

    Insulin is a central player in the regulation of metabolic as well as non-metabolic cells: inefficient signal transduction (insulin resistance) not only represents the cornerstone in the pathogenesis of type 2 diabetes mellitus, but also drives atherosclerosis through inducing endothelial dysfunction. Last but not least epidermal homeostasis depends on insulin. We summarize the effects of insulin on proliferation and differentiation of human keratinocytes as well as the relevance of cytokine-induced insulin resistance for alterations in epidermal homeostasis characteristic for psoriasis. Kinases involved in both insulin- as well as cytokine-receptor signaling represent potential targets for innovative therapeutics. Such small molecules would primarily normalize "epidermal dysfunction", thus complementing the immunomodulatory strategies of today's biologics.

  4. Insulin signaling, inflammation, and lipolysis in subcutaneous adipose tissue of transition dairy cows either overfed energy during the prepartum period or fed a controlled-energy diet.

    PubMed

    Mann, S; Nydam, D V; Abuelo, A; Leal Yepes, F A; Overton, T R; Wakshlag, J J

    2016-08-01

    Adipose tissue mobilization is a hallmark of the transition period in dairy cows. Cows overfed energy during the dry period have higher concentrations of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) compared with cows fed a controlled-energy diet prepartum. The reason for an increase in blood NEFA concentrations at the level of adipose tissue in cows overfed energy has not been fully elucidated. One hypothesis is that cows with high BHB concentrations suffer from adipose tissue-specific insulin resistance, leading to higher rates of adipose tissue mobilization in the postpartum period. To test this hypothesis, subcutaneous adipose tissue biopsies of cows overfed energy in excess of predicted requirements by 50% in the dry period, and that had high concentrations of blood BHB postpartum (group H; n=12), were used. Findings were compared with results of biopsies from cows fed a controlled-energy diet and with low BHB concentrations postpartum (group C; n=12) to create the biggest contrast in BHB concentrations. Subcutaneous adipose tissue biopsies were obtained before and 60 min after an intravenous glucose challenge (0.25 g/kg of glucose) at 28 and 10 d before expected calving as well as on d 4 and 21 postpartum. Phosphorylation of protein kinase B, extracellular signal-regulated kinase, and hormone-sensitive lipase was determined before and after glucose infusion by Western blot. Western blot was also used to assess the baseline protein abundance of peroxisome proliferator-activated receptor gamma and insulin receptor β-subunit. In addition, gene expression of fatty acid synthase, adiponectin, monocyte chemoattractant protein 1, and tumor necrosis factor α was determined by real-time quantitative reverse-transcription PCR. Backfat thickness was determined in the thurl area by ultrasonography. Cows in group H showed a greater degree of lipogenesis prepartum, but no differences were found in lipolytic enzyme activity postpartum compared with cows

  5. New genetic loci link adipose and insulin biology to body fat distribution

    PubMed Central

    Strawbridge, Rona J; Pers, Tune H; Fischer, Krista; Justice, Anne E; Workalemahu, Tsegaselassie; Wu, Joseph M.W.; Buchkovich, Martin L; Heard-Costa, Nancy L; Roman, Tamara S; Drong, Alexander W; Song, Ci; Gustafsson, Stefan; Day, Felix R; Esko, Tonu; Fall, Tove; Kutalik, Zoltán; Luan, Jian’an; Randall, Joshua C; Scherag, André; Vedantam, Sailaja; Wood, Andrew R; Chen, Jin; Fehrmann, Rudolf; Karjalainen, Juha; Kahali, Bratati; Liu, Ching-Ti; Schmidt, Ellen M; Absher, Devin; Amin, Najaf; Anderson, Denise; Beekman, Marian; Bragg-Gresham, Jennifer L; Buyske, Steven; Demirkan, Ayse; Ehret, Georg B; Feitosa, Mary F; Goel, Anuj; Jackson, Anne U; Johnson, Toby; Kleber, Marcus E; Kristiansson, Kati; Mangino, Massimo; Leach, Irene Mateo; Medina-Gomez, Carolina; Palmer, Cameron D; Pasko, Dorota; Pechlivanis, Sonali; Peters, Marjolein J; Prokopenko, Inga; Stančáková, Alena; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Van Vliet-Ostaptchouk, Jana V; Yengo, Loïc; Zhang, Weihua; Albrecht, Eva; Ärnlöv, Johan; Arscott, Gillian M; Bandinelli, Stefania; Barrett, Amy; Bellis, Claire; Bennett, Amanda J; Berne, Christian; Blüher, Matthias; Böhringer, Stefan; Bonnet, Fabrice; Böttcher, Yvonne; Bruinenberg, Marcel; Carba, Delia B; Caspersen, Ida H; Clarke, Robert; Daw, E Warwick; Deelen, Joris; Deelman, Ewa; Delgado, Graciela; Doney, Alex SF; Eklund, Niina; Erdos, Michael R; Estrada, Karol; Eury, Elodie; Friedrich, Nele; Garcia, Melissa E; Giedraitis, Vilmantas; Gigante, Bruna; Go, Alan S; Golay, Alain; Grallert, Harald; Grammer, Tanja B; Gräßler, Jürgen; Grewal, Jagvir; Groves, Christopher J; Haller, Toomas; Hallmans, Goran; Hartman, Catharina A; Hassinen, Maija; Hayward, Caroline; Heikkilä, Kauko; Herzig, Karl-Heinz; Helmer, Quinta; Hillege, Hans L; Holmen, Oddgeir; Hunt, Steven C; Isaacs, Aaron; Ittermann, Till; James, Alan L; Johansson, Ingegerd; Juliusdottir, Thorhildur; Kalafati, Ioanna-Panagiota; Kinnunen, Leena; Koenig, Wolfgang; Kooner, Ishminder K; Kratzer, Wolfgang; Lamina, Claudia; Leander, Karin; Lee, Nanette R; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lobbens, Stéphane; Lorentzon, Mattias; Mach, François; Magnusson, Patrik KE; Mahajan, Anubha; McArdle, Wendy L; Menni, Cristina; Merger, Sigrun; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Moayyeri, Alireza; Monda, Keri L; Mooijaart, Simon P; Mühleisen, Thomas W; Mulas, Antonella; Müller, Gabriele; Müller-Nurasyid, Martina; Nagaraja, Ramaiah; Nalls, Michael A; Narisu, Narisu; Glorioso, Nicola; Nolte, Ilja M; Olden, Matthias; Rayner, Nigel W; Renstrom, Frida; Ried, Janina S; Robertson, Neil R; Rose, Lynda M; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Sennblad, Bengt; Seufferlein, Thomas; Sitlani, Colleen M; Smith, Albert Vernon; Stirrups, Kathleen; Stringham, Heather M; Sundström, Johan; Swertz, Morris A; Swift, Amy J; Syvänen, Ann-Christine; Tayo, Bamidele O; Thorand, Barbara; Thorleifsson, Gudmar; Tomaschitz, Andreas; Troffa, Chiara; van Oort, Floor VA; Verweij, Niek; Vonk, Judith M; Waite, Lindsay L; Wennauer, Roman; Wilsgaard, Tom; Wojczynski, Mary K; Wong, Andrew; Zhang, Qunyuan; Zhao, Jing Hua; Brennan, Eoin P.; Choi, Murim; Eriksson, Per; Folkersen, Lasse; Franco-Cereceda, Anders; Gharavi, Ali G; Hedman, Åsa K; Hivert, Marie-France; Huang, Jinyan; Kanoni, Stavroula; Karpe, Fredrik; Keildson, Sarah; Kiryluk, Krzysztof; Liang, Liming; Lifton, Richard P; Ma, Baoshan; McKnight, Amy J; McPherson, Ruth; Metspalu, Andres; Min, Josine L; Moffatt, Miriam F; Montgomery, Grant W; Murabito, Joanne M; Nicholson, George; Nyholt, Dale R; Olsson, Christian; Perry, John RB; Reinmaa, Eva; Salem, Rany M; Sandholm, Niina; Schadt, Eric E; Scott, Robert A; Stolk, Lisette; Vallejo, Edgar E.; Westra, Harm-Jan; Zondervan, Krina T; Amouyel, Philippe; Arveiler, Dominique; Bakker, Stephan JL; Beilby, John; Bergman, Richard N; Blangero, John; Brown, Morris J; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chines, Peter S; Claudi-Boehm, Simone; Collins, Francis S; Crawford, Dana C; Danesh, John; de Faire, Ulf; de Geus, Eco JC; Dörr, Marcus; Erbel, Raimund; Eriksson, Johan G; Farrall, Martin; Ferrannini, Ele; Ferrières, Jean; Forouhi, Nita G; Forrester, Terrence; Franco, Oscar H; Gansevoort, Ron T; Gieger, Christian; Gudnason, Vilmundur; Haiman, Christopher A; Harris, Tamara B; Hattersley, Andrew T; Heliövaara, Markku; Hicks, Andrew A; Hingorani, Aroon D; Hoffmann, Wolfgang; Hofman, Albert; Homuth, Georg; Humphries, Steve E; Hyppönen, Elina; Illig, Thomas; Jarvelin, Marjo-Riitta; Johansen, Berit; Jousilahti, Pekka; Jula, Antti M; Kaprio, Jaakko; Kee, Frank; Keinanen-Kiukaanniemi, Sirkka M; Kooner, Jaspal S; Kooperberg, Charles; Kovacs, Peter; Kraja, Aldi T; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Lakka, Timo A; Langenberg, Claudia; Le Marchand, Loic; Lehtimäki, Terho; Lyssenko, Valeriya; Männistö, Satu; Marette, André; Matise, Tara C; McKenzie, Colin A; McKnight, Barbara; Musk, Arthur W; Möhlenkamp, Stefan; Morris, Andrew D; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J; Ong, Ken K; Palmer, Lyle J; Penninx, Brenda W; Peters, Annette; Pramstaller, Peter P; Raitakari, Olli T; Rankinen, Tuomo; Rao, DC; Rice, Treva K; Ridker, Paul M; Ritchie, Marylyn D.; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J; Saramies, Jouko; Sarzynski, Mark A; Schwarz, Peter EH; Shuldiner, Alan R; Staessen, Jan A; Steinthorsdottir, Valgerdur; Stolk, Ronald P; Strauch, Konstantin; Tönjes, Anke; Tremblay, Angelo; Tremoli, Elena; Vohl, Marie-Claude; Völker, Uwe; Vollenweider, Peter; Wilson, James F; Witteman, Jacqueline C; Adair, Linda S; Bochud, Murielle; Boehm, Bernhard O; Bornstein, Stefan R; Bouchard, Claude; Cauchi, Stéphane; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Cooper, Richard S; Dedoussis, George; Ferrucci, Luigi; Froguel, Philippe; Grabe, Hans-Jörgen; Hamsten, Anders; Hui, Jennie; Hveem, Kristian; Jöckel, Karl-Heinz; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; März, Winfried; Munroe, Patricia B; Njølstad, Inger; Oostra, Ben A; Palmer, Colin NA; Pedersen, Nancy L; Perola, Markus; Pérusse, Louis; Peters, Ulrike; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Rivadeneira, Fernando; Saaristo, Timo E; Saleheen, Danish; Sinisalo, Juha; Slagboom, P Eline; Snieder, Harold; Spector, Tim D; Stefansson, Kari; Stumvoll, Michael; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; van der Harst, Pim; Veronesi, Giovanni; Walker, Mark; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Abecasis, Goncalo R; Assimes, Themistocles L; Berndt, Sonja I; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Franke, Lude; Frayling, Timothy M; Groop, Leif C; Hunter, David J.; Kaplan, Robert C; O’Connell, Jeffrey R; Qi, Lu; Schlessinger, David; Strachan, David P; Thorsteinsdottir, Unnur; van Duijn, Cornelia M; Willer, Cristen J; Visscher, Peter M; Yang, Jian; Hirschhorn, Joel N; Zillikens, M Carola; McCarthy, Mark I; Speliotes, Elizabeth K; North, Kari E; Fox, Caroline S; Barroso, Inês; Franks, Paul W; Ingelsson, Erik; Heid, Iris M; Loos, Ruth JF; Cupples, L Adrienne; Morris, Andrew P; Lindgren, Cecilia M; Mohlke, Karen L

    2014-01-01

    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, we conducted genome-wide association meta-analyses of waist and hip circumference-related traits in up to 224,459 individuals. We identified 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (WHRadjBMI) and an additional 19 loci newly associated with related waist and hip circumference measures (P<5×10−8). Twenty of the 49 WHRadjBMI loci showed significant sexual dimorphism, 19 of which displayed a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation, and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms. PMID:25673412

  6. New genetic loci link adipose and insulin biology to body fat distribution.

    PubMed

    Shungin, Dmitry; Winkler, Thomas W; Croteau-Chonka, Damien C; Ferreira, Teresa; Locke, Adam E; Mägi, Reedik; Strawbridge, Rona J; Pers, Tune H; Fischer, Krista; Justice, Anne E; Workalemahu, Tsegaselassie; Wu, Joseph M W; Buchkovich, Martin L; Heard-Costa, Nancy L; Roman, Tamara S; Drong, Alexander W; Song, Ci; Gustafsson, Stefan; Day, Felix R; Esko, Tonu; Fall, Tove; Kutalik, Zoltán; Luan, Jian'an; Randall, Joshua C; Scherag, André; Vedantam, Sailaja; Wood, Andrew R; Chen, Jin; Fehrmann, Rudolf; Karjalainen, Juha; Kahali, Bratati; Liu, Ching-Ti; Schmidt, Ellen M; Absher, Devin; Amin, Najaf; Anderson, Denise; Beekman, Marian; Bragg-Gresham, Jennifer L; Buyske, Steven; Demirkan, Ayse; Ehret, Georg B; Feitosa, Mary F; Goel, Anuj; Jackson, Anne U; Johnson, Toby; Kleber, Marcus E; Kristiansson, Kati; Mangino, Massimo; Mateo Leach, Irene; Medina-Gomez, Carolina; Palmer, Cameron D; Pasko, Dorota; Pechlivanis, Sonali; Peters, Marjolein J; Prokopenko, Inga; Stančáková, Alena; Ju Sung, Yun; Tanaka, Toshiko; Teumer, Alexander; Van Vliet-Ostaptchouk, Jana V; Yengo, Loïc; Zhang, Weihua; Albrecht, Eva; Ärnlöv, Johan; Arscott, Gillian M; Bandinelli, Stefania; Barrett, Amy; Bellis, Claire; Bennett, Amanda J; Berne, Christian; Blüher, Matthias; Böhringer, Stefan; Bonnet, Fabrice; Böttcher, Yvonne; Bruinenberg, Marcel; Carba, Delia B; Caspersen, Ida H; Clarke, Robert; Daw, E Warwick; Deelen, Joris; Deelman, Ewa; Delgado, Graciela; Doney, Alex S F; Eklund, Niina; Erdos, Michael R; Estrada, Karol; Eury, Elodie; Friedrich, Nele; Garcia, Melissa E; Giedraitis, Vilmantas; Gigante, Bruna; Go, Alan S; Golay, Alain; Grallert, Harald; Grammer, Tanja B; Gräßler, Jürgen; Grewal, Jagvir; Groves, Christopher J; Haller, Toomas; Hallmans, Goran; Hartman, Catharina A; Hassinen, Maija; Hayward, Caroline; Heikkilä, Kauko; Herzig, Karl-Heinz; Helmer, Quinta; Hillege, Hans L; Holmen, Oddgeir; Hunt, Steven C; Isaacs, Aaron; Ittermann, Till; James, Alan L; Johansson, Ingegerd; Juliusdottir, Thorhildur; Kalafati, Ioanna-Panagiota; Kinnunen, Leena; Koenig, Wolfgang; Kooner, Ishminder K; Kratzer, Wolfgang; Lamina, Claudia; Leander, Karin; Lee, Nanette R; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lobbens, Stéphane; Lorentzon, Mattias; Mach, François; Magnusson, Patrik K E; Mahajan, Anubha; McArdle, Wendy L; Menni, Cristina; Merger, Sigrun; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Moayyeri, Alireza; Monda, Keri L; Mooijaart, Simon P; Mühleisen, Thomas W; Mulas, Antonella; Müller, Gabriele; Müller-Nurasyid, Martina; Nagaraja, Ramaiah; Nalls, Michael A; Narisu, Narisu; Glorioso, Nicola; Nolte, Ilja M; Olden, Matthias; Rayner, Nigel W; Renstrom, Frida; Ried, Janina S; Robertson, Neil R; Rose, Lynda M; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Sennblad, Bengt; Seufferlein, Thomas; Sitlani, Colleen M; Vernon Smith, Albert; Stirrups, Kathleen; Stringham, Heather M; Sundström, Johan; Swertz, Morris A; Swift, Amy J; Syvänen, Ann-Christine; Tayo, Bamidele O; Thorand, Barbara; Thorleifsson, Gudmar; Tomaschitz, Andreas; Troffa, Chiara; van Oort, Floor V A; Verweij, Niek; Vonk, Judith M; Waite, Lindsay L; Wennauer, Roman; Wilsgaard, Tom; Wojczynski, Mary K; Wong, Andrew; Zhang, Qunyuan; Hua Zhao, Jing; Brennan, Eoin P; Choi, Murim; Eriksson, Per; Folkersen, Lasse; Franco-Cereceda, Anders; Gharavi, Ali G; Hedman, Åsa K; Hivert, Marie-France; Huang, Jinyan; Kanoni, Stavroula; Karpe, Fredrik; Keildson, Sarah; Kiryluk, Krzysztof; Liang, Liming; Lifton, Richard P; Ma, Baoshan; McKnight, Amy J; McPherson, Ruth; Metspalu, Andres; Min, Josine L; Moffatt, Miriam F; Montgomery, Grant W; Murabito, Joanne M; Nicholson, George; Nyholt, Dale R; Olsson, Christian; Perry, John R B; Reinmaa, Eva; Salem, Rany M; Sandholm, Niina; Schadt, Eric E; Scott, Robert A; Stolk, Lisette; Vallejo, Edgar E; Westra, Harm-Jan; Zondervan, Krina T; Amouyel, Philippe; Arveiler, Dominique; Bakker, Stephan J L; Beilby, John; Bergman, Richard N; Blangero, John; Brown, Morris J; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chines, Peter S; Claudi-Boehm, Simone; Collins, Francis S; Crawford, Dana C; Danesh, John; de Faire, Ulf; de Geus, Eco J C; Dörr, Marcus; Erbel, Raimund; Eriksson, Johan G; Farrall, Martin; Ferrannini, Ele; Ferrières, Jean; Forouhi, Nita G; Forrester, Terrence; Franco, Oscar H; Gansevoort, Ron T; Gieger, Christian; Gudnason, Vilmundur; Haiman, Christopher A; Harris, Tamara B; Hattersley, Andrew T; Heliövaara, Markku; Hicks, Andrew A; Hingorani, Aroon D; Hoffmann, Wolfgang; Hofman, Albert; Homuth, Georg; Humphries, Steve E; Hyppönen, Elina; Illig, Thomas; Jarvelin, Marjo-Riitta; Johansen, Berit; Jousilahti, Pekka; Jula, Antti M; Kaprio, Jaakko; Kee, Frank; Keinanen-Kiukaanniemi, Sirkka M; Kooner, Jaspal S; Kooperberg, Charles; Kovacs, Peter; Kraja, Aldi T; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Lakka, Timo A; Langenberg, Claudia; Le Marchand, Loic; Lehtimäki, Terho; Lyssenko, Valeriya; Männistö, Satu; Marette, André; Matise, Tara C; McKenzie, Colin A; McKnight, Barbara; Musk, Arthur W; Möhlenkamp, Stefan; Morris, Andrew D; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J; Ong, Ken K; Palmer, Lyle J; Penninx, Brenda W; Peters, Annette; Pramstaller, Peter P; Raitakari, Olli T; Rankinen, Tuomo; Rao, D C; Rice, Treva K; Ridker, Paul M; Ritchie, Marylyn D; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J; Saramies, Jouko; Sarzynski, Mark A; Schwarz, Peter E H; Shuldiner, Alan R; Staessen, Jan A; Steinthorsdottir, Valgerdur; Stolk, Ronald P; Strauch, Konstantin; Tönjes, Anke; Tremblay, Angelo; Tremoli, Elena; Vohl, Marie-Claude; Völker, Uwe; Vollenweider, Peter; Wilson, James F; Witteman, Jacqueline C; Adair, Linda S; Bochud, Murielle; Boehm, Bernhard O; Bornstein, Stefan R; Bouchard, Claude; Cauchi, Stéphane; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Cooper, Richard S; Dedoussis, George; Ferrucci, Luigi; Froguel, Philippe; Grabe, Hans-Jörgen; Hamsten, Anders; Hui, Jennie; Hveem, Kristian; Jöckel, Karl-Heinz; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; März, Winfried; Munroe, Patricia B; Njølstad, Inger; Oostra, Ben A; Palmer, Colin N A; Pedersen, Nancy L; Perola, Markus; Pérusse, Louis; Peters, Ulrike; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Rivadeneira, Fernando; Saaristo, Timo E; Saleheen, Danish; Sinisalo, Juha; Slagboom, P Eline; Snieder, Harold; Spector, Tim D; Thorsteinsdottir, Unnur; Stumvoll, Michael; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; van der Harst, Pim; Veronesi, Giovanni; Walker, Mark; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Abecasis, Goncalo R; Assimes, Themistocles L; Berndt, Sonja I; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Franke, Lude; Frayling, Timothy M; Groop, Leif C; Hunter, David J; Kaplan, Robert C; O'Connell, Jeffrey R; Qi, Lu; Schlessinger, David; Strachan, David P; Stefansson, Kari; van Duijn, Cornelia M; Willer, Cristen J; Visscher, Peter M; Yang, Jian; Hirschhorn, Joel N; Zillikens, M Carola; McCarthy, Mark I; Speliotes, Elizabeth K; North, Kari E; Fox, Caroline S; Barroso, Inês; Franks, Paul W; Ingelsson, Erik; Heid, Iris M; Loos, Ruth J F; Cupples, L Adrienne; Morris, Andrew P; Lindgren, Cecilia M; Mohlke, Karen L

    2015-02-12

    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.

  7. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    PubMed

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  8. Phosphatidic acid and phosphatidylinositol labelling in adipose tissue. Relationship to the metabolic effects of insulin and insulin-like agents.

    PubMed Central

    Honeyman, T W; Strohsnitter, W; Scheid, C R; Schimmel, R J

    1983-01-01

    Exposure to phospholipase C increased the incorporation of [32P]Pi into phosphatidate, CMP-phosphatidate and phosphatidylinositol in rat adipose tissue and isolated adipocytes. A similar effect was observed in response to insulin and oxytocin. Theophylline, 3-isobutyl-1-methylxanthine and adenosine deaminase decreased [32P]Pi incorporation, and adenosine and N6-phenylisopropyladenosine reversed these effects. As with insulin, exposure of adipose tissue to phospholipase C stimulated oxidation of glucose, pyruvate and leucine and activated pyruvate dehydrogenase. Oxytocin and adenosine also mimicked the effects of insulin on leucine oxidation and pyruvate dehydrogenase. However, only insulin stimulated glycogen synthase activity, indicating that the regulation of synthase may be achieved by intracellular events distinct from those regulating changes in phospholipid metabolism, sugar transport and mitochondrial enzyme activities. It is postulated that exposure to phospholipase C forms diacylglycerol, which is phosphorylated to yield phosphatidate. The increased labelling of CMP-phosphatidate and phosphatidylinositol results from the conversion of phosphatidate into these lipids. The correlation between the effects of phospholipase C on phosphatidate synthesis and changes in adipose-tissue metabolism suggests the possibility that increased phosphatidate may directly or indirectly produce changes in membrane transport and enzyme activities. The pattern of phospholipid labelling produced by insulin, adenosine and oxytocin suggests that these stimuli may also increase phosphatidate synthesis, and, if so, changes in phospholipid metabolism could account for some of the metabolic actions of these stimuli. PMID:6411068

  9. Genetics Home Reference: type A insulin resistance syndrome

    MedlinePlus

    ... insulin resistance syndrome , insulin resistance impairs blood sugar regulation and ultimately leads to a condition called diabetes ... to the effects of insulin impairs blood sugar regulation and leads to diabetes mellitus. In females with ...

  10. Serum Resistin Levels Are Associated with Adiposity and Insulin Sensitivity in Obese Hispanic Subjects

    PubMed Central

    Nieva-Vazquez, Adriana; Torres-Rasgado, Enrique; López-López, José G.; Romero, Jose R.

    2014-01-01

    Abstract Background and Aims: Resistin is involved in the development of obesity and insulin resistance (IR) in mice and may play a similar role in humans through mechanisms that remain unresolved. The objective of this study was to characterize the relationship between resistin levels in obese subjects with and without IR among Hispanic subjects. Material and Methods: A cross-sectional study was performed on 117 nondiabetic Hispanic subjects of both genders that were allocated into three study groups: A control group (n=47) of otherwise healthy individuals in metabolic balance, a group with obesity (OB) (n=36), and a group with obesity and IR (OB-IR) (n=34). Anthropometric and clinical characterization was carried out, and resistin levels were determined by enzyme-linked immunosorbent assay (ELISA). Results: We found that resistin levels were higher in OB and OB-IR groups when compared to the control group (1331.79±142.15 pg/mL, 1266.28±165.97 pg/mL vs. 959.21±171.43 pg/mL; P<0.05), an effect that was not confounded by age (control, 34.04±10.00 years; OB, 37.30±10.78 years; and OB-IR, 35.67±10.15 years). In addition, we observed a significant correlation (P<0.001) between resistin levels and higher adiposity and insulin sensitivity (IS) in our cohort. Conclusions: Our results suggest that higher resistin levels are associated with higher adiposity and lower IS among obese Hispanic subjects. PMID:24266722

  11. Insulin resistance and cancer risk: an overview of the pathogenetic mechanisms.

    PubMed

    Arcidiacono, Biagio; Iiritano, Stefania; Nocera, Aurora; Possidente, Katiuscia; Nevolo, Maria T; Ventura, Valeria; Foti, Daniela; Chiefari, Eusebio; Brunetti, Antonio

    2012-01-01

    Insulin resistance is common in individuals with obesity or type 2 diabetes (T2D), in which circulating insulin levels are frequently increased. Recent epidemiological and clinical evidence points to a link between insulin resistance and cancer. The mechanisms for this association are unknown, but hyperinsulinaemia (a hallmark of insulin resistance) and the increase in bioavailable insulin-like growth factor I (IGF-I) appear to have a role in tumor initiation and progression in insulin-resistant patients. Insulin and IGF-I inhibit the hepatic synthesis of sex-hormone binding globulin (SHBG), whereas both hormones stimulate the ovarian synthesis of sex steroids, whose effects, in breast epithelium and endometrium, can promote cellular proliferation and inhibit apoptosis. Furthermore, an increased risk of cancer among insulin-resistant patients can be due to overproduction of reactive oxygen species (ROS) that can damage DNA contributing to mutagenesis and carcinogenesis. On the other hand, it is possible that the abundance of inflammatory cells in adipose tissue of obese and diabetic patients may promote systemic inflammation which can result in a protumorigenic environment. Here, we summarize recent progress on insulin resistance and cancer, focusing on various implicated mechanisms that have been described recently, and discuss how these mechanisms may contribute to cancer initiation and progression.

  12. Insulin resistance and response to antiviral therapy in chronic hepatitis C: mechanisms and management.

    PubMed

    del Campo, José A; López, Reyes Aparcero; Romero-Gómez, Manuel

    2010-01-01

    Insulin resistance has been found to be an independent factor predicting sustained response to peginterferon plus ribavirin in patients with chronic hepatitis C. Insulin resistance seems to be involved in decreased sensitivity to interferon and could block interferon intracellular signaling. Insulin resistance promotes steatosis and fibrosis progression, induces pro-inflammatory cytokine secretion and increases adipose tissue, decreasing interferon availability. Moreover, suppressor of cytokines 3 and protein tyrosine-phosphatase seems to be able to block interferon and insulin signaling, building a feed-forward loop. Insulin resistance can be treated with exercise, diet or through the use of drugs that improve insulin sensitivity, like biguanides or glitazones. A recent controlled, randomized, double-blind clinical trial (TRIC-1) examined the effect of adding metformin to standard therapy in the treatment of hepatitis C. This study demonstrated that women infected with hepatitis C virus genotype 1 and HOMA >2 treated with metformin showed a greater drop in viral load during the first 12 weeks and a doubled sustained viral response in comparison with females receiving placebo. Pioglitazone has been used in previous nonresponders and naïve patients with disappointing results in two pilot trials. The mechanisms by which the virus promotes insulin resistance seems to be genotype-dependent and could explain, at least in part, the discrepancies between insulin sensitizers. Insulin resistance is a new target in the challenging management of chronic hepatitis C.

  13. Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2

    PubMed Central

    Vila-Bedmar, Rocio; Cruces-Sande, Marta; Lucas, Elisa; Willemen, Hanneke L.D.M.; Heijnen, Cobi J.; Kavelaars, Annemieke; Mayor, Federico; Murga, Cristina

    2015-01-01

    Insulin resistance is a common feature of obesity and predisposes individuals to various prevalent pathological conditions. G protein-coupled receptor kinase 2 (GRK2) integrates several signal transduction pathways and is emerging as a physiologically relevant inhibitor of insulin signaling. GRK2 abundanceis increased in humans with metabolic syndrome and in different murine models of insulin resistance. To support GRK2 as a potential drug target in type 2 diabetes and obesity, we investigated whether lowering GRK2 abundance reversed an ongoing systemic insulin-resistant phenotype, using a mouse model of tamoxifen-induced GRK2 ablation after high fat diet-dependent obesity and insulin resistance. Tamoxifen-triggered GRK2 deletion impeded further body weight gain, normalized fa sting glycemia, improved glucose tolerance and was associated with preserved insulin sensitivity in skeletal muscle and liver, thereby maintaining whole body glucose homeostasis. Moreover, when continued to be fed a high fat diet, these animals displayed reduced fat mass and smaller adipocytes, were resistant to the development of liver steatosis, and showed reduced expression of pro-inflammatory markers in the liver. Our results indicate that GRK2 acts as a hub to control metabolic functions in different tissues, which is key to controlling insulin resistance development in vivo. These data suggest that inhibiting GRK2 could reverse an established insulin-resistant and obese phenotype, thereby putting forward this enzyme as a potential therapeutic target linking glucose homeostasis and regulation of adiposity. PMID:26198359

  14. Interaction between heat acclimation and exogenous insulin in brown adipose tissue of rats

    NASA Astrophysics Data System (ADS)

    Ohno, H.; Yamashita, H.; Sato, N.; Habara, Y.; Gasa, S.; Nagasawa, J.; Sato, Y.; Ishikawa, M.; Segawa, M.; Yamamoto, M.

    1992-09-01

    Seventy-one male Wistar strain rats (7 weeks old) were kept at 5, 25, or 34° C, respectively, for 2 weeks with or without insulin administration. Insulin (Novo Lente MC) was given subcutaneously in a dose of 3.62 nmol/125 µl saline per 100 g body weight. An apparent effect of insulin treatment was noted only in heat-exposed rats, resulting in a remarkable gain in inter-scapular brown adipose tissue (BAT) mass of heat-acclimated, insulin-treated rats in terms of weight or weight per unit body weight. The BAT from heat-acclimated, insulin-treated rats had significantly higher levels of protein, DNA, RNA, and triglyceride than BAT from heat-acclimated, saline-treated rats. Therefore, it seems likely that the growth of BAT in heat-acclimated, insulin-treated rats was mostly due to the anabolic effects of insulin. The uncoupling protein mRNA was, however, present in BAT of heat-acclimated, insulin-treated rats at rather a depressed level, explaining a corresponding decrease in cold tolerance. On the other hand, the expression of insulin receptor mRNA was attenuated in BAT of rats from all the insulin-treated groups, possibly due to the down-regulation of insulin. Thus, there appeared to be some linkage among BAT, heat acclimation, and insulin.

  15. Insulin resistance is associated with specific gut microbiota in appendix samples from morbidly obese patients

    PubMed Central

    Moreno-Indias, Isabel; Sánchez-Alcoholado, Lidia; García-Fuentes, Eduardo; Cardona, Fernando; Queipo-Ortuño, Maria Isabel; Tinahones, Francisco J

    2016-01-01

    Alterations in intestinal microbiota composition could promote a proinflammatory state in adipose tissue that is associated with obesity and insulin resistance. Our aim was to identify the gut microbiota associated with insulin resistance in appendix samples from morbidly obese patients classified in 2 groups, high (IR-MO) and low insulin-resistant (NIR-MO), and to determine the possible association between these gut microbiota and variables associated with insulin resistance and the expression of genes related to inflammation and macrophage infiltration in adipose tissue. Appendix samples were obtained during gastric bypass surgery and the microbiome composition was determined by 16S rRNA pyrosequencing and bioinformatics analysis by QIIME. The Chao and Shannon indices for each study group suggested similar bacterial richness and diversity in the appendix samples between both study groups. 16S rRNA pyrosequencing showed that the IR-MO group had a significant increase in the abundance of Firmicutes, Fusobacteria, Pseudomonaceae, Prevotellaceae, Fusobacteriaceae, Pseudomonas, Catenibacterium, Prevotella, Veillonella and Fusobacterium compared to the NIR-MO group. Moreover, in the IR-MO group we found a significant positive correlation between the abundance of Prevotella, Succinovibrio, Firmicutes and Veillonella and the visceral adipose tissue expression level of IL6, TNF alpha, ILB1 and CD11b respectively, and significant negative correlations between the abundance of Butyricimonas and Bifidobacterium, and plasma glucose and insulin levels, respectively. In conclusion, an appendix dysbiosis occurs in IR-MO patients, with a loss of butyrate-producing bacteria, essential to maintenance of gut integrity, together with an increase in mucin-degrading bacteria and opportunistic pathogens. The microbiota present in the IR-MO group were related to low grade inflammation in adipose tissue and could be useful for developing strategies to control the development of insulin

  16. G Protein–Coupled Receptor Kinase 2 Plays a Relevant Role in Insulin Resistance and Obesity

    PubMed Central

    Garcia-Guerra, Lucia; Nieto-Vazquez, Iria; Vila-Bedmar, Rocio; Jurado-Pueyo, María; Zalba, Guillermo; Díez, Javier; Murga, Cristina; Fernández-Veledo, Sonia; Mayor, Federico; Lorenzo, Margarita

    2010-01-01

    OBJECTIVE Insulin resistance is associated with the pathogenesis of metabolic disorders as type 2 diabetes and obesity. Given the emerging role of signal transduction in these syndromes, we set out to explore the possible role that G protein–coupled receptor kinase 2 (GRK2), first identified as a G protein–coupled receptor regulator, could have as a modulator of insulin responses. RESEARCH DESIGN AND METHODS We analyzed the influence of GRK2 levels in insulin signaling in myoblasts and adipocytes with experimentally increased or silenced levels of GRK2, as well as in GRK2 hemizygous animals expressing 50% lower levels of this kinase in three different models of insulin resistance: tumor necrosis factor-α (TNF-α) infusion, aging, and high-fat diet (HFD). Glucose transport, whole-body glucose and insulin tolerance, the activation status of insulin pathway components, and the circulating levels of important mediators were measured. The development of obesity and adipocyte size with age and HFD was analyzed. RESULTS Altering GRK2 levels markedly modifies insulin-mediated signaling in cultured adipocytes and myocytes. GRK2 levels are increased by ∼2-fold in muscle and adipose tissue in the animal models tested, as well as in lymphocytes from metabolic syndrome patients. In contrast, hemizygous GRK2 mice show enhanced insulin sensitivity and do not develop insulin resistance by TNF-α, aging, or HFD. Furthermore, reduced GRK2 levels induce a lean phenotype and decrease age-related adiposity. CONCLUSIONS Overall, our data identify GRK2 as an important negative regulator of insulin effects, key to the etiopathogenesis of insulin resistance and obesity, which uncovers this protein as a potential therapeutic target in the treatment of these disorders. PMID:20627936

  17. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells

    SciTech Connect

    Timper, Katharina; Seboek, Dalma; Eberhardt, Michael; Linscheid, Philippe; Christ-Crain, Mirjam; Keller, Ulrich; Mueller, Beat; Zulewski, Henryk . E-mail: henryk.zulewski@unibas.ch

    2006-03-24

    Mesenchymal stem cells (MSC) from mouse bone marrow were shown to adopt a pancreatic endocrine phenotype in vitro and to reverse diabetes in an animal model. MSC from human bone marrow and adipose tissue represent very similar cell populations with comparable phenotypes. Adipose tissue is abundant and easily accessible and could thus also harbor cells with the potential to differentiate in insulin producing cells. We isolated human adipose tissue-derived MSC from four healthy donors. During the proliferation period, the cells expressed the stem cell markers nestin, ABCG2, SCF, Thy-1 as well as the pancreatic endocrine transcription factor Isl-1. The cells were induced to differentiate into a pancreatic endocrine phenotype by defined culture conditions within 3 days. Using quantitative PCR a down-regulation of ABCG2 and up-regulation of pancreatic developmental transcription factors Isl-1, Ipf-1, and Ngn3 were observed together with induction of the islet hormones insulin, glucagon, and somatostatin.

  18. Knockout of Vasohibin-1 Gene in Mice Results in Healthy Longevity with Reduced Expression of Insulin Receptor, Insulin Receptor Substrate 1, and Insulin Receptor Substrate 2 in Their White Adipose Tissue

    PubMed Central

    Takeda, Eichi; Suzuki, Yasuhiro; Yamada, Tetsuya; Katagiri, Hideki

    2017-01-01

    Vasohibin-1 (Vash1), originally isolated as an endothelium-derived angiogenesis inhibitor, has a characteristic of promoting stress tolerance in endothelial cells (ECs). We therefore speculated that the lack of the vash1 gene would result in a short lifespan. However, to our surprise, vash1−/− mice lived significantly longer with a milder senescence phenotype than wild-type (WT) mice. We sought the cause of this healthy longevity and found that vash1−/− mice exhibited mild insulin resistance along with reduced expression of the insulin receptor (insr), insulin receptor substrate 1 (irs-1), and insulin receptor substrate 2 (irs-2) in their white adipose tissue (WAT) but not in their liver or skeletal muscle. The expression of vash1 dominated in the WAT among those 3 organs. Importantly, vash1−/− mice did not develop diabetes even when fed a high-fat diet. These results indicate that the expression of vash1 was required for the normal insulin sensitivity of the WAT and that the target molecules for this activity were insr, irs1, and irs2. The lack of vash1 caused mild insulin resistance without the outbreak of overt diabetes and might contribute to healthy longevity. PMID:28367331

  19. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance.

    PubMed Central

    Steinberg, H O; Chaker, H; Leaming, R; Johnson, A; Brechtel, G; Baron, A D

    1996-01-01

    To test the hypothesis that obesity/insulin resistance impairs both endothelium-dependent vasodilation and insulin-mediated augmentation of endothelium-dependent vasodilation, we studied leg blood flow (LBF) responses to graded intrafemoral artery infusions of methacholine chloride (MCh) or sodium nitroprusside (SNP) during saline infusion and euglycemic hyperinsulinemia in lean insulin-sensitive controls (C), in obese insulin-resistant subjects (OB), and in subjects with non-insulin-dependent diabetes mellitus (NIDDM). MCh induced increments in LBF were approximately 40% and 55% lower in OB and NIDDM, respectively, as compared with C (P < 0.05). Euglycemic hyperinsulinemia augmented the LBF response to MCh by - 50% in C (P < 0.05 vs saline) but not in OB and NIDDM. SNP caused comparable increments in LBF in all groups. Regression analysis revealed a significant inverse correlation between the maximal LBF change in response to MCh and body fat content. Thus, obesity/insulin resistance is associated with (a) blunted endothelium-dependent, but normal endothelium-independent vasodilation and (b) failure of euglycemic hyperinsulinemia to augment endothelium-dependent vasodilation. Therefore, obese/insulin-resistant subjects are characterized by endothelial dysfunction and endothelial resistance to insulin's effect on enhancement of endothelium-dependent vasodilation. This endothelial dysfunction could contribute to the increased risk of atherosclerosis in obese insulin-resistant subjects. PMID:8647954

  20. Abdominal Adiposity, Not Cardiorespiratory Fitness, Mediates the Exercise-Induced Change in Insulin Sensitivity in Older Adults

    PubMed Central

    Ko, Gifferd; Davidson, Lance E.; Brennan, Andrea M.; Lam, Miu; Ross, Robert

    2016-01-01

    Abdominal obesity and low cardiorespiratory fitness (CRF) are associated with insulin resistance in older adults. Exercise is associated with improvement in insulin sensitivity. Whether this association is mediated by change in CRF and/or abdominal obesity is unclear. The current study is a secondary analysis of data from a randomized controlled trial in Kingston, Ontario. Sedentary older adults (60–80 years) (N = 80) who completed the exercise (N = 59) or control (N = 21) conditions for 6 months were included. CRF was measured using a treadmill test, adipose tissue (AT) by magnetic resonance imaging, and insulin sensitivity by hyperinsulinemic-euglycemic clamp. Waist circumference (WC) was measured at the iliac crest. Mediation analyses were used to assess whether abdominal AT and/or CRF mediated the exercise-induced change in insulin sensitivity. By comparison to controls, reduction (mean ± SD) was observed for visceral (-0.4 ± 0.4 kg) and abdominal subcutaneous (-0.4 ± 0.4) AT depots, WC (-4.1 ± 3.2 cm) and BMI (-0.9 ± 0.8 kg/m2) (p < 0.05). Insulin sensitivity (4.2 ± 5.2 M/I) and CRF (0.2 ± 0.3 L/min) improved in the exercise group (p < 0.05). All AT variables, BMI and WC were mediators of the change in insulin sensitivity (p < 0.05). After adjustment for change in total AT, abdominal AT remained a mediator with an effect ratio of 0.79 (p < 0.05), whereas total AT was not significant when adjusted for abdominal AT (p > 0.05). The effect ratio for change in WC and BMI combined (0.63, p<0.05) was greater than either alone. In conclusion, CRF did not mediate the exercise-induced change in insulin sensitivity in older adults. Abdominal adiposity was a strong mediator independent of change in total adiposity. PMID:27936206

  1. Knockdown of LYRM1 rescues insulin resistance and mitochondrial dysfunction induced by FCCP in 3T3-L1 adipocytes.

    PubMed

    Zhang, Min; Qin, Zhen-Ying; Dai, Yong-mei; Wang, Yu-Mei; Zhu, Guan-zhong; Zhao, Ya-Ping; Ji, Chen-Bo; Zhu, Jin-Gai; Shi, Chun-Mei; Qiu, Jie; Cao, Xin-Guo; Guo, Xi-Rong

    2014-09-01

    LYR motif-containing 1 (LYRM1) was recently discovered to be involved in adipose tissue homeostasis and obesity-associated insulin resistance. We previously demonstrated that LYRM1 overexpression might contribute to insulin resistance and mitochondrial dysfunction. Additionally, knockdown of LYRM1 enhanced insulin sensitivity and mitochondrial function in 3T3-L1 adipocytes. We investigated whether knockdown of LYRM1 in 3T3-L1 adipocytes could rescue insulin resistance and mitochondrial dysfunction induced by the cyanide p-trifluoromethoxyphenyl-hydrazone (FCCP), a mitochondrion uncoupler, to further ascertain the mechanism by which LYRM1 is involved in obesity-associated insulin resistance. Incubation of 3T3-L1 adipocytes with 1 µM FCCP for 12 h decreased insulin-stimulated glucose uptake, reduced intracellular ATP synthesis, increased intracellular reactive oxygen species (ROS) production, impaired insulin-stimulated Glucose transporter type 4 (GLUT4) translocation, and diminished insulin-stimulated tyrosine phosphorylation of Insulin receptor substrate-1 (IRS-1) and serine phosphorylation of Protein Kinase B (Akt). Knockdown of LYRM1 restored insulin-stimulated glucose uptake, rescued intracellular ATP synthesis, reduced intracellular ROS production, restored insulin-stimulated GLUT4 translocation, and rescued insulin-stimulated tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt in FCCP-treated 3T3-L1 adipocytes. This study indicates that FCCP-induced mitochondrial dysfunction and insulin resistance are ameliorated by knockdown of LYRM1.

  2. Obesity-related insulin resistance: implications for the surgical patient.

    PubMed

    Tewari, N; Awad, S; Macdonald, I A; Lobo, D N

    2015-11-01

    In healthy surgical patients, preoperative fasting and major surgery induce development of insulin resistance (IR). IR can be present in up to 41% of obese patients without diabetes and this can rise in the postoperative period, leading to an increased risk of postoperative complications. Inflammation is implicated in the aetiology of IR. This review examines obesity-associated IR and its implications for the surgical patient. Searches of the Medline and Science Citation Index databases were performed using various key words in combinations with the Boolean operators AND, OR and NOT. Key journals, nutrition and metabolism textbooks and the reference lists of key articles were also hand searched. Adipose tissue has been identified as an active endocrine organ and the chemokines secreted as a result of macrophage infiltration have a role in the pathogenesis of IR. Visceral adipose tissue appears to be the most metabolically active, although results across studies are not consistent. Results from animal and human studies often provide conflicting results, which has rendered the pursuit of a common mechanistic pathway challenging. Obesity-associated IR appears, in part, to be related to inflammatory changes associated with increased adiposity. Postoperatively, the surgical patient is in a proinflammatory state, so this finding has important implications for the obese surgical patient.

  3. Obesity, insulin resistance and comorbidities – Mechanisms of association

    PubMed Central

    Castro, Ana Valeria B.; Kolka, Cathryn M.; Kim, Stella P.; Bergman, Richard N.

    2015-01-01

    Overall excess of fat, usually defined by the body mass index, is associated with metabolic (e.g. glucose intolerance, type 2 diabetes mellitus (T2DM), dyslipidemia) and non-metabolic disorders (e.g. neoplasias, polycystic ovary syndrome, non-alcoholic fat liver disease, glomerulopathy, bone fragility etc.). However, more than its total amount, the distribution of adipose tissue throughout the body is a better predictor of the risk to the development of those disorders. Fat accumulation in the abdominal area and in non-adipose tissue (ectopic fat), for example, is associated with increased risk to develop metabolic and non-metabolic derangements. On the other hand, observations suggest that individuals who present peripheral adiposity, characterized by large hip and thigh circumferences, have better glucose tolerance, reduced incidence of T2DM and of metabolic syndrome. Insulin resistance (IR) is one of the main culprits in the association between obesity, particularly visceral, and metabolic as well as non-metabolic diseases. In this review we will highlight the current pathophysiological and molecular mechanisms possibly involved in the link between increased VAT, ectopic fat, IR and comorbidities. We will also provide some insights in the identification of these abnormalities. PMID:25211442

  4. Central Administration of Galanin Receptor 1 Agonist Boosted Insulin Sensitivity in Adipose Cells of Diabetic Rats

    PubMed Central

    Zhang, Zhenwen; Fang, Penghua; He, Biao; Guo, Lili; Runesson, Johan; Langel, Ülo; Shi, Mingyi; Zhu, Yan; Bo, Ping

    2016-01-01

    Our previous studies testified the beneficial effect of central galanin on insulin sensitivity of type 2 diabetic rats. The aim of the study was further to investigate whether central M617, a galanin receptor 1 agonist, can benefit insulin sensitivity. The effects of intracerebroventricular administration of M617 on insulin sensitivity and insulin signaling were evaluated in adipose tissues of type 2 diabetic rats. The results showed that central injection of M617 significantly increased plasma adiponectin contents, glucose infusion rates in hyperinsulinemic-euglycemic clamp tests, GLUT4 mRNA expression levels, GLUT4 contents in plasma membranes, and total cell membranes of the adipose cells but reduced the plasma C-reactive protein concentration in nondiabetic and diabetic rats. The ratios of GLUT4 contents were higher in plasma membranes to total cell membranes in both nondiabetic and diabetic M617 groups than each control. In addition, the central administration of M617 enhanced the ratios of pAkt/Akt and pAS160/AS160, but not phosphorylative cAMP response element-binding protein (pCREB)/CREB in the adipose cells of nondiabetic and diabetic rats. These results suggest that excitation of central galanin receptor 1 facilitates insulin sensitivity via activation of the Akt/AS160 signaling pathway in the fat cells of type 2 diabetic rats. PMID:27127795

  5. Hippocampal Insulin Resistance Impairs Spatial Learning and Synaptic Plasticity

    PubMed Central

    Piroli, Gerardo G.; Lawrence, Robert C.; Wrighten, Shayna A.; Green, Adrienne J.; Wilson, Steven P.; Sakai, Randall R.; Kelly, Sandra J.; Wilson, Marlene A.; Mott, David D.; Reagan, Lawrence P.

    2015-01-01

    Insulin receptors (IRs) are expressed in discrete neuronal populations in the central nervous system, including the hippocampus. To elucidate the functional role of hippocampal IRs independent of metabolic function, we generated a model of hippocampal-specific insulin resistance using a lentiviral vector expressing an IR antisense sequence (LV-IRAS). LV-IRAS effectively downregulates IR expression in the rat hippocampus without affecting body weight, adiposity, or peripheral glucose homeostasis. Nevertheless, hippocampal neuroplasticity was impaired in LV-IRAS–treated rats. High-frequency stimulation, which evoked robust long-term potentiation (LTP) in brain slices from LV control rats, failed to evoke LTP in LV-IRAS–treated rats. GluN2B subunit levels, as well as the basal level of phosphorylation of GluA1, were reduced in the hippocampus of LV-IRAS rats. Moreover, these deficits in synaptic transmission were associated with impairments in spatial learning. We suggest that alterations in the expression and phosphorylation of glutamate receptor subunits underlie the alterations in LTP and that these changes are responsible for the impairment in hippocampal-dependent learning. Importantly, these learning deficits are strikingly similar to the impairments in complex task performance observed in patients with diabetes, which strengthens the hypothesis that hippocampal insulin resistance is a key mediator of cognitive deficits independent of glycemic control. PMID:26216852

  6. REGULATION OF OBESITY AND INSULIN RESISTANCE BY NITRIC OXIDE

    PubMed Central

    Sansbury, Brian E.; Hill, Bradford G.

    2014-01-01

    Obesity is a risk factor for developing type 2 diabetes and cardiovascular disease and has quickly become a world-wide pandemic with few tangible and safe treatment options. While it is generally accepted that the primary cause of obesity is energy imbalance, i.e., the calories consumed are greater than are utilized, understanding how caloric balance is regulated has proven a challenge. Many “distal” causes of obesity, such as the structural environment, occupation, and social influences, are exceedingly difficult to change or manipulate. Hence, molecular processes and pathways more proximal to the origins of obesity—those that directly regulate energy metabolism or caloric intake—appear to be more feasible targets for therapy. In particular, nitric oxide (NO) is emerging as a central regulator of energy metabolism and body composition. NO bioavailability is decreased in animal models of diet-induced obesity and in obese and insulin resistant patients, and increasing NO output has remarkable effects on obesity and insulin resistance. This review discusses the role of NO in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease. PMID:24878261

  7. Body fat mass and the proportion of very large adipocytes in pregnant women are associated with gestational insulin resistance

    PubMed Central

    Svensson, H; Wetterling, L; Bosaeus, M; Odén, B; Odén, A; Jennische, E; Edén, S; Holmäng, A; Lönn, M

    2016-01-01

    Background/Objectives: Pregnancy is accompanied by fat gain and insulin resistance. Changes in adipose tissue morphology and function during pregnancy and factors contributing to gestational insulin resistance are incompletely known. We sought to characterize adipose tissue in trimesters 1 and 3 (T1/T3) in normal weight (NW) and obese pregnant women, and identify adipose tissue-related factors associated with gestational insulin resistance. Subjects/Methods: Twenty-two NW and 11 obese women were recruited early in pregnancy for the Pregnancy Obesity Nutrition and Child Health study. Examinations and sampling of blood and abdominal adipose tissue were performed longitudinally in T1/T3 to determine fat mass (air-displacement plethysmography); insulin resistance (homeostasis model assessment of insulin resistance, HOMA-IR); size, number and lipolytic activity of adipocytes; and adipokine release and density of immune cells and blood vessels in adipose tissue. Results: Fat mass and HOMA-IR increased similarly between T1 and T3 in the groups; all remained normoglycemic. Adipocyte size increased in NW women. Adipocyte number was not influenced, but proportions of small and large adipocytes changed oppositely in the groups. Lipolytic activity and circulating adipocyte fatty acid-binding protein increased in both groups. Adiponectin release was reduced in NW women. Fat mass and the proportion of very large adipocytes were most strongly associated with T3 HOMA-IR by multivariable linear regression (R2=0.751, P<0.001). Conclusions: During pregnancy, adipose tissue morphology and function change comprehensively. NW women accumulated fat in existing adipocytes, accompanied by reduced adiponectin release. In comparison with the NW group, obese women had signs of adipocyte recruitment and maintained adiponectin levels. Body fat and large adipocytes may contribute significantly to gestational insulin resistance. PMID:26563815

  8. Brown Adipose Tissue Improves Whole-Body Glucose Homeostasis and Insulin Sensitivity in Humans

    PubMed Central

    Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Porter, Craig; Annamalai, Palam; Enerbäck, Sven; Lidell, Martin E.; Saraf, Manish K.; Labbe, Sebastien M.; Hurren, Nicholas M.; Yfanti, Christina; Chao, Tony; Andersen, Clark R.; Cesani, Fernando; Hawkins, Hal

    2014-01-01

    Brown adipose tissue (BAT) has attracted scientific interest as an antidiabetic tissue owing to its ability to dissipate energy as heat. Despite a plethora of data concerning the role of BAT in glucose metabolism in rodents, the role of BAT (if any) in glucose metabolism in humans remains unclear. To investigate whether BAT activation alters whole-body glucose homeostasis and insulin sensitivity in humans, we studied seven BAT-positive (BAT+) men and five BAT-negative (BAT−) men under thermoneutral conditions and after prolonged (5–8 h) cold exposure (CE). The two groups were similar in age, BMI, and adiposity. CE significantly increased resting energy expenditure, whole-body glucose disposal, plasma glucose oxidation, and insulin sensitivity in the BAT+ group only. These results demonstrate a physiologically significant role of BAT in whole-body energy expenditure, glucose homeostasis, and insulin sensitivity in humans, and support the notion that BAT may function as an antidiabetic tissue in humans. PMID:25056438

  9. A polyphenol rescues lipid induced insulin resistance in skeletal muscle cells and adipocytes.

    PubMed

    Gogoi, Bhaskarjyoti; Chatterjee, Priyajit; Mukherjee, Sandip; Buragohain, Alak Kumar; Bhattacharya, Samir; Dasgupta, Suman

    2014-09-26

    Skeletal muscle and adipose tissues are known to be two important insulin target sites. Therefore, lipid induced insulin resistance in these tissues greatly contributes in the development of type 2 diabetes (T2D). Ferulic acid (FRL) purified from the leaves of Hibiscus mutabilis, showed impressive effects in preventing saturated fatty acid (SFA) induced defects in skeletal muscle cells. Impairment of insulin signaling molecules by SFA was significantly waived by FRL. SFA markedly reduced insulin receptor β (IRβ) in skeletal muscle cells, this was affected due to the defects in high mobility group A1 (HMGA1) protein obtruded by phospho-PKCε and that adversely affects IRβ mRNA expression. FRL blocked PKCε activation and thereby permitted HMGA1 to activate IRβ promoter which improved IR expression deficiency. In high fat diet (HFD) fed diabetic rats, FRL reduced blood glucose level and enhanced lipid uptake activity of adipocytes isolated from adipose tissue. Importantly, FRL suppressed fetuin-A (FetA) gene expression, that reduced circulatory FetA level and since FetA is involved in adipose tissue inflammation, a significant attenuation of proinflammatory cytokines occurred. Collectively, FRL exhibited certain unique features for preventing lipid induced insulin resistance and therefore promises a better therapeutic choice for T2D.

  10. MECHANISMS IN ENDOCRINOLOGY: Skeletal muscle lipotoxicity in insulin resistance and type 2 diabetes: a causal mechanism or an innocent bystander?

    PubMed

    Brøns, Charlotte; Grunnet, Louise Groth

    2017-02-01

    Dysfunctional adipose tissue is associated with an increased risk of developing type 2 diabetes (T2D). One characteristic of a dysfunctional adipose tissue is the reduced expandability of the subcutaneous adipose tissue leading to ectopic storage of fat in organs and/or tissues involved in the pathogenesis of T2D that can cause lipotoxicity. Accumulation of lipids in the skeletal muscle is associated with insulin resistance, but the majority of previous studies do not prove any causality. Most studies agree that it is not the intramuscular lipids per se that causes insulin resistance, but rather lipid intermediates such as diacylglycerols, fatty acyl-CoAs and ceramides and that it is the localization, composition and turnover of these intermediates that play an important role in the development of insulin resistance and T2D. Adipose tissue is a more active tissue than previously thought, and future research should thus aim at examining the exact role of lipid composition, cellular localization and the dynamics of lipid turnover on the development of insulin resistance. In addition, ectopic storage of fat has differential impact on various organs in different phenotypes at risk of developing T2D; thus, understanding how adipogenesis is regulated, the interference with metabolic outcomes and what determines the capacity of adipose tissue expandability in distinct population groups is necessary. This study is a review of the current literature on the adipose tissue expandability hypothesis and how the following ectopic lipid accumulation as a consequence of a limited adipose tissue expandability may be associated with insulin resistance in muscle and liver.

  11. Nonalcoholic steatohepatitis and insulin resistance in children

    PubMed Central

    Arata, Mikage; Nakajima, Junya; Nishimata, Shigeo; Nagata, Tomomi; Kawashima, Hisashi

    2014-01-01

    Various pathological conditions can cause fatty liver in children. Nonalcoholic steatohepatitis (NASH) in children has been known since 1983. However, NASH diagnosed in childhood does not have a favorable outcome. The pathological characteristics of NASH are significantly different between children and adults. Nonalcoholic fatty liver disease (NAFLD)/NASH is accompanied by insulin resistance, which plays a pivotal role in its pathophysiology in both children and adults. In NASH, a “two-hit” model involving triglyceride accumulation (first hit) and liver damage (second hit) has been accepted. Insulin resistance was found to correlate with changes in fat levels; however, it did not correlate with fibrosis or NAFLD activity score in children. Therefore, insulin resistance may be important in the first hit. Because there is obvious familial clustering in NASH, genetic predisposition as well as environmental factors including diet might be the second hit of NAFLD/NASH. PMID:25512797

  12. Insulin, leptin, and adiponectin receptors in colon: regulation relative to differing body adiposity independent of diet and in response to dimethylhydrazine.

    PubMed

    Drew, Janice E; Farquharson, Andrew J; Padidar, Sara; Duthie, Garry G; Mercer, Julian G; Arthur, John R; Morrice, Philip C; Barrera, Lawrence N

    2007-10-01

    Obesity has recently become a focus of research to elucidate diet and lifestyle factors as important risk factors for colon cancer. Altered levels of insulin, leptin, and adiponectin have been identified as potential candidates increasing colon cancer risk within the prevailing obesogenic environment. There has been considerable research to characterize signaling via these hormones in the brain, liver, and adipose tissue; however, very little is known of their emerging role in peripheral signaling, particularly in epithelial tissues. This study profiles insulin, leptin, and adipokine receptors in the rat colon, revealing novel microanatomical location of these receptors and thereby supporting a potential role in regulating colonic tissue. Potential involvement of insulin, leptin, and adiponectin receptors in increased risk of colon cancer was investigated using Sprague-Dawley rats, either resistant or susceptible to diet-induced obesity. Regulation of insulin, leptin, and adiponectin receptors as a consequence of differing levels of adiposity was assessed regionally in the colon in response to treatment with the chemical carcinogen 1,2-dimethylhydrazine (DMH). However, significantly increased fat mass, increased levels of plasma insulin, leptin, and triglycerides, previously associated with an increased risk of colon cancer, were not associated with promotion of precancerous lesions in the experimental rats or deregulation of insulin, leptin, or adiponectin receptors. These findings do not support a direct link between the deregulation of insulin and adipokine levels observed in obese rats and an increased risk of colon carcinogenesis.

  13. Hepatic cyclooxygenase-2 expression protects against diet-induced steatosis, obesity, and insulin resistance.

    PubMed

    Francés, Daniel E; Motiño, Omar; Agrá, Noelia; González-Rodríguez, Águeda; Fernández-Álvarez, Ana; Cucarella, Carme; Mayoral, Rafael; Castro-Sánchez, Luis; García-Casarrubios, Ester; Boscá, Lisardo; Carnovale, Cristina E; Casado, Marta; Valverde, Ángela M; Martín-Sanz, Paloma

    2015-05-01

    Accumulation evidence links obesity-induced inflammation as an important contributor to the development of insulin resistance, which plays a key role in the pathophysiology of obesity-related diseases such as type 2 diabetes and nonalcoholic fatty liver disease. Cyclooxygenase (COX)-1 and -2 catalyze the first step in prostanoid biosynthesis. Because adult hepatocytes fail to induce COX-2 expression regardless of the proinflammatory stimuli used, we have evaluated whether this lack of expression under mild proinflammatory conditions might constitute a permissive condition for the onset of insulin resistance. Our results show that constitutive expression of human COX-2 (hCOX-2) in hepatocytes protects against adiposity, inflammation, and, hence, insulin resistance induced by a high-fat diet, as demonstrated by decreased hepatic steatosis, adiposity, plasmatic and hepatic triglycerides and free fatty acids, increased adiponectin-to-leptin ratio, and decreased levels of proinflammatory cytokines, together with an enhancement of insulin sensitivity and glucose tolerance. Furthermore, hCOX-2 transgenic mice exhibited increased whole-body energy expenditure due in part by induction of thermogenesis and fatty acid oxidation. The analysis of hepatic insulin signaling revealed an increase in insulin receptor-mediated Akt phosphorylation in hCOX-2 transgenic mice. In conclusion, our results point to COX-2 as a potential therapeutic target against obesity-associated metabolic dysfunction.

  14. Adipose tissue insulin receptor knockdown via a new primate-derived hybrid recombinant AAV serotype

    PubMed Central

    Liu, Xianglan; Magee, Daniel; Wang, Chuansong; McMurphy, Travis; Slater, Andrew; During, Matthew; Cao, Lei

    2014-01-01

    Adipose tissue plays an essential role in metabolic homeostasis and holds promise as an alternative depot organ in gene therapy. However, efficient methods of gene transfer into adipose tissue in vivo have yet to be established. Here, we assessed the transduction efficiency to fat depots by a family of novel engineered hybrid capsid serotypes (Rec1~4) recombinant adeno-associated viral (AAV) vectors in comparison with natural serotypes AAV1, AAV8, and AAV9. Rec2 serotype led to widespread transduction in both brown fat and white fat with the highest efficiency among the seven serotypes tested. As a proof-of-efficacy, Rec2 serotype was used to deliver Cre recombinase to adipose tissues of insulin receptor floxed animals. Insulin receptor knockdown led to decreased fat pad mass and morphological and molecular changes in the targeted depot. These novel hybrid AAV vectors can serve as powerful tools to genetically manipulate adipose tissue and provide valuable vehicles to gene therapy targeting adipose tissue. PMID:25383359

  15. Newborn Size and Body Composition as Predictors of Insulin Resistance and Diabetes in the Parents

    PubMed Central

    Veena, Sargoor R.; Krishnaveni, Ghattu V.; Fall, Caroline H.

    2012-01-01

    OBJECTIVE We aimed to examine detailed neonatal measurements as predictors of later diabetes in both parents. RESEARCH DESIGN AND METHODS Babies (n = 617) born to nondiabetic parents in Holdsworth Memorial Hospital, Mysore, India, were measured at birth for weight; crown-to-heel length (CHL), crown-to-rump length (CRL), and leg length; skinfolds (triceps and subscapular); and circumferences (head, abdomen, and mid–upper-arm circumference [MUAC]). Nine and a half years later, glucose tolerance and fasting insulin were measured in their parents (469 mothers and 398 fathers). RESULTS Sixty-two (15.6%) fathers and 22 (4.7%) mothers had developed diabetes. There were linear inverse associations of the children’s birth weight, CHL, CRL, MUAC, and skinfolds with paternal diabetes and insulin resistance (P < 0.05 for all). Offspring birth weight and adiposity (MUAC, abdominal circumference, and skinfolds) showed U-shaped associations with maternal diabetes (P for quadratic association <0.05 for all). These associations persisted after adjusting for the parents’ current adiposity and maternal glucose concentrations and adiposity during pregnancy. Newborn adiposity was positively related to maternal insulin resistance; this association was nonsignificant after adjusting for maternal current adiposity. CONCLUSIONS Newborn size is a window into the future health of the parents. Small newborn size (especially soft-tissue body components) predicts an increased risk of later diabetes in both parents, suggesting a genetic or epigenetic link between parents’ diabetes risk and reduced fetal growth in their children. The association of higher birth weight and newborn adiposity with later maternal diabetes suggests effects on fetal adiposity of the intrauterine environment in prediabetic mothers. PMID:22751963

  16. Native and recombinant bovine growth hormone antagonize insulin action in cultured bovine adipose tissue.

    PubMed

    Etherton, T D; Evock, C M; Kensinger, R S

    1987-08-01

    The current study was undertaken to determine if pituitary bovine GH (pbGH) and recombinant bGH (rbGH) antagonized insulin action in bovine adipose tissue after acute (2-h) and chronic (48-h) exposure and whether this was an intrinsic property of bGH. Insulin action (measured as the effect on incorporation of acetate-carbon into long-chain fatty acids) was unaffected by bGH in short term incubations regardless of whether hydrocortisone (HC) was present. After 48 h of culture, however, both pbGH and rbGH similarly antagonized the ability of insulin to maintain lipogenic capacity. This antagonism was dependent upon the presence of HC and was dose dependent, with half-maximal inhibition of insulin action occurring at about 0.5 ng/ml bGH. Bovine PRL did not mimic the effects of bGH on insulin action. These results establish that bGH antagonizes insulin action in bovine adipose tissue and that this effect is dependent upon long term exposure and the inclusion of HC in the culture medium. The fact that both rbGH and pbGH acted similarly indicates that this is an intrinsic property of bGH. The effect of bGH on insulin-dependent maintenance of lipogenic capacity may play an important role in redirecting nutrients away from adipose tissue to other tissues, such as muscle or mammary tissue. It is speculated that this metabolic effect of bGH plays an important role in the adaptive response to chronic bGH treatment, which increases milk yield of dairy cows and growth performance of beef cattle.

  17. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    SciTech Connect

    Vikram, Ajit; Jena, Gopabandhu

    2010-07-23

    Research highlights: {yields}Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. {yields}Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. {yields}Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. {yields}Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia ({approx}18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPAR{gamma}) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 {+-} 16.32 vs. 126.37 {+-} 27.07 mg/dl) and glucose intolerance ({approx}78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  18. Treatment of insulin resistance in the neurodegeneration.

    PubMed

    Stefanelli, Manuela; Martocchia, Antonio; De Marinis, Elisabetta Adele; Falaschi, Giulia Maria; Romano, Gloria; Rufo, Maddalena; Falaschi, Paolo

    2014-04-01

    The association between diabetes and neurodegenerative diseases is increasing with aging. Several common mechanisms are involved in both these diseases. The endothelial cells of the blood brain barrier, neurons and glia express typical and different receptors of the glucose metabolism (glucose transporters, insulin receptors and glucagon-like peptide-1 receptors). The impairment in insulin signaling leads to an impairment of neuronal function and increases neurodegeneration, and, conversely, neurodegeneration causes a reduction of insulin signaling on neurons. Increased detailed knowledge of common physiological processes opens up the opportunities for developing new treatments that may prevent or reduce the onset of neurodegenerative diseases. The aim of the review is to discuss the potential neuroprotective effects of the antidiabetic drugs. The article presents some promising patents on the treatment of insulin resistance in the neurodegeneration.

  19. Central obesity and insulin resistance in the cardiometabolic syndrome: pathways to preclinical cardiovascular structure and function.

    PubMed

    Klaus, Johanna R; Hurwitz, Barry E; Llabre, Maria M; Skyler, Jay S; Goldberg, Ronald B; Marks, Jennifer B; Bilsker, Martin S; Schneiderman, Neil

    2009-01-01

    The cardiometabolic syndrome (CMS) has been an organizing conceptual framework for subclinical cardiovascular pathophysiology. Using cross-sectional data from 338 healthy men and women aged 18 to 55 years, the study examined the role of central adiposity and insulin sensitivity and assessed potential relationships with other metabolic indices (insulin sensitivity, glucose tolerance, fibrinolysis, lipidemia, endothelial function, and inflammation) and measures of cardiac structure and function (cardiac mass, compliance and contractility, myocardial oxygen demand, and blood pressure). Structural equation modeling analyses, which controlled for sex, age, and race, demonstrated good fit to the data. The derived relationships provided a physiologically consistent model of CMS, with an initiating role for central adiposity and insulin resistance. The model accounted for 30% and 82% of the variance in diastolic blood pressure and myocardial oxygen demand, respectively. The findings suggest predominant pathways through which subclinical metabolic processes may exert pathogenic impact on the heart and vasculature.

  20. (-)-Epicatechin mitigates high-fructose-associated insulin resistance by modulating redox signaling and endoplasmic reticulum stress.

    PubMed

    Bettaieb, Ahmed; Vazquez Prieto, Marcela A; Rodriguez Lanzi, Cecilia; Miatello, Roberto M; Haj, Fawaz G; Fraga, César G; Oteiza, Patricia I

    2014-07-01

    We investigated the capacity of dietary (-)-epicatechin (EC) to mitigate insulin resistance through the modulation of redox-regulated mechanisms in a rat model of metabolic syndrome. Adolescent rats were fed a regular chow diet without or with high fructose (HFr; 10% w/v) in drinking water for 8 weeks, and a group of HFr-fed rats was supplemented with EC in the diet. HFr-fed rats developed insulin resistance, which was mitigated by EC supplementation. Accordingly, the activation of components of the insulin signaling cascade (insulin receptor, IRS1, Akt, and ERK1/2) was impaired, whereas negative regulators (PKC, IKK, JNK, and PTP1B) were upregulated in the liver and adipose tissue of HFr rats. These alterations were partially or totally prevented by EC supplementation. In addition, EC inhibited events that contribute to insulin resistance: HFr-associated increased expression and activity of NADPH oxidase, activation of redox-sensitive signals, expression of NF-κB-regulated proinflammatory cytokines and chemokines, and some sub-arms of endoplasmic reticulum stress signaling. Collectively, these findings indicate that EC supplementation can mitigate HFr-induced insulin resistance and are relevant for defining interventions that can prevent/mitigate MetS-associated insulin resistance.

  1. Mechanistic interplay between ceramide and insulin resistance

    PubMed Central

    Reali, Federico; Morine, Melissa J.; Kahramanoğulları, Ozan; Raichur, Suryaprakash; Schneider, Hans-Christoph; Crowther, Daniel; Priami, Corrado

    2017-01-01

    Recent research adds to a growing body of literature on the essential role of ceramides in glucose homeostasis and insulin signaling, while the mechanistic interplay between various components of ceramide metabolism remains to be quantified. We present an extended model of C16:0 ceramide production through both the de novo synthesis and the salvage pathways. We verify our model with a combination of published models and independent experimental data. In silico experiments of the behavior of ceramide and related bioactive lipids in accordance with the observed transcriptomic changes in obese/diabetic murine macrophages at 5 and 16 weeks support the observation of insulin resistance only at the later phase. Our analysis suggests the pivotal role of ceramide synthase, serine palmitoyltransferase and dihydroceramide desaturase involved in the de novo synthesis and the salvage pathways in influencing insulin resistance versus its regulation. PMID:28112248

  2. Hypoglycemic effects and mechanisms of electroacupuncture on insulin resistance.

    PubMed

    Yin, Jieyun; Kuang, Jian; Chandalia, Manisha; Tuvdendorj, Demidmaa; Tumurbaatar, Batbayar; Abate, Nicola; Chen, Jiande D Z

    2014-08-01

    The aim of this study was to investigate effects and mechanisms of electroacupuncture (EA) on blood glucose and insulin sensitivity in mice fed a high-fat diet. Both wild-type (WT) and adipose ectonucleotide pyrophosphate phosphodiesterase (ENPP1) transgenic (TG) mice were fed a high-fat diet for 12 wk; for each mouse, an intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (ITT) were performed with or without EA at abdomen or auricular areas. A high-fat diet-induced insulin resistance in both WT and TG mice. In the WT mice, EA at 3 Hz and 15 Hz, but not at 1 Hz or 100 Hz, via CV4+CV12 significantly reduced postprandial glucose levels; EA at 3 Hz was most potent. The glucose level was reduced by 61.7% at 60 min and 74.5% at 120 min with EA at 3 Hz (all P < 0.001 vs. control). Similar hypoglycemic effect was noted in the TG mice. On the contrary, EA at auricular points increased postprandial glucose level (P < 0.03). 4). EA at 3 Hz via CV4+CV12 significantly enhanced the decrease of blood glucose after insulin injection, suggesting improvement of insulin sensitivity. Plasma free fatty acid was significantly suppressed by 42.5% at 15 min and 50.8% at 30 min with EA (P < 0.01) in both WT and TG mice. EA improves glucose tolerance in both WT and TG mice fed a high-fat diet, and the effect is associated with stimulation parameters and acupoints and is probably attributed to the reduction of free fatty acid.

  3. Abdominal Myosteatosis is Independently Associated to Hyperinsulinemia and Insulin Resistance among Older Men without Diabetes

    PubMed Central

    Miljkovic, Iva; Cauley, Jane A.; Wang, Patty Y.; Holton, Kathleen F.; Lee, Christine G.; Sheu, Yahtyng; Barrett-Connor, Elizabeth; Hoffman, Andrew R.; Lewis, Cora B.; Orwoll, Eric S.; Stefanick, Marcia L.; Strotmeyer, Elsa S.; Marshall, Lynn M.

    2013-01-01

    Design and Methods Skeletal muscle adipose tissue (AT) infiltration (myosteatosis) increases with aging and may contribute to the development of type 2 diabetes mellitus (T2DM). It remains unclear if myosteatosis is associated to glucose and insulin homeostasis independent of total and central adiposity. We evaluated the association between intermuscular AT (IMAT) in the abdominal skeletal muscles (total, paraspinal and psoas) and fasting serum glucose, insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) in 393 non-diabetic Caucasian men aged 65+. Abdominal IMAT, visceral (VAT) and subcutaneous (SAT) AT (cm3) were measured by quantitative computed tomography at the L4-L5 intervertebral space. Results In age, study site, height and muscle volume adjusted regression analyses, total abdominal and psoas (but not paraspinal) IMAT were positively associated with glucose, insulin and HOMA-IR (all P < 0.003). The associations between total abdominal and psoas IMAT and insulin and HOMA-IR remained significant after further adjusting for lifestyle factors, as well as DXA total body fat, VAT or SAT in separate models (all P <0.009). Conclusions Our study indicates a previously unreported, independent association between abdominal myosteatosis and hyperinsulinemia and insulin resistance among older Caucasian men. These associations may be specific for particular abdominal muscle depots, illustrating the potential importance of separately studying specific muscle groups. PMID:23408772

  4. Acrolein metabolites, diabetes and insulin resistance.

    PubMed

    Feroe, Aliya G; Attanasio, Roberta; Scinicariello, Franco

    2016-07-01

    Acrolein is a dietary and environmental pollutant that has been associated in vitro to dysregulate glucose transport. We investigated the association of urinary acrolein metabolites N-acetyl-S-(3-hydroxypropyl)-l-cysteine (3-HPMA) and N-acetyl-S-(carboxyethyl)-l-cysteine (CEMA) and their molar sum (∑acrolein) with diabetes using data from investigated 2027 adults who participated in the 2005-2006 National Health and Nutrition Examination Survey (NHANES). After excluding participants taking insulin or other diabetes medication we, further, investigated the association of the compounds with insulin resistance (n=850), as a categorical outcome expressed by the homeostatic model assessment (HOMA-IR>2.6). As secondary analyses, we investigated the association of the compounds with HOMA-IR, HOMA-β, fasting insulin and fasting plasma glucose. The analyses were performed using urinary creatinine as independent variable in the models, and, as sensitivity analyses, the compounds were used as creatinine corrected variables. Diabetes as well as insulin resistance (defined as HOMA-IR>2.6) were positively associated with the 3-HPMA, CEMA and ∑Acrolein with evidence of a dose-response relationship (p<0.05). The highest 3rd and 4th quartiles of CEMA compared to the lowest quartile were significantly associated with higher HOMA-IR, HOMA-β and fasting insulin with a dose-response relationship. The highest 3rd quartile of 3-HPMA and ∑Acrolein were positively and significantly associated with HOMA-IR, HOMA-β and fasting insulin. These results suggest a need of further studies to fully understand the implications of acrolein with type 2 diabetes and insulin.

  5. mRNA concentrations of MIF in subcutaneous abdominal adipose cells are associated with adipocyte size and insulin action

    PubMed Central

    Koska, Juraj; Stefan, Norbert; Dubois, Severine; Trinidad, Cathy; Considine, Robert V.; Funahashi, Tohru; Bunt, Joy C.; Ravussin, Eric; Permana, Paska A.

    2009-01-01

    adipose cells may be an important link between obesity characterized by enlarged adipocytes and insulin resistance in normal glucose tolerant people. PMID:19506561

  6. Fluctuation of insulin resistance in a leprechaun with a primary defect in insulin binding.

    PubMed

    Kobayashi, M; Takata, Y; Sasaoka, T; Shigeta, Y; Goji, K

    1988-05-01

    A 3-month-old female leprechaun demonstrated extreme insulin resistance with hyperinsulinemia (330 mumol/L) and resistance to exogenous insulin. Insulin binding to erythrocytes, cultured lymphocytes, and fibroblasts from the patient were decreased to less than 20% of normal, whereas insulin-like growth factor I binding to fibroblasts was normal. Antiinsulin receptor antibody binding to cultured lymphocytes was also decreased to 20% of normal, indicating a decreased concentration of insulin receptors on the cell surface. The ability of insulin to stimulate D-[14C]glucose uptake was decreased to 35% of normal in the patient's fibroblasts, and the dose-response curve was shifted to the right. With time, the insulin resistance fluctuated from near normal (fasting insulin, 244.0 pmol/L) to severe resistance (fasting insulin, 5740-9328 pmol/L), and an insulin tolerance test revealed amelioration of insulin resistance during remission. However, insulin binding to erythrocytes and adipocytes was decreased persistently to 20% of normal. These results indicate that the patient had a primary defect in her insulin receptors, i.e. decreased insulin receptor concentration. The variable degree of insulin resistance was possibly due to variable receptor function in the signal transmission process.

  7. Mechanisms underlying the onset of oral lipid-induced skeletal muscle insulin resistance in humans.

    PubMed

    Nowotny, Bettina; Zahiragic, Lejla; Krog, Dorothea; Nowotny, Peter J; Herder, Christian; Carstensen, Maren; Yoshimura, Toru; Szendroedi, Julia; Phielix, Esther; Schadewaldt, Peter; Schloot, Nanette C; Shulman, Gerald I; Roden, Michael

    2013-07-01

    Several mechanisms, such as innate immune responses via Toll-like receptor-4, accumulation of diacylglycerols (DAG)/ceramides, and activation of protein kinase C (PKC), are considered to underlie skeletal muscle insulin resistance. In this study, we examined initial events occurring during the onset of insulin resistance upon oral high-fat loading compared with lipid and low-dose endotoxin infusion. Sixteen lean insulin-sensitive volunteers received intravenous fat (iv fat), oral fat (po fat), intravenous endotoxin (lipopolysaccharide [LPS]), and intravenous glycerol as control. After 6 h, whole-body insulin sensitivity was reduced by iv fat, po fat, and LPS to 60, 67, and 48%, respectively (all P < 0.01), which was due to decreased nonoxidative glucose utilization, while hepatic insulin sensitivity was unaffected. Muscle PKCθ activation increased by 50% after iv and po fat, membrane Di-C18:2 DAG species doubled after iv fat and correlated with PKCθ activation after po fat, whereas ceramides were unchanged. Only after LPS, circulating inflammatory markers (tumor necrosis factor-α, interleukin-6, and interleukin-1 receptor antagonist), their mRNA expression in subcutaneous adipose tissue, and circulating cortisol were elevated. Po fat ingestion rapidly induces insulin resistance by reducing nonoxidative glucose disposal, which associates with PKCθ activation and a rise in distinct myocellular membrane DAG, while endotoxin-induced insulin resistance is exclusively associated with stimulation of inflammatory pathways.

  8. Effects of Bariatric Surgery on Adipokine-Induced Inflammation and Insulin Resistance

    PubMed Central

    Goktas, Zeynep; Moustaid-Moussa, Naima; Shen, Chwan-Li; Boylan, Mallory; Mo, Huanbiao; Wang, Shu

    2013-01-01

    Over a third of the US population is obese and at high risk for developing type 2 diabetes, insulin resistance, and other metabolic disorders. Obesity is considered a chronic low-grade inflammatory condition that is primarily attributed to expansion and inflammation of adipose tissues. Indeed, adipocytes produce and secrete numerous proinflammatory and anti-inflammatory cytokines known as adipokines. When the balance of these adipokines is shifted toward higher production of proinflammatory factors, local inflammation within adipose tissues and subsequently systemic inflammation occur. These adipokines including leptin, visfatin, resistin, apelin, vaspin, and retinol binding protein-4 can regulate inflammatory responses and contribute to the pathogenesis of diabetes. These effects are mediated by key inflammatory signaling molecules including activated serine kinases such as c-Jun N-terminal kinase and serine kinases inhibitor κB kinase and insulin signaling molecules including insulin receptor substrates, protein kinase B (PKB, also known as Akt), and nuclear factor kappa B. Bariatric surgery can decrease body weight and improve insulin resistance in morbidly obese subjects. However, despite reports suggesting reduced inflammation and weight-independent effects of bariatric surgery on glucose metabolism, mechanisms behind such improvements are not yet well understood. This review article focuses on some of these novel adipokines and discusses their changes after bariatric surgery and their relationship to insulin resistance, fat mass, inflammation, and glucose homeostasis. PMID:23772224

  9. Effects of bariatric surgery on adipokine-induced inflammation and insulin resistance.

    PubMed

    Goktas, Zeynep; Moustaid-Moussa, Naima; Shen, Chwan-Li; Boylan, Mallory; Mo, Huanbiao; Wang, Shu

    2013-01-01

    Over a third of the US population is obese and at high risk for developing type 2 diabetes, insulin resistance, and other metabolic disorders. Obesity is considered a chronic low-grade inflammatory condition that is primarily attributed to expansion and inflammation of adipose tissues. Indeed, adipocytes produce and secrete numerous proinflammatory and anti-inflammatory cytokines known as adipokines. When the balance of these adipokines is shifted toward higher production of proinflammatory factors, local inflammation within adipose tissues and subsequently systemic inflammation occur. These adipokines including leptin, visfatin, resistin, apelin, vaspin, and retinol binding protein-4 can regulate inflammatory responses and contribute to the pathogenesis of diabetes. These effects are mediated by key inflammatory signaling molecules including activated serine kinases such as c-Jun N-terminal kinase and serine kinases inhibitor κB kinase and insulin signaling molecules including insulin receptor substrates, protein kinase B (PKB, also known as Akt), and nuclear factor kappa B. Bariatric surgery can decrease body weight and improve insulin resistance in morbidly obese subjects. However, despite reports suggesting reduced inflammation and weight-independent effects of bariatric surgery on glucose metabolism, mechanisms behind such improvements are not yet well understood. This review article focuses on some of these novel adipokines and discusses their changes after bariatric surgery and their relationship to insulin resistance, fat mass, inflammation, and glucose homeostasis.

  10. Apocynin Improves Insulin Resistance through Suppressing Inflammation in High-Fat Diet-Induced Obese Mice

    PubMed Central

    Meng, Ran; Zhu, Da-Long; Bi, Yan; Yang, Dong-Hui; Wang, Ya-Ping

    2010-01-01

    We investigated the effects of apocynin on high-fat diet- (HFD-) induced insulin resistance in C57BL/6 mice. After 12 weeks of HFD, the mice that exhibited insulin resistance then received 5 weeks of apocynin (2.4 g/L, in water). Following apocynin treatment, fasting glucose, insulin, and glucose tolerance test showed significant improvement in insulin sensitivity in HFD-fed mice. We demonstrated that serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and leptin were remarkably reduced with apocynin treatment. We also found that mRNA expression of TNF-α, IL-6, and monocyte chemoattractant protein-1 (MCP-1) in the liver and mRNA expression of TNF-α, IL-6, MCP-1, and leptin in adipose tissue were suppressed by apocynin. Furthermore, the activity of transcription factor NF-κB in the liver was significantly suppressed with apocynin treatment. These results suggest that apocynin may reduce inflammatory factors in the blood, liver, and adipose tissue, resulting in amelioration of insulin resistance in HFD-fed mice. PMID:21403905

  11. Repeated Ozone Exposure Exacerbates Insulin Resistance And Activates Innate Immune Response In Genetically Susceptible Mice

    PubMed Central

    Zhong, Jixin; Allen, Katryn; Rao, Xiaoquan; Ying, Zhekang; Braunstein, Zachary; Kankanala, Saumya R.; Xia, Chang; Wang, Xiaoke; Bramble, Lori A.; Wagner, James G.; Lewandowski, Ryan; Sun, Qinghua; Harkema, Jack R.; Rajagopalan, Sanjay

    2016-01-01

    Background Inhaled ozone (O3) has been demonstrated as a harmful pollutant and associated with chronic inflammatory diseases such as diabetes and vascular disorders. However, the underlying mechanisms by which O3 mediates harmful effects are poorly understood. Objectives To investigate the effect of O3 exposure on glucose intolerance, immune activation and underlying mechanisms in a genetically susceptible mouse model. Methods Diabetes-prone KK mice were exposed to filtered air (FA), or O3 (0.5 ppm) for 13 consecutive weekdays (4 h/day). Insulin tolerance test (ITT) was performed following the last exposure. Plasma insulin, adiponectin, and leptin were measured by ELISA. Pathologic changes were examined by H&E and oil-red-o staining. Inflammatory responses were detected using flow cytometry and real-time PCR. Results KK mice exposed to O3 displayed an impaired insulin response. Plasma insulin and leptin levels were reduced in O3-exposed mice. Three-week exposure to O3 induced lung inflammation and increased monocytes/macrophages in both blood and visceral adipose tissue. Inflammatory monocytes/macrophages increased both systemically and locally. CD4+ T cell activation was also enhanced by the exposure of O3 although the relative percentage of CD4+ T cell decreased in blood and adipose tissue. Multiple inflammatory genes including CXCL-11, IFN-γ, TNFα, IL-12, and iNOS were up-regulated in visceral adipose tissue. Furthermore, the expression of oxidative stress-related genes such as Cox4, Cox5a, Scd1, Nrf1, and Nrf2, increased in visceral adipose tissue of O3-exposed mice. Conclusions Repeated O3 inhalation induces oxidative stress, adipose inflammation and insulin resistance. PMID:27240593

  12. TUSC5 regulates insulin-mediated adipose tissue glucose uptake by modulation of GLUT4 recycling

    PubMed Central

    Beaton, Nigel; Rudigier, Carla; Moest, Hansjörg; Müller, Sebastian; Mrosek, Nadja; Röder, Eva; Rudofsky, Gottfried; Rülicke, Thomas; Ukropec, Jozef; Ukropcova, Barbara; Augustin, Robert; Neubauer, Heike; Wolfrum, Christian

    2015-01-01

    Objective Failure to properly dispose of glucose in response to insulin is a serious health problem, occurring during obesity and is associated with type 2 diabetes development. Insulin-stimulated glucose uptake is facilitated by the translocation and plasma membrane fusion of vesicles containing glucose transporter 4 (GLUT4), the rate-limiting step of post-prandial glucose disposal. Methods We analyzed the role of Tusc5 in the regulation of insulin-stimulated Glut4-mediated glucose uptake in vitro and in vivo. Furthermore, we measured Tusc5 expression in two patient cohorts. Results Herein, we report that TUSC5 controls insulin-stimulated glucose uptake in adipocytes, in vitro and in vivo. TUSC5 facilitates the proper recycling of GLUT4 and other key trafficking proteins during prolonged insulin stimulation, thereby enabling proper protein localization and complete vesicle formation, processes that ultimately enable insulin-stimulated glucose uptake. Tusc5 knockout mice exhibit impaired glucose disposal and TUSC5 expression is predictive of glucose tolerance in obese individuals, independent of body weight. Furthermore, we show that TUSC5 is a PPARγ target and in its absence the anti-diabetic effects of TZDs are significantly blunted. Conclusions Collectively, these findings establish TUSC5 as an adipose tissue-specific protein that enables proper protein recycling, linking the ubiquitous vesicle traffic machinery with tissue-specific insulin-mediated glucose uptake into adipose tissue and the maintenance of a healthy metabolic phenotype in mice and humans. PMID:26629404

  13. Mitochondrial dysfunction and insulin resistance: an update

    PubMed Central

    Montgomery, Magdalene K; Turner, Nigel

    2014-01-01

    Mitochondrial dysfunction has been implicated in the development of insulin resistance (IR); however, a large variety of association and intervention studies as well as genetic manipulations in rodents have reported contrasting results. Indeed, even 39 years after the first publication describing a relationship between IR and diminished mitochondrial function, it is still unclear whether a direct relationship exists, and more importantly if changes in mitochondrial capacity are a cause or consequence of IR. This review will take a journey through the past and summarise the debate about the occurrence of mitochondrial dysfunction and its possible role in causing decreased insulin action in obesity and type 2 diabetes. Evidence is presented from studies in various human populations, as well as rodents with genetic manipulations of pathways known to affect mitochondrial function and insulin action. Finally, we have discussed whether mitochondria are a potential target for the treatment of IR. PMID:25385852

  14. Alternative (M2) activation of Kupffer cells by PPARδ ameliorates obesity-induced insulin resistance

    PubMed Central

    Odegaard, Justin I.; Ricardo-Gonzalez, Roberto R.; Eagle, Alex Red; Vats, Divya; Morel, Christine R.; Goforth, Matthew H.; Subramanian, Vidya; Mukundan, Lata; Ferrante, Anthony W.; Chawla, Ajay

    2008-01-01

    SUMMARY Macrophage infiltration and activation in metabolic tissues underlie obesity-induced insulin resistance and type 2 diabetes. While inflammatory activation of resident hepatic macrophages potentiates insulin resistance, the functions of alternatively activated Kupffer cells in metabolic disease remain unknown. Here we show that, in response to the Th2 cytokine interleukin-4 (IL-4), peroxisome proliferator activated receptor δ (PPARδ) directs expression of the alternative phenotype in Kupffer cells and adipose tissue macrophages of lean mice. However, adoptive transfer of PPARδ null bone marrow into wild type mice only diminishes alternative activation of hepatic macrophages, causing hepatic dysfunction and systemic insulin resistance. Suppression of hepatic oxidative metabolism is recapitulated by treatment of primary hepatocytes with conditioned media from PPARδ null macrophages, indicating direct involvement of Kupffer cells in liver lipid metabolism. Taken together, these data suggest an unexpected beneficial role for alternatively activated Kupffer cells in metabolic syndrome and type 2 diabetes. PMID:18522831

  15. Deficiency of the leukotriene B4 receptor, BLT-1, protects against systemic insulin resistance in diet-induced obesity.

    PubMed

    Spite, Matthew; Hellmann, Jason; Tang, Yunan; Mathis, Steven P; Kosuri, Madhavi; Bhatnagar, Aruni; Jala, Venkatakrishna R; Haribabu, Bodduluri

    2011-08-15

    Chronic inflammation is an underlying factor linking obesity with insulin resistance. Diet-induced obesity promotes an increase in circulating levels of inflammatory monocytes and their infiltration into expanding adipose tissue. Nevertheless, the endogenous pathways that trigger and sustain chronic low-grade inflammation in obesity are incompletely understood. In this study, we report that a high-fat diet selectively increases the circulating levels of CD11b(+) monocytes in wild-type mice that express leukotriene B(4) receptor, BLT-1, and that this increase is abolished in BLT-1-null mice. The accumulation of classically activated (M1) adipose tissue macrophages (ATMs) and the expression of proinflammatory cytokines and chemokines (i.e., IL-6 and Ccl2) was largely blunted in adipose tissue of obese BLT-1(-/-) mice, whereas the ratio of alternatively activated (M2) ATMs to M1 ATMs was increased. Obese BLT-1(-/-) mice were protected from systemic glucose and insulin intolerance and this was associated with a decrease in inflammation in adipose tissue and liver and a decrease in hepatic triglyceride accumulation. Deletion of BLT-1 prevented high fat-induced loss of insulin signaling in liver and skeletal muscle. These observations elucidate a novel role of chemoattractant receptor, BLT-1, in promoting monocyte trafficking to adipose tissue and promoting chronic inflammation in obesity and could lead to the identification of new therapeutic targets for treating insulin resistance in obesity.

  16. Inflammasome is a central player in the induction of obesity and insulin resistance.

    PubMed

    Stienstra, Rinke; van Diepen, Janna A; Tack, Cees J; Zaki, Md Hasan; van de Veerdonk, Frank L; Perera, Deshani; Neale, Geoffrey A; Hooiveld, Guido J; Hijmans, Anneke; Vroegrijk, Irene; van den Berg, Sjoerd; Romijn, Johannes; Rensen, Patrick C N; Joosten, Leo A B; Netea, Mihai G; Kanneganti, Thirumala-Devi

    2011-09-13

    Inflammation plays a key role in the pathogenesis of obesity. Chronic overfeeding leads to macrophage infiltration in the adipose tissue, resulting in proinflammatory cytokine production. Both microbial and endogenous danger signals trigger assembly of the intracellular innate immune sensor Nlrp3, resulting in caspase-1 activation and production of proinflammatory cytokines IL-1β and IL-18. Here, we showed that mice deficient in Nlrp3, apoptosis-associated speck-like protein, and caspase-1 were resistant to the development of high-fat diet-induced obesity, which correlated with protection from obesity-induced insulin resistance. Furthermore, hepatic triglyceride content, adipocyte size, and macrophage infiltration in adipose tissue were all reduced in mice deficient in inflammasome components. Monocyte chemoattractant protein (MCP)-1 is a key molecule that mediates macrophage infiltration. Indeed, defective inflammasome activation was associated with reduced MCP-1 production in adipose tissue. Furthermore, plasma leptin and resistin that affect energy use and insulin sensitivity were also changed by inflammasome-deficiency. Detailed metabolic and molecular phenotyping demonstrated that the inflammasome controls energy expenditure and adipogenic gene expression during chronic overfeeding. These findings reveal a critical function of the inflammasome in obesity and insulin resistance, and suggest inhibition of the inflammasome as a potential therapeutic strategy.

  17. HPMC supplementation reduces abdominal fat content, intestinal permeability, inflammation, and insulin resistance in diet-induced obese mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of hydroxypropyl methylcellulose (HPMC), a highly viscous non-fermentable soluble dietary fiber, were evaluated on adipose tissue inflammation and insulin resistance in diet induced obese (DIO) mice fed a high fat (HF) diet supplemented with either HPMC or insoluble fiber. DIO C57BL/6J m...

  18. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance.

    PubMed

    Vandanmagsar, Bolormaa; Youm, Yun-Hee; Ravussin, Anthony; Galgani, Jose E; Stadler, Krisztian; Mynatt, Randall L; Ravussin, Eric; Stephens, Jacqueline M; Dixit, Vishwa Deep

    2011-02-01

    The emergence of chronic inflammation during obesity in the absence of overt infection or well-defined autoimmune processes is a puzzling phenomenon. The Nod-like receptor (NLR) family of innate immune cell sensors, such as the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (Nlrp3, but also known as Nalp3 or cryopyrin) inflammasome are implicated in recognizing certain nonmicrobial originated 'danger signals' leading to caspase-1 activation and subsequent interleukin-1β (IL-1β) and IL-18 secretion. We show that calorie restriction and exercise-mediated weight loss in obese individuals with type 2 diabetes is associated with a reduction in adipose tissue expression of Nlrp3 as well as with decreased inflammation and improved insulin sensitivity. We further found that the Nlrp3 inflammasome senses lipotoxicity-associated increases in intracellular ceramide to induce caspase-1 cleavage in macrophages and adipose tissue. Ablation of Nlrp3 in mice prevents obesity-induced inflammasome activation in fat depots and liver as well as enhances insulin signaling. Furthermore, elimination of Nlrp3 in obese mice reduces IL-18 and adipose tissue interferon-γ (IFN-γ) expression, increases naive T cell numbers and reduces effector T cell numbers in adipose tissue. Collectively, these data establish that the Nlrp3 inflammasome senses obesity-associated danger signals and contributes to obesity-induced inflammation and insulin resistance.

  19. Plerocercoid growth factor (PGF), a human growth hormone (hGH) analogue produced by the tapeworm Spirometra mansonoides, has direct insulin-like action in adipose tissue of normal rats in vitro

    SciTech Connect

    Salem, M.A.M.; Phares, C.K.

    1986-03-01

    The metabolic actions of GH can be divided into acute (insulin-like) and chronic (lipolytic/anti-insulin). The insulin-like actions of GH are most readily elicited in GH-deficient animals as GH induces resistance to its own insulin-like action. Like GH, PGF stimulates growth and cross-reacts with anti-hGH antibodies. Independent experiments were conducted comparing the direct actions of PGF to insulin or hGH in vitro. Insulin-like effects were determined by the ability of PGF, insulin or hGH to stimulate (U-/sup 14/C)glucose metabolism in epidydimal fat pads from normal rats and by inhibition of epinephrine-stimulated lipolysis. Direct stimulation of lipolysis was used as anti-insulin activity. To determine if PGF competes for insulin or GH receptors, adipocytes (3 x 10/sup 5/ cells/ml) were incubated with either (/sup 125/I)insulin or (/sup 125/I)hGH +/- PGF, +/- insulin or +/- hGH. PGF stimulated glucose oxidation and /sup 14/C-incorporation into lipids. Insulin, hGH and PGF inhibited lipolysis (33%, 29% and 34%, respectively). Adipose tissue was very sensitive to the lipolytic effect of hGH but PGF was neither lipolytic nor did it confer refractoriness to its insulin-like action. PGF bound to GH but not to insulin receptors. Therefore, PGF had direct insulin-like effects but did not stimulate lipolysis in tissue from normal rats in vitro.

  20. Adipocytokine Profile and Insulin Resistance in Childhood Obesity

    PubMed Central

    GHERLAN, Iuliana; VLADOIU, Suzana; ALEXIU, Florin; GIURCANEANU, Mihaela; OROS, Sabina; BREHAR, Andreea; PROCOPIUC, Camelia; DUMITRACHE, Constantin

    2012-01-01

    ABSTRACT Background: Adipose tissue is a veritable "endocrine organ" due to its adipocytokines secretion implied in insulin sensitivity modulation and cardiovascular complications. Objective: To identify the adipocytokines' plasmatic profile (adiponectin, leptin, resistin, IL-6, TNFα) in obese children and adolescents and to assess their relationship with "classic" clinical/paraclinical markers of metabolic syndrome and insulin resistance. Material and Methods: A case-control study comparing a study group of 38 obese children and adolescents (age 13.5±2.3 years) to a normal weight age matched control group of 24 children. We measured body mass index (BMI) and waist circumference (WC), systolic and diastolic blood pressure (BP). The classical metabolic parameters (fasting glycemia, total cholesterol and its fractions, serum triglycerides) were measured in both groups. Insulin sensitivity was evaluated using fasting insulinemia, HOMA-index and insulin-resistance summary score (IRS). Adiponectin, leptin, resistin, IL-6 and TNFα were measured using ELISA method. Outcomes: Serum levels of leptin, resistin and IL-6 were signficantly higher (42.42±22.58 ng/ml versus 14.4±14.49 ng/ml, p <0.001; 9.69±3.47 ng/ml versus 7.92±2.13ng/ml, p = 0.029 and 2.66 ±2.87 pg/ml versus 0.89 ± 1.16 pg/ml, p = 0.006 respectively), while adiponectin levels were significantly lower (9.05±4.61 µg/ml versus 15.93±9.24 μg/ml, p <0.001) in the obese group compared to control group. TNFα was not statistical different between groups. In multivariate regression analysis adiponectin was negatively and significantly correlated with WC (r = - 0.463, p = 0.003); leptin was positively and significantly related to WC, diastolic BP, fasting insulinemia and resistin (r = 0.775, p <0.001); resistin was positively related to leptin and IL-6 (r = 0.499, p <0.001), IL-6 was positively and significantly related to diastolic blood pressure (r = 0.333, p = 0.008). Conclusions: Serum levels of

  1. Exposure to Fine Particulate Air Pollution Causes Vascular Insulin Resistance by Inducing Pulmonary Oxidative Stress

    PubMed Central

    Haberzettl, Petra; O’Toole, Timothy E.; Bhatnagar, Aruni; Conklin, Daniel J.

    2016-01-01

    Background: Epidemiological evidence suggests that exposure to ambient air fine particulate matter (PM2.5) increases the risk of developing type 2 diabetes and cardiovascular disease. However, the mechanisms underlying these effects of PM2.5 remain unclear. Objectives: We tested the hypothesis that PM2.5 exposure decreases vascular insulin sensitivity by inducing pulmonary oxidative stress. Methods: Mice fed control (10–13% kcal fat) and high-fat (60% kcal fat, HFD) diets, treated with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) or mice overexpressing lung-specific extracellular superoxide dismutase (ecSOD) were exposed to HEPA-filtered air or to concentrated PM2.5 (CAP) for 9 or 30 days, and changes in systemic and organ-specific insulin sensitivity and inflammation were measured. Results: In control diet–fed mice, exposure to CAP for 30 days decreased insulin-stimulated Akt phosphorylation in lung, heart, and aorta but not in skeletal muscle, adipose tissue, and liver and did not affect adiposity or systemic glucose tolerance. In HFD-fed mice, 30-day CAP exposure suppressed insulin-stimulated endothelial nitric oxide synthase (eNOS) phosphorylation in skeletal muscle and increased adipose tissue inflammation and systemic glucose intolerance. In control diet–fed mice, a 9-day CAP exposure was sufficient to suppress insulin-stimulated Akt and eNOS phosphorylation and to decrease IκBα (inhibitor of the transcription factor NF-κB levels in the aorta. Treatment with the antioxidant TEMPOL or lung-specific overexpression of ecSOD prevented CAP-induced vascular insulin resistance and inflammation. Conclusions: Short-term exposure to PM2.5 induces vascular insulin resistance and inflammation triggered by a mechanism involving pulmonary oxidative stress. Suppression of vascular insulin signaling by PM2.5 may accelerate the progression to systemic insulin resistance, particularly in the context of diet-induced obesity. Citation: Haberzettl P, O

  2. Race and the insulin resistance syndrome.

    PubMed

    Kramer, Holly; Dugas, Lara; Rosas, Sylvia E

    2013-09-01

    Type 2 diabetes remains an important cause of morbidity and mortality. The metabolic syndrome affects 25% of the adult US population based on the Third Report of the Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults from the National Cholesterol Education Program. Knowledge on the impact of obesity on metabolic health parameters has increased greatly over the past decade. This review discusses the limitations of the National Cholesterol Education Program metabolic syndrome definition and the racial disparities in the clinical presentation of the insulin resistance syndrome. We also examine the current literature with particular emphasis on albuminuria, nonalcoholic fatty liver disease, and intramyocellular lipid content. This review explores potential environmental and genetic reasons for differences in the manifestation of insulin resistance across racial/ethnic groups and highlights several promising areas for further study.

  3. Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice

    SciTech Connect

    Verreth, Wim; Verhamme, Peter; Pelat, Michael; Ganame, Javier; Bielicki, John K.; Mertens, Ann; Quarck, Rozenn; Benhabiles, Nora; Marguerie, Gerard; Mackness, Bharti; Mackness, Mike; Ninio, Ewa; Herregods, Marie-Christine; Balligand, Jean-Luc; Holvoet, Paul

    2003-09-01

    Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and of key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.

  4. Determinants of High Fasting Insulin and Insulin Resistance Among Overweight/Obese Adolescents

    PubMed Central

    Ling, Jerri Chiu Yun; Mohamed, Mohd Nahar Azmi; Jalaludin, Muhammad Yazid; Rampal, Sanjay; Zaharan, Nur Lisa; Mohamed, Zahurin

    2016-01-01

    Hyperinsulinaemia is the earliest subclinical metabolic abnormality, which precedes insulin resistance in obese children. An investigation was conducted on the potential predictors of fasting insulin and insulin resistance among overweight/obese adolescents in a developing Asian country. A total of 173 overweight/obese (BMI > 85th percentile) multi-ethnic Malaysian adolescents aged 13 were recruited from 23 randomly selected schools in this cross-sectional study. Waist circumference (WC), body fat percentage (BF%), physical fitness score (PFS), fasting glucose and fasting insulin were measured. Insulin resistance was calculated using homeostasis model assessment of insulin resistance (HOMA-IR). Adjusted stepwise multiple regression analysis was performed to predict fasting insulin and HOMA-IR. Covariates included pubertal stage, socioeconomic status, nutritional and physical activity scores. One-third of our adolescents were insulin resistant, with girls having significantly higher fasting insulin and HOMA-IR than boys. Gender, pubertal stage, BMI, WC and BF% had significant, positive moderate correlations with fasting insulin and HOMA-IR while PFS was inversely correlated (p < 0.05). Fasting insulin was primarily predicted by gender-girls (Beta = 0.305, p < 0.0001), higher BMI (Beta = −0.254, p = 0.02) and greater WC (Beta = 0.242, p = 0.03). This study demonstrated that gender, BMI and WC are simple predictors of fasting insulin and insulin resistance in overweight/obese adolescents. PMID:27824069

  5. Effects of consuming fructose- or glucose-sweetened beverages for 10 weeks on lipids, insulin sensitivity and adiposity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal studies have documented that, compared with glucose, dietary fructose promotes dyslipidemia and insulin resistance. Experimental evidence that fructose consumption in humans promotes dyslipidemia and insulin resistance compared with glucose consumption has been equivocal. We tested the hypoth...

  6. Artemisia extracts activate PPARγ, promote adipogenesis, and enhance insulin sensitivity in adipose tissue of obese mice

    PubMed Central

    Richard, Allison J.; Burris, Thomas P.; Sanchez-Infantes, David; Wang, Yongjun; Ribnicky, David M.; Stephens, Jacqueline M.

    2014-01-01

    Objective Studies have shown that the inability of adipose tissue to properly expand during the obese state or respond to insulin can lead to metabolic dysfunction. Artemisia is a diverse group of plants that has a history of medicinal use. This study examines the ability of ethanolic extracts of Artemisia scoparia (SCO) and Artemisia santolinifolia (SAN) to modulate adipocyte development in cultured adipocytes and white adipose tissue (WAT) function in vivo using a mouse model of diet-induced obesity. Research Design & Procedures Adipogenesis was assessed using Oil Red O staining and immunoblotting. A nuclear receptor specificity assay was used to examine the specificity of SCO- and SAN-induced PPARγ activation. C57BL/6J mice, fed a high-fat diet, were gavaged with saline, SCO, or SAN for 2 weeks. Whole-body insulin sensitivity was examined using insulin tolerance tests. WAT depots were assessed via immunoblotting for markers of insulin action and adipokine production. Results We established that SCO and SAN were highly specific activators of PPARγ and did not activate other nuclear receptors. After a one-week daily gavage, SCO- and SAN-treated mice had lower insulin-induced glucose disposal rates than control mice. At the end of the 2-week treatment period, SCO- and SAN-treated mice had enhanced insulin-responsive Akt serine-473 phosphorylation and significantly decreased MCP-1 levels in visceral WAT relative to control mice; these differences were depot specific. Moreover, plasma adiponectin levels were increased following SCO treatment. Conclusion Overall, these studies demonstrate that extracts from two Artemisia species can have metabolically favorable effects on adipocytes and WAT. PMID:24985103

  7. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    PubMed

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory.

  8. PEDF-induced alteration of metabolism leading to insulin resistance.

    PubMed

    Carnagarin, Revathy; Dharmarajan, Arunasalam M; Dass, Crispin R

    2015-02-05

    Pigment epithelium-derived factor (PEDF) is an anti-angiogenic, immunomodulatory, and neurotrophic serine protease inhibitor protein. PEDF is evolving as a novel metabolic regulatory protein that plays a causal role in insulin resistance. Insulin resistance is the central pathogenesis of metabolic disorders such as obesity, type 2 diabetes mellitus, polycystic ovarian disease, and metabolic syndrome, and PEDF is associated with them. The current evidence suggests that PEDF administration to animals induces insulin resistance, whereas neutralisation improves insulin sensitivity. Inflammation, lipolytic free fatty acid mobilisation, and mitochondrial dysfunction are the proposed mechanism of PEDF-mediated insulin resistance. This review summarises the probable mechanisms adopted by PEDF to induce insulin resistance, and identifies PEDF as a potential therapeutic target in ameliorating insulin resistance.

  9. Transient receptor potential vanilloid type-1 channel regulates diet-induced obesity, insulin resistance, and leptin resistance.

    PubMed

    Lee, Eunjung; Jung, Dae Young; Kim, Jong Hun; Patel, Payal R; Hu, Xiaodi; Lee, Yongjin; Azuma, Yoshihiro; Wang, Hsun-Fan; Tsitsilianos, Nicholas; Shafiq, Umber; Kwon, Jung Yeon; Lee, Hyong Joo; Lee, Ki Won; Kim, Jason K

    2015-08-01

    Insulin resistance is a major characteristic of obesity and type 2 diabetes, but the underlying mechanism is unclear. Recent studies have shown a metabolic role of capsaicin that may be mediated via the transient receptor potential vanilloid type-1 (TRPV1) channel. In this study, TRPV1 knockout (KO) and wild-type (WT) mice (as controls) were fed a high-fat diet (HFD), and metabolic studies were performed to measure insulin and leptin action. The TRPV1 KO mice became more obese than the WT mice after HFD, partly attributed to altered energy balance and leptin resistance in the KO mice. The hyperinsulinemic-euglycemic clamp experiment showed that the TRPV1 KO mice were more insulin resistant after HFD because of the ∼40% reduction in glucose metabolism in the white and brown adipose tissue, compared with that in the WT mice. Leptin treatment failed to suppress food intake, and leptin-mediated hypothalamic signal transducer and activator of transcription (STAT)-3 activity was blunted in the TRPV1 KO mice. We also found that the TRPV1 KO mice were more obese and insulin resistant than the WT mice at 9 mo of age. Taken together, these results indicate that lacking TRPV1 exacerbates the obesity and insulin resistance associated with an HFD and aging, and our findings further suggest that TRPV1 has a major role in regulating glucose metabolism and hypothalamic leptin's effects in obesity.

  10. Signalling pathways of an insulin-mimetic phosphoinositolglycan-peptide in muscle and adipose tissue.

    PubMed Central

    Kessler, A; Müller, G; Wied, S; Crecelius, A; Eckel, J

    1998-01-01

    A novel phosphoinositolglycan-peptide (PIG-P) from the yeast Saccharomyces cerevisiae potently mimicks insulin action on glucose transport and metabolism in rat muscle and adipose tissue. The aim of the present study was to elucidate the cellular signalling pathways of this insulin-mimetic compound. Rapid onset and reversibility of PIG-P action on glucose transport were observed in isolated adipocytes with a half-time of transport stimulation of 6-8 min (insulin less than 5 min). Combined treatment with PIG-P and insulin indicated additive stimulation of glucose transport at submaximal concentrations and non-additive action of both agents at maximal doses. The tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) was markedly increased in response to PIG-P in rat cardiomyocytes without any effect on the tyrosine phosphorylation of the insulin receptor beta-subunit. PIG-P action in these cells was accompanied by phosphorylation/dephosphorylation of several proteins with molecular masses of 15-30 kDa, a response not detected with insulin. Downstream signalling of IRS-1 was then analysed by monitoring IRS-1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity in cardiomyocytes. A stable (2 and 15 min incubation with PIG-P) 7-fold stimulation corresponding to about 50% of insulin action could be detected. Increased tyrosine phosphorylation of IRS-1 and enhanced PI 3-kinase activity in response to PIG-P independent of the insulin receptor was also observed in isolated adipocytes. Involvement of PI 3-kinase in PIG-P action was subsequently confirmed by the dose-dependent inhibition of PIG-P-activated glucose transport in rat diaphragm and adipocytes by the PI 3-kinase inhibitors wortmannin and LY294002. These data suggest divergent upstream signalling by insulin and PIG-P involving phosphoproteins not affected by insulin. However, PIG-P and insulin action converge at the level of IRS-1 inducing insulin-independent PI 3-kinase-mediated signalling to

  11. Molecular and cellular mechanisms linking inflammation to insulin resistance and β-cell dysfunction.

    PubMed

    Khodabandehloo, Hadi; Gorgani-Firuzjaee, Sattar; Panahi, Ghodratollah; Meshkani, Reza

    2016-01-01

    Obesity is a major public health problem worldwide, and it is associated with an increased risk of developing type 2 diabetes. It is now commonly accepted that chronic inflammation associated with obesity induces insulin resistance and β-cell dysfunction in diabetic patients. Obesity-associated inflammation is characterized by increased abundance of macrophages and enhanced production of inflammatory cytokines in adipose tissue. Adipose tissue macrophages are suggested to be the major source of local and systemic inflammatory mediators such as tumor necrosis factor α, interleukin (IL)-1β, and IL-6. These cytokines induce insulin resistance in insulin target tissues by activating the suppressors of cytokine signaling proteins, several kinases such as c-Jun N-terminal kinase, IκB kinase β, and protein kinase C, inducible nitric oxide synthase, extracellular signal-regulated kinase, and protein tyrosine phosphatases such as protein tyrosine phosphatase 1B. These activated factors impair the insulin signaling at the insulin receptor and the insulin receptor substrates levels. The same process most likely occurs in the pancreas as it contains a pool of tissue-resident macrophages. High concentrations of glucose or palmitate via the chemokine production promote further immune cell migration and infiltration into the islets. These events ultimately induce inflammatory responses leading to the apoptosis of the pancreatic β cells. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation are discussed, with particular attention being placed on the roles of the molecular players linking inflammation to insulin resistance and β-cell dysfunction.

  12. Adipose triglyceride lipase is implicated in fuel- and non-fuel-stimulated insulin secretion.

    PubMed

    Peyot, Marie-Line; Guay, Claudiane; Latour, Martin G; Lamontagne, Julien; Lussier, Roxane; Pineda, Marco; Ruderman, Neil B; Haemmerle, Guenter; Zechner, Rudolf; Joly, Erik; Madiraju, S R Murthy; Poitout, Vincent; Prentki, Marc

    2009-06-19

    Reduced lipolysis in hormone-sensitive lipase-deficient mice is associated with impaired glucose-stimulated insulin secretion (GSIS), suggesting that endogenous beta-cell lipid stores provide signaling molecules for insulin release. Measurements of lipolysis and triglyceride (TG) lipase activity in islets from HSL(-/-) mice indicated the presence of other TG lipase(s) in the beta-cell. Using real time-quantitative PCR, adipose triglyceride lipase (ATGL) was found to be the most abundant TG lipase in rat islets and INS832/13 cells. To assess its role in insulin secretion, ATGL expression was decreased in INS832/13 cells (ATGL-knockdown (KD)) by small hairpin RNA. ATGL-KD increased the esterification of free fatty acid (FFA) into TG. ATGL-KD cells showed decreased glucose- or Gln + Leu-induced insulin release, as well as reduced response to KCl or palmitate at high, but not low, glucose. The K(ATP)-independent/amplification pathway of GSIS was considerably reduced in ATGL-KD cells. ATGL(-/-) mice were hypoinsulinemic and hypoglycemic and showed decreased plasma TG and FFAs. A hyperglycemic clamp revealed increased insulin sensitivity and decreased GSIS and arginine-induced insulin secretion in ATGL(-/-) mice. Accordingly, isolated islets from ATGL(-/-) mice showed reduced insulin secretion in response to glucose, glucose + palmitate, and KCl. Islet TG content and FFA esterification into TG were increased by 2-fold in ATGL(-/-) islets, but glucose usage and oxidation were unaltered. The results demonstrate the importance of ATGL and intracellular lipid signaling for fuel- and non-fuel-induced insulin secretion.

  13. Adipose Triglyceride Lipase Is Implicated in Fuel- and Non-fuel-stimulated Insulin Secretion*

    PubMed Central

    Peyot, Marie-Line; Guay, Claudiane; Latour, Martin G.; Lamontagne, Julien; Lussier, Roxane; Pineda, Marco; Ruderman, Neil B.; Haemmerle, Guenter; Zechner, Rudolf; Joly, Érik; Madiraju, S. R. Murthy; Poitout, Vincent; Prentki, Marc

    2009-01-01

    Reduced lipolysis in hormone-sensitive lipase-deficient mice is associated with impaired glucose-stimulated insulin secretion (GSIS), suggesting that endogenous β-cell lipid stores provide signaling molecules for insulin release. Measurements of lipolysis and triglyceride (TG) lipase activity in islets from HSL−/− mice indicated the presence of other TG lipase(s) in the β-cell. Using real time-quantitative PCR, adipose triglyceride lipase (ATGL) was found to be the most abundant TG lipase in rat islets and INS832/13 cells. To assess its role in insulin secretion, ATGL expression was decreased in INS832/13 cells (ATGL-knockdown (KD)) by small hairpin RNA. ATGL-KD increased the esterification of free fatty acid (FFA) into TG. ATGL-KD cells showed decreased glucose- or Gln + Leu-induced insulin release, as well as reduced response to KCl or palmitate at high, but not low, glucose. The KATP-independent/amplification pathway of GSIS was considerably reduced in ATGL-KD cells. ATGL−/− mice were hypoinsulinemic and hypoglycemic and showed decreased plasma TG and FFAs. A hyperglycemic clamp revealed increased insulin sensitivity and decreased GSIS and arginine-induced insulin secretion in ATGL−/− mice. Accordingly, isolated islets from ATGL−/− mice showed reduced insulin secretion in response to glucose, glucose + palmitate, and KCl. Islet TG content and FFA esterification into TG were increased by 2-fold in ATGL−/− islets, but glucose usage and oxidation were unaltered. The results demonstrate the importance of ATGL and intracellular lipid signaling for fuel- and non-fuel-induced insulin secretion. PMID:19389712

  14. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses.

    PubMed

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-09-01

    Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle microvascular recruitment. We demonstrated that a high-fat diet induces vascular adiponectin and insulin resistance but globular adiponectin administration can restore vascular insulin responses and improve insulin's metabolic action via an AMPK- and nitric oxide-dependent mechanism. This suggests that globular adiponectin might have a therapeutic potential for improving insulin resistance and preventing cardiovascular complications in patients with diabetes via modulation of microvascular insulin responses. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague-Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by

  15. Are obesity-related insulin resistance and type 2 diabetes autoimmune diseases?

    PubMed

    Tsai, Sue; Clemente-Casares, Xavier; Revelo, Xavier S; Winer, Shawn; Winer, Daniel A

    2015-06-01

    Obesity and associated insulin resistance predispose individuals to develop chronic metabolic diseases, such as type 2 diabetes and cardiovascular disease. Although these disorders affect a significant proportion of the global population, the underlying mechanisms of disease remain poorly understood. The discovery of elevated tumor necrosis factor-α in adipose tissue as an inducer of obesity-associated insulin resistance marked a new era of understanding that a subclinical inflammatory process underlies the insulin resistance and metabolic dysfunction that precedes type 2 diabetes. Advances in the field identified components of both the innate and adaptive immune response as key players in regulating such inflammatory processes. As antigen specificity is a hallmark of an adaptive immune response, its role in modulating the chronic inflammation that accompanies obesity and type 2 diabetes begs the question of whether insulin resistance and type 2 diabetes can have autoimmune components. In this Perspective, we summarize current data that pertain to the activation and perpetuation of adaptive immune responses during obesity and discuss key missing links and potential mechanisms for obesity-related insulin resistance and type 2 diabetes to be considered as potential autoimmune diseases.

  16. Metabolic consequences of obesity and insulin resistance in polycystic ovary syndrome: diagnostic and methodological challenges.

    PubMed

    Jeanes, Yvonne M; Reeves, Sue

    2017-02-22

    Women with polycystic ovary syndrome (PCOS) have a considerable risk of metabolic dysfunction. This review aims to present contemporary knowledge on obesity, insulin resistance and PCOS with emphasis on the diagnostic and methodological challenges encountered in research and clinical practice. Variable diagnostic criteria for PCOS and associated phenotypes are frequently published. Targeted searches were conducted to identify all available data concerning the association of obesity and insulin resistance with PCOS up to September 2016. Articles were considered if they were peer reviewed, in English and included women with PCOS. Obesity is more prevalent in women with PCOS, but studies rarely reported accurate assessments of adiposity, nor split the study population by PCOS phenotypes. Many women with PCOS have insulin resistance, though there is considerable variation reported in part due to not distinguishing subgroups known to have an impact on insulin resistance as well as limited methodology to measure insulin resistance. Inflammatory markers are positively correlated with androgen levels, but detailed interactions need to be identified. Weight management is the primary therapy; specific advice to reduce the glycaemic load of the diet and reduce the intake of pro-inflammatory SFA and advanced glycation endproducts have provided promising results. It is important that women with PCOS are educated about their increased risk of metabolic complications in order to make timely and appropriate lifestyle modifications. Furthermore, well-designed robust studies are needed to evaluate the mechanisms behind the improvements observed with dietary interventions.

  17. β-Adrenergic Receptor and Insulin Resistance in the Heart.

    PubMed

    Mangmool, Supachoke; Denkaew, Tananat; Parichatikanond, Warisara; Kurose, Hitoshi

    2017-01-01

    Insulin resistance is characterized by the reduced ability of insulin to stimulate tissue uptake and disposal of glucose including cardiac muscle. These conditions accelerate the progression of heart failure and increase cardiovascular morbidity and mortality in patients with cardiovascular diseases. It is noteworthy that some conditions of insulin resistance are characterized by up-regulation of the sympathetic nervous system, resulting in enhanced stimulation of β-adrenergic receptor (βAR). Overstimulation of βARs leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, pathological consequences of the cross-talk between the βAR and the insulin sensitivity and the mechanism by which βAR overstimulation promotes insulin resistance remain unclear. This review article examines the hypothesis that βARs overstimulation leads to induction of insulin resistance in the heart.

  18. β-Adrenergic Receptor and Insulin Resistance in the Heart

    PubMed Central

    Mangmool, Supachoke; Denkaew, Tananat; Parichatikanond, Warisara; Kurose, Hitoshi

    2017-01-01

    Insulin resistance is characterized by the reduced ability of insulin to stimulate tissue uptake and disposal of glucose including cardiac muscle. These conditions accelerate the progression of heart failure and increase cardiovascular morbidity and mortality in patients with cardiovascular diseases. It is noteworthy that some conditions of insulin resistance are characterized by up-regulation of the sympathetic nervous system, resulting in enhanced stimulation of β-adrenergic receptor (βAR). Over-stimulation of βARs leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, pathological consequences of the cross-talk between the βAR and the insulin sensitivity and the mechanism by which βAR over-stimulation promotes insulin resistance remain unclear. This review article examines the hypothesis that βARs over-stimulation leads to induction of insulin resistance in the heart. PMID:28035081

  19. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy

    PubMed Central

    Jia, Guanghong; DeMarco, Vincent G.; Sowers, James R.

    2016-01-01

    Insulin resistance, type 2 diabetes mellitus and associated hyperinsulinaemia can promote the development of a specific form of cardiomyopathy that is independent of coronary artery disease and hypertension. Termed diabetic cardiomyopathy, this form of cardiomyopathy is a major cause of morbidity and mortality in developed nations, and the prevalence of this condition is rising in parallel with increases in the incidence of obesity and type 2 diabetes mellitus. Of note, female patients seem to be particularly susceptible to the development of this complication of metabolic disease. The diabetic cardiomyopathy observed in insulin-resistant or hyperinsulinaemic states is characterized by impaired myocardial insulin signalling, mitochondrial dysfunction, endoplasmic reticulum stress, impaired calcium homeostasis, abnormal coronary microcirculation, activation of the sympathetic nervous system, activation of the renin–angiotensin–aldosterone system and maladaptive immune responses. These pathophysiological changes result in oxidative stress, fibrosis, hypertrophy, cardiac diastolic dysfunction and eventually systolic heart failure. This Review highlights a surge in diabetic cardiomyopathy research, summarizes current understanding of the molecular mechanisms underpinning this condition and explores potential preventive and therapeutic strategies. PMID:26678809

  20. Insulin Signaling in Liver and Adipose Tissues in Periparturient Dairy Cows Supplemented with Dietary Nicotinic Acid

    PubMed Central

    Kinoshita, Asako; Kenéz, Ákos; Locher, Lena; Meyer, Ulrich; Dänicke, Sven; Rehage, Jürgen; Huber, Korinna

    2016-01-01

    The glucose homeostasis in dairy cattle is very well controlled, in line with the metabolic adaptation during the periparturient period. Former studies showed that nicotinic acid (NA) lowered plasma non-esterified fatty acids (NEFA) concentrations and increased insulin sensitivity in dairy cows. Thus, the purpose of this study was to investigate whether the expression of proteins involved in hepatic and adipose insulin signaling and protein expression of hepatic glucose transporter 2 (GLUT2) were affected by dietary NA and dietary concentrate intake in periparturient dairy cows. Twenty pluriparous German Holstein cows were fed with the same diet from about 21 days before the expected calving date (d-21) to calving. After calving, cows were randomly assigned in 4 groups and fed with diets different in concentrate proportion (“HC” with 60:40% or “LC” with 30:70% concentrate-to-roughage ratio) and supplemented with NA (24 g/day) (NA) or without (CON) until d21. Biopsy samples were taken from the liver, subcutaneous (SCAT) and retroperitoneal (RPAT) adipose tissues at d-21 and d21. Protein expression of insulin signaling molecules (insulin receptor (INSR), phosphatidylinositol-3-kinase (PI3K), protein kinase Cζ (PKCζ)) and hepatic GLUT2 was measured by Western Blotting. The ratio of protein expression at d21/at d-21 was calculated and statistically evaluated for the effects of time and diet. Cows in HC had significantly higher dietary energy intake than cows in LC. In RPAT a decrease in PI3K and PKCζ expression was found in all groups, irrespectively of diet. In the liver, the GLUT2 expression was significantly lower in cows in NA compared with cows in CON. In conclusion, insulin signaling might be decreased in RPAT over time without any effect of diet. NA was able to modulate hepatic GLUT2 expression, but its physiological role is unclear. PMID:26766039

  1. Earlier Menarche Is Associated with Lower Insulin Sensitivity and Increased Adiposity in Young Adult Women

    PubMed Central

    Wilson, Dyanne A.; Derraik, José G. B.; Rowe, Deborah L.; Hofman, Paul L.; Cutfield, Wayne S.

    2015-01-01

    Objective We aimed to assess whether age at menarche was associated with insulin sensitivity in young adult women. Methods We studied 54 healthy young women aged 20–30 years. Participants were grouped according to age at menarche: Early (≤11.0 years; n=13), Average (>12.0 and ≤13.0 years; n=28), and Late (≥14.0 years, n=13). Primary outcome was insulin sensitivity measured using intravenous glucose tolerance tests and Bergman’s minimal model. Body composition was assessed using whole-body dual-energy X-ray absorptiometry. Results Earlier menarche was associated with lower insulin sensitivity (p=0.015). There was also a continuous increase in adiposity with younger age at menarche, which was associated with increased weight (p=0.001), BMI (p=0.002), total body fat (p=0.049), and truncal fat (p=0.020). Stratified analyses showed that insulin sensitivity in Early women (5.5 x10-4·min-1(mU/l)) was lower than in Average (8.0 x10-4·min-1(mU/l), p=0.021) and Late (8.6 x10-4·min-1(mU/l), p=0.033) groups. Early women (weight=66.1 kg; BMI=24.1 kg/m2) were considerably heavier and fatter than Average (59.0 kg, p=0.004; 21.4 kg/m2, p=0.002) and Late (57.0 kg, p=0.001; 20.8 kg/m2, p=0.0009) women. Conclusions Early menarche is associated with lower insulin sensitivity and increased adiposity in young adulthood, potentially increasing the risk of type 2 diabetes and the metabolic syndrome later in life. PMID:26061526

  2. Insulin regulates Glut4 confinement in plasma membrane clusters in adipose cells.

    PubMed

    Lizunov, Vladimir A; Stenkula, Karin; Troy, Aaron; Cushman, Samuel W; Zimmerberg, Joshua

    2013-01-01

    Insulin-stimulated delivery of glucose transporter-4 (GLUT4) to the plasma membrane (PM) is the hallmark of glucose metabolism. In this study we examined insulin's effects on GLUT4 organization in PM of adipose cells by direct microscopic observation of single monomers tagged with photoswitchable fluorescent protein. In the basal state, after exocytotic delivery only a fraction of GLUT4 is dispersed into the PM as monomers, while most of the GLUT4 stays at the site of fusion and forms elongated clusters (60-240 nm). GLUT4 monomers outside clusters diffuse freely and do not aggregate with other monomers. In contrast, GLUT4 molecule collision with an existing cluster can lead to immediate confinement and association with that cluster. Insulin has three effects: it shifts the fraction of dispersed GLUT4 upon delivery, it augments the dissociation of GLUT4 monomers from clusters ∼3-fold and it decreases the rate of endocytic uptake. All together these three effects of insulin shift most of the PM GLUT4 from clustered to dispersed states. GLUT4 confinement in clusters represents a novel kinetic mechanism for insulin regulation of glucose homeostasis.

  3. The adipose renin-angiotensin system modulates sysemic markers of insulin sensitivity activates the intrarenal renin-angiotensin system

    SciTech Connect

    Kim, Suyeon; Soltani-Bejnood, Morvarid; Quignard-Boulange, Annie; Massiera, Florence; Teboul, Michele; Ailhaud, Gerard; Kim, Jung; Moustaid-Moussa, Naima; Voy, Brynn H

    2006-07-01

    BACKGROUND: A growing body of data provides increasing evidence that the adipose tissue renin-angiotensin system (RAS) contributes to regulation of fat mass. Beyond its paracrine actions within adipose tissue, adipocyte-derived angiotensin II (Ang II) may also impact systemic functions such as blood pressure and metabolism. METHODS AND RESULTS: We used a genetic approach to manipulate adipose RAS activity in mice and then study the consequences on metabolic parameters and on feedback regulation of the RAS. The models included deletion of the angiotensinogen (Agt) gene (Agt-KO), its expression solely in adipose tissue under the control of an adipocyte-specific promoter (aP2-Agt/ Agt-KO), and overexpression in adipose tissue of wild type mice (aP2-Agt). Total body weight, epididymal fat pad weight, and circulating levels of leptin, insulin and resistin were significantly decreased in Agt-KO mice, while plasma adiponectin levels were increased. Overexpression of Agt in adipose tissue resulted in increased adiposity and plasma leptin and insulin levels compared to wild type (WT) controls. Angiotensinogen and type I Ang II receptor protein levels were also markedly elevated in kidney of aP2-Agt mice, suggesting that hypertension in these animals may be in part due to stimulation of the intrarenal RAS. CONCLUSIONS: Taken together, the results from this study demonstrate that alterations in adipose RAS activity significantly alter both local and systemic physiology in a way that may contribute to the detrimental health effects of obesity.

  4. Extracellular Fatty Acid Synthase: A Possible Surrogate Biomarker of Insulin Resistance

    PubMed Central

    Fernandez-Real, Jose Manuel; Menendez, Javier A.; Moreno-Navarrete, Jose Maria; Blüher, Matthias; Vazquez-Martin, Alejandro; Vázquez, María Jesús; Ortega, Francisco; Diéguez, Carlos; Frühbeck, Gema; Ricart, Wifredo; Vidal-Puig, Antonio

    2010-01-01

    CONTEXT Circulating fatty acid synthase (FASN) is a biomarker of metabolically demanding human diseases. The aim of this study was to determine whether circulating FASN could be a biomarker of overnutrition-induced metabolic stress and insulin resistance in common metabolic disorders. RESEARCH DESIGN AND METHODS Circulating FASN was evaluated in two cross-sectional studies in association with insulin sensitivity and in four longitudinal studies investigating the effect of diet- and surgery-induced weight loss, physical training, and adipose tissue expansion using peroxisome proliferator–activated receptor agonist rosiglitazone on circulating FASN. RESULTS Age- and BMI-adjusted FASN concentrations were significantly increased in association with obesity-induced insulin resistance in two independent cohorts. Both visceral and subcutaneous FASN expression and protein levels correlated inversely with extracellular circulating FASN (P = −0.63; P < 0.0001), suggesting that circulating FASN is linked to depletion of intracellular FASN. Improved insulin sensitivity induced by therapeutic strategies that decreased fat mass (diet induced, surgery induced, or physical training) all led to decreased FASN levels in blood (P values between 0.02 and 0.04). To discriminate whether this was an effect related to insulin sensitization, we also investigated the effects of rosiglitazone. Rosiglitazone did not lead to significant changes in circulating FASN concentration. CONCLUSIONS Our results suggest that circulating FASN is a biomarker of overnutrition-induced insulin resistance that could provide diagnostic and prognostic advantages by providing insights on the individualized metabolic stress. PMID:20299470

  5. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux

    PubMed Central

    Samuel, Varman T.; Shulman, Gerald I.

    2016-01-01

    Insulin resistance arises when the nutrient storage pathways evolved to maximize efficient energy utilization are exposed to chronic energy surplus. Ectopic lipid accumulation in liver and skeletal muscle triggers pathways that impair insulin signaling, leading to reduced muscle glucose uptake and decreased hepatic glycogen synthesis. Muscle insulin resistance, due to ectopic lipid, precedes liver insulin resistance and diverts ingested glucose to the liver, resulting in increased hepatic de novo lipogenesis and hyperlipidemia. Subsequent macrophage infiltration into white adipose tissue (WAT) leads to increased lipolysis, which further increases hepatic triglyceride synthesis and hyperlipidemia due to increased fatty acid esterification. Macrophage-induced WAT lipolysis also stimulates hepatic gluconeogenesis, promoting fasting and postprandial hyperglycemia through increased fatty acid delivery to the liver, which results in increased hepatic acetyl-CoA content, a potent activator of pyruvate carboxylase, and increased glycerol conversion to glucose. These substrate-regulated processes are mostly independent of insulin signaling in the liver but are dependent on insulin signaling in WAT, which becomes defective with inflammation. Therapies that decrease ectopic lipid storage and diminish macrophage-induced WAT lipolysis will reverse the root causes of type 2 diabetes. PMID:26727229

  6. Insulin resistance influences central opioid activity in polycystic ovary syndrome.

    PubMed

    Berent-Spillson, Alison; Love, Tiffany; Pop-Busui, Rodica; Sowers, MaryFran; Persad, Carol C; Pennington, Kathryn P; Eyvazaddeh, Aimee D; Padmanabhan, Vasantha; Zubieta, Jon-Kar; Smith, Yolanda R

    2011-06-30

    This pilot study describes a relationship between insulin resistance and μ-opioid neurotransmission in limbic appetite and mood-regulating regions in women with polycystic ovary syndrome (PCOS), suggesting that insulin-opioid interactions may contribute to behavioral and reproductive pathologies of PCOS. We found that [1] patients with PCOS who are insulin-resistant (n = 7) had greater limbic μ-opioid receptor availability (nondisplaceable binding potential) than controls (n = 5); [2] receptor availability was correlated with severity of insulin resistance; and [3] receptor availability normalized after insulin-regulating treatment.

  7. Effect of curative parathyroidectomy on insulin resistance

    PubMed Central

    Putnam, Rachel; Dhibar, Deba Prasad; Varshney, Shweta; Behera, Arunanshu; Mittal, B. R.; Bhansali, Anil; Rao, Sudhaker D.; Bhadada, Sanjay Kumar

    2016-01-01

    Background: Primary hyperparathyroidism (PHPT) is characterized by inappropriately elevated serum parathyroid hormone (PTH) level despite elevated serum calcium. Insulin resistant is the basic pathophysiology, behind the higher prevalence of diabetes mellitus in patients with PHPT. However, the improvement in insulin resistance (IR) after curative parathyroidectomy (CPTX) has not been established yet, as the study results are conflicting. Materials and Methods: In this prospective interventional study, ten patients with mild PHPT (Group 1) and another ten patients with moderate to severe PHPT (Group 2) were undergone CPTX. The IR was assessed by homeostasis model assessment-IR (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), fasting plasma glucose (FPG), and fasting serum insulin (FSI), before and 3 months after CPTX. Results: There was no significant change of FPG and FSI, before and after CPTX in Group 1 (P = 0.179 and P = 0.104) and Group 2 (P = 0.376 and P = 0.488). Before surgery, HOMA-IR was higher, and QUICKI was significantly lower, in both Group 1 (P = 0.058 and P = 0.009) and Group 2 (P = 0.023 and P = 0.005) as compared to published normal reference mean, with no significant difference between the groups. Three months after surgery HOMA-IR increased further and QUICKI remained unchanged as compared to baseline, in both Group 1 (P = 0.072 and 0.082) and Group 2 (P = 0.54 and 0.56), but statistically insignificant. Conclusion: IR remained unchanged after CPTX in mild as well as moderate to severe PHPT. Asymptomatic PHPT with abnormal IR should not be used as criteria for parathyroidectomy. PMID:27867880

  8. Insulin resistance in severe acne vulgaris

    PubMed Central

    Cengiz, Fatma Pelin; Kemeriz, Funda

    2015-01-01

    Introduction Acne vulgaris is a pilosebaceous gland disease that usually affects people from puberty to young adulthood. It is seen especially on the face, neck, trunk and arms. Its severity differs from patient to patient and its pathogenesis is multifactorial. The main pathogenic factors of acne are high sebaceous gland secretion, follicular hyperproliferation, high androgen effects, propionibacterium acnes colonization and inflammation. Diet is always thought a probable reason for acne and many studies are done about acne and diet. Aim To determine the effect of insulin resistance in severe acne vulgaris. Material and methods Two hundred and forty-three acne vulgaris patients and 156 healthy controls were enrolled into the study. The blood levels of insulin and glucose were measured. Homeostasis Model Assessment (HOMA) Index was calculated. The values were compared with the control group. Results All of the patients were in the severe acne group according to their scores on the global acne scoring scale. While fasting blood glucose levels were not different between the groups (p > 0.05, 82.91 ±9.76 vs. 80.26 ±8.33), the fasting insulin levels were significantly higher in the patient group than in the control group (p < 0.001, 14.01 ±11.94 vs. 9.12 ±3.53). Additionally, there was a highly significant difference between the patient and control groups in terms of HOMA values (p < 0.001, 2.87 ±2.56 vs. 1.63 ±0.65). Conclusions These results suggest that insulin resistance may have a role in the pathogenesis of acne. PMID:26366152

  9. Insulin Resistance in Chileans of European and Indigenous Descent: Evidence for an Ethnicity x Environment Interaction

    PubMed Central

    Celis-Morales, Carlos A.; Perez-Bravo, Francisco; Ibañes, Luis; Sanzana, Ruth; Hormazabal, Edison; Ulloa, Natalia; Calvo, Carlos; Bailey, Mark E. S.; Gill, Jason M. R.

    2011-01-01

    Background Effects of urbanisation on diabetes risk appear to be greater in indigenous populations worldwide than in populations of European origin, but the reasons are unclear. This cross-sectional study aimed to determine whether the effects of environment (Rural vs. Urban), adiposity, fitness and lifestyle variables on insulin resistance differed between individuals of indigenous Mapuche origin compared to those of European origin in Chile. Methodology/Principal Findings 123 Rural Mapuche, 124 Urban Mapuche, 91 Rural European and 134 Urban European Chilean adults had blood taken for determination of HOMA-estimated insulin resistance (HOMAIR) and underwent assessment of physical activity/sedentary behaviour (using accelerometry), cardiorespiratory fitness, dietary intake and body composition. General linear models were used to determine interactions with ethnicity for key variables. There was a significant “ethnicity x environment” interaction for HOMAIR (Mean±SD; Rural Mapuche: 1.65±2.03, Urban Mapuche: 4.90±3.05, Rural European: 0.82±0.61, Urban European: 1.55±1.34, p(interaction) = 0.0003), such that the effect of urbanisation on HOMAIR was greater in Mapuches than Europeans. In addition, there were significant interactions (all p<0.004) with ethnicity for effects of adiposity, sedentary time and physical activity on HOMAIR, with greater effects seen in Mapuches compared to Europeans, an observation that persisted after adjustment for potential confounders. Conclusions/Significance Urbanisation, adiposity, physical activity and sedentary behaviour influence insulin resistance to a greater extent in Chilean Mapuches than Chileans of European descent. These findings have implications for the design and implementation of lifestyle strategies to reduce metabolic risk in different ethnic groups, and for understanding of the mechanisms underpinning human insulin resistance. PMID:21931814

  10. NOV/CCN3: A New Adipocytokine Involved in Obesity-Associated Insulin Resistance.

    PubMed

    Martinerie, Cécile; Garcia, Marie; Do, Thi Thu Huong; Antoine, Bénédicte; Moldes, Marthe; Dorothee, Guillaume; Kazazian, Chantal; Auclair, Martine; Buyse, Marion; Ledent, Tatiana; Marchal, Pierre-Olivier; Fesatidou, Maria; Beisseiche, Adrien; Koseki, Haruhiko; Hiraoka, Shuichi; Chadjichristos, Christos Evangelos; Blondeau, Bertrand; Denis, Raphael Georges; Luquet, Serge; Fève, Bruno

    2016-09-01

    Identification of new adipokines that potentially link obesity to insulin resistance represents a major challenge. We recently showed that NOV/CCN3, a multifunctional matricellular protein, is synthesized and secreted by adipose tissue, with plasma levels highly correlated with BMI. NOV involvement in tissue repair, fibrotic and inflammatory diseases, and cancer has been previously reported. However, its role in energy homeostasis remains unknown. We investigated the metabolic phenotype of NOV(-/-) mice fed a standard or high-fat diet (HFD). Strikingly, the weight of NOV(-/-) mice was markedly lower than that of wild-type mice but only on an HFD. This was related to a significant decrease in fat mass associated with an increased proportion of smaller adipocytes and to a higher expression of genes involved in energy expenditure. NOV(-/-) mice fed an HFD displayed improved glucose tolerance and insulin sensitivity. Interestingly, the absence of NOV was associated with a change in macrophages profile (M1-like to M2-like), in a marked decrease in adipose tissue expression of several proinflammatory cytokines and chemokines, and in enhanced insulin signaling. Conversely, NOV treatment of adipocytes increased chemokine expression. Altogether, these results show that NOV is a new adipocytokine that could be involved in obesity-associated insulin-resistance.

  11. Serum betatrophin levels are increased and associated with insulin resistance in patients with polycystic ovary syndrome.

    PubMed

    Qu, Qinglan; Zhao, Dongmei; Zhang, Fengrong; Bao, Hongchu; Yang, Qiuhua

    2017-02-01

    Objective Betatrophin is a newly identified circulating protein that is significantly associated with type 2 diabetes mellitus (T2DM), adiposity, and metabolic syndrome. The aim of this study was to investigate whether betatrophin levels and polycystic ovary syndrome (PCOS) were associated. Methods Circulating betatrophin levels were measured in 162 patients with PCOS and 156 matched control females using specific enzyme-linked immunosorbent assay kits. Correlations between betatrophin levels and PCOS incidence as well as multiple key endocrine PCOS parameters were analyzed using multiple statistical methods. Results Betatrophin levels were significantly increased in patients with PCOS (685.3 ± 27.7 vs. 772.6 ± 42.5 pg/ml). When sub-grouping all investigated subjects according to the presence of insulin resistance, women with PCOS and insulin resistance exhibited markedly higher betatrophin concentrations. Furthermore, betatrophin levels were significantly correlated with fasting insulin levels and homeostatic model assessment of insulin resistance only in females with PCOS ( r = 0.531 and r = 0.628, respectively). Conclusion We provide the first report that betatrophin is strongly associated with PCOS. This study suggests that betatrophin may potentially serve as an independent predictor for the development of PCOS in at-risk women, especially those with insulin resistance.

  12. Blocking CD40-TRAF6 signaling is a therapeutic target in obesity-associated insulin resistance

    PubMed Central

    Chatzigeorgiou, Antonios; Seijkens, Tom; Zarzycka, Barbara; Engel, David; Poggi, Marjorie; van den Berg, Susan; van den Berg, Sjoerd; Soehnlein, Oliver; Winkels, Holger; Beckers, Linda; Lievens, Dirk; Driessen, Ann; Kusters, Pascal; Biessen, Erik; Garcia-Martin, Ruben; Klotzsche-von Ameln, Anne; Gijbels, Marion; Noelle, Randolph; Boon, Louis; Hackeng, Tilman; Schulte, Klaus-Martin; Xu, Aimin; Vriend, Gert; Nabuurs, Sander; Chung, Kyoung-Jin; Willems van Dijk, Ko; Rensen, Patrick C. N.; Gerdes, Norbert; de Winther, Menno; Block, Norman L.; Schally, Andrew V.; Weber, Christian; Bornstein, Stefan R.; Nicolaes, Gerry; Chavakis, Triantafyllos; Lutgens, Esther

    2014-01-01

    The immune system plays an instrumental role in obesity and insulin resistance. Here, we unravel the role of the costimulatory molecule CD40 and its signaling intermediates, TNF receptor-associated factors (TRAFs), in diet-induced obesity (DIO). Although not exhibiting increased weight gain, male CD40−/− mice in DIO displayed worsened insulin resistance, compared with wild-type mice. This worsening was associated with excessive inflammation of adipose tissue (AT), characterized by increased accumulation of CD8+ T cells and M1 macrophages, and enhanced hepatosteatosis. Mice with deficient CD40-TRAF2/3/5 signaling in MHCII+ cells exhibited a similar phenotype in DIO as CD40−/− mice. In contrast, mice with deficient CD40-TRAF6 signaling in MHCII+ cells displayed no insulin resistance and showed a reduction in both AT inflammation and hepatosteatosis in DIO. To prove the therapeutic potential of inhibition of CD40-TRAF6 in obesity, DIO mice were treated with a small-molecule inhibitor that we designed to specifically block CD40-TRAF6 interactions; this compound improved insulin sensitivity, reduced AT inflammation, and decreased hepatosteatosis. Our study reveals that the CD40-TRAF2/3/5 signaling pathway in MHCII+ cells protects against AT inflammation and metabolic complications associated with obesity whereas CD40-TRAF6 interactions in MHCII+ cells aggravate these complications. Inhibition of CD40-TRAF6 signaling by our compound may provide a therapeutic option in obesity-associated insulin resistance. PMID:24492375

  13. Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat.

    PubMed

    Khan, Sabbir; Kumar, Sandeep; Jena, Gopabandhu

    2016-06-01

    Recent evidences highlighted the role of histone deacetylases (HDACs) in insulin-resistance, gluconeogenesis and islet function. HDACs can modulate the expression of various genes, which directly or indirectly affect glucose metabolism. This study was aimed to evaluate the role of valproic acid (VPA) on fat deposition, insulin-resistance and gluconeogenesis in type-2 diabetic rat. Diabetes was developed in Sprague-Dawley rats by the combination of high-fat diet and low dose streptozotocin. VPA at the doses of 150 and 300 mg/kg/day and metformin (positive control) 150 mg/kg twice daily for 10 weeks were administered by oral gavage. Insulin-resistance, dyslipidemia and glycemia were evaluated by biochemical estimations, while fat accumulation and structural alteration were assessed by histopathology. Protein expression and insulin signaling were evaluated by western blot and immunohistochemistry. VPA treatment significantly reduced the plasma glucose, HbA1c, insulin-resistance, fat deposition in brown adipose tissue, white adipose tissue and liver, which are comparable to metformin treatment. Further, VPA inhibited the gluconeogenesis and glucagon expression as well as restored the histopathological alterations in pancreas and liver. Our findings provide new insights on the anti-diabetic role of VPA in type-2 diabetes mellitus by the modulation of insulin signaling and forkhead box protein O1 (FOXO1)-mediated gluconeogenesis. Since VPA is a well established clinical drug, the detailed molecular mechanisms of the present findings can be further investigated for possible clinical use.

  14. [A case of leprechaunism with extreme insulin resistance due to a primary defect in insulin receptors].

    PubMed

    Goji, K; Takata, Y; Kobayashi, M

    1985-09-20

    This report describes a 3-month-old female infant with the typical physical features of leprechaunism. The patient demonstrated glucose intolerance and marked hyperinsulinemia (4600 microU/ml). Since an intravenous insulin injection (actrapid insulin: 0.15 U/kg) caused no significant decrease in the blood glucose level, the presence of insulin resistance was suggested. Neither insulin antibodies nor insulin receptor antibodies were were found in the patient's plasma, and other circulating insulin antagonists such as glucagon, growth hormone, and cortisol were within normal limits. [125I]Insulin binding to the erythrocytes from the patient was as low as 1.02% (control infants: 4.89 +/- 1.08% [mean +/- SD]). [125I]Insulin binding to the cultured transformed lymphocytes from the patient was similarly reduced to 3.58% (control: 20.9 +/- 2.71% [mean +/- SD]). From these findings we concluded that the insulin resistance was due to a primary defect in insulin receptors. Interestingly, transient remissions of the patient's glucose intolerance and hyperinsulinemia were observed during a year of follow-up study. The insulin tolerance test which was performed at the remission period showed an improvement in insulin resistance. However, the insulin binding defect to erythrocytes remained unchanged even at the remission period. The exact cause of these remissions was not clear and remained to be elucidated.

  15. Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans

    PubMed Central

    Stanhope, Kimber L.; Schwarz, Jean Marc; Keim, Nancy L.; Griffen, Steven C.; Bremer, Andrew A.; Graham, James L.; Hatcher, Bonnie; Cox, Chad L.; Dyachenko, Artem; Zhang, Wei; McGahan, John P.; Seibert, Anthony; Krauss, Ronald M.; Chiu, Sally; Schaefer, Ernst J.; Ai, Masumi; Otokozawa, Seiko; Nakajima, Katsuyuki; Nakano, Takamitsu; Beysen, Carine; Hellerstein, Marc K.; Berglund, Lars; Havel, Peter J.

    2009-01-01

    Studies in animals have documented that, compared with glucose, dietary fructose induces dyslipidemia and insulin resistance. To assess the relative effects of these dietary sugars during sustained consumption in humans, overweight and obese subjects consumed glucose- or fructose-sweetened beverages providing 25% of energy requirements for 10 weeks. Although both groups exhibited similar weight gain during the intervention, visceral adipose volume was significantly increased only in subjects consuming fructose. Fasting plasma triglyceride concentrations increased by approximately 10% during 10 weeks of glucose consumption but not after fructose consumption. In contrast, hepatic de novo lipogenesis (DNL) and the 23-hour postprandial triglyceride AUC were increased specifically during fructose consumption. Similarly, markers of altered lipid metabolism and lipoprotein remodeling, including fasting apoB, LDL, small dense LDL, oxidized LDL, and postprandial concentrations of remnant-like particle–triglyceride and –cholesterol significantly increased during fructose but not glucose consumption. In addition, fasting plasma glucose and insulin levels increased and insulin sensitivity decreased in subjects consuming fructose but not in those consuming glucose. These data suggest that dietary fructose specifically increases DNL, promotes dyslipidemia, decreases insulin sensitivity, and increases visceral adiposity in overweight/obese adults. PMID:19381015

  16. Role of sialic acid in insulin action and the insulin resistance of diabetes mellitus

    SciTech Connect

    Salhanick, A.I.; Amatruda, J.M. )

    1988-08-01

    Adipocytes treated with neuraminidase show markedly reduced responsiveness to insulin without any alteration in insulin binding. In addition, several studies have separately demonstrated both insulin resistance and decreases in membrane sialic acid content and associated biosynthetic enzymes in diabetes mellitus. In the present study, the authors investigated the role that sialic acid residues may play in insulin action and in the hepatic insulin resistance associated with nonketotic diabetes. Primary cultures of hepatocytes from normal rats treated with neuraminidase demonstrated a dose-dependent decrease in insulin-stimulated lipogenesis. At a concentration of neuraminidase that decreases insulin action by 50%, 23% of total cellular sialic acid content was released. Neuraminidase-releasable sialic acid was significantly decreased in hepatocytes from diabetic rats and this was associated with significant insulin resistance. Treatment of hepatocytes from diabetic rats with cytidine 5{prime}-monophospho-N-acetylneuraminic acid (CMP-NANA) enhanced insulin responsiveness 39%. The enhanced insulin responsiveness induced by CMP-NANA was blocked by cytidine 5{prime}-monophosphate (CMP) suggesting that the CMP-NANA effect was catalyzed by a cell surface sialyl-transferase. CMP reduced neuraminidase-releasable ({sup 14}C)sialic acid incorporation into hepatocytes by 43%. The data demonstrate a role for cell surface sialic acid residues in hepatic insulin action and support a role for decreased cell surface sialic acid residues in the insulin resistance of diabetes mellitus.

  17. Adipose Tissue Free Fatty Acid Storage In Vivo: Effects of Insulin Versus Niacin as a Control for Suppression of Lipolysis.

    PubMed

    Ali, Asem H; Mundi, Manpreet; Koutsari, Christina; Bernlohr, David A; Jensen, Michael D

    2015-08-01

    Insulin stimulates the translocation fatty acid transport protein 1 (FATP1) to plasma membrane, and thus greater free fatty acid (FFA) uptake, in adipocyte cell models. Whether insulin stimulates greater FFA clearance into adipose tissue in vivo is unknown. We tested this hypothesis by comparing direct FFA storage in subcutaneous adipose tissue during insulin versus niacin-medicated suppression of lipolysis. We measured direct FFA storage in abdominal and femoral subcutaneous fat in 10 and 11 adults, respectively, during euglycemic hyperinsulinemia or after oral niacin to suppress FFA compared with 11 saline control experiments. Direct palmitate storage was assessed using a [U-(13)C]palmitate infusion to measure palmitate kinetics and an intravenous palmitate radiotracer bolus/timed biopsy. Plasma palmitate concentrations and flux were suppressed to 23 ± 3 and 26 ± 5 µmol ⋅ L(-1) (P = 0.91) and 44 ± 4 and 39 ± 5 µmol ⋅ min(-1) (P = 0.41) in the insulin and niacin groups, respectively, much less (P < 0.001) than the saline control group (102 ± 8 and 104 ± 12 µmol ⋅ min(-1), respectively). In the insulin, niacin, and saline groups, abdominal palmitate storage rates were 0.25 ± 0.05 vs. 0.25 ± 0.07 vs. 0.32 ± 0.05 µmol ⋅ kg adipose lipid(-1) ⋅ min(-1), respectively (P = NS), and femoral adipose storage rates were 0.19 ± 0.06 vs. 0.20 ± 0.05 vs. 0.31 ± 0.05 µmol ⋅ kg adipose lipid(-1) ⋅ min(-1), respectively (P = NS). In conclusion, insulin does not increase FFA storage in adipose tissue compared with niacin, which suppresses lipolysis via a different pathway.

  18. Adipose Tissue Free Fatty Acid Storage In Vivo: Effects of Insulin Versus Niacin as a Control for Suppression of Lipolysis

    PubMed Central

    Ali, Asem H.; Mundi, Manpreet; Koutsari, Christina; Bernlohr, David A.

    2015-01-01

    Insulin stimulates the translocation fatty acid transport protein 1 (FATP1) to plasma membrane, and thus greater free fatty acid (FFA) uptake, in adipocyte cell models. Whether insulin stimulates greater FFA clearance into adipose tissue in vivo is unknown. We tested this hypothesis by comparing direct FFA storage in subcutaneous adipose tissue during insulin versus niacin-medicated suppression of lipolysis. We measured direct FFA storage in abdominal and femoral subcutaneous fat in 10 and 11 adults, respectively, during euglycemic hyperinsulinemia or after oral niacin to suppress FFA compared with 11 saline control experiments. Direct palmitate storage was assessed using a [U-13C]palmitate infusion to measure palmitate kinetics and an intravenous palmitate radiotracer bolus/timed biopsy. Plasma palmitate concentrations and flux were suppressed to 23 ± 3 and 26 ± 5 µmol ⋅ L−1 (P = 0.91) and 44 ± 4 and 39 ± 5 µmol ⋅ min−1 (P = 0.41) in the insulin and niacin groups, respectively, much less (P < 0.001) than the saline control group (102 ± 8 and 104 ± 12 µmol ⋅ min−1, respectively). In the insulin, niacin, and saline groups, abdominal palmitate storage rates were 0.25 ± 0.05 vs. 0.25 ± 0.07 vs. 0.32 ± 0.05 µmol ⋅ kg adipose lipid−1 ⋅ min−1, respectively (P = NS), and femoral adipose storage rates were 0.19 ± 0.06 vs. 0.20 ± 0.05 vs. 0.31 ± 0.05 µmol ⋅ kg adipose lipid−1 ⋅ min−1, respectively (P = NS). In conclusion, insulin does not increase FFA storage in adipose tissue compared with niacin, which suppresses lipolysis via a different pathway. PMID:25883112

  19. Reduction in Adiposity, β-Cell Function, Insulin Sensitivity, and Cardiovascular Risk Factors: A Prospective Study among Japanese with Obesity

    PubMed Central

    Goto, Maki; Morita, Akemi; Goto, Atsushi; Deura, Kijo; Sasaki, Satoshi; Aiba, Naomi; Shimbo, Takuro; Terauchi, Yasuo; Miyachi, Motohiko; Noda, Mitsuhiko; Watanabe, Shaw

    2013-01-01

    Background A reduction in adiposity may be associated with an improvement in insulin sensitivity and β-cell function as well as cardiovascular disease (CVD) risk factors; however, few studies have investigated these associations in a longitudinal setting. Methods To investigate these associations over a 1-year period, we conducted an observational analysis of 196 Japanese subjects with obesity in the Saku Control Obesity Program. We investigated the relations between changes in adiposity (body mass index [BMI], waist circumference, subcutaneous fat area [SFAT], and visceral fat area [VFAT]) and changes in HbA1c, fasting plasma glucose (FPG), insulin sensitivity index (ISI), the homeostasis model assessment β cell function (HOMA-β), lipids, and blood pressure. Results All adiposity changes were positively associated with HbA1c and FPG changes. Reductions in BMI and VFAT were associated with HOMA-β reduction. Reductions in all adiposity measures were associated with an improvement in the ISI. Changes in most adiposity measures were positively associated with changes in blood pressure and lipid levels, except for LDL. Conclusion The present findings provide additional supportive evidence indicating that a reduction in adiposity may lead to an improvement in insulin sensitivity and the reduction of CVD risk factors in obese individuals. PMID:23483954

  20. Combined effects of insulin treatment and adipose tissue-specific agouti expression on the development of obesity.

    PubMed

    Mynatt, R L; Miltenberger, R J; Klebig, M L; Zemel, M B; Wilkinson, J E; Wilkinson, W O; Woychik, R P

    1997-02-04

    The agouti gene product is a secreted protein that acts in a paracrine manner to regulate coat color in mammals. Several dominant mutations at the agouti locus in mice cause the ectopic, ubiquitous expression of agouti, resulting in a condition similar to adult-onset obesity and non-insulin-dependent diabetes mellitus. The human agouti protein is 85% homologous to mouse agouti; however, unlike the mouse agouti gene, human agouti is normally expressed in adipose tissue. To address whether expression of agouti in human adipose tissue is physiologically relevant, transgenic mice were generated that express agouti in adipose tissue. Similar to most humans, these mice do not become obese or diabetic. However, we found that daily insulin injections significantly increased weight gain in the transgenic lines expressing agouti in adipose tissue, but not in nontransgenic mice. These results suggest that insulin triggers the onset of obesity and that agouti expression in adipose tissue potentiates this effect. Accordingly, the investigation of agouti's role in obesity and non-insulin-dependent diabetes mellitus in mice holds significant promise for understanding the pathophysiology of human obesity.

  1. Effects of sleeve gastrectomy on insulin resistance

    PubMed Central

    CĂTOI, ADRIANA FLORINELA; PÂRVU, ALINA; MIRONIUC, AUREL; GALEA, ROMEO FLORIN; MUREŞAN, ADRIANA; BIDIAN, CRISTINA; POP, IOANA

    2016-01-01

    Background and aim Obesity is a major risk factor for the onset of insulin resistance (IR), hyperinsulinemia and type 2 diabetes mellitus (T2DM) Evidence data has proven that beyond important weight loss bariatric surgery especially Roux-en-Y gastric bypass (RYGB) and bilio-pancreatic diversion (BPD) leads to significant early reduction of insulinemia and of IR calculated through the homeostatic model assessment (HOMA-IR), independently of fat mass decrease. Sleeve gastrectomy (SG) is now used as a sole weight loss operation with good results. Therefore, the aim of the present study was to investigate the early changes of fasting blood glucose, insulin and HOMA-IR in a group of morbidly obese (MO) patients i.e. at 7, 30 and 90 days after SG. Methods The study included 20 MO patients (7 male and 13 female) submitted to SG. Anthropometrical (weight, body mass index –BMI, percent excess BMI loss -%EBMIL) and biochemical (plasma glucose, insulin and calculated HOMA-IR ) evaluation were performed before and at 7, 30 and 90 days after SG. In addition, a second group of 10 normal weight healthy subjects with a BMI ranging form 19 kg/m2 to 23.14 kg/m2, matched for age and gender was investigated. Results Plasma glucose (p=0.018), insulin (p=0.004) and HOMA-IR (p=0.006) values were statistically different between the studied groups. After surgery, at every follow-up point, there were statistically different weight and BMI mean values relative to the operation day (p<0.003). BMI, decreased at 7 days (estimated reduction=2.79; 95% CI:[2.12;3.45]), at 30 days (estimated reduction=5.65; 95% CI:[3.57;7.73]) and at 90 days (estimated reduction=10.88; 95% CI:[7.35;14.41]) respectively after SG. We noted a tendency toward statistical significant change of mean insulin values at 7 days after surgery (corrected p=0.075), no statistical change at 30 days (corrected p=0.327) and a significant change at 90 days (corrected p=0.027) after SG as compared to baseline. There was a

  2. Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes.

    PubMed

    Patel, Tushar P; Rawal, Komal; Bagchi, Ashim K; Akolkar, Gauri; Bernardes, Nathalia; Dias, Danielle da Silva; Gupta, Sarita; Singal, Pawan K

    2016-01-01

    Sedentary life style and high calorie dietary habits are prominent leading cause of metabolic syndrome in modern world. Obesity plays a central role in occurrence of various diseases like hyperinsulinemia, hyperglycemia and hyperlipidemia, which lead to insulin resistance and metabolic derangements like cardiovascular diseases (CVDs) mediated by oxidative stress. The mortality rate due to CVDs is on the rise in developing countries. Insulin resistance (IR) leads to micro or macro angiopathy, peripheral arterial dysfunction, hampered blood flow, hypertension, as well as the cardiomyocyte and the endothelial cell dysfunctions, thus increasing risk factors for coronary artery blockage, stroke and heart failure suggesting that there is a strong association between IR and CVDs. The plausible linkages between these two pathophysiological conditions are altered levels of insulin signaling proteins such as IR-β, IRS-1, PI3K, Akt, Glut4 and PGC-1α that hamper insulin-mediated glucose uptake as well as other functions of insulin in the cardiomyocytes and the endothelial cells of the heart. Reduced AMPK, PFK-2 and elevated levels of NADP(H)-dependent oxidases produced by activated M1 macrophages of the adipose tissue and elevated levels of circulating angiotensin are also cause of CVD in diabetes mellitus condition. Insulin sensitizers, angiotensin blockers, superoxide scavengers are used as therapeutics in the amelioration of CVD. It evidently becomes important to unravel the mechanisms of the association between IR and CVDs in order to formulate novel efficient drugs to treat patients suffering from insulin resistance-mediated cardiovascular diseases. The possible associations between insulin resistance and cardiovascular diseases are reviewed here.

  3. Increased adiposity and insulin correlates with the progressive suppression of pulsatile GH secretion during weight gain.

    PubMed

    Steyn, F J; Xie, T Y; Huang, L; Ngo, S T; Veldhuis, J D; Waters, M J; Chen, C

    2013-01-01

    Pathological changes associated with obesity are thought to contribute to GH deficiency. However, recent observations suggest that impaired GH secretion relative to excess calorie consumption contributes to progressive weight gain and thus may contribute to the development of obesity. To clarify this association between adiposity and GH secretion, we investigated the relationship between pulsatile GH secretion and body weight; epididymal fat mass; and circulating levels of leptin, insulin, non-esterified free fatty acids (NEFAs), and glucose. Data were obtained from male mice maintained on a standard or high-fat diet. We confirm the suppression of pulsatile GH secretion following dietary-induced weight gain. Correlation analyses reveal an inverse relationship between measures of pulsatile GH secretion, body weight, and epididymal fat mass. Moreover, we demonstrate an inverse relationship between measures of pulsatile GH secretion and circulating levels of leptin and insulin. The secretion of GH did not change relative to circulating levels of NEFAs or glucose. We conclude that impaired pulsatile GH secretion in the mouse occurs alongside progressive weight gain and thus precedes the development of obesity. Moreover, data illustrate key interactions between GH secretion and circulating levels of insulin and reflect the potential physiological role of GH in modulation of insulin-induced lipogenesis throughout positive energy balance.

  4. Divergent role of sphingosine 1-phosphate on insulin resistance.

    PubMed

    Fayyaz, Susann; Japtok, Lukasz; Kleuser, Burkhard

    2014-01-01

    Insulin resistance is a complex metabolic disorder in which insulin-sensitive tissues fail to respond to the physiological action of insulin. There is a strong correlation of insulin resistance and the development of type 2 diabetes both reaching epidemic proportions. Dysfunctional lipid metabolism is a hallmark of insulin resistance and a risk factor for several cardiovascular and metabolic disorders. Numerous studies in humans and rodents have shown that insulin resistance is associated with elevations of non-esterified fatty acids (NEFA) in the plasma. Moreover, bioactive lipid intermediates such as diacylglycerol (DAG) and ceramides appear to accumulate in response to NEFA, which may interact with insulin signaling. However, recent work has also indicated that sphingosine 1-phosphate (S1P), a breakdown product of ceramide, modulate insulin signaling in different cell types. In this review, we summarize the current state of knowledge about S1P and insulin signaling in insulin sensitive cells. A specific focus is put on the action of S1P on hepatocytes, pancreatic β-cells and skeletal muscle cells. In particular, modulation of S1P-signaling can be considered as a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes.

  5. The role of interleukins in insulin resistance and type 2 diabetes mellitus.

    PubMed

    Fève, Bruno; Bastard, Jean-Philippe

    2009-06-01

    In the past few years, several interleukins (ILs) attracted considerable attention as potential effectors in the pathology and physiology of insulin resistance associated with type 2 diabetes mellitus (T2DM) and obesity. IL-1, a major proinflammatory cytokine, is present at increased levels in patients with diabetes mellitus, and could promote beta-cell destruction and alter insulin sensitivity. The effects of IL-1 are likely to be counteracted by IL-1 receptor antagonist protein (IL-1ra), as suggested by interventional studies in patients with T2DM who were treated with a recombinant form of this protein. However, studies in IL-1ra-deficient mice provided controversial results on the exact effect of the IL-1 signaling pathway on insulin secretion, insulin sensitivity and accumulation of adipose tissue. Likewise, IL-6 has been suggested to be involved in the development of obesity-related and T2DM-related insulin resistance. The action of IL-6 on glucose homeostasis is also complex and integrates central and peripheral mechanisms. Both experimental and clinical studies now converge to show that several ILs contribute to the pathology and physiology of T2DM through their interaction with insulin signaling pathways and beta-cell function.

  6. Brown adipose tissue triglyceride content is associated with decreased insulin sensitivity, independently of age and obesity.

    PubMed

    Raiko, J; Holstila, M; Virtanen, K A; Orava, J; Saunavaara, V; Niemi, T; Laine, J; Taittonen, M; Borra, R J H; Nuutila, P; Parkkola, R

    2015-05-01

    The aim of the present study was to determine whether single-voxel proton magnetic resonance spectroscopy ((1)H-MRS) can non-invasively assess triglyceride content in both supraclavicular fat depots and subcutaneous white adipose tissue (WAT) to determine whether these measurements correlate to metabolic variables. A total of 25 healthy volunteers were studied using (18)F-fluorodeoxyglucose positron emission tomography (PET) and (15)O-H2O PET perfusion during cold exposure, and (1)H-MRS at ambient temperature. Image-guided biopsies were collected from nine volunteers. The supraclavicular triglyceride content determined by (1)H-MRS varied between 60 and 91% [mean ± standard deviation (s.d.) 77 ± 10%]. It correlated positively with body mass index, waist circumference, subcutaneous and visceral fat masses and 8-year diabetes risk based on the Framingham risk score and inversely with HDL cholesterol and insulin sensitivity (M-value; euglycaemic-hyperinsulinaemic clamp). Subcutaneous WAT had a significantly higher triglyceride content, 76-95% (mean ± s.d. 87 ± 5%; p = 0.0002). In conclusion, the triglyceride content in supraclavicular fat deposits measured by (1)H-MRS may be an independent marker of whole-body insulin sensitivity, independent of brown adipose tissue metabolic activation.

  7. Mice lacking C1q are protected from high fat diet-induced hepatic insulin resistance and impaired glucose homeostasis.

    PubMed

    Hillian, Antoinette D; McMullen, Megan R; Sebastian, Becky M; Roychowdhury, Sanjoy; Rowchowdhury, Sanjoy; Kashyap, Sangeeta R; Schauer, Philip R; Kirwan, John P; Feldstein, Ariel E; Nagy, Laura E

    2013-08-02

    Complement activation is implicated in the development of obesity and insulin resistance, and loss of signaling by the anaphylatoxin C3a prevents obesity-induced insulin resistance in mice. Here we have identified C1q in the classical pathway as required for activation of complement in response to high fat diets. After 8 weeks of high fat diet, wild-type mice became obese and developed glucose intolerance. This was associated with increased apoptotic cell death and accumulation of complement activation products (C3b/iC3b/C3c) in liver and adipose tissue. Previous studies have shown that high fat diet-induced apoptosis is dependent on Bid; here we report that Bid-mediated apoptosis was required for complement activation in adipose and liver. Although C1qa deficiency had no effect on high fat diet-induced apoptosis, accumulation of complement activation products and the metabolic complications of high fat diet-induced obesity were dependent on C1q. When wild-type mice were fed a high fat diet for only 3 days, hepatic insulin resistance was associated with the accumulation of C3b/iC3b/C3c in the liver. Mice deficient in C3a receptor were protected against this early high fat diet-induced hepatic insulin resistance, whereas mice deficient in the negative complement regulator CD55/DAF were more sensitive to the high fat diet. C1qa(-/-) mice were also protected from high fat diet-induced hepatic insulin resistance and complement activation. Evidence of complement activation was also detected in adipose tissue of obese women compared with lean women. Together, these studies reveal an important role for C1q in the classical pathway of complement activation in the development of high fat diet-induced insulin resistance.

  8. Predictors of insulin resistance in pediatric burn injury survivors 24 to 36 months post-burn

    PubMed Central

    Chondronikola, Maria; Meyer, Walter J.; Sidossis, Labros S.; Ojeda, Sylvia; Huddleston, Joanna; Stevens, Pamela; Børsheim, Elisabet; Suman, Oscar E.; Finnerty, Celeste C.; Herndon, David N.

    2014-01-01

    Background Burn injury is a dramatic event with acute and chronic consequences including insulin resistance. However, factors associated with insulin resistance have not been previously investigated. Purpose To identify factors associated with long-term insulin resistance in pediatric burn injury survivors. Methods The study sample consisted of 61 pediatric burn injury survivors 24 to 36 months after the burn injury, who underwent an oral glucose tolerance test. To assess insulin resistance, we calculated the area under the curve for glucose and insulin. The diagnostic criteria of the American Diabetes Association were used to define individuals with impaired glucose metabolism. Additional data collected include body composition, anthropometric measurements, burn characteristics and demographic information. The data were analyzed using multivariate linear regression analysis. Results Approximately 12% of the patients met the criteria for impaired glucose metabolism. After adjusting for possible confounders, burn size, age and percent body fat were associated with the area under the curve for glucose (p<0.05 for all). Time post-burn and lean mass were inversely associated with the area under the curve for glucose (p<0.05 for both). Similarly, older age predicted higher insulin area under the curve. Conclusion A significant proportion of pediatric injury survivors suffer from glucose abnormalities 24–36 months post-burn. Burn size, time post-burn, age, lean mass and adiposity are significant predictors of insulin resistance in pediatric burn injury survivors. Clinical evaluation and screening for abnormal glucose metabolism should be emphasized in patients with large burns, older age and survivors with high body fat. PMID:24918945

  9. Metabolic syndrome and insulin resistance in obese adolescents

    PubMed Central

    Gobato, Amanda Oliva; Vasques, Ana Carolina J.; Zambon, Mariana Porto; Barros, Antonio de Azevedo; Hessel, Gabriel

    2014-01-01

    Objective: To verify the prevalence of metabolic syndrome and insulin resistance in obese adolescents and its relationship with different body composition indicators. Methods: A cross-sectional study comprising 79 adolescents aged ten to 18 years old. The assessed body composition indicators were: body mass index (BMI), body fat percentage, abdominal circumference, and subcutaneous fat. The metabolic syndrome was diagnosed according to the criteria proposed by Cook et al. The insulin resistance was determined by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) index for values above 3.16. The analysis of ROC curves was used to assess the BMI and the abdominal circumference, aiming to identify the subjects with metabolic syndrome and insulin resistance. The cutoff point corresponded to the percentage above the reference value used to diagnose obesity. Results: The metabolic syndrome was diagnosed in 45.5% of the patients and insulin resistance, in 29.1%. Insulin resistance showed association with HDL-cholesterol (p=0.032) and with metabolic syndrome (p=0.006). All body composition indicators were correlated with insulin resistance (p<0.01). In relation to the cutoff point evaluation, the values of 23.5 and 36.3% above the BMI reference point allowed the identification of insulin resistance and metabolic syndrome. The best cutoff point for abdominal circumference to identify insulin resistance was 40%. Conclusions: All body composition indicators, HDL-cholesterol and metabolic syndrome showed correlation with insulin resistance. The BMI was the most effective anthropometric indicator to identify insulin resistance. PMID:24676191

  10. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance.

    PubMed

    Liu, Ying; Takahashi, Yoshinori; Desai, Neelam; Zhang, Jun; Serfass, Jacob M; Shi, Yu-Guang; Lynch, Christopher J; Wang, Hong-Gang

    2016-02-09

    Bif-1 is a membrane-curvature inducing protein that is implicated in the regulation of autophagy and tumorigenesis. Here, we report that Bif-1 plays a critical role in regulating lipid catabolism to control the size of lipid droplets and prevent the development of obesity and insulin resistance upon aging or dietary challenge. Our data show that Bif-1 deficiency promotes the expansion of adipose tissue mass without altering food intake or physical activities. While Bif-1 is dispensable for adipose tissue development, its deficiency reduces the basal rate of adipose tissue lipolysis and results in adipocyte hypertrophy upon aging. The importance of Bif-1 in lipid turnover is not limited to adipose tissue since fasting and refeeding-induced lipid droplet clearance is also attenuated by Bif-1 loss in the liver. Interestingly, obesity induced by a high fat-diet or Bif-1 deficiency downregulates the expression of proteins involved in the autophagy-lysosomal pathway, including Atg9a and Lamp1 in the adipose tissue. These findings thus identify Bif-1 as a novel regulator of lipid homeostasis to prevent the pathogenesis of obesity and its associated metabolic complications.

  11. Long-lasting partnership between insulin resistance and endothelial dysfunction: role of metabolic memory

    PubMed Central

    Tallapragada, Divya Sri Priyanka; Karpe, Pinakin Arun; Tikoo, Kulbhushan

    2015-01-01

    Background and Purpose The persistence of deleterious effects of hyperglycaemia even after glucose normalization is referred to as ‘metabolic memory’. However, similar persistent effects of the metabolic consequences of a high fat diet (HFD) have not been described. Experimental Approach Rats were given a normal pellet diet (NPD) or a HFD for 3 months. The animals from the HFD group were then returned to the NPD to observe the long-term effects of insulin resistance. Endothelial dysfunction was assessed by carbachol-mediated vasorelaxation and eNOS phosphorylation. Key Results As expected, HFD consumption resulted in insulin resistance and endothelial dysfunction. Phosphorylation of eNOS at S1177 was decreased in HFD rats, compared with that in the NPD group. Rats on 3 months of HFD showed glucose intolerance and impaired insulin sensitivity and were then switched back to NPD (REV group). Levels of cholesterol and triglyceride, and adiposity returned to normal in REV rats. However, endothelium-dependent vascular responses to carbachol which were impaired in HFD rats, continued to be impaired in REV rats. Similarly, decreased eNOS phosphorylation after HFD was not improved after 1 or 6 months of REV. Conclusions and Implications Our data indicate that returning to NPD did not improve the insulin sensitivity or the endothelial dysfunction induced by HFD. Although some biochemical parameters responsible for insulin resistance and endothelial dysfunction were normalized, molecular and vascular abnormalities, involving NO, persisted for several months, highlighting the long-lasting effects of metabolic memory. PMID:25825057

  12. Cerebral Blood Flow Links Insulin Resistance and Baroreflex Sensitivity

    PubMed Central

    Ryan, John P.; Sheu, Lei K.; Verstynen, Timothy D.; Onyewuenyi, Ikechukwu C.; Gianaros, Peter J.

    2013-01-01

    Insulin resistance confers risk for diabetes mellitus and associates with a reduced capacity of the arterial baroreflex to regulate blood pressure. Importantly, several brain regions that comprise the central autonomic network, which controls the baroreflex, are also sensitive to the neuromodulatory effects of insulin. However, it is unknown whether peripheral insulin resistance relates to activity within central autonomic network regions, which may in turn relate to reduced baroreflex regulation. Accordingly, we tested whether resting cerebral blood flow within central autonomic regions statistically mediated the relationship between insulin resistance and an indirect indicator of baroreflex regulation; namely, baroreflex sensitivity. Subjects were 92 community-dwelling adults free of confounding medical illnesses (48 men, 30-50 years old) who completed protocols to assess fasting insulin and glucose levels, resting baroreflex sensitivity, and resting cerebral blood flow. Baroreflex sensitivity was quantified by measuring the magnitude of spontaneous and sequential associations between beat-by-beat systolic blood pressure and heart rate changes. Individuals with greater insulin resistance, as measured by the homeostatic model assessment, exhibited reduced baroreflex sensitivity (b = -0.16, p < .05). Moreover, the relationship between insulin resistance and baroreflex sensitivity was statistically mediated by cerebral blood flow in central autonomic regions, including the insula and cingulate cortex (mediation coefficients < -0.06, p-values < .01). Activity within the central autonomic network may link insulin resistance to reduced baroreflex sensitivity. Our observations may help to characterize the neural pathways by which insulin resistance, and possibly diabetes mellitus, relates to adverse cardiovascular outcomes. PMID:24358272

  13. Cerebral blood flow links insulin resistance and baroreflex sensitivity.

    PubMed

    Ryan, John P; Sheu, Lei K; Verstynen, Timothy D; Onyewuenyi, Ikechukwu C; Gianaros, Peter J

    2013-01-01

    Insulin resistance confers risk for diabetes mellitus and associates with a reduced capacity of the arterial baroreflex to regulate blood pressure. Importantly, several brain regions that comprise the central autonomic network, which controls the baroreflex, are also sensitive to the neuromodulatory effects of insulin. However, it is unknown whether peripheral insulin resistance relates to activity within central autonomic network regions, which may in turn relate to reduced baroreflex regulation. Accordingly, we tested whether resting cerebral blood flow within central autonomic regions statistically mediated the relationship between insulin resistance and an indirect indicator of baroreflex regulation; namely, baroreflex sensitivity. Subjects were 92 community-dwelling adults free of confounding medical illnesses (48 men, 30-50 years old) who completed protocols to assess fasting insulin and glucose levels, resting baroreflex sensitivity, and resting cerebral blood flow. Baroreflex sensitivity was quantified by measuring the magnitude of spontaneous and sequential associations between beat-by-beat systolic blood pressure and heart rate changes. Individuals with greater insulin resistance, as measured by the homeostatic model assessment, exhibited reduced baroreflex sensitivity (b = -0.16, p < .05). Moreover, the relationship between insulin resistance and baroreflex sensitivity was statistically mediated by cerebral blood flow in central autonomic regions, including the insula and cingulate cortex (mediation coefficients < -0.06, p-values < .01). Activity within the central autonomic network may link insulin resistance to reduced baroreflex sensitivity. Our observations may help to characterize the neural pathways by which insulin resistance, and possibly diabetes mellitus, relates to adverse cardiovascular outcomes.

  14. Blueberries’ Impact on Insulin Resistance and Glucose Intolerance

    PubMed Central

    Stull, April J.

    2016-01-01

    Blueberries are a rich source of polyphenols, which include anthocyanin bioactive compounds. Epidemiological evidence indicates that incorporating blueberries into the diet may lower the risk of developing type 2 diabetes (T2DM). These findings are supported by pre-clinical and clinical studies that have shown improvements in insulin resistance (i.e., increased insulin sensitivity) after obese and insulin-resistant rodents or humans consumed blueberries. Insulin resistance was assessed by homeostatic model assessment-estimated insulin resistance (HOMA-IR), insulin tolerance tests, and hyperinsulinemic-euglycemic clamps. Additionally, the improvements in glucose tolerance after blueberry consumption were assessed by glucose tolerance tests. However, firm conclusions regarding the anti-diabetic effect of blueberries cannot be drawn due to the small number of existing clinical studies. Although the current evidence is promising, more long-term, randomized, and placebo-controlled trials are needed to establish the role of blueberries in preventing or delaying T2DM. PMID:27916833

  15. Myeloid cell-specific disruption of Period1 and Period2 exacerbates diet-induced inflammation and insulin resistance.

    PubMed

    Xu, Hang; Li, Honggui; Woo, Shih-Lung; Kim, Sam-Moon; Shende, Vikram R; Neuendorff, Nichole; Guo, Xin; Guo, Ting; Qi, Ting; Pei, Ya; Zhao, Yan; Hu, Xiang; Zhao, Jiajia; Chen, Lili; Chen, Lulu; Ji, Jun-Yuan; Alaniz, Robert C; Earnest, David J; Wu, Chaodong

    2014-06-06

    The circadian clockworks gate macrophage inflammatory responses. Given the association between clock dysregulation and metabolic disorders, we conducted experiments to determine the extent to which over-nutrition modulates macrophage clock function and whether macrophage circadian dysregulation is a key factor linking over-nutrition to macrophage proinflammatory activation, adipose tissue inflammation, and systemic insulin resistance. Our results demonstrate that 1) macrophages from high fat diet-fed mice are marked by dysregulation of the molecular clockworks in conjunction with increased proinflammatory activation, 2) global disruption of the clock genes Period1 (Per1) and Per2 recapitulates this amplified macrophage proinflammatory activation, 3) adoptive transfer of Per1/2-disrupted bone marrow cells into wild-type mice potentiates high fat diet-induced adipose and liver tissue inflammation and systemic insulin resistance, and 4) Per1/2-disrupted macrophages similarly exacerbate inflammatory responses and decrease insulin sensitivity in co-cultured adipocytes in vitro. Furthermore, PPARγ levels are decreased in Per1/2-disrupted macrophages and PPARγ2 overexpression ameliorates Per1/2 disruption-associated macrophage proinflammatory activation, suggesting that this transcription factor may link the molecular clockworks to signaling pathways regulating macrophage polarization. Thus, macrophage circadian clock dysregulation is a key process in the physiological cascade by which diet-induced obesity triggers macrophage proinflammatory activation, adipose tissue inflammation, and insulin resistance.

  16. Myeloid Cell-specific Disruption of Period1 and Period2 Exacerbates Diet-induced Inflammation and Insulin Resistance*

    PubMed Central

    Xu, Hang; Li, Honggui; Woo, Shih-Lung; Kim, Sam-Moon; Shende, Vikram R.; Neuendorff, Nichole; Guo, Xin; Guo, Ting; Qi, Ting; Pei, Ya; Zhao, Yan; Hu, Xiang; Zhao, Jiajia; Chen, Lili; Chen, Lulu; Ji, Jun-Yuan; Alaniz, Robert C.; Earnest, David J.; Wu, Chaodong

    2014-01-01

    The circadian clockworks gate macrophage inflammatory responses. Given the association between clock dysregulation and metabolic disorders, we conducted experiments to determine the extent to which over-nutrition modulates macrophage clock function and whether macrophage circadian dysregulation is a key factor linking over-nutrition to macrophage proinflammatory activation, adipose tissue inflammation, and systemic insulin resistance. Our results demonstrate that 1) macrophages from high fat diet-fed mice are marked by dysregulation of the molecular clockworks in conjunction with increased proinflammatory activation, 2) global disruption of the clock genes Period1 (Per1) and Per2 recapitulates this amplified macrophage proinflammatory activation, 3) adoptive transfer of Per1/2-disrupted bone marrow cells into wild-type mice potentiates high fat diet-induced adipose and liver tissue inflammation and systemic insulin resistance, and 4) Per1/2-disrupted macrophages similarly exacerbate inflammatory responses and decrease insulin sensitivity in co-cultured adipocytes in vitro. Furthermore, PPARγ levels are decreased in Per1/2-disrupted macrophages and PPARγ2 overexpression ameliorates Per1/2 disruption-associated macrophage proinflammatory activation, suggesting that this transcription factor may link the molecular clockworks to signaling pathways regulating macrophage polarization. Thus, macrophage circadian clock dysregulation is a key process in the physiological cascade by which diet-induced obesity triggers macrophage proinflammatory activation, adipose tissue inflammation, and insulin resistance. PMID:24770415

  17. Basal plasma levels of insulin, leptin, ghrelin, and amylin do not signal adiposity in rats recovering from forced overweight.

    PubMed

    Gloy, Viktoria L; Lutz, Thomas A; Langhans, Wolfgang; Geary, Nori; Hillebrand, Jacquelien J

    2010-09-01

    This study examined how adiposity signals are related to adiposity during recovery from forced overweight (OW). Rats were rendered OW by chronic intragastric overfeeding (OW). Overfeeding was stopped when OW rats reached 126-129% of saline-infused normal-weight (NW) rats. Adipose tissue (AT) mass was estimated by computed tomography, and blood was drawn from chronic atrial cannulas throughout. Basal levels (i.e. after 2-3 h fasts late in the diurnal phase) of the hypothesized adiposity signals insulin, leptin, ghrelin, and amylin were assayed. OW rats gained approximately 130 g more body weight (BW) and approximately 100 g more AT mass during overfeeding. Plasma levels of insulin and leptin increased, whereas those of ghrelin decreased, linearly with AT mass; amylin did not change reliably. During recovery, OW rats' BW and AT mass decreased but were still elevated vs. NW rats after 39 d. OW rats' insulin returned to NW levels on d 1 of recovery and decreased below NW levels thereafter. Leptin was no longer elevated after d 8 of recovery. Ghrelin and amylin did not change reliably during recovery. Although AT mass decreased in OW rats during each intermeasurement interval between d 0 and d 23 of recovery, insulin and leptin did so during only the first interval (d 0-5). Insulin and leptin levels were exponentially related to AT mass during recovery. These data indicate that basal insulin, leptin, ghrelin, and amylin do not encode AT mass in rats dynamically regulating BW and adiposity during recovery from OW.

  18. C16:0-Ceramide Signals Insulin Resistance

    PubMed Central

    Hla, Timothy; Kolesnick, Richard

    2015-01-01

    A substantive literature has accumulated implicating sphingolipids, in particular ceramides, as mediators of insulin resistance in metabolic syndrome. Thanks to recent technical advances in mouse genetics and lipidomics, two independent laboratories identify the same sphingolipid, C16:0-ceramide, as principal mediator of obesity-related insulin resistance. PMID:25440051

  19. Acylcarnitines: potential implications for skeletal muscle insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin resistance is linked to increased acylcarnitine species in a number of tissues including skeletal muscle, due to incomplete fatty acid oxidation (FAO). It is not known if acylcarnitines participate in muscle insulin resistance or simply reflect dysregulated metabolism. The aim of this stud...

  20. Insulin resistance and metabolic syndrome in normal-weight individuals.

    PubMed

    Chen, Shanying; Chen, Youming; Liu, Xinyu; Li, Mi; Wu, Bide; Li, Yongqiang; Liang, Yan; Shao, Xiaofei; Holthöfer, Harry; Zou, Hequn

    2014-08-01

    We performed this study to investigate the prevalences of insulin resistance and metabolic syndrome (MetS) in a Chinese population with normal weight. We also examined whether fat mass is associated with insulin resistance and MetS in normal-weight individuals. Data were drawn from a cross-sectional study in China. Subjects with diabetes were excluded. The prevalences of insulin resistance and MetS were calculated. Multivariate logistic regression analysis was performed repeated separately for body mass index (BMI) and waist circumference (WC) in both men and women. We also used the combination of BMI and WC to predict insulin resistance and MetS. 8.55 % of normal-weight men and 12.62 % of normal-weight women had insulin resistance. 7.41 % of normal-weight men and 10.24 % of normal-weight women had MetS. WC was associated with incident insulin resistance and MetS independent of BMI in both men and women. BMI was independently associated with incident MetS in women. Normal-weight individuals with insulin resistance and/or MetS are not rare in the Chinese population. Fat mass is associated with insulin resistance and MetS in normal-weight subjects. The current findings support using both BMI and WC in clinical practice.

  1. Adipose Tissue Dysfunction: Clinical Relevance and Diagnostic Possibilities.

    PubMed

    Schrover, I M; Spiering, W; Leiner, T; Visseren, F L J

    2016-04-01

    Adipose tissue dysfunction is defined as an imbalance between pro- and anti-inflammatory adipokines, causing insulin resistance, systemic low-grade inflammation, hypercoagulability, and elevated blood pressure. These can lead to cardiovascular disease and diabetes mellitus type 2. Although quantity of adipose tissue is an important determinant of adipose tissue dysfunction, it can be diagnosed in both obese and lean individuals. This implies that not only quantity of adipose tissue should be used as a measure for adipose tissue dysfunction. Instead, focus should be on measuring quality of adipose tissue, which can be done with diagnostic modalities ranging from anthropometric measurements to tissue biopsies and advanced imaging techniques. In daily clinical practice, high quantity of visceral adipose tissue (reflected in high waist circumference or adipose tissue imaging), insulin resistance, or presence of the metabolic syndrome are easy and low-cost diagnostic modalities to evaluate presence or absence of adipose tissue dysfunction.

  2. Insulin Resistance in Children: Consensus, Perspective, and Future Directions

    PubMed Central

    Levy-Marchal, Claire; Arslanian, Silva; Cutfield, Wayne; Sinaiko, Alan; Druet, Celine; Marcovecchio, M. Loredana; Chiarelli, Francesco

    2010-01-01

    Objective: Emerging data indicate that insulin resistance is common among children and adolescents and is related to cardiometabolic risk, therefore requiring consideration early in life. However, there is still confusion on how to define insulin resistance, how to measure it, what its risk factors are, and whether there are effective strategies to prevent and treat it. A consensus conference was organized in order to clarify these points. Participants: The consensus was internationally supported by all the major scientific societies in pediatric endocrinology and 37 participants. Evidence: An independent and systematic search of the literature was conducted to identify key articles relating to insulin resistance in children. Consensus Process: The conference was divided into five themes and working groups: background and definition; methods of measurement and screening; risk factors and consequences; prevention; and treatment. Each group selected key issues, searched the literature, and developed a draft document. During a 3-d meeting, these papers were debated and finalized by each group before presenting them to the full forum for further discussion and agreement. Conclusions: Given the current childhood obesity epidemic, insulin resistance in children is an important issue confronting health care professionals. There are no clear criteria to define insulin resistance in children, and surrogate markers such as fasting insulin are poor measures of insulin sensitivity. Based on current screening criteria and methodology, there is no justification for screening children for insulin resistance. Lifestyle interventions including diet and exercise can improve insulin sensitivity, whereas drugs should be implemented only in selected cases. PMID:20829185

  3. Associations of Adiponectin with Adiposity, Insulin Sensitivity, and Diet in Young, Healthy, Mexican Americans and Non-Latino White Adults.

    PubMed

    Pereira, Rocio I; Low Wang, Cecilia C; Wolfe, Pamela; Havranek, Edward P; Long, Carlin S; Bessesen, Daniel H

    2015-12-22

    Low circulating adiponectin levels may contribute to higher diabetes risk among Mexican Americans (MA) compared to non-Latino whites (NLW). Our objective was to determine if among young healthy adult MAs have lower adiponectin than NLWs, independent of differences in adiposity. In addition, we explored associations between adiponectin and diet. This was an observational, cross-sectional study of healthy MA and NLW adults living in Colorado (U.S.A.). We measured plasma total adiponectin, adiposity (BMI, and visceral adipose tissue), insulin sensitivity (IVGTT), and self-reported dietary intake in 43 MA and NLW adults. Mean adiponectin levels were 40% lower among MA than NLW (5.8 ± 3.3 vs. 10.7 ± 4.2 µg/mL, p = 0.0003), and this difference persisted after controlling for age, sex, BMI, and visceral adiposity. Lower adiponectin in MA was associated with lower insulin sensitivity (R² = 0.42, p < 0.01). Lower adiponectin was also associated with higher dietary glycemic index, lower intake of vegetables, higher intake of trans fat, and higher intake of grains. Our findings confirm that ethnic differences in adiponectin reflect differences in insulin sensitivity, but suggest that these are not due to differences in adiposity. Observed associations between adiponectin and diet support the need for future studies exploring the regulation of adiponectin by diet and other environmental factors.

  4. Associations of Adiponectin with Adiposity, Insulin Sensitivity, and Diet in Young, Healthy, Mexican Americans and Non-Latino White Adults

    PubMed Central

    Pereira, Rocio I.; Low Wang, Cecilia C.; Wolfe, Pamela; Havranek, Edward P.; Long, Carlin S.; Bessesen, Daniel H.

    2015-01-01

    Low circulating adiponectin levels may contribute to higher diabetes risk among Mexican Americans (MA) compared to non-Latino whites (NLW). Our objective was to determine if among young healthy adult MAs have lower adiponectin than NLWs, independent of differences in adiposity. In addition, we explored associations between adiponectin and diet. This was an observational, cross-sectional study of healthy MA and NLW adults living in Colorado (U.S.A.). We measured plasma total adiponectin, adiposity (BMI, and visceral adipose tissue), insulin sensitivity (IVGTT), and self-reported dietary intake in 43 MA and NLW adults. Mean adiponectin levels were 40% lower among MA than NLW (5.8 ± 3.3 vs. 10.7 ± 4.2 µg/mL, p = 0.0003), and this difference persisted after controlling for age, sex, BMI, and visceral adiposity. Lower adiponectin in MA was associated with lower insulin sensitivity (R2 = 0.42, p < 0.01). Lower adiponectin was also associated with higher dietary glycemic index, lower intake of vegetables, higher intake of trans fat, and higher intake of grains. Our findings confirm that ethnic differences in adiponectin reflect differences in insulin sensitivity, but suggest that these are not due to differences in adiposity. Observed associations between adiponectin and diet support the need for future studies exploring the regulation of adiponectin by diet and other environmental factors. PMID:26703682

  5. Pulmonary vascular function in insulin resistance and diabetes.

    PubMed

    Moral-Sanz, Javier; Moreno, Laura; Cogolludo, Angel; Perez-Vizcaino, Francisco

    2014-05-01

    Insulin resistance and diabetes are current clinical concerns due to their increasing prevalence in western societies and in developing countries. Cardiovascular alterations, affecting both macro- and microcirculation, are among the major causes of illness and premature death within patients with insulin resistance or diabetes. However, the detrimental effects of insulin resistance and diabetes in the lungs are less clinically apparent, or at least masked by the progression of these metabolic diseases on other target organs. Epidemiological and experimental data suggest a link between pulmonary arterial hypertension and diabetes. Thereby, hemodynamic derangements in uncontrolled diabetes or insulin resistance are predisposing factors leading to early pulmonary alterations that in association with a second hit might accelerate the onset of pulmonary vascular disease and pulmonary hypertension. The present article reviewed the current knowledge about the effects of insulin resistance and diabetes in a territory which has received little attention until recently: the pulmonary circulation.

  6. Differential hepatic distribution of insulin receptor substrates causes selective insulin resistance in diabetes and obesity

    PubMed Central

    Kubota, Naoto; Kubota, Tetsuya; Kajiwara, Eiji; Iwamura, Tomokatsu; Kumagai, Hiroki; Watanabe, Taku; Inoue, Mariko; Takamoto, Iseki; Sasako, Takayoshi; Kumagai, Katsuyoshi; Kohjima, Motoyuki; Nakamuta, Makoto; Moroi, Masao; Sugi, Kaoru; Noda, Tetsuo; Terauchi, Yasuo; Ueki, Kohjiro; Kadowaki, Takashi

    2016-01-01

    Hepatic insulin signalling involves insulin receptor substrates (Irs) 1/2, and is normally associated with the inhibition of gluconeogenesis and activation of lipogenesis. In diabetes and obesity, insulin no longer suppresses hepatic gluconeogenesis, while continuing to activate lipogenesis, a state referred to as ‘selective insulin resistance'. Here, we show that ‘selective insulin resistance' is caused by the differential expression of Irs1 and Irs2 in different zones of the liver. We demonstrate that hepatic Irs2-knockout mice develop ‘selective insulin resistance', whereas mice lacking in Irs1, or both Irs1 and Irs2, develop ‘total insulin resistance'. In obese diabetic mice, Irs1/2-mediated insulin signalling is impaired in the periportal zone, which is the primary site of gluconeogenesis, but enhanced in the perivenous zone, which is the primary site of lipogenesis. While hyperinsulinaemia reduces Irs2 expression in both the periportal and perivenous zones, Irs1 expression, which is predominantly in the perivenous zone, remains mostly unaffected. These data suggest that ‘selective insulin resistance' is induced by the differential distribution, and alterations of hepatic Irs1 and Irs2 expression. PMID:27708333

  7. Peripheral insulin-sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer's-like changes.

    PubMed

    Gupta, Amit; Bisht, Bharti; Dey, Chinmoy Sankar

    2011-05-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. Pharmacological treatments presently available can slow down the progression of symptoms but can not cure the disease. Currently there is widening recognition that AD is closely associated with impaired insulin signaling and glucose metabolism in brain, suggesting it to be a brain-specific form of diabetes and so also termed as "type 3 diabetes". Hence investigating the role of pharmacological agents that could ameliorate neuronal insulin resistance merit attention in AD therapeutics, however the therapeutics for pathophysiological condition like neuronal insulin resistance itself is largely unknown. In the present study we have determined the effect of metformin on neuronal insulin resistance and AD-associated characteristics in an in vitro model of "type 3 diabetes" by differentiating neuronal cell line Neuro-2a under prolonged presence of insulin. We observed that prolonged hyperinsulinemic conditions in addition to generating insulin resistance also led to development of hallmark AD-associated neuropathological changes. Treatment with metformin sensitized the impaired insulin actions and also prevented appearance of molecular and pathological characteristics observed in AD. The results thus demonstrate possible therapeutic efficacy of peripheral insulin-sensitizer drug metformin in AD by its ability to sensitize neuronal insulin resistance. These findings also provide direct evidences linking hyperinsulinemia and AD and suggest a unique opportunity for prevention and treatment of "type 3 diabetes".

  8. Acylcarnitines: potential implications for skeletal muscle insulin resistance.

    PubMed

    Aguer, Céline; McCoin, Colin S; Knotts, Trina A; Thrush, A Brianne; Ono-Moore, Kikumi; McPherson, Ruth; Dent, Robert; Hwang, Daniel H; Adams, Sean H; Harper, Mary-Ellen

    2015-01-01

    Insulin resistance may be linked to incomplete fatty acid β-oxidation and the subsequent increase in acylcarnitine species in different tissues including skeletal muscle. It is not known if acylcarnitines participate in muscle insulin resistance or simply reflect dysregulated metabolism. The aims of this study were to determine whether acylcarnitines can elicit muscle insulin resistance and to better understand the link between incomplete muscle fatty acid β-oxidation, oxidative stress, inflammation, and insulin-resistance development. Differentiated C2C12, primary mouse, and human myotubes were treated with acylcarnitines (C4:0, C14:0, C16:0) or with palmitate with or without carnitine acyltransferase inhibition by mildronate. Treatment with C4:0, C14:0, and C16:0 acylcarnitines resulted in 20-30% decrease in insulin response at the level of Akt phosphorylation and/or glucose uptake. Mildronate reversed palmitate-induced insulin resistance concomitant with an ∼25% decrease in short-chain acylcarnitine and acetylcarnitine secretion. Although proinflammatory cytokines were not affected under these conditions, oxidative stress was increased by 2-3 times by short- or long-chain acylcarnitines. Acylcarnitine-induced oxidative stress and insulin resistance were reversed by treatment with antioxidants. Results are consistent with the conclusion that incomplete muscle fatty acid β-oxidation causes acylcarnitine accumulation and associated oxidative stress, raising the possibility that these metabolites play a role in muscle insulin resistance.

  9. Decaffeinated green coffee bean extract attenuates diet-induced obesity and insulin resistance in mice.

    PubMed

    Song, Su Jin; Choi, Sena; Park, Taesun

    2014-01-01

    This study investigated whether decaffeinated green coffee bean extract prevents obesity and improves insulin resistance and elucidated its mechanism of action. Male C57BL/6N mice (N = 48) were divided into six dietary groups: chow diet, HFD, HFD-supplemented with 0.1%, 0.3%, and 0.9% decaffeinated green coffee bean extract, and 0.15% 5-caffeoylquinic acid. Based on the reduction in HFD-induced body weight gain and increments in plasma lipids, glucose, and insulin levels, the minimum effective dose of green coffee bean extract appears to be 0.3%. Green coffee bean extract resulted in downregulation of genes involved in WNT10b- and galanin-mediated adipogenesis and TLR4-mediated proinflammatory pathway and stimulation of GLUT4 translocation to the plasma membrane in white adipose tissue. Taken together, decaffeinated green coffee bean extract appeared to reverse HFD-induced fat accumulation and insulin resistance by downregulating the genes involved in adipogenesis and inflammation in visceral adipose tissue.

  10. Hepatitis C Virus, Insulin Resistance, and Steatosis

    PubMed Central

    Kralj, Dominik; Jukić, Lucija Virović; Stojsavljević, Sanja; Duvnjak, Marko; Smolić, Martina; Čurčić, Ines Bilić

    2016-01-01

    Hepatitis C virus (HCV) is one of the main causes of liver disease worldwide. Liver steatosis is a common finding in many hepatic and extrahepatic disorders, the most common being metabolic syndrome (MS). Over time, it has been shown that the frequent coexistence of these two conditions is not coincidental, since many epidemiological, clinical, and experimental studies have indicated HCV to be strongly associated with liver steatosis and numerous metabolic derangements. Here, we present an overview of publications that provide clinical evidence of the metabolic effects of HCV and summarize the available data on the pathogenetic mechanisms of this association. It has been shown that HCV infection can induce insulin resistance (IR) in the liver and peripheral tissues through multiple mechanisms. Substantial research has suggested that HCV interferes with insulin signaling both directly and indirectly, inducing the production of several proinflammatory cytokines. HCV replication, assembly, and release from hepatocytes require close interactions with lipid droplets and host lipoproteins. This modulation of lipid metabolism in host cells can induce hepatic steatosis, which is more pronounced in patients with HCV genotype 3. The risk of steatosis depends on several viral factors (including genotype, viral load, and gene mutations) and host features (visceral obesity, type 2 diabetes mellitus, genetic predisposition, medication use, and alcohol consumption). HCV-related IR and steatosis have been shown to have a remarkable clinical impact on the prognosis of HCV infection and quality of life, due to their association with resistance to antiviral therapy, progression of hepatic fibrosis, and development of hepatocellular carcinoma. Finally, HCV-induced IR, oxidative stress, and changes in lipid and iron metabolism lead to glucose intolerance, arterial hypertension, hyperuricemia, and atherosclerosis, resulting in increased cardiovascular mortality. PMID:27047774

  11. Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis

    PubMed Central

    Semple, Robert K.; Sleigh, Alison; Murgatroyd, Peter R.; Adams, Claire A.; Bluck, Les; Jackson, Sarah; Vottero, Alessandra; Kanabar, Dipak; Charlton-Menys, Valentine; Durrington, Paul; Soos, Maria A.; Carpenter, T. Adrian; Lomas, David J.; Cochran, Elaine K.; Gorden, Phillip; O’Rahilly, Stephen; Savage, David B.

    2009-01-01

    Metabolic dyslipidemia is characterized by high circulating triglyceride (TG) and low HDL cholesterol levels and is frequently accompanied by hepatic steatosis. Increased hepatic lipogenesis contributes to both of these problems. Because insulin fails to suppress gluconeogenesis but continues to stimulate lipogenesis in both obese and lipodystrophic insulin-resistant mice, it has been proposed that a selective postreceptor defect in hepatic insulin action is central to the pathogenesis of fatty liver and hypertriglyceridemia in these mice. Here we show that humans with generalized insulin resistance caused by either mutations in the insulin receptor gene or inhibitory antibodies specific for the insulin receptor uniformly exhibited low serum TG and normal HDL cholesterol levels. This was due at least in part to surprisingly low rates of de novo lipogenesis and was associated with low liver fat content and the production of TG-depleted VLDL cholesterol particles. In contrast, humans with a selective postreceptor defect in AKT2 manifest increased lipogenesis, elevated liver fat content, TG-enriched VLDL, hypertriglyceridemia, and low HDL cholesterol levels. People with lipodystrophy, a disorder characterized by particularly severe insulin resistance and dyslipidemia, demonstrated similar abnormalities. Collectively these data from humans with molecularly characterized forms of insulin resistance suggest that partial postreceptor hepatic insulin resistance is a key element in the development of metabolic dyslipidemia and hepatic steatosis. PMID:19164855

  12. Recent advances in the relationship between obesity, inflammation, and insulin resistance.

    PubMed

    Bastard, Jean-Philippe; Maachi, Mustapha; Lagathu, Claire; Kim, Min Ji; Caron, Martine; Vidal, Hubert; Capeau, Jacqueline; Feve, Bruno

    2006-03-01

    It now appears that, in most obese patients, obesity is associated with a low-grade inflammation of white adipose tissue (WAT) resulting from chronic activation of the innate immune system and which can subsequently lead to insulin resistance, impaired glucose tolerance and even diabetes. WAT is the physiological site of energy storage as lipids. In addition, it has been more recently recognized as an active participant in numerous physiological and pathophysiological processes. In obesity, WAT is characterized by an increased production and secretion of a wide range of inflammatory molecules including TNF-alpha and interleukin-6 (IL-6), which may have local effects on WAT physiology but also systemic effects on other organs. Recent data indicate that obese WAT is infiltrated by macrophages, which may be a major source of locally-produced pro-inflammatory cytokines. Interestingly, weight loss is associated with a reduction in the macrophage infiltration of WAT and an improvement of the inflammatory profile of gene expression. Several factors derived not only from adipocytes but also from infiltrated macrophages probably contribute to the pathogenesis of insulin resistance. Most of them are overproduced during obesity, including leptin, TNF-alpha, IL-6 and resistin. Conversely, expression and plasma levels of adiponectin, an insulin-sensitising effector, are down-regulated during obesity. Leptin could modulate TNF-alpha production and macrophage activation. TNF-alpha is overproduced in adipose tissue of several rodent models of obesity and has an important role in the pathogenesis of insulin resistance in these species. However, its actual involvement in glucose metabolism disorders in humans remains controversial. IL-6 production by human adipose tissue increases during obesity. It may induce hepatic CRP synthesis and may promote the onset of cardiovascular complications. Both TNF-alpha and IL-6 can alter insulin sensitivity by triggering different key steps in the

  13. Glucose-dependent insulinotropic polypeptide induces cytokine expression, lipolysis, and insulin resistance in human adipocytes.

    PubMed

    Timper, Katharina; Grisouard, Jean; Sauter, Nadine S; Herzog-Radimerski, Tanja; Dembinski, Kaethi; Peterli, Ralph; Frey, Daniel M; Zulewski, Henryk; Keller, Ulrich; Müller, Beat; Christ-Crain, Mirjam

    2013-01-01

    Obesity-related insulin resistance is linked to a chronic state of systemic and adipose tissue-derived inflammation. Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone also acting on adipocytes. We investigated whether GIP affects inflammation, lipolysis, and insulin resistance in human adipocytes. Human subcutaneous preadipocyte-derived adipocytes, differentiated in vitro, were treated with human GIP to analyze mRNA expression and protein secretion of cytokines, glycerol, and free fatty acid release and insulin-induced glucose uptake. GIP induced mRNA expression of IL-6, IL-1β, and the IL-1 receptor antagonist IL-1Ra, whereas TNFα, IL-8, and monocyte chemotactic protein (MCP)-1 remained unchanged. Cytokine induction involved PKA and the NF-κB pathway as well as an autocrine IL-1 effect. Furthermore, GIP potentiated IL-6 and IL-1Ra secretion in the presence of LPS, IL-1β, and TNFα. GIP induced lipolysis via activation of hormone-sensitive lipase and was linked to NF-κB activation. Finally, chronic GIP treatment impaired insulin-induced glucose uptake possibly due to the observed impaired translocation of glucose transporter GLUT4. In conclusion, GIP induces an inflammatory and prolipolytic response via the PKA -NF-κB-IL-1 pathway and impairs insulin sensitivity of glucose uptake in human adipocytes.

  14. Excessive Refined Carbohydrates and Scarce Micronutrients Intakes Increase Inflammatory Mediators and Insulin Resistance in Prepubertal and Pubertal Obese Children Independently of Obesity

    PubMed Central

    López-Alarcón, Mardia; Perichart-Perera, Otilia; Rodríguez-Cruz, Maricela; Armenta-Álvarez, Andrea; Bram-Falcón, María Teresa; Mayorga-Ochoa, Marielle

    2014-01-01

    Background. Low-grade inflammation is the link between obesity and insulin resistance. Because physiologic insulin resistance occurs at puberty, obese pubertal children are at higher risk for insulin resistance. Excessive diets in refined carbohydrates and saturated fats are risk factors for insulin resistance, but calcium, magnesium, vitamin-D, and the omega-3 fatty acids likely protect against inflammation and insulin resistance. Objective. To analyze interactions among dietary saturated fat, refined carbohydrates, calcium, magnesium, vitamin D, and omega-3 fatty acids on the risk of inflammation and insulin resistance in a sample of prepubertal and pubertal children. Methods. A sample of 229 children from Mexico City was analyzed in a cross-sectional design. Anthropometric measurements, 24 h recall questionnaires, and blood samples were obtained. Serum insulin, glucose, calcium, magnesium, 25-OHD3, C-reactive protein, leptin, adiponectin, and erythrocytes fatty acids were measured. Parametric and nonparametric statistics were used for analysis. Results. While mean macronutrients intake was excessive, micronutrients intake was deficient (P < 0.01). Inflammation determinants were central obesity and magnesium-deficient diets. Determinants of insulin resistance were carbohydrates intake and circulating magnesium and adiponectin. Conclusions. Magnesium-deficient diets are determinants of inflammation, while high intake of refined carbohydrates is a risk factor for insulin resistance, independently of central adiposity. PMID:25477716

  15. Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant.

    PubMed

    Gunawardana, Subhadra C; Piston, David W

    2015-06-15

    Traditional therapies for type 1 diabetes (T1D) involve insulin replacement or islet/pancreas transplantation and have numerous limitations. Our previous work demonstrated the ability of embryonic brown adipose tissue (BAT) transplants to establish normoglycemia without insulin in chemically induced models of insulin-deficient diabetes. The current study sought to extend the technique to an autoimmune-mediated T1D model and document the underlying mechanisms. In nonobese diabetic (NOD) mice, BAT transplants result in complete reversal of T1D associated with rapid and long-lasting euglycemia. In addition, BAT transplants placed prior to the onset of diabetes on NOD mice can prevent or significantly delay the onset of diabetes. As with streptozotocin (STZ)-diabetic models, euglycemia is independent of insulin and strongly correlates with decrease of inflammation and increase of adipokines. Plasma insulin-like growth factor-I (IGF-I) is the first hormone to increase following BAT transplants. Adipose tissue of transplant recipients consistently express IGF-I compared with little or no expression in controls, and plasma IGF-I levels show a direct negative correlation with glucose, glucagon, and inflammatory cytokines. Adipogenic and anti-inflammatory properties of IGF-I may stimulate regeneration of new healthy white adipose tissue, which in turn secretes hypoglycemic adipokines that substitute for insulin. IGF-I can also directly decrease blood glucose through activating insulin receptor. These data demonstrate the potential for insulin-independent reversal of autoimmune-induced T1D with BAT transplants and implicate IGF-I as a likely mediator in the resulting equilibrium.

  16. Phosphoenolpyruvate carboxykinase (Pck1) helps regulate the triglyceride/fatty acid cycle and development of insulin resistance in mice[S

    PubMed Central

    Millward, Carrie A.; DeSantis, David; Hsieh, Chang-Wen; Heaney, Jason D.; Pisano, Sorana; Olswang, Yael; Reshef, Lea; Beidelschies, Michelle; Puchowicz, Michelle; Croniger, Colleen M.

    2010-01-01

    The aim of this study was to investigate the role of the cytosolic form of phosphoenolpyruvate carboxykinase (Pck1) in the development of insulin resistance. Previous studies have shown that the roles of Pck1 in white adipose tissue (WAT) in glyceroneogenesis and reesterification of free fatty acids (FFA) to generate triglyceride are vital for the prevention of diabetes. We hypothesized that insulin resistance develops when dysregulation of Pck1 occurs in the triglyceride/fatty acid cycle, which regulates lipid synthesis and transport between adipose tissue and the liver. We examined this by analyzing mice with a deletion of the PPARγ binding site in the promoter of Pck1 (PPARE−/−). This mutation reduced the fasting Pck1 mRNA expression in WAT in brown adipose tissue (BAT). To analyze insulin resistance, we performed hyperinsulinemic-euglycemic glucose clamp analyses. PPARE−/− mice were profoundly insulin resistant and had more FFA and glycerol released during the hyperinsulinemic-euglycemic clamp compared with wild-type mice (WT). Finally, we analyzed insulin secretion in isolated islets. We found a 2-fold increase in insulin secretion in the PPARE−/− mice at 16.7 mM glucose. Thus, the PPARE site in the Pck1 promoter is essential for maintenance of lipid metabolism and glucose homeostasis and disease prevention. PMID:20124556

  17. Insulin Resistance and Environmental Pollutants: Experimental Evidence and Future Perspectives

    PubMed Central

    Vanparys, Caroline; Van Gaal, Luc F.; Jorens, Philippe G.; Covaci, Adrian; Blust, Ronny

    2013-01-01

    Background: The metabolic disruptor hypothesis postulates that environmental pollutants may be risk factors for metabolic diseases. Because insulin resistance is involved in most metabolic diseases and current health care prevention programs predominantly target insulin resistance or risk factors thereof, a critical analysis of the role of pollutants in insulin resistance might be important for future management of metabolic diseases. Objectives: We aimed to critically review the available information linking pollutant exposure to insulin resistance and to open the discussion on future perspectives for metabolic disruptor identification and prioritization strategies. Methods: We searched PubMed and Web of Science for experimental studies reporting on linkages between environmental pollutants and insulin resistance and identified a total of 23 studies as the prime literature. Discussion: Recent studies specifically designed to investigate the effect of pollutants on insulin sensitivity show a potential causation of insulin resistance. Based on these studies, a summary of viable test systems and end points can be composed, allowing insight into what is missing and what is needed to create a standardized insulin resistance toxicity testing strategy. Conclusions: It is clear that current research predominantly relies on top-down identification of insulin resistance–inducing metabolic disruptors and that the development of dedicated in vitro or ex vivo screens to allow animal sparing and time- and cost-effective bottom-up screening is a major future research need. Citation: Hectors TL, Vanparys C, Van Gaal LF, Jorens PG, Covaci A, Blust R. 2013. Insulin resistance and environmental pollutants: experimental evidence and future perspectives. Environ Health Perspect 121:1273–1281; http://dx.doi.org/10.1289/ehp.1307082 PMID:24058052

  18. Waist circumference and cardiorespiratory fitness are independently associated with glucose tolerance and insulin resistance in obese women.

    PubMed

    Shalev-Goldman, Einat; McGuire, K Ashlee; Ross, Robert

    2014-03-01

    The purpose of this study was to determine the independent associations between physical activity (PA), cardiorespiratory fitness (CRF), abdominal obesity and insulin action in obese women. We studied 141 abdominally obese women (waist circumference (WC): 106.4 ± 10.2 cm). PA duration (min/day) and intensity (counts/min) were obtained by accelerometry. CRF was measured using a treadmill. WC was measured at the iliac crest; abdominal adiposity was measured by magnetic resonance imaging. Glucose and insulin measures were obtained during a 75-g, 2-h glucose tolerance test. The homeostasis model of assessment iHOMA2-IS was used to estimate insulin sensitivity. PA duration and intensity were not associated with glucose or insulin metabolism (p > 0.05). However, moderate-to-vigorous PA (MVPA) duration was associated with fasting insulin and iHOMA2-IS (p < 0.01). CRF was associated with fasting insulin and iHOMA2-IS (r = 0.27, p ≤ 0.01), whereas WC was associated with fasting insulin (r = 0.50, p < 0.01) and iHOMA2-IS (r = -0.52, p ≤ 0.01). Following adjustment for CRF, MVPA, and age, WC remained associated with fasting glucose, insulin, 2-h glucose and iHOMA2-IS (r = -0.44, p ≤ 0.01). CRF was associated with fasting glucose as well as 1- and 2-h glucose (r = 0.24, p < 0.01) after adjusting for WC, MVPA, and age. MVPA was not associated with glucose or insulin measures after control for CRF and WC (p > 0.05). Mediation analysis revealed that CRF and WC combined mediated the relationship between MVPA and both glucose tolerance and insulin resistance (p < 0.05). In conclusion, among abdominally obese women, WC and CRF are independently associated with measures of glucose tolerance and insulin resistance and mediate the association between MVPA and insulin resistance.

  19. IGFBP-3 Inhibits Cytokine-Induced Insulin Resistance and Early Manifestations of Atherosclerosis

    PubMed Central

    Cai, Qing; Kim, Ki Eun; Shin, Hye-Jung; Lee, Yong-Jae; Lee, Woo Jung; Kim, Jung Hyun; Oh, Youngman

    2013-01-01

    Metabolic syndrome is associated with visceral obesity, insulin resistance and an increased risk of cardiovascular diseases. Visceral fat tissue primarily consists of adipocytes that secrete cytokines leading to a state of systemic inflammation in obese conditions. One of the IGF-independent functions of IGFBP-3 is its role as an anti-inflammatory molecule. Our study in obese adolescents show a decrease in total IGFBP-3 levels and increase in proteolyzed IGFBP-3 in circulation when compared to their normal counterparts and establishes a positive correlation between IGFBP-3 proteolysis and adiposity parameters as well as insulin resistance. In human adipocytes, we show that IGFBP-3 inhibits TNF-α-induced NF-κB activity in an IGF-independent manner, thereby restoring the deregulated insulin signaling and negating TNF-α-induced inhibition of glucose uptake. IGFBP-3 further inhibits TNF-α, CRP and high glucose-induced NF-κB activity in human aortic endothelial cells (HAECs) and subsequently suppresses monocyte adhesion to HAEC through the IGFBP-3 receptor. In conclusion, these findings suggest that reduced levels of IGFBP-3 in circulation and reduced expression of IGFBP-3 in macrophages in obesity may result in suppression of its anti-inflammatory functions and therefore IGFBP-3 may present itself as a therapeutic for obesity-induced insulin resistance and for events occurring in the early stages of atherosclerosis. PMID:23383064

  20. Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages

    PubMed Central

    Guo, C.; Huang, T.; Chen, A.; Chen, X.; Wang, L.; Shen, F.; Gu, X.

    2016-01-01

    Glucagon-like peptide 1 (GLP-1), a kind of gut hormone, is used in the treatment of type 2 diabetes (T2D). Emerging evidence indicates that GLP-1 has anti-inflammatory activity. Chronic inflammation in the adipose tissue of obese individuals is a cause of insulin resistance and T2D. We hypothesized that GLP-1 analogue therapy in patients with T2D could suppress the inflammatory response of macrophages, and therefore inhibit insulin resistance. Our results showed that GLP-1 agonist (exendin-4) not only attenuated macrophage infiltration, but also inhibited the macrophage secretion of inflammatory cytokines including TNF-β, IL-6, and IL-1β. Furthermore, we observed that lipopolysaccharide (LPS)-induced macrophage conditioned media could impair insulin-stimulated glucose uptake. This effect was compensated by treatment with the conditioned media from macrophages treated with the combination of LPS and exendin-4. It was also observed that exendin-4 directly inhibited the activation of NF-κB in macrophages. In conclusion, our results indicated that GLP-1 improved inflammatory macrophage-derived insulin resistance by inhibiting NF-κB pathway and secretion of inflammatory cytokines in macrophages. Furthermore, our observations suggested that the anti-inflammatory effect of GLP-1 on macrophages can contribute to GLP-1 analogue therapy of T2D. PMID:27878229

  1. Metabolic responses to dietary leucine restriction involve remodeling of adipose tissue and enhanced hepatic insulin signaling.

    PubMed

    Wanders, Desiree; Stone, Kirsten P; Dille, Kelly; Simon, Jacob; Pierse, Alicia; Gettys, Thomas W

    2015-01-01

    Dietary leucine was incrementally restricted to test whether limiting this essential amino acid (EAA) would fully reproduce the beneficial responses produced by dietary methionine restriction. Restricting leucine by 85% increased energy intake and expenditure within 5 to 7 days of its introduction and reduced overall accumulation of adipose tissue. Leucine restriction (LR) also improved glucose tolerance, increased hepatic release of fibroblast growth factor 21 into the blood stream, and enhanced insulin-dependent activation of Akt in liver. However, LR had no effect on hepatic lipid levels and failed to lower lipogenic gene expression in the liver. LR did affect remodeling of white and brown adipose tissues, increasing expression of both thermogenic and lipogenic genes. These findings illustrate that dietary LR reproduces many but not all of the physiological responses of methionine restriction. The primary differences occur in the liver, where methionine and LR cause opposite effects on tissue lipid levels and expression of lipogenic genes. Altogether, these findings suggest that the sensing systems which detect and respond to dietary restriction of EAAs act through mechanisms that both leucine and methionine are able to engage, and in the case of hepatic lipid metabolism, may be unique to specific EAAs such as methionine.

  2. METABOLIC RESPONSES TO DIETARY LEUCINE RESTRICTION INVOLVE REMODELING OF ADIPOSE TISSUE AND ENHANCED HEPATIC INSULIN SIGNALING

    PubMed Central

    Wanders, Desiree; Stone, Kirsten P.; Dille, Kelly; Simon, Jacob; Pierse, Alicia; Gettys, Thomas W.

    2015-01-01

    Dietary leucine was incrementally restricted to test whether limiting this essential amino acid (EAA) would fully reproduce the beneficial responses produced by dietary methionine restriction. Restricting leucine by 85% increased energy intake and expenditure within five to seven days of its introduction and reduced overall accumulation of adipose tissue. Leucine restriction (LR) also improved glucose tolerance, increased hepatic release of FGF21 into the blood stream, and enhanced insulin-dependent activation of Akt in liver. However, LR had no effect on hepatic lipid levels and failed to lower lipogenic gene expression in the liver. LR did affect remodeling of white and brown adipose tissue, increasing expression of both thermogenic and lipogenic genes. These findings illustrate that dietary LR reproduces many but not all of the physiological responses of methionine restriction. The primary differences occur in the liver, where methionine and leucine restriction cause opposite effects on tissue lipid levels and expression of lipogenic genes. Together these findings suggest that the sensing systems which detect and respond to dietary restriction of EAAs act through mechanisms that both leucine and methionine are able to engage, and in the case of hepatic lipid metabolism, may be unique to specific EAAs such as methionine. PMID:26643647

  3. Urinary Phthalates and Increased Insulin Resistance in Adolescents

    PubMed Central

    Spanier, Adam J.; Sathyanarayana, Sheela; Attina, Teresa M.; Blustein, Jan

    2013-01-01

    BACKGROUND Di-2-ethylhexylphthalate (DEHP) is an environmental chemical commonly found in processed foods. Phthalate exposures, in particular to DEHP, have been associated with insulin resistance in adults, but have not been studied in adolescents. METHODS: Using cross-sectional data from 766 fasting 12- to 19-year-olds in the 2003–2008 NHANES, we examined associations of phthalate metabolites with continuous and categorical measures of homeostatic model assessment of insulin resistance (HOMA-IR). RESULTS: Controlling for demographic and behavioral factors, diet, continuous age, BMI category, and urinary creatinine, for each log (roughly threefold) increase in DEHP metabolites, a 0.27 increase (95% confidence interval 0.14–0.40; P < .001) in HOMA-IR was identified. Compared with the first tertile of DEHP metabolite in the study population (14.5% insulin resistant), the third tertile had 21.6% prevalence (95% confidence interval 17.2%–26.0%; P = .02). Associations persisted despite controlling for bisphenol A, another endocrine-disrupting chemical commonly found in foods, and HOMA-IR and insulin resistance were not significantly associated with metabolites of lower molecular weight phthalates commonly found in cosmetics and other personal care products. CONCLUSIONS: Urinary DEHP concentrations were associated with increased insulin resistance in this cross-sectional study of adolescents. This study cannot rule out the possibility that insulin-resistant children ingest food with higher phthalate content, or that insulin-resistant children excrete more DEHP. PMID:23958772

  4. Insulin resistance and elevated triglyceride in muscle: more important for survival than ‘thrifty’ genes?

    PubMed Central

    Stannard, S R; Johnson, N A

    2004-01-01

    Elevated intramyocellular triglyceride (IMTG) is strongly associated with insulin resistance, though a cause and effect relationship has not been fully described. Insulin sensitivity and IMTG content are both dynamic and can alter rapidly in response to dietary variation, physical activity and thermoregulatory response. Physically active humans (athletes) display elevated IMTG content, but in contrast to obese persons, are insulin sensitive. This paradox has created confusion surrounding the role of IMTG in the development of insulin resistance. In this review we consider the modern athlete as the physiological archetype of the Late Palaeolithic hunter–gatherer to whom the selection pressures of food availability, predation and fluctuating environmental conditions applied and to whom the genotype of modern man is virtually identical. As food procurement by the hunter–gatherer required physical activity, ‘thrifty’ genes that encouraged immediate energy storage upon refeeding after food deprivation (Neel, 1962) must have been of secondary importance in survival to genes that preserved physical capacity during food deprivation. Similarly genes that enabled survival during cold exposure whilst starved would be of primary importance. In this context, we discuss the advantage afforded by an elevated IMTG content, and how under these conditions, a concomitant muscle resistance to insulin-mediated glucose uptake would also be advantageous. In sedentary modern man, adiposity is high and skeletal muscle appears to respond as if a state of starvation exists. In this situation, elevated plasma lipids serve to accrue lipid and induce insulin resistance in skeletal muscle. Reversal of this physiological state is primarily dependant on adequate contractile activity, however, in modern Western society, physical inactivity combined with abundant food and warmth has rendered IMTG a redundant muscle substrate. PMID:14608009

  5. Adipokines and insulin action

    PubMed Central

    Knights, Alexander J; Funnell, Alister PW; Pearson, Richard CM; Crossley, Merlin; Bell-Anderson, Kim S

    2014-01-01

    Obesity is a major public health concern and a strong risk factor for insulin resistance, type 2 diabetes mellitus (T2DM), and cardiovascular disease. The last two decades have seen a reconsideration of the role of white adipose tissue (WAT) in whole body metabolism and insulin action. Adipose tissue-derived cytokines and hormones, or adipokines, are likely mediators of metabolic function and dysfunction. While several adipokines have been associated with obese and insulin-resistant phenotypes, a select group has been linked with insulin sensitivity, namely leptin, adiponectin, and more recently, adipolin. What is known about these insulin-sensitizing molecules and their effects in healthy and insulin resistant states is the subject of this review. There remains a significant amount of research to do to fully elucidate the mechanisms of action of these adipokines for development of therapeutics in metabolic disease. PMID:24719781

  6. Insulin resistance: metabolic mechanisms and consequences in the heart.

    PubMed

    Abel, E Dale; O'Shea, Karen M; Ramasamy, Ravichandran

    2012-09-01

    Insulin resistance is a characteristic feature of obesity and type 2 diabetes mellitus and impacts the heart in various ways. Impaired insulin-mediated glucose uptake is a uniformly observed characteristic of the heart in these states, although changes in upstream kinase signaling are variable and dependent on the severity and duration of the associated obesity or diabetes mellitus. The understanding of the physiological and pathophysiological role of insulin resistance in the heart is evolving. To maintain its high energy demands, the heart is capable of using many metabolic substrates. Although insulin signaling may directly regulate cardiac metabolism, its main role is likely the regulation of substrate delivery from the periphery to the heart. In addition to promoting glucose uptake, insulin regulates long-chain fatty acid uptake, protein synthesis, and vascular function in the normal cardiovascular system. Recent advances in understanding the role of metabolic, signaling, and inflammatory pathways in obesity have provided opportunities to better understand the pathophysiology of insulin resistance in the heart. This review will summarize our current understanding of metabolic mechanisms for and consequences of insulin resistance in the heart and will discuss potential new areas for investigating novel mechanisms that contribute to insulin resistance in the heart.

  7. Intramyocellular lipid kinetics and insulin resistance

    PubMed Central

    Guo, ZengKui

    2007-01-01

    More than fifteen years ago it was discovered that intramyocellular triglyceride (imcTG) content in skeletal muscle is abnormally high in conditions of lipid oversupply (e.g. high fat feeding) and, later, obesity, type 2 diabetes (T2D) and other metabolic conditions. This imcTG excess is robustly associated with muscle insulin resistance (MIR). However, to date the pathways responsible for the imcTG excess and the mechanisms underlying the imcTG-MIR correlation remain unclear. A current hypothesis is based on a backward mechanism that impaired fatty acid oxidation by skeletal muscle causes imcTG to accumulate. As such, imcTG excess is considered a marker but not a player in MIR. However, recent results from kinetic studies indicated that imcTG pool in high fat-induced obesity (HFO) model is kinetically dynamic. On one hand, imcTG synthesis is accelerated and contributes to imcTG accumulation. On the other, the turnover of imcTG is also accelerated. A hyperdynamic imcTG pool can impose dual adverse effects on glucose metabolism in skeletal muscle. It increases the release and thus the availability of fatty acids in myocytes that may promote fatty acid oxidation and suppress glucose utilization. Meanwhile, it releases abundant fatty acid products (e.g. diacylglycerol, ceramides) that impair insulin actions via signal transduction, thereby causing MIR. Thus, intramyocellular fatty acids and their products released from imcTG appear to function as a link to MIR. Accordingly, a forward mechanism is proposed that explains the imcTG-MIR correlation. PMID:17650308

  8. Salt sensitivity is associated with insulin resistance in essential hypertension.

    PubMed

    Fuenmayor, N; Moreira, E; Cubeddu, L X

    1998-04-01

    The relationship between salt sensitivity and insulin resistance was investigated in nondiabetic, nonobese (body mass index < or = 28) untreated patients with uncomplicated, mild-to-moderate essential hypertension. Alterations in insulin-mediated glucose disposal were assessed by means of the insulin suppression test. Subjects were classified as salt sensitive and salt resistant according to their blood pressure response to low and high salt intake. Fasting serum glucose levels were within normal limits and did not differ between salt sensitive and salt resistant hypertensives, irrespectively of the level of salt intake. Fasting serum insulin levels increased in salt sensitive patients when on a high intake of salt. The insulin suppression test revealed the existence of marked differences in insulin-mediated glucose uptake between salt sensitive and salt resistant hypertensives. Much higher steady-state glucose values (nanomoles of glucose/ liter) were obtained during the insulin suppression test in salt sensitive than in salt-resistant hypertensives (7.4+/-1.6 v 3.5+/-0.1 under low salt; and 12.5+/-1.1 v 4.3+/-0.1 under high salt intake). The product of glucose times insulin obtained at steady state during low and high salt intakes were 2.5 and 5 times greater, respectively, in salt sensitive than in salt resistant hypertensives. Therefore, the impairment in insulin-mediated glucose disposal observed in salt sensitive hypertensives was present both under low salt (60 to 70 mEq/day) and high salt intake (300 mEq/day). However, it was exacerbated under high salt intake. These results suggest that untreated salt sensitive hypertensives have a considerable impairment in insulin-mediated glucose disposal because of a state of insulin resistance. High salt intake increased BP, induced hyperinsulinemia, and worsened insulin-mediated glucose disposal only in salt sensitive patients. We propose that salt sensitivity contributes, separately from hypertension, to insulin

  9. Severe insulin resistance secondary to insulin antibodies: successful treatment with the immunosuppressant MMF.

    PubMed

    Segal, T; Webb, Ea; Viner, R; Pusey, C; Wild, G; Allgrove, J

    2008-06-01

    We have evaluated the use of the immunosuppressant mycophenolate mofetil (MMF) in the treatment of severe insulin resistance caused by neutralising anti-insulin antibodies in type 1 diabetes mellitus (T1DM). A 12-yr-old boy with a 5-month history of T1DM developed severe immunological insulin resistance secondary to human insulin antibodies. Various different treatment modalities, including lispro insulin, intravenous insulin, prednisolone and immunoabsorption, were tried, all without a sustained response to treatment. Although the introduction of the immunosuppressant MMF only resulted in a small reduction in haemoglobin A1c (from 10.9 to 9.8%), it did result in a significant reduction in insulin requirements from 6000 to 250 U/d (75 to 3.1 U/kg/d), disappearance of the severe nocturnal hypoglycaemia associated with high titres of insulin antibodies and a reduction in the level of these antibodies from 34.6 to 2.7 mg/dL. MMF may be considered as a means of immunosuppression in patients with markedly raised insulin antibodies whose diabetes cannot be controlled with insulin alone.

  10. Dietary glucose increases plasma insulin and decreases brown adipose tissue thermogenic activity in adrenalectomized ob/ob mice.

    PubMed

    Nei, Y M; Romsos, D R

    1991-09-01

    The purpose of this study was to determine whether consumption of a high glucose diet would increase plasma insulin concentrations and decrease brown adipose tissue metabolism in adrenalectomized ob/ob mice previously fed a high starch diet. Male sham-operated and adrenalectomized ob/ob and lean mice were fed a high starch diet for 12 d, then switched to a high glucose diet for the last 2 or 4 d of the 14- or 16-d feeding trials. Adrenalectomized ob/ob mice consumed 16% more energy and gained 50% more weight without an increase in oxygen consumption when switched from a high starch diet to a high glucose diet. Within 2 d after the switch to the high glucose diet, plasma insulin concentrations increased by 70% without any change in plasma glucose concentrations; brown adipose tissue metabolism, as assessed by GDP binding to brown adipose tissue mitochondria, was decreased by 26% 4 d after the diet switch. Sham-operated ob/ob and lean mice and adrenalectomized lean mice were minimally affected by the switch to the high glucose diet. The increase in plasma insulin concentrations in adrenalectomized ob/ob mice induced by the high glucose diet may contribute to the observed depression in brown adipose tissue metabolism.

  11. Phosphatidylinositol 3,4,5-Trisphosphate Phosphatase SKIP Links Endoplasmic Reticulum Stress in Skeletal Muscle to Insulin Resistance.

    PubMed

    Ijuin, Takeshi; Hosooka, Tetsuya; Takenawa, Tadaomi

    2016-01-01

    Insulin resistance is critical in the pathogenesis of type 2 diabetes. Endoplasmic reticulum (ER) stress in liver and adipose tissues plays an important role in the development of insulin resistance. Although skeletal muscle is a primary site for insulin-dependent glucose disposal, it is unclear if ER stress in those tissues contributes to insulin resistance. In this study, we show that skeletal muscle kidney-enriched inositol polyphosphate phosphatase (SKIP), a PIP3 (phosphatidylinositol-3,4,5-trisphosphate) phosphatase, links ER stress to insulin resistance in skeletal muscle. SKIP expression was increased due to ER stress and was higher in the skeletal muscle isolated from high-fat-diet-fed mice and db/db mice than in that from wild-type mice. Mechanistically, ER stress promotes activating transcription factor 6 (ATF6) and X-box binding protein 1 (XBP1)-dependent expression of SKIP. These findings underscore the specific and prominent role of SKIP in the development of insulin resistance in skeletal muscle.

  12. Similar and Additive Effects of Ovariectomy and Diabetes on Insulin Resistance and Lipid Metabolism

    PubMed Central

    Tawfik, Shady H.; Mahmoud, Bothaina F.; Saad, Mohamed I.; Shehata, Mona; Kamel, Maher A.; Helmy, Madiha H.

    2015-01-01

    Type 2 diabetes mellitus (T2DM) is among the leading causes of death in postmenopausal women. The disruption of ovarian function may contribute to the incidence of T2DM. The purpose of this study was to investigate the effects of ovariectomy and T2DM on glucose and lipid homeostasis, perilipin levels in adipose tissues, as a lipolytic regulator, and levels of certain adipokines. Ovariectomized (OVX) rats were used as a model for postmenopausal women. The study was performed on sham, OVX, sham diabetic, and OVX diabetic female rats. The results indicated that ovariectomy alters adipose tissue metabolism through reducing perilipin content in white adipose tissue (WAT); however it has no effect on perilipin level in brown adipose tissue (BAT). OVX diabetic females suffer from serious metabolic disturbances, suggested by exacerbation of insulin resistance in terms of disrupted lipid profile, higher HOMA-IR, hyperinsulinemia, higher leptin, and lower adiponectin concentrations. These metabolic derangements may underlie the predisposition for cardiovascular disease in women after menopause. Therefore, for efficient treatment, the menopausal status of diabetic female should be addressed, and the order of events is of great importance because ovariectomy following development of diabetes has more serious complications compared to development of diabetes as result of menopause. PMID:25834745

  13. Cognitively impaired elderly exhibit insulin resistance and no memory improvement with infused insulin.

    PubMed

    Morris, Jill K; Vidoni, Eric D; Mahnken, Jonathan D; Montgomery, Robert N; Johnson, David K; Thyfault, John P; Burns, Jeffrey M

    2016-03-01

    Insulin resistance is a risk factor for Alzheimer's disease (AD), although its role in AD etiology is unclear. We assessed insulin resistance using fasting and insulin-stimulated measures in 51 elderly subjects with no dementia (ND; n = 37) and with cognitive impairment (CI; n = 14). CI subjects exhibited either mild CI or AD. Fasting insulin resistance was measured using the homeostatic model assessment of insulin resistance (HOMA-IR). Insulin-stimulated glucose disposal was assessed using the hyperinsulinemic-euglycemic clamp to calculate glucose disposal rate into lean mass, the primary site of insulin-stimulated glucose disposal. Because insulin crosses the blood-brain barrier, we also assessed whether insulin infusion would improve verbal episodic memory compared to baseline. Different but equivalent versions of cognitive tests were administered in counterbalanced order in the basal and insulin-stimulated state. Groups did not differ in age or body mass index. Cognitively impaired subjects exhibited greater insulin resistance as measured at fasting (HOMA-IR; ND: 1.09 [1.1] vs. CI: 2.01 [2.3], p = 0.028) and during the hyperinsulinemic clamp (glucose disposal rate into lean mass; ND: 9.9 (4.5) vs. AD 7.2 (3.2), p = 0.040). Cognitively impaired subjects also exhibited higher fasting insulin compared to ND subjects, (CI: 8.7 [7.8] vs. ND: 4.2 [3.8] μU/mL; p = 0.023) and higher fasting amylin (CI: 24.1 [39.1] vs. 8.37 [14.2]; p = 0.050) with no difference in fasting glucose. Insulin infusion elicited a detrimental effect on one test of verbal episodic memory (Free and Cued Selective Reminding Test) in both groups (p < 0.0001) and no change in performance on an additional task (delayed logical memory). In this study, although insulin resistance was observed in cognitively impaired subjects compared to ND controls, insulin infusion did not improve memory. Furthermore, a significant correlation between HOMA-IR and glucose disposal rate was present only in N