Science.gov

Sample records for adipose tissue fibrosis

  1. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis

    USDA-ARS?s Scientific Manuscript database

    Our data demonstrate that estrogens, estrogen receptor-alpha (ERalpha), and estrogen receptor-ßeta (ERßeta) regulate adipose tissue distribution, inflammation, fibrosis, and glucose homeostasis, by determining that alphaERKO mice have increased adipose tissue inflammation and fibrosis prior to obesi...

  2. Isoliquiritigenin Attenuates Adipose Tissue Inflammation in vitro and Adipose Tissue Fibrosis through Inhibition of Innate Immune Responses in Mice

    PubMed Central

    Watanabe, Yasuharu; Nagai, Yoshinori; Honda, Hiroe; Okamoto, Naoki; Yamamoto, Seiji; Hamashima, Takeru; Ishii, Yoko; Tanaka, Miyako; Suganami, Takayoshi; Sasahara, Masakiyo; Miyake, Kensuke; Takatsu, Kiyoshi

    2016-01-01

    Isoliquiritigenin (ILG) is a flavonoid derived from Glycyrrhiza uralensis and potently suppresses NLRP3 inflammasome activation resulting in the improvement of diet-induced adipose tissue inflammation. However, whether ILG affects other pathways besides the inflammasome in adipose tissue inflammation is unknown. We here show that ILG suppresses adipose tissue inflammation by affecting the paracrine loop containing saturated fatty acids and TNF-α by using a co-culture composed of adipocytes and macrophages. ILG suppressed inflammatory changes induced by the co-culture through inhibition of NF-κB activation. This effect was independent of either inhibition of inflammasome activation or activation of peroxisome proliferator-activated receptor-γ. Moreover, ILG suppressed TNF-α-induced activation of adipocytes, coincident with inhibition of IκBα phosphorylation. Additionally, TNF-α-mediated inhibition of Akt phosphorylation under insulin signaling was alleviated by ILG in adipocytes. ILG suppressed palmitic acid-induced activation of macrophages, with decreasing the level of phosphorylated Jnk expression. Intriguingly, ILG improved high fat diet-induced fibrosis in adipose tissue in vivo. Finally, ILG inhibited TLR4- or Mincle-stimulated expression of fibrosis-related genes in stromal vascular fraction from obese adipose tissue and macrophages in vitro. Thus, ILG can suppress adipose tissue inflammation by both inflammasome-dependent and -independent manners and attenuate adipose tissue fibrosis by targeting innate immune sensors. PMID:26975571

  3. Thromboxane synthase deficiency improves insulin action and attenuates adipose tissue fibrosis

    PubMed Central

    Lei, Xia; Li, Qing; Rodriguez, Susana; Tan, Stefanie Y.; Seldin, Marcus M.; McLenithan, John C.; Jia, Weiping

    2015-01-01

    Thromboxane A2, an arachidonic acid-derived eicosanoid generated by thromboxane synthase (TBXAS), plays critical roles in hemostasis and inflammation. However, the contribution of thromboxane A2 to obesity-linked metabolic dysfunction remains incompletely understood. Here, we used in vitro and mouse models to better define the role of TBXAS in metabolic homeostasis. We found that adipose expression of Tbxas and thromboxane A2 receptor (Tbxa2r) was significantly upregulated in genetic and dietary mouse models of obesity and diabetes. Expression of Tbxas and Tbxa2r was detected in adipose stromal cells, including macrophages. Furthermore, stimulation of macrophages with interferon-γ or resistin factors known to be upregulated in obesity induced Tbxas and Tbxa2r expression. Mice lacking Tbxas had similar weight gain, food intake, and energy expenditure. However, loss of Tbxas markedly enhanced insulin sensitivity in mice fed a low-fat diet. Improvement in glucose homeostasis was correlated with the upregulated expression of multiple secreted metabolic regulators (Ctrp3, Ctrp9, and Ctrp12) in the visceral fat depot. Following a challenge with a high-fat diet, Tbxas deficiency led to attenuated adipose tissue fibrosis and reduced circulating IL-6 levels without adipose tissue macrophages being affected; however, these changes were not sufficient to improve whole body insulin action. Together, our results highlight a novel, diet-dependent role for thromboxane A2 in modulating peripheral tissue insulin sensitivity and adipose tissue fibrosis. PMID:25738781

  4. Thromboxane synthase deficiency improves insulin action and attenuates adipose tissue fibrosis.

    PubMed

    Lei, Xia; Li, Qing; Rodriguez, Susana; Tan, Stefanie Y; Seldin, Marcus M; McLenithan, John C; Jia, Weiping; Wong, G William

    2015-05-01

    Thromboxane A2, an arachidonic acid-derived eicosanoid generated by thromboxane synthase (TBXAS), plays critical roles in hemostasis and inflammation. However, the contribution of thromboxane A2 to obesity-linked metabolic dysfunction remains incompletely understood. Here, we used in vitro and mouse models to better define the role of TBXAS in metabolic homeostasis. We found that adipose expression of Tbxas and thromboxane A2 receptor (Tbxa2r) was significantly upregulated in genetic and dietary mouse models of obesity and diabetes. Expression of Tbxas and Tbxa2r was detected in adipose stromal cells, including macrophages. Furthermore, stimulation of macrophages with interferon-γ or resistin factors known to be upregulated in obesity induced Tbxas and Tbxa2r expression. Mice lacking Tbxas had similar weight gain, food intake, and energy expenditure. However, loss of Tbxas markedly enhanced insulin sensitivity in mice fed a low-fat diet. Improvement in glucose homeostasis was correlated with the upregulated expression of multiple secreted metabolic regulators (Ctrp3, Ctrp9, and Ctrp12) in the visceral fat depot. Following a challenge with a high-fat diet, Tbxas deficiency led to attenuated adipose tissue fibrosis and reduced circulating IL-6 levels without adipose tissue macrophages being affected; however, these changes were not sufficient to improve whole body insulin action. Together, our results highlight a novel, diet-dependent role for thromboxane A2 in modulating peripheral tissue insulin sensitivity and adipose tissue fibrosis. Copyright © 2015 the American Physiological Society.

  5. Fibrosis in Human Adipose Tissue: Composition, Distribution, and Link With Lipid Metabolism and Fat Mass Loss

    PubMed Central

    Divoux, Adeline; Tordjman, Joan; Lacasa, Danièle; Veyrie, Nicolas; Hugol, Danielle; Aissat, Abdelhalim; Basdevant, Arnaud; Guerre-Millo, Michèle; Poitou, Christine; Zucker, Jean-Daniel; Bedossa, Pierre; Clément, Karine

    2010-01-01

    OBJECTIVE Fibrosis is a newly appreciated hallmark of the pathological alteration of human white adipose tissue (WAT). We investigated the composition of subcutaneous (scWAT) and omental WAT (oWAT) fibrosis in obesity and its relationship with metabolic alterations and surgery-induced weight loss. RESEARCH DESIGN AND METHODS Surgical biopsies for scWAT and oWAT were obtained in 65 obese (BMI 48.2 ± 0.8 kg/m2) and 9 lean subjects (BMI 22.8 ± 0.7 kg/m2). Obese subjects who were candidates for bariatric surgery were clinically characterized before, 3, 6, and 12 months after surgery, including fat mass evaluation by dual energy X-ray absorptiometry. WAT fibrosis was quantified and characterized using quantitative PCR, microscopic observation, and immunohistochemistry. RESULTS Fibrosis amount, distribution and collagen types (I, III, and VI) present distinct characteristics in lean and obese subjects and with WAT depots localization (subcutaneous or omental). Obese subjects had more total fibrosis in oWAT and had more pericellular fibrosis around adipocytes than lean subjects in both depots. Macrophages and mastocytes were highly represented in fibrotic bundles in oWAT, whereas scWAT was more frequently characterized by hypocellular fibrosis. The oWAT fibrosis negatively correlated with omental adipocyte diameters (R = −0.30, P = 0.02), and with triglyceride levels (R = −0.42, P < 0.01), and positively with apoA1 (R = 0.25, P = 0.05). Importantly, scWAT fibrosis correlated negatively with fat mass loss measured at the three time points after surgery. CONCLUSIONS Our data suggest differential clinical consequences of fibrosis in human WAT. In oWAT, fibrosis could contribute to limit adipocyte hypertrophy and is associated with a better lipid profile, whereas scWAT fibrosis may hamper fat mass loss induced by surgery. PMID:20713683

  6. Effect of adipose tissue-derived stem cell injection in a rat model of urethral fibrosis

    PubMed Central

    Sangkum, Premsant; Yafi, Faysal A.; Kim, Hogyoung; Bouljihad, Mostafa; Ranjan, Manish; Datta, Amrita; Mandava, Sree Harsha; Sikka, Suresh C; Abdel-Mageed, Asim B.; Hellstrom, Wayne J.G.

    2016-01-01

    Introduction: We sought to evaluate the therapeutic effect of adi-pose tissue-derived stem cells (ADSCs) in a rat model of urethral fibrosis. Methods: Eighteen (18) male Sprague-Dawley rats (300‒350 g) were divided into three groups: (1) sham (saline injection); (2) urethral fibrosis group (10 μg transforming growth factor beta 1 (TGF-β1) injection); and (3) ADSCs group (10 μg TGF-β1 injection plus 2 × 105 ADSCs). Rat ADSCs were harvested from rat inguinal fat pads. All study animals were euthanized at two weeks after urethral injection. Following euthanasia, rat urethral tissue was harvested for histologic evaluation. Type I and III collagen levels were quantitated by Western blot analysis. Results: TGF-β1 injection induced significant urethral fibrosis and increased collagen type I and III expression (p<0.05). Significant decrease in submucosal fibrosis and collagen type I and III expression were noted in the ADSCs group compared with the urethral fibrosis group (p<0.05). TGF-β1 induced fibrotic changes were ameliorated by injection of ADSCs. Conclusions: Local injection of ADSCs in a rat model of urethral fibrosis significantly decreased collagen type I and III. These findings suggest that ADSC injection may prevent scar formation and potentially serve as an adjunct treatment to increase the success rate of primary treatment for urethral stricture disease. Further animal and clinical studies are needed to confirm these results. PMID:27790299

  7. The osteopontin level in liver, adipose tissue and serum is correlated with fibrosis in patients with alcoholic liver disease.

    PubMed

    Patouraux, Stéphanie; Bonnafous, Stéphanie; Voican, Cosmin S; Anty, Rodolphe; Saint-Paul, Marie-Christine; Rosenthal-Allieri, Maria-Alessandra; Agostini, Hélène; Njike, Micheline; Barri-Ova, Nadége; Naveau, Sylvie; Le Marchand-Brustel, Yannick; Veillon, Pascal; Calès, Paul; Perlemuter, Gabriel; Tran, Albert; Gual, Philippe

    2012-01-01

    Osteopontin (OPN) plays an important role in the progression of chronic liver diseases. We aimed to quantify the liver, adipose tissue and serum levels of OPN in heavy alcohol drinkers and to compare them with the histological severity of hepatic inflammation and fibrosis. OPN was evaluated in the serum of a retrospective and prospective group of 109 and 95 heavy alcohol drinkers, respectively, in the liver of 34 patients from the retrospective group, and in the liver and adipose tissue from an additional group of 38 heavy alcohol drinkers. Serum levels of OPN increased slightly with hepatic inflammation and progressively with the severity of hepatic fibrosis. Hepatic OPN expression correlated with hepatic inflammation, fibrosis, TGFβ expression, neutrophils accumulation and with the serum OPN level. Interestingly, adipose tissue OPN expression also correlated with hepatic fibrosis even after 7 days of alcohol abstinence. The elevated serum OPN level was an independent risk factor in estimating significant (F ≥ 2) fibrosis in a model combining alkaline phosphatase, albumin, hemoglobin, OPN and FibroMeter® levels. OPN had an area under the receiving operator curve that estimated significant fibrosis of 0.89 and 0.88 in the retrospective and prospective groups, respectively. OPN, Hyaluronate (AUROC: 0.88), total Cytokeratin 18 (AUROC: 0.83) and FibroMeter® (AUROC: 0.90) estimated significance to the same extent in the retrospective group. Finally, the serum OPN levels also correlated with hepatic fibrosis and estimated significant (F ≥ 2) fibrosis in 86 patients with chronic hepatitis C, which suggested that its elevated level could be a general response to chronic liver injury. OPN increased in the liver, adipose tissue and serum with liver fibrosis in alcoholic patients. Further, OPN is a new relevant biomarker for significant liver fibrosis. OPN could thus be an important actor in the pathogenesis of this chronic liver disease.

  8. The Osteopontin Level in Liver, Adipose Tissue and Serum Is Correlated with Fibrosis in Patients with Alcoholic Liver Disease

    PubMed Central

    Voican, Cosmin S.; Anty, Rodolphe; Saint-Paul, Marie-Christine; Rosenthal-Allieri, Maria-Alessandra; Agostini, Hélène; Njike, Micheline; Barri-Ova, Nadége; Naveau, Sylvie; Le Marchand-Brustel, Yannick; Veillon, Pascal; Calès, Paul; Perlemuter, Gabriel; Tran, Albert; Gual, Philippe

    2012-01-01

    Background Osteopontin (OPN) plays an important role in the progression of chronic liver diseases. We aimed to quantify the liver, adipose tissue and serum levels of OPN in heavy alcohol drinkers and to compare them with the histological severity of hepatic inflammation and fibrosis. Methodology/Principal Findings OPN was evaluated in the serum of a retrospective and prospective group of 109 and 95 heavy alcohol drinkers, respectively, in the liver of 34 patients from the retrospective group, and in the liver and adipose tissue from an additional group of 38 heavy alcohol drinkers. Serum levels of OPN increased slightly with hepatic inflammation and progressively with the severity of hepatic fibrosis. Hepatic OPN expression correlated with hepatic inflammation, fibrosis, TGFβ expression, neutrophils accumulation and with the serum OPN level. Interestingly, adipose tissue OPN expression also correlated with hepatic fibrosis even after 7 days of alcohol abstinence. The elevated serum OPN level was an independent risk factor in estimating significant (F≥2) fibrosis in a model combining alkaline phosphatase, albumin, hemoglobin, OPN and FibroMeter® levels. OPN had an area under the receiving operator curve that estimated significant fibrosis of 0.89 and 0.88 in the retrospective and prospective groups, respectively. OPN, Hyaluronate (AUROC: 0.88), total Cytokeratin 18 (AUROC: 0.83) and FibroMeter® (AUROC: 0.90) estimated significance to the same extent in the retrospective group. Finally, the serum OPN levels also correlated with hepatic fibrosis and estimated significant (F≥2) fibrosis in 86 patients with chronic hepatitis C, which suggested that its elevated level could be a general response to chronic liver injury. Conclusion/Significance OPN increased in the liver, adipose tissue and serum with liver fibrosis in alcoholic patients. Further, OPN is a new relevant biomarker for significant liver fibrosis. OPN could thus be an important actor in the

  9. Adipocyte telomere length associates negatively with adipocyte size, whereas adipose tissue telomere length associates negatively with the extent of fibrosis in severely obese women.

    PubMed

    el Bouazzaoui, F; Henneman, P; Thijssen, P; Visser, A; Koning, F; Lips, M A; Janssen, I; Pijl, H; Willems van Dijk, K; van Harmelen, V

    2014-05-01

    Telomere length can be considered as a biological marker for cell proliferation and aging. Obesity is associated with adipocyte hypertrophy and proliferation as well as with shorter telomeres in adipose tissue. As adipose tissue is a mixture of different cell types and the cellular composition of adipose tissue changes with obesity, it is unclear what determines telomere length of whole adipose tissue. We aimed to investigate telomere length in whole adipose tissue and isolated adipocytes in relation to adiposity, adipocyte hypertrophy and adipose tissue inflammation and fibrosis. Telomere length was measured by real-time PCR in visceral adipose tissue, and isolated adipocytes of 21 obese women with a waist ranging from 110 to 147 cm and age from 31 to 61 years. Telomere length in adipocytes was shorter than in whole adipose tissue. Telomere length of adipocytes but not whole adipose tissue correlated negatively with waist and adipocyte size, which was still significant after correction for age. Telomere length of whole adipose tissue associated negatively with fibrosis as determined by collagen content. Thus, in extremely obese individuals, adipocyte telomere length is a marker of adiposity, whereas whole adipose tissue telomere length reflects the extent of fibrosis and may indicate adipose tissue dysfunction.

  10. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation

    PubMed Central

    Spencer, Michael; Yao-Borengasser, Aiwei; Unal, Resat; Rasouli, Neda; Gurley, Catherine M.; Zhu, Beibei; Peterson, Charlotte A.

    2010-01-01

    Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose macrophages, the extracellular matrix, and adipocyte-macrophage interactions, gene expression from adipose tissue and the stromal vascular fraction was assessed for markers of inflammation and fibrosis, and macrophages from obese and lean subjects were counted and characterized immunohistochemically. Coculture experiments examined the effects of adipocyte-macrophage interaction. Collagen VI gene expression was associated with insulin sensitivity and CD68 (r = −0.56 and 0.60, P < 0.0001) and with other markers of inflammation and fibrosis. Compared with adipose tissue from lean subjects, adipose tissue from obese subjects contained increased areas of fibrosis, which correlated inversely with insulin sensitivity (r = −0.58, P < 0.02) and positively with macrophage number (r = 0.70, P < 0.01). Although macrophages in crownlike structures (CLS) were more abundant in obese adipose tissue, the majority of macrophages were associated with fibrosis and were not organized in CLS. Macrophages in CLS were predominantly M1, but most other macrophages, particularly those in fibrotic areas, were M2 and also expressed CD150, a marker of M2c macrophages. Coculture of THP-1 macrophages with adipocytes promoted the M2 phenotype, with a lower level of IL-1 expression and a higher ratio of IL-10 to IL-12. Transforming growth factor-β (TGF-β) was more abundant in M2 macrophages and was further increased by coculture with adipocytes. Downstream effectors of TGF-β, such as plasminogen activator inhibitor-1, collagen VI, and phosphorylated Smad, were increased in macrophages and adipocytes. Thus adipose tissue of insulin-resistant humans demonstrated increased fibrosis, M2 macrophage abundance, and TGF-β activity. PMID:20841504

  11. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation.

    PubMed

    Spencer, Michael; Yao-Borengasser, Aiwei; Unal, Resat; Rasouli, Neda; Gurley, Catherine M; Zhu, Beibei; Peterson, Charlotte A; Kern, Philip A

    2010-12-01

    Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose macrophages, the extracellular matrix, and adipocyte-macrophage interactions, gene expression from adipose tissue and the stromal vascular fraction was assessed for markers of inflammation and fibrosis, and macrophages from obese and lean subjects were counted and characterized immunohistochemically. Coculture experiments examined the effects of adipocyte-macrophage interaction. Collagen VI gene expression was associated with insulin sensitivity and CD68 (r = -0.56 and 0.60, P < 0.0001) and with other markers of inflammation and fibrosis. Compared with adipose tissue from lean subjects, adipose tissue from obese subjects contained increased areas of fibrosis, which correlated inversely with insulin sensitivity (r = -0.58, P < 0.02) and positively with macrophage number (r = 0.70, P < 0.01). Although macrophages in crownlike structures (CLS) were more abundant in obese adipose tissue, the majority of macrophages were associated with fibrosis and were not organized in CLS. Macrophages in CLS were predominantly M1, but most other macrophages, particularly those in fibrotic areas, were M2 and also expressed CD150, a marker of M2c macrophages. Coculture of THP-1 macrophages with adipocytes promoted the M2 phenotype, with a lower level of IL-1 expression and a higher ratio of IL-10 to IL-12. Transforming growth factor-β (TGF-β) was more abundant in M2 macrophages and was further increased by coculture with adipocytes. Downstream effectors of TGF-β, such as plasminogen activator inhibitor-1, collagen VI, and phosphorylated Smad, were increased in macrophages and adipocytes. Thus adipose tissue of insulin-resistant humans demonstrated increased fibrosis, M2 macrophage abundance, and TGF-β activity.

  12. miR155 deficiency aggravates high-fat diet-induced adipose tissue fibrosis in male mice.

    PubMed

    Velázquez, Kandy T; Enos, Reilly T; Carson, Meredith S; Cranford, Taryn L; Bader, Jackie E; Sougiannis, Alexander T; Pritchett, Cara; Fan, Daping; Carson, James A; Murphy, E Angela

    2017-09-01

    Noncoding RNAs are emerging as regulators of inflammatory and metabolic processes. There is evidence to suggest that miRNA155 (miR155) may be linked to inflammation and processes associated with adipogenesis. We examined the impact of global miRNA-155 deletion (miR155(-/-)) on the development of high-fat diet (HFD)-induced obesity. We hypothesized that loss of miR155 would decrease adipose tissue inflammation and improve the metabolic profile following HFD feedings. Beginning at 4-5 weeks of age, male miR155(-/-) and wild-type (WT) mice (n = 13-14) on a C57BL/6 background were fed either a HFD or low-fat diet for 20 weeks. Body weight was monitored throughout the study. Baseline and terminal body composition was assessed by DEXA analysis. Adipose tissue mRNA expression (RT-qPCR) of macrophage markers (F4/80, CD11c, and CD206) and inflammatory mediators (MCP-1 and TNF-α) as well as adiponectin were measured along with activation of NFκB-p65 and JNK and PPAR-γ Adipose tissue fibrosis was assessed by picrosirius red staining and western blot analysis of Collagen I, III, and VI. Glucose metabolism and insulin resistance were assessed by Homeostatic Model Assessment - Insulin Resistance (HOMA-IR), and a glucose tolerance test. Compared to WT HFD mice, miR155(-/-) HFD mice displayed similar body weights, yet reduced visceral adipose tissue accumulation. However, miR155(-/-) HFD displayed exacerbated adipose tissue fibrosis and decreased PPAR-γ protein content. The loss of miR155 did not affect adipose tissue inflammation or glucose metabolism. In conclusion, miR155 deletion did not attenuate the development of the obese phenotype, but adipose tissue fibrosis was exacerbated, possibly through changes to adipogenic processes. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  13. Osteopontin Deletion Prevents the Development of Obesity and Hepatic Steatosis via Impaired Adipose Tissue Matrix Remodeling and Reduced Inflammation and Fibrosis in Adipose Tissue and Liver in Mice

    PubMed Central

    Lancha, Andoni; Rodríguez, Amaia; Catalán, Victoria; Becerril, Sara; Sáinz, Neira; Ramírez, Beatriz; Burrell, María A.; Salvador, Javier; Frühbeck, Gema; Gómez-Ambrosi, Javier

    2014-01-01

    Osteopontin (OPN) is a multifunctional extracellular matrix (ECM) protein involved in multiple physiological processes. OPN expression is dramatically increased in visceral adipose tissue in obesity and the lack of OPN protects against the development of insulin resistance and inflammation in mice. We sought to unravel the potential mechanisms involved in the beneficial effects of the absence of OPN. We analyzed the effect of the lack of OPN in the development of obesity and hepatic steatosis induced by a high-fat diet (HFD) using OPN-KO mice. OPN expression was upregulated in epididymal white adipose tissue (EWAT) and liver in wild type (WT) mice with HFD. OPN-KO mice had higher insulin sensitivity, lower body weight and fat mass with reduced adipose tissue ECM remodeling and reduced adipocyte size than WT mice under a HFD. Reduced MMP2 and MMP9 activity was involved in the decreased ECM remodeling. Crown-like structure number in EWAT as well as F4/80-positive cells and Emr1 expression in EWAT and liver increased with HFD, while OPN-deficiency blunted the increase. Moreover, our data show for the first time that OPN-KO under a HFD mice display reduced fibrosis in adipose tissue and liver, as well as reduced oxidative stress in adipose tissue. Gene expression of collagens Col1a1, Col6a1 and Col6a3 in EWAT and liver, as well as the profibrotic cytokine Tgfb1 in EWAT were increased with HFD, while OPN-deficiency prevented this increase. OPN deficiency prevented hepatic steatosis via reduction in the expression of molecules involved in the onset of fat accumulation such as Pparg, Srebf1, Fasn, Mogat1, Dgat2 and Cidec. Furthermore, OPN-KO mice exhibited higher body temperature and improved BAT function. The present data reveal novel mechanisms of OPN in the development of obesity, pointing out the inhibition of OPN as a promising target for the treatment of obesity and fatty liver. PMID:24871103

  14. Osteopontin deletion prevents the development of obesity and hepatic steatosis via impaired adipose tissue matrix remodeling and reduced inflammation and fibrosis in adipose tissue and liver in mice.

    PubMed

    Lancha, Andoni; Rodríguez, Amaia; Catalán, Victoria; Becerril, Sara; Sáinz, Neira; Ramírez, Beatriz; Burrell, María A; Salvador, Javier; Frühbeck, Gema; Gómez-Ambrosi, Javier

    2014-01-01

    Osteopontin (OPN) is a multifunctional extracellular matrix (ECM) protein involved in multiple physiological processes. OPN expression is dramatically increased in visceral adipose tissue in obesity and the lack of OPN protects against the development of insulin resistance and inflammation in mice. We sought to unravel the potential mechanisms involved in the beneficial effects of the absence of OPN. We analyzed the effect of the lack of OPN in the development of obesity and hepatic steatosis induced by a high-fat diet (HFD) using OPN-KO mice. OPN expression was upregulated in epididymal white adipose tissue (EWAT) and liver in wild type (WT) mice with HFD. OPN-KO mice had higher insulin sensitivity, lower body weight and fat mass with reduced adipose tissue ECM remodeling and reduced adipocyte size than WT mice under a HFD. Reduced MMP2 and MMP9 activity was involved in the decreased ECM remodeling. Crown-like structure number in EWAT as well as F4/80-positive cells and Emr1 expression in EWAT and liver increased with HFD, while OPN-deficiency blunted the increase. Moreover, our data show for the first time that OPN-KO under a HFD mice display reduced fibrosis in adipose tissue and liver, as well as reduced oxidative stress in adipose tissue. Gene expression of collagens Col1a1, Col6a1 and Col6a3 in EWAT and liver, as well as the profibrotic cytokine Tgfb1 in EWAT were increased with HFD, while OPN-deficiency prevented this increase. OPN deficiency prevented hepatic steatosis via reduction in the expression of molecules involved in the onset of fat accumulation such as Pparg, Srebf1, Fasn, Mogat1, Dgat2 and Cidec. Furthermore, OPN-KO mice exhibited higher body temperature and improved BAT function. The present data reveal novel mechanisms of OPN in the development of obesity, pointing out the inhibition of OPN as a promising target for the treatment of obesity and fatty liver.

  15. The FAT Score, a Fibrosis Score of Adipose Tissue: Predicting Weight-Loss Outcome After Gastric Bypass.

    PubMed

    Bel Lassen, Pierre; Charlotte, Frederic; Liu, Yuejun; Bedossa, Pierre; Le Naour, Gilles; Tordjman, Joan; Poitou, Christine; Bouillot, Jean-Luc; Genser, Laurent; Zucker, Jean-Daniel; Sokolovska, Nataliya; Aron-Wisnewsky, Judith; Clément, Karine

    2017-07-01

    Bariatric surgery (BS) induces major and sustainable weight loss in many patients. Factors predicting poor weight-loss response (PR) need to be identified to improve patient care. Quantification of subcutaneous adipose tissue (scAT) fibrosis is negatively associated with post-BS weight loss, but whether it could constitute a predictor applicable in clinical routine remains to be demonstrated. To create a semiquantitative score evaluating scAT fibrosis and test its predictive value on weight-loss response after Roux-en-Y gastric bypass (RYGB). We created a fibrosis score of adipose tissue (FAT score) integrating perilobular and pericellular fibrosis. Using this score, we characterized 183 perioperative scAT biopsy specimens from severely obese patients who underwent RYGB (n = 85 from a training cohort; n = 98 from a confirmation cohort). PR to RYGB was defined as <28% of total weight loss at 1 year (lowest tertile). The link between FAT score and PR was tested in univariate and multivariate models. FAT score was directly associated with increasing scAT fibrosis measured by a standard quantification method (P for trend <0.001). FAT score interobserver agreement was good (κ = 0.76). FAT score ≥2 was significantly associated with PR. The association remained significant after adjustment for age, diabetes status, hypertension, percent fat mass, and interleukin-6 level (adjusted odds ratio, 3.6; 95% confidence interval, 1.8 to 7.2; P = 0.003). The FAT score is a new, simple, semiquantitative evaluation of human scAT fibrosis that may help identify patients with a potential limited weight-loss response to RYGB.

  16. A PDGFRα-Mediated Switch toward CD9(high) Adipocyte Progenitors Controls Obesity-Induced Adipose Tissue Fibrosis.

    PubMed

    Marcelin, Geneviève; Ferreira, Adaliene; Liu, Yuejun; Atlan, Michael; Aron-Wisnewsky, Judith; Pelloux, Véronique; Botbol, Yair; Ambrosini, Marc; Fradet, Magali; Rouault, Christine; Hénégar, Corneliu; Hulot, Jean-Sébastien; Poitou, Christine; Torcivia, Adriana; Nail-Barthelemy, Raphael; Bichet, Jean-Christophe; Gautier, Emmanuel L; Clément, Karine

    2017-03-07

    Obesity-induced white adipose tissue (WAT) fibrosis is believed to accelerate WAT dysfunction. However, the cellular origin of WAT fibrosis remains unclear. Here, we show that adipocyte platelet-derived growth factor receptor-α-positive (PDGFRα(+)) progenitors adopt a fibrogenic phenotype in obese mice prone to visceral WAT fibrosis. More specifically, a subset of PDGFRα(+) cells with high CD9 expression (CD9(high)) originates pro-fibrotic cells whereas their CD9(low) counterparts, committed to adipogenesis, are almost completely lost in the fibrotic WAT. PDGFRα pathway activation promotes a phenotypic shift toward PDGFRα(+)CD9(high) fibrogenic cells, driving pathological remodeling and altering WAT function in obesity. These findings translated to human obesity as the frequency of CD9(high) progenitors in omental WAT (oWAT) correlates with oWAT fibrosis level, insulin-resistance severity, and type 2 diabetes. Collectively, our data demonstrate that in addition to representing a WAT adipogenic niche, different PDGFRα(+) cell subsets modulate obesity-induced WAT fibrogenesis and are associated with loss of metabolic fitness. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Hepatic CEACAM1 Over-Expression Protects Against Diet-Induced Fibrosis and Inflammation in White Adipose Tissue

    PubMed Central

    Lester, Sumona G.; Russo, Lucia; Ghanem, Simona S.; Khuder, Saja S.; DeAngelis, Anthony M.; Esakov, Emily L.; Bowman, Thomas A.; Heinrich, Garrett; Al-Share, Qusai Y.; McInerney, Marcia F.; Philbrick, William M.; Najjar, Sonia M.

    2015-01-01

    CEACAM1 promotes insulin extraction, an event that occurs mainly in liver. Phenocopying global Ceacam1 null mice (Cc1–/–), C57/BL6J mice fed a high-fat (HF) diet exhibited reduced hepatic CEACAM1 levels and impaired insulin clearance, followed by hyperinsulinemia, insulin resistance, and visceral obesity. Conversely, forced liver-specific expression of CEACAM1 protected insulin sensitivity and energy expenditure, and limited gain in total fat mass by HF diet in L-CC1 mice. Because CEACAM1 protein is barely detectable in white adipose tissue (WAT), we herein investigated whether hepatic CEACAM1-dependent insulin clearance pathways regulate adipose tissue biology in response to dietary fat. While HF diet caused a similar body weight gain in L-CC1, this effect was delayed and less intense relative to wild-type (WT) mice. Histological examination revealed less expansion of adipocytes in L-CC1 than WT by HF intake. Immunofluorescence analysis demonstrated a more limited recruitment of crown-like structures, and qRT-PCR analysis showed no significant rise in TNFα mRNA levels in response to HF intake in L-CC1 than WT mice. Unlike WT, HF diet did not activate TGF-β in WAT of L-CC1 mice, as assessed by Western analysis of Smad2/3 phosphorylation. Consistently, HF diet caused relatively less collagen deposition in L-CC1 than WT mice, as shown by Trichrome staining. Coupled with reduced lipid redistribution from liver to visceral fat, lower inflammation and fibrosis could contribute to protected energy expenditure against HF diet in L-CC1 mice. The data underscore the important role of hepatic insulin clearance in the regulation of adipose tissue inflammation and fibrosis. PMID:26284027

  18. Vitamin E reduces adipose tissue fibrosis, inflammation, and oxidative stress and improves metabolic profile in obesity.

    PubMed

    Alcalá, Martín; Sánchez-Vera, Isabel; Sevillano, Julio; Herrero, Laura; Serra, Dolors; Ramos, M Pilar; Viana, Marta

    2015-08-01

    To test whether enhancing the capability of adipose tissue to store lipids using antioxidant supplementation may prevent the lipotoxic effects and improve the metabolic profile of long-term obesity. C57BL/6J mice were randomized into three experimental groups for 28 weeks: control group (n = 10) fed chow diet (10% kcal from fat), obese group (O, n = 12) fed high-fat (HF) diet (45% kcal from fat), and obese group fed HF diet and supplemented twice a week with 150 mg of α-tocopherol (vitamin E) by oral gavage (OE, n = 12). HF diet resulted in an obese phenotype with a marked insulin resistance, hypertriglyceridemia, and hepatic steatosis in O mice. Histological analysis of obese visceral adipose tissue (VAT) revealed smaller adipocytes surrounded by a fibrotic extracellular matrix and an increased macrophage infiltration, with the consequent release of proinflammatory cytokines. Vitamin E supplementation decreased oxidative stress and reduced collagen deposition in the VAT of OE mice, allowing a further expansion of the adipocytes and increasing the storage capability. As a result, circulating cytokines were reduced and hepatic steasosis, hypertriglyceridemia, and insulin sensitivity were improved. Our results suggest that oxidative stress is implicated in extracellular matrix remodeling and may play an important role in metabolic regulation. © 2015 The Obesity Society.

  19. Caveolin-1 deficiency leads to increased susceptibility to cell death and fibrosis in white adipose tissue: characterization of a lipodystrophic model.

    PubMed

    Martin, Sally; Fernandez-Rojo, Manuel A; Stanley, Amanda C; Bastiani, Michele; Okano, Satomi; Nixon, Susan J; Thomas, Gethin; Stow, Jennifer L; Parton, Robert G

    2012-01-01

    Caveolin-1 (CAV1) is an important regulator of adipose tissue homeostasis. In the present study we examined the impact of CAV1 deficiency on the properties of mouse adipose tissue both in vivo and in explant cultures during conditions of metabolic stress. In CAV1(-/-) mice fasting caused loss of adipose tissue mass despite a lack of hormone-sensitive lipase (HSL) phosphorylation. In addition, fasting resulted in increased macrophage infiltration, enhanced deposition of collagen, and a reduction in the level of the lipid droplet protein perilipin A (PLIN1a). Explant cultures of CAV1(-/-) adipose tissue also showed a loss of PLIN1a during culture, enhanced secretion of IL-6, increased release of lactate dehydrogenase, and demonstrated increased susceptibility to cell death upon collagenase treatment. Attenuated PKA-mediated signaling to HSL, loss of PLIN1a and increased secretion of IL-6 were also observed in adipose tissue explants of CAV1(+/+) mice with diet-induced obesity. Together these results suggest that while alterations in adipocyte lipid droplet biology support adipose tissue metabolism in the absence of PKA-mediated pro-lipolytic signaling in CAV1(-/-) mice, the tissue is intrinsically unstable resulting in increased susceptibility to cell death, which we suggest underlies the development of fibrosis and inflammation during periods of metabolic stress.

  20. Factors regulating subcutaneous adipose tissue storage, fibrosis, and inflammation may underlie low fatty acid mobilization in insulin-sensitive obese adults.

    PubMed

    Van Pelt, Douglas W; Guth, Lisa M; Wang, Abigail Y; Horowitz, Jeffrey F

    2017-10-01

    Although the rate of fatty acid release from adipose tissue into the systemic circulation is very high in most obese adults, some obese adults maintain relatively low rates of fatty acid release, which helps protect them against the development of systemic insulin resistance. The primary aim of this study was to identify factors in adipose tissue that may underlie low vs. high rates of fatty acid mobilization in a relatively homogeneous cohort of obese adults. We measured systemic fatty acid rate of appearance (FA Ra) via (13)C-palmitate isotope dilution, and we obtained subcutaneous abdominal adipose tissue samples from 30 obese adults (BMI: 38 ± 1 kg/m(2), age: 30 ± 2 yr) after an overnight fast. We then measured insulin sensitivity using a hyperinsulinemic-euglycemic clamp. Confirming our previous work, insulin sensitivity was inversely proportional to FA Ra (R(2) = 0.50; P < 0.001). Immunoblot analysis of subcutaneous adipose tissue samples revealed that, compared with obese adults with high FA Ra, those with low FA Ra had lower markers of lipase activation and higher abundance of glycerol-3-phosphate acyltransferase, which is a primary enzyme for fatty acid esterification. Microarray and pathway analysis provided evidence of lower fibrosis and lower SAPK/JNK pathway activation in obese adults with low FA Ra compared with those with high FA Ra. Our findings suggest that alterations in factors regulating triglyceride storage in adipose tissue, along with lower fibrosis and inflammatory pathway activation, may underlie maintenance of a relatively low FA Ra in obesity, which may help protect against the development of insulin resistance. Copyright © 2017 the American Physiological Society.

  1. Defining dermal adipose tissue.

    PubMed

    Driskell, Ryan R; Jahoda, Colin A B; Chuong, Cheng-Ming; Watt, Fiona M; Horsley, Valerie

    2014-09-01

    Here, we explore the evolution and development of skin-associated adipose tissue with the goal of establishing nomenclature for this tissue. Underlying the reticular dermis, a thick layer of adipocytes exists that encases mature hair follicles in rodents and humans. The association of lipid-filled cells with the skin is found in many invertebrate and vertebrate species. Historically, this layer of adipocytes has been termed subcutaneous adipose, hypodermis and subcutis. Recent data have revealed a common precursor for dermal fibroblasts and intradermal adipocytes during development. Furthermore, the development of adipocytes in the skin is independent from that of subcutaneous adipose tissue development. Finally, the role of adipocytes has been shown to be relevant for epidermal homoeostasis during hair follicle regeneration and wound healing. Thus, we propose a refined nomenclature for the cells and adipose tissue underlying the reticular dermis as intradermal adipocytes and dermal white adipose tissue, respectively.

  2. [Human brown adipose tissue].

    PubMed

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  3. Differences between perivascular adipose tissue surrounding the heart and the internal mammary artery: possible role for the leptin-inflammation-fibrosis-hypoxia axis.

    PubMed

    Drosos, Ioannis; Chalikias, Georgios; Pavlaki, Maria; Kareli, Dimitra; Epitropou, Grigorios; Bougioukas, Georgios; Mikroulis, Dimitrios; Konstantinou, Fotios; Giatromanolaki, Alexandra; Ritis, Konstantinos; Münzel, Thomas; Tziakas, Dimitrios; Konstantinides, Stavros; Schäfer, Katrin

    2016-11-01

    The factors mediating the paracrine effects of perivascular adipose tissue (PVAT) in atherosclerosis are largely unknown. The adipokine leptin has been implicated in the increased cardiovascular risk in obesity and may locally promote neointima formation independently of circulating leptin levels. In patients with established coronary artery disease, we examined the expression of leptin as well as of its possible inducers in 'cardiac' PVAT surrounding the aortic root and coronary arteries (C-PVAT), and compared it to the PVAT surrounding the internal mammary artery (IMA-PVAT), a vessel resistant to atherosclerosis. Tissue specimens collected from male patients undergoing coronary artery bypass surgery were processed for real-time PCR, ELISA, in situ hybridization, and immunohistochemistry analysis. Leptin protein expression was elevated in C-PVAT compared to IMA-PVAT, independent of serum leptin levels. Compared to IMA-PVAT, C-PVAT exhibited more pronounced angiogenesis and inflammation, as indicated by significantly higher numbers of PECAM1-positive vessels and CD68-positive macrophages, and was characterized by a greater extent of fibrosis and hypoxia. Increased expression of hypoxia-inducible factor-1α and Fos-like antigen (FOSL)2, factors known to enhance leptin gene transcription, was observed in C-PVAT. As a proof of concept, exposure of human adipocytes to chemical hypoxia resulted in significantly increased FOSL2 and leptin mRNA levels. A higher degree of local tissue hypoxia and up-regulation of leptin expression in the perivascular adipose tissue, along with increased vascularization, inflammation, and fibrosis, may contribute to the increased atherosclerotic plaque burden in the coronary arteries compared to the IMA.

  4. BAR502, a dual FXR and GPBAR1 agonist, promotes browning of white adipose tissue and reverses liver steatosis and fibrosis

    PubMed Central

    Carino, Adriana; Cipriani, Sabrina; Marchianò, Silvia; Biagioli, Michele; Santorelli, Chiara; Donini, Annibale; Zampella, Angela; Monti, Maria Chiara; Fiorucci, Stefano

    2017-01-01

    Non-alcoholic steatohepatitis (NASH) is a highly prevalent chronic liver disease. Here, we have investigated whether BAR502, a non-bile acid, steroidal dual ligand for FXR and GPBAR1, reverses steato-hepatitis in mice fed a high fat diet (HFD) and fructose. After 9 week, mice on HFD gained ≈30% of b.w (P < 0.01 versus naïve) and were insulin resistant. These overweighting and insulin resistant mice were randomized to receive HFD or HFD in combination with BAR502. After 18 weeks, HFD mice developed NASH like features with severe steato-hepatitis and fibrosis, increased hepatic content of triacylglycerol and cholesterol and expression of SREPB1c, FAS, ApoC2, PPARα and γ, α-SMA, α1 collagen and MCP1 mRNAs. Treatment with BAR502 caused a ≈10% reduction of b.w., increased insulin sensitivity and circulating levels of HDL, while reduced steatosis, inflammatory and fibrosis scores and liver expression of SREPB1c, FAS, PPARγ, CD36 and CYP7A1 mRNA. BAR502 increased the expression of SHP and ABCG5 in the liver and SHP, FGF15 and GLP1 in intestine. BAR502 promoted the browning of epWAT and reduced liver fibrosis induced by CCl4. In summary, BAR502, a dual FXR and GPBAR1 agonist, protects against liver damage caused by HFD by promoting the browning of adipose tissue. PMID:28202906

  5. Adipocytes and adipose tissue.

    PubMed

    Kiess, Wieland; Petzold, Stephanie; Töpfer, Madlen; Garten, Antje; Blüher, Susann; Kapellen, Thomas; Körner, Antje; Kratzsch, Jürgen

    2008-02-01

    An epidemic of obesity is taking place in most societies around the world. Overall obesity substantially increases the risk of subsequent morbidity. In children and adolescents the degree of body fat mass depends upon ethnic background, gender, developmental stage and age. Obesity is characterized by increases in the number or size of fat cells, or a combination of both. It is generally believed that the number of fat cells depends on age of onset and degree of obesity. This chapter provides information on intrauterine growth of fetal adipose tissue, the earliest period of onset of proliferation, and some of the factors that interact to enhance or suppress development. Fetal adipose tissue development is regulated by the complex interaction of transcription factors, nutrients and adipocytokines. Maternal, endocrine, and paracrine factors also influence specific changes in angiogenesis, adipogenesis, and metabolism. During embryogenesis and in fetal life, leptin and adiponectin, two important adipocytokines, are present at high concentrations in the circulation and in tissues. Developmental stages and metabolic processes influenced by specific hormones and paracrine factors have been identified through examination of the offspring of obese and diabetic pregnancies, hormonal manipulation during late pregnancy in animal models, and the use of cell cultures. Collectively, the results of the studies cited herein delineate the basis for imprinting or conditioning of fetal pre-adipocytes at the paracrine/autocrine level, and of fetal adipose tissue development and metabolism.

  6. Adipose Tissue Engineering for Soft Tissue Regeneration

    PubMed Central

    Choi, Jennifer H.; Gimble, Jeffrey M.; Lee, Kyongbum; Marra, Kacey G.; Rubin, J. Peter; Yoo, James J.; Vunjak-Novakovic, Gordana

    2010-01-01

    Current treatment modalities for soft tissue defects caused by various pathologies and trauma include autologous grafting and commercially available fillers. However, these treatment methods present a number of challenges and limitations, such as donor-site morbidity and volume loss over time. As such, improved therapeutic modalities need to be developed. Tissue engineering techniques offer novel solutions to these problems through development of bioactive tissue constructs that can regenerate adipose tissue in both structure and function. Recently, a number of studies have been designed to explore various methods to engineer human adipose tissue. This review will focus on these developments in the area of adipose tissue engineering for soft tissue replacement. The physiology of adipose tissue and current surgical therapies used to replace lost tissue volume, specifically in breast tissue, are introduced, and current biomaterials, cell sources, and tissue culture strategies are discussed. We discuss future areas of study in adipose tissue engineering. PMID:20166810

  7. High resolution systematic digital histological quantification of cardiac fibrosis and adipose tissue in phospholamban p.Arg14del mutation associated cardiomyopathy.

    PubMed

    Gho, Johannes M I H; van Es, René; Stathonikos, Nikolas; Harakalova, Magdalena; te Rijdt, Wouter P; Suurmeijer, Albert J H; van der Heijden, Jeroen F; de Jonge, Nicolaas; Chamuleau, Steven A J; de Weger, Roel A; Asselbergs, Folkert W; Vink, Aryan

    2014-01-01

    Myocardial fibrosis can lead to heart failure and act as a substrate for cardiac arrhythmias. In dilated cardiomyopathy diffuse interstitial reactive fibrosis can be observed, whereas arrhythmogenic cardiomyopathy is characterized by fibrofatty replacement in predominantly the right ventricle. The p.Arg14del mutation in the phospholamban (PLN) gene has been associated with dilated cardiomyopathy and recently also with arrhythmogenic cardiomyopathy. Aim of the present study is to determine the exact pattern of fibrosis and fatty replacement in PLN p.Arg14del mutation positive patients, with a novel method for high resolution systematic digital histological quantification of fibrosis and fatty tissue in cardiac tissue. Transversal mid-ventricular slices (n = 8) from whole hearts were collected from patients with the PLN p.Arg14del mutation (age 48±16 years; 4 (50%) male). An in-house developed open source MATLAB script was used for digital analysis of Masson's trichrome stained slides (http://sourceforge.net/projects/fibroquant/). Slides were divided into trabecular, inner and outer compact myocardium. Per region the percentage of connective tissue, cardiomyocytes and fatty tissue was quantified. In PLN p.Arg14del mutation associated cardiomyopathy, myocardial fibrosis is predominantly present in the left posterolateral wall and to a lesser extent in the right ventricular wall, whereas fatty changes are more pronounced in the right ventricular wall. No difference in distribution pattern of fibrosis and adipocytes was observed between patients with a clinical predominantly dilated and arrhythmogenic cardiomyopathy phenotype. In the future, this novel method for quantifying fibrosis and fatty tissue can be used to assess cardiac fibrosis and fatty tissue in animal models and a broad range of human cardiomyopathies.

  8. Adipose tissue dysfunction in obesity.

    PubMed

    Blüher, M

    2009-06-01

    The incidence of obesity has increased dramatically during recent decades. Obesity will cause a decline in life expectancy for the first time in recent history due to numerous co-morbid disorders. Adipocyte and adipose tissue dysfunction belong to the primary defects in obesity and may link obesity to several health problems including increased risk of insulin resistance, type 2 diabetes, fatty liver disease, hypertension, dyslipidemia, atherosclerosis, dementia, airway disease and some cancers. However, not all obese individuals develop obesity related metabolic or cardiovascular disorders potentially due to a preserved normal adipose tissue architecture and function. The majority of patients with obesity have an impaired adipose tissue function caused by the interaction of genetic and environmental factors which lead to adipocyte hypertrophy, hypoxia, a variety of stresses and inflammatory processes within adipose tissue. Ectopic fat accumulation including visceral obesity may be considered as a consequence of adipose tissue dysfunction, which is further characterized by changes in the cellular composition, increased lipid storage and impaired insulin sensitivity in adipocytes, and secretion of a proinflammatory, atherogenic, and diabetogenic adipokine pattern. This review focuses on the discussion of mechanisms causing or maintaining impaired adipose tissue function in obesity and potentially linking obesity to its associated disorders. A model is proposed how different pathogenic factors and mechanisms may cause dysfunction of adipose tissue.

  9. Adipose tissues and thyroid hormones

    PubMed Central

    Obregon, Maria-Jesus

    2014-01-01

    The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases). The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT) with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. “Brite” or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs) that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2, and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that lead to activation of UCP1 in WAT

  10. Secretory function of adipose tissue.

    PubMed

    Kuryszko, J; Sławuta, P; Sapikowski, G

    2016-01-01

    There are two kinds of adipose tissue in mammals: white adipose tissue - WAT and brown adipose tissue - BAT. The main function of WAT is accumulation of triacylglycerols whereas the function of BAT is heat generation. At present, WAT is also considered to be an endocrine gland that produces bioactive adipokines, which take part in glucose and lipid metabolism. Considering its endocrine function, the adipose tissue is not a homogeneous gland but a group of a few glands which act differently. Studies on the secretory function of WAT began in 1994 after discovery of leptin known as the satiation hormone, which regulates body energy homeostasis and maintainence of body mass. Apart from leptin, the following belong to adipokines: adiponectin, resistin, apelin, visfatin and cytokines: TNF and IL 6. Adiponectin is a polypeptide hormone of antidiabetic, anti-inflammatory and anti-atherogenic activity. It plays a key role in carbohydrate and fat metabolism. Resistin exerts a counter effect compared to adiponectin and its physiological role is to maintain fasting glycaemia. Visfatin stimulates insulin secretion and increases insulin sensitivity and glucose uptake by muscle cells and adipocytes. Apelin probably increases the insulin sensitivity of tissues. TNF evokes insulin resistance by blocking insulin receptors and inhibits insulin secretion. Approximately 30% of circulating IL 6 comes from adipose tissue. It causes insulin resistance by decreasing the expression of insulin receptors, decreases adipogenesis and adiponectin and visfatin secretion, and stimulates hepatic gluconeogenesis. In 2004, Bays introduced the notion of adiposopathy, defined as dysfunction of the adipose tissue, whose main feature is insulin and leptin resistance as well as the production of inflammatory cytokines: TNF and IL 6 and monocyte chemoattractant protein. This means that excess of adipose tissue, especially visceral adipose tissue, leads to the development of a chronic subclinical

  11. Overall Adiposity, Adipose Tissue Distribution, and Endometriosis: A Systematic Review

    PubMed Central

    Backonja, Uba; Buck Louis, Germaine M.; Lauver, Diane R.

    2015-01-01

    Background Endometriosis has been associated with a lean body habitus. However, we do not understand whether endometriosis is also associated with other characteristics of adiposity, including adipose tissue distribution and amount of visceral adipose tissue (VAT; adipose tissue lining inner organs). Having these understandings may provide insights on how endometriosis develops—some of the physiologic actions of adipose tissue differ depending on tissue amount and location, and are related to proposed mechanisms of endometriosis development. Objectives To review the literature regarding overall adiposity, adipose tissue distribution and/or VAT, and endometriosis. Methods We reviewed and synthesized studies indexed in PubMed and/or Web of Science. We included studies that had one or more measures of overall adiposity, adipose tissue distribution, and/or VAT, and women with and without endometriosis for comparison. We summarized the findings and commented on the methods used and potential sources of bias. Results Out of 366 identified publications, 19 (5.2%) were eligible. Two additional publications were identified from reference lists. Current research included measures of overall adiposity (e.g., body figure drawings) or adipose tissue distribution (e.g., waist-to-hip ratio), but not VAT. The weight of evidence indicated that endometriosis was associated with low overall adiposity and with a preponderance of adipose tissue distributed below the waist (peripheral). Discussion Endometriosis may be associated with being lean or having peripherally distributed adipose tissue. Well-designed studies with various sampling frameworks and precise measures of adiposity and endometriosis are needed to confirm associations between adiposity measures and endometriosis, and delineate potential etiologic mechanisms underlying endometriosis. PMID:26938364

  12. Development of thermogenic adipose tissue.

    PubMed

    Loncar, D

    1991-09-01

    Besides having a metabolic and insulatory-supporting function, adipose tissue in endotherms also performs a thermogenic function. Thermogenic adipocytes contain specific UC-mitochondria with uncoupling protein (UCP) and produce heat. Thermogenic adipose tissue has two forms: brown adipose tissue (BAT) and convertible adipose tissue (CAT). Brown adipocytes have UC-mitochondria and express UCP throughout the entire life of small rodents, chiropterans, and insectivores. However, in other endotherms and in humans CAT participates as thermogenic tissue only during early postnatal period. Both BAT and CAT start to develop in utero, although in some animals (hamsters, marsupials) or in some particular areas (thoraco-periaortal and medio-perirenal areas in rats) development of thermogenic adipose tissue starts after birth. Postnatal development of BAT in small endotherms is characterized by quantitative changes (the amount of UC-mitochondria, UCP, and lipids). Postnatal development of CAT causes qualitative changes during which UC-mitochondria in convertible adipocytes are replaced by common, nonthermogenic C-mitochondria; vascularization of adipocytes drops to a low level and, with lipid accumulation, convertible adipocytes appear as lipid-store cells. Postnatal development of CAT can be modulated or reversed by the environmental temperature. The duration of postnatal changes varies between species; i.e., cats, rabbits and sheep, change their thermogenic form of CAT into the lipid-store form within the first postnatal month, while in humans the same process takes up to 15-20 years. In maturity all these large endotherms have CAT in lipid-store form. In light of these results, the question of participation of thermogenic adipose tissue in the regulation of human obesity needs to be answered.

  13. Materials for engineering vascularized adipose tissue.

    PubMed

    Chiu, Yu-Chieh; Cheng, Ming-Huei; Uriel, Shiri; Brey, Eric M

    2011-05-01

    Loss of adipose tissue can occur due to congenital and acquired lipoatrophies, trauma, tumor resection, and chronic disease. Clinically, it is difficult to regenerate or reconstruct adipose tissue. The extensive microvsacular network present in adipose, and the sensitivity of adipocytes to hypoxia, hinder the success of typical tissue transfer procedures. Materials that promote the formation of vascularized adipose tissue may offer alternatives to current clinical treatment options. A number of synthetic and natural biomaterials common in tissue engineering have been investigated as scaffolds for adipose regeneration. While these materials have shown some promise they do not account for the unique extracellular microenvironment of adipose. Adipose derived hydrogels more closely approximate the physical and chemical microenvironment of adipose tissue, promote preadipocyte differentiation and vessel assembly in vitro, and stimulate vascularized adipose formation in vivo. The combination of these materials with techniques that promote rapid and stable vascularization could lead to new techniques for engineering stable, vascularized adipose tissue for clinical application. In this review we discuss materials used for adipose tissue engineering and strategies for vascularization of these scaffolds. Materials that promote formation of vascularized adipose tissue have the potential to serve as alternatives or supplements to existing treatment options, for adipose defects or deficiencies resulting from chronic disease, lipoatrophies, trauma, and tumor resection. Copyright © 2009 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.

  14. [Interests and potentials of adipose tissue in scleroderma].

    PubMed

    Daumas, A; Eraud, J; Hautier, A; Sabatier, F; Magalon, G; Granel, B

    2013-12-01

    Systemic sclerosis is a disorder involving the connective tissue, arterioles and microvessels. It is characterized by skin and visceral fibrosis and ischemic phenomena. Currently, therapy is limited and no antifibrotic treatment has proven its efficacy. Beyond some severe organ lesions (pulmonary arterial hypertension, pulmonary fibrosis, scleroderma renal crisis), which only concern a minority of patients, the skin sclerosis of hands and face and the vasculopathy lead to physical and psychological disability in most patients. Thus, functional improvement of hand motion and face represents a priority for patient therapy. Due to its easy obtention by fat lipopaspirate and adipocytes survival, re injection of adipose tissue is a common therapy used in plastic surgery for its voluming effect. Identification and characterization of the adipose tissue-derived stroma vascular fraction, mainly including mesenchymal stem cells, have revolutionized the science showing that adipose tissue is a valuable source of multipotent stem cells, able to migrate to site of injury and to differentiate according to the receiver tissue's needs. Due to easy harvest by liposuction, its abundance in mesenchymal cells far higher that the bone marrow, and stroma vascular fraction's ability to differentiate and secrete growth angiogenic and antiapoptotic factors, the use of adipose tissue is becoming more attractive in regenerative medicine. We here present the interest of adipose tissue use in the treatment of the hands and face in scleroderma.

  15. Hypoxia and adipose tissue function and dysfunction in obesity.

    PubMed

    Trayhurn, Paul

    2013-01-01

    The rise in the incidence of obesity has led to a major interest in the biology of white adipose tissue. The tissue is a major endocrine and signaling organ, with adipocytes, the characteristic cell type, secreting a multiplicity of protein factors, the adipokines. Increases in the secretion of a number of adipokines occur in obesity, underpinning inflammation in white adipose tissue and the development of obesity-associated diseases. There is substantial evidence, particularly from animal studies, that hypoxia develops in adipose tissue as the tissue mass expands, and the reduction in Po(2) is considered to underlie the inflammatory response. Exposure of white adipocytes to hypoxic conditions in culture induces changes in the expression of >1,000 genes. The secretion of a number of inflammation-related adipokines is upregulated by hypoxia, and there is a switch from oxidative metabolism to anaerobic glycolysis. Glucose utilization is increased in hypoxic adipocytes with corresponding increases in lactate production. Importantly, hypoxia induces insulin resistance in fat cells and leads to the development of adipose tissue fibrosis. Many of the responses of adipocytes to hypoxia are initiated at Po(2) levels above the normal physiological range for adipose tissue. The other cell types within the tissue also respond to hypoxia, with the differentiation of preadipocytes to adipocytes being inhibited and preadipocytes being transformed into leptin-secreting cells. Overall, hypoxia has pervasive effects on the function of adipocytes and appears to be a key factor in adipose tissue dysfunction in obesity.

  16. Quantification of adipose tissue insulin sensitivity.

    PubMed

    Søndergaard, Esben; Jensen, Michael D

    2016-06-01

    In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and weaknesses. Copyright © 2016 American Federation for Medical Research.

  17. Assessment of brown adipose tissue function.

    PubMed

    Virtue, Sam; Vidal-Puig, Antonio

    2013-01-01

    In this review we discuss practical considerations for the assessment of brown adipose tissue in rodent models, focusing on mice. The central aim of the review is to provide a critical appraisal of the utility of specialized techniques for assessing brown adipose tissue function in vivo. We cover several of the most common specialized methods for analysing brown adipose tissue function in vivo, including assessment of maximal thermogenic capacity by indirect calorimetry and the measurement of sympathetic tone to brown adipose tissue. While these techniques are powerful, they are not readily available to all laboratories; therefore we also cover several simple measurements that, particularly in combination, can be used to determine if a mouse model is likely to have alterations in brown adipose tissue function. Such techniques include: pair feeding, analysis of brown adipose tissue lipid content and mRNA and protein markers of brown adipose tissue activation.

  18. Assessment of brown adipose tissue function

    PubMed Central

    Virtue, Sam; Vidal-Puig, Antonio

    2013-01-01

    In this review we discuss practical considerations for the assessment of brown adipose tissue in rodent models, focusing on mice. The central aim of the review is to provide a critical appraisal of the utility of specialized techniques for assessing brown adipose tissue function in vivo. We cover several of the most common specialized methods for analysing brown adipose tissue function in vivo, including assessment of maximal thermogenic capacity by indirect calorimetry and the measurement of sympathetic tone to brown adipose tissue. While these techniques are powerful, they are not readily available to all laboratories; therefore we also cover several simple measurements that, particularly in combination, can be used to determine if a mouse model is likely to have alterations in brown adipose tissue function. Such techniques include: pair feeding, analysis of brown adipose tissue lipid content and mRNA and protein markers of brown adipose tissue activation. PMID:23760815

  19. Brown adipose tissue and thermogenesis.

    PubMed

    Fenzl, Anna; Kiefer, Florian W

    2014-07-01

    The growing understanding of adipose tissue as an important endocrine organ with multiple metabolic functions has directed the attention to the (patho)physiology of distinct fat depots. Brown adipose tissue (BAT), in contrast to bona fide white fat, can dissipate significant amounts of chemical energy through uncoupled respiration and heat production (thermogenesis). This process is mediated by the major thermogenic factor uncoupling protein-1 and can be activated by certain stimuli, such as cold exposure, adrenergic compounds or genetic alterations. White adipose tissue (WAT) depots, however, also possess the capacity to acquire brown fat characteristics in response to thermogenic stimuli. The induction of a BAT-like cellular and molecular program in WAT has recently been termed "browning" or "beiging". Promotion of BAT activity or the browning of WAT is associated with in vivo cold tolerance, increased energy expenditure, and protection against obesity and type 2 diabetes. These preclinical observations have gained additional significance with the recent discovery that active BAT is present in adult humans and can be detected by 18fluor-deoxy-glucose positron emission tomography coupled with computed tomography. As in rodents, human BAT can be activated by cold exposure and is associated with increased energy turnover and lower body fat mass. Despite the tremendous progress in brown fat research in recent years, pharmacological concepts to harness BAT function therapeutically are currently still lacking.

  20. Adipose tissue immunity and cancer.

    PubMed

    Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Frühbeck, Gema

    2013-10-02

    Inflammation and altered immune response are important components of obesity and contribute greatly to the promotion of obesity-related metabolic complications, especially cancer development. Adipose tissue expansion is associated with increased infiltration of various types of immune cells from both the innate and adaptive immune systems. Thus, adipocytes and infiltrating immune cells secrete pro-inflammatory adipokines and cytokines providing a microenvironment favorable for tumor growth. Accumulation of B and T cells in adipose tissue precedes macrophage infiltration causing a chronic low-grade inflammation. Phenotypic switching toward M1 macrophages and Th1 T cells constitutes an important mechanism described in the obese state correlating with increased tumor growth risk. Other possible synergic mechanisms causing a dysfunctional adipose tissue include fatty acid-induced inflammation, oxidative stress, endoplasmic reticulum stress, and hypoxia. Recent investigations have started to unravel the intricacy of the cross-talk between tumor cell/immune cell/adipocyte. In this sense, future therapies should take into account the combination of anti-inflammatory approaches that target the tumor microenvironment with more sophisticated and selective anti-tumoral drugs.

  1. Adipose tissue immunity and cancer

    PubMed Central

    Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Frühbeck, Gema

    2013-01-01

    Inflammation and altered immune response are important components of obesity and contribute greatly to the promotion of obesity-related metabolic complications, especially cancer development. Adipose tissue expansion is associated with increased infiltration of various types of immune cells from both the innate and adaptive immune systems. Thus, adipocytes and infiltrating immune cells secrete pro-inflammatory adipokines and cytokines providing a microenvironment favorable for tumor growth. Accumulation of B and T cells in adipose tissue precedes macrophage infiltration causing a chronic low-grade inflammation. Phenotypic switching toward M1 macrophages and Th1 T cells constitutes an important mechanism described in the obese state correlating with increased tumor growth risk. Other possible synergic mechanisms causing a dysfunctional adipose tissue include fatty acid-induced inflammation, oxidative stress, endoplasmic reticulum stress, and hypoxia. Recent investigations have started to unravel the intricacy of the cross-talk between tumor cell/immune cell/adipocyte. In this sense, future therapies should take into account the combination of anti-inflammatory approaches that target the tumor microenvironment with more sophisticated and selective anti-tumoral drugs. PMID:24106481

  2. Sex differences in adipose tissue

    PubMed Central

    Fuente-Martín, Esther; Argente-Arizón, Pilar; Ros, Purificación; Argente, Jesús; Chowen, Julie A

    2013-01-01

    Obesity and its associated secondary complications are active areas of investigation in search of effective treatments. As a result of this intensified research numerous differences between males and females at all levels of metabolic control have come to the forefront. These differences include not only the amount and distribution of adipose tissue, but also differences in its metabolic capacity and functions between the sexes. Here, we review some of the recent advances in our understanding of these dimorphisms and emphasize the fact that these differences between males and females must be taken into consideration in hopes of obtaining successful treatments for both sexes. PMID:23991358

  3. Targeting adipose tissue in the treatment of obesity-associated diabetes.

    PubMed

    Kusminski, Christine M; Bickel, Perry E; Scherer, Philipp E

    2016-09-01

    Adipose tissue regulates numerous physiological processes, and its dysfunction in obese humans is associated with disrupted metabolic homeostasis, insulin resistance and type 2 diabetes mellitus (T2DM). Although several US-approved treatments for obesity and T2DM exist, these are limited by adverse effects and a lack of effective long-term glucose control. In this Review, we provide an overview of the role of adipose tissue in metabolic homeostasis and assess emerging novel therapeutic strategies targeting adipose tissue, including adipokine-based strategies, promotion of white adipose tissue beiging as well as reduction of inflammation and fibrosis.

  4. Brown adipose tissue and bone

    PubMed Central

    Lidell, M E; Enerbäck, S

    2015-01-01

    Brown adipose tissue (BAT) is capable of transforming chemically stored energy, in the form of triglycerides, into heat. Recent studies have shown that metabolically active BAT is present in a large proportion of adult humans, where its activity correlates with a favorable metabolic status. Hence, the tissue is now regarded as an interesting target for therapies against obesity and associated diseases such as type 2 diabetes, the hypothesis being that an induction of BAT would be beneficial for these disease states. Apart from the association between BAT activity and a healthier metabolic status, later studies have also shown a positive correlation between BAT volume and both bone cross-sectional area and bone mineral density, suggesting that BAT might stimulate bone anabolism. The aim of this review is to give the reader a brief overview of the BAT research field and to summarize and discuss recent findings regarding BAT being a potential player in bone metabolism. PMID:27152171

  5. Targeting adipose tissue via systemic gene therapy.

    PubMed

    O'Neill, S M; Hinkle, C; Chen, S-J; Sandhu, A; Hovhannisyan, R; Stephan, S; Lagor, W R; Ahima, R S; Johnston, J C; Reilly, M P

    2014-07-01

    Adipose tissue has a critical role in energy and metabolic homeostasis, but it is challenging to adapt techniques to modulate adipose function in vivo. Here we develop an in vivo, systemic method of gene transfer specifically targeting adipose tissue using adeno-associated virus (AAV) vectors. We constructed AAV vectors containing cytomegalovirus promoter-regulated reporter genes, intravenously injected adult mice with vectors using multiple AAV serotypes, and determined that AAV2/8 best targeted adipose tissue. Altering vectors to contain adiponectin promoter/enhancer elements and liver-specific microRNA-122 target sites restricted reporter gene expression to adipose tissue. As proof of efficacy, the leptin gene was incorporated into the adipose-targeted expression vector, package into AAV2/8 and administered intravenously to 9- to 10-week-old ob/ob mice. Phenotypic changes were measured over an 8-week period. Leptin mRNA and protein were expressed in adipose and leptin protein was secreted into plasma. Mice responded with reversal of weight gain, decreased hyperinsulinemia and improved glucose tolerance. AAV2/8-mediated systemic delivery of an adipose-targeted expression vector can replace a gene lacking in adipose tissue and correct a mouse model of human disease, demonstrating experimental application and therapeutic potential in disorders of adipose.

  6. Adipose tissue: cell heterogeneity and functional diversity.

    PubMed

    Esteve Ràfols, Montserrat

    2014-02-01

    There are two types of adipose tissue in the body whose function appears to be clearly differentiated. White adipose tissue stores energy reserves as fat, whereas the metabolic function of brown adipose tissue is lipid oxidation to produce heat. A good balance between them is important to maintain energy homeostasis. The concept of white adipose tissue has radically changed in the past decades, and is now considered as an endocrine organ that secretes many factors with autocrine, paracrine, and endocrine functions. In addition, we can no longer consider white adipose tissue as a single tissue, because it shows different metabolic profiles in its different locations, with also different implications. Although the characteristic cell of adipose tissue is the adipocyte, this is not the only cell type present in adipose tissue, neither the most abundant. Other cell types in adipose tissue described include stem cells, preadipocytes, macrophages, neutrophils, lymphocytes, and endothelial cells. The balance between these different cell types and their expression profile is closely related to maintenance of energy homeostasis. Increases in adipocyte size, number and type of lymphocytes, and infiltrated macrophages are closely related to the metabolic syndrome diseases. The study of regulation of proliferation and differentiation of preadipocytes and stem cells, and understanding of the interrelationship between the different cell types will provide new targets for action against these diseases. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  7. Mitochondria and endocrine function of adipose tissue.

    PubMed

    Medina-Gómez, Gema

    2012-12-01

    Excess of adipose tissue is accompanied by an increase in the risk of developing insulin resistance, type 2 diabetes (T2D) and other complications. Nevertheless, total or partial absence of fat or its accumulation in other tissues (lipotoxicity) is also associated to these complications. White adipose tissue (WAT) was traditionally considered a metabolically active storage tissue for lipids while brown adipose tissue (BAT) was considered as a thermogenic adipose tissue with higher oxidative capacity. Nowadays, WAT is also considered an endocrine organ that contributes to energy homeostasis. Experimental evidence tends to link the malfunction of adipose mitochondria with the development of obesity and T2D. This review discusses the importance of mitochondrial function in adipocyte biology and the increased evidences of mitochondria dysfunction in these epidemics. New strategies targeting adipocyte mitochondria from WAT and BAT are also discussed as therapies against obesity and its complications in the near future.

  8. Imaging White Adipose Tissue With Confocal Microscopy

    PubMed Central

    Martinez-Santibañez, Gabriel; Cho, Kae Won; Lumeng, Carey N.

    2014-01-01

    Adipose tissue is composed of a variety of cell types that include mature adipocytes, endothelial cells, fibroblasts, adipocyte progenitors, and a range of inflammatory leukocytes. These cells work in concert to promote nutrient storage in adipose tissue depots and vary widely based on location. In addition, overnutrition and obesity impart significant changes in the architecture of adipose tissue that are strongly associated with metabolic dysfunction. Recent studies have called attention to the importance of adipose tissue microenvironments in regulating adipocyte function and therefore require techniques that preserve cellular interactions and permit detailed analysis of three-dimensional structures in fat. This chapter summarizes our experience with the use of laser scanning confocal microscopy for imaging adipose tissue in rodents. PMID:24480339

  9. Imaging white adipose tissue with confocal microscopy.

    PubMed

    Martinez-Santibañez, Gabriel; Cho, Kae Won; Lumeng, Carey N

    2014-01-01

    Adipose tissue is composed of a variety of cell types that include mature adipocytes, endothelial cells, fibroblasts, adipocyte progenitors, and a range of inflammatory leukocytes. These cells work in concert to promote nutrient storage in adipose tissue depots and vary widely based on location. In addition, overnutrition and obesity impart significant changes in the architecture of adipose tissue that are strongly associated with metabolic dysfunction. Recent studies have called attention to the importance of adipose tissue microenvironments in regulating adipocyte function and therefore require techniques that preserve cellular interactions and permit detailed analysis of three-dimensional structures in fat. This chapter summarizes our experience with the use of laser scanning confocal microscopy for imaging adipose tissue in rodents. © 2014 Elsevier Inc. All rights reserved.

  10. Renin dynamics in adipose tissue: adipose tissue control of local renin concentrations.

    PubMed

    Fowler, Jason D; Krueth, Stacy B; Bernlohr, David A; Katz, Stephen A

    2009-02-01

    The renin-angiotensin system (RAS) has been implicated in a variety of adipose tissue functions, including tissue growth, differentiation, metabolism, and inflammation. Although expression of all components necessary for a locally derived adipose tissue RAS has been demonstrated within adipose tissue, independence of local adipose RAS component concentrations from corresponding plasma RAS fluctuations has not been addressed. To analyze this, we varied in vivo rat plasma concentrations of two RAS components, renin and angiotensinogen (AGT), to determine the influence of their plasma concentrations on adipose and cardiac tissue levels in both perfused (plasma removed) and nonperfused samples. Variation of plasma RAS components was accomplished by four treatment groups: normal, DOCA salt, bilateral nephrectomy, and losartan. Adipose and cardiac tissue AGT concentrations correlated positively with plasma values. Perfusion of adipose tissue decreased AGT concentrations by 11.1%, indicating that adipose tissue AGT was in equilibrium with plasma. Cardiac tissue renin levels positively correlated with plasma renin concentration for all treatments. In contrast, adipose tissue renin levels did not correlate with plasma renin, with the exception of extremely high plasma renin concentrations achieved in the losartan-treated group. These results suggest that adipose tissue may control its own local renin concentration independently of plasma renin as a potential mechanism for maintaining a functional local adipose RAS.

  11. Cellularity of adipose tissue in fetal pig.

    PubMed

    Desnoyers, F; Pascal, G; Etienne, M; Vodovar, N

    1980-03-01

    Adipose tissue cellularity was studied in the 85-day-old Large-White pig fetus. The aim of this work was to count the adipose cells of forming tissue in an animal species which could be a possible model for studying adipose tissue in humans. Using a morphometric method with electron microscopy, mean triglyceride volume per cell was determined independently of mean cell volume. This method is suitable for counting adipose cells in the early stage of differentiation whatever their size and lipid inclusion volume. Site-by-site dissection of adipose tissue was not feasible in the 85-day old fetus and adipose cell number was computed by dividing total carcass triglyceride volume by mean triglyceride volume per cell. The carcass triglyceride seemed to originate only from adipose cells. The mean total carcass triglyceride volume per fetus (1.84 g) was low but, owing to the low mean triglyceride volume per cell (180.28 microns3), the adipose cell number (11.15 X 10(9)) was relatively important, as it represented about 27% of the extramuscular adipose cell number in the Large-White adult pig (41 X 10(9)).

  12. Biochemistry of adipose tissue: an endocrine organ.

    PubMed

    Coelho, Marisa; Oliveira, Teresa; Fernandes, Ruben

    2013-04-20

    Adipose tissue is no longer considered to be an inert tissue that stores fat. This tissue is capable of expanding to accommodate increased lipids through hypertrophy of existing adipocytes and by initiating differentiation of pre-adipocytes. Adipose tissue metabolism exerts an impact on whole-body metabolism. As an endocrine organ, adipose tissue is responsible for the synthesis and secretion of several hormones. These are active in a range of processes, such as control of nutritional intake (leptin, angiotensin), control of sensitivity to insulin and inflammatory process mediators (tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), resistin, visfatin, adiponectin, among others) and pathways (plasminogen activator inhibitor 1 (PAI-1) and acylation stimulating protein (ASP) for example). This paper reviews some of the biochemical and metabolic aspects of adipose tissue and its relationship to inflammatory disease and insulin resistance.

  13. Biochemistry of adipose tissue: an endocrine organ

    PubMed Central

    Coelho, Marisa; Oliveira, Teresa

    2013-01-01

    Adipose tissue is no longer considered to be an inert tissue that stores fat. This tissue is capable of expanding to accommodate increased lipids through hypertrophy of existing adipocytes and by initiating differentiation of pre-adipocytes. Adipose tissue metabolism exerts an impact on whole-body metabolism. As an endocrine organ, adipose tissue is responsible for the synthesis and secretion of several hormones. These are active in a range of processes, such as control of nutritional intake (leptin, angiotensin), control of sensitivity to insulin and inflammatory process mediators (tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), resistin, visfatin, adiponectin, among others) and pathways (plasminogen activator inhibitor 1 (PAI-1) and acylation stimulating protein (ASP) for example). This paper reviews some of the biochemical and metabolic aspects of adipose tissue and its relationship to inflammatory disease and insulin resistance. PMID:23671428

  14. Cardiac adipose tissue and atrial fibrillation: the perils of adiposity.

    PubMed

    Hatem, Stéphane N; Redheuil, Alban; Gandjbakhch, Estelle

    2016-04-01

    The amount of adipose tissue that accumulates around the atria is associated with the risk, persistence, and severity of atrial fibrillation (AF). A strong body of clinical and experimental evidence indicates that this relationship is not an epiphenomenon but is the result of complex crosstalk between the adipose tissue and the neighbouring atrial myocardium. For instance, epicardial adipose tissue is a major source of adipokines, inflammatory cytokines, or reactive oxidative species, which can contribute to the fibrotic remodelling of the atrial myocardium. Fibro-fatty infiltrations of the subepicardium could also contribute to the functional disorganization of the atrial myocardium. The observation that obesity is associated with distinct structural and functional remodelling of the atria has opened new perspectives of treating AF substrate with aggressive risk factor management. Advances in cardiac imaging should lead to an improved ability to visualize myocardial fat depositions and to localize AF substrates.

  15. Brown adipose tissue, thermogenesis, angiogenesis: pathophysiological aspects.

    PubMed

    Honek, Jennifer; Lim, Sharon; Fischer, Carina; Iwamoto, Hideki; Seki, Takahiro; Cao, Yihai

    2014-07-01

    The number of obese and overweight individuals is globally rising, and obesity-associated disorders such as type 2 diabetes, cardiovascular disease and certain types of cancer are among the most common causes of death. While white adipose tissue is the key player in the storage of energy, active brown adipose tissue expends energy due to its thermogenic capacity. Expanding and activating brown adipose tissue using pharmacological approaches therefore might offer an attractive possibility for therapeutic intervention to counteract obesity and its consequences for metabolic health.

  16. Adipose tissue as an endocrine organ.

    PubMed

    McGown, Christine; Birerdinc, Aybike; Younossi, Zobair M

    2014-02-01

    Obesity is one of the most important health challenges faced by developed countries and is increasingly affecting adolescents and children. Obesity is also a considerable risk factor for the development of numerous other chronic diseases, such as insulin resistance, type 2 diabetes, heart disease and nonalcoholic fatty liver disease. The epidemic proportions of obesity and its numerous comorbidities are bringing into focus the highly complex and metabolically active adipose tissue. Adipose tissue is increasingly being considered as a functional endocrine organ. This article discusses the endocrine effects of adipose tissue during obesity and the systemic impact of this signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. New Physiological Aspects of Brown Adipose Tissue.

    PubMed

    Trayhurn, Paul; Arch, Jonathan R S

    2014-12-01

    Brown adipose tissue is specialised for the generation of heat by non-shivering mechanisms. In rodents, the tissue plays a role in energy balance and the development of obesity, as well as in thermoregulation. Studies using fluorodeoxyglucose positron emission tomography (FDG-PET), together with the identification of uncoupling protein-1, have provided definitive evidence that brown adipose tissue is present in adult humans. Brown fat activity is stimulated by cold exposure, declines with age and is inversely proportional to BMI. This has led to renewed interest in the tissue as a therapeutic target for the treatment of obesity. Brown adipose tissue also plays a role in glucose disposal and triglyceride clearance, implicating it in the metabolic syndrome. A potential mechanism for increasing thermogenesis is by the 'browning' of white adipose depots through the recruitment of the recently identified third type of adipocyte - the brite (or beige) fat cell.

  18. Brown adipose tissue and its therapeutic potential.

    PubMed

    Lidell, M E; Betz, M J; Enerbäck, S

    2014-10-01

    Obesity and related diseases are a major cause of human morbidity and mortality and constitute a substantial economic burden for society. Effective treatment regimens are scarce, and new therapeutic targets are needed. Brown adipose tissue, an energy-expending tissue that produces heat, represents a potential therapeutic target. Its presence is associated with low body mass index, low total adipose tissue content and a lower risk of type 2 diabetes mellitus. Knowledge about the development and function of thermogenic adipocytes in brown adipose tissue has increased substantially in the last decade. Important transcriptional regulators have been identified, and hormones able to modulate the thermogenic capacity of the tissue have been recognized. Intriguingly, it is now clear that humans, like rodents, possess two types of thermogenic adipocytes: the classical brown adipocytes found in the interscapular brown adipose organ and the so-called beige adipocytes primarily found in subcutaneous white adipose tissue after adrenergic stimulation. The presence of two distinct types of energy-expending adipocytes in humans is conceptually important because these cells might be stimulated and recruited by different signals, raising the possibility that they might be separate potential targets for therapeutic intervention. In this review, we will discuss important features of the energy-expending brown adipose tissue and highlight those that may serve as potential targets for pharmacological intervention aimed at expanding the tissue and/or enhancing its function to counteract obesity.

  19. White adipose tissue: getting nervous.

    PubMed

    Fliers, E; Kreier, F; Voshol, P J; Havekes, L M; Sauerwein, H P; Kalsbeek, A; Buijs, R M; Romijn, J A

    2003-11-01

    Neuroendocrine research has altered the traditional perspective of white adipose tissue (WAT) as a passive store of triglycerides. In addition to fatty acids, WAT produces many hormones and can therefore be designated as a traditional endocrine gland actively participating in the integrative physiology of fuel and energy metabolism, eating behaviour and the regulation of hormone secretion and sensitivity. WAT is controlled by humoral factors, para- and intracrine factors and by neural regulation. Sympathetic nerve fibres innervate WAT and stimulate lipolysis, leading to the release of glycerol and free fatty acids. In addition, recent research in rats has clearly shown a functional parasympathetic innervation of WAT. There appears to be a distinct somatotopy within the parasympathetic nuclei: separate sets of autonomic neurones in the brain stem innervate either the visceral or the subcutaneous fat compartment. We therefore propose that the central nervous system (CNS) plays a major role in the hitherto unexplained regulation of body fat distribution. Parasympathectomy induces insulin resistance with respect to glucose and fatty acid uptake in the innervated fat depot and has selective effects on local hormone synthesis. Thus, the CNS is involved not only in the regulation of hormone production by WAT, but also in its hormone sensitivity. The developments in this research area are likely to increase our insights in the pathogenesis of metabolic disorders such as hypertriglyceridemia, diabetes mellitus type 2 and lipodystrophy syndromes.

  20. Ageing, adipose tissue, fatty acids and inflammation.

    PubMed

    Pararasa, Chathyan; Bailey, Clifford J; Griffiths, Helen R

    2015-04-01

    A common feature of ageing is the alteration in tissue distribution and composition, with a shift in fat away from lower body and subcutaneous depots to visceral and ectopic sites. Redistribution of adipose tissue towards an ectopic site can have dramatic effects on metabolic function. In skeletal muscle, increased ectopic adiposity is linked to insulin resistance through lipid mediators such as ceramide or DAG, inhibiting the insulin receptor signalling pathway. Additionally, the risk of developing cardiovascular disease is increased with elevated visceral adipose distribution. In ageing, adipose tissue becomes dysfunctional, with the pathway of differentiation of preadipocytes to mature adipocytes becoming impaired; this results in dysfunctional adipocytes less able to store fat and subsequent fat redistribution to ectopic sites. Low grade systemic inflammation is commonly observed in ageing, and may drive the adipose tissue dysfunction, as proinflammatory cytokines are capable of inhibiting adipocyte differentiation. Beyond increased ectopic adiposity, the effect of impaired adipose tissue function is an elevation in systemic free fatty acids (FFA), a common feature of many metabolic disorders. Saturated fatty acids can be regarded as the most detrimental of FFA, being capable of inducing insulin resistance and inflammation through lipid mediators such as ceramide, which can increase risk of developing atherosclerosis. Elevated FFA, in particular saturated fatty acids, maybe a driving factor for both the increased insulin resistance, cardiovascular disease risk and inflammation in older adults.

  1. Tissue remodelling in pulmonary fibrosis.

    PubMed

    Knudsen, Lars; Ruppert, Clemens; Ochs, Matthias

    2017-03-01

    Many lung diseases result in fibrotic remodelling. Fibrotic lung disorders can be divided into diseases with known and unknown aetiology. Among those with unknown aetiology, idiopathic pulmonary fibrosis (IPF) is a common diagnosis. Because of its progressive character leading to a rapid decline in lung function, it is a fatal disease with poor prognosis and limited therapeutic options. Thus, IPF has motivated many studies in the last few decades in order to increase our mechanistic understanding of the pathogenesis of the disease. The current concept suggests an ongoing injury of the alveolar epithelium, an impaired regeneration capacity, alveolar collapse and, finally, a fibroproliferative response. The origin of lung injury remains elusive but a diversity of factors, which will be discussed in this article, has been shown to be associated with IPF. Alveolar epithelial type II (AE2) cells play a key role in lung fibrosis and their crucial role for epithelial regeneration, stabilisation of alveoli and interaction with fibroblasts, all known to be responsible for collagen deposition, will be illustrated. Whereas mechanisms of collagen deposition and fibroproliferation are the focus of many studies in the field, the awareness of other mechanisms in this disease is currently limited to biochemical and imaging studies including quantitative assessments of lung structure in IPF and animal models assigning alveolar collapse and collapse induration crucial roles for the degradation of the lung resulting in de-aeration and loss of surface area. Dysfunctional AE2 cells, instable alveoli and mechanical stress trigger remodelling that consists of collapsed alveoli absorbed by fibrotic tissue (i.e., collapse induration).

  2. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues

    PubMed Central

    Hausman, Gary J; Basu, Urmila; Du, Min; Fernyhough-Culver, Melinda; Dodson, Michael V

    2014-01-01

    Human studies of the influence of aging and other factors on intermuscular fat (INTMF) were reviewed. Intermuscular fat increased with weight loss, weight gain, or with no weight change with age in humans. An increase in INTMF represents a similar threat to type 2 diabetes and insulin resistance as does visceral adipose tissue (VAT). Studies of INTMF in animals covered topics such as quantitative deposition and genetic relationships with other fat depots. The relationship between leanness and higher proportions of INTMF fat in pigs was not observed in human studies and was not corroborated by other pig studies. In humans, changes in muscle mass, strength and quality are associated with INTMF accretion with aging. Gene expression profiling and intrinsic methylation differences in pigs demonstrated that INTMF and VAT are primarily associated with inflammatory and immune processes. It seems that in the pig and humans, INTMF and VAT share a similar pattern of distribution and a similar association of components dictating insulin sensitivity. Studies on intramuscular (IM) adipocyte development in meat animals were reviewed. Gene expression analysis and genetic analysis have identified candidate genes involved in IM adipocyte development. Intramuscular (IM) adipocyte development in human muscle is only seen during aging and some pathological circumstance. Several genetic links between human and meat animal adipogenesis have been identified. In pigs, the Lipin1 and Lipin 2 gene have strong genetic effects on IM accumulation. Lipin1 deficiency results in immature adipocyte development in human lipodystrophy. In humans, overexpression of Perilipin 2 (PLIN2) facilitates intramyocellular lipid accretion whereas in pigs PLIN2 gene expression is associated with IM deposition. Lipins and perilipins may influence intramuscular lipid regardless of species. PMID:26317048

  3. Regulation of adipose tissue lipolysis revisited.

    PubMed

    Bézaire, Véronic; Langin, Dominique

    2009-11-01

    Human obesity and its complications are an increasing burden in developed and underdeveloped countries. Adipose tissue mass and the mechanisms that control it are central to elucidating the aetiology of obesity and insulin resistance. Over the past 15 years tremendous progress has been made in several avenues relating to adipose tissue. Knowledge of the lipolytic machinery has grown with the identification of new lipases, cofactors and interactions between proteins and lipids that are central to the regulation of basal and stimulated lipolysis. The dated idea of an inert lipid droplet has been appropriately revamped to that of a dynamic and highly-structured organelle that in itself offers regulatory control over lipolysis. The present review provides an overview of the numerous partners and pathways involved in adipose tissue lipolysis and their interaction under various metabolic states. Integration of these findings into whole adipose tissue metabolism and its systemic effects is also presented in the context of inflammation and insulin resistance.

  4. Flow Cytometry Analyses of Adipose Tissue Macrophages

    PubMed Central

    Cho, Kae Won; Morris, David L.; Lumeng, Carey N.

    2014-01-01

    Within adipose tissue, multiple leukocyte interactions contribute to metabolic homeostasis in health as well as to the pathogenesis of insulin resistance with obesity. Adipose tissue macrophages (ATMs) are the predominant leukocyte population in fat and contribute to obesity-induced inflammation. Characterization of ATMs and other leukocytes in the stromal vascular fraction from fat has benefited from the use of flow cytometry and flow-assisted cell sorting techniques. These methods permit the immunophenotyping, quantification, and purification of these unique cell populations from multiple adipose tissue depots in rodents and humans. Proper isolation, quantification, and characterization of ATM phenotypes are critical for understanding their role in adipose tissue function and obesity-induced metabolic diseases. Here, we present the flow cytometry protocols for phenotyping ATMs in lean and obese mice employed by our laboratory. PMID:24480353

  5. [Kidney, adipose tissue, adipocytes--what's new?].

    PubMed

    Lafontan, Max

    2011-04-01

    Increased evidence suggests that obesity-related glomerulopathy and chronic kidney diseases should be identified as isolated complications of obesity. It is questioned if the numerous adipose tissue productions could play a role in the initiation/maintenance of such kidney diseases. This review will provide a sum-up of recent advances on fat cell metabolism and adipose tissue physiology. The adipose tissue behaves as an endocrine organ with multiple activities. It is secreting hormones (leptin, adiponectin, apelin) and numerous factors with autocrine, paracrine and systemic effects. These secretions are coming from adipocytes themselves or from cells present in the stroma-vascular fraction of the adipose tissue. When expanding, the adipose tissue of the obese is infiltrated by immune cells such as macrophages and lymphocytes; the role of which is not fully clarified. An attempt will be done to delineate if alterations of lipid storage/fatty acid release or of the secretion potencies of adipose tissue could contribute to kidney lipotoxicity and other chronic kidney diseases described in the obese. Copyright © 2010 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  6. Influencing Factors of Thermogenic Adipose Tissue Activity

    PubMed Central

    Zhang, Guoqing; Sun, Qinghua; Liu, Cuiqing

    2016-01-01

    Obesity is an escalating public health challenge and contributes tremendously to the disease burden globally. New therapeutic strategies are required to alleviate the health impact of obesity-related metabolic dysfunction. Brown adipose tissue (BAT) is specialized for dissipating chemical energy for thermogenesis as a defense against cold environment. Intriguingly, the brown-fat like adipocytes that dispersed throughout white adipose tissue (WAT) in rodents and humans, called “brite” or “beige” adipocytes, share similar thermogenic characteristics to brown adipocytes. Recently, researchers have focused on cognition of these thermogenic adipose tissues. Some factors have been identified to regulate the development and function of thermogenic adipose tissues. Cold exposure, pharmacological conditions, and lifestyle can enhance non-shivering thermogenesis and metabolism via some mechanisms. However, environmental pollutants, such as ambient fine particulates and ozone, may impair the function of these thermogenic adipose tissues and thereby induce metabolic dysfunction. In this review, the origin, function and influencing factors of thermogenic adipose tissues were summarized and it will provide insights into identifying new therapeutic strategies for the treatment of obesity and obesity-related diseases. PMID:26903879

  7. A peptide probe for targeted brown adipose tissue imaging.

    PubMed

    Azhdarinia, Ali; Daquinag, Alexes C; Tseng, Chieh; Ghosh, Sukhen C; Ghosh, Pradip; Amaya-Manzanares, Felipe; Sevick-Muraca, Eva; Kolonin, Mikhail G

    2013-01-01

    The presence of brown adipose tissue responsible for thermogenic energy dissipation has been revealed in adult humans and has high clinical importance. Owing to limitations of current methods for brown adipose tissue detection, analysing the abundance and localization of brown adipose tissue in the body has remained challenging. Here we screen a combinatorial peptide library in mice and characterize a peptide (with the sequence CPATAERPC) that selectively binds to the vascular endothelium of brown adipose tissue, but not of intraperitoneal white adipose tissue. We show that in addition to brown adipose tissue, this peptide probe also recognizes the vasculature of brown adipose tissue-like depots of subcutaneous white adipose tissue. Our results indicate that the CPATAERPC peptide localizes to brown adipose tissue even in the absence of sympathetic nervous system stimulation. Finally, we demonstrate that this probe can be used to identify brown adipose tissue depots in mice by whole-body near-infrared fluorescence imaging.

  8. [Regeneration and fibrosis of corneal tissues].

    PubMed

    Simirskiĭ, V N

    2014-01-01

    In this review, the features of the regeneration of corneal tissue and its disorders leading to the development of fibrosis are considered. The data on the presence of stem (clonogenic) cell pool in the corneal tissues (epithelium, endothelium, stroma) are given; these cells can serve as a source for regeneration of the tissues at injury or various diseases. The main steps of regeneration of corneal tissues and their disorders that lead to outstripping proliferation of myofibroblasts and secretion of extracellular matrix in the wound area and eventually cause the formation of connective tissue scar and corneal opacity are considered. Particular attention is given to the successes of translational medicine in the treatment of corneal tissue fibrosis. The methods of cell therapy aimed at the restoration of stem cell pool of corneal tissues are the most promising. Gene therapy provides more opportunities; one of its main objectives is the suppression of the myofibroblast proliferation responsible for the development of fibrosis.

  9. Brown adipose tissue growth and development.

    PubMed

    Symonds, Michael E

    2013-01-01

    Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP) 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle.

  10. Brown Adipose Tissue Growth and Development

    PubMed Central

    Symonds, Michael E.

    2013-01-01

    Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP) 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle. PMID:24278771

  11. [New anatomo clinic approach of adipose tissue].

    PubMed

    Dardour, J-C

    2012-10-01

    For a long time, adipose tissue was supposed to be inert with only a function of long-term energetic reserve. The obesity, abnormal accumulation of fat, for its part has always been considered the sole result of hyperphagia, itself secondary to a lack of willingness of the subject. This article focuses on the multiple aspects and functions of the different fatty tissues. One must distinguish brown adipose tissue (AT) and the white AT. This includes visceral fat and subcutaneous AT, which itself is divided into two sectors, a genetic fat and grease that we called ecological. The brown adipose tissue has essentially a function of thermogenesis. Visceral adipose tissue (VAT), from a certain volume, behaves as true endocrine gland acting on glycemic and lipid function. In addition to its role of energy reserve, the sub cutaneous AT has a mechanical role of shock absorber and fabric slip. We will emphasize finally the genetic aspect still too misunderstood and underestimated that regulates the different functions of the adipose tissue.

  12. Adipose Tissue Dysfunction: Clinical Relevance and Diagnostic Possibilities.

    PubMed

    Schrover, I M; Spiering, W; Leiner, T; Visseren, F L J

    2016-04-01

    Adipose tissue dysfunction is defined as an imbalance between pro- and anti-inflammatory adipokines, causing insulin resistance, systemic low-grade inflammation, hypercoagulability, and elevated blood pressure. These can lead to cardiovascular disease and diabetes mellitus type 2. Although quantity of adipose tissue is an important determinant of adipose tissue dysfunction, it can be diagnosed in both obese and lean individuals. This implies that not only quantity of adipose tissue should be used as a measure for adipose tissue dysfunction. Instead, focus should be on measuring quality of adipose tissue, which can be done with diagnostic modalities ranging from anthropometric measurements to tissue biopsies and advanced imaging techniques. In daily clinical practice, high quantity of visceral adipose tissue (reflected in high waist circumference or adipose tissue imaging), insulin resistance, or presence of the metabolic syndrome are easy and low-cost diagnostic modalities to evaluate presence or absence of adipose tissue dysfunction.

  13. Insulin effects in muscle and adipose tissue.

    PubMed

    Dimitriadis, George; Mitrou, Panayota; Lambadiari, Vaia; Maratou, Eirini; Raptis, Sotirios A

    2011-08-01

    The major effects of insulin on muscle and adipose tissue are: (1) Carbohydrate metabolism: (a) it increases the rate of glucose transport across the cell membrane, (b) it increases the rate of glycolysis by increasing hexokinase and 6-phosphofructokinase activity, (c) it stimulates the rate of glycogen synthesis and decreases the rate of glycogen breakdown. (2) Lipid metabolism: (a) it decreases the rate of lipolysis in adipose tissue and hence lowers the plasma fatty acid level, (b) it stimulates fatty acid and triacylglycerol synthesis in tissues, (c) it increases the uptake of triglycerides from the blood into adipose tissue and muscle, (d) it decreases the rate of fatty acid oxidation in muscle and liver. (3) Protein metabolism: (a) it increases the rate of transport of some amino acids into tissues, (b) it increases the rate of protein synthesis in muscle, adipose tissue, liver, and other tissues, (c) it decreases the rate of protein degradation in muscle (and perhaps other tissues). These insulin effects serve to encourage the synthesis of carbohydrate, fat and protein, therefore, insulin can be considered to be an anabolic hormone. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Integrated control of brown adipose tissue.

    PubMed

    Marzetti, Emanuele; D'Angelo, Emanuela; Savera, Giulia; Leeuwenburgh, Christiaan; Calvani, Riccardo

    2016-03-01

    Brown adipose tissue (BAT) has evolved as a unique thermogenic organ that allows placental mammals to withstand cold environmental temperatures through the dissipation of metabolic energy in the form of heat. Although traditionally believed to be lost shortly after birth, metabolically active BAT depots have recently been identified in a large percentage of human adults. Besides classical brown cells, a distinct type of thermogenic adipocytes named beige or brite (brown in white) cells are recruited in white adipose tissue depots under specific stimuli. Given the well-known energy-dissipating properties of thermogenic adipose tissue and its function of metabolic sink for glucose and lipids, this tissue has attracted considerable research interest as a possible target for treating obesity and metabolic disease. The complex network of interorgan connections that regulate BAT and brite tissue mass and function is a major hurdle for the development of therapeutic strategies against metabolic disorders. This review provides an overview of the current knowledge on the regulation of BAT and brite adipose tissue function. The possibility of targeting these tissues to treat obesity and other metabolic disorders is also discussed.

  15. Adipose Tissue - Adequate, Accessible Regenerative Material

    PubMed Central

    Kolaparthy, Lakshmi Kanth.; Sanivarapu, Sahitya; Moogla, Srinivas; Kutcham, Rupa Sruthi

    2015-01-01

    The potential use of stem cell based therapies for the repair and regeneration of various tissues offers a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. The use of either embryonic stem cells (ESCs) or induced pluripotent stem cells in clinical situations is limited due to cell regulations and to technical and ethical considerations involved in genetic manipulation of human ESCs, even though these cells are highly beneficial. Mesenchymal stem cells seen to be an ideal population of stem cells in particular, Adipose derived stem cells (ASCs) which can be obtained in large number and easily harvested from adipose tissue. It is ubiquitously available and has several advantages compared to other sources as easily accessible in large quantities with minimal invasive harvesting procedure, and isolation of adipose derived mesenchymal stem cells yield a high amount of stem cells which is essential for stem cell based therapies and tissue engineering. Recently, periodontal tissue regeneration using ASCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because various secreted growth factors from ASCs might not only promote the regeneration of periodontal tissues but also encourage neovascularization of the damaged tissues. This review summarizes the sources, isolation and characteristics of adipose derived stem cells and its potential role in periodontal regeneration is discussed. PMID:26634060

  16. Integrated control of brown adipose tissue

    PubMed Central

    Marzetti, Emanuele; D’Angelo, Emanuela; Savera, Giulia; Leeuwenburgh, Christiaan; Calvani, Riccardo

    2016-01-01

    Brown adipose tissue (BAT) has evolved as a unique thermogenic organ that allows placental mammals to withstand cold environmental temperatures through the dissipation of metabolic energy in the form of heat. Although traditionally believed to be lost shortly after birth, metabolically active BAT depots have recently been identified in a large percentage of human adults. Besides classical brown cells, a distinct type of thermogenic adipocytes named beige or brite (brown in white) cells are recruited in white adipose tissue depots under specific stimuli. Given the well-known energy-dissipating properties of thermogenic adipose tissue and its function of metabolic sink for glucose and lipids, this tissue has attracted considerable research interest as a possible target for treating obesity and metabolic disease. The complex network of interorgan connections that regulate BAT and brite tissue mass and function is a major hurdle for the development of therapeutic strategies against metabolic disorders. This review provides an overview of the current knowledge on the regulation of BAT and brite adipose tissue function. The possibility of targeting these tissues to treat obesity and other metabolic disorders is also discussed. PMID:27524955

  17. Circadian Rhythms in Adipose Tissue Physiology.

    PubMed

    Kiehn, Jana-Thabea; Tsang, Anthony H; Heyde, Isabel; Leinweber, Brinja; Kolbe, Isa; Leliavski, Alexei; Oster, Henrik

    2017-03-16

    The different types of adipose tissues fulfill a wide range of biological functions-from energy storage to hormone secretion and thermogenesis-many of which show pronounced variations over the course of the day. Such 24-h rhythms in physiology and behavior are coordinated by endogenous circadian clocks found in all tissues and cells, including adipocytes. At the molecular level, these clocks are based on interlocked transcriptional-translational feedback loops comprised of a set of clock genes/proteins. Tissue-specific clock-controlled transcriptional programs translate time-of-day information into physiologically relevant signals. In adipose tissues, clock gene control has been documented for adipocyte proliferation and differentiation, lipid metabolism as well as endocrine function and other adipose oscillations are under control of systemic signals tied to endocrine, neuronal, or behavioral rhythms. Circadian rhythm disruption, for example, by night shift work or through genetic alterations, is associated with changes in adipocyte metabolism and hormone secretion. At the same time, adipose metabolic state feeds back to central and peripheral clocks, adjusting behavioral and physiological rhythms. In this overview article, we summarize our current knowledge about the crosstalk between circadian clocks and energy metabolism with a focus on adipose physiology. © 2017 American Physiological Society. Compr Physiol 7:383-427, 2017.

  18. Endothelial and cardiac regeneration from adipose tissues.

    PubMed

    Casteilla, Louis; Planat-Bénard, Valérie; Dehez, Stéphanie; De Barros, Sandra; Barreau, Corinne; André, Mireille

    2011-01-01

    For a long time, adipose tissue was only considered for its crucial role in energy balance and associated diseases. The discovery of the presence of immature cells highlights a putative role for these tissues as reservoirs of therapeutic cells. Indeed, since fat pads can be sampled by liposuction under local anesthesia in adult patients, adipose tissue represents a promising source of regenerative cells, particularly in cardiovascular regeneration. Indeed among other potentials, we and others have demonstrated the great angiogenic properties of adipose-derived stromal cells (ASCs) and the existence of peculiar cells, at least in mice, that are able to spontaneously give rise to functional cardiomyocytes. This review deciphers the different steps necessary to isolate, characterize, and manipulate such striking cells.

  19. How to Measure Adipose Tissue Insulin Sensitivity.

    PubMed

    Søndergaard, Esben; Espinosa De Ycaza, Ana Elena; Morgan-Bathke, Maria; Jensen, Michael D

    2017-04-01

    Adipose tissue insulin resistance may cause hepatic and skeletal muscle insulin resistance by releasing excess free fatty acids (FFAs). Because no consensus exists on how to quantify adipose tissue insulin sensitivity we compared three methods for measuring adipose tissue insulin sensitivity: the single step insulin clamp, the multistep pancreatic clamp, and the adipose tissue insulin resistance index (Adipo-IR). We studied insulin sensitivity in 25 adults by measuring the insulin concentration resulting in 50% suppression of palmitate flux (IC50) using both a multistep pancreatic clamp and a one-step hyperinsulinemic-euglycemic clamp. Palmitate kinetics were measured using a continuous infusion of [U-13C]palmitate. Adipo-IR was calculated from fasting insulin and fasting FFA concentrations. Adipo-IR was reproducible (sample coefficient of variability, 10.0%) and correlated with the IC50 measured by the multistep pancreatic clamp technique (r, 0.86; P < 0.001). Age and physical fitness were significant predictors of the residual variation between Adipo-IR and IC50, with a positive relationship with age (r, 0.47; P = 0.02) and a negative association with VO2 peak (r, -0.46; P = 0.02). Likewise, IC50 measured by the multistep pancreatic clamp technique correlated with IC50 measured using the one-step hyperinsulinemic-euglycemic clamp technique (r, 0.73; P < 0.001). Adipo-IR and the one-step hyperinsulinemic-euglycemic clamp technique using a palmitate tracer are good predictors of a gold standard measure of adipose tissue insulin sensitivity. However, age and physical fitness systematically affect the predictive values. Although Adipo-IR is suitable for larger population studies, the multistep pancreatic clamp technique is probably needed for mechanistic studies of adipose tissue insulin action.

  20. Carotenoids in Adipose Tissue Biology and Obesity.

    PubMed

    Bonet, M Luisa; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2016-01-01

    Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition.

  1. Macrophage infiltration regulates the adipose ECM reconstruction and the fibrosis process after fat grafting.

    PubMed

    Cai, Junrong; Li, Bin; Liu, Kaiyang; Li, Guanghui; Lu, Feng

    2017-08-19

    Fat grafting experiences a regeneration process from free lipoaspirate to intact adipose tissue. The adipose extracellular matrixes (ECM) provide the structure and biochemical support for surrounding cells; inflammatory cells, like macrophages, regulate the process. Our hypothesis states that transferred fat undergoes ECM remodeling after fat grafting and this process is regulated by macrophage infiltration. Lipoaspirate was injected subcutaneously into the back of nude mice. The micro-structure of the fat grafts was observed and evaluated using scanning electron microscope (SEM) and collagen I immunohistostaining. The gene transcription level of collagen proteins and the matrix metalloproteinases (MMPs) were assessed by qRT-PCR. Local injection of clodronate-encapsulated liposome was used to evaluate the role of macrophages of fat grafts at different stages in ECM remodeling, depletion of macrophages, at different time points (Week 1 and Week 4). Results from the SEM analysis showed that liposuction caused severe damage to the ECM structure in freshly aspirated adipose tissue. On Day 1 post-transplantation, the surface of adipocytes was covered with platelets and this secreted fibrin network on the fat grafts. An integral adipose structure was already established with an intact ECM at the end of Week 1. The early depletion of macrophages remarkably hindered ECM reconstruction process by down-regulating the expression of collagen proteins and MMPs. Expression of Collagen I was significantly decreased after depletion of macrophages in both gene and protein levels. Results also showed that the depletion of macrophages at the later stage of fat grafting resulted in less fibrosis and capsule formation. Free fat aspirates undergo a prompt ECM reconstruction process and completed in the first week; this process can be initiated with platelets and mainly modulated by inflammatory cells such as macrophages. It was also observed that prolonged macrophage infiltration

  2. Cellular Mechanisms of Tissue Fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis

    PubMed Central

    2013-01-01

    Fibrosis is a pathological scarring process that leads to destruction of organ architecture and impairment of organ function. Chronic loss of organ function in most organs, including bone marrow, heart, intestine, kidney, liver, lung, and skin, is associated with fibrosis, contributing to an estimated one third of natural deaths worldwide. Effective therapies to prevent or to even reverse existing fibrotic lesions are not yet available in any organ. There is hope that an understanding of common fibrosis pathways will lead to development of antifibrotic therapies that are effective in all of these tissues in the future. Here we review common and organ-specific pathways of tissue fibrosis. PMID:23255577

  3. Browning and thermogenic programing of adipose tissue.

    PubMed

    Kiefer, Florian W

    2016-08-01

    The view of adipose tissue as solely a fat storing organ has changed significantly over the past two decades with the discoveries of numerous adipocyte-secreted factors, so called adipokines, and their endocrine functions throughout the body. The newest chapter added to this story is the finding that adipose tissue is also a thermogenic organ contributing to energy expenditure through actions of specialized, heat-producing brown or beige adipocytes. In contrast to bone fide brown adipocytes, beige cells develop within white fat depots in response to various stimuli such as prolonged cold exposure, underscoring the great thermogenic plasticity of adipose tissue. The energy dissipating properties of beige and/or brown adipocytes hold great promise as a novel therapeutic concept against obesity and related complications. Hence, identifying the specific thermogenic adipocyte populations in humans and their pathways of activation are key milestones of current metabolism research. Here we will discuss the recent advances in the understanding of the molecular and physiological mechanisms of adipose tissue browning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Does bariatric surgery improve adipose tissue function?

    PubMed Central

    Frikke-Schmidt, H.; O’Rourke, R. W.; Lumeng, C. N.; Sandoval, D. A.; Seeley, R. J.

    2017-01-01

    Summary Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. PMID:27272117

  5. [White adipose tissue dysfunction observed in obesity].

    PubMed

    Lewandowska, Ewa; Zieliński, Andrzej

    2016-05-01

    Obesity is a disease with continuingly increasing prevalence. It occurs worldwide independently of age group, material status or country of origin. At these times the most common reasons for obesity are bad eating habits and dramatic reduction of physical activity, which cause the energy imbalance of organism. Fundamental alteration observed in obese subjects is white adipose tissue overgrowth, which is linked to increased incidence of obesity-related comorbidities, such as: cardiovascular diseases, type 2 diabetes or digestive tract diseases. What is more, obesity is also a risk factor for some cancers. Special risk for diseases linked to excessive weight is associated with overgrowth of visceral type of adipose tissue. Adipose tissue, which is the main energy storehouse in body and acts also as an endocrine organ, undergoes both the morphological and the functional changes in obesity, having a negative impact on whole body function. In this article we summarize the most important alterations in morphology and function of white adipose tissue, observed in obese subjects.

  6. [Differentiation of mesenchymal stem cells of adipose tissue].

    PubMed

    Salyutin, R V; Zapohlska, K M; Palyanytsya, S S; Sirman, V M; Sokolov, M F

    2015-03-01

    Experimental investigation were conducted with the objective to determine a stem cells, capacity to differentiate in adipogenic direction, if they were obtained from adipose tissue. The investigation results have witnessed, that the cells, obtained from adipose tissue, are capable for a tissue-speciphic differentiation in osteogenic, chondrogenic, and, principally--in adipogenic direction, what confirms a multypotent nature of mesenchymal stem cells of adipose tissue. Adipose tissue constitutes an alternative to the bone marrow, as a source of multipotent mesenchymal stem cells, which may be applied in further investigations, concerning determination of their defense possibility for the transplanted autologous adipose tissue from the tissue resorption, made in a lipophiling way.

  7. Macrophages in tissue repair, regeneration, and fibrosis

    PubMed Central

    Wynn, Thomas A.; Vannella, Kevin M.

    2016-01-01

    Inflammatory monocytes and resident tissue macrophages are key regulators of tissue repair, regeneration, and fibrosis. Following tissue injury, monocytes and macrophages undergo marked phenotypic and functional changes to play critical roles during the initiation, maintenance, and resolution phases of tissue repair. Disturbances in macrophage function can lead to aberrant repair, with uncontrolled inflammatory mediator and growth factor production, deficient generation of anti-inflammatory macrophages, or failed communication between macrophages and epithelial cells, endothelial cells, fibroblasts, and stem or tissue progenitor cells all contributing to a state of persistent injury, which may lead to the development of pathological fibrosis. In this review, we discuss the mechanisms that instruct macrophages to adopt pro-inflammatory, pro-wound healing, pro-fibrotic, anti-inflammatory, anti-fibrotic, pro-resolving, and tissue regenerating phenotypes following injury, and highlight how some of these mechanisms and macrophage activation states could be exploited therapeutically. PMID:26982353

  8. Adipose tissue biology and cardiomyopathy: translational implications.

    PubMed

    Turer, Aslan T; Hill, Joseph A; Elmquist, Joel K; Scherer, Philipp E

    2012-12-07

    It is epidemiologically established that obesity is frequently associated with the metabolic syndrome and poses an increased risk for the development of type 2 diabetes mellitus and cardiovascular disease. The molecular links that connect the phenomenon of obesity, per se, with insulin resistance and cardiovascular disease are still not fully elucidated. It is increasingly apparent that fully functional adipose tissue can be cardioprotective by reducing lipotoxic effects in other peripheral tissues and by maintaining a healthy balance of critical adipokines, thereby allowing the heart to maintain its full metabolic flexibility. The present review highlights both basic and clinical findings that emphasize the complex interplay of adipose tissue physiology and adipokine-mediated effects on the heart exerted by either direct effects on cardiac myocytes or indirect actions via central mechanisms through sympathetic outflow to the heart.

  9. Fat on sale: role of adipose-derived stem cells as anti-fibrosis agent in regenerative medicine.

    PubMed

    Gupta, Manoj K; Ajay, Amrendra Kumar

    2015-12-01

    The potential use of stem cells for cell-based tissue repair and regeneration offers alternative therapeutic strategies for various diseases. Adipose-derived stem cells (ADSCs) have emerged as a promising source of stem cells suitable for transplantation in regenerative medicine and wound repair. A recent publication in Stem Cell Research & Therapy by Zhang and colleagues reports a new finding about the anti-fibrosis role of ADSCs and conditioned media derived from them on hypertrophic scar formation in vivo.

  10. A FSI-based structural approach for micromechanical characterization of adipose tissue

    NASA Astrophysics Data System (ADS)

    Seyfi, Behzad; Sabzalinejad, Masoumeh; Haddad, Seyed M. H.; Fatouraee, Nasser; Samani, Abbas

    2017-03-01

    This paper presents a novel computational method for micromechanical modeling of adipose tissue. The model can be regarded as the first step for developing an inversion based framework that uses adipose stiffness data obtained from elastography to determine its microstructural alterations. Such information can be used as biomarkers for diseases associated with adipose tissue microstructure alteration (e.g. adipose tissue fibrosis and inflammation in obesity). In contrast to previous studies, the presented model follows a multiphase structure which accounts for both solid and fluid components as well as their mechanical interaction. In the model, the lipid droplets and extracellular matrix were considered as the fluid and solid phase, respectively. As such, the fluid-structure interaction (FSI) problem was solved using finite element method. In order to gain insight into how microstructural characteristics influence the macro scale mechanical properties of the adipose tissue, a compression mechanical test was simulated using the FSI model and its results were fitted to corresponding experimental data. The simulation procedure was performed for adipocytes in healthy conditions while the stiffness of extracellular matrix in normal adipose tissue was found by varying it systematically within an optimization process until the simulation response agreed with experimental data. Results obtained in this study are encouraging and show the capability of the proposed model to capture adipose tissue macroscale mechanical behavior based on its microstructure under health and different pathological conditions.

  11. Adipose tissue extracellular matrix and vascular abnormalities in obesity and insulin resistance.

    PubMed

    Spencer, Michael; Unal, Resat; Zhu, Beibei; Rasouli, Neda; McGehee, Robert E; Peterson, Charlotte A; Kern, Philip A

    2011-12-01

    Insulin resistance is associated with inflammation, fibrosis, and hypoxia in adipose tissue. This study was intended to better characterize the extracellular matrix (ECM) and vascularity of insulin-resistant adipose tissue. Adipose expression of collagens, elastin, and angiogenic factors was assessed using real-time RT-PCR and immunohistochemistry (IHC) in abdominal sc adipose tissue. Adipocyte-macrophage coculture experiments examined the effects of polarized macrophages on adipose ECM gene expression, and the effects of collagens were measured in an angiogenesis assay. A total of 74 nondiabetic subjects participated at a University Clinical Research Center. Interventions included baseline adipose biopsy and measurement of insulin sensitivity. Outcome measures included characterization of vascularity and ECM in adipose tissue. CD31 (an endothelial marker) mRNA showed no significant correlation with body mass index or insulin sensitivity. In a subgroup of 17 subjects (nine obese, eight lean), CD31-positive capillary number in obese was decreased by 58%, whereas larger vessels were increased by 70%, accounting for the lack of change in CD31 expression with obesity. Using IHC, obese (compared with lean) subjects had decreased elastin and increased collagen V expression, and adipocytes cocultured with M2 macrophages had reduced elastin and increased collagen V expression. In obese subjects, collagen V was colocalized with large blood vessels, and the addition of collagen V to an angiogenesis assay inhibited endothelial budding. The adipose tissue from obese/insulin-resistant subjects has fewer capillaries and more large vessels as compared with lean subjects. The ECM of adipose tissue may play an important role in regulating the expandability as well as angiogenesis of adipose tissue.

  12. Nutritional regulation of lipid metabolism in human adipose tissue.

    PubMed

    Coppack, S W; Patel, J N; Lawrence, V J

    2001-01-01

    Pfeiffer and colleagues years ago pointed out that different distributions and amounts of adipose tissue are associated with abnormalities of lipolysis and lipoprotein metabolism. Adipose tissue has several crucial roles including (i) mobilization from stores of fatty acids as an energy source, (ii) catabolism of lipoproteins such as very-low-density lipoprotein and (iii) synthesis and release of hormonal signals such as leptin and interleukin-6. These adipose tissue actions are crucially regulated by nutrition. The review considers the existence of metabolic pathways and modes of regulation within adipose tissue, and how such metabolic activity can be quantitated in humans. Nutrition can influence adipose tissue at several 'levels'. Firstly the level of obesity or malnutrition has important effects on many aspects of adipose tissue metabolism. Secondly short-term overfeeding, underfeeding and exercise have major impacts on adipose tissue behaviour. Lastly, specific nutrients are capable of regulating adipose tissue metabolism. Recently there have been considerable advances in understanding adipose tissue metabolism and in particular its regulation. This review discusses the behaviour of adipose tissue under various nutritional conditions. There is then a review of recent work examining the ways in which nutritional influences act via intra-cellular mechanisms, insulin and the sympathetic innervation of adipose tissue.

  13. Oestrone sulphate, adipose tissue, and breast cancer.

    PubMed

    Hawkins, R A; Thomson, M L; Killen, E

    1985-01-01

    Oestrone sulphate, the oestrogen in highest concentration in the plasma, may play a role in the induction and growth of breast cancers. By enzymolysis and radioimmunoassay, oestrone sulphate concentrations were measured in 3 biological fluids. High concentrations of the conjugate (up to 775 nmol/l) were detected in breast cyst fluids from some premenopausal women, the concentrations in blood plasma (0.91-4.45 nmol/l) being much lower. Concentrations in the plasmas from postmenopausal women with (0.23-4.63 nmol/l) or without (0.18-1.27 nmol/l) breast cancer were still lower. Oestrone sulphate concentration in cow's milk or cream (0.49-0.67 nmol/l) was also low: dietary intake in these fluids is probably of little consequence. The capacity of breast tissues for hydrolysis of oestrone sulphate was examined in two ways: In tissue slices incubated with 85 pM (3H) oestrone sulphate solution at 37 degrees C, cancers (131-412 fmol/g tissue/hr) and adipose tissues (23-132 fmol/g tissue/hr) hydrolysed significantly more sulphate than did benign tissues (1-36 fmol/g tissue/hr). In tissue homogenates incubated with 5-25 microM [3H] oestrone sulphate at 37 degrees much higher capacities for hydrolysis (nmol/g tissue/hr) were demonstrated with a Km of 2-16.5 microM: cancers (34-394) and benign tissues (9-485) had significantly higher sulphatase activities than adipose tissues (9-39). On a protein basis, however, the sulphatase activities in the 3 tissues were comparable. It is concluded that oestrone sulphate is present in breast cysts and blood plasma and that in vitro, the conjugated hormone can be hydrolysed by breast tissues. The biological significance of these findings in vivo remains to be established.

  14. Understanding androgen action in adipose tissue.

    PubMed

    O'Reilly, Michael W; House, Philip J; Tomlinson, Jeremy W

    2014-09-01

    Androgens play an important role in regulation of body fat distribution in humans. They exert direct effects on adipocyte differentiation in a depot-specific manner, via the androgen receptor (AR), leading to modulation of adipocyte size and fat compartment expansion. Androgens also impact directly on key adipocyte functions including insulin signalling, lipid metabolism, fatty acid uptake and adipokine production. Androgen excess and deficiency have implications for metabolic health in both males and females, and these metabolic effects may be mediated through adipose tissue via effects on fat distribution, adipocyte function and lipolysis. Research into the field of androgen metabolism in human and animal adipose tissue has produced inconsistent results; it is important to take into account the sex-, depot- and organism-specific effects of androgens in fat. In general, studies point towards a stimulatory effect on lipolysis, with impairment of adipocyte differentiation, insulin signalling and adipokine generation. Observed effects are frequently gender-specific. Adipose tissue is an important organ of pre-receptor androgen metabolism, through which local androgen availability is rigorously controlled. Adipose androgen exposure is tightly controlled by isoenzymes of AKR1C, 5α-reductase and others, but regulation of the balance between generation and irreversible inactivation remains poorly understood. In particular, AKR1C2 and AKR1C3 are crucial in the regulation of local androgen bioavailability within adipose tissue. These isoforms control the balance between activation of androstenedione (A) to testosterone (T) by the 17β-hydroxysteroid dehydrogenase activity (17β-HSD) of AKR1C3, or inactivation of 5α-dihydrotestosterone (DHT) to 5α-androstane-3α,17β-diol by the 3α-hydroxysteroid dehydrogenase (3α-HSD) activity of AKR1C2. Most studies suggest that androgen inactivation is the predominant reaction in fat, particularly in the abdominal subcutaneous (SC

  15. Adipose tissue and skeletal muscle plasticity modulates metabolic health.

    PubMed

    Ukropec, Jozef; Ukropcova, Barbara; Kurdiova, Timea; Gasperikova, Daniela; Klimes, Iwar

    2008-12-01

    Obesity, accumulation of adipose tissue, develops when energy intake exceeds energy expenditure. Adipose tissue is essential for buffering the differences between energy intake and expenditure by accumulating lipids while skeletal muscle is the energy burning machine. Here we adopted the concept that (i) adipose tissue ability to regulate the storage capacity for lipids as well as (ii) dynamic regulation of muscle and adipose tissue secretory and metabolic activity is important for maintaining the metabolic health. This might be at least in part related to tissue plasticity, a phenomenon enabling dynamic modulation of the tissue phenotype in different physiological and pathophysiological situations. Recent advances in our understanding of the complex endocrine function of adipose tissue in regulating lipid metabolism, adipogenesis, angiogenesis, extracellular matrix remodelling, inflammation and oxidative stress prompted us to review the role of tissue plasticity--dynamic changes in adipose tissue and skeletal muscle metabolic and endocrine phenotype--in determining the difference between metabolic health and disease.

  16. Increased adipose tissue aromatase activity improves insulin sensitivity and reduces adipose tissue inflammation in male mice.

    PubMed

    Ohlsson, Claes; Hammarstedt, Ann; Vandenput, Liesbeth; Saarinen, Niina; Ryberg, Henrik; Windahl, Sara H; Farman, Helen H; Jansson, John-Olov; Movérare-Skrtic, Sofia; Smith, Ulf; Zhang, Fu-Ping; Poutanen, Matti; Hedjazifar, Shahram; Sjögren, Klara

    2017-10-01

    Females are, in general, more insulin sensitive than males. To investigate whether this is a direct effect of sex-steroids (SS) in white adipose tissue (WAT), we developed a male mouse model overexpressing the aromatase enzyme, converting testosterone (T) to estradiol (E2), specifically in WAT (Ap2-arom mice). Adipose tissue E2 levels were increased while circulating SS levels were unaffected in male Ap2-arom mice. Importantly, male Ap2-arom mice were more insulin sensitive compared with WT mice and exhibited increased serum adiponectin levels and upregulated expression of Glut4 and Irs1 in WAT. The expression of markers of macrophages and immune cell infiltration was markedly decreased in WAT of male Ap2-arom mice. The adipogenesis was enhanced in male Ap2-arom mice, supported by elevated Pparg expression in WAT and enhanced differentiation of preadipocyte into mature adipocytes. In summary, increased adipose tissue aromatase activity reduces adipose tissue inflammation and improves insulin sensitivity in male mice. We propose that estrogen increases insulin sensitivity via a local effect in WAT on adiponectin expression, adipose tissue inflammation, and adipogenesis. Copyright © 2017 the American Physiological Society.

  17. Pulsed electric breakdown in adipose tissue

    NASA Astrophysics Data System (ADS)

    Kolb, Juergen F.; Scully, Noah; Paithankar, Dilip

    2011-08-01

    High voltage pulses of sub-microsecond duration can instigate electrical breakdown in adipose tissue, which is followed by a spark discharge. Breakdown voltages are generally lower than observed for purified lipids but higher than for air. Development of breakdown for the repetitive application of pulses resembles a gradual and stochastic process as reported for partial discharges in solid dielectrics. The inflicted tissue damage itself is confined to the gap between electrodes, providing a method to use spark discharges as a precise surgical technique.

  18. The development and endocrine functions of adipose tissue.

    PubMed

    Poulos, Sylvia P; Hausman, Dorothy B; Hausman, Gary J

    2010-07-08

    White adipose tissue is a mesenchymal tissue that begins developing in the fetus. Classically known for storing the body's fuel reserves, adipose tissue is now recognized as an endocrine organ. As such, the secretions from adipose tissue are known to affect several systems such as the vascular and immune systems and play major roles in metabolism. Numerous studies have shown nutrient or hormonal manipulations can greatly influence adipose tissue development. In addition, the associations between various disease states, such as insulin resistance and cardiovascular disease, and disregulation of adipose tissue seen in epidemiological and intervention studies are great. Evaluation of known adipokines suggests these factors secreted from adipose tissue play roles in several pathologies. As the identification of more adipokines and determination of their role in biological systems, and the interactions between adipocytes and other cells types continues, there is little doubt that we will gain a greater appreciation for a tissue once thought to simply store excess energy.

  19. The Ubiquitin Ligase Siah2 Regulates Obesity-induced Adipose Tissue Inflammation

    PubMed Central

    Kilroy, Gail; Carter, Lauren E.; Newman, Susan; Burk, David H.; Manuel, Justin; Möller, Andreas; Bowtell, David D.; Mynatt, Randall L.; Ghosh, Sujoy; Floyd, Z. Elizabeth

    2015-01-01

    Objective Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, we examined the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation. Methods Wild-type and Siah2KO mice were fed a low or high fat diet for 16 weeks. Indirect calorimetry, body composition, glucose and insulin tolerance were assayed along with glucose and insulin levels. Gene and protein expression, immunohistochemistry, adipocyte size distribution and lipolysis were also analyzed. Results Enlarged adipocytes in obese Siah2KO mice are not associated with obesity-induced insulin resistance. Proinflammatory gene expression, stress kinase signaling, fibrosis and crown-like structures are reduced in the Siah2KO adipose tissue and Siah2KO adipocytes are more responsive to insulin-dependent inhibition of lipolysis. Loss of Siah2 increases expression of PPARγ target genes involved in lipid metabolism and decreases expression of proinflammatory adipokines regulated by PPARγ. Conclusions Siah2 links adipocyte hypertrophy with adipocyte dysfunction and recruitment of proinflammatory immune cells to adipose tissue. Selective regulation of PPARγ activity is a Siah2-mediated mechanism contributing to obesity-induced adipose tissue inflammation. PMID:26380945

  20. Marrow adipose tissue: trimming the fat

    PubMed Central

    Burr, Aaron A.; Horowitz, Mark C.; MacDougald, Ormond A

    2016-01-01

    Marrow adipose tissue (MAT) is a unique fat depot, located in the skeleton, that has the potential to contribute to both local and systemic metabolic processes. In this review we highlight several recent conceptual developments pertaining to the origin and function of MAT adipocytes; consider the relationship of MAT to beige, brown, and white adipose depots; explore MAT expansion and turnover in humans and rodents; and discuss future directions for MAT research in the context of endocrine function and metabolic disease. MAT has the potential to exert both local and systemic effects on metabolic homeostasis, skeletal remodeling, hematopoiesis, and development of bone metastases. The diversity of these functions highlights the breadth of MAT’s potential impact on health and disease. PMID:27094502

  1. Androgenic Regulation of White Adipose Tissue-Prostate Cancer Interactions

    DTIC Science & Technology

    2012-05-01

    April 2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Androgenic Regulation of White Adipose Tissue -Prostate Cancer Interactions 5b. GRANT NUMBER...Floryk D, Kurosaka S, Tanimoto R, Yang G, Goltsov A, Park S, Thompson TC. Castration- induced changes in mouse epididymal white adipose tissue . Mol Cell...1. Floryk D, Kurosaka S, Tanimoto R, Yang G, Goltsov A, Park S, Thompson TC. Castration- induced changes in mouse epididymal white adipose tissue

  2. Host Responses in Tissue Repair and Fibrosis

    PubMed Central

    Duffield, Jeremy S.; Lupher, Mark; Thannickal, Victor J.

    2013-01-01

    Myofibroblasts accumulate in the spaces between organ structures and produce extracellular matrix (ECM) proteins, including collagen I. They are the primary “effector” cells in tissue remodeling and fibrosis. Previously, leukocyte progenitors termed fibrocytes and myofibroblasts generated from epithelial cells through epithelial-to-mesenchymal transition (EMT) were considered the primary sources of ECM-producing myofibroblasts in injured tissues. However, genetic fate mapping experiments suggest that mesenchyme-derived cells, known as resident fibroblasts, and pericytes are the primary precursors of scar-forming myofibroblasts, whereas epithelial cells, endothelial cells, and myeloid leukocytes contribute to fibrogenesis predominantly by producing key fibrogenic cytokines and by promoting cell-to-cell communication. Numerous cytokines derived from T cells, macrophages, and other myeloid cell populations are important drivers of myofibroblast differentiation. Monocyte-derived cell populations are key regulators of the fibrotic process: They act as a brake on the processes driving fibrogenesis, and they dismantle and degrade established fibrosis. We discuss the origins, modes of activation, and fate of myofibroblasts in various important fibrotic diseases and describe how manipulation of macrophage activation could help ameliorate fibrosis. PMID:23092186

  3. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    PubMed Central

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone–fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues – subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT – is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat

  4. Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice

    PubMed Central

    Weiner, Juliane; Kranz, Mathias; Klöting, Nora; Kunath, Anne; Steinhoff, Karen; Rijntjes, Eddy; Köhrle, Josef; Zeisig, Vilia; Hankir, Mohammed; Gebhardt, Claudia; Deuther-Conrad, Winnie; Heiker, John T.; Kralisch, Susan; Stumvoll, Michael; Blüher, Matthias; Sabri, Osama; Hesse, Swen; Brust, Peter; Tönjes, Anke; Krause, Kerstin

    2016-01-01

    The present study aimed to determine the effect of thyroid hormone dysfunction on brown adipose tissue activity and white adipose tissue browning in mice. Twenty randomized female C57BL/6NTac mice per treatment group housed at room temperature were rendered hypothyroid or hyperthyroid. In-vivo small animal 18F-FDG PET/MRI was performed to determine the effects of hypo- and hyperthyroidism on BAT mass and BAT activity. Ex-vivo14C-acetate loading assay and assessment of thermogenic gene and protein expression permitted analysis of oxidative and thermogenic capacities of WAT and BAT of eu-, hyper and hypothyroid mice. 18F-FDG PET/MRI revealed a lack of brown adipose tissue activity in hypothyroid mice, whereas hyperthyroid mice displayed increased BAT mass alongside enhanced 18F-FDG uptake. In white adipose tissue of both, hyper- and hypothyroid mice, we found a significant induction of thermogenic genes together with multilocular adipocytes expressing UCP1. Taken together, these results suggest that both the hyperthyroid and hypothyroid state stimulate WAT thermogenesis most likely as a consequence of enhanced adrenergic signaling or compensation for impaired BAT function, respectively. PMID:27941950

  5. Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice.

    PubMed

    Weiner, Juliane; Kranz, Mathias; Klöting, Nora; Kunath, Anne; Steinhoff, Karen; Rijntjes, Eddy; Köhrle, Josef; Zeisig, Vilia; Hankir, Mohammed; Gebhardt, Claudia; Deuther-Conrad, Winnie; Heiker, John T; Kralisch, Susan; Stumvoll, Michael; Blüher, Matthias; Sabri, Osama; Hesse, Swen; Brust, Peter; Tönjes, Anke; Krause, Kerstin

    2016-12-12

    The present study aimed to determine the effect of thyroid hormone dysfunction on brown adipose tissue activity and white adipose tissue browning in mice. Twenty randomized female C57BL/6NTac mice per treatment group housed at room temperature were rendered hypothyroid or hyperthyroid. In-vivo small animal (18)F-FDG PET/MRI was performed to determine the effects of hypo- and hyperthyroidism on BAT mass and BAT activity. Ex-vivo(14)C-acetate loading assay and assessment of thermogenic gene and protein expression permitted analysis of oxidative and thermogenic capacities of WAT and BAT of eu-, hyper and hypothyroid mice. (18)F-FDG PET/MRI revealed a lack of brown adipose tissue activity in hypothyroid mice, whereas hyperthyroid mice displayed increased BAT mass alongside enhanced (18)F-FDG uptake. In white adipose tissue of both, hyper- and hypothyroid mice, we found a significant induction of thermogenic genes together with multilocular adipocytes expressing UCP1. Taken together, these results suggest that both the hyperthyroid and hypothyroid state stimulate WAT thermogenesis most likely as a consequence of enhanced adrenergic signaling or compensation for impaired BAT function, respectively.

  6. Characterization of adipose tissue macrophages and adipose-derived stem cells in critical wounds

    PubMed Central

    Tilstam, Pathricia V.; Springenberg-Jung, Katrin; Boecker, Arne Hendrick; Schmitz, Corinna; Heinrichs, Daniel; Hwang, Soo Seok; Stromps, Jan Philipp; Ganse, Bergita; Kopp, Ruedger; Knobe, Matthias; Bernhagen, Juergen

    2017-01-01

    Background Subcutaneous adipose tissue is a rich source of adipose tissue macrophages and adipose-derived stem cells which both play a key role in wound repair. While macrophages can be divided into the classically-activated M1 and the alternatively-activated M2 phenotype, ASCs are characterized by the expression of specific stem cell markers. Methods In the present study, we have investigated the expression of common macrophage polarization and stem cell markers in acutely inflamed adipose tissue. Subcutaneous adipose tissue adjacent to acutely inflamed wounds of 20 patients and 20 healthy subjects were harvested and underwent qPCR and flow cytometry analysis. Results Expression levels of the M1-specific markers CD80, iNOS, and IL-1b were significantly elevated in inflammatory adipose tissue when compared to healthy adipose tissue, whereas the M2-specific markers CD163 and TGF-β were decreased. By flow cytometry, a significant shift of adipose tissue macrophage populations towards the M1 phenotype was confirmed. Furthermore, a decrease in the mesenchymal stem cell markers CD29, CD34, and CD105 was observed whereas CD73 and CD90 remained unchanged. Discussion This is the first report describing the predominance of M1 adipose tissue macrophages and the reduction of stem cell marker expression in acutely inflamed, non-healing wounds. PMID:28070458

  7. Sex dimorphism and depot differences in adipose tissue function

    PubMed Central

    White, Ursula A.; Tchoukalova, Yourka D.

    2013-01-01

    Obesity, characterized by excessive adiposity, is a risk factor for many metabolic pathologies, such as Type 2 Diabetes mellitus (T2DM). Numerous studies have shown that adipose tissue distribution may be a greater predictor of metabolic health. Upper-body fat (visceral and subcutaneous abdominal) is commonly associated with the unfavorable complications of obesity, while lower-body fat (gluteal-femoral) may be protective. Current research investigations are focused on analyzing the metabolic properties of adipose tissue, in order to better understand the mechanisms that regulate fat distribution in both men and women. This review will highlight the adipose tissue depot- and sex- dependent differences in white adipose tissue function, including adipogenesis, adipose tissue developmental patterning, the storage and release of fatty acids, and secretory function. PMID:23684841

  8. Adipose tissue-organotypic culture system as a promising model for studying adipose tissue biology and regeneration

    PubMed Central

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Sonoda, Emiko; Yamasaki, Fumio; Piao, Meihua; Ootani, Akifumi; Yonemitsu, Nobuhisa; Sugihara, Hajime

    2009-01-01

    Adipose tissue consists of mature adipocytes, preadipocytes and mesenchymal stem cells (MSCs), but a culture system for analyzing their cell types within the tissue has not been established. We have recently developed “adipose tissue-organotypic culture system” that maintains unilocular structure, proliferative ability and functions of mature adipocytes for a long term, using three-dimensional collagen gel culture of the tissue fragments. In this system, both preadipocytes and MSCs regenerate actively at the peripheral zone of the fragments. Our method will open up a new way for studying both multiple cell types within adipose tissue and the cell-based mechanisms of obesity and metabolic syndrome. Thus, it seems to be a promising model for investigating adipose tissue biology and regeneration. In this article, we introduce adipose tissue-organotypic culture, and propose two theories regarding the mechanism of tissue regeneration that occurs specifically at peripheral zone of tissue fragments in vitro. PMID:19794899

  9. Brown Adipose Tissue in Cetacean Blubber

    PubMed Central

    Hashimoto, Osamu; Ohtsuki, Hirofumi; Kakizaki, Takehiko; Amou, Kento; Sato, Ryo; Doi, Satoru; Kobayashi, Sara; Matsuda, Ayaka; Sugiyama, Makoto; Funaba, Masayuki; Matsuishi, Takashi; Terasawa, Fumio; Shindo, Junji; Endo, Hideki

    2015-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall’s and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during

  10. Brown adipose tissue in cetacean blubber.

    PubMed

    Hashimoto, Osamu; Ohtsuki, Hirofumi; Kakizaki, Takehiko; Amou, Kento; Sato, Ryo; Doi, Satoru; Kobayashi, Sara; Matsuda, Ayaka; Sugiyama, Makoto; Funaba, Masayuki; Matsuishi, Takashi; Terasawa, Fumio; Shindo, Junji; Endo, Hideki

    2015-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall's and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during

  11. PDGFRα controls the balance of stromal and adipogenic cells during adipose tissue organogenesis.

    PubMed

    Sun, Chengyi; Berry, William L; Olson, Lorin E

    2017-01-01

    Adipose tissue is distributed in depots throughout the body with specialized roles in energy storage and thermogenesis. PDGFRα is a marker of adipocyte precursors, and increased PDGFRα activity causes adipose tissue fibrosis in adult mice. However, the function of PDGFRα during adipose tissue organogenesis is unknown. Here, by analyzing mice with juxtamembrane or kinase domain point mutations that increase PDGFRα activity (V561D or D842V), we found that PDGFRα activation inhibits embryonic white adipose tissue organogenesis in a tissue-autonomous manner. By lineage tracing analysis, we also found that collagen-expressing precursor fibroblasts differentiate into white adipocytes in the embryo. PDGFRα inhibited the formation of adipocytes from these precursors while favoring the formation of stromal fibroblasts. This imbalance between adipocytes and stromal cells was accompanied by overexpression of the cell fate regulator Zfp521. PDGFRα activation also inhibited the formation of juvenile beige adipocytes in the inguinal fat pad. Our data highlight the importance of balancing stromal versus adipogenic cell expansion during white adipose tissue development, with PDGFRα activity coordinating this crucial process in the embryo. © 2017. Published by The Company of Biologists Ltd.

  12. Brain-adipose tissue neural crosstalk.

    PubMed

    Bartness, Timothy J; Song, C Kay

    2007-07-24

    The preponderance of basic obesity research focuses on its development as affected by diet and other environmental factors, genetics and their interactions. By contrast, we have been studying the reversal of a naturally-occurring seasonal obesity in Siberian hamsters. In the course of this work, we determined that the sympathetic innervation of white adipose tissue (WAT) is the principal initiator of lipid mobilization not only in these animals, but in all mammals including humans. We present irrefutable evidence for the sympathetic nervous system (SNS) innervation of WAT with respect to neuroanatomy (including its central origins as revealed by transneuronal viral tract tracers), neurochemistry (norepinephrine turnover studies) and function (surgical and chemical denervation). A relatively unappreciated role of WAT SNS innervation also is reviewed--the control of fat cell proliferation as shown by selective chemical denervation that triggers adipocyte proliferation, although the precise mechanism by which this occurs presently is unknown. There is no, however, equally strong evidence for the parasympathetic innervation of this tissue; indeed, the data largely are negative severely questioning its existence and importance. Convincing evidence also is given for the sensory innervation of WAT (as shown by tract tracing and by markers for sensory nerves in WAT), with suggestive data supporting a possible role in conveying information on the degree of adiposity to the brain. Collectively, these data offer an additional or alternative view to the predominate one of the control of body fat stores via circulating factors that serve as efferent and afferent communicators.

  13. cGMP and Brown Adipose Tissue.

    PubMed

    Hoffmann, Linda S; Larson, Christopher J; Pfeifer, Alexander

    2016-01-01

    The second messenger cyclic guanosine monophosphate (cGMP) is a key mediator in physiological processes such as vascular tone, and its essential involvement in pathways regulating metabolism has been recognized in recent years. Here, we focus on the fundamental role of cGMP in brown adipose tissue (BAT) differentiation and function. In contrast to white adipose tissue (WAT), which stores energy in the form of lipids, BAT consumes energy stored in lipids to generate heat. This so-called non-shivering thermogenesis takes place in BAT mitochondria, which express the specific uncoupling protein 1 (UCP1). The energy combusting properties of BAT render it a promising target in antiobesity strategies in which BAT could burn the surplus energy that has accumulated in obese and overweight individuals. cGMP is generated by guanylyl cyclases upon activation by nitric oxide or natriuretic peptides. It affects several downstream molecules including cGMP-receptor proteins such as cGMP-dependent protein kinase and is degraded by phosphodiesterases. The cGMP pathway contains several signaling molecules that can increase cGMP signaling, resulting in activation and recruitment of brown adipocytes, and hence can enhance the energy combusting features of BAT. In this review we highlight recent results showing the physiological significance of cGMP signaling in BAT, as well as pharmacological options targeting cGMP signaling that bear a high potential to become BAT-centered therapies for the treatment of obesity.

  14. An endocrine role for brown adipose tissue?

    PubMed

    Villarroya, Joan; Cereijo, Rubén; Villarroya, Francesc

    2013-09-01

    White adipose tissue is recognized as both a site of energy storage and an endocrine organ that produces a myriad of endocrine factors called adipokines. Brown adipose tissue (BAT) is the main site of nonshivering thermogenesis in mammals. The amount and activity of brown adipocytes are associated with protection against obesity and associated metabolic alterations. These effects of BAT are traditionally attributed to its capacity for the oxidation of fatty acids and glucose to sustain thermogenesis. However, recent data suggest that the beneficial effects of BAT could involve a previously unrecognized endocrine role through the release of endocrine factors. Several signaling molecules with endocrine properties have been found to be released by brown fat, especially under conditions of thermogenic activation. Moreover, experimental BAT transplantation has been shown to improve glucose tolerance and insulin sensitivity mainly by influencing hepatic and cardiac function. It has been proposed that these effects are due to the release of endocrine factors by brown fat, such as insulin-like growth factor I, interleukin-6, or fibroblast growth factor-21. Further research is needed to determine whether brown fat plays an endocrine role and, if so, to comprehensively identify which endocrine factors are released by BAT. Such research may reveal novel clues for the observed association between brown adipocyte activity and a healthy metabolic profile, and it could also enlarge a current view of potential therapeutic tools for obesity and associated metabolic diseases.

  15. Adipose Tissue and Extracellular Matrix Development by Injectable Decellularized Adipose Matrix Loaded with Basic Fibroblast Growth Factor.

    PubMed

    Zhang, Shipin; Lu, Qiqi; Cao, Tong; Toh, Wei Seong

    2016-04-01

    There is a significant need for soft-tissue replacements in the field of reconstructive surgery. Decellularized adipose tissues were heparin crosslinked and loaded with basic fibroblast growth factor (bFGF). This injectable system was evaluated for its adipogenic and angiogenic capabilities for in vivo adipose tissue regeneration. Decellularized adipose tissues were harvested from the inguinal fat pads of C57BL/6J mice, minced, and heparinized before being loaded with bFGF. Decellularized adipose tissues without bFGF served as a control. In vivo adipose neotissue formation, neovascularization, and volume stability were evaluated over a period of 12 weeks. After 6 or 12 weeks, mice were killed and the newly formed adipose tissues, together with the contralateral endogenous adipose tissues, were harvested for gross, volumetric, histologic, and immunohistochemical analysis. Decellularized adipose tissues that were heparinized and loaded with bFGF induced significant de novo adipose neotissue formation, with progressive tissue growth and neovascularization from 6 to 12 weeks. The adipose neotissues exhibited mature adipose morphology and extracellular matrix that closely resembled that of the endogenous adipose tissue. In contrast, decellularized adipose tissues without bFGF induced limited adipose neotissue formation and were completely resorbed by the end of 12 weeks. This study demonstrates the high efficiency of heparinized decellularized adipose tissue matrix loaded with bFGF in promoting adipose neotissue formation and neovascularization with long-term volume stability.

  16. Selective suppression of adipose tissue apoE expression impacts systemic metabolic phenotype and adipose tissue inflammation.

    PubMed

    Huang, Zhi H; Reardon, Catherine A; Getz, Godfrey S; Maeda, Nobuyo; Mazzone, Theodore

    2015-02-01

    apoE is a multi-functional protein expressed in several cell types and in several organs. It is highly expressed in adipose tissue, where it is important for modulating adipocyte lipid flux and gene expression in isolated adipocytes. In order to investigate a potential systemic role for apoE that is produced in adipose tissue, mice were generated with selective suppression of adipose tissue apoE expression and normal circulating apoE levels. These mice had less adipose tissue with smaller adipocytes containing fewer lipids, but no change in adipocyte number compared with control mice. Adipocyte TG synthesis in the presence of apoE-containing VLDL was markedly impaired. Adipocyte caveolin and leptin gene expression were reduced, but adiponectin, PGC-1, and CPT-1 gene expression were increased. Mice with selective suppression of adipose tissue apoE had lower fasting lipid, insulin, and glucose levels, and glucose and insulin tolerance tests were consistent with increased insulin sensitivity. Lipid storage in muscle, heart, and liver was significantly reduced. Adipose tissue macrophage inflammatory activation was markedly diminished with suppression of adipose tissue apoE expression. Our results establish a novel effect of adipose tissue apoE expression, distinct from circulating apoE, on systemic substrate metabolism and adipose tissue inflammatory state. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  17. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    SciTech Connect

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo; Horiuchi, Masatsugu

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  18. Basic fibroblast growth factor-treated adipose tissue-derived mesenchymal stem cell infusion to ameliorate liver cirrhosis via paracrine hepatocyte growth factor.

    PubMed

    Tang, Wei-Ping; Akahoshi, Tomohiko; Piao, Jing-Shu; Narahara, Sayoko; Murata, Masaharu; Kawano, Takahito; Hamano, Nobuhito; Ikeda, Tetsuo; Hashizume, Makoto

    2015-06-01

    Recent studies show that adipose tissue-derived mesenchymal stem cells have potential clinical applications. However, the mechanism has not been fully elucidated yet. Here, we investigated the effect of basic fibroblast growth factor-treated adipose tissue-derived mesenchymal stem cells infusion on a liver fibrosis rat model and elucidated the underlying mechanism. Adipose tissue-derived mesenchymal stem cells were infused into carbon tetrachloride-induced hepatic fibrosis rats through caudal vein. Liver functions and pathological changes were assessed. A co-culture model was used to clarify the potential mechanism. Basic fibroblast growth factor treatment markedly improved the proliferation, differentiation, and hepatocyte growth factor expression ability of adipose tissue-derived mesenchymal stem cells. Although adipose tissue-derived mesenchymal stem cells infusion alone slightly ameliorated liver functions and suppressed fibrosis progression, basic fibroblast growth factor-treatment significantly enhanced the therapeutic effect in association with elevated hepatocyte growth factor expression. Moreover, double immunofluorescence staining confirmed that the infused cells located in fibrosis area. Furthermore, co-culture with adipose tissue-derived mesenchymal stem cell led to induction of hepatic stellate cell apoptosis and enhanced hepatocyte proliferation. However, these effects were significantly weakened by knockdown of hepatocyte growth factor. Mechanism investigation revealed that co-culture with adipose tissue-derived mesenchymal stem cells activated c-jun N-terminal kinase-p53 signaling in hepatic stellate cell and promoted apoptosis. Basic fibroblast growth factor treatment enhanced the therapeutic effect of adipose tissue-derived mesenchymal stem cells, and secretion of hepatocyte growth factor from adipose tissue-derived mesenchymal stem cells plays a critical role in amelioration of liver injury and regression of fibrosis. © 2015 Journal of

  19. Adipose tissue macrophages: phenotypic plasticity and diversity in lean and obese states

    PubMed Central

    Morris, David L.; Singer, Kanakadurga; Lumeng, Carey N.

    2015-01-01

    Purpose of review Proinflammatory adipose tissue macrophages (ATMs) contribute to obesity-associated disease morbidity. We will provide an update of the current state of knowledge regarding the phenotypic and functional diversity of ATMs in lean and obese mice and humans. Recent findings The phenotypic diversity of ATMs is now known to include more than two types requiring an expansion of the simple concept of an M2 to M1 shift with obesity. Potential functions for ATMs now include the regulation of fibrosis and response to acute lipolysis in states of caloric restriction. Novel pathways that can potentiate ATM action have been identified, which include inflammasome activation and the response to lipodystrophic adipose tissue. Studies provide a new appreciation for the ability of ATMs to respond dynamically to the adipose tissue microenvironment. Summary ATMs play a key role in shaping the inflammatory milieu within adipose tissue, and it is now apparent that ATM heterogeneity is acutely shaped by the adipose tissue environment. To account for the new findings, we propose a new nomenclature for ATM subtypes that takes into account their diversity. PMID:21587064

  20. Adipose-derived stem cells for periodontal tissue regeneration.

    PubMed

    Tobita, Morikuni; Mizuno, Hiroshi

    2011-01-01

    Mesenchymal stem cells can effectively regenerate destroyed periodontal tissue. Because periodontal tissues are complex, mesenchymal stem cells that can differentiate into many tissue types would aid periodontal tissue regeneration. Indeed, periodontal tissue regeneration using mesenchymal stem cells derived from adipose tissue or bone marrow has been performed in experimental animal models, such as rat, canine, swine, and monkey. We have shown that rat periodontal tissue can be regenerated with adipose-derived stem cells. Adipose tissue contains a large number of stromal cells and is relatively easy to obtain in large quantities, and thus constitutes a very convenient stromal cell source. In this chapter, we introduce a rat periodontal tissue regeneration model using adipose-derived stem cells.

  1. Curative diet supplementation with a melon superoxide dismutase reduces adipose tissue in obese hamsters by improving insulin sensitivity.

    PubMed

    Carillon, Julie; Knabe, Lucie; Montalban, Anne; Stévant, Marie; Keophiphath, Mayoura; Lacan, Dominique; Cristol, Jean-Paul; Rouanet, Jean-Max

    2014-04-01

    Obesity-related metabolic syndrome is often associated with a decrease of insulin sensitivity, inducing several modifications. However, dietary antioxidants could prevent insulin resistance. We have previously shown the preventive effects of a melon superoxide dismutase (SOD) in obese hamsters. However, its antioxidant effects have never been studied on adipose tissue. We evaluated the effects of a 1-month curative supplementation with SODB on the adipose tissue of obese hamsters. Animals received either a standard diet or a cafeteria diet for 15 wk. Cafeteria diet induced obesity and related disorders, including insulin resistance and oxidative stress, in the abdominal adipose tissue. After SODB supplementation, the adipose tissue weight was decreased, probably by activating adipocytes lipolysis and thus reducing their size. SODB treatment also resulted in abdominal adipose tissue fibrosis reduction. Finally, SODB administration increased the expression of endogenous antioxidant enzymes and thus reduced oxidative stress and insulin resistance. The improvement of insulin sensitivity observed after SODB treatment could explain adipocyte lipolysis activation and fibrosis reduction. These findings demonstrate that a dietary SOD supplementation could be a useful strategy against obesity-related modifications in adipose tissue. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Impact of Growth Hormone on Regulation of Adipose Tissue.

    PubMed

    Troike, Katie M; Henry, Brooke E; Jensen, Elizabeth A; Young, Jonathan A; List, Edward O; Kopchick, John J; Berryman, Darlene E

    2017-06-18

    Increasing prevalence of obesity and obesity-related conditions worldwide has necessitated a more thorough understanding of adipose tissue (AT) and expanded the scope of research in this field. AT is now understood to be far more complex and dynamic than previously thought, which has also fueled research to reevaluate how hormones, such as growth hormone (GH), alter the tissue. In this review, we will introduce properties of AT important for understanding how GH alters the tissue, such as anatomical location of depots and adipokine output. We will provide an overview of GH structure and function and define several human conditions and cognate mouse lines with extremes in GH action that have helped shape our understanding of GH and AT. A detailed discussion of the GH/AT relationship will be included that addresses adipokine production, immune cell populations, lipid metabolism, senescence, differentiation, and fibrosis, as well as brown AT and beiging of white AT. A brief overview of how GH levels are altered in an obese state, and the efficacy of GH as a therapeutic option to manage obesity will be given. As we will reveal, the effects of GH on AT are numerous, dynamic and depot-dependent. © 2017 American Physiological Society. Compr Physiol 7:819-840, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  3. Cell supermarket: Adipose tissue as a source of stem cells

    USDA-ARS?s Scientific Manuscript database

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  4. Altered autophagy in human adipose tissues in obesity

    USDA-ARS?s Scientific Manuscript database

    Context: Autophagy is a housekeeping mechanism, involved in metabolic regulation and stress response, shown recently to regulate lipid droplets biogenesis/breakdown and adipose tissue phenotype. Objective: We hypothesized that in human obesity autophagy may be altered in adipose tissue in a fat d...

  5. Albumin induced cytokine expression in porcine adipose tissue explants

    USDA-ARS?s Scientific Manuscript database

    Albumin has historically been included in medium designed for use with adipose tissue when evaluating metabolism, gene expression or protein secretion. However, recent studies with mouse adipocytes (Ruan et al., J. Biol. Chem. 278:47585-47593, 2003) and human adipose tissue (Schlesinger et al., Ame...

  6. Adipose tissue and the reproductive axis: biological aspects

    USDA-ARS?s Scientific Manuscript database

    The discovery of leptin clearly demonstrated a relationship between body fat and the neuroendocrine axis since leptin influences appetite and the reproductive axis. Since adipose tissue is a primary source of leptin, adipose tissue is no longer considered as simply a depot to store fat. Recent find...

  7. Regulation of systemic energy homeostasis by serotonin in adipose tissues

    PubMed Central

    Oh, Chang-Myung; Namkung, Jun; Go, Younghoon; Shong, Ko Eun; Kim, Kyuho; Kim, Hyeongseok; Park, Bo-Yoon; Lee, Ho Won; Jeon, Yong Hyun; Song, Junghan; Shong, Minho; Yadav, Vijay K.; Karsenty, Gerard; Kajimura, Shingo; Lee, In-Kyu; Park, Sangkyu; Kim, Hail

    2015-01-01

    Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis. PMID:25864946

  8. Regulation of systemic energy homeostasis by serotonin in adipose tissues.

    PubMed

    Oh, Chang-Myung; Namkung, Jun; Go, Younghoon; Shong, Ko Eun; Kim, Kyuho; Kim, Hyeongseok; Park, Bo-Yoon; Lee, Ho Won; Jeon, Yong Hyun; Song, Junghan; Shong, Minho; Yadav, Vijay K; Karsenty, Gerard; Kajimura, Shingo; Lee, In-Kyu; Park, Sangkyu; Kim, Hail

    2015-04-13

    Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis.

  9. Non-invasive assessments of adipose tissue metabolism in vitro

    PubMed Central

    Abbott, Rosalyn D.; Borowsky, Francis E.; Quinn, Kyle P.; Bernstein, David L.; Georgakoudi, Irene; Kaplan, David L.

    2015-01-01

    Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with noninvasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored. PMID:26399988

  10. The Ontogeny of Brown Adipose Tissue.

    PubMed

    Symonds, Michael E; Pope, Mark; Budge, Helen

    2015-01-01

    There are three different types of adipose tissue (AT)-brown, white, and beige-that differ with stage of development, species, and anatomical location. Of these, brown AT (BAT) is the least abundant but has the greatest potential impact on energy balance. BAT is capable of rapidly producing large amounts of heat through activation of the unique uncoupling protein 1 (UCP1) located within the inner mitochondrial membrane. White AT is an endocrine organ and site of lipid storage, whereas beige AT is primarily white but contains some cells that possess UCP1. BAT first appears in the fetus around mid-gestation and is then gradually lost through childhood, adolescence, and adulthood. We focus on the interrelationships between adipocyte classification, anatomical location, and impact of diet in early life together with the extent to which fat development differs between the major species examined. Ultimately, novel dietary interventions designed to reactivate BAT could be possible.

  11. FEEDING INFLUENCES ADIPOSE TISSUE RESPONSES TO EXERCISE IN OVERWEIGHT MEN.

    PubMed

    Chen, Yung-Chih; Travers, Rebecca L; Walhin, Jean-Philippe; Gonzalez, Javier T; Koumanov, Francoise; Betts, James A; Thompson, Dylan

    2017-03-14

    Feeding profoundly affects metabolic responses to exercise in various tissues but the effect of feeding status on human adipose tissue responses to exercise has never been studied. Ten healthy overweight men aged 26 ± 5 years (mean ± SD) with a waist circumference of 105 ± 10 cm walked at 60% of maximum oxygen uptake under either FASTED or FED conditions in a randomised, counterbalanced design. Feeding comprised 648 ± 115 kcal 2 h before exercise. Blood samples were collected at regular intervals to examine changes in metabolic parameters and adipokine concentrations. Adipose tissue samples were obtained at baseline and one hour post-exercise to examine changes in adipose tissue mRNA expression and secretion of selected adipokines ex-vivo. Adipose tissue mRNA expression of PDK4, ATGL, HSL, FAT/CD36, GLUT4 and IRS2 in response to exercise were lower in FED compared to FASTED conditions (all p ≤ 0.05). Post-exercise adipose IRS2 protein was affected by feeding (p ≤ 0.05), but Akt2, AMPK, IRS1, GLUT4, PDK4 and HSL protein levels were not different. Feeding status did not impact serum and ex-vivo adipose secretion of IL-6, leptin or adiponectin in response to exercise. This is the first study to show that feeding prior to acute exercise affects post-exercise adipose tissue gene expression and we propose that feeding is likely to blunt long-term adipose tissue adaptation to regular exercise.

  12. Porous decellularized adipose tissue foams for soft tissue regeneration.

    PubMed

    Yu, Claire; Bianco, Juares; Brown, Cody; Fuetterer, Lydia; Watkins, John F; Samani, Abbas; Flynn, Lauren E

    2013-04-01

    To design tissue-specific bioscaffolds with well-defined properties and 3-D architecture, methods were developed for preparing porous foams from enzyme-solubilized human decellularized adipose tissue (DAT). Additionally, a technique was established for fabricating "bead foams" comprised of interconnected networks of porous DAT beads fused through a controlled freeze-thawing and lyophilization procedure. In characterization studies, the foams were stable without the need for chemical crosslinking, with properties that could be tuned by controlling the protein concentration and freezing rate during synthesis. Adipogenic differentiation studies with human adipose-derived stem cells (ASCs) suggested that stiffness influenced ASC adipogenesis on the foams. In support of our previous work with DAT scaffolds and microcarriers, the DAT foams and bead foams strongly supported adipogenesis and were also adipo-inductive, as demonstrated by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, endpoint RT-PCR analysis of adipogenic gene expression, and intracellular lipid accumulation. Adipogenic differentiation was enhanced on the microporous DAT foams, potentially due to increased cell-cell interactions in this group. In vivo assessment in a subcutaneous Wistar rat model demonstrated that the DAT bioscaffolds were well tolerated and integrated into the host tissues, supporting angiogenesis and adipogenesis. The DAT-based foams induced a strong angiogenic response, promoted inflammatory cell migration and gradually resorbed over the course of 12 weeks, demonstrating potential as scaffolds for wound healing and soft tissue regeneration.

  13. Triglyceride Synthesis in Epididymal Adipose Tissue

    PubMed Central

    Bederman, Ilya R.; Foy, Steven; Chandramouli, Visvanathan; Alexander, James C.; Previs, Stephen F.

    2009-01-01

    The obesity epidemic has generated interest in determining the contribution of various pathways to triglyceride synthesis, including an elucidation of the origin of triglyceride fatty acids and triglyceride glycerol. We hypothesized that a dietary intervention would demonstrate the importance of using glucose versus non-glucose carbon sources to synthesize triglycerides in white adipose tissue. C57BL/6J mice were fed either a low fat, high carbohydrate (HC) diet or a high fat, carbohydrate-free (CF) diet and maintained on 2H2O (to determine total triglyceride dynamics) or infused with [6,6-2H]glucose (to quantify the contribution of glucose to triglyceride glycerol). The 2H2O labeling data demonstrate that although de novo lipogenesis contributed ∼80% versus ∼5% to the pool of triglyceride palmitate in HC- versus CF-fed mice, the epididymal adipose tissue synthesized ∼1.5-fold more triglyceride in CF- versus HC-fed mice, i.e. 37 ± 5 versus 25 ± 3 μmol × day–1. The [6,6-2H]glucose labeling data demonstrate that ∼69 and ∼28% of triglyceride glycerol is synthesized from glucose in HC- versus CF-fed mice, respectively. Although these data are consistent with the notion that non-glucose carbon sources (e.g. glyceroneogenesis) can make substantial contributions to the synthesis of triglyceride glycerol (i.e. the absolute synthesis of triglyceride glycerol from non-glucose substrates increased from ∼8 to ∼26 μmol × day–1 in HC- versus CF-fed mice), these observations suggest (i) the importance of nutritional status in affecting flux rates and (ii) the operation of a glycerol-glucose cycle. PMID:19114707

  14. Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue.

    PubMed

    Šram, Miroslav; Vrselja, Zvonimir; Lekšan, Igor; Ćurić, Goran; Selthofer-Relatić, Kristina; Radić, Radivoje

    2015-01-01

    Introduction. Adipose tissue is the largest endocrine organ, composed of subcutaneous (SAT) and visceral adipose tissue (VAT), the latter being highly associated with coronary artery disease (CAD). Expansion of epicardial adipose tissue (EAT) is linked to CAD. One way of assessing the CAD risk is with low-cost anthropometric measures, although they are inaccurate and cannot discriminate between VAT and SAT. The aim of this study is to evaluate (1) the relationship between EAT thickness, SAT thickness and anthropometric measures in a cohort of patients assessed at the cardiology unit and (2) determine predictive power of anthropometric measures and EAT and SAT thickness in establishment of CAD. Methods. Anthropometric measures were obtained from 53 CAD and 42 non-CAD patients. Vascular and structural statuses were obtained with coronarography and echocardiography, as well as measurements of the EAT and SAT thickness. Results. Anthropometric measures showed moderate positive correlation with EAT and SAT thickness. Anthropometric measures and SAT follow nonlinear S curve relationship with EAT. Strong nonlinear power curve relationship was observed between EAT and SAT thinner than 10 mm. Anthropometric measures and EAT and SAT were poor predictors of CAD. Conclusion. Anthropometric measures and SAT have nonlinear relationship with EAT. EAT thickness and anthropometric measures have similar CAD predictive value.

  15. Role of adipose tissue in the pathogenesis of cardiac arrhythmias.

    PubMed

    Samanta, Rahul; Pouliopoulos, Jim; Thiagalingam, Aravinda; Kovoor, Pramesh

    2016-01-01

    Epicardial adipose tissue is present in normal healthy individuals. It is a unique fat depot that, under physiologic conditions, plays a cardioprotective role. However, excess epicardial adipose tissue has been shown to be associated with prevalence and severity of atrial fibrillation. In arrhythmogenic right ventricular cardiomyopathy and myotonic dystrophy, fibrofatty infiltration of the myocardium is associated with ventricular arrhythmias. In the ovine model of ischemic cardiomyopathy, the presence of intramyocardial adipose or lipomatous metaplasia has been associated with increased propensity to ventricular tachycardia. These observations suggest a role of adipose tissue in the pathogenesis of cardiac arrhythmias. In this article, we review the role of cardiac adipose tissue in various cardiac arrhythmias and discuss the possible pathophysiologic mechanisms.

  16. Is adipose tissue metabolically different at different sites?

    PubMed

    Gil, Angel; Olza, Josune; Gil-Campos, Mercedes; Gomez-Llorente, Carolina; Aguilera, Concepción M

    2011-09-01

    This review focuses on metabolic differences of adipose tissue at different sites of the body, with emphasis in pediatrics. Adipose tissue is composed of various cell types, which include adipocytes and other cells of the stromal vascular fraction such as preadipocytes, blood cells, endothelial cells and macrophages. Mammals have two main types of adipose tissue: white adipose tissue (WAT), and brown adipose tissue (BAT), each of which possesses unique cell autonomous properties. WAT and BAT differ at the functional, as well as the morphological and molecular levels. WAT accumulates surplus energy mainly in the form of triacylglycerols and BAT dissipates energy directly as heat. Recently, functional BAT in humans has been located in the neck, supraclavicular, mediastinal and interscapular areas. WAT is distributed throughout the body in the form of two major types: subcutaneous adipose tissue (SWAT) and the intra-abdominal visceral adipose tissue (VWAT). VWAT tissue is associated with insulin resistance, diabetes mellitus, dyslipidaemia, hypertension, atherosclerosis, hepatic steatosis, and overall mortality whereas SWAT and BAT have intrinsic beneficial metabolic properties. Subcutaneous and visceral adipocytes derive from different progenitor cells that exhibit a different gene expression pattern. SWAT responds better to the antilipolytic effects of insulin and other hormones, secrets more adiponectin and less inflammatory cytokines, and is differentially affected by molecules involved in signal transduction as well as drugs compared with VWAT. Current research is investigating various approaches of BAT and SWAT transplantation, including new sources of adipocyte progenitors. This may be important for the potential treatment of childhood obesity.

  17. Adipose tissue remodeling in lipedema: adipocyte death and concurrent regeneration.

    PubMed

    Suga, Hirotaka; Araki, Jun; Aoi, Noriyuki; Kato, Harunosuke; Higashino, Takuya; Yoshimura, Kotaro

    2009-12-01

    Lipedema is a disease with unknown etiology presenting as bilateral and symmetric enlargement of the lower extremities due to subcutaneous deposition of the adipose tissue. Here we describe the histopathological features of the lipedema tissue and nonaffected adipose tissue obtained from a typical patient with severe lipedema. Immunohistochemical analyses indicated degenerative and regenerative changes of the lipedema tissue, characterized by crown-like structures (necrotizing adipocytes surrounded by infiltrating CD68+ macrophages; a feature commonly seen in obese adipose tissue) and proliferation of adipose-derived stem/progenitor/stromal cells (Ki67+CD34+ cells), respectively. These findings suggested increased adipogenesis in the lipedema tissue, which may further lead to hypoxia similar to that seen in obesity, resulting in adipocyte necrosis and macrophage recruitment. The confinement to the lower extremities and the difference from systemic obesity warrants further elucidation in future studies.

  18. Brown adipose tissue as a secretory organ.

    PubMed

    Villarroya, Francesc; Cereijo, Rubén; Villarroya, Joan; Giralt, Marta

    2017-01-01

    Brown adipose tissue (BAT) is the main site of adaptive thermogenesis and experimental studies have associated BAT activity with protection against obesity and metabolic diseases, such as type 2 diabetes mellitus and dyslipidaemia. Active BAT is present in adult humans and its activity is impaired in patients with obesity. The ability of BAT to protect against chronic metabolic disease has traditionally been attributed to its capacity to utilize glucose and lipids for thermogenesis. However, BAT might also have a secretory role, which could contribute to the systemic consequences of BAT activity. Several BAT-derived molecules that act in a paracrine or autocrine manner have been identified. Most of these factors promote hypertrophy and hyperplasia of BAT, vascularization, innervation and blood flow, processes that are all associated with BAT recruitment when thermogenic activity is enhanced. Additionally, BAT can release regulatory molecules that act on other tissues and organs. This secretory capacity of BAT is thought to be involved in the beneficial effects of BAT transplantation in rodents. Fibroblast growth factor 21, IL-6 and neuregulin 4 are among the first BAT-derived endocrine factors to be identified. In this Review, we discuss the current understanding of the regulatory molecules (the so-called brown adipokines or batokines) that are released by BAT that influence systemic metabolism and convey the beneficial metabolic effects of BAT activation. The identification of such adipokines might also direct drug discovery approaches for managing obesity and its associated chronic metabolic diseases.

  19. Adipose tissue and skeletal muscle blood flow during mental stress

    SciTech Connect

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  20. Adipose tissue macrophages: the inflammatory link between obesity and cancer?

    PubMed

    Wagner, Marek; Samdal Steinskog, Eli Sihn; Wiig, Helge

    2015-04-01

    Obesity has increased dramatically over the last three decades. Thus, epidemiological evidence linking obesity and cancer has ignited our interest in the relationship between adipose tissue mass and cancer development. Obesity is defined as an excess of adipose tissue that is typified by a chronic, low-grade inflammatory response instigated by macrophage infiltration. Therefore, in this review, we will discuss the putative causal relationship between obesity-induced chronic inflammation and cancer with particular focus on adipose tissue macrophages. Chronic, low-grade inflammation has long been associated with cancer initiation, promotion and progression. Therefore, signals derived from adipose tissue macrophages may play a significant role in carcinogenesis. In this review we will discuss the molecular mechanisms of cancer development in obesity and highlight possible therapeutic strategies aiming at adipose tissue macrophages. The strong correlation between tumor-associated macrophage infiltration and tumor growth and progression emphasizes the value of macrophages as an effective therapeutic target. It remains to be deciphered to what extent adipose tissue macrophages contribute to these processes, especially in tumors growing within or adjacent to adipose tissue. More effort should also be placed on elucidating macrophage differences between humans and mice that may lead to the development of more effective diagnostic and therapeutic strategies.

  1. Proline oxidase-adipose triglyceride lipase pathway restrains adipose cell death and tissue inflammation.

    PubMed

    Lettieri Barbato, D; Aquilano, K; Baldelli, S; Cannata, S M; Bernardini, S; Rotilio, G; Ciriolo, M R

    2014-01-01

    The nutrient-sensing lipolytic enzyme adipose triglyceride lipase (ATGL) has a key role in adipose tissue function, and alterations in its activity have been implicated in many age-related metabolic disorders. In adipose tissue reduced blood vessel density is related to hypoxia state, cell death and inflammation. Here we demonstrate that adipocytes of poorly vascularized enlarged visceral adipose tissue (i.e. adipose tissue of old mice) suffer from limited nutrient delivery. In particular, nutrient starvation elicits increased activity of mitochondrial proline oxidase/dehydrogenase (POX/PRODH) that is causal in triggering a ROS-dependent induction of ATGL. We demonstrate that ATGL promotes the expression of genes related to mitochondrial oxidative metabolism (peroxisome proliferator-activated receptor-α, peroxisome proliferator-activated receptor-γ coactivator-1α), thus setting a metabolic switch towards fat utilization that supplies energy to starved adipocytes and prevents cell death, as well as adipose tissue inflammation. Taken together, these results identify ATGL as a stress resistance mediator in adipocytes, restraining visceral adipose tissue dysfunction typical of age-related metabolic disorders.

  2. Cell Supermarket: Adipose Tissue as a Source of Stem Cells

    PubMed Central

    Dodson, M.V.; Wei, S.; Duarte, M.; Du, M.; Jiang, Z.; Hausman, G.J.; Bergen, W.G.

    2013-01-01

    Adipose tissue is derived from numerous sources, and in recent years this tissue has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical and scientific applications. The focus of this paper is to reflect on this area of research and to provide a list of potential (future) research areas. PMID:25031654

  3. Total DDT and dieldrin content of human adipose tissue

    SciTech Connect

    Ahmad, N.; Harsas, W.; Marolt, R.S.; Morton, M.; Pollack, J.K.

    1988-12-01

    As far as the authors could ascertain only 4 well-documented analytical studies have been carried out in Australia determining the total DDT and dieldrin content of human adipose tissue. The latest of these studies was published over 16 years ago. Therefore it is timely and important to re-examine the total DDT and dieldrin concentration within the adipose tissue of the Australian population. The present investigation has analyzed 290 samples of human adipose tissue obtained from Westmead Hospital situated in an outer suburb of Sydney, New South Wales for their content of total DDT and dieldrin.

  4. Self-synthesized extracellular matrix contributes to mature adipose tissue regeneration in a tissue engineering chamber.

    PubMed

    Zhan, Weiqing; Chang, Qiang; Xiao, Xiaolian; Dong, Ziqing; Zeng, Zhaowei; Gao, Jianhua; Lu, Feng

    2015-01-01

    The development of an engineered adipose tissue substitute capable of supporting reliable, predictable, and complete fat tissue regeneration would be of value in plastic and reconstructive surgery. For adipogenesis, a tissue engineering chamber provides an optimized microenvironment that is both efficacious and reproducible; however, for reasons that remain unclear, tissues regenerated in a tissue engineering chamber consist mostly of connective rather than adipose tissue. Here, we describe a chamber-based system for improving the yield of mature adipose tissue and discuss the potential mechanism of adipogenesis in tissue-chamber models. Adipose tissue flaps with independent vascular pedicles placed in chambers were implanted into rabbits. Adipose volume increased significantly during the observation period (week 1, 2, 3, 4, 16). Histomorphometry revealed mature adipose tissue with signs of adipose tissue remolding. The induced engineered constructs showed high-level expression of adipogenic (peroxisome proliferator-activated receptor γ), chemotactic (stromal cell-derived factor 1a), and inflammatory (interleukin 1 and 6) genes. In our system, the extracellular matrix may have served as a scaffold for cell migration and proliferation, allowing mature adipose tissue to be obtained in a chamber microenvironment without the need for an exogenous scaffold. Our results provide new insights into key elements involved in the early development of adipose tissue regeneration.

  5. Adipose Tissue: Sanctuary for HIV/SIV Persistence and Replication.

    PubMed

    Pallikkuth, Suresh; Mohan, Mahesh

    2015-12-01

    This commentary highlights new findings from a recent study identifying adipose tissue as a potential HIV reservoir and a major site of inflammation during chronic human/simian immunodeficiency virus (HIV/SIV) infection. A concise discussion about upcoming challenges and new research avenues for reducing chronic adipose inflammation during HIV/SIV infection is presented.

  6. Brain-adipose tissue cross talk.

    PubMed

    Bartness, Timothy J; Kay Song, C; Shi, Haifei; Bowers, Robert R; Foster, Michelle T

    2005-02-01

    While investigating the reversible seasonal obesity of Siberian hamsters, direct sympathetic nervous system (SNS) postganglionic innervation of white adipose tissue (WAT) has been demonstrated using anterograde and retrograde tract tracers. The primary function of this innervation is lipid mobilization. The brain SNS outflow to WAT has been defined using the pseudorabies virus (PRV), a retrograde transneuronal tract tracer. These PRV-labelled SNS outflow neurons are extensively co-localized with melanocortin-4 receptor mRNA, which, combined with functional data, suggests their involvement in lipolysis. The SNS innervation of WAT also regulates fat cell number, as noradrenaline inhibits and WAT denervation stimulates fat cell proliferation in vitro and in vivo respectively. The sensory innervation of WAT has been demonstrated by retrograde tract tracing, electrophysiological recording and labelling of the sensory-associated neuropeptide calcitonin gene-related peptide in WAT. Local injections of the sensory nerve neurotoxin capsaicin into WAT selectively destroy this innervation. Just as surgical removal of WAT pads triggers compensatory increases in lipid accretion by non-excised WAT depots, capsaicin-induced sensory denervation triggers increases in lipid accretion of non-capsaicin-injected WAT depots, suggesting that these nerves convey information about body fat levels to the brain. Finally, parasympathetic nervous system innervation of WAT has been suggested, but the recent finding of no WAT immunoreactivity for the possible parasympathetic marker vesicular acetylcholine transporter (VAChT) argues against this claim. Collectively, these data suggest several roles for efferent and afferent neural innervation of WAT in body fat regulation.

  7. Adipose tissue lymphocytes: types and roles.

    PubMed

    Caspar-Bauguil, S; Cousin, B; Bour, S; Casteilla, L; Castiella, L; Penicaud, L; Carpéné, C

    2009-12-01

    Besides adipocytes, specialized in lipid handling and involved in energy balance regulation, white adipose tissue (WAT) is mainly composed of other cell types among which lymphocytes represent a non-negligible proportion. Different types of lymphocytes (B, alphabetaT, gammadeltaT, NK and NKT) have been detected in WAT of rodents or humans, and vary in their relative proportion according to the fat pad anatomical location. The lymphocytes found in intra-abdominal, visceral fat pads seem representative of innate immunity, while those present in subcutaneous fat depots are part of adaptive immunity, at least in mice. Both the number and the activity of the different lymphocyte classes, except B lymphocytes, are modified in obesity. Several of these modifications in the relative proportions of the lymphocyte classes depend on the degree of obesity, or on leptin concentration, or even fat depot anatomical location. Recent studies suggest that alterations of lymphocyte number and composition precede the macrophage increase and the enhanced inflammatory state of WAT found in obesity. Lymphocytes express receptors to adipokines while several proinflammatory chemokines are produced in WAT, rendering intricate crosstalk between fat and immune cells. However, the evidences and controversies available so far are in favour of an involvement of lymphocytes in the control of the number of other cells in WAT, either adipocytes or immune cells and of their secretory and metabolic activities. Therefore, immunotherapy deserves to be considered as a promising approach to treat the endocrino-metabolic disorders associated to excessive fat mass development.

  8. Hypothalamic control of brown adipose tissue thermogenesis

    PubMed Central

    Labbé, Sebastien M.; Caron, Alexandre; Lanfray, Damien; Monge-Rofarello, Boris; Bartness, Timothy J.; Richard, Denis

    2015-01-01

    It has long been known, in large part from animal studies, that the control of brown adipose tissue (BAT) thermogenesis is insured by the central nervous system (CNS), which integrates several stimuli in order to control BAT activation through the sympathetic nervous system (SNS). SNS-mediated BAT activity is governed by diverse neurons found in brain structures involved in homeostatic regulations and whose activity is modulated by various factors including oscillations of energy fluxes. The characterization of these neurons has always represented a challenging issue. The available literature suggests that the neuronal circuits controlling BAT thermogenesis are largely part of an autonomic circuitry involving the hypothalamus, brainstem and the SNS efferent neurons. In the present review, we recapitulate the latest progresses in regards to the hypothalamic regulation of BAT metabolism. We briefly addressed the role of the thermoregulatory pathway and its interactions with the energy balance systems in the control of thermogenesis. We also reviewed the involvement of the brain melanocortin and endocannabinoid systems as well as the emerging role of steroidogenic factor 1 (SF1) neurons in BAT thermogenesis. Finally, we examined the link existing between these systems and the homeostatic factors that modulate their activities. PMID:26578907

  9. Central Control of Brown Adipose Tissue Thermogenesis

    PubMed Central

    Morrison, Shaun F.; Madden, Christopher J.; Tupone, Domenico

    2011-01-01

    Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. Mitochondrial oxidation in brown adipose tissue (BAT) is a significant source of neurally regulated metabolic heat production in many species from mouse to man. BAT thermogenesis is regulated by neural networks in the central nervous system which responds to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate BAT sympathetic nerve activity. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates BAT thermogenesis and includes the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E2, to increase body temperature during fever. The cold thermal afferent circuit from cutaneous thermal receptors, through second-order thermosensory neurons in the dorsal horn of the spinal cord ascends to activate neurons in the lateral parabrachial nucleus which drive GABAergic interneurons in the preoptic area (POA) to inhibit warm-sensitive, inhibitory output neurons of the POA. The resulting disinhibition of BAT thermogenesis-promoting neurons in the dorsomedial hypothalamus activates BAT sympathetic premotor neurons in the rostral ventromedial medulla, including the rostral raphe pallidus, which provide excitatory, and possibly disinhibitory, inputs to spinal sympathetic circuits to drive BAT thermogenesis. Other recently recognized central sites influencing BAT thermogenesis and energy expenditure are also described. PMID:22389645

  10. Automated segmentation of abdominal subcutaneous adipose tissue and visceral adipose tissue in obese adolescent in MRI.

    PubMed

    Hui, Steve C N; Zhang, Teng; Shi, Lin; Wang, Defeng; Ip, Chei-Bing; Chu, Winnie C W

    2017-10-07

    To develop a reliable and reproducible automatic technique to segment and measure SAT and VAT based on MRI. Chemical-shift water-fat MRI were taken on twelve obese adolescents (mean age: 16.1±0.6, BMI: 31.3±2.3) recruited under the health monitoring program. The segmentation applied a spoke template created using Midpoint Circle algorithm followed by Bresenham's Line algorithm to detect narrow connecting regions between subcutaneous and visceral adipose tissues. Upon satisfaction of given constrains, a cut was performed to separate SAT and VAT. Bone marrow was consisted in pelvis and femur. By using the intensity difference in T2*, a mask was created to extract bone marrow adipose tissue (MAT) from VAT. Validation was performed using a semi-automatic method. Pearson coefficient, Bland-Altman plot and intra-class coefficient (ICC) were applied to measure accuracy and reproducibility. Pearson coefficient indicated that results from the proposed method achieved high correlation with the semi-automatic method. Bland-Altman plot and ICC showed good agreement between the two methods. Lowest ICC was obtained in VAT segmentation at lower regions of the abdomen while the rests were all above 0.80. ICC (0.98-0.99) also indicated the proposed method performed good reproducibility. No user interaction was required during execution of the algorithm and the segmented images and volume results were given as output. This technique utilized the feature in the regions connecting subcutaneous and visceral fat and T2* intensity difference in bone marrow to achieve volumetric measurement of various types of adipose tissue in abdominal site. Copyright © 2017. Published by Elsevier Inc.

  11. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues.

    PubMed

    Chen, Yu-Jen; Liu, Hui-Yu; Chang, Yun-Tsui; Cheng, Ying-Hung; Mersmann, Harry J; Kuo, Wen-Hung; Ding, Shih-Torng

    2016-03-31

    Obesity is an unconstrained worldwide epidemic. Unraveling molecular controls in adipose tissue development holds promise to treat obesity or diabetes. Although numerous immortalized adipogenic cell lines have been established, adipose-derived stem cells from the stromal vascular fraction of subcutaneous white adipose tissues provide a reliable cellular system ex vivo much closer to adipose development in vivo. Pig adipose-derived stem cells (pADSC) are isolated from 7- to 9-day old piglets. The dorsal white fat depot of porcine subcutaneous adipose tissues is sliced, minced and collagenase digested. These pADSC exhibit strong potential to differentiate into adipocytes. Moreover, the pADSC also possess multipotency, assessed by selective stem cell markers, to differentiate into various mesenchymal cell types including adipocytes, osteocytes, and chondrocytes. These pADSC can be used for clarification of molecular switches in regulating classical adipocyte differentiation or in direction to other mesenchymal cell types of mesodermal origin. Furthermore, extended lineages into cells of ectodermal and endodermal origin have recently been achieved. Therefore, pADSC derived in this protocol provide an abundant and assessable source of adult mesenchymal stem cells with full multipotency for studying adipose development and application to tissue engineering of regenerative medicine.

  12. The role of dietary fat in adipose tissue metabolism.

    PubMed

    Fernández-Quintela, Alfredo; Churruca, Itziar; Portillo, Maria Puy

    2007-10-01

    Energy intake and expenditure tend on average to remain adjusted to each other in order to maintain a stable body weight, which is only likely to be sustained if the fuel mix oxidised is equivalent to the nutrient content of the diet. Whereas protein and carbohydrate degradation and oxidation are closely adjusted to their intakes, fat balance regulation is less precise and that fat is more likely to be stored than oxidised. It has been demonstrated that dietary fatty acids have an influence not only on the fatty acid composition of membrane phospholipids, thus modulating several metabolic processes that take place in the adipocyte, but also on the composition and the quantity of different fatty acids in adipose tissue. Moreover, dietary fatty acids also modulate eicosanoid presence, which have hormone-like activities in lipid metabolism regulation in adipose tissue. Until recently, the adipocyte has been considered to be no more than a passive tissue for storage of excess energy. However, there is now compelling evidence that adipocytes have a role as endocrine secretory cells. Some of the adipokines produced by adipose tissue, such as leptin and adiponectin, act on adipose tissue in an autocrine/paracrine manner to regulate adipocyte metabolism. Furthermore, dietary fatty acids may influence the expression of adipokines. The nutrients are among the most influential of the environmental factors that determine the way adipose tissue genes are expressed by functioning as regulators of gene transcription. Therefore, not only dietary fat amount but also dietary fat composition influence adipose tissue metabolism.

  13. Metabolic syndrome pathophysiology: the role of adipose tissue

    USDA-ARS?s Scientific Manuscript database

    Several physiopathological explanations for the metabolic syndrome have been proposed involving insulin resistance, chronic inflammation and ectopic fat accumulation following adipose tissue saturation. However, current concepts create several paradoxes, including limited cardiovascular risk reducti...

  14. Adipose tissue inflammation and metabolic dysfunction: a clinical perspective.

    PubMed

    Tam, Charmaine S; Redman, Leanne M

    2013-09-01

    Obesity is characterized by a state of chronic low-grade inflammation due to increased immune cells, specifically infiltrated macrophages into adipose tissue, which in turn secrete a range of proinflammatory mediators. This nonselective low-grade inflammation of adipose tissue is systemic in nature and can impair insulin signaling pathways, thus, increasing the risk of developing insulin resistance and type 2 diabetes. The aim of this review is to provide an update on clinical studies examining the role of adipose tissue in the development of obesity-associated complications in humans. We will discuss adipose tissue inflammation during different scenarios of energy imbalance and metabolic dysfunction including obesity and overfeeding, weight loss by calorie restriction or bariatric surgery, and conditions of insulin resistance (diabetes, polycystic ovarian syndrome).

  15. Segmentation and quantification of adipose tissue by magnetic resonance imaging

    PubMed Central

    Chen, Jun; Shen, Wei

    2016-01-01

    In this brief review, introductory concepts in animal and human adipose tissue segmentation using proton magnetic resonance imaging (MRI) and computed tomography are summarized in the context of obesity research. Adipose tissue segmentation and quantification using spin relaxation-based (e.g., T1-weighted, T2-weighted), relaxometry-based (e.g., T1-, T2-, T2*-mapping), chemical-shift selective, and chemical-shift encoded water–fat MRI pulse sequences are briefly discussed. The continuing interest to classify subcutaneous and visceral adipose tissue depots into smaller sub-depot compartments is mentioned. The use of a single slice, a stack of slices across a limited anatomical region, or a whole body protocol is considered. Common image post-processing steps and emerging atlas-based automated segmentation techniques are noted. Finally, the article identifies some directions of future research, including a discussion on the growing topic of brown adipose tissue and related segmentation considerations. PMID:26336839

  16. Adipose-derived stem cells and periodontal tissue engineering.

    PubMed

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  17. [The adipose tissue of the orbit. Anatomic classification, therapeutic deductions].

    PubMed

    Gola, R; Carreau, J P; Faissal, A

    1995-01-01

    There are two types of adipose tissue in the orbit. The yellow fat and the more abundant white, or orbital fat. Orbital fat cannot be dissociated from the contents of the orbit and plays an important role in ocular physiology and oculomotricity. Orbital fat is essential for aesthetic orbits. Graves' disease and anophthalmia. Adipose tissue in the orbit is particularly important in protecting the ocular globe from lateral wall trauma.

  18. Gene Expression Signature in Adipose Tissue of Acromegaly Patients.

    PubMed

    Hochberg, Irit; Tran, Quynh T; Barkan, Ariel L; Saltiel, Alan R; Chandler, William F; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly.

  19. THE POTENTIAL ROLES FOR ADIPOSE TISSUE IN PERIPHERAL NERVE REGENERATION

    PubMed Central

    Walocko, Frances M.; Khouri, Roger K.; Urbanchek, Melanie G.; Levi, Benjamin; Cederna, Paul S.

    2016-01-01

    Introduction This review summarizes current understanding about the role of adipose-derived tissues in peripheral nerve regeneration and discusses potential advances that would translate this approach into the clinic. Methods We searched PubMed for in vivo, experimental studies on the regenerative effects of adipose-derived tissues on peripheral nerve injuries. We summarized the methods and results for the 42 experiments. Results Adipose-derived tissues enhanced peripheral nerve regeneration in 86% of the experiments. Ninety-five percent evaluated purified, cultured, or differentiated adipose tissue. These approaches have regulatory and scaling burdens, restricting clinical usage. Only one experiment tested the ability of adipose tissue to enhance nerve regeneration in conjunction with nerve autografts, the clinical gold standard. Conclusion Scientific studies illustrate that adipose-derived tissues enhance regeneration of peripheral nerves. Before this approach achieves clinical acceptance, fat processing must become automated and regulatory approval achieved. Animal studies using whole fat grafts are greatly needed for clinical translation. PMID:26773850

  20. HOXC10 suppresses browning of white adipose tissues

    PubMed Central

    Ng, Yvonne; Tan, Shi-Xiong; Chia, Sook Yoong; Tan, Hwee Yim Angeline; Gun, Sin Yee; Sun, Lei; Hong, Wanjin; Han, Weiping

    2017-01-01

    Given that increased thermogenesis in white adipose tissue, also known as browning, promotes energy expenditure, significant efforts have been invested to determine the molecular factors involved in this process. Here we show that HOXC10, a homeobox domain-containing transcription factor expressed in subcutaneous white adipose tissue, is a suppressor of genes involved in browning white adipose tissue. Ectopic expression of HOXC10 in adipocytes suppresses brown fat genes, whereas the depletion of HOXC10 in adipocytes and myoblasts increases the expression of brown fat genes. The protein level of HOXC10 inversely correlates with brown fat genes in subcutaneous white adipose tissue of cold-exposed mice. Expression of HOXC10 in mice suppresses cold-induced browning in subcutaneous white adipose tissue and abolishes the beneficial effect of cold exposure on glucose clearance. HOXC10 exerts its effect, at least in part, by suppressing PRDM16 expression. The results support that HOXC10 is a key negative regulator of the process of browning in white adipose tissue. PMID:28186086

  1. Adipose Tissue Oxygenation in Obesity: A Matter of Cardiovascular Risk?

    PubMed

    Landini, Linda; Honka, Miikka-Juhani; Ferrannini, Ele; Nuutila, Pirjo

    2016-01-01

    Obesity, a chronic low-grade inflammation disorder characterized by an expansion in adipose tissue mass, is rapidly expanding worldwide leading to an increase in the incidence of comorbidities such as insulin resistance, type 2 diabetes and cardiovascular diseases. This has led to a renewed interest in the adipose tissue function, historically considered as a passive fat storage. It is now well established that adipose tissue is an organ with an active role in production and release of a variety of molecules called adipocytokines. Dysregulated production of adipocytokines seems to be responsible for the pathogenesis of insulin resistance and type 2 diabetes; however, the mechanisms are still unclear. Hypoxia, that occurs when adipocytes expand in obesity, has been proposed as a possible cause of adipose tissue inflammation. On the other hand, recent studies have shown that adipose tissue oxygen tension was actually higher (hyperoxia) than normal and associated with insulin resistance in obesity, despite a reduction in blood flow. This might be explained by the role of mitochondrial oxygen consumption. Hence, further studies are needed to understand the role of adipose tissue oxygenation and perfusion in obesity to assess pathophysiology and novel opportunities for treating the diseases.

  2. Gene Expression Signature in Adipose Tissue of Acromegaly Patients

    PubMed Central

    Hochberg, Irit; Tran, Quynh T.; Barkan, Ariel L.; Saltiel, Alan R.; Chandler, William F.; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly. PMID:26087292

  3. Visceral adipose tissue but not subcutaneous adipose tissue is associated with urine and serum metabolites.

    PubMed

    Schlecht, Inga; Gronwald, Wolfram; Behrens, Gundula; Baumeister, Sebastian E; Hertel, Johannes; Hochrein, Jochen; Zacharias, Helena U; Fischer, Beate; Oefner, Peter J; Leitzmann, Michael F

    2017-01-01

    Obesity is a complex multifactorial phenotype that influences several metabolic pathways. Yet, few studies have examined the relations of different body fat compartments to urinary and serum metabolites. Anthropometric phenotypes (visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), the ratio between VAT and SAT (VSR), body mass index (BMI), waist circumference (WC)) and urinary and serum metabolite concentrations measured by nuclear magnetic resonance spectroscopy were measured in a population-based sample of 228 healthy adults. Multivariable linear and logistic regression models, corrected for multiple testing using the false discovery rate, were used to associate anthropometric phenotypes with metabolites. We adjusted for potential confounding variables: age, sex, smoking, physical activity, menopausal status, estimated glomerular filtration rate (eGFR), urinary glucose, and fasting status. In a fully adjusted logistic regression model dichotomized for the absence or presence of quantifiable metabolite amounts, VAT, BMI and WC were inversely related to urinary choline (ß = -0.18, p = 2.73*10-3), glycolic acid (ß = -0.20, 0.02), and guanidinoacetic acid (ß = -0.12, p = 0.04), and positively related to ethanolamine (ß = 0.18, p = 0.02) and dimethylamine (ß = 0.32, p = 0.02). BMI and WC were additionally inversely related to urinary glutamine and lactic acid. Moreover, WC was inversely associated with the detection of serine. VAT, but none of the other anthropometric parameters, was related to serum essential amino acids, such as valine, isoleucine, and phenylalanine among men. Compared to other adiposity measures, VAT demonstrated the strongest and most significant relations to urinary and serum metabolites. The distinct relations of VAT, SAT, VSR, BMI, and WC to metabolites emphasize the importance of accurately differentiating between body fat compartments when evaluating the potential role of metabolic regulation in the development of obesity

  4. Adipose Natural Killer Cells Regulate Adipose Tissue Macrophages to Promote Insulin Resistance in Obesity.

    PubMed

    Lee, Byung-Cheol; Kim, Myung-Sunny; Pae, Munkyong; Yamamoto, Yasuhiko; Eberlé, Delphine; Shimada, Takeshi; Kamei, Nozomu; Park, Hee-Sook; Sasorith, Souphatta; Woo, Ju Rang; You, Jia; Mosher, William; Brady, Hugh J M; Shoelson, Steven E; Lee, Jongsoon

    2016-04-12

    Obesity-induced inflammation mediated by immune cells in adipose tissue appears to participate in the pathogenesis of insulin resistance. We show that natural killer (NK) cells in adipose tissue play an important role. High-fat diet (HFD) increases NK cell numbers and the production of proinflammatory cytokines, notably TNFα, in epididymal, but not subcutaneous, fat depots. When NK cells were depleted either with neutralizing antibodies or genetic ablation in E4bp4(+/-) mice, obesity-induced insulin resistance improved in parallel with decreases in both adipose tissue macrophage (ATM) numbers, and ATM and adipose tissue inflammation. Conversely, expansion of NK cells following IL-15 administration or reconstitution of NK cells into E4bp4(-/-) mice increased both ATM numbers and adipose tissue inflammation and exacerbated HFD-induced insulin resistance. These results indicate that adipose NK cells control ATMs as an upstream regulator potentially by producing proinflammatory mediators, including TNFα, and thereby contribute to the development of obesity-induced insulin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth.

    PubMed

    Jo, Junghyo; Gavrilova, Oksana; Pack, Stephanie; Jou, William; Mullen, Shawn; Sumner, Anne E; Cushman, Samuel W; Periwal, Vipul

    2009-03-01

    Adipose tissue grows by two mechanisms: hyperplasia (cell number increase) and hypertrophy (cell size increase). Genetics and diet affect the relative contributions of these two mechanisms to the growth of adipose tissue in obesity. In this study, the size distributions of epididymal adipose cells from two mouse strains, obesity-resistant FVB/N and obesity-prone C57BL/6, were measured after 2, 4, and 12 weeks under regular and high-fat feeding conditions. The total cell number in the epididymal fat pad was estimated from the fat pad mass and the normalized cell-size distribution. The cell number and volume-weighted mean cell size increase as a function of fat pad mass. To address adipose tissue growth precisely, we developed a mathematical model describing the evolution of the adipose cell-size distributions as a function of the increasing fat pad mass, instead of the increasing chronological time. Our model describes the recruitment of new adipose cells and their subsequent development in different strains, and with different diet regimens, with common mechanisms, but with diet- and genetics-dependent model parameters. Compared to the FVB/N strain, the C57BL/6 strain has greater recruitment of small adipose cells. Hyperplasia is enhanced by high-fat diet in a strain-dependent way, suggesting a synergistic interaction between genetics and diet. Moreover, high-fat feeding increases the rate of adipose cell size growth, independent of strain, reflecting the increase in calories requiring storage. Additionally, high-fat diet leads to a dramatic spreading of the size distribution of adipose cells in both strains; this implies an increase in size fluctuations of adipose cells through lipid turnover.

  6. Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema

    PubMed Central

    Avraham, Tomer; Zampell, Jamie C.; Yan, Alan; Elhadad, Sonia; Weitman, Evan S.; Rockson, Stanley G.; Bromberg, Jacqueline; Mehrara, Babak J.

    2013-01-01

    Lymphedema is a dreaded complication of cancer treatment. However, despite the fact that >5 million Americans are affected by this disorder, the development of effective treatments is limited by the fact that the pathology of lymphedema remains unknown. The purpose of these studies was to determine the role of inflammatory responses in lymphedema pathology. Using mouse models of lymphedema, as well as clinical lymphedema specimens, we show that lymphatic stasis results in a CD4+ T-cell inflammation and T-helper 2 (Th2) differentiation. Using mice deficient in T cells or CD4+ cells, we show that this inflammatory response is necessary for the pathological changes of lymphedema, including fibrosis, adipose deposition, and lymphatic dysfunction. Further, we show that inhibition of Th2 differentiation using interleukin-4 (IL-4) or IL-13 blockade prevents initiation and progression of lymphedema by decreasing tissue fibrosis and significantly improving lymphatic function, independent of lymphangiogenic growth factors. We show that CD4+ inflammation is a critical regulator of tissue fibrosis and lymphatic dysfunction in lymphedema and that inhibition of Th2 differentiation markedly improves lymphatic function independent of lymphangiogenic cytokine expression. Notably, preventing and/or reversing the development of pathological tissue changes that occur in lymphedema may be a viable treatment strategy for this disorder.—Avraham, T., Zampell, J. C., Yan, A., Elhadad, S., Weitman, E. S., Rockson, S. G., Bromberg, J., Mehrara, B. J. Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema. PMID:23193171

  7. Ghrelin receptor regulates adipose tissue inflammation in aging

    PubMed Central

    Buras, Eric D.; Yu, Kaijiang; Wang, Ruitao; Smith, C. Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr−/− mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsr−/− mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsr−/− mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance. PMID:26837433

  8. Ghrelin receptor regulates adipose tissue inflammation in aging.

    PubMed

    Lin, Ligen; Lee, Jong Han; Buras, Eric D; Yu, Kaijiang; Wang, Ruitao; Smith, C Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr(-/-) mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsrp(-/-) mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsrp(-/-) mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance.

  9. Cold-Induced Changes in Gene Expression in Brown Adipose Tissue, White Adipose Tissue and Liver

    PubMed Central

    Shore, Andrew M.; Karamitri, Angeliki; Kemp, Paul; Speakman, John R.; Graham, Neil S.; Lomax, Michael A.

    2013-01-01

    Cold exposure imposes a metabolic challenge to mammals that is met by a coordinated response in different tissues to prevent hypothermia. This study reports a transcriptomic analysis in brown adipose tissue (BAT), white adipose (WAT) and liver of mice in response to 24 h cold exposure at 8°C. Expression of 1895 genes were significantly (P<0.05) up- or down-regulated more than two fold by cold exposure in all tissues but only 5 of these genes were shared by all three tissues, and only 19, 14 and 134 genes were common between WAT and BAT, WAT and liver, and BAT and liver, respectively. We confirmed using qRT-PCR, the increased expression of a number of characteristic BAT genes during cold exposure. In both BAT and the liver, the most common direction of change in gene expression was suppression (496 genes in BAT and 590 genes in liver). Gene ontology analysis revealed for the first time significant (P<0.05) down regulation in response to cold, of genes involved in oxidoreductase activity, lipid metabolic processes and protease inhibitor activity, in both BAT and liver, but not WAT. The results reveal an unexpected importance of down regulation of cytochrome P450 gene expression and apolipoprotein, in both BAT and liver, but not WAT, in response to cold exposure. Pathway analysis suggests a model in which down regulation of the nuclear transcription factors HNF4α and PPARα in both BAT and liver may orchestrate the down regulation of genes involved in lipoprotein and steroid metabolism as well as Phase I enzymes belonging to the cytochrome P450 group in response to cold stress in mice. We propose that the response to cold stress involves decreased gene expression in a range of cellular processes in order to maximise pathways involved in heat production. PMID:23894377

  10. AMPK Activation by Metformin Suppresses Abnormal Extracellular Matrix Remodeling in Adipose Tissue and Ameliorates Insulin Resistance in Obesity.

    PubMed

    Luo, Ting; Nocon, Allison; Fry, Jessica; Sherban, Alex; Rui, Xianliang; Jiang, Bingbing; Xu, X Julia; Han, Jingyan; Yan, Yun; Yang, Qin; Li, Qifu; Zang, Mengwei

    2016-08-01

    Fibrosis is emerging as a hallmark of metabolically dysregulated white adipose tissue (WAT) in obesity. Although adipose tissue fibrosis impairs adipocyte plasticity, little is known about how aberrant extracellular matrix (ECM) remodeling of WAT is initiated during the development of obesity. Here we show that treatment with the antidiabetic drug metformin inhibits excessive ECM deposition in WAT of ob/ob mice and mice with diet-induced obesity, as evidenced by decreased collagen deposition surrounding adipocytes and expression of fibrotic genes including the collagen cross-linking regulator LOX Inhibition of interstitial fibrosis by metformin is likely attributable to the activation of AMPK and the suppression of transforming growth factor-β1 (TGF-β1)/Smad3 signaling, leading to enhanced systemic insulin sensitivity. The ability of metformin to repress TGF-β1-induced fibrogenesis is abolished by the dominant negative AMPK in primary cells from the stromal vascular fraction. TGF-β1-induced insulin resistance is suppressed by AMPK agonists and the constitutively active AMPK in 3T3L1 adipocytes. In omental fat depots of obese humans, interstitial fibrosis is also associated with AMPK inactivation, TGF-β1/Smad3 induction, aberrant ECM production, myofibroblast activation, and adipocyte apoptosis. Collectively, integrated AMPK activation and TGF-β1/Smad3 inhibition may provide a potential therapeutic approach to maintain ECM flexibility and combat chronically uncontrolled adipose tissue expansion in obesity.

  11. UCP1 in adipose tissues: two steps to full browning.

    PubMed

    Kalinovich, Anastasia V; de Jong, Jasper M A; Cannon, Barbara; Nedergaard, Jan

    2017-03-01

    The possibility that brown adipose tissue thermogenesis can be recruited in order to combat the development of obesity has led to a high interest in the identification of "browning agents", i.e. agents that increase the amount and activity of UCP1 in brown and brite/beige adipose tissues. However, functional analysis of the browning process yields confusingly different results when the analysis is performed in one of two alternative steps. Thus, in one of the steps, using cold acclimation as a potent model browning agent, we find that if the browning process is followed in mice initially housed at 21 °C (the most common procedure), there is only weak molecular evidence for increases in UCP1 gene expression or UCP1 protein abundance in classical brown adipose tissue; however, in brite/beige adipose depots, there are large increases, apparently associating functional browning with events only in the brite/beige tissues. Contrastingly, in another step, if the process is followed starting with mice initially housed at 30 °C (thermoneutrality for mice, thus similar to normal human conditions), large increases in UCP1 gene expression and UCP1 protein abundance are observed in the classical brown adipose tissue depots; there is then practically no observable UCP1 gene expression in brite/beige tissues. This apparent conundrum can be resolved when it is realized that the classical brown adipose tissue at 21 °C is already essentially fully differentiated and thus expands extensively through proliferation upon further browning induction, rather than by further enhancing cellular differentiation. When the limiting factor for thermogenesis, i.e. the total amount of UCP1 protein per depot, is analyzed, classical brown adipose tissue is by far the predominant site for the browning process, irrespective of which of the two steps is analyzed. There are to date no published data demonstrating that alternative browning agents would selectively promote brite/beige tissues

  12. Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro

    PubMed Central

    2012-01-01

    Background Obesity is associated with prostate cancer aggressiveness and mortality. The contribution of periprostatic adipose tissue, which is often infiltrated by malignant cells, to cancer progression is largely unknown. Thus, this study aimed to determine if periprostatic adipose tissue is linked with aggressive tumor biology in prostate cancer. Methods Supernatants of whole adipose tissue (explants) or stromal vascular fraction (SVF) from paired fat samples of periprostatic (PP) and pre-peritoneal visceral (VIS) anatomic origin from different donors were prepared and analyzed for matrix metalloproteinases (MMPs) 2 and 9 activity. The effects of those conditioned media (CM) on growth and migration of hormone-refractory (PC-3) and hormone-sensitive (LNCaP) prostate cancer cells were measured. Results We show here that PP adipose tissue of overweight men has higher MMP9 activity in comparison with normal subjects. The observed increased activities of both MMP2 and MMP9 in PP whole adipose tissue explants, likely reveal the contribution of adipocytes plus stromal-vascular fraction (SVF) as opposed to SVF alone. MMP2 activity was higher for PP when compared to VIS adipose tissue. When PC-3 cells were stimulated with CM from PP adipose tissue explants, increased proliferative and migratory capacities were observed, but not in the presence of SVF. Conversely, when LNCaP cells were stimulated with PP explants CM, we found enhanced motility despite the inhibition of proliferation, whereas CM derived from SVF increased both cell proliferation and motility. Explants culture and using adipose tissue of PP origin are most effective in promoting proliferation and migration of PC-3 cells, as respectively compared with SVF culture and using adipose tissue of VIS origin. In LNCaP cells, while explants CM cause increased migration compared to SVF, the use of PP adipose tissue to generate CM result in the increase of both cellular proliferation and migration. Conclusions Our

  13. Exercise Regulation of Marrow Adipose Tissue

    PubMed Central

    Pagnotti, Gabriel M.; Styner, Maya

    2016-01-01

    Despite association with low bone density and skeletal fractures, marrow adipose tissue (MAT) remains poorly understood. The marrow adipocyte originates from the mesenchymal stem cell (MSC) pool that also gives rise to osteoblasts, chondrocytes, and myocytes, among other cell types. To date, the presence of MAT has been attributed to preferential biasing of MSC into the adipocyte rather than osteoblast lineage, thus negatively impacting bone formation. Here, we focus on understanding the physiology of MAT in the setting of exercise, dietary interventions, and pharmacologic agents that alter fat metabolism. The beneficial effect of exercise on musculoskeletal strength is known: exercise induces bone formation, encourages growth of skeletally supportive tissues, inhibits bone resorption, and alters skeletal architecture through direct and indirect effects on a multiplicity of cells involved in skeletal adaptation. MAT is less well studied due to the lack of reproducible quantification techniques. In recent work, osmium-based 3D quantification shows a robust response of MAT to both dietary and exercise intervention in that MAT is elevated in response to high-fat diet and can be suppressed following daily exercise. Exercise-induced bone formation correlates with suppression of MAT, such that exercise effects might be due to either calorie expenditure from this depot or from mechanical biasing of MSC lineage away from fat and toward bone, or a combination thereof. Following treatment with the anti-diabetes drug rosiglitazone – a PPARγ-agonist known to increase MAT and fracture risk – mice demonstrate a fivefold higher femur MAT volume compared to the controls. In addition to preventing MAT accumulation in control mice, exercise intervention significantly lowers MAT accumulation in rosiglitazone-treated mice. Importantly, exercise induction of trabecular bone volume is unhindered by rosiglitazone. Thus, despite rosiglitazone augmentation of MAT, exercise

  14. Growth hormone and adipose tissue: beyond the adipocyte

    PubMed Central

    Berryman, Darlene E.; List, Edward O.; Sackmann-Sala, Lucila; Lubbers, Ellen; Munn, Rachel; Kopchick, John J.

    2011-01-01

    The last two decades have seen resurgence in the interest in, and research on, adipose tissue. In part, the increased interest stems from an alarming increase in obesity rates worldwide. However, an understanding that this once simple tissue is significantly more intricate and interactive than previously realized has fostered additional attention. While few would argue that growth hormone (GH) radically alters adipose tissue, a better appreciation of the newer complexities requires that GH's influence on this tissue be reexamined. Therefore, the objective of this review is to describe the more recent understanding of adipose tissue and how GH may influence and contribute to these newer complexities with special focus on the available data from mice with altered GH action. PMID:21470887

  15. White adipose tissue resilience to insulin deprivation and replacement.

    PubMed

    Hadji, Lilas; Berger, Emmanuelle; Soula, Hédi; Vidal, Hubert; Géloën, Alain

    2014-01-01

    Adipocyte size and body fat distribution are strongly linked to the metabolic complications of obesity. The aim of the present study was to test the plasticity of white adipose tissue in response to insulin deprivation and replacement. We have characterized the changes of adipose cell size repartition and gene expressions in type 1 diabetes Sprague-Dawley rats and type 1 diabetic supplemented with insulin. Using streptozotocin (STZ)-induced diabetes, we induced rapid changes in rat adipose tissue weights to study the changes in the distribution of adipose cell sizes in retroperitoneal (rWAT), epididymal (eWAT) and subcutaneous adipose tissues (scWAT). Adipose tissue weights of type 1 diabetic rats were then rapidly restored by insulin supplementation. Cell size distributions were analyzed using multisizer IV (Beckman Coulter). Cell size changes were correlated to transcriptional regulation of genes coding for proteins involved in lipid and glucose metabolisms and adipocytokines. The initial body weight of the rats was 465±5.2 g. Insulin privation was stopped when rats lost 100 g which induced reductions in fat mass of 68% for rWAT, 42% for eWAT and 59% for scWAT corresponding to decreased mode cell diameters by 31.1%, 20%, 25.3%, respectively. The most affected size distribution by insulin deprivation was observed in rWAT. The bimodal distribution of adipose cell sizes disappeared in response to insulin deprivation in rWAT and scWAT. The most important observation is that cell size distribution returned close to control values in response to insulin treatment. mRNAs coding for adiponectin, leptin and apelin were more stimulated in scWAT compared to other depots in diabetic plus insulin group. Fat depots have specific responses to insulin deprivation and supplementation. The results show that insulin is a major determinant of bimodal cell repartition in adipose tissues.

  16. White Adipose Tissue Resilience to Insulin Deprivation and Replacement

    PubMed Central

    Hadji, Lilas; Berger, Emmanuelle; Soula, Hédi; Vidal, Hubert; Géloën, Alain

    2014-01-01

    Introduction Adipocyte size and body fat distribution are strongly linked to the metabolic complications of obesity. The aim of the present study was to test the plasticity of white adipose tissue in response to insulin deprivation and replacement. We have characterized the changes of adipose cell size repartition and gene expressions in type 1 diabetes Sprague-Dawley rats and type 1 diabetic supplemented with insulin. Methods Using streptozotocin (STZ)-induced diabetes, we induced rapid changes in rat adipose tissue weights to study the changes in the distribution of adipose cell sizes in retroperitoneal (rWAT), epididymal (eWAT) and subcutaneous adipose tissues (scWAT). Adipose tissue weights of type 1 diabetic rats were then rapidly restored by insulin supplementation. Cell size distributions were analyzed using multisizer IV (Beckman Coulter). Cell size changes were correlated to transcriptional regulation of genes coding for proteins involved in lipid and glucose metabolisms and adipocytokines. Results The initial body weight of the rats was 465±5.2 g. Insulin privation was stopped when rats lost 100 g which induced reductions in fat mass of 68% for rWAT, 42% for eWAT and 59% for scWAT corresponding to decreased mode cell diameters by 31.1%, 20%, 25.3%, respectively. The most affected size distribution by insulin deprivation was observed in rWAT. The bimodal distribution of adipose cell sizes disappeared in response to insulin deprivation in rWAT and scWAT. The most important observation is that cell size distribution returned close to control values in response to insulin treatment. mRNAs coding for adiponectin, leptin and apelin were more stimulated in scWAT compared to other depots in diabetic plus insulin group. Conclusion Fat depots have specific responses to insulin deprivation and supplementation. The results show that insulin is a major determinant of bimodal cell repartition in adipose tissues. PMID:25170835

  17. Effect of adipose tissue insulin resistance on metabolic parameters and liver histology in obese patients with nonalcoholic fatty liver disease.

    PubMed

    Lomonaco, Romina; Ortiz-Lopez, Carolina; Orsak, Beverly; Webb, Amy; Hardies, Jean; Darland, Celia; Finch, Joan; Gastaldelli, Amalia; Harrison, Stephen; Tio, Fermin; Cusi, Kenneth

    2012-05-01

    The role of adipose tissue insulin resistance in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) remains unclear. To evaluate this, we measured in 207 patients with NAFLD (age = 51 ± 1, body mass index = 34.1 ± 0.3 kg/m(2) ) and 22 controls without NAFLD (no NAFLD) adipose tissue insulin resistance by means of a validated index (Adipo-IR(i) = plasma free fatty acids [FFA] x insulin [FPI] concentration) and as the suppression of plasma FFA during an oral glucose tolerance test and by a low-dose insulin infusion. We also explored the relationship between adipose tissue insulin resistance with metabolic and histological parameters by dividing them based on quartiles of adipose tissue insulin resistance (Adipo-IR(i) quartiles: Q1 = more sensitive; Q4 = more insulin resistant). Hepatic insulin resistance, measured as an index derived from endogenous glucose production x FPI (HIRi), and muscle insulin sensitivity, were assessed during a euglycemic insulin clamp with 3-[(3) H] glucose. Liver fat was measured by magnetic resonance imaging and spectroscopy, and a liver biopsy was performed to assess liver histology. Compared to patients without steatosis, patients with NAFLD were insulin resistant at the level of adipose tissue, liver, and skeletal muscle and had higher plasma aspartate aminotransferase and alanine aminotransferase, triglycerides, and lower high-density lipoprotein cholesterol and adiponectin levels (all P < 0.01). Metabolic parameters, hepatic insulin resistance, and liver fibrosis (but not necroinflammation) deteriorated as quartiles of adipose tissue insulin resistance worsened (all P < 0.01). Adipose tissue insulin resistance plays a key role in the development of metabolic and histological abnormalities of obese patients with NAFLD. Treatment strategies targeting adipose tissue insulin resistance (e.g., weight loss and thiazolidinediones) may be of value in this population. Copyright © 2012 American Association for the Study of Liver

  18. Gene expression profiling in adipose tissue from growing broiler chickens

    PubMed Central

    Hausman, Gary J; Barb, C Rick; Fairchild, Brian D; Gamble, John; Lee-Rutherford, Laura

    2014-01-01

    In this study, total RNA was collected from abdominal adipose tissue samples obtained from ten broiler chickens at 3, 4, 5, and 6 weeks of age and prepared for gene microarray analysis with Affymetrix GeneChip Chicken Genome Arrays (Affymetrix) and quantitative real-time PCR analysis. Studies of global gene expression in chicken adipose tissue were initiated since such studies in many animal species show that adipose tissue expresses and secretes many factors that can influence growth and physiology. Microarray results indicated 333 differentially expressed adipose tissue genes between 3 and 6 wk, 265 differentially expressed genes between 4 and 6 wk and 42 differentially expressed genes between 3 and 4 wk. Enrichment scores of Gene Ontology Biological Process categories indicated strong age upregulation of genes involved in the immune system response. In addition to microarray analysis, quantitative real-time PCR analysis was used to confirm the influence of age on the expression of adipose tissue CC chemokine ligands (CCL), toll-like receptor (TLR)-2, lipopolysaccharide-induced TNF factor (LITAF), chemokine (C-C motif) receptor 8 (CCR8), and several other genes. Between 3 and 6 wk of age CCL5, CCL1, and CCR8 expression increased (P = 0.0001) with age. Furthermore, TLR2, CCL19, and LITAF expression increased between 4 and 6 wk of age (P = 0.001). This is the first demonstration of age related changes in CCL, LITAF, and TLR2 gene expression in chicken adipose tissue. Future studies are needed to elucidate the role of these adipose tissue genes in growth and the immune system. PMID:26317054

  19. Enzymatic intracrine regulation of white adipose tissue

    PubMed Central

    DiSilvestro, David; Petrosino, Jennifer; Aldoori, Ayat; Melgar-Bermudez, Emiliano; Wells, Alexandra; Ziouzenkova, Ouliana

    2015-01-01

    Abdominal fat formation has become a permanent risk factor for metabolic syndrome and various cancers in one-third of the world's population of obese and even lean patients. Formation of abdominal fat involves additional mechanisms beyond an imbalance in energy intake and expenditure, which explains systemic obesity. In this review, we briefly summarized autonomous regulatory circuits that locally produce hormones from inactive precursors or nutrients for intra-/auto-/paracrine signaling in white adipose depots. Enzymatic pathways activating steroid and thyroid hormones in adipose depots were compared with enzymatic production of retinoic acid from vitamin A. We discussed the role of intracrine circuits in fat-depot functions and strategies to reduce abdominal adiposity through thermogenic adipocytes with interrupted generation of retinoic acid. PMID:25390015

  20. Adipocyte Pseudohypoxia Suppresses Lipolysis and Facilitates Benign Adipose Tissue Expansion

    PubMed Central

    Morton, Nicholas M.; Moreno Navarrete, José Maria; West, Christopher C.; Stewart, Kenneth J.; Fernández-Real, José Manuel; Schofield, Christopher J.; Seckl, Jonathan R.; Ratcliffe, Peter J.

    2015-01-01

    Prolyl hydroxylase enzymes (PHDs) sense cellular oxygen upstream of hypoxia-inducible factor (HIF) signaling, leading to HIF degradation in normoxic conditions. In this study, we demonstrate that adipose PHD2 inhibition plays a key role in the suppression of adipocyte lipolysis. Adipose Phd2 gene ablation in mice enhanced adiposity, with a parallel increase in adipose vascularization associated with reduced circulating nonesterified fatty acid levels and normal glucose homeostasis. Phd2 gene–depleted adipocytes exhibited lower basal lipolysis in normoxia and reduced β-adrenergic–stimulated lipolysis in both normoxia and hypoxia. A selective PHD inhibitor suppressed lipolysis in murine and human adipocytes in vitro and in vivo in mice. PHD2 genetic ablation and pharmacological inhibition attenuated protein levels of the key lipolytic effectors hormone-sensitive lipase and adipose triglyceride lipase (ATGL), suggesting a link between adipocyte oxygen sensing and fatty acid release. PHD2 mRNA levels correlated positively with mRNA levels of AB-hydrolase domain containing-5, an activator of ATGL, and negatively with mRNA levels of lipid droplet proteins, perilipin, and TIP47 in human subcutaneous adipose tissue. Therapeutic pseudohypoxia caused by PHD2 inhibition in adipocytes blunts lipolysis and promotes benign adipose tissue expansion and may have therapeutic applications in obesity or lipodystrophy. PMID:25377876

  1. Brown adipose tissue as an anti-obesity tissue in humans.

    PubMed

    Chechi, K; Nedergaard, J; Richard, D

    2014-02-01

    During the 11th Stock Conference held in Montreal, Quebec, Canada, world-leading experts came together to present and discuss recent developments made in the field of brown adipose tissue biology. Owing to the vast capacity of brown adipose tissue for burning food energy in the process of thermogenesis, and due to demonstrations of its presence in adult humans, there is tremendous interest in targeting brown adipose tissue as an anti-obesity tissue in humans. However, the future of such therapeutic approaches relies on our understanding of the origin, development, recruitment, activation and regulation of brown adipose tissue in humans. As reviewed here, the 11th Stock Conference was organized around these themes to discuss the recent progress made in each aspect, to identify gaps in our current understanding and to further provide a common groundwork that could support collaborative efforts aimed at a future therapy for obesity, based on brown adipose tissue thermogenesis.

  2. Adipose Tissue Residing Progenitors (Adipocyte Lineage Progenitors and Adipose Derived Stem Cells (ADSC)

    PubMed Central

    Berry, Ryan; Rodeheffer, Matthew S.; Rosen, Clifford J.; Horowitz, Mark C.

    2015-01-01

    The formation of brown, white and beige adipocytes have been a subject of intense scientific interest in recent years due to the growing obesity epidemic in the United States and around the world. This interest has led to the identification and characterization of specific tissue resident progenitor cells that give rise to each adipocyte population in vivo. However, much still remains to be discovered about each progenitor population in terms of their “niche” within each tissue and how they are regulated at the cellular and molecular level during healthy and diseased states. While our knowledge of brown, white and beige adipose tissue is rapidly increasing, little is still known about marrow adipose tissue and its progenitor despite recent studies demonstrating possible roles for marrow adipose tissue in regulating the hematopoietic space and systemic metabolism at large. This chapter focuses on our current knowledge of brown, white, beige and marrow adipose tissue with a specific focus on the formation of each tissue from tissue resident progenitor cells. PMID:26526875

  3. Metabolic syndrome - dysregulation of adipose tissue endocrine function.

    PubMed

    Horská, Kateřina; Kučerová, Jana; Suchý, Pavel; Kotolová, Hana

    2014-08-01

    Metabolic syndrome, acondition increasing cardiovascular morbidity, mortality and risk for diabetes mellitus type 2, is currently worldwide reaching epidemic proportions. This complex disorder represents an urgent challenge for new pharmacotherapeutic strategies formulation. Pathophysiological mechanisms underlying metabolic syndrome are not completely understood, nevertheless growing evidence is supporting the hypothesis that multiple metabolic dysregulations do contribute to its development. Apotential target for pharmacological intervention is considered to be dysregulation of adipose tissue endocrine/paracrine function. Specific adipokines, proteins secreted by the adipose tissue, with some pleiotropic effects, have been identified with strong association to regulation of energy metabolism, appetite, insulin signaling, tissue insulin sensitivity and the proinflammatory state related to metabolic syndrome. The aim of this paper is to provide a brief overview of endocrine/paracrine functions of the adipose tissue with regard to metabolic syndrome development and pathophysiology and particular adipokines as potential targets for innovative pharmacotherapeutic approaches.

  4. Adipose tissue, obesity and adipokines: role in cancer promotion.

    PubMed

    Booth, Andrea; Magnuson, Aaron; Fouts, Josephine; Foster, Michelle

    2015-01-01

    Adipose tissue is a complex organ with endocrine, metabolic and immune regulatory roles. Adipose depots have been characterized to release several adipocytokines that work locally in an autocrine and paracrine fashion or peripherally in an endocrine fashion. Adipocyte hypertrophy and excessive adipose tissue accumulation, as occurs during obesity, dysregulates the microenvironment within adipose depots and systemically alters peripheral tissue metabolism. The term "adiposopathy" is used to describe this promotion of pathogenic adipocytes and associated adipose - elated disorders. Numerous epidemiological studies confirm an association between obesity and various cancer forms. Proposed mechanisms that link obesity/adiposity to high cancer risk and mortality include, but are not limited to, obesity-related insulin resistance, hyperinsulinemia, sustained hyperglycemia, glucose intolerance, oxidative stress, inflammation and/or adipocktokine production. Several epidemiological studies have demonstrated a relationship between specific circulating adipocytokines and cancer risk. The aim of this review is to define the function, in normal weight and obesity states, of well-characterized and novel adipokines including leptin, adiponectin, apelin, visfatin, resistin, chemerin, omentin, nesfatin and vaspin and summarize the data that relates their dysfunction, whether associated or direct effects, to specific cancer outcomes. Overall research suggests most adipokines promote cancer cell progression via enhancement of cell proliferation and migration, inflammation and anti-apoptosis pathways, which subsequently can prompt cancer metastasis. Further research and longitudinal studies are needed to define the specific independent and additive roles of adipokines in cancer progression and reoccurrence.

  5. A stringent validation of mouse adipose tissue identity markers.

    PubMed

    de Jong, Jasper M A; Larsson, Ola; Cannon, Barbara; Nedergaard, Jan

    2015-06-15

    The nature of brown adipose tissue in humans is presently debated: whether it is classical brown or of brite/beige nature. The dissimilar developmental origins and proposed distinct functions of the brown and brite/beige tissues make it essential to ascertain the identity of human depots with the perspective of recruiting and activating them for the treatment of obesity and type 2 diabetes. For identification of the tissues, a number of marker genes have been proposed, but the validity of the markers has not been well documented. We used established brown (interscapular), brite (inguinal), and white (epididymal) mouse adipose tissues and corresponding primary cell cultures as validators and examined the informative value of a series of suggested markers earlier used in the discussion considering the nature of human brown adipose tissue. Most of these markers unexpectedly turned out to be noninformative concerning tissue classification (Car4, Cited1, Ebf3, Eva1, Fbxo31, Fgf21, Lhx8, Hoxc8, and Hoxc9). Only Zic1 (brown), Cd137, Epsti1, Tbx1, Tmem26 (brite), and Tcf21 (white) proved to be informative in these three tissues. However, the expression of the brite markers was not maintained in cell culture. In a more extensive set of adipose depots, these validated markers provide new information about depot identity. Principal component analysis supported our single-gene conclusions. Furthermore, Zic1, Hoxc8, Hoxc9, and Tcf21 displayed anteroposterior expression patterns, indicating a relationship between anatomic localization and adipose tissue identity (and possibly function). Together, the observed expression patterns of these validated marker genes necessitates reconsideration of adipose depot identity in mice and humans.

  6. Natural killer T cells in adipose tissue prevent insulin resistance.

    PubMed

    Schipper, Henk S; Rakhshandehroo, Maryam; van de Graaf, Stan F J; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E S; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-09-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell-deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue-resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue-resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance.

  7. Factors affecting adipose tissue development in chickens: A review.

    PubMed

    Wang, Guoqing; Kim, Woo Kyun; Cline, Mark A; Gilbert, Elizabeth R

    2017-10-01

    The intense genetic selection for rapid growth in broilers has resulted in an increase in voluntary feed intake and growth rate, accompanied by increased fat deposition in adipose tissue depots throughout the body. Adipose tissue expansion is a result of the formation of adipocytes (several processes collectively referred to as adipogenesis) and cellular accumulation of triacylglycerols inside lipid droplets. In mammals, different anatomical depots are metabolically distinct. The molecular and cellular mechanisms underlying adipose tissue development have been characterized in mammalian models, whereas information in avian species is scarce. The purpose of this review is to describe factors regulating adipogenesis in chickens, with an emphasis on dietary factors and the broiler. Results from many studies have demonstrated effects of dietary nutrient composition on adipose tissue development and lipid metabolism. Transcription factors, such as peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding proteins α and β, and sterol regulatory element binding proteins orchestrate a series of cellular events that lead to an increase in activity of fatty acid transport proteins and enzymes that are responsible for triacylglycerol synthesis. Understanding the mechanisms underlying adipose tissue development may provide a practical strategy to affect body composition of the commercial broiler while providing insights on diets that maximize conversion into muscle rather than fat and affect depot-dependent deposition of lipids. Because of the propensity to overeat and become obese, the broiler chicken also represents an attractive biomedical model for eating disorders and obesity in humans. © 2017 Poultry Science Association Inc.

  8. Acute Testosterone Deficiency Alters Adipose Tissue Fatty Acid Storage.

    PubMed

    Santosa, Sylvia; Bush, Nikki C; Jensen, Michael D

    2017-08-01

    Although the long-term effects of testosterone on adipose tissue lipid metabolism in men have been defined, the short-term regulation of these effects is not well understood. We examined the effects of acute testosterone withdrawal on subcutaneous abdominal and femoral adipose tissue fatty acid (FA) storage and cellular mechanisms. This was a prospective, randomized trial. Mayo Clinic Clinical Research Unit. Thirty-two male volunteers ages 18 to 50 participated in these studies. Volunteers were randomized to receive (1) no treatment (control), (2) injections (7.5 mg) of Lupron®, or (3) Lupron and testosterone (L+T) replacement for 49 days, resulting in 4 weeks of sex steroid suppression in the Lupron group. We measured body composition, fat cell size, adipose tissue meal FA and direct free FA storage, lipoprotein lipase (LPL), acyl coenzyme A synthetase (ACS), diacylglycerol acyltransferase activities, and CD36 content. Compared with control and L+T groups, acute testosterone deficiency resulted in greater femoral adipose tissue meal FA storage rates, fasting and fed LPL activity, and ACS activity. These results suggest that in men, testosterone plays a tonic role in restraining FA storage in femoral adipose tissue via suppression of LPL and ACS activities. FA storage mechanisms in men appear sensitive to short-term changes in testosterone concentrations.

  9. Cellular changes during cold acclimatation in adipose tissues.

    PubMed

    Cousin, B; Bascands-Viguerie, N; Kassis, N; Nibbelink, M; Ambid, L; Casteilla, L; Pénicaud, L

    1996-05-01

    Cold exposure is a well-known physiological stimulus that activates the sympathetic nervous system and induces brown adipose tissue (BAT) hyperplasia. The effects of cold exposure or cold acclimatation have been extensively studied in interscapular BAT (IBAT). However, it has been recently shown that studied adipocytes are present in adipose deposits considered as white fat such as periovarian (PO) fat pad. We have investigated the kinetic of brown precursor recruitment in adipose tissues using DNA measurement and specific marker expression. In IBAT, cold exposure induces proliferation of precursor cells and differentiation into preadipocytes characterized by the expression of A2COL6, a marker specific to early steps of the differentiation process. A chronic stimulation of the tissue is necessary to observe the full effect. In PO fat pad, no proliferation can be detected, whereas differentiation of brown preadipocytes and maybe phenotypic conversion of white adipocytes seems to be promoted. In conclusion, these data demonstrated that 1) the same stimulus (cold exposure) does not induce the same response in terms of preadipocyte proliferation and differentiation in periovarian and brown adipose tissues, although both contain brown adipocytes, and 2) preadipocyte recruitment in adipose tissues after cold exposure depends on the predominant type of fat cells.

  10. Human Adipose Tissue Derived Extracellular Matrix and Methylcellulose Hydrogels Augments and Regenerates the Paralyzed Vocal Fold

    PubMed Central

    Kim, Eun Na; Sung, Myung Whun; Kwon, Tack-Kyun; Cho, Yong Woo; Kwon, Seong Keun

    2016-01-01

    Vocal fold paralysis results from various etiologies and can induce voice changes, swallowing complications, and issues with aspiration. Vocal fold paralysis is typically managed using injection laryngoplasty with fat or synthetic polymers. Injection with autologous fat has shown excellent biocompatibility. However, it has several disadvantages such as unpredictable resorption rate, morbidities associated with liposuction procedure which has to be done in operating room under general anesthesia. Human adipose-derived extracellular matrix (ECM) grafts have been reported to form new adipose tissue and have greater biostability than autologous fat graft. Here, we present an injectable hydrogel that is constructed from adipose tissue derived soluble extracellular matrix (sECM) and methylcellulose (MC) for use in vocal fold augmentation. Human sECM derived from adipose tissue was extracted using two major steps—ECM was isolated from human adipose tissue and was subsequently solubilized. Injectable sECM/MC hydrogels were prepared by blending of sECM and MC. Sustained vocal fold augmentation and symmetric vocal fold vibration were accomplished by the sECM/MC hydrogel in paralyzed vocal fold which were confirmed by laryngoscope, histology and a high-speed imaging system. There were increased number of collagen fibers and fatty granules at the injection site without significant inflammation or fibrosis. Overall, these results indicate that the sECM/MC hydrogel can enhance vocal function in paralyzed vocal folds without early resorption and has potential as a promising material for injection laryngoplasty for stable vocal fold augmentation which can overcome the shortcomings of autologous fat such as unpredictable duration and morbidity associated with the fat harvest. PMID:27768757

  11. NPY antagonism reduces adiposity and attenuates age-related imbalance of adipose tissue metabolism.

    PubMed

    Park, Seongjoon; Fujishita, Chika; Komatsu, Toshimitsu; Kim, Sang Eun; Chiba, Takuya; Mori, Ryoichi; Shimokawa, Isao

    2014-12-01

    An orexigenic hormone, neuropeptide Y (NPY), plays a role not only in the hypothalamic regulation of appetite, but also in the peripheral regulation of lipid metabolism. However, the intracellular mechanisms triggered by NPY to regulate lipid metabolism are poorly understood. Here we report that NPY deficiency reduces white adipose tissue (WAT) mass and ameliorates the age-related imbalance of adipose tissue metabolism in mice. Gene expression involved in adipogenesis/lipogenesis was found to decrease, whereas proteins involved in lipolysis increased in gonadal WAT (gWAT) of NPY-knockout mice. These changes were associated with an activated SIRT1- and PPARγ-mediated pathway. Moreover, the age-related decrease of de novo lipogenesis in gWAT and thermogenesis in inguinal WAT was inhibited by NPY deficiency. Further analysis using 3T3-L1 cells showed that NPY inhibited lipolysis through the Y1 receptor and enhanced lipogenesis following a reduction in cAMP response element-binding protein (CREB) and SIRT1 protein expression. Therefore, NPY appears to act as a key regulator of adipose tissue metabolism via the CREB-SIRT1 signaling pathway. Taken together, NPY deficiency reduces adiposity and ameliorates the age-related imbalance of adipose tissue metabolism, suggesting that antagonism of NPY may be a promising target for drug development to prevent age-related metabolic diseases. © FASEB.

  12. 11-Beta hydroxysteroid dehydrogenase type 2 expression in white adipose tissue is strongly correlated with adiposity.

    PubMed

    Milagro, Fermin I; Campión, Javier; Martínez, J Alfredo

    2007-04-01

    Glucocorticoid action within the cells is regulated by the levels of glucocorticoid receptor (GR) expression and two enzymes, 11-beta hydroxysteroid dehydrogenase type 1 (11betaHSD1), which converts inactive to active glucocorticoids, and 11-beta hydroxysteroid dehydrogenase type 2 (11betaHSD2), which regulates the access of active glucocorticoids to the receptor by converting cortisol/corticosterone to the glucocorticoid-inactive form cortisone/dehydrocorticosterone. Male Wistar rats developed obesity by being fed a high-fat diet for 56 days, and GR, 11betaHSD1 and 11betaHSD2 gene expression were compared with control-diet fed animals. Gene expression analysis of 11betaHSD1, 11betaHSD2 and GR were performed by RT-PCR in subcutaneous and retroperitoneal adipose tissue. High-fat fed animals overexpressed 11betaHSD2 in subcutaneous but not in retroperitoneal fat. Interestingly, mRNA levels strongly correlated in both tissues with different parameters related to obesity, such as body weight, adiposity and insulin resistance, suggesting that this gene is a reliable marker of adiposity in this rat model of obesity. Thus, 11betaHSD2 is expressed in adipose tissue by both adipocytes and stromal-vascular cells, which suggests that this enzyme may play an important role in preventing fat accumulation in adipose tissue.

  13. Epicardial adipose tissue in endocrine and metabolic diseases.

    PubMed

    Iacobellis, Gianluca

    2014-05-01

    Epicardial adipose tissue has recently emerged as new risk factor and active player in metabolic and cardiovascular diseases. Albeit its physiological and pathological roles are not completely understood, a body of evidence indicates that epicardial adipose tissue is a fat depot with peculiar and unique features. Epicardial fat is able to synthesize, produce, and secrete bioactive molecules which are then transported into the adjacent myocardium through vasocrine and/or paracrine pathways. Based on these evidences, epicardial adipose tissue can be considered an endocrine organ. Epicardial fat is also thought to provide direct heating to the myocardium and protect the heart during unfavorable hemodynamic conditions, such as ischemia or hypoxia. Epicardial fat has been suggested to play an independent role in the development and progression of obesity- and diabetes-related cardiac abnormalities. Clinically, the thickness of epicardial fat can be easily and accurately measured. Epicardial fat thickness can serve as marker of visceral adiposity and visceral fat changes during weight loss interventions and treatments with drugs targeting the fat. The potential of modulating the epicardial fat with targeted pharmacological agents can open new avenues in the pharmacotherapy of endocrine and metabolic diseases. This review article will provide Endocrine's reader with a focus on epicardial adipose tissue in endocrinology. Novel, established, but also speculative findings on epicardial fat will be discussed from the unexplored perspective of both clinical and basic Endocrinologist.

  14. Recent Advances in Proteomic Studies of Adipose Tissues and Adipocytes

    PubMed Central

    Kim, Eun Young; Kim, Won Kon; Oh, Kyoung-Jin; Han, Baek Soo; Lee, Sang Chul; Bae, Kwang-Hee

    2015-01-01

    Obesity is a chronic disease that is associated with significantly increased levels of risk of a number of metabolic disorders. Despite these enhanced health risks, the worldwide prevalence of obesity has increased dramatically over the past few decades. Obesity is caused by the accumulation of an abnormal amount of body fat in adipose tissue, which is composed mostly of adipocytes. Thus, a deeper understanding of the regulation mechanism of adipose tissue and/or adipocytes can provide a clue for overcoming obesity-related metabolic diseases. In this review, we describe recent advances in the study of adipose tissue and/or adipocytes, focusing on proteomic approaches. In addition, we suggest future research directions for proteomic studies which may lead to novel treatments of obesity and obesity-related diseases. PMID:25734986

  15. Developmental programming of fetal skeletal muscle and adipose tissue development.

    PubMed

    Yan, Xu; Zhu, Mei-Jun; Dodson, Michael V; Du, Min

    2013-01-01

    All important developmental milestones are accomplished during the fetal stage, and nutrient fluctuation during this stage produces lasting effects on offspring health, so called fetal programming or developmental programming. The fetal stage is critical for skeletal muscle development, as well as adipose and connective tissue development. Maternal under-nutrition at this stage affects the proliferation of myogenic precursor cells and reduces the number of muscle fibers formed. Maternal over-nutrition results in impaired myogenesis and elevated adipogenesis. Because myocytes, adipocytes and fibrocytes are all derived from mesenchymal stem cells, molecular events which regulate the commitment of stem cells to different lineages directly impact fetal muscle and adipose tissue development. Recent studies indicate that microRNA is intensively involved in myogenic and adipogenic differentiation from mesenchymal stem cells, and epigenetic changes such as DNA methylation are expected to alter cell lineage commitment during fetal muscle and adipose tissue development.

  16. The effect of hypokinesia on lipid metabolism in adipose tissue

    NASA Astrophysics Data System (ADS)

    Macho, Ladislav; Kvetn̆anský, Richard; Ficková, Mária

    The increase of nonesterified fatty acid (NEFA) concentration in plasma was observed in rats subjected to hypokinesia for 1-60 days. In the period of recovery (7 and 21 days after 60 days immobilization) the content of NEFA returned to control values. The increase of fatty acid release from adipose tissue was observed in hypokinetic rats, however the stimulation of lipolysis by norepinephrine was lower in rats exposed to hypokinesis. The decrease of the binding capacity and a diminished number of beta-adrenergic receptors were found in animals after hypokinesia. The augmentation of the incorporation of glucose into lipids and the marked increase in the stimulation of lipogenesis by insulin were found in adipose tissue of rats subjected to long-term hypokinesia. These results showed an important effect of hypokinesia on lipid mobilization, on lipogenesis and on the processes of hormone regulation in adipose tissue.

  17. Vitamin D modulates adipose tissue biology: possible consequences for obesity?

    PubMed

    Landrier, Jean-François; Karkeni, Esma; Marcotorchino, Julie; Bonnet, Lauriane; Tourniaire, Franck

    2016-02-01

    Cross-sectional studies depict an inverse relationship between vitamin D (VD) status reflected by plasma 25-hydroxy-vitamin D and obesity. Furthermore, recent studies in vitro and in animal models tend to demonstrate an impact of VD and VD receptor on adipose tissue and adipocyte biology, pointing to at least a part-causal role of VD insufficiency in obesity and associated physiopathological disorders such as adipose tissue inflammation and subsequent insulin resistance. However, clinical and genetic studies are far less convincing, with highly contrasted results ruling out solid conclusions for the moment. Nevertheless, prospective studies provide interesting data supporting the hypothesis of a preventive role of VD in onset of obesity. The aim of this review is to summarise the available data on relationships between VD, adipose tissue/adipocyte physiology, and obesity in order to reveal the next key points that need to be addressed before we can gain deeper insight into the controversial VD-obesity relationship.

  18. The effects of adipose tissue and adipocytokines in human pregnancy.

    PubMed

    Valsamakis, G; Kumar, S; Creatsas, G; Mastorakos, G

    2010-09-01

    During pregnancy, important changes take place in maternal metabolism because of the growing fetus and placental formation. The increase in insulin resistance during pregnancy is paralleled by the progressive increase of maternal adipose tissue deposition. This review examines the topography of fat mass deposition during pregnancy in relation to factors such as parity and maternal age that might affect this deposition. We also examine adipose tissue markers, such as pregravid weight and weight gain during pregnancy, and their effect on fetal growth and pregnancy outcomes. In addition, this review studies the possible effects of cytokines that are produced by adipose tissue and the placenta on maternal metabolism and its complications. Finally, we also consider the possible role of maternal adipocytokines and fetal adipocytokines on fetal growth. © 2010 New York Academy of Sciences.

  19. Assessment of feline abdominal adipose tissue using computed tomography.

    PubMed

    Lee, Hyeyeon; Kim, Mieun; Choi, Mihyun; Lee, Namsoon; Chang, Jinhwa; Yoon, Junghee; Choi, Mincheol

    2010-12-01

    Obesity is a common nutritional disorder in cats and it increases the risk factors for various diseases. The aim of this study is to suggest a method for the evaluation of feline obesity using computed tomography. The attenuation range from -156 to -106 was determined as the range of feline abdominal adipose tissue. With this range, total (TAT), visceral (VAT) and subcutaneous (SAT) adipose tissues were measured. The best correlation between the adipose tissue in cross-sectional image and entire abdomen volume was obtained at the L3 and L5 levels. The mean VAT/SAT ratio was 1.18±0.32, which was much higher than in humans. The cats with an overweight body condition had a significantly lower VAT/SAT ratio than cats with an ideal body condition. This technique may contribute to both the clinical diagnosis and the experimental study of feline obesity.

  20. Resistant starch improves insulin resistance and reduces adipose tissue weight and CD11c expression in rat OLETF adipose tissue.

    PubMed

    Harazaki, Tomomi; Inoue, Seiya; Imai, Chihiro; Mochizuki, Kazuki; Goda, Toshinao

    2014-05-01

    CD11s/CD18 dimers induce monocyte/macrophage infiltration into many tissues, including adipose tissues. In particular, it was reported that β2-integrin CD11c-positive macrophages in adipose tissues are closely associated with the development of insulin resistance. The aim of this study was to determine whether intake of resistant starch (RS) reduces macrophage accumulation in adipose tissues and inhibits the development of insulin resistance at an early stage in Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Twenty-two-wk-old male OLETF rats were fed a control diet (55% α-corn starch) or an RS diet (55% RS) for 5 wk. An oral glucose tolerance test was performed after 4 wk of feeding; tissues (mesenteric and epididymal adipose tissues, and liver) and tail vein blood were collected after 5 wk of feeding the test diets. Feeding the RS diet to OLETF rats for 5 wk improved insulin resistance, reduced the mesenteric adipose tissue weight, and enhanced the number of small adipocytes. CD68 expression, a macrophage infiltration marker, was not changed by the RS diet, whereas the gene expression levels of integrins such as CD11c, CD11d, and CD18, but not CD11a, and CD11b, were significantly reduced. CD11c protein expression was reduced by the RS diet. These findings suggest that part of the mechanism for the improved insulin resistance by the RS diet involves a reduction of CD11c expression in adipose tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Different adipose tissue depots: Metabolic implications and effects of surgical removal.

    PubMed

    Marcadenti, Aline; de Abreu-Silva, Erlon Oliveira

    2015-11-01

    Increased adiposity has been associated to worse metabolic profile, cardiovascular disease, and mortality. There are two main adipose tissue depots in the body, subcutaneous and visceral adipose tissue, which differ in anatomical location. A large body of evidence has shown the metabolic activity of adipose tissue; lipectomy and/or liposuction therefore appear to be alternatives for improving metabolic profile through rapid loss of adipose tissue. However, surgical removal of adipose tissue may be detrimental for metabolism, because subcutaneous adipose tissue has not been associated to metabolic disorders such as insulin resistance and type 2 diabetes mellitus. In addition, animal studies have shown a compensatory growth of adipose tissue in response to lipectomy. This review summarizes the implications of obesity-induced metabolic dysfunction, its relationship with the different adipose tissue depots, and the effects of lipectomy on cardiometabolic risk factors. Copyright © 2015 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  2. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    PubMed

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-05

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. Copyright © 2016. Published by Elsevier Inc.

  3. Dietary iron overload induces visceral adipose tissue insulin resistance.

    PubMed

    Dongiovanni, Paola; Ruscica, Massimiliano; Rametta, Raffaela; Recalcati, Stefania; Steffani, Liliana; Gatti, Stefano; Girelli, Domenico; Cairo, Gaetano; Magni, Paolo; Fargion, Silvia; Valenti, Luca

    2013-06-01

    Increased iron stores associated with elevated levels of the iron hormone hepcidin are a frequent feature of the metabolic syndrome. The aim of this study was to assess the effect of dietary iron supplementation on insulin resistance and the role of hepcidin in C57Bl/6 male mice fed a standard or iron-enriched diet for 16 weeks. Iron supplementation increased hepatic iron and serum hepcidin fivefold and led to a 40% increase in fasting glucose due to insulin resistance, as confirmed by the insulin tolerance test, and to threefold higher levels of triglycerides. Iron supplemented mice had lower visceral adipose tissue mass estimated by epididymal fat pad, associated with iron accumulation in adipocytes. Decreased insulin signaling, evaluated by the phospho-Akt/Akt ratio, was detected in the visceral adipose tissue of iron overloaded mice, and gene expression analysis of visceral adipose tissue showed that an iron-enriched diet up-regulated iron-responsive genes and adipokines, favoring insulin resistance, whereas lipoprotein lipase was down-regulated. This resulted in hyperresistinemia and increased visceral adipose tissue expression of suppressor of cytokine signaling-3 (Socs3), a target of resistin and hepcidin implicated in insulin resistance. Acute hepcidin administration down-regulated lipoprotein lipase and up-regulated Socs3 in visceral adipose tissue. In conclusion, we characterized a model of dysmetabolic iron overload syndrome in which an iron-enriched diet induces insulin resistance and hypertriglyceridemia and affects visceral adipose tissue metabolism by a mechanism involving hepcidin up-regulation. Copyright © 2013 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Accumulation of adiponectin in inflamed adipose tissues of obese mice.

    PubMed

    Nakatsuji, Hideaki; Kishida, Ken; Sekimoto, Ryohei; Komura, Noriyuki; Kihara, Shinji; Funahashi, Tohru; Shimomura, Iichiro

    2014-04-01

    Adipose tissue inflammation plays an important role in the pathogenesis of obesity-associated complications, such as atherosclerosis. Adiponectin secreted from adipocytes has various beneficial effects including anti-inflammatory effect. Obesity often presents with hypoadiponectinemia. However, the mechanism and adiponectin movement in obesity remain uncharacterized. Here we investigated tissue distribution of adiponectin protein in lean and obese mice. Adiponectin protein levels were evaluated by enzyme-linked immunosorbent assay and western blotting. Adipose tissues were fractionated into mature adipocyte fraction (MAF) and stromal vascular fraction (SVF). Adiponectin protein was detected not only in MAF but also in SVF, which lacks adiponectin mRNA expression, of adipose tissue remarkably. SVF adiponectin protein level was higher in obese mice than in lean mice. The mechanism of adiponectin accumulation was investigated in adiponectin-deficient (APN-KO) mice after injection of plasma from wild-type mice. These mice showed accumulation of exogenous adiponectin, which derived from wild type mice, in adipose tissues, and the adiponectin was more observed in SVF of diet induced obese APN-KO mice than lean APN-KO mice. Among the adiponectin binding proteins, T-cadherin mRNA and protein levels in SVF of obese mice were remarkably higher than in lean mice. Oxidative stress levels were also significantly higher in SVF of obese mice than lean mice. Mechanistically, H2O2 up-regulated T-cadherin mRNA level in murine macrophages. The results demonstrated adiponectin targets to adipose SVF of obese mice. These findings should shed a new light on the pathology of adipose tissue inflammation and hypoadiponectinemia of obesity. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. NOTE: New tissue substitutes representing cortical bone and adipose tissue in quantitative radiology

    NASA Astrophysics Data System (ADS)

    Sanada, Shigeru; Kawahara, Kazuhiro; Yamamoto, Tomoyuki; Takashima, Tsutomu

    1999-06-01

    To employ quantitative radiology more accurately, we examined phantom materials for cortical bone and adipose tissue as calibration standards and as experimental phantoms. New tissue substitutes for cortical bone and adipose tissue composed of liquid phantom were verified by computing their attenuation coefficients and observing their chemical properties. We showed that a potassium pyrophosphate (K4P2O7) solution for cortical bone was comparable to a dipotassium hydrogen phosphate (K2HPO4) solution. Also, the use of methyl alcohol for adipose tissue was more suitable than ethyl alcohol as a phantom material because of its physical and chemical properties.

  6. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis

    PubMed Central

    Messina, Antonietta; Monda, Vincenzo; Viggiano, Emanuela; Valenzano, Anna; Esposito, Teresa; Cibelli, Giuseppe

    2017-01-01

    Osteopontin (OPN) is a multifunctional protein mainly associated with bone metabolism and remodeling. Besides its physiological functions, OPN is implicated in the pathogenesis of a variety of disease states, such as obesity and osteoporosis. Importantly, during the last decades obesity and osteoporosis have become among the main threats to health worldwide. Because OPN is a protein principally expressed in cells with multifaceted effects on bone morphogenesis and remodeling and because it seems to be one of the most overexpressed genes in the adipose tissue of the obese contributing to osteoporosis, this mini review will highlight recent insights about relation between adipose tissue and bone homeostasis. PMID:28194185

  7. Benefits of healthy adipose tissue in the treatment of diabetes.

    PubMed

    Gunawardana, Subhadra C

    2014-08-15

    The major malfunction in diabetes mellitus is severe perturbation of glucose homeostasis caused by deficiency of insulin. Insulin deficiency is either absolute due to destruction or failure of pancreatic β cells, or relative due to decreased sensitivity of peripheral tissues to insulin. The primary lesion being related to insulin, treatments for diabetes focus on insulin replacement and/or increasing sensitivity to insulin. These therapies have their own limitations and complications, some of which can be life-threatening. For example, exogenous insulin administration can lead to fatal hypoglycemic episodes; islet/pancreas transplantation requires life-long immunosuppressive therapy; and anti-diabetic drugs have dangerous side effects including edema, heart failure and lactic acidosis. Thus the need remains for better safer long term treatments for diabetes. The ultimate goal in treating diabetes is to re-establish glucose homeostasis, preferably through endogenously generated hormones. Recent studies increasingly show that extra-pancreatic hormones, particularly those arising from adipose tissue, can compensate for insulin, or entirely replace the function of insulin under appropriate circumstances. Adipose tissue is a versatile endocrine organ that secretes a variety of hormones with far-reaching effects on overall metabolism. While unhealthy adipose tissue can exacerbate diabetes through limiting circulation and secreting of pro-inflammatory cytokines, healthy uninflamed adipose tissue secretes beneficial adipokines with hypoglycemic and anti-inflammatory properties, which can complement and/or compensate for the function of insulin. Administration of specific adipokines is known to alleviate both type 1 and 2 diabetes, and leptin mono-therapy is reported to reverse type 1 diabetes independent of insulin. Although specific adipokines may correct diabetes, administration of individual adipokines still carries risks similar to those of insulin monotherapy. Thus a

  8. Natural killer T cells in adipose tissue prevent insulin resistance

    PubMed Central

    Schipper, Henk S.; Rakhshandehroo, Maryam; van de Graaf, Stan F.J.; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E.S.; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-01-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell–deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue–resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue–resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance. PMID:22863618

  9. The effects of glucocorticoids on adipose tissue lipid metabolism.

    PubMed

    Peckett, Ashley J; Wright, David C; Riddell, Michael C

    2011-11-01

    Glucocorticoids (GCs) have long been accepted as being catabolic in nature, liberating energy substrates during times of stress to supply the increased metabolic demand of the body. The effects of GCs on adipose tissue metabolism are conflicting, however, because patients with elevated GCs present with central adiposity. We performed an extensive literature review of the effects of GCs on adipose tissue metabolism. The contradictory effects of GCs on lipid metabolism occur through a number of different mechanisms, some of which are well defined and others remain to be elucidated. Firstly, through increases in caloric and dietary fat intake, along with increased hydrolysis of circulating triglycerides (chylomicrons, very low-density lipoproteins) by lipoprotein lipase activity, GCs increase the amount of fatty acids in circulation, which are then available for ectopic fat distribution (liver, muscle, and central adipocytes). Glucocorticoids also increase de novo lipid production in hepatocytes through increased expression of fatty acid synthase. There is some controversy as to whether these same mechanisms occur in adipocytes, thereby contributing to adipose hypertrophy. Glucocorticoids promote preadipocyte conversion to mature adipocytes, causing hyperplasia of the adipose tissue. Glucocorticoids also have acute antilipolytic effect on adipocytes, whereas their genomic actions facilitate increased lipolysis after about 48 hours of exposure. The acute and long-term effects of GCs on adipose tissue lipolysis remain unclear. Although considerable evidence supports the notion that GCs increase lipolysis through glucocorticoid-induced increases of lipase expression, they clearly have antilipolytic effects within these same tissues and cell line models. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Maternal nutritional manipulations program adipose tissue dysfunction in offspring

    PubMed Central

    Lecoutre, Simon; Breton, Christophe

    2015-01-01

    Based on the concept of Developmental Origin of Health and Disease, both human and animal studies have demonstrated a close link between nutrient supply perturbations in the fetus or neonate (i.e., maternal undernutrition, obesity, gestational diabetes and/or rapid catch-up growth) and increased risk of adult-onset obesity. Indeed, the adipose tissue has been recognized as a key target of developmental programming in a sex-and depot-specific manner. Despite different developmental time windows, similar mechanisms of adipose tissue programming have been described in rodents and in bigger mammals (sheep, primates). Maternal nutritional manipulations reprogram offspring's adipose tissue resulting in series of alterations: enhanced adipogenesis and lipogenesis, impaired sympathetic activity with reduced noradrenergic innervations and thermogenesis as well as low-grade inflammation. These changes affect adipose tissue development, distribution and composition predisposing offspring to fat accumulation. Modifications of hormonal tissue sensitivity (i.e., leptin, insulin, glucocorticoids) and/or epigenetic mechanisms leading to persistent changes in gene expression may account for long-lasting programming across generations. PMID:26029119

  11. Maternal nutritional manipulations program adipose tissue dysfunction in offspring.

    PubMed

    Lecoutre, Simon; Breton, Christophe

    2015-01-01

    Based on the concept of Developmental Origin of Health and Disease, both human and animal studies have demonstrated a close link between nutrient supply perturbations in the fetus or neonate (i.e., maternal undernutrition, obesity, gestational diabetes and/or rapid catch-up growth) and increased risk of adult-onset obesity. Indeed, the adipose tissue has been recognized as a key target of developmental programming in a sex-and depot-specific manner. Despite different developmental time windows, similar mechanisms of adipose tissue programming have been described in rodents and in bigger mammals (sheep, primates). Maternal nutritional manipulations reprogram offspring's adipose tissue resulting in series of alterations: enhanced adipogenesis and lipogenesis, impaired sympathetic activity with reduced noradrenergic innervations and thermogenesis as well as low-grade inflammation. These changes affect adipose tissue development, distribution and composition predisposing offspring to fat accumulation. Modifications of hormonal tissue sensitivity (i.e., leptin, insulin, glucocorticoids) and/or epigenetic mechanisms leading to persistent changes in gene expression may account for long-lasting programming across generations.

  12. Subcutaneous adipose tissue metabolism and pharmacology: a new investigative technique.

    PubMed

    Martin, Elizabeth; Brassard, Pascal; Gagnon-Auger, Maude; Yale, Philippe; Carpentier, André C; Ardilouze, Jean-Luc

    2011-06-01

    According to the Fick principle, any metabolic or hormonal exchange through a given tissue depends on the product of blood flow by arteriovenous difference. Because adipose tissue plays dual storage and endocrine roles, regulation of adipose tissue blood flow (ATBF) is of pivotal importance. Monitoring ATBF in humans can be achieved through different methodologies, such as the (133)Xe washout technique, considered to be the "gold standard", as well as microdialysis and other methods that are not well validated as of yet. This report describes a new method, called "adipose tissue microinfusion" or "ATM", which simultaneously quantifies ATBF by combining the (133)Xe washout technique together with variations of ATBF induced by local infusion of vasoactive agents. The most appropriate site for ATM investigation is the subcutaneous adipose tissue of the anterior abdominal wall. This innovative method conveniently enables the direct comparison of the effects on ATBF of any vasoactive compound, drug, or hormone against a contralateral saline control. The ATM method improves the accuracy and feasibility of physiological and pharmacological studies on the regulation of ATBF in vivo in humans.

  13. Myocardial regeneration potential of adipose tissue-derived stem cells

    SciTech Connect

    Bai, Xiaowen; Alt, Eckhard

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  14. Hkat, a novel nutritionally regulated transmembrane protein in adipose tissues.

    PubMed

    Zhang, Ren

    2012-01-01

    White adipose tissue is an active endocrine organ regulating many aspects of whole body physiology and pathology. Adipogenesis, a process in which premature cells differentiate into adipocytes, is a complex process that includes orchestrated changes in gene expression and cell morphology in response to various nutritional and hormonal stimuli. To profile transcriptome changes in response to nutritional stimulation, we performed RNA-seq on fat in mice treated with either a high-fat diet or fasting. We identified a novel nutritionally regulated gene, Gm12824, named Hkat (heart, kidney, adipose-enriched transmembrane protein). We show that both fasting and obesity dramatically reduce Hkat in white adipose tissue, and that fasting reduces while obesity increases its expression in brown fat. Hkat is localized to the plasma membrane and induced during adipogenesis. Therefore, Hkat is a novel nutritionally regulated gene that is potentially involved in metabolism.

  15. Lipolysis and lipases in white adipose tissue - An update.

    PubMed

    Bolsoni-Lopes, Andressa; Alonso-Vale, Maria Isabel C

    2015-08-01

    Lipolysis is defined as the sequential hydrolysis of triacylglycerol (TAG) stored in cell lipid droplets. For many years, it was believed that hormone-sensitive lipase (HSL) and monoacylglycerol lipase (MGL) were the main enzymes catalyzing lipolysis in the white adipose tissue. Since the discovery of adipose triglyceride lipase (ATGL) in 2004, many studies were performed to investigate and characterize the actions of this lipase, as well as of other proteins and possible regulatory mechanisms involved, which reformulated the concept of lipolysis. Novel findings from these studies include the identification of lipolytic products as signaling molecules regulating important metabolic processes in many non-adipose tissues, unveiling a previously underestimated aspect of lipolysis. Thus, we present here an updated review of concepts and regulation of white adipocyte lipolysis with a special emphasis in its role in metabolism homeostasis and as a source of important signaling molecules.

  16. Perivascular adipose tissue, potassium channels, and vascular dysfunction.

    PubMed

    Tano, Jean-Yves; Schleifenbaum, Johanna; Gollasch, Maik

    2014-09-01

    Perivascular adipose tissue has been recognized unequivocally as a major player in the pathology of metabolic and cardiovascular diseases. Through its production of adipokines and the release of other thus far unidentified factors, this recently discovered adipose tissue modulates vascular regulation and the myogenic response. After the discovery of its ability to diminish the vessel's response to vasoconstrictors, a new paradigm established adipose-derived relaxing factor (ADRF) as a paracrine smooth muscle cells' potassium channel opener that could potentially help combat vascular dysfunction. This review will discuss the role of ADRF in vascular dysfunction in obesity and hypertension, the different potassium channels that can be activated by this factor, and describes new pharmacological tools that can mimic the ADRF effect and thus can be beneficial against vascular dysfunction in cardiovascular disease. © 2014 American Heart Association, Inc.

  17. Intra-body microwave communication through adipose tissue.

    PubMed

    Asan, Noor Badariah; Noreland, Daniel; Hassan, Emadeldeen; Redzwan Mohd Shah, Syaiful; Rydberg, Anders; Blokhuis, Taco J; Carlsson, Per-Ola; Voigt, Thiemo; Augustine, Robin

    2017-08-01

    The human body can act as a medium for the transmission of electromagnetic waves in the wireless body sensor networks context. However, there are transmission losses in biological tissues due to the presence of water and salts. This Letter focuses on lateral intra-body microwave communication through different biological tissue layers and demonstrates the effect of the tissue thicknesses by comparing signal coupling in the channel. For this work, the authors utilise the R-band frequencies since it overlaps the industrial, scientific and medical radio (ISM) band. The channel model in human tissues is proposed based on electromagnetic simulations, validated using equivalent phantom and ex-vivo measurements. The phantom and ex-vivo measurements are compared with simulation modelling. The results show that electromagnetic communication is feasible in the adipose tissue layer with a low attenuation of ∼2 dB per 20 mm for phantom measurements and 4 dB per 20 mm for ex-vivo measurements at 2 GHz. Since the dielectric losses of human adipose tissues are almost half of ex-vivo tissue, an attenuation of around 3 dB per 20 mm is expected. The results show that human adipose tissue can be used as an intra-body communication channel.

  18. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders

    PubMed Central

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response. PMID:27148161

  19. The Combination of Tissue Dissection and External Volume Expansion Generates Large Volumes of Adipose Tissue.

    PubMed

    He, Yunfan; Dong, Ziqing; Xie, Gan; Zhou, Tao; Lu, Feng

    2017-04-01

    Noninvasive external volume expansion device has been applied to stimulate nonsurgical breast enlargement in clinical settings. Although previous results demonstrate the capacity of external volume expansion to increase the number of adipocytes, this strategy alone is insufficient to reconstruct soft-tissue defects or increase breast mass. The authors combined a minimally invasive tissue dissection method with external volume expansion to generate large volumes of adipose tissue. In vitro, various densities of adipose-derived stem cells were prepared to evaluate relations between cell contacts and cell proliferation. In vivo, dorsal adipose tissue of rabbits was thoroughly dissected and the external volume expansion device was applied to maintain the released state. External volume expansion without tissue dissection served as the control. In the dissection group, the generated adipose tissue volume was much larger than that in the control group at all time points. A larger number of proliferating cells appeared in the dissection samples than in the control samples at the early stage after tissue dissection. At low cell density, adipose-derived stem cells displayed an increasing proliferation rate compared to high cell density. Protein expression analysis revealed that cell proliferation was mediated by a similar mechanism both in vivo and in vitro, involving the release of cell contact inhibition and Hippo/Yes-associated protein pathway activation. Adipose tissue dissection releases cell-to-cell contacts and induces adipose-derived stem cell proliferation. Preexpanded adipose-derived stem cells undergo adipogenesis under the adipogenic environment created by external volume expansion, leading to better adipose regeneration compared with the control.

  20. Visceral adipose tissue area measurement at a single level: can it represent visceral adipose tissue volume?

    PubMed

    Noumura, Yusuke; Kamishima, Tamotsu; Sutherland, Kenneth; Nishimura, Hideho

    2017-08-01

    Measurement of visceral adipose tissue (VAT) needs to be accurate and sensitive to change for risk monitoring. The purpose of this study is to determine the CT slice location where VAT area can best reflect changes in VAT volume and body weight. 60 plain abdominal CT images from 30 males [mean age (range) 51 (41-68) years, mean body weight (range) 71.1 (101.9-50.9) kg] who underwent workplace screenings twice within a 1-year interval were evaluated. Automatically calculated and manually corrected areas of the VAT of various scan levels using "freeform curve" region of interest on CT were recorded and compared with body weight changes. The strongest correlations of VAT area with VAT volume and body weight changes were shown in a slice 3 cm above the lower margin of L3 with r values of 0.853 and 0.902, respectively. VAT area measurement at a single level 3 cm above the lower margin of the L3 vertebra is feasible and can reflect changes in VAT volume and body weight. Advances in knowledge: As VAT area at a CT slice 3cm above the lower margin of L3 can best reflect interval changes in VAT volume and body weight, VAT area measurement should be selected at this location.

  1. Adipose Tissue Macrophages in Rheumatoid Arthritis: Prevalence, Disease Related Indicators, and Associations with Cardiometabolic Risk Factors.

    PubMed

    Giles, Jon T; Ferrante, Antony W; Broderick, Rachel; Zartoshti, Afshin; Rose, Janine; Downer, Kendall; Zhang, Hui-Zhu; Winchester, Robert J

    2017-04-07

    Objective Adipose tissue macrophages (ATMs) are a potent source of inflammatory cytokines with profound effects on adipose tissue function, yet their potential role in rheumatoid arthritis (RA) pathobiology is largely unstudied. Methods Periumbilical subcutaneous adipose tissue was obtained from 36 RA patients and 22 non-RA controls frequency matched on demographics and BMI. Samples were stained for the macrophage marker CD68 and the average proportion of ATMs, crown-like structures (CLSs: peri-adipocyte aggregates of three or more ATMs), and fibrosis were compared between groups. Results The adjusted proportion of ATMs among all nucleated cells was 76% higher in RA vs. non-RA samples (37.7 vs. 21.3%, respectively; p<0.001), and the adjusted average number of CLSs was more than 1.5-fold higher in the RA group compared with controls (0.58 vs. 0.23 CLSs/high-power field, respectively; p=0.001). ATMs were significantly more abundant in early RA and in those seropositive for anti-CCP. Users of methotrexate, leflunomide, and TNF inhibitors had a significantly lower proportion of ATMs compared with non-users. CLSs were significantly higher in patients seropositive for rheumatoid factor and those with C-reactive protein levels≥10 mg/L, and significantly lower among those treated with statins. Linear ATMs were significantly associated with whole-body insulin resistance, but not with serum lipids. Conclusions ATMs and CLSs were more abundant in RA and associated with systemic inflammation, autoimmunity, and whole-body insulin resistance, suggesting possible contributions to the RA disease process. Lower levels of ATMs and CLSs associated with specific RA treatments suggest that adipose tissue inflammation may be ameliorated by immunomodulation. This article is protected by copyright. All rights reserved.

  2. Regional Adipose Tissue and Elevations in Serum Aminotransferases in HIV-Infected Individuals

    PubMed Central

    Tien, Phyllis C.; Kotler, Donald P.; Overton, E. Turner; Lewis, Cora E.; Rimland, David; Bacchetti, Peter; Scherzer, Rebecca; Gripshover, Barbara

    2009-01-01

    Background The association of fat distribution with alanine aminotransferase (ALT) and aspartate aminotransferase (AST) elevations is not well-defined in HIV-infected individuals. Obesity is associated with hepatic steatosis, and ALT is a marker of steatosis in the general population. Methods Cross-sectional analysis of 1119 HIV-infected and 284 control subjects. Hepatitis C virus (HCV) RNA testing determined HCV infection. Magnetic resonance imaging measured regional adipose tissue volume. Results After adjustment for demographic and lifestyle factors, visceral adipose tissue (VAT) was positively associated with ALT in HIV/HCV-coinfected subjects (+9.8%, 95% confidence interval [CI]: 2.8 to 17.6), HIV-monoinfected subjects (+8.0%, 95% CI: 4.2 to 12.1), and controls (+5.9%, 95% CI: 2.0 to 10.1). In contrast, lower trunk subcutaneous adipose tissue (SAT) was negatively associated with ALT in HIV/HCV-coinfected subjects (−14.3%, 95% CI: −24.7 to −4.2) and HIV-monoinfected subjects (−11.9%, 95% CI: −18.4 to −5.3); there was a trend toward an association in controls (−7.1%, 95% CI: −22.7 to 5.9). Estimated associations between regional adipose tissue and AST were small and did not reach statistical significance. Conclusions More VAT and less lower trunk SAT are associated with elevated ALT, which likely reflects the presence of steatosis. There was little association with AST. HCV infection and having more VAT or less lower trunk SAT are independently associated with elevated ALT in HIV infection. Study regarding the association between VAT, trunk SAT, HCV, and progression of steatosis and fibrosis is needed in HIV-infected individuals. PMID:18285711

  3. Molecular pathways regulating the formation of brown-like adipocytes in white adipose tissue.

    PubMed

    Fu, Jianfei; Li, Zhen; Zhang, Huiqin; Mao, Yushan; Wang, Anshi; Wang, Xin; Zou, Zuquan; Zhang, Xiaohong

    2015-07-01

    Adipose tissue is functionally composed of brown adipose tissue and white adipose tissue. The unique thermogenic capacity of brown adipose tissue results from expression of uncoupling protein 1 in the mitochondrial inner membrane. On the basis of recent findings that adult humans have functionally active brown adipose tissue, it is now recognized as playing a much more important role in human metabolism than was previously thought. More importantly, brown-like adipocytes can be recruited in white adipose tissue upon environmental stimulation and pharmacologic treatment, and this change is associated with increased energy expenditure, contributing to a lean and healthy phenotype. Thus, the promotion of brown-like adipocyte development in white adipose tissue offers novel possibilities for the development of therapeutic strategies to combat obesity and related metabolic diseases. In this review, we summarize recent advances in understanding the molecular mechanisms involved in the recruitment of brown-like adipocyte in white adipose tissue.

  4. Spice Up Your Life: Adipose Tissue and Inflammation

    PubMed Central

    Agarwal, Anil K.

    2014-01-01

    Cells of the immune system are now recognized in the adipose tissue which, in obesity, produces proinflammatory chemokines and cytokines. Several herbs and spices have been in use since ancient times which possess anti-inflammatory properties. In this perspective, I discuss and propose the usage of these culinary delights for the benefit of human health. PMID:24701352

  5. Obesity induces a phenotypic switch in adipose tissue macrophage polarization.

    PubMed

    Lumeng, Carey N; Bodzin, Jennifer L; Saltiel, Alan R

    2007-01-01

    Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80(+)CD11c(+) population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or "alternatively activated" macrophages, including Ym1, arginase 1, and Il10. Diet-induced obesity decreased expression of these genes in ATMs while increasing expression of genes such as those encoding TNF-alpha and iNOS that are characteristic of M1 or "classically activated" macrophages. Interestingly, ATMs from obese C-C motif chemokine receptor 2-KO (Ccr2-KO) mice express M2 markers at levels similar to those from lean mice. The antiinflammatory cytokine IL-10, which was overexpressed in ATMs from lean mice, protected adipocytes from TNF-alpha-induced insulin resistance. Thus, diet-induced obesity leads to a shift in the activation state of ATMs from an M2-polarized state in lean animals that may protect adipocytes from inflammation to an M1 proinflammatory state that contributes to insulin resistance.

  6. Obesity induces a phenotypic switch in adipose tissue macrophage polarization

    PubMed Central

    Lumeng, Carey N.; Bodzin, Jennifer L.; Saltiel, Alan R.

    2007-01-01

    Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80+CD11c+ population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or “alternatively activated” macrophages, including Ym1, arginase 1, and Il10. Diet-induced obesity decreased expression of these genes in ATMs while increasing expression of genes such as those encoding TNF-α and iNOS that are characteristic of M1 or “classically activated” macrophages. Interestingly, ATMs from obese C-C motif chemokine receptor 2–KO (Ccr2-KO) mice express M2 markers at levels similar to those from lean mice. The antiinflammatory cytokine IL-10, which was overexpressed in ATMs from lean mice, protected adipocytes from TNF-α–induced insulin resistance. Thus, diet-induced obesity leads to a shift in the activation state of ATMs from an M2-polarized state in lean animals that may protect adipocytes from inflammation to an M1 proinflammatory state that contributes to insulin resistance. PMID:17200717

  7. Adipose Tissue as a Site of Toxin Accumulation.

    PubMed

    Jackson, Erin; Shoemaker, Robin; Larian, Nika; Cassis, Lisa

    2017-09-12

    We examine the role of adipose tissue, typically considered an energy storage site, as a potential site of toxicant accumulation. Although the production of most persistent organic pollutants (POPs) was banned years ago, these toxicants persist in the environment due to their resistance to biodegradation and widespread distribution in various environmental forms (e.g., vapor, sediment, and water). As a result, human exposure to these toxicants is inevitable. Largely due to their lipophilicity, POPs bioaccumulate in adipose tissue, resulting in greater body burdens of these environmental toxicants with obesity. POPs of major concern include polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and furans (PCDDs/PCDFs), and polybrominated biphenyls and diphenyl ethers (PBBs/PBDEs), among other organic compounds. In this review, we (i) highlight the physical characteristics of toxicants that enable them to partition into and remain stored in adipose tissue, (ii) discuss the specific mechanisms of action by which these toxicants act to influence adipocyte function, and (iii) review associations between POP exposures and the development of obesity and diabetes. An area of controversy relates to the relative potential beneficial versus hazardous health effects of toxicant sequestration in adipose tissue. © 2017 American Physiological Society. Compr Physiol 7:1085-1135, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  8. Functions of AMP-activated protein kinase in adipose tissue

    PubMed Central

    Daval, Marie; Foufelle, Fabienne; Ferré, Pascal

    2006-01-01

    AMP-activated protein kinase (AMPK) is involved in cellular energy homeostasis. Its functions have been extensively studied in muscles and liver. AMPK stimulates pathways which increase energy production (glucose transport, fatty acid oxidation) and switches off pathways which consume energy (lipogenesis, protein synthesis, gluconeogenesis). This has led to the concept that AMPK has an interesting pharmaceutical potential in situations of insulin resistance and it is indeed the target of existing drugs and hormones which improve insulin sensitivity. Adipose tissue is a key player in energy metabolism through the release of substrates and hormones involved in metabolism and insulin sensitivity. Activation of AMPK in adipose tissue can be achieved through situations such as fasting and exercise. Leptin and adiponectin as well as hypoglycaemic drugs are activators of adipose tissue AMPK. This activation probably involves changes in the AMP/ATP ratio and the upstream kinase LKB1. When activated, AMPK limits fatty acid efflux from adipocytes and favours local fatty acid oxidation. Since fatty acids have a key role in insulin resistance, especially in muscles, activating AMPK in adipose tissue might be found to be beneficial in insulin-resistant states, particularly as AMPK activation also reduces cytokine secretion in adipocytes. PMID:16709632

  9. Human omental and subcutaneous adipose tissue exhibit specific lipidomic signatures.

    PubMed

    Jové, Mariona; Moreno-Navarrete, José María; Pamplona, Reinald; Ricart, Wifredo; Portero-Otín, Manuel; Fernández-Real, José Manuel

    2014-03-01

    Despite their differential effects on human metabolic pathophysiology, the differences in omental and subcutaneous lipidomes are largely unknown. To explore this field, liquid chromatography coupled with mass spectrometry was used for lipidome analyses of adipose tissue samples (visceral and subcutaneous) selected from a group of obese subjects (n=38). Transcriptomics and in vitro studies in adipocytes were used to confirm the pathways affected by location. The analyses revealed the existence of obesity-related specific lipidome signatures in each of these locations, attributed to selective enrichment of specific triglycerides, glycerophospholipids, and sphingolipids, because these were not observed in adipose tissues from nonobese individuals. The changes were compatible with subcutaneous enrichment in pathways involved in adipogenesis, triacylglyceride synthesis, and lipid droplet formation, as well as increased α-oxidation. Marked differences between omental and subcutaneous depots in obese individuals were seen in the association of lipid species with metabolic traits (body mass index and insulin sensitivity). Targeted studies also revealed increased cholesterol (Δ56%) and cholesterol epoxide (Δ34%) concentrations in omental adipose tissue. In view of the effects of cholesterol epoxide, which induced enhanced expression of adipocyte differentiation and α-oxidation genes in human omental adipocytes, a novel role for cholesterol epoxide as a signaling molecule for differentiation is proposed. In summary, in obesity, adipose tissue exhibits a location-specific differential lipid profile that may contribute to explaining part of its distinct pathogenic role.

  10. Endocrine modulators of mouse subcutaneous adipose tissue beige adipocyte markers

    USDA-ARS?s Scientific Manuscript database

    The stromal vascular fraction (SVF) of subcutaneous adipose tissue contains precursors that can give rise to beige adipocytes. Beige adipocytes are characterized by the expression of specific markers, but it is not clear which markers best evaluate beige adipocyte differentiation. Both regulators of...

  11. Underlying functional genomics of fat deposition in adipose tissue.

    PubMed

    Bakhtiarizadeh, Mohammad Reza; Moradi-Shahrbabak, Mohammad; Ebrahimie, Esmaeil

    2013-05-25

    The objective of this study was to gain insight into the underlying mechanisms of fat deposition. Two sheep breeds with large fat-tail (Lori-Bakhtiari) and with thin-tail (Zel) were used as models. To determine important and key candidate lipid metabolism related genes, comparative genomic approaches were employed. Gene expression profiles of adipose tissues were analyzed in human, pig, and cattle by express sequence tag (EST) analysis. EST analysis determined 65, 102 and 125 transcripts in human, pig and cattle respectively with at least 10 fold over-expression in the adipose tissue. Based on our comparative functional genomic analysis, seven genes were more abundant and common in investigated mammalian adipose tissues promising a conserved novel gene network in mammalian lipid metabolism. The candidate genes including fatty acid binding protein 4 (FABP4), fatty acid synthase (FASN), Stearoyl-CoA desaturase (SCD) and Lipoprotein lipase (LPL) were selected for further gene expression investigation within two sheep breeds. The real time PCR results showed that among the genes tested, FABP4 was expressed at higher levels than the others. The expression of FABP4 was significantly higher in the fat-tail of Lori-Bakhtiari than in the fat-tail and visceral adipose tissues of Zel (P<0.05). The findings suggest that the FABP4 gene expression in the fat-tail is an important index of fat deposition. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Relationship between adipose tissue dysfunction, vitamin D deficiency and the pathogenesis of non-alcoholic fatty liver disease

    PubMed Central

    Cimini, Flavia A; Barchetta, Ilaria; Carotti, Simone; Bertoccini, Laura; Baroni, Marco G; Vespasiani-Gentilucci, Umberto; Cavallo, Maria-Gisella; Morini, Sergio

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. Its pathogenesis is complex and not yet fully understood. Over the years many studies have proposed various pathophysiological hypotheses, among which the currently most widely accepted is the “multiple parallel hits” theory. According to this model, lipid accumulation in the hepatocytes and insulin resistance increase the vulnerability of the liver to many factors that act in a coordinated and cooperative manner to promote hepatic injury, inflammation and fibrosis. Among these factors, adipose tissue dysfunction and subsequent chronic low grade inflammation play a crucial role. Recent studies have shown that vitamin D exerts an immune-regulating action on adipose tissue, and the growing wealth of epidemiological data is demonstrating that hypovitaminosis D is associated with both obesity and NAFLD. Furthermore, given the strong association between these conditions, current findings suggest that vitamin D may be involved in the relationship between adipose tissue dysfunction and NAFLD. The purpose of this review is to provide an overview of recent advances in the pathogenesis of NAFLD in relation to adipose tissue dysfunction, and in the pathophysiology linking vitamin D deficiency with NAFLD and adiposity, together with an overview of the evidence available on the clinical utility of vitamin D supplementation in cases of NAFLD. PMID:28596677

  13. Adipose HIF-1α causes obesity by suppressing brown adipose tissue thermogenesis.

    PubMed

    Jun, Jonathan C; Devera, Ronald; Unnikrishnan, Dileep; Shin, Mi-Kyung; Bevans-Fonti, Shannon; Yao, Qiaoling; Rathore, Aman; Younas, Haris; Halberg, Nils; Scherer, Philipp E; Polotsky, Vsevolod Y

    2017-03-01

    Hypoxia-inducible factor-1α (HIF-1α) in adipose tissue is known to promote obesity. We hypothesized that HIF-1α interferes with brown fat thermogenesis, thus decreasing energy expenditure. To test this hypothesis, we compared transgenic mice constitutively expressing HIF-1α in adipose tissues (HIF-1α++) at usual temperature (22 °C), where brown fat is somewhat active, or at thermoneutrality (30 °C), where brown fat is minimally active. HIF-1α++ mice or control litter mates were separated into room temperature (22 °C) or thermoneutrality (30 °C) groups. We assessed weight gain, food intake, calorimetry, activity, and oxygen consumption and transcriptional changes in isolated white and brown adipocytes. At 22 °C, HIF-1α++ mice exhibited accelerated weight gain, cold and glucose intolerance, hyperglycemia, and decreased energy expenditure without changes in food intake or activity. These changes were absent or minimal at thermoneutrality. In brown adipocytes of HIF-1α++ mice, oxygen consumption decreased ~50 % in association with reduced mitochondrial content, uncoupling protein 2, and peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1α). In conclusion, adipose HIF-1α overexpression inhibits thermogenesis and cellular respiration in brown adipose tissue, promoting obesity in the setting of reduced ambient temperature.

  14. Caspase Induction and BCL2 Inhibition in Human Adipose Tissue

    PubMed Central

    Tinahones, Francisco José; Coín Aragüez, Leticia; Murri, Mora; Oliva Olivera, Wilfredo; Mayas Torres, María Dolores; Barbarroja, Nuria; Gomez Huelgas, Ricardo; Malagón, Maria M.; El Bekay, Rajaa

    2013-01-01

    OBJECTIVE Cell death determines the onset of obesity and associated insulin resistance. Here, we analyze the relationship among obesity, adipose tissue apoptosis, and insulin signaling. RESEARCH DESIGN AND METHODS The expression levels of initiator (CASP8/9) and effector (CASP3/7) caspases as well as antiapoptotic B-cell lymphoma (BCL)2 and inflammatory markers were assessed in visceral (VAT) and subcutaneous (SAT) adipose tissue from patients with different degrees of obesity and without insulin resistance or diabetes. Adipose tissue explants from lean subjects were cultured with TNF-α or IL-6, and the expression of apoptotic and insulin signaling components was analyzed and compared with basal expression levels in morbidly obese subjects. RESULTS SAT and VAT exhibited increased CASP3/7 and CASP8/9 expression levels and decreased BCL2 expression with BMI increase. These changes were accompanied by increased inflammatory cytokine mRNA levels and macrophage infiltration markers. In obese subjects, CASP3/7 activation and BCL2 downregulation correlated with the IRS-1/2–expression levels. Expression levels of caspases, BCL2, p21, p53, IRS-1/2, GLUT4, protein tyrosine phosphatase 1B, and leukocyte antigen-related phosphatase in TNF-α– or IL-6–treated explants from lean subjects were comparable with those found in adipose tissue samples from morbidly obese subjects. These insulin component expression levels were reverted with CASP3/7 inhibition in these TNF-α– or IL-6–treated explants. CONCLUSIONS Body fat mass increase is associated with CASP3/7 and BCL2 expression in adipose tissue. Moreover, this proapoptotic state correlated with insulin signaling, suggesting its potential contribution to the development of insulin resistance. PMID:23193206

  15. Allergen exposure induces adipose tissue inflammation and insulin resistance.

    PubMed

    Jung, Chien-Cheng; Tsai, Yau-Sheng; Chang, Chih-Ching; Cheng, Tsun-Jen; Chang, Ching-Wen; Liu, Ping-Yen; Chiu, Yi-Jen; Su, Huey-Jen

    2014-11-01

    This study investigates whether exposure to allergen elicits insulin resistance as a result of adipose tissue inflammation. Male C57BL/6 mice were challenged with ovalbumin (OVA) allergen for 12 weeks, and blood and adipose tissue samples were collected at 24h after the last challenge. Levels of adhesion molecules, fasting insulin, fasting glucose, and adipokines in the blood were analyzed, and fasting homeostasis model assessment was applied to determine insulin resistance (HOMA-IR). The expression of pro- and anti-inflammatory genes in dissected adipose tissues was analyzed by real-time RT-PCR. Our results showed that OVA exposure increased insulin resistance as well as resistin and E-selectin, but reduced adiponectin in the serum. Resistin level was significantly correlated with HOMA-IR. Moreover, in adipose tissues of OVA-challenged mice, the pro-inflammatory M1 genes were more abundant while the anti-inflammatory M2 genes were less than those of PBS-treated mice. The expressional changes of both M1 and M2 genes were significantly associated with serum levels of adiponectin, resistin, and E-selectin. Hematoxylin and eosin (HE) and immunohistochemistry (IHC) stain also showed that there was more obvious inflammation in OVA-challenged mice. In conclusion, the current study suggests the relationship between allergen-elicited adipose tissue inflammation and circulating inflammatory molecules, which are possible mediators for the development of insulin resistance. Therefore, we propose that allergen exposure might be one risk factor for insulin resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Adipose tissue thickness does not affect the electromechanical delay.

    PubMed

    Stock, Matt S; Thompson, Brennan J

    2016-03-01

    During voluntary contractions in humans, the subcutaneous tissues between surface electrodes and active motor units have been shown to attenuate surface electromyographic (EMG) signal amplitude. The purpose of this investigation was to examine the relationship between adipose tissue thickness and the electromechnical delay (EMD) during maximal voluntary contractions (MVCs). Thirty-two healthy women (mean  ±  SD age  =  21  ±  2 years; mass  =  60.7  ±  11.5 kg; height  =  161.7  ±  7.5 cm; dual-energy x-ray absorptiometry body-fat percentage  =  33.1  ±  9.9%) performed MVCs of the right leg extensors while bipolar surface EMG signals were detected from the vastus lateralis muscle. EMD was calculated as the time (ms) between EMG and torque onsets. B-mode ultrasonography was used to determine adipose tissue thickness over the same location of the vastus lateralis where the EMG sensor was placed. Partial correlation was used to examine the relationship between adipose tissue thickness and EMD while statistically removing the influence of peak torque, EMG amplitude, and vastus lateralis muscle thickness. The partial correlation demonstrated no relationship between adipose tissue thickness and EMD (r  =  -0.010, p  =  0.956). Collectively, these findings demonstrated that adiposity does not influence the estimation of EMD.

  17. Is Adipose Tissue a Place for Mycobacterium tuberculosis Persistence?

    PubMed Central

    Neyrolles, Olivier; Hernández-Pando, Rogelio; Pietri-Rouxel, France; Fornès, Paul; Tailleux, Ludovic; Payán, Jorge Alberto Barrios; Pivert, Elisabeth; Bordat, Yann; Aguilar, Diane; Prévost, Marie-Christine; Petit, Caroline; Gicquel, Brigitte

    2006-01-01

    Background Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), has the ability to persist in its human host for exceptionally long periods of time. However, little is known about the location of the bacilli in latently infected individuals. Long-term mycobacterial persistence in the lungs has been reported, but this may not sufficiently account for strictly extra-pulmonary TB, which represents 10–15% of the reactivation cases. Methodology/Principal Findings We applied in situ and conventional PCR to sections of adipose tissue samples of various anatomical origins from 19 individuals from Mexico and 20 from France who had died from causes other than TB. M. tuberculosis DNA could be detected by either or both techniques in fat tissue surrounding the kidneys, the stomach, the lymph nodes, the heart and the skin in 9/57 Mexican samples (6/19 individuals), and in 8/26 French samples (6/20 individuals). In addition, mycobacteria could be immuno-detected in perinodal adipose tissue of 1 out of 3 biopsy samples from individuals with active TB. In vitro, using a combination of adipose cell models, including the widely used murine adipose cell line 3T3-L1, as well as primary human adipocytes, we show that after binding to scavenger receptors, M. tuberculosis can enter within adipocytes, where it accumulates intracytoplasmic lipid inclusions and survives in a non-replicating state that is insensitive to the major anti-mycobacterial drug isoniazid. Conclusions/Significance Given the abundance and the wide distribution of the adipose tissue throughout the body, our results suggest that this tissue, among others, might constitute a vast reservoir where the tubercle bacillus could persist for long periods of time, and avoid both killing by antimicrobials and recognition by the host immune system. In addition, M. tuberculosis-infected adipocytes might provide a new model to investigate dormancy and to evaluate new drugs for the treatment of persistent

  18. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations.

    PubMed

    Stanford, Kristin I; Middelbeek, Roeland J W; Goodyear, Laurie J

    2015-07-01

    Regular physical activity and exercise training have long been known to cause adaptations to white adipose tissue (WAT), including decreases in cell size and lipid content and increases in mitochondrial proteins. In this article, we discuss recent studies that have investigated the effects of exercise training on mitochondrial function, the "beiging" of WAT, regulation of adipokines, metabolic effects of trained adipose tissue on systemic metabolism, and depot-specific responses to exercise training. The major WAT depots in the body are found in the visceral cavity (vWAT) and subcutaneously (scWAT). In rodent models, exercise training increases mitochondrial biogenesis and activity in both these adipose tissue depots. Exercise training also increases expression of the brown adipocyte marker uncoupling protein 1 (UCP1) in both adipose tissue depots, although these effects are much more pronounced in scWAT. Consistent with the increase in UCP1, exercise training increases the presence of brown-like adipocytes in scWAT, also known as browning or beiging. Training results in changes in the gene expression of thousands of scWAT genes and an altered adipokine profile in both scWAT and vWAT. Transplantation of trained scWAT in sedentary recipient mice results in striking improvements in skeletal muscle glucose uptake and whole-body metabolic homeostasis. Human and rodent exercise studies have indicated that exercise training can alter circulating adipokine concentration as well as adipokine expression in adipose tissue. Thus, the profound changes to WAT in response to exercise training may be part of the mechanism by which exercise improves whole-body metabolic health. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  19. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations

    PubMed Central

    Stanford, Kristin I.; Middelbeek, Roeland J.W.

    2015-01-01

    Regular physical activity and exercise training have long been known to cause adaptations to white adipose tissue (WAT), including decreases in cell size and lipid content and increases in mitochondrial proteins. In this article, we discuss recent studies that have investigated the effects of exercise training on mitochondrial function, the “beiging” of WAT, regulation of adipokines, metabolic effects of trained adipose tissue on systemic metabolism, and depot-specific responses to exercise training. The major WAT depots in the body are found in the visceral cavity (vWAT) and subcutaneously (scWAT). In rodent models, exercise training increases mitochondrial biogenesis and activity in both these adipose tissue depots. Exercise training also increases expression of the brown adipocyte marker uncoupling protein 1 (UCP1) in both adipose tissue depots, although these effects are much more pronounced in scWAT. Consistent with the increase in UCP1, exercise training increases the presence of brown-like adipocytes in scWAT, also known as browning or beiging. Training results in changes in the gene expression of thousands of scWAT genes and an altered adipokine profile in both scWAT and vWAT. Transplantation of trained scWAT in sedentary recipient mice results in striking improvements in skeletal muscle glucose uptake and whole-body metabolic homeostasis. Human and rodent exercise studies have indicated that exercise training can alter circulating adipokine concentration as well as adipokine expression in adipose tissue. Thus, the profound changes to WAT in response to exercise training may be part of the mechanism by which exercise improves whole-body metabolic health. PMID:26050668

  20. Association between subcutaneous white adipose tissue and serum 25-hydroxyvitamin D in overweight and obese adults

    USDA-ARS?s Scientific Manuscript database

    Background: Cholecalciferol is known to be deposited in human adipose tissue, but the distribution of 25-hydroxyvitamin D (25(OH)D) in adipose tissue is not known. Objectives: To determine whether 25(OH)D is detectable in subcutaneous white adipose tissue (SWAT) in overweight and obese persons an...

  1. Contribution of INTRAMUSCULAR Autologous Adipose Tissue-Derived Stem Cell Injections to Treat Cutaneous Radiation Syndrome: Preliminary Results.

    PubMed

    Riccobono, Diane; Agay, Diane; François, Sabine; Scherthan, Harry; Drouet, Michel; Forcheron, Fabien

    2016-08-01

    Cutaneous radiation syndrome caused by high dose located irradiation is characterized by delayed symptoms, incomplete wound healing, and poor revascularization. Subcutaneous adipose tissue derived stromal/stem cells have been shown to improve skin repair in a minipig model of cutaneous radiation syndrome despite a subcutaneous defect being a consequence of radio-induced muscular fibrosis. Based on the pro-myogenic potential of stromal/stem cells, a new protocol combining subcutaneous and intramuscular injections was evaluated in a preliminary study. Six female minipigs were locally irradiated at the dose of 50 Gy using a Co source (0.6 Gy min) and randomly divided into two groups. Three animals received the vehicle (phosphate-buffer-saline solution) and three animals received three injections of 75 × 10 adipose tissue derived stromal/stem cells each time (day 25, 46, and 66 post-irradiation). Pigs were euthanized on day 76 post-irradiation before development of clinical skin symptoms. All minipigs exhibited a homogeneous skin evolution. Macroscopic observation of irradiated muscles showed prominent fibrosis and necrosis areas in controls as opposed to adipose tissue-derived stromal/stem cells injected animals. Moreover, muscle biopsy analysis highlighted a recruitment of myofibroblasts (Immune Reactive Score: p < 0.01), an interleukin 10 secretion and a muscle regeneration pathway activation after intramuscular injections of adipose tissue-derived stromal/stem cells (western-blot: respectively, 200-fold change difference and twofold higher in treated animals). Globally, these preliminary data suggest that intramuscular injections of adipose tissue-derived stromal/stem cells improve muscle regeneration in the cutaneous-radiation syndrome. Further work is ongoing to evaluate this therapeutic strategy on a larger animal number with a longer clinical follow-up.

  2. Circadian regulation of lipid mobilization in white adipose tissues.

    PubMed

    Shostak, Anton; Meyer-Kovac, Judit; Oster, Henrik

    2013-07-01

    In mammals, a network of circadian clocks regulates 24-h rhythms of behavior and physiology. Circadian disruption promotes obesity and the development of obesity-associated disorders, but it remains unclear to which extent peripheral tissue clocks contribute to this effect. To reveal the impact of the circadian timing system on lipid metabolism, blood and adipose tissue samples from wild-type, ClockΔ19, and Bmal1(-/-) circadian mutant mice were subjected to biochemical assays and gene expression profiling. We show diurnal variations in lipolysis rates and release of free fatty acids (FFAs) and glycerol into the blood correlating with rhythmic regulation of two genes encoding the lipolysis pacemaker enzymes, adipose triglyceride (TG) lipase and hormone-sensitive lipase, by self-sustained adipocyte clocks. Circadian clock mutant mice show low and nonrhythmic FFA and glycerol blood content together with decreased lipolysis rates and increased sensitivity to fasting. Instead circadian clock disruption promotes the accumulation of TGs in white adipose tissue (WAT), leading to increased adiposity and adipocyte hypertrophy. In summary, circadian modulation of lipolysis rates regulates the availability of lipid-derived energy during the day, suggesting a role for WAT clocks in the regulation of energy homeostasis.

  3. Adipose-derived stem cell differentiation as a basic tool for vascularized adipose tissue engineering.

    PubMed

    Volz, Ann-Cathrin; Huber, Birgit; Kluger, Petra J

    2016-01-01

    The development of in vitro adipose tissue constructs is highly desired to cope with the increased demand for substitutes to replace damaged soft tissue after high graded burns, deformities or tumor removal. To achieve clinically relevant dimensions, vascularization of soft tissue constructs becomes inevitable but still poses a challenge. Adipose-derived stem cells (ASCs) represent a promising cell source for the setup of vascularized fatty tissue constructs as they can be differentiated into adipocytes and endothelial cells in vitro and are thereby available in sufficiently high cell numbers. This review summarizes the currently known characteristics of ASCs and achievements in adipogenic and endothelial differentiation in vitro. Further, the interdependency of adipogenesis and angiogenesis based on the crosstalk of endothelial cells, stem cells and adipocytes is addressed at the molecular level. Finally, achievements and limitations of current co-culture conditions for the construction of vascularized adipose tissue are evaluated. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  4. Iron elevation and adipose tissue remodeling in the epididymal depot of a mouse model of polygenic obesity

    PubMed Central

    Pham, Vinh T.; Mori, Hiroyuki; MacDougald, Ormond A.; Shah, Yatrik M.; Bodary, Peter F.

    2017-01-01

    Background Iron dysregulation is a potential contributor to the pathology of obesity-related metabolic complications. KK/HIJ (KK) mice, a polygenic obese mouse model, have elevated serum iron levels. A subset of KK male mice display a bronzing of epididymal adipose tissue (eAT) associated with >100-fold (p<0.001) higher iron concentration. Methods To further phenotype and characterize the adipose tissue iron overload, 27 male KK mice were evaluated. 14 had bronzing eAT and 13 had normal appearing eAT. Fasting serum and tissues were collected for iron content, qPCR, histology and western blot. Results High iron levels were confirmed in bronzing eAT (High Iron group, HI) versus normal iron level (NI) in normal appearing eAT. Surprisingly, iron levels in subcutaneous and brown adipose depots were not different between the groups (p>0.05). The eAT histology revealed iron retention, macrophage clustering, tissue fibrosis, cell death as well as accumulation of HIF-2α in the high iron eAT. qPCR showed significantly decreased Lep (leptin) and AdipoQ (adiponectin), whereas Tnfα (tumor necrosis factor α), and Slc40a1 (ferroportin) were up-regulated in HI (p<0.05). Elevated HIF-2α, oxidative stress and local insulin signaling loss was also observed. Significance Our data suggest that deposition of iron in adipose tissue is limited to the epididymal depot in male KK mice. A robust adipose tissue remodeling is concomitant with the high iron concentration, which causes local adipose tissue insulin resistance. PMID:28651003

  5. Metabolic remodeling of white adipose tissue in obesity

    PubMed Central

    Cummins, Timothy D.; Holden, Candice R.; Sansbury, Brian E.; Gibb, Andrew A.; Shah, Jasmit; Zafar, Nagma; Tang, Yunan; Hellmann, Jason; Rai, Shesh N.; Spite, Matthew; Bhatnagar, Aruni

    2014-01-01

    Adipose tissue metabolism is a critical regulator of adiposity and whole body energy expenditure; however, metabolic changes that occur in white adipose tissue (WAT) with obesity remain unclear. The purpose of this study was to understand the metabolic and bioenergetic changes occurring in WAT with obesity. Wild-type (C57BL/6J) mice fed a high-fat diet (HFD) showed significant increases in whole body adiposity, had significantly lower V̇o2, V̇co2, and respiratory exchange ratios, and demonstrated worsened glucose and insulin tolerance compared with low-fat-fed mice. Metabolomic analysis of WAT showed marked changes in lipid, amino acid, carbohydrate, nucleotide, and energy metabolism. Tissue levels of succinate and malate were elevated, and metabolites that could enter the Krebs cycle via anaplerosis were mostly diminished in high-fat-fed mice, suggesting altered mitochondrial metabolism. Despite no change in basal oxygen consumption or mitochondrial DNA abundance, citrate synthase activity was decreased by more than 50%, and responses to FCCP were increased in WAT from mice fed a high-fat diet. Moreover, Pgc1a was downregulated and Cox7a1 upregulated after 6 wk of HFD. After 12 wk of high-fat diet, the abundance of several proteins in the mitochondrial respiratory chain or matrix was diminished. These changes were accompanied by increased Parkin and Pink1, decreased p62 and LC3-I, and ultrastructural changes suggestive of autophagy and mitochondrial remodeling. These studies demonstrate coordinated restructuring of metabolism and autophagy that could contribute to the hypertrophy and whitening of adipose tissue in obesity. PMID:24918202

  6. Subcutaneous adipose tissue fatty acid desaturation in adults with and without rare adipose disorders

    PubMed Central

    2012-01-01

    Background Elevated stearoyl-CoA desaturase activity has been described in obese states, with an increased desaturation index (DI) suggesting enhanced lipogenesis. Differences in the DI among various phenotypes of abnormal adiposity have not been studied. Abnormal accumulation of subcutaneous adipose tissue occurs in rare adipose disorders (RADs) including Dercum's disease (DD), multiple symmetric lipomatosis (MSL), and familial multiple lipomatosis (FML). Examining the DI in subcutaneous fat of people with DD, MSL and FML may provide information on adipose tissue fatty acid metabolism in these disorders. The aims of this pilot study were: 1) to determine if differences in adipose tissue DIs are present among RADs, and 2) to determine if the DIs correlate to clinical or biochemical parameters. Methods Subcutaneous adipose tissue was obtained from human participants with DD (n = 6), MSL (n = 5), FML (n = 8) and obese Controls (n = 6). Fatty acid composition was determined by gas chromatography/mass spectrometry. The DIs (palmitoleic/palmitic, oleic/stearic, vaccenic/stearic ratios) were calculated from the gas chromatogram peak intensities. SCD1 gene expression was determined. Spearman's correlations between the DIs and available clinical or biochemical data were performed. Results In DD subjects, the vaccenic/stearic index was lower (p < 0.05) in comparison to Controls. Percent of total of the saturated fatty acid myristic acid was higher in DD compared with Controls and FML. Percent of monounsaturated vaccenic acid in DD trended lower when compared with Controls, and was decreased in comparison to FML. In MSL, total percent of the polyunsaturated fatty acids was significantly lower than in the Control group (p < 0.05). In the total cohort of subjects, the palmitoleic/palmitic and oleic/stearic DIs positively correlated with age, BMI, and percent body fat. Conclusions The positive associations between the DIs and measures of adiposity (BMI and percent body fat

  7. Visceral adipose tissue modulates mammalian longevity

    PubMed Central

    Muzumdar, Radhika; Allison, David B.; Huffman, Derek M.; Ma, Xiaohui; Atzmon, Gil; Einstein, Francine H.; Fishman, Sigal; Poduval, Aruna D.; McVei, Theresa; Keith, Scott W.; Barzilai, Nir

    2008-01-01

    Summary Caloric restriction (CR) can delay many age-related diseases and extend lifespan, while an increase in adiposity is associated with enhanced disease risk and accelerated aging. Among the various fat depots, the accrual of visceral fat (VF) is a common feature of aging, and has been shown to be the most detrimental on metabolic syndrome of aging in humans. We have previously demonstrated that surgical removal of VF in rats improves insulin action; thus, we set out to determine if VF removal affects longevity. We prospectively studied lifespan in three groups of rats: ad libitum-fed (AL-fed), CR (Fed 60% of AL) and a group of AL-fed rats with selective removal of VF at 5 months of age (VF-removed rats). We demonstrate that compared to AL-fed rats, VF-removed rats had a significant increase in mean (p < 0.001) and maximum lifespan (p < 0.04) and significant reduction in the incidence of severe renal disease (p < 0.01). CR rats demonstrated the greatest mean and maximum lifespan (p < 0.001) and the lowest rate of death as compared to AL-fed rats (0.13). Taken together, these observations provide the most direct evidence to date that a reduction in fat mass, specifically VF, may be one of the possible underlying mechanisms of the anti-aging effect of CR. PMID:18363902

  8. Epicardial Adipose Tissue Thickness in Patients With Subclinical Hypothyroidism and the Relationship Thereof With Visceral Adipose Tissue Thickness.

    PubMed

    Arpaci, Dilek; Gurkan Tocoglu, Aysel; Yilmaz, Sabiye; Korkmaz, Sumeyye; Ergenc, Hasan; Gunduz, Huseyin; Keser, Nurgul; Tamer, Ali

    2016-03-01

    Subclinical hypothyroidism (SH) is associated with cardiovascular metabolic syndromes, especially dislipidemia and abdominal obesity. Visceral abdominal adipose tissue (VAAT) and epicardial adipose tissue (EAT) have the same ontogenic origin and produce many proinflammatory and proatherogenic cytokines. We evaluated EAT and VAAT thickness in patients with SH. Forty-one patients with SH and 35 controls were included in the study. Demographical and anthropometric features of both patients and controls were recorded. Thyroid and metabolic parameters were measured. EAT was measured using 2D-transthoracic echocardiography. The age and gender distributions were similar in the two groups (P = 0.998 and P = 0.121, respectively). Body mass index (BMI), fat mass, waist circumference (WC), hip circumference (HC), the WC/HC ratio, and the thicknesses of VAAT and abdominal subcutaneous adipose tissue were higher in the case group than the control group (all P values < 0.01). However, both groups had similar EAT thickness (P = 0.532), which was positively correlated with BMI, fat mass, WC, HC, VAAT thickness, abdominal subcutaneous adipose tissue thickness, and serum triglyceride (TG) level (all P values < 0.01). We found no correlation between EAT thickness and thyroid-stimulating hormone (TSH) level, free thyroxine (FT4) level, or low-density lipoprotein-cholesterol (LDL-C) level, and anti-TPO level (all P values > 0.05). We found no difference between the two groups in fasting plasma glucose (FPG) level (P = 0.780), but the levels of LDL-C and TG differed significantly (P = 0.002 and P = 0.026, respectively). The serum TSH level was higher and the FT4 level was lower in the case than the control group (both P values <0.01). Increased abdominal adipose tissue thickness in patients with SH is associated with atherosclerosis. To detemine the risk of atherosclerosis in such patients, EAT measurements are valuable; such assessment is simple to perform.

  9. Skin Tissue Engineering: Application of Adipose-Derived Stem Cells

    PubMed Central

    Zimoch, Jakub; Biedermann, Thomas

    2017-01-01

    Perception of the adipose tissue has changed dramatically over the last few decades. Identification of adipose-derived stem cells (ASCs) ultimately transformed paradigm of this tissue from a passive energy depot into a promising stem cell source with properties of self-renewal and multipotential differentiation. As compared to bone marrow-derived stem cells (BMSCs), ASCs are more easily accessible and their isolation yields higher amount of stem cells. Therefore, the ASCs are of high interest for stem cell-based therapies and skin tissue engineering. Currently, freshly isolated stromal vascular fraction (SVF), which may be used directly without any expansion, was also assessed to be highly effective in treating skin radiation injuries, burns, or nonhealing wounds such as diabetic ulcers. In this paper, we review the characteristics of SVF and ASCs and the efficacy of their treatment for skin injuries and disorders. PMID:28337463

  10. Angiotensin II stimulates sympathetic neurotransmission to adipose tissue

    PubMed Central

    King, Victoria L; English, Victoria L; Bharadwaj, Kalyani; Cassis, Lisa A

    2013-01-01

    Angiotensin II (AngII) facilitates sympathetic neurotransmission by regulating norepinephrine (NE) synthesis, release, and uptake. These effects of AngII contribute to cardiovascular control. Previous studies in our laboratory demonstrated that chronic AngII infusion decreased body weight of rats. We hypothesized that AngII facilitates sympathetic neurotransmission to adipose tissue and may thereby decrease body weight. The effect of chronic AngII infusion on the NE uptake transporter and NE turnover was examined in metabolic (interscapular brown adipose tissue, ISBAT; epididymal fat, EF) and cardiovascular tissues (left ventricle, LV; kidney) of rats. To examine the uptake transporter saturation isotherms were performed using [3H]nisoxetine (NIS). At doses that lowered body weight, AngII significantly increased ISBAT [3H]NIS binding density. To quantify NE turnover, alpha-methyl-para-tyrosine (AMPT) was injected in saline-infused, AngII-infused, or saline-infused rats that were pair-fed to food intake of AngII-infused rats. AngII significantly increased the rate of NE decline in all tissues compared to saline. The rate of NE decline in EF was increased to a similar extent by AngII and by pair feeding. In rats administered AngII and propranolol, reductions in food and water intake and body weight were eliminated. These data support the hypothesis that AngII facilitates sympathetic neurotransmission to adipose tissue. Increased sympathetic neurotransmission to adipose tissue following AngII exposure is suggested to contribute to reductions in body weight. PMID:24224084

  11. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels.

    PubMed

    Herman, Mark A; She, Pengxiang; Peroni, Odile D; Lynch, Christopher J; Kahn, Barbara B

    2010-04-09

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels.

  12. Brown adipose tissue development and metabolism in ruminants.

    PubMed

    Smith, S B; Carstens, G E; Randel, R D; Mersmann, H J; Lunt, D K

    2004-03-01

    We conducted several experiments to better understand the relationship between brown adipose tissue (BAT) metabolism and thermogenesis. In Exp. 1, we examined perirenal (brown) and sternum s.c. adipose tissue in 14 Wagyu x Angus neonates infused with norepinephrine (NE). Perirenal adipocytes contained numerous large mitochondria with well-differentiated cristae; sternum s.c. adipocytes contained a few, small mitochondria, with poorly developed cristae. Lipogenesis from acetate was high in BAT but barely detectable in sternum s.c. adipose tissue. In Exp. 2, we compared perirenal and tailhead adipose tissues between NE-infused Angus (n = 6) and Brahman (n = 7) newborn calves. Brahman BAT contained two-to-three times as many total beta-receptors as Angus BAT. The mitochondrial UCP1:28S rRNA ratio was greater in Brahman BAT than in BAT from Angus calves. Lipogenesis from acetate and glucose again was high, but lipogenesis from palmitate was barely detectable. Tail-head s.c. adipose tissue from both breed types contained adipocytes with distinct brown adipocyte morphology. In Exp. 3, three fetuses of each breed type were taken at 96, 48, 24, 14, and 6 d before expected parturition, and at parturition. Lipogenesis from acetate and glucose in vitro decreased 97% during the last 96 d of gestation in both breed types, whereas the UCP1 gene expression tripled during gestation in both breed types. At birth, palmitate esterification was twice as high in Angus than in Brahman BAT and was at least 100-fold higher than in BAT from NE-infused calves from Exp. 2. Uncoupling protein-1 mRNA was readily detectable in tailhead s.c. adipose tissue in all fetal samples. In Exp. 4, male Brahman and Angus calves (n = 5 to 7 per group) were assigned to 1) newborn treatment (15 h of age), 2) 48 h of warm exposure (22 degrees C) starting at 15 h of age, or 3) 48 h of cold exposure (4 degrees C) starting at 15 h of age. Brahman BAT adipocytes shrank with cold exposure, whereas Angus BAT

  13. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) deficiencies affect expression of lipolytic activities in mouse adipose tissues.

    PubMed

    Morak, Maria; Schmidinger, Hannes; Riesenhuber, Gernot; Rechberger, Gerald N; Kollroser, Manfred; Haemmerle, Guenter; Zechner, Rudolf; Kronenberg, Florian; Hermetter, Albin

    2012-12-01

    Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are key enzymes involved in intracellular degradation of triacylglycerols. It was the aim of this study to elucidate how the deficiency in one of these proteins affects the residual lipolytic proteome in adipose tissue. For this purpose, we compared the lipase patterns of brown and white adipose tissue from ATGL (-/-) and HSL (-/-) mice using differential activity-based gel electrophoresis. This method is based on activity-recognition probes possessing the same substrate analogous structure but carrying different fluorophores for specific detection of the enzyme patterns of two different tissues in one electrophoresis gel. We found that ATGL-deficiency in brown adipose tissue had a profound effect on the expression levels of other lipolytic and esterolytic enzymes in this tissue, whereas HSL-deficiency hardly showed any effect in brown adipose tissue. Neither ATGL- nor HSL-deficiency greatly influenced the lipase patterns in white adipose tissue. Enzyme activities of mouse tissues on acylglycerol substrates were analyzed as well, showing that ATGL-and HSL-deficiencies can be compensated for at least in part by other enzymes. The proteins that responded to ATGL-deficiency in brown adipose tissue were overexpressed and their activities on acylglycerols were analyzed. Among these enzymes, Es1, Es10, and Es31-like represent lipase candidates as they catalyze the hydrolysis of long-chain acylglycerols.

  14. Adipose Triglyceride Lipase (ATGL) and Hormone-Sensitive Lipase (HSL) Deficiencies Affect Expression of Lipolytic Activities in Mouse Adipose Tissues*

    PubMed Central

    Morak, Maria; Schmidinger, Hannes; Riesenhuber, Gernot; Rechberger, Gerald N.; Kollroser, Manfred; Haemmerle, Guenter; Zechner, Rudolf; Kronenberg, Florian; Hermetter, Albin

    2012-01-01

    Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are key enzymes involved in intracellular degradation of triacylglycerols. It was the aim of this study to elucidate how the deficiency in one of these proteins affects the residual lipolytic proteome in adipose tissue. For this purpose, we compared the lipase patters of brown and white adipose tissue from ATGL (−/−) and HSL (−/−) mice using differential activity-based gel electrophoresis. This method is based on activity-recognition probes possessing the same substrate analogous structure but carrying different fluorophores for specific detection of the enzyme patterns of two different tissues in one electrophoresis gel. We found that ATGL-deficiency in brown adipose tissue had a profound effect on the expression levels of other lipolytic and esterolytic enzymes in this tissue, whereas HSL-deficiency hardly showed any effect in brown adipose tissue. Neither ATGL- nor HSL-deficiency greatly influenced the lipase patterns in white adipose tissue. Enzyme activities of mouse tissues on acylglycerol substrates were analyzed as well, showing that ATGL-and HSL-deficiencies can be compensated for at least in part by other enzymes. The proteins that responded to ATGL-deficiency in brown adipose tissue were overexpressed and their activities on acylglycerols were analyzed. Among these enzymes, Es1, Es10, and Es31-like represent lipase candidates as they catalyze the hydrolysis of long-chain acylglycerols. PMID:22984285

  15. Adipose tissue attracts and protects acute lymphoblastic leukemia cells from chemotherapy

    PubMed Central

    Pramanik, Rocky; Sheng, Xia; Ichihara, Brian; Heisterkamp, Nora; Mittelman, Steven D.

    2013-01-01

    Obesity is associated with an increased risk of acute lymphoblastic leukemia (ALL) relapse. Using mouse and cell co-culture models, we investigated whether adipose tissue attracts ALL to a protective microenvironment. Syngeneically implanted ALL cells migrated into adipose tissue within ten days. In vitro, murine ALL cells migrated towards adipose tissue explants and 3T3-L1 adipocytes. Human and mouse ALL cells migrated toward adipocyte conditioned media, which was mediated by SDF-1α. In addition, adipose tissue explants protected ALL cells against daunorubicin and vincristine. Our findings suggest that ALL migration into adipose tissue could contribute to drug resistance and potentially relapse. PMID:23332453

  16. Homeotic and Embryonic Gene Expression in Breast Adipose Tissue and in Adipose Tissues Used as Donor Sites in Plastic Surgery.

    PubMed

    Foissac, Rémi; Villageois, Phi; Chignon-Sicard, Bérengère; Georgiou, Charalambos; Camuzard, Olivier; Dani, Christian

    2017-03-01

    Autologous fat grafting has become an essential procedure in breast reconstructive surgery. However, molecular knowledge of different adipose donor sites remains inadequate. Tissue regeneration studies have shown that it is essential to match the Hox code of transplanted cells and host tissues to achieve correct repair. This study aims to provide a better molecular understanding of adipose tissue. Over the course of 1 year, the authors prospectively included 15 patients and studied seven adipose areas: chin, breast, arm, abdomen, thigh, hip, and knee. The first step consisted of the surgical harvesting of adipose tissue. RNA was then extracted and converted into cDNA to study gene expression levels of 10 targeted genes by real-time polymerase chain reaction. Forty samples from Caucasian women with a mean age of 48 years were studied. The expression of PAX3, a marker of neuroectodermal origin, was significantly higher in the breast, with a decreasing gradient from the upper to lower areas of the body. An inverse gradient was found for the expression of HOXC10. This expression profile was statistically significant for the areas of the thigh and knee compared with the breast (p < 0.0083). Breast fat may have a specific embryologic origin compared with the knee and thigh. The reinjection of adipocytes from the infraumbilical area leads to the transfer of cells highly expressing HOXC10. This study raises questions about the safety of this procedure, and future studies will be required to examine molecular modifications of adipose cells transferred to a heterotopic location. Therapeutic, V.

  17. Inverse association between brown adipose tissue activation and white adipose tissue accumulation in successfully treated pediatric malignancy1234

    PubMed Central

    Chalfant, James S; Smith, Michelle L; Hu, Houchun H; Dorey, Fred J; Goodarzian, Fariba; Fu, Cecilia H

    2012-01-01

    Background: Although the accumulation of white adipose tissue (WAT) is a risk factor for disease, brown adipose tissue (BAT) has been suggested to have a protective role against obesity. Objective: We studied whether changes in BAT were related to changes in the amounts of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in children treated for malignancy. Design: We examined the effect of BAT activity on weight, SAT, and VAT in 32 pediatric patients with cancer whose positron emission tomography–computed tomography (PET-CT) scans at diagnosis showed no BAT activity. Changes in weight, SAT, and VAT from diagnosis to remission for children with metabolically active BAT at disease-free follow-up (BAT+) were compared with those in children without visualized BAT when free of disease (BAT−). Results: Follow-up PET-CT studies (4.7 ± 2.4 mo later) after successful treatment of the cancer showed BAT+ in 19 patients but no active BAT (BAT−) in 13 patients. BAT+ patients, in comparison with BAT− patients, gained significantly less weight (3.3 ± 6.6% compared with 11.0 ± 11.6%; P = 0.02) and had significantly less SAT (18.2 ± 26.5% compared with 67.4 ± 71.7%; P = 0.01) and VAT (22.6 ± 33.5% compared with 131.6 ± 171.8%; P = 0.01) during treatment. Multiple regression analysis indicated that the inverse relations between BAT activation and measures of weight, SAT, and VAT persisted even after age, glucocorticoid treatment, and the season when the PET-CT scans were obtained were accounted for. Conclusion: The activation of BAT in pediatric patients undergoing treatment of malignancy is associated with significantly less adipose accumulation. This trial was registered at clinicaltrials.gov as NCT01517581. PMID:22456659

  18. Mesenchymal Stem Cells Derived from Human Adipose Tissue.

    PubMed

    Mahmoudifar, Nastaran; Doran, Pauline M

    2015-01-01

    Human adult mesenchymal stem cells are present in fat tissue, which can be obtained using surgical procedures such as liposuction. The multilineage capacity of mesenchymal stem cells makes them very valuable for cell-based medical therapies. In this chapter, we describe how to isolate mesenchymal stem cells from human adult fat tissue, propagate the cells in culture, and cryopreserve the cells for tissue engineering applications. Flow cytometry methods are also described for identification and characterization of adipose-derived stem cells and for cell sorting.

  19. Adipose tissue macrophages impair preadipocyte differentiation in humans

    PubMed Central

    Liu, Li Fen; Craig, Colleen M.; Tolentino, Lorna L.; Choi, Okmi; Morton, John; Rivas, Homero; Cushman, Samuel W.; Engleman, Edgar G.; McLaughlin, Tracey

    2017-01-01

    Aim The physiologic mechanisms underlying the relationship between obesity and insulin resistance are not fully understood. Impaired adipocyte differentiation and localized inflammation characterize adipose tissue from obese, insulin-resistant humans. The directionality of this relationship is not known, however. The aim of the current study was to investigate whether adipose tissue inflammation is causally-related to impaired adipocyte differentiation. Methods Abdominal subcutaneous(SAT) and visceral(VAT) adipose tissue was obtained from 20 human participants undergoing bariatric surgery. Preadipocytes were isolated, and cultured in the presence or absence of CD14+ macrophages obtained from the same adipose tissue sample. Adipocyte differentiation was quantified after 14 days via immunofluorescence, Oil-Red O, and adipogenic gene expression. Cytokine secretion by mature adipocytes cultured with or without CD14+macrophages was quantified. Results Adipocyte differentiation was significantly lower in VAT than SAT by all measures (p<0.001). With macrophage removal, SAT preadipocyte differentiation increased significantly as measured by immunofluorescence and gene expression, whereas VAT preadipocyte differentiation was unchanged. Adipocyte-secreted proinflammatory cytokines were higher and adiponectin lower in media from VAT vs SAT: macrophage removal reduced inflammatory cytokine and increased adiponectin secretion from both SAT and VAT adipocytes. Differentiation of preadipocytes from SAT but not VAT correlated inversely with systemic insulin resistance. Conclusions The current results reveal that proinflammatory immune cells in human SAT are causally-related to impaired preadipocyte differentiation, which in turn is associated with systemic insulin resistance. In VAT, preadipocyte differentiation is poor even in the absence of tissue macrophages, pointing to inherent differences in fat storage potential between the two depots. PMID:28151993

  20. Succination of Thiol Groups in Adipose Tissue Proteins in Diabetes

    PubMed Central

    Frizzell, Norma; Rajesh, Mathur; Jepson, Matthew J.; Nagai, Ryoji; Carson, James A.; Thorpe, Suzanne R.; Baynes, John W.

    2009-01-01

    S-(2-Succinyl)cysteine (2SC) is formed by reaction of the Krebs cycle intermediate fumarate with cysteine residues in protein, a process termed succination of protein. Both fumarate and succination of proteins are increased in adipocytes cultured in high glucose medium (Nagai, R., Brock, J. W., Blatnik, M., Baatz, J. E., Bethard, J., Walla, M. D., Thorpe, S. R., Baynes, J. W., and Frizzell, N. (2007) J. Biol. Chem. 282, 34219–34228). We show here that succination of protein is also increased in epididymal, mesenteric, and subcutaneous adipose tissue of diabetic (db/db) mice and that adiponectin is a major target for succination in both adipocytes and adipose tissue. Cys-39, which is involved in cross-linking of adiponectin monomers to form trimers, was identified as a key site of succination of adiponectin in adipocytes. 2SC was detected on two of seven monomeric forms of adiponectin immunoprecipitated from adipocytes and epididymal adipose tissue. Based on densitometry, 2SC-adiponectin accounted for ∼7 and 8% of total intracellular adiponectin in cells and tissue, respectively. 2SC was found only in the intracellular, monomeric forms of adiponectin and was not detectable in polymeric forms of adiponectin in cell culture medium or plasma. We conclude that succination of adiponectin blocks its incorporation into trimeric and higher molecular weight, secreted forms of adiponectin. We propose that succination of proteins is a biomarker of mitochondrial stress and accumulation of Krebs cycle intermediates in adipose tissue in diabetes and that succination of adiponectin may contribute to the decrease in plasma adiponectin in diabetes. PMID:19592500

  1. [The adipose tissue as a regulatory center of the metabolism].

    PubMed

    Fonseca-Alaniz, Miriam H; Takada, Julie; Alonso-Vale, Maria Isabel C; Lima, Fabio Bessa

    2006-04-01

    The recent progress in the research about the metabolic properties of the adipose tissue and the discovery of its ability to produce hormones that are very active in pathophysiologic as well as physiologic processes is rebuilding the concepts about its biology. Its involvement in conditions like obesity, type 2 diabetes mellitus, arterial hypertension, arteriosclerosis, dislipidemias and chronic and acute inflammatory processes indicate that the understanding of its functional capacities may contribute to improve the prognosis of those diseases whose prevalence increased in a preoccupying manner. Here we review some functional aspects of adipocytes, such as the metabolism, its influence on energy homeostasis, its endocrine ability and the adipogenesis, i.e., the potential of pre-adipocytes present in adipose tissue stroma to differentiate into new adipocytes and regenerate the tissue. In addition, we are including some studies on the relationship between the adipose tissue and the pineal gland, a new and poorly known, although, as will be seen, very promising aspect of adipocyte physiology together with its possible favorable repercussions to the therapy of the obesity related diseases.

  2. Adipose Tissue in Metabolic Syndrome: Onset and Progression of Atherosclerosis.

    PubMed

    Luna-Luna, María; Medina-Urrutia, Aida; Vargas-Alarcón, Gilberto; Coss-Rovirosa, Fernanda; Vargas-Barrón, Jesús; Pérez-Méndez, Óscar

    2015-07-01

    Metabolic syndrome (MetS) should be considered a clinical entity when its different symptoms share a common etiology: obesity/insulin resistance as a result of a multi-organ dysfunction. The main interest in treating MetS as a clinical entity is that the addition of its components drastically increases the risk of atherosclerosis. In MetS, the adipose tissue plays a central role along with an unbalanced gut microbiome, which has become relevant in recent years. Once visceral adipose tissue (VAT) increases, dyslipidemia and endothelial dysfunction follow as additive risk factors. However, when the nonalcoholic fatty liver is present, risk of a cardiovascular event is highly augmented. Epicardial adipose tissue (EAT) seems to increase simultaneously with the VAT. In this context, the former may play a more important role in the development of the atherosclerotic plaque than the latter. Hence, EAT may act as a paracrine tissue vis-à-vis the coronary arteries favoring the local inflammation and the atheroma calcification.

  3. Bovine dedifferentiated adipose tissue (DFAT) cells

    PubMed Central

    Wei, Shengjuan; Du, Min; Jiang, Zhihua; Duarte, Marcio S; Fernyhough-Culver, Melinda; Albrecht, Elke; Will, Katja; Zan, Linsen; Hausman, Gary J; Elabd, Elham M Youssef; Bergen, Werner G; Basu, Urmila; Dodson, Michael V

    2013-01-01

    Dedifferentiated fat cells (DFAT cells) are derived from lipid-containing (mature) adipocytes, which possess the ability to symmetrically or asymmetrically proliferate, replicate, and redifferentiate/transdifferentiate. Robust cell isolation and downstream culture methods are needed to isolate large numbers of DFAT cells from any (one) adipose depot in order to establish population dynamics and regulation of the cells within and across laboratories. In order to establish more consistent/repeatable methodology here we report on two different methods to establish viable DFAT cell cultures: both traditional cell culture flasks and non-traditional (flat) cell culture plates were used for ceiling culture establishment. Adipocytes (maternal cells of the DFAT cells) were easier to remove from flat culture plates than flasks and the flat plates also allowed cloning rings to be utilized for cell/cell population isolation. While additional aspects of usage of flat-bottomed cell culture plates may yet need to be optimized by definition of optimum bio-coating to enhance cell attachment, utilization of flat plate approaches will allow more efficient study of the dedifferentiation process or the DFAT progeny cells. To extend our preliminary observations, dedifferentiation of Wagyu intramuscular fat (IMF)-derived mature adipocytes and redifferentiation ability of DFAT cells utilizing the aforementioned isolation protocols were examined in traditional basal media/differentiation induction media (DMI) containing adipogenic inducement reagents. In the absence of treatment approximately 10% isolated Wagyu IMF-mature adipocytes dedifferentiated spontaneously and 70% DFAT cells displayed protracted adipogenesis 12 d after confluence in vitro. Lipid-free intracellular vesicles in the cytoplasm (vesicles possessing an intact membrane but with no any observable or stainable lipid inside) were observed during redifferentiation. One to 30% DFAT cells redifferentiated into lipid

  4. Abalation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues

    USDA-ARS?s Scientific Manuscript database

    Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show ...

  5. Ionising radiation triggers fat accumulation in white adipose tissue.

    PubMed

    Jo, Sung Kee; Seol, Min-A; Park, Hae-Ran; Jung, Uhee; Roh, Changhyun

    2011-03-01

    To investigate changes in gonadal white adipose tissue and lipogenesis-related gene expression induced by radiation exposure. Groups of two-month-old C57BL/6 mice were exposed whole-body to ¹³⁷Cs γ-rays at a single dose (5 gray [Gy]) or fractionated doses (1 Gy x 5 times, 0.5 Gy x 10 times, or 0.2 Gy x 25 times). Six months after irradiation, gonadal white adipose tissue was isolated from mice. Two and 25-month-old mice were used as young and old study references. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was used to measure messenger RNA (mRNA) expression of genes related to: (i) Primary lipid metabolism (ATP-citrate lyase [ACL], malic enzyme1 [ME1] and glucose-6-phosphate dehydrogenase 2 [G6PD2]), (ii) glucose uptake (glucose transporter 4 [GLUT4]), (iii) fatty acid synthesis (sterol regulatory element binding transcription factor 1 [SREBP-1c], fatty acid synthetase [FAS] and acetyl-coenzyme A carboxylase beta [ACC]), (iv) triglyceride synthesis (diacylglycerol O-acyltransferase 1 [DGAT1] and diacylglycerol O-acyltransferase 2 [DGAT2]), and (v) adipose-derived hormones (leptin [LEP]). The weight of gonadal white adipose tissue in the irradiated groups tended to increase compared to the non-irradiated group though the radiation-induced increase in white adipose tissue was only significant for the 5 x 1 Gy group. The mRNA levels of SREBP-1c, ACC, FAS, ACL, GLUT4, ME1 and G6PD2 were relatively lower in γ-irradiated groups than in non-irradiated groups. The mRNA levels of leptin and DGAT were relatively higher than non-irradiated groups. The changes in expression of these lipogenesis-related genes caused by γ-irradiation showed a very similar pattern to changes caused by ageing. A physical agent such as γ-rays can trigger biological responses resulting in fat accumulation of gonadal white adipose tissue in mice.

  6. Effects of nicotinic acid treatment on glyceride formation and lipolysis in adipose tissue of hyperlipidemic patients.

    PubMed

    Wahlberg, G; Walldius, G

    1993-01-01

    Thirty-one weight-stable patients with different types of hyperlipoproteinemia were treated daily with 4 g nicotinic acid for 6 weeks. Effects of this therapy on adipose tissue metabolism were evaluated. By using biopsy specimens of subcutaneous adipose tissue, fatty acid and glucose incorporation into adipose tissue glycerides were measured in vitro as well as glycerol and fatty acid release, which allowed us to estimate adipose tissue lipolysis. The amount of fatty acids produced by lipolysis and thereafter utilized within adipose tissue without being released (fatty acid retention) was estimated. Fatty acid and glucose incorporation into adipose tissue, glycerol release and fatty acid retention values increased, but serum triglyceride levels decreased (all P < 0.001) after nicotinic acid treatment. The change in fatty acid incorporation was positively correlated with changes in glucose incorporation into adipose tissue (r = 0.53, P < 0.01) and fatty acid retention (r = 0.76, P < 0.001). Although adipose tissue lipolysis, measured as glycerol release, increased, the lipolyzed fatty acids were retained in adipose tissue, suggesting an enhanced synthesis of glycerides both from exogenous and endogenous sources. The increase in fatty acid incorporation into adipose tissue indicates that the decrease in serum triglyceride levels produced by nicotinic acid treatment may partly be due to the fact that this drug promotes incorporation of fatty acids, derived from lipoprotein-carried triglycerides in the blood, into adipose tissue glycerides.

  7. CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis

    PubMed Central

    Park, Jong-Gil; Xu, Xu; Cho, Sungyun; Hur, Kyu Yeon; Lee, Myung-Shik; Kersten, Sander; Lee, Ann-Hwee

    2016-01-01

    Adipose tissue lipolysis produces glycerol and nonesterified fatty acids (NEFA) that serve as energy sources during nutrient scarcity. Adipose tissue lipolysis is tightly regulated and excessive lipolysis causes hepatic steatosis, as NEFA released from adipose tissue constitutes a major source of TG in the liver of patients with nonalcoholic fatty liver diseases. Here we show that the liver-enriched transcription factor CREBH is activated by TG accumulation and induces FGF21, which suppresses adipose tissue lipolysis, ameliorating hepatic steatosis. CREBH-deficient mice developed severe hepatic steatosis due to increased adipose tissue lipolysis, when fasted or fed a high-fat low-carbohydrate ketogenic diet. FGF21 production was impaired in CREBH-deficient mice, and adenoviral overexpression of FGF21 suppressed adipose tissue lipolysis and improved hepatic steatosis in these mice. Thus, our results uncover a negative feedback loop in which CREBH regulates NEFA flux from adipose tissue to the liver via FGF21. PMID:27301791

  8. A role of active brown adipose tissue in cancer cachexia?

    PubMed

    Beijer, Emiel; Schoenmakers, Janna; Vijgen, Guy; Kessels, Fons; Dingemans, Anne-Marie; Schrauwen, Patrick; Wouters, Miel; van Marken Lichtenbelt, Wouter; Teule, Jaap; Brans, Boudewijn

    2012-03-05

    Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT). Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and so-called brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activation, but its quantitative impact on energy expenditure and weight loss is controversial. Prospective clinical studies can address the potential role of BAT in cancer cachexia using (18)F-fluoro- deoxyglucose positron emission tomography-computed tomography scanning, with careful consideration of co-factors such as diet, exposure to the cold, physical activity and body mass index, that all seem to act on BAT recruitment and activity.

  9. Genomic and epigenomic regulation of adipose tissue inflammation in obesity.

    PubMed

    Toubal, Amine; Treuter, Eckardt; Clément, Karine; Venteclef, Nicolas

    2013-12-01

    Chronic inflammation of adipose tissue is viewed as a hallmark of obesity and contributes to the development of type 2 diabetes and cardiovascular disease. According to current models, nutrient excess causes metabolic and structural changes in adipocytes, which initiate transcriptional programs leading to the expression of inflammatory molecules and the subsequent recruitment of immune cells. Recent advances in deciphering the underlying mechanisms revealed that key regulatory events occur at the genomic and epigenomic levels. Here we review these advances because they offer a better understanding of the mechanisms behind the complex obesogenic program in adipose tissue, and because they may help in defining new therapeutic strategies that prevent, restrict, and resolve inflammation in the context of obesity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Brown adipose tissue: physiological function and evolutionary significance.

    PubMed

    Oelkrug, R; Polymeropoulos, E T; Jastroch, M

    2015-08-01

    In modern eutherian (placental) mammals, brown adipose tissue (BAT) evolved as a specialized thermogenic organ that is responsible for adaptive non-shivering thermogenesis (NST). For NST, energy metabolism of BAT mitochondria is increased by activation of uncoupling protein 1 (UCP1), which dissipates the proton motive force as heat. Despite the presence of UCP1 orthologues prior to the divergence of teleost fish and mammalian lineages, UCP1's significance for thermogenic adipose tissue emerged at later evolutionary stages. Recent studies on the presence of BAT in metatherians (marsupials) and eutherians of the afrotherian clade provide novel insights into the evolution of adaptive NST in mammals. In particular studies on the 'protoendothermic' lesser hedgehog tenrec (Afrotheria) suggest an evolutionary scenario linking BAT to the onset of eutherian endothermy. Here, we review the physiological function and distribution of BAT in an evolutionary context by focusing on the latest research on phylogenetically distinct species.

  11. The Interplay Between Sex, Ethnicity, and Adipose Tissue Characteristics.

    PubMed

    Karastergiou, Kalypso

    2015-06-01

    The obesity epidemic in the USA affects disproportionately women and the ethnic minorities. On the other hand, female sex is traditionally associated with a favorable fat distribution preferentially in the subcutaneous depots of the lower body and with improved endocrine and metabolic function of the adipose tissue. However, these data are derived from predominantly non-Hispanic white populations. This review discusses fat distribution patterns in women of diverse ethnic backgrounds, together with data on the release of adipokines from adipose tissue in these populations. Very little information is available on how the metabolic function of the adipocyte differs depending on ethnicity. Thus, it becomes clear that future clinical and translational research should explicitly discuss and take into account the sex and ethnic background of the populations studied.

  12. A role of active brown adipose tissue in cancer cachexia?

    PubMed Central

    Beijer, Emiel; Schoenmakers, Janna; Vijgen, Guy; Kessels, Fons; Dingemans, Anne-Marie; Schrauwen, Patrick; Wouters, Miel; van Marken Lichtenbelt, Wouter; Teule, Jaap; Brans, Boudewijn

    2012-01-01

    Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT). Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and so-called brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activation, but its quantitative impact on energy expenditure and weight loss is controversial. Prospective clinical studies can address the potential role of BAT in cancer cachexia using 18F-fluoro- deoxyglucose positron emission tomography-computed tomography scanning, with careful consideration of co-factors such as diet, exposure to the cold, physical activity and body mass index, that all seem to act on BAT recruitment and activity. PMID:25992201

  13. Heterogeneity of white adipose tissue: molecular basis and clinical implications

    PubMed Central

    Kwok, Kelvin H M; Lam, Karen S L; Xu, Aimin

    2016-01-01

    Adipose tissue is a highly heterogeneous endocrine organ. The heterogeneity among different anatomical depots stems from their intrinsic differences in cellular and physiological properties, including developmental origin, adipogenic and proliferative capacity, glucose and lipid metabolism, insulin sensitivity, hormonal control, thermogenic ability and vascularization. Additional factors that influence adipose tissue heterogeneity are genetic predisposition, environment, gender and age. Under obese condition, these depot-specific differences translate into specific fat distribution patterns, which are closely associated with differential cardiometabolic risks. For instance, individuals with central obesity are more susceptible to developing diabetes and cardiovascular complications, whereas those with peripheral obesity are more metabolically healthy. This review summarizes the clinical and mechanistic evidence for the depot-specific differences that give rise to different metabolic consequences, and provides therapeutic insights for targeted treatment of obesity. PMID:26964831

  14. Endogenous adipose tissue as a hemostatic: use in microsurgery.

    PubMed

    Akelina, Yelena; Danilo, Peter

    2008-01-01

    Bleeding is a frequent complication of microsurgical repair of small blood vessels and time is spent while hemostasis is accomplished. We studied the hemostatic effect of endogenous adipose tissue on bleeding from rat femoral arterial anastomoses. We measured bleeding time (time from removal of clamps to cessation of active bleeding) and mean arterial blood velocity (using a micro-Doppler system), the latter immediately after anastomosis, and again 7 days post-anastomosis. Bleeding time for vessels with fat applied to the artery was 50% less than when no fat was applied. Blood velocity by day 7 post-anastomosis returned to values equivalent to those for intact arteries. Histological evaluation of the anastomotic site demonstrated no significant differences in inflammatory response between fat-treated and untreated arteries. These data suggest that endogenous adipose tissue may be a useful hemostatic agent devoid of significant effects on small artery blood velocity or histology. (c) 2008 Wiley-Liss, Inc.

  15. Browning effects of (-)-epicatechin on adipocytes and white adipose tissue.

    PubMed

    Varela, Claudia Elena; Rodriguez, Alonso; Romero-Valdovinos, Mirza; Mendoza-Lorenzo, Patricia; Mansour, Christina; Ceballos, Guillermo; Villarreal, Francisco; Ramirez-Sanchez, Israel

    2017-09-15

    In this study, we demonstrate that (-)-epicatechin (Epi), a cacao flavanol, induces the browning of fat by promoting mitochondrial biogenesis, enhancing indicators of mitochondrial structure and function, increasing fatty acid metabolism and upregulating the expression of brown adipose tissue-specific proteins in a high-fat diet mouse model of obesity and in cultured human adipocytes. Epi treatment significantly improved mitochondrial function, as measured by citrate synthase activity, and also reduced protein acetylation of total and specific regulators in both adipose tissue and human adipocytes. Browning of fat via Epi was evidenced by the increased expression of key thermogenic genes, phosphorylation of upstream regulators of fatty acid oxidation, and reduced triglyceride levels. Properly designed clinical trials are needed to explore the potential of Epi as an agent that promotes the browning of fat. Copyright © 2017. Published by Elsevier B.V.

  16. Prolactin (PRL) in adipose tissue: regulation and functions.

    PubMed

    Ben-Jonathan, Nira; Hugo, Eric

    2015-01-01

    New information concerning the effects of prolactin (PRL) on metabolic processes warrants reevaluation of its overall metabolic actions. PRL affects metabolic homeostasis by regulating key enzymes and transporters associated with glucose and lipid metabolism in several target organs. In the lactating mammary gland, PRL increases the production of milk proteins, lactose, and lipids. In adipose tissue, PRL generally suppresses lipid storage and adipokine release and affect adipogenesis. A specific case is made for PRL in the human breast and adipose tissues, where it acts as a circulating hormone and an autocrine/paracrine factor. Although its overall effects on body composition are both modest and species-specific, PRL may be involved in the manifestation of insulin resistance.

  17. Fully automated adipose tissue measurement on abdominal CT

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Sussman, Daniel L.; Summers, Ronald M.

    2011-03-01

    Obesity has become widespread in America and has been associated as a risk factor for many illnesses. Adipose tissue (AT) content, especially visceral AT (VAT), is an important indicator for risks of many disorders, including heart disease and diabetes. Measuring adipose tissue (AT) with traditional means is often unreliable and inaccurate. CT provides a means to measure AT accurately and consistently. We present a fully automated method to segment and measure abdominal AT in CT. Our method integrates image preprocessing which attempts to correct for image artifacts and inhomogeneities. We use fuzzy cmeans to cluster AT regions and active contour models to separate subcutaneous and visceral AT. We tested our method on 50 abdominal CT scans and evaluated the correlations between several measurements.

  18. Regulation of cholesteryl ester transfer activity in adipose tissue: comparison between hamster and rat species.

    PubMed

    Shen, G X; Angel, A

    1995-07-01

    The present study demonstrates cholesteryl ester transfer activity (CETA) in cultured hamster and rat adipose tissue. Cultured hamster and rat adipose tissue fragments released CETA into the conditioned medium, and this was associated with a reciprocal decrease in adipose tissue CETA. Regional variations in adipose CETA were observed. The levels of CETA released from cultured hamster and rat adipocytes were higher than those from adipose tissue fragments. In hamsters but not in rats, the secretion of CETA from cultured adipose tissue was increased by insulin and inhibited by EDTA in a dose-dependent fashion. Monoclonal antibodies against human cholesteryl ester transfer protein inhibited the CETA secreted from hamster adipose tissue but not that from rat adipose tissue. Fasting for 24 h and a high-cholesterol saturated fat-rich diet increased adipose CETA in hamsters and rats, and this was associated with an elevation of plasma CETA only in hamsters. This supports the view that, in hamsters, adipose CETA has in situ and intravascular functions, whereas in rats the role of adipose CETA is restricted to tissue-specific functions. Hamster cholesteryl ester transfer protein may differ from rat adipose-associated CETA in the structure of the active site and the regulatory mechanism for its secretion.

  19. Sleep deprivation affects inflammatory marker expression in adipose tissue

    PubMed Central

    2010-01-01

    Sleep deprivation has been shown to increase inflammatory markers in rat sera and peripheral blood mononuclear cells. Inflammation is a condition associated with pathologies such as obesity, cancer, and cardiovascular diseases. We investigated changes in the pro and anti-inflammatory cytokines and adipokines in different depots of white adipose tissue in rats. We also assessed lipid profiles and serum levels of corticosterone, leptin, and adiponectin after 96 hours of sleep deprivation. Methods The study consisted of two groups: a control (C) group and a paradoxical sleep deprivation by 96 h (PSD) group. Ten rats were randomly assigned to either the control group (C) or the PSD. Mesenteric (MEAT) and retroperitoneal (RPAT) adipose tissue, liver and serum were collected following completion of the PSD protocol. Levels of interleukin (IL)-6, interleukin (IL)-10 and tumour necrosis factor (TNF)-α were analysed in MEAT and RPAT, and leptin, adiponectin, glucose, corticosterone and lipid profile levels were analysed in serum. Results IL-6 levels were elevated in RPAT but remained unchanged in MEAT after PSD. IL-10 protein concentration was not altered in either depot, and TNF-α levels decreased in MEAT. Glucose, triglycerides (TG), VLDL and leptin decreased in serum after 96 hours of PSD; adiponectin was not altered and corticosterone was increased. Conclusion PSD decreased fat mass and may modulate the cytokine content in different depots of adipose tissue. The inflammatory response was diminished in both depots of adipose tissue, with increased IL-6 levels in RPAT and decreased TNF-α protein concentrations in MEAT and increased levels of corticosterone in serum. PMID:21034496

  20. Acute exercise regulates adipogenic gene expression in white adipose tissue.

    PubMed

    Shen, Y; Zhou, H; Jin, W; Lee, H J

    2016-12-01

    White adipose tissue expansion is associated with both hypertrophy and hyperplasia of adipocytes. Exercise training results in adipocyte hypotrophy by activating lipolysis, but it is poorly understood whether exercise regulates adipogenesis by altering adipogenic gene expression. The purpose of this study was to evaluate the effect of a single bout of swimming exercise on adipogenic gene expression in white adipose tissue (WAT). Male C57BL/6J mice were divided into two groups: a sedentary control group and a 120-minute swimming exercise group. Immediately after acute exercise, adipogenic gene expression in WAT was analysed by RT-PCR, and tdTomato positive cells in WAT from UCP1-cre-tdTomato mice were observed under a confocal microscope. In epididymal white adipose tissue (eWAT), PPARγ2 and C/EBPα expression at the mRNA level was significantly decreased with high induction of Wnt10b and KLFs (KLF2, KLF3, KLF7, KLF6, KLF9 and KLF15), whereas PPARγ2, not C/EBPα, was decreased with high induction of Wnt6 and KLFs (KLF2, KLF3, KLF7, KLF6 and KLF9) in inguinal white adipose tissue (iWAT) after acute exercise. The expression of C/EBPβ and C/EBPδ was upregulated in both WATs with a high level of PGC-1α expression. Expression level of UCP1 was increased only in adipocytes of eWAT, while beige cell specific gene expression was comparable between groups and tdTomato positive cells were not found in WAT of UCP1-cre-tdTomato reporter mouse immediately after acute exercise. These results suggest that acute exercise suppresses adipogenic gene expression and may regulate thermogenesis by activating C/EBPβ, PGC-1α and UCP1 in WAT.

  1. Therapeutic benefits of young, but not old, adipose-derived mesenchymal stem cells in a chronic mouse model of bleomycin-induced pulmonary fibrosis.

    PubMed

    Tashiro, Jun; Elliot, Sharon J; Gerth, David J; Xia, Xiaomei; Pereira-Simon, Simone; Choi, Rhea; Catanuto, Paola; Shahzeidi, Shahriar; Toonkel, Rebecca L; Shah, Rahil H; El Salem, Fadi; Glassberg, Marilyn K

    2015-12-01

    The observation that pulmonary inflammatory lesions and bleomycin (BLM)-induced pulmonary fibrosis spontaneously resolve in young mice, whereas remaining irreversible in aged mice suggests that impairment of pulmonary regeneration and repair is associated with aging. Because mesenchymal stem cells (MSCs) may promote repair after injury, we postulated that differences in MSCs from aged mice may underlie postinjury fibrosis in aging. The potential for young-donor MSCs to inhibit BLM-induced pulmonary fibrosis in aged male mice (>22 months) has not been studied. Adipose-derived MSCs (ASCs) from young (4 months) and old (22 months) male mice were infused 1 day after intratracheal BLM administration. At 21-day sacrifice, aged BLM mice demonstrated lung fibrosis by Ashcroft score, collagen content, and α(v)-integrin messenger RNA (mRNA) expression. Lung tissue from aged BLM mice receiving young ASCs exhibited decreased fibrosis, matrix metalloproteinase (MMP)-2 activity, oxidative stress, and markers of apoptosis vs BLM controls. Lung mRNA expression of tumor necrosis factor-alpha was also decreased in aged BLM mice receiving young-donor ASCs vs BLM controls. In contrast, old-donor ASC treatment in aged BLM mice did not reduce fibrosis and related markers. On examination of the cells, young-donor ASCs had decreased mRNA expression of MMP-2, insulin-like growth factor (IGF) receptor, and protein kinase B (AKT) activation compared with old-donor ASCs. These results show that the BLM-induced pulmonary fibrosis in aged mice could be blocked by young-donor ASCs and that the mechanisms involve changes in collagen turnover and markers of inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. An alternative splicing program promotes adipose tissue thermogenesis

    PubMed Central

    Vernia, Santiago; Edwards, Yvonne JK; Han, Myoung Sook; Cavanagh-Kyros, Julie; Barrett, Tamera; Kim, Jason K; Davis, Roger J

    2016-01-01

    Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia. DOI: http://dx.doi.org/10.7554/eLife.17672.001 PMID:27635635

  3. Characterization of peripheral circadian clocks in adipose tissues.

    PubMed

    Zvonic, Sanjin; Ptitsyn, Andrey A; Conrad, Steven A; Scott, L Keith; Floyd, Z Elizabeth; Kilroy, Gail; Wu, Xiying; Goh, Brian C; Mynatt, Randall L; Gimble, Jeffrey M

    2006-04-01

    First described in the suprachiasmatic nucleus, circadian clocks have since been found in several peripheral tissues. Although obesity has been associated with dysregulated circadian expression profiles of leptin, adiponectin, and other fat-derived cytokines, there have been no comprehensive analyses of the circadian clock machinery in adipose depots. In this study, we show robust and coordinated expression of circadian oscillator genes (Npas2, Bmal1, Per1-3, and Cry1-2) and clock-controlled downstream genes (Rev-erb alpha, Rev-erb beta, Dbp, E4bp4, Stra13, and Id2) in murine brown, inguinal, and epididymal (BAT, iWAT, and eWAT) adipose tissues. These results correlated with respective gene expression in liver and the serum markers of circadian function. Through Affymetrix microarray analysis, we identified 650 genes that shared circadian expression profiles in BAT, iWAT, and liver. Furthermore, we have demonstrated that temporally restricted feeding causes a coordinated phase-shift in circadian expression of the major oscillator genes and their downstream targets in adipose tissues. The presence of circadian oscillator genes in fat has significant metabolic implications, and their characterization may have potential therapeutic relevance with respect to the pathogenesis and treatment of diseases such as obesity, type 2 diabetes, and the metabolic syndrome.

  4. Adipose tissue and adipocytes supports tumorigenesis and metastasis#

    PubMed Central

    Nieman, Kristin M.; Romero, Iris L.; Van Houten, Bennett; Lengyel, Ernst

    2013-01-01

    Adipose tissue influences tumor development in two major ways. First, obese individuals have a higher risk of developing certain cancers (endometrial, esophageal, and renal cell cancer). However, the risk of developing other cancers (melanoma, rectal, and ovarian) is not altered by body mass. In obesity, hypertrophied adipose tissue depots are characterized by a state of low grade inflammation. In this activated state, adipocytes and inflammatory cells secrete adipokines and cytokines which are known to promote tumor development. In addition, the adipocyte mediated conversion of androgens to estrogen specifically contributes to the development of endometrial cancer, which shows the greatest relative risk (6.3-fold) increase between lean and obese individuals. Second, many tumor types (gastric, breast, colon, renal, and ovarian) grow in the anatomical vicinity of adipose tissue. During their interaction with cancer cells, adipocytes dedifferentiate into pre-adipocytes or are reprogrammed into cancer-associated adipocytes (CAA). CAA secrete adipokines which stimulate the adhesion, migration, and invasion of tumor cells. Cancer cells and CAA also undergo a dynamic exchange of metabolites. Specifically, CAA release fatty acids through lipolysis which are then transferred to cancer cells and used for energy production through β-oxidation. The abundant availability of lipids from adipocytes in the tumor microenvironment supports tumor progression and uncontrolled growth. Given that adipocytes are a major source of adipokines and energy for the cancer cell, understanding the mechanisms of metabolic symbiosis between cancer cells and adipocytes should reveal new therapeutic possibilities. PMID:23500888

  5. The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation.

    PubMed

    Engin, Atilla

    2017-01-01

    Obesity is characterized by a state of chronic, low-grade inflammation. However, excessive fatty acid release may worsen adipose tissue inflammation and contributes to insulin resistance. In this case, several novel and highly active molecules are released abundantly by adipocytes like leptin, resistin, adiponectin or visfatin, as well as some more classical cytokines. Most likely cytokines that are released by inflammatory cells infiltrating obese adipose tissue are such as tumor necrosis factor-alpha (TNF-alpha), interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1) (CCL-2) and IL-1. All of those molecules may act on immune cells leading to local and generalized inflammation. In this process, toll-like receptor 4 (TLR4)/phosphatidylinositol-3'-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, the unfolded protein response (UPR) due to endoplasmic reticulum (ER) stress through hyperactivation of c-Jun N-terminal Kinase (JNK) -Activator Protein 1 (AP1) and inhibitor of nuclear factor kappa-B kinase beta (IKKbeta)-nuclear factor kappa B (NF-kappaB) pathways play an important role, and may also affect vascular endothelial function by modulating vascular nitric oxide and superoxide release. Additionally, systemic oxidative stress, macrophage recruitment, increase in the expression of NOD-like receptor (NLR) family protein (NLRP3) inflammasone and adipocyte death are predominant determinants in the pathogenesis of obesity-associated adipose tissue inflammation. In this chapter potential involvement of these factors that contribute to the adverse effects of obesity are reviewed.

  6. Nitro-fatty acid pharmacokinetics in the adipose tissue compartment.

    PubMed

    Fazzari, Marco; Khoo, Nicholas K H; Woodcock, Steven R; Jorkasky, Diane K; Li, Lihua; Schopfer, Francisco J; Freeman, Bruce A

    2017-02-01

    Electrophilic nitro-FAs (NO2-FAs) promote adaptive and anti-inflammatory cell signaling responses as a result of an electrophilic character that supports posttranslational protein modifications. A unique pharmacokinetic profile is expected for NO2-FAs because of an ability to undergo reversible reactions including Michael addition with cysteine-containing proteins and esterification into complex lipids. Herein, we report via quantitative whole-body autoradiography analysis of rats gavaged with radiolabeled 10-nitro-[(14)C]oleic acid, preferential accumulation in adipose tissue over 2 weeks. To better define the metabolism and incorporation of NO2-FAs and their metabolites in adipose tissue lipids, adipocyte cultures were supplemented with 10-nitro-oleic acid (10-NO2-OA), nitro-stearic acid, nitro-conjugated linoleic acid, and nitro-linolenic acid. Then, quantitative HPLC-MS/MS analysis was performed on adipocyte neutral and polar lipid fractions, both before and after acid hydrolysis of esterified FAs. NO2-FAs preferentially incorporated in monoacyl- and diacylglycerides, while reduced metabolites were highly enriched in triacylglycerides. This differential distribution profile was confirmed in vivo in the adipose tissue of NO2-OA-treated mice. This pattern of NO2-FA deposition lends new insight into the unique pharmacokinetics and pharmacologic actions that could be expected for this chemically-reactive class of endogenous signaling mediators and synthetic drug candidates.

  7. Caveolae, lipid droplets, and adipose tissue biology: pathophysiological aspects.

    PubMed

    Martin, Sally

    2013-09-01

    Adipocytes are specialized cells that function to store energy in the form of lipids, predominantly triglycerides (TGs), and as a regulatory system contributing to metabolic homoeostasis through the production and secretion of hormones and cytokines. The regulation of lipid homeostasis by adipose tissue is an important aspect of whole-body metabolism. Owing to the central nature of adipose tissue in lipid metabolism, dysregulation has wide-ranging effects, contributing to disorders as diverse as diabetes, cardiovascular disease, cancer, and neurodegeneration. Excess lipids are stored in specialized organelles called lipid droplets (LDs). The surface of the lipid droplet can be considered a highly regulated membrane domain that both protects the contents of the LD from unregulated lipolysis and the cell from the cytotoxic effects of elevated free fatty acids. The surface of the LD is coated with a variety of regulatory proteins, either resident or transiently associated, including enzymes involved in the breakdown of TG, lipid transport proteins, and cofactors. Recent studies have begun to unravel the range of LD-associated proteins and to define their functional significance. Importantly, the involvement of LD proteins in pathophysiological disorders is beginning to be understood. This review will outline recent advances in defining the diversity of LD-associated proteins and their links to metabolic disorders including the integral membrane protein, caveolin-1 (CAV1). Analysis of the role of CAV1 in adipose tissue has highlighted the interconnectedness between the regulation of lipid storage and the function of the adipocyte plasma membrane.

  8. Exercise and the Regulation of Adipose Tissue Metabolism.

    PubMed

    Tsiloulis, Thomas; Watt, Matthew J

    2015-01-01

    Adipose tissue is a major regulator of metabolism in health and disease. The prominent roles of adipose tissue are to sequester fatty acids in times of energy excess and to release fatty acids via the process of lipolysis during times of high-energy demand, such as exercise. The fatty acids released during lipolysis are utilized by skeletal muscle to produce adenosine triphosphate to prevent fatigue during prolonged exercise. Lipolysis is controlled by a complex interplay between neuro-humoral regulators, intracellular signaling networks, phosphorylation events involving protein kinase A, translocation of proteins within the cell, and protein-protein interactions. Herein, we describe in detail the cellular and molecular regulation of lipolysis and how these processes are altered by acute exercise. We also explore the processes that underpin adipocyte adaptation to endurance exercise training, with particular focus on epigenetic modifications, control by microRNAs and mitochondrial adaptations. Finally, we examine recent literature describing how exercise might influence the conversion of traditional white adipose tissue to high energy-consuming "brown-like" adipocytes and the implications that this has on whole-body energy balance.

  9. Magnetic resonance properties of brown and white adipose tissues

    PubMed Central

    Hamilton, Gavin; Smith, Daniel L.; Bydder, Mark; Nayak, Krishna S.; Hu, Houchun H.

    2011-01-01

    Purpose To explore the MR (magnetic resonance) signatures of brown adipose tissue (BAT) compared to white adipose tissue (WAT) using single-voxel MR spectroscopy. Materials and Methods 1H MR STEAM spectra were acquired from a 3 Tesla clinical whole body scanner from seven excised murine adipose tissue samples of BAT (n = 4) and WAT (n = 3). Spectra were acquired at multiple TEs and TIs to measure the T1, T2, and T2-corrected peak areas. A theoretical triglyceride model characterized the fat in terms of number of double bonds (ndb) and number of methylene-interrupted double bonds (nmidb). Results Negligible differences between WAT and BAT were seen in the T1 and T2 of fat and the T2 of water. However, the water fraction in BAT was higher (48.5%) compared to WAT (7.1%) and the T1 of water was lower in BAT (618 ms) compared to WAT (1053 ms). The fat spectrum also differed, indicating lower levels of unsaturated triglycerides in BAT (ndb = 2.7, nmidb = 0.7) compared to WAT (ndb = 3.3, nmidb = 1.0). Conclusions We have demonstrated that there are several key MR-based signatures of BAT and WAT that may allow differentiation on MR imaging. PMID:21780237

  10. Magnetic Resonance Imaging of Human Tissue-Engineered Adipose Substitutes

    PubMed Central

    Proulx, Maryse; Aubin, Kim; Lagueux, Jean; Audet, Pierre; Auger, Michèle

    2015-01-01

    Adipose tissue (AT) substitutes are being developed to answer the strong demand in reconstructive surgery. To facilitate the validation of their functional performance in vivo, and to avoid resorting to excessive number of animals, it is crucial at this stage to develop biomedical imaging methodologies, enabling the follow-up of reconstructed AT substitutes. Until now, biomedical imaging of AT substitutes has scarcely been reported in the literature. Therefore, the optimal parameters enabling good resolution, appropriate contrast, and graft delineation, as well as blood perfusion validation, must be studied and reported. In this study, human adipose substitutes produced from adipose-derived stem/stromal cells using the self-assembly approach of tissue engineering were implanted into athymic mice. The fate of the reconstructed AT substitutes implanted in vivo was successfully followed by magnetic resonance imaging (MRI), which is the imaging modality of choice for visualizing soft ATs. T1-weighted images allowed clear delineation of the grafts, followed by volume integration. The magnetic resonance (MR) signal of reconstructed AT was studied in vitro by proton nuclear magnetic resonance (1H-NMR). This confirmed the presence of a strong triglyceride peak of short longitudinal proton relaxation time (T1) values (200±53 ms) in reconstructed AT substitutes (total T1=813±76 ms), which establishes a clear signal difference between adjacent muscle, connective tissue, and native fat (total T1 ∼300 ms). Graft volume retention was followed up to 6 weeks after implantation, revealing a gradual resorption rate averaging at 44% of initial substitute's volume. In addition, vascular perfusion measured by dynamic contrast-enhanced-MRI confirmed the graft's vascularization postimplantation (14 and 21 days after grafting). Histological analysis of the grafted tissues revealed the persistence of numerous adipocytes without evidence of cysts or tissue necrosis. This study

  11. Type of MRI contrast, tissue gadolinium, and fibrosis.

    PubMed

    Do, Catherine; Barnes, Jeffrey L; Tan, Chunyan; Wagner, Brent

    2014-10-01

    It has been presupposed that the thermodynamic stability constant (K(therm)) of gadolinium-based MRI chelates relate to the risk of precipitating nephrogenic systemic fibrosis. The present study compared low-K(therm) gadodiamide with high-K(therm) gadoteridol in cultured fibroblasts and rats with uninephrectomies. Gadolinium content was assessed using scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy in paraffin-embedded tissues. In vitro, fibroblasts demonstrated dose-dependent fibronectin generation, transforming growth factor-β production, and expression of activated myofibroblast stress fiber protein α-smooth muscle actin. There were negligible differences with respect to toxicity or proliferation between the two contrast agents. In the rodent model, gadodiamide treatment led to greater skin fibrosis and dermal cellularity than gadoteridol. In the kidney, both contrast agents led to proximal tubule vacuolization and increased fibronectin accumulation. Despite large detectable gadolinium signals in the spleen, skin, muscle, and liver from the gadodiamide-treated group, contrast-induced fibrosis appeared to be limited to the skin and kidney. These findings support the hypothesis that low-K(therm) chelates have a greater propensity to elicit nephrogenic systemic fibrosis and demonstrate that certain tissues are resistant to these effects.

  12. Electrospinning adipose tissue-derived extracellular matrix for adipose stem cell culture.

    PubMed

    Francis, Michael P; Sachs, Patrick C; Madurantakam, Parthasarathy A; Sell, Scott A; Elmore, Lynne W; Bowlin, Gary L; Holt, Shawn E

    2012-07-01

    Basement membrane-rich extracellular matrices, particularly murine sarcoma-derived Matrigel, play important roles in regenerative medicine research, exhibiting marked cellular responses in vitro and in vivo, although with limited clinical applications. We find that a human-derived matrix from lipoaspirate fat, a tissue rich in basement membrane components, can be fabricated by electrospinning and used to support cell culture. We describe practical applications and purification of extracellular matrix (ECM) from adipose tissue (At-ECM) and its use in electrospinning scaffolds and adipose stem cell (ASC) culture. The matrix composition of this purified and electrospun At-ECM was assessed histochemically for basement membrane, connective tissue, collagen, elastic fibers/elastin, glycoprotein, and proteoglycans. Each histochemical stain was positive in fat tissue, purified At-ECM, and electrospun At-ECM, and to some extent positive in a 10:90 blend with polydioxanone (PDO). We also show that electrospun At-ECM, alone and blended with PDO, supports ASC attachment and growth, suggesting that electrospun At-ECM scaffolds support ASC cultivation. These studies show that At-ECM can be isolated and electrospun as a basement membrane-rich tissue engineering matrix capable of supporting stem cells, providing the groundwork for an array of future regenerative medicine advances.

  13. Collecting lymphatic vessel permeability facilitates adipose tissue inflammation and distribution of antigen to lymph node-homing adipose tissue DCs

    PubMed Central

    Kuan, Emma L.; Ivanov, Stoyan; Bridenbaugh, Eric A.; Victora, Gabriel; Wang, Wei; Childs, Ed W.; Platt, Andrew M.; Jakubzick, Claudia V.; Mason, Robert J.; Gashev, Anatoliy A.; Nussenzweig, Michel; Swartz, Melody A.; Dustin, Michael L.; Zawieja, David C.; Randolph, Gwendalyn J.

    2015-01-01

    Collecting lymphatic vessels (CLVs), surrounded by fat and endowed with contractile muscle and valves, transport lymph from tissues after it is absorbed into lymphatic capillaries. CLVs are not known to participate in immune responses. Here, we observed that the inherent permeability of CLVs allowed broad distribution of lymph components within surrounding fat for uptake by adjacent macrophages and dendritic cells (DCs) that actively interacted with CLVs. Endocytosis of lymph-derived antigens by these cells supported recall T cell responses in the fat and also generated antigen-bearing DCs for emigration into adjacent lymph nodes. Enhanced recruitment of DCs to inflammation-reactive lymph nodes significantly relied on adipose tissue DCs to maintain sufficient numbers of antigen-bearing DCs as the lymph node expanded. Thus, CLVs coordinate inflammation and immunity within adipose depots and foster the generation of an unexpected pool of APCs for antigen transport into the adjacent lymph node. PMID:25917096

  14. Laser light propagation in adipose tissue and laser effects on adipose cell membranes

    NASA Astrophysics Data System (ADS)

    Solarte, Efraín; Rebolledo, Aldo; Gutierrez, Oscar; Criollo, William; Neira, Rodrigo; Arroyave, José; Ramírez, Hugo

    2006-01-01

    Recently Neira et al. have presented a new liposuction technique that demonstrated the movement of fat from inside to outside of the cell, using a low-level laser device during a liposuction procedure with Ultrawet solution. The clinical observations, allowed this new surgical development, started a set of physical, histological and pharmacological studies aimed to determine the mechanisms involved in the observed fat mobilization concomitant to external laser application in liposuction procedures. Scanning and Transmission Electron Microscopy, studies show that the cellular arrangement of normal adipose tissue changes when laser light from a diode laser: 10 mW, 635 nm is applied. Laser exposures longer than 6 minutes cause the total destruction of the adipocyte panicles. Detailed observation of the adipose cells show that by short irradiation times (less than four minutes) the cell membrane exhibits dark zones, that collapse by longer laser exposures. Optical measurements show that effective penetration length depends on the laser intensity. Moreover, the light scattering is enhanced by diffraction and subsequent interference effects, and the tumescent solution produces a clearing of the tissue optical medium. Finally, isolate adipose cell observation show that fat release from adipocytes is a concomitant effect between the tumescent solution (adrenaline) and laser light, revealing a synergism which conduces to the aperture, and maybe the disruption, of the cell membrane. All these studies were consistent with a laser induced cellular process, which causes fat release from inside the adipocytes into the intercellular space, besides a strong modification of the cellular membranes.

  15. Regulation of glucose homoeostasis by brown adipose tissue.

    PubMed

    Peirce, Vivian; Vidal-Puig, Antonio

    2013-12-01

    Brown adipose tissue (BAT) has emerged as a therapeutic target for the treatment of obesity. Activation of BAT in human beings could also have beneficial metabolic effects that might resolve common complications of obesity, such as type 2 diabetes, by ameliorating the glucolipotoxic pathological changes that underlie the development of peripheral insulin resistance and impaired insulin secretion due to pancreatic β-cell failure. Evidence from rodent models suggests that BAT activation improves glucose homoeostasis through several mechanisms, which could point to new strategies to optimise stimulation of BAT in human beings and reverse insulin resistance in peripheral tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Polychlorinated biphenyl (PCB) partitioning between adipose tissue and serum

    SciTech Connect

    Brown, J.F. Jr.; Lawton, R.W.

    1984-09-01

    It has been recently suggested that variabilities in the partitioning of chronically retained lipophilic xenobiotics between adipose tissue and serum may be relatable to variations in the lipid content of the serum. Here, the authors present theoretical considerations and experimental data showing that this is indeed the case for polychlorinated biphenyls (PCBs) in humans. At equilibrium, in the absence of active transport, any lipophilic substance must distribute itself among body tissues in such a way that its chemical activity and also its chemical potential are the same at all points. In order to verify the theoretical relationships, three sorts of data relating to serum PCB levels in a human population were examined.

  17. Increased peroxisome proliferator-activated receptor γ expression levels in visceral adipose tissue, and serum CCL2 and interleukin-6 levels during visceral adipose tissue accumulation.

    PubMed

    Yogarajah, Thaneswary; Bee, Yvonne-Tee Get; Noordin, Rahmah; Yin, Khoo Boon

    2015-01-01

    This study was conducted to determine the mRNA and protein expression levels of peroxisome proliferator-activated receptors (PPARs) in visceral adipose tissue, as well as serum adipokine levels, in Sprague Dawley rats. The rats were fed either a normal (control rats) or excessive (experimental rats) intake of food for 8 or 16 weeks, then sacrificed, at which time visceral and subcutaneous adipose tissues, as well as blood samples, were collected. The mRNA and protein expression levels of PPARs in the visceral adipose tissues were determined using reverse transcription-polymerase chain reaction and Western blotting, respectively. In addition, the levels of adipokines in the serum samples were determined using commercial ELISA kits. The results revealed that at 8 weeks, the mass of subcutaneous adipose tissue was higher than that of the visceral adipose tissue in the experimental rats, but the reverse occurred at 16 weeks. Furthermore, at 16 weeks the experimental rats exhibited an upregulation of PPARγ mRNA and protein expression levels in the visceral adipose tissues, and significant increases in the serum levels of CCL2 and interleukin (IL)-6 were observed, compared with those measured at 8 weeks. In conclusion, this study demonstrated that the PPARγ expression level was likely correlated with serum levels of CCL2 and IL-6, molecules that may facilitate visceral adipose tissue accumulation. In addition, the levels of the two adipokines in the serum may be useful as surrogate biomarkers for the expression levels of PPARγ in accumulated visceral adipose tissues.

  18. Berberine activates thermogenesis in white and brown adipose tissue.

    PubMed

    Zhang, Zhiguo; Zhang, Huizhi; Li, Bo; Meng, Xiangjian; Wang, Jiqiu; Zhang, Yifei; Yao, Shuangshuang; Ma, Qinyun; Jin, Lina; Yang, Jian; Wang, Weiqing; Ning, Guang

    2014-11-25

    Obesity develops when energy intake exceeds energy expenditure. Promoting brown adipose tissue formation and function increases energy expenditure and hence may counteract obesity. Berberine (BBR) is a compound derived from the Chinese medicinal plant Coptis chinensis. Here we show that BBR increases energy expenditure, limits weight gain, improves cold tolerance and enhances brown adipose tissue (BAT) activity in obese db/db mice. BBR markedly induces the development of brown-like adipocytes in inguinal, but not epididymal adipose depots. BBR also increases expression of UCP1 and other thermogenic genes in white and BAT and primary adipocytes via a mechanism involving AMPK and PGC-1α. BBR treatment also inhibits AMPK activity in the hypothalamus, but genetic activation of AMPK in the ventromedial nucleus of the hypothalamus does not prevent BBR-induced weight loss and activation of the thermogenic programme. Our findings establish a role for BBR in regulating organismal energy balance, which may have potential therapeutic implications for the treatment of obesity.

  19. Central Nervous System Regulation of Brown Adipose Tissue

    PubMed Central

    Morrison, Shaun F.; Madden, Christopher J.

    2015-01-01

    Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior. PMID:25428857

  20. Mechanobiology and Mechanotherapy of Adipose Tissue-Effect of Mechanical Force on Fat Tissue Engineering

    PubMed Central

    Yuan, Yi

    2015-01-01

    Summary: Our bodies are subjected to various mechanical forces, which in turn affect both the structure and function of our bodies. In particular, these mechanical forces play an important role in tissue growth and regeneration. Adipocytes and adipose-derived stem cells are both mechanosensitive and mechanoresponsive. The aim of this review is to summarize the relationship between mechanobiology and adipogenesis. PubMed was used to search for articles using the following keywords: mechanobiology, adipogenesis, adipose-derived stem cells, and cytoskeleton. In vitro and in vivo experiments have shown that adipogenesis is strongly promoted/inhibited by various internal and external mechanical forces, and that these effects are mediated by changes in the cytoskeleton of adipose-derived stem cells and/or various signaling pathways. Thus, adipose tissue engineering could be enhanced by the careful application of mechanical forces. It was shown recently that mature adipose tissue regenerates in an adipose tissue-engineering chamber. This observation has great potential for the reconstruction of soft tissue deficiencies, but the mechanisms behind it remain to be elucidated. On the basis of our understanding of mechanobiology, we hypothesize that the chamber removes mechanical force on the fat that normally impose high cytoskeletal tension. The reduction in tension in adipose stem cells triggers their differentiation into adipocytes. The improvement in our understanding of the relationship between mechanobiology and adipogenesis means that in the near future, we may be able to increase or decrease body fat, as needed in the clinic, by controlling the tension that is loaded onto fat. PMID:26894003

  1. Mechanobiology and Mechanotherapy of Adipose Tissue-Effect of Mechanical Force on Fat Tissue Engineering.

    PubMed

    Yuan, Yi; Gao, Jianhua; Ogawa, Rei

    2015-12-01

    Our bodies are subjected to various mechanical forces, which in turn affect both the structure and function of our bodies. In particular, these mechanical forces play an important role in tissue growth and regeneration. Adipocytes and adipose-derived stem cells are both mechanosensitive and mechanoresponsive. The aim of this review is to summarize the relationship between mechanobiology and adipogenesis. PubMed was used to search for articles using the following keywords: mechanobiology, adipogenesis, adipose-derived stem cells, and cytoskeleton. In vitro and in vivo experiments have shown that adipogenesis is strongly promoted/inhibited by various internal and external mechanical forces, and that these effects are mediated by changes in the cytoskeleton of adipose-derived stem cells and/or various signaling pathways. Thus, adipose tissue engineering could be enhanced by the careful application of mechanical forces. It was shown recently that mature adipose tissue regenerates in an adipose tissue-engineering chamber. This observation has great potential for the reconstruction of soft tissue deficiencies, but the mechanisms behind it remain to be elucidated. On the basis of our understanding of mechanobiology, we hypothesize that the chamber removes mechanical force on the fat that normally impose high cytoskeletal tension. The reduction in tension in adipose stem cells triggers their differentiation into adipocytes. The improvement in our understanding of the relationship between mechanobiology and adipogenesis means that in the near future, we may be able to increase or decrease body fat, as needed in the clinic, by controlling the tension that is loaded onto fat.

  2. Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue.

    PubMed

    Wang, Jun Kit; Luo, Baiwen; Guneta, Vipra; Li, Liang; Foo, Selin Ee Min; Dai, Yun; Tan, Timothy Thatt Yang; Tan, Nguan Soon; Choong, Cleo; Wong, Marcus Thien Chong

    2017-06-01

    Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO2) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required. The resultant SC-CO2-treated ECM material showed an absence of nuclear content but the preservation of key proteins such as collagen Type I, collagen Type III, collagen Type IV, elastin, fibronectin and laminin. In addition, other biological factors such as glycosaminoglycans (GAGs) and growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were also retained. Subsequently, the resulting SC-CO2-treated ECM material was used as a bioactive coating on tissue culture plastic (TCP). Four different cell types including adipose tissue-derived mesenchymal stem cells (ASCs), human umbilical vein endothelial cells (HUVECs), immortalized human keratinocyte (HaCaT) cells and human monocytic leukemia cells (THP-1) were used in this study to show that the SC-CO2-treated ECM coating can be potentially used for various biomedical applications. The SC-CO2-treated ECM material showed improved cell-material interactions for all cell types tested. In addition, in vitro scratch wound assay using HaCaT cells showed that the presence of SC-CO2-treated ECM material enhanced keratinocyte migration whilst the in vitro cellular studies using THP-1-derived macrophages showed that the SC-CO2-treated ECM material did not evoke pro-inflammatory responses from the THP-1-derived macrophages. Overall, this study shows the efficacy of SC-CO2

  3. Bone morphogenetic proteins in inflammation, glucose homeostasis and adipose tissue energy metabolism.

    PubMed

    Grgurevic, Lovorka; Christensen, Gitte Lund; Schulz, Tim J; Vukicevic, Slobodan

    2016-02-01

    Bore morphogenetic proteins (BMPs) are members of the transforming growth factor (TGF)-β superfamily, a group of secreted proteins that regulate embryonic development. This review summarizes the effects of BMPs on physiological processes not exclusively linked to the musculoskeletal system. Specifically, we focus on the involvement of BMPs in inflammatory disorders, e.g. fibrosis, inflammatory bowel disease, anchylosing spondylitis, rheumatoid arthritis. Moreover, we discuss the role of BMPs in the context of vascular disorders, and explore the role of these signalling proteins in iron homeostasis (anaemia, hemochromatosis) and oxidative damage. The second and third parts of this review focus on BMPs in the development of metabolic pathologies such as type-2 diabetes mellitus and obesity. The pancreatic beta cells are the sole source of the hormone insulin and BMPs have recently been implicated in pancreas development as well as control of adult glucose homeostasis. Lastly, we review the recently recognized role of BMPs in brown adipose tissue formation and their consequences for energy expenditure and adiposity. In summary, BMPs play a pivotal role in metabolism beyond their role in skeletal homeostasis. However, increased understanding of these pleiotropic functions also highlights the necessity of tissue-specific strategies when harnessing BMP action as a therapeutic target. Copyright © 2016. Published by Elsevier Ltd.

  4. Differential expression of Dlk-1 in bovine adipose tissue depots.

    PubMed

    Vuocolo, T; Pearson, R; Campbell, P; Tellam, R L

    2003-02-01

    Dlk-1, a type 1 membrane glycoprotein, is a member of the Epidermal Growth Factor-like family of homeotic proteins that are typically involved in cell fate decisions and in mice it has been implicated in the control of differentiation of adipocytes. The aim of this study was to determine whether there were tissue-specific expression patterns of Dlk-1 splice variants in bovine tissues. Only the Dlk-1-C2 variant was expressed in adult bovine tissues while both Dlk-1-C2 and Dlk-1-A variants were expressed in foetal tissues. Quantitative real-time PCR revealed large differences in the relative levels of expression of the Dlk-1-C2 variant in adult adipose tissue depots with no expression in subcutaneous and brisket adipose tissues. Expression was also demonstrated in three adult skeletal muscle samples. The large variation in the level of expression of Dlk-1-C2 in different adult tissues may reflect the relative preadipocyte content of those tissues and consequently their potential for generating new adipocytes. A low abundance soluble glycoprotein (bFA1) was purified from bovine amniotic fluid. Analyses of its amino acid sequence revealed that it corresponded to most of the extracellular domain of bovine Dlk-1 and was derived by proteolytic processing from the full-length Dlk-1 protein encoded by the Dlk-1-A variant. The tissues expressing the Dlk-1-A variant have not been identified but are likely to be foetal in origin. Splice variants of Dlk-1 may have varied functional roles with the foetal Dlk-1-A form capable of generating a protein that undergoes proteolytic processing to release a soluble ecto-domain of Dlk-1. In contrast the Dlk-1-C2 splice variant codes for a protein lacking this processing site and therefore it probably remains bound to the cell membrane.

  5. Secreted proteins and genes in fetal and neonatal pig adipose tissue and stromal-vascular cells.

    PubMed

    Hausman, G J; Poulos, S P; Richardson, R L; Barb, C R; Andacht, T; Kirk, H C; Mynatt, R L

    2006-07-01

    Although microarray and proteomic studies have indicated the expression of unique and unexpected genes and their products in human and rodent adipose tissue, similar studies of meat animal adipose tissue have not been reported. Thus, total RNA was isolated from stromal-vascular (S-V) cell cultures (n = 4; 2 arrays; 2 cultures/array) from 90-d (79% of gestation) fetuses and adipose tissue from 105-d (92% of gestation) fetuses (n = 2) and neonatal (5-d-old) pigs (n = 2). Duplicate adipose tissue microarrays (n = 4) represented RNA samples from a pig and a fetus. Dye-labeled cDNA probes were hybridized to custom microarrays (70-mer oligonucleotides) representing more than 600 pig genes involved in growth and reproduction. Microarray studies showed significant expression of 40 genes encoding for known adipose tissue secreted proteins in fetal S-V cell cultures and adipose tissue. Expression of 10 genes encoding secreted proteins not known to be expressed by adipose tissue was also observed in neonatal adipose tissue and fetal S-V cell cultures. Additionally, the agouti gene was detected by reverse transcription-PCR in pig S-V cultures and adipose tissue. Proteomic analysis of adipose tissue and fetal and young pig S-V cell culture-conditioned media identified multiple secreted proteins including heparin-like epidermal growth factor-like growth factor and several apolipoproteins. Another adipose tissue secreted protein, plasminogen activator inhibitor-1, was identified by ELISA in S-V cell culture media. A group of 20 adipose tissue secreted proteins were detected or identified using the gene microarray and the proteomic and protein assay approaches including apolipoprotein-A1, apolipoprotein-E, relaxin, brain-derived neurotrophic factor, and IGF binding protein-5. These studies demonstrate, for the first time, the expression of several major secreted proteins in pig adipose tissue that may influence local and central metabolism and growth.

  6. Estradiol effects on subcutaneous adipose tissue lipolysis in premenopausal women are adipose tissue depot specific and treatment dependent.

    PubMed

    Gavin, Kathleen M; Cooper, Elizabeth E; Raymer, Dustin K; Hickner, Robert C

    2013-06-01

    Estrogen has direct effects within adipose tissue and has been implicated in regional adiposity; however, the influence of estrogen on in vivo lipolysis is unclear. The purpose of this study was to investigate the effect of local 17β-estradiol (E(2)) on subcutaneous adipose tissue (SAT) lipolysis in premenopausal women. In vivo lipolysis (dialysate glycerol) was measured in 17 women (age 27.4 ± 2.0 yr, BMI 29.7 ± 0.5 kg/m(2)) via microdialysis of abdominal (AB) and gluteal (GL) SAT. Glycerol was measured at baseline and during acute interventions to increase lipolysis including local perfusion of isoproterenol (ISO, β-adrenergic agonist, 1.0 μmol/l), phentolamine (PHEN, α-adrenergic antagonist, 0.1 mmol/l), and submaximal exercise (60% Vo(2peak), 30 min); all with and without coperfusion of E(2) (500 nmol/l). E(2) coperfusion blunted the lipolytic response to ISO in AB (E(2) 196 ± 31%, control 258 ± 26%, P = 0.003) but not in GL (E(2) 113 ± 14%, control 111 ± 12%, P = 0.43) adipose tissue. At rest, perfusion of PHEN with ISO did not change dialysate glycerol. Submaximal exercise during ISO + PHEN increased dialysate glycerol in the AB (56 ± 9%) and GL (62 ± 12%) regions. Probes perfused with E(2) during exercise and ISO + PHEN had an increased lipolytic response in AB (90 ± 9%, P = 0.007) but a lower response in GL (35 ± 7%, P = 0.05) SAT compared with no-E(2) conditions. E(2) effects on lipolysis are region specific and may work through both adrenergic and adrenergic-independent mechanisms to potentiate and/or blunt SAT lipolysis in premenopausal women.

  7. Pro-fibrotic activity of lysophosphatidic acid in adipose tissue: in vivo and in vitro evidence.

    PubMed

    Rancoule, Chloé; Viaud, Manon; Gres, Sandra; Viguerie, Nathalie; Decaunes, Pauline; Bouloumié, Anne; Langin, Dominique; Bascands, Jean-Loup; Valet, Philippe; Saulnier-Blache, Jean Sébastien

    2014-01-01

    Lysophosphatidic acid (LPA) is a pro-fibrotic mediator acting via specific receptors (LPARs) and is synthesized by autotaxin, that increases with obesity. We tested whether LPA could play a role in adipose tissue (AT)-fibrosis associated with obesity. Fibrosis [type I, III, and IV collagens (COL), fibronectin (FN), TGFβ, CTGF and αSMA] and inflammation (MCP1 and F4/80) markers were quantified: (i) in vivo in inguinal (IAT) and perigonadic (PGAT) AT from obese-diabetic db/db mice treated with the LPAR antagonist Ki16425 (5mg/kg/day ip for 7 weeks); and (ii) in vitro in human AT explants in primary culture for 72h in the presence of oleoyl-LPA (10μM) and/or Ki16425 (10μM) and/or the HIF-1α inhibitor YC-1 (100μM). Treatment of db/db mice with Ki16425 reduced Col I and IV mRNAs in IAT and PGAT while Col III mRNAs were only reduced in IAT. This was associated with reduction of COL protein staining in both IAT and PGAT. AT explants showed a spontaneous and time-dependent increase in ATX expression and production of LPA in the culture medium, along with increased levels of Col I and III, TGFβ and αSMA mRNAs and of COL protein staining. In vitro fibrosis was blocked by Ki16425 and was further amplified by oleoyl-LPA. LPA-dependent in vitro fibrosis was blocked by co-treatment with YC1. Our results show that endogenous and exogenous LPA exert a pro-fibrotic activity in AT in vivo and in vitro. This activity could be mediated by an LPA1R-dependent pathway and could involve HIF-1α. © 2013.

  8. Common dysregulated pathways in obese adipose tissue and atherosclerosis.

    PubMed

    Moreno-Viedma, V; Amor, M; Sarabi, A; Bilban, M; Staffler, G; Zeyda, M; Stulnig, T M

    2016-08-26

    The metabolic syndrome is becoming increasingly prevalent in the general population that is at simultaneous risk for both type 2 diabetes and cardiovascular disease. The critical pathogenic mechanisms underlying these diseases are obesity-driven insulin resistance and atherosclerosis, respectively. To obtain a better understanding of molecular mechanisms involved in pathogenesis of the metabolic syndrome as a basis for future treatment strategies, studies considering both inherent risks, namely metabolic and cardiovascular, are needed. Hence, the aim of this study was to identify pathways commonly dysregulated in obese adipose tissue and atherosclerotic plaques. We carried out a gene set enrichment analysis utilizing data from two microarray experiments with obese white adipose tissue and atherosclerotic aortae as well as respective controls using a combined insulin resistance-atherosclerosis mouse model. We identified 22 dysregulated pathways common to both tissues with p values below 0.05, and selected inflammatory response and oxidative phosphorylation pathways from the Hallmark gene set to conduct a deeper evaluation at the single gene level. This analysis provided evidence of a vast overlap in gene expression alterations in obese adipose tissue and atherosclerosis with Il7r, C3ar1, Tlr1, Rgs1 and Semad4d being the highest ranked genes for the inflammatory response pathway and Maob, Bckdha, Aldh6a1, Echs1 and Cox8a for the oxidative phosphorylation pathway. In conclusion, this study provides extensive evidence for common pathogenic pathways underlying obesity-driven insulin resistance and atherogenesis which could provide a basis for the development of novel strategies to simultaneously prevent type 2 diabetes and cardiovascular disease in patients with metabolic syndrome.

  9. Diversity of lipid mediators in human adipose tissue depots

    PubMed Central

    Clària, Joan; Nguyen, Binh T.; Madenci, Arin L.; Ozaki, C. Keith

    2013-01-01

    Adipose tissue is a heterogeneous organ with remarkable variations in fat cell metabolism depending on the anatomical location. However, the pattern and distribution of bioactive lipid mediators between different fat depots and their relationships in complex diseases have not been investigated. Using LC-MS/MS-based metabolo-lipidomics, here we report that human subcutaneous (SC) adipose tissues possess a range of specialized proresolving mediators (SPM) including resolvin (Rv) D1, RvD2, protectin (PD) 1, lipoxin (LX) A4, and the monohydroxy biosynthetic pathway markers of RvD1 and PD1 (17-HDHA), RvE1 (18-HEPE), and maresin 1 (14-HDHA). The “classic” eicosanoids prostaglandin (PG) E2, PGD2, PGF2α, leukotriene (LT) B4, 5-hydroxyeicosatetraenoic acid (5-HETE), 12-HETE, and 15-HETE were also identified in SC fat. SC fat from patients with peripheral vascular disease (PVD) exhibited a marked deficit in PD1 and 17-HDHA levels. Compared with SC, perivascular adipose tissue displayed higher SPM levels, suggesting an enhanced resolution capacity in this fat depot. In addition, augmented levels of eicosanoids and SPM were observed in SC fat surrounding foot wounds. Notably, the profile of SC PGF2α differed significantly when patients were grouped by body mass index (BMI). In the case of peri-wound SC fat, BMI negatively correlated with PGE2. In this tissue, proresolving mediators RvD2 and LXA4 were identified in lower levels than the proinflammatory LTB4. Collectively, these findings demonstrate a diverse distribution of bioactive lipid mediators depending on the localization of human fat depots and uncover a specific SPM pattern closely associated with PVD. PMID:23364264

  10. Reduced adipose tissue H2S in obesity.

    PubMed

    Katsouda, Antonia; Szabo, Csaba; Papapetropoulos, Andreas

    2017-10-02

    Hydrogen sulfide (H2S) is an endogenously produced signaling molecule synthesized by cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). Given that H2S exerts significant effects on bioenergetics and metabolism, the goal of the current study was to determine the expression of H2S-producing enzymes in adipose tissues in models of obesity and metabolic disruption. Mice fed a western diet expressed lower mRNA levels of all three enzymes in epididymal fat (EWAT), while only CSE and 3-MST were reduced in brown adipose tissue (BAT). At the protein level 3-MST was reduced in all fat depots studied. Using db/db mice, a genetic model of obesity, we found that CSE, CBS and 3-MST mRNA were reduced in white fat, while only CSE was reduced in BAT. CBS and CSE protein levels were suppressed in all three fat depots. In a model of age-related weight gain, no reduction in the mRNA of any of the enzymes was noted. Smaller amounts of 3-MST protein were found in EWAT, while both CSE and 3-MST were reduced in BAT. Tissue levels of H2S were lower in WAT in HFD mice; both WAT and BAT contained lower H2S amounts in db/db animals. Taken together, our data suggest that obesity is associated with a decreased expression of H2S-synthesizing enzymes and reduced H2S levels in adipose tissues of mice. We propose that the reduction in H2S may contribute to the metabolic response associated with obesity. Further work is needed to determine whether restoring H2S levels during obesity may have a beneficial effect on obesity-associated metabolic alterations. Copyright © 2017. Published by Elsevier Ltd.

  11. Two types of brown adipose tissue in humans

    PubMed Central

    Lidell, Martin E; Betz, Matthias J; Enerbäck, Sven

    2014-01-01

    During the last years the existence of metabolically active brown adipose tissue in adult humans has been widely accepted by the research community. Its unique ability to dissipate chemical energy stored in triglycerides as heat makes it an attractive target for new drugs against obesity and its related diseases. Hence the tissue is now subject to intense research, the hypothesis being that an expansion and/or activation of the tissue is associated with a healthy metabolic phenotype. Animal studies provide evidence for the existence of at least two types of brown adipocytes. Apart from the classical brown adipocyte that is found primarily in the interscapular region where it constitutes a thermogenic organ, a second type of brown adipocyte, the so-called beige adipocyte, can appear within white adipose tissue depots. The fact that the two cell types develop from different precursors suggests that they might be recruited and stimulated by different cues and therefore represent two distinct targets for therapeutic intervention. The aim of this commentary is to discuss recent work addressing the question whether also humans possess two types of brown adipocytes and to highlight some issues when looking for molecular markers for such cells. PMID:24575372

  12. Brown Adipose Tissue Bioenergetics: A New Methodological Approach

    PubMed Central

    Calderon‐Dominguez, María; Alcalá, Martín; Sebastián, David; Zorzano, Antonio; Viana, Marta; Serra, Dolors

    2017-01-01

    The rediscovery of brown adipose tissue (BAT) in humans and its capacity to oxidize fat and dissipate energy as heat has put the spotlight on its potential as a therapeutic target in the treatment of several metabolic conditions including obesity and diabetes. To date the measurement of bioenergetics parameters has required the use of cultured cells or extracted mitochondria with the corresponding loss of information in the tissue context. Herein, we present a method to quantify mitochondrial bioenergetics directly in BAT. Based on XF Seahorse Technology, we assessed the appropriate weight of the explants, the exact concentration of each inhibitor in the reaction, and the specific incubation time to optimize bioenergetics measurements. Our results show that BAT basal oxygen consumption is mostly due to proton leak. In addition, BAT presents higher basal oxygen consumption than white adipose tissue and a positive response to b‐adrenergic stimulation. Considering the whole tissue and not just subcellular populations is a direct approach that provides a realistic view of physiological respiration. In addition, it can be adapted to analyze the effect of potential activators of thermogenesis, or to assess the use of fatty acids or glucose as a source of energy. PMID:28435771

  13. Long noncoding RNA repertoire in chicken liver and adipose tissue.

    PubMed

    Muret, Kévin; Klopp, Christophe; Wucher, Valentin; Esquerré, Diane; Legeai, Fabrice; Lecerf, Frédéric; Désert, Colette; Boutin, Morgane; Jehl, Frédéric; Acloque, Hervé; Giuffra, Elisabetta; Djebali, Sarah; Foissac, Sylvain; Derrien, Thomas; Lagarrigue, Sandrine

    2017-01-10

    Improving functional annotation of the chicken genome is a key challenge in bridging the gap between genotype and phenotype. Among all transcribed regions, long noncoding RNAs (lncRNAs) are a major component of the transcriptome and its regulation, and whole-transcriptome sequencing (RNA-Seq) has greatly improved their identification and characterization. We performed an extensive profiling of the lncRNA transcriptome in the chicken liver and adipose tissue by RNA-Seq. We focused on these two tissues because of their importance in various economical traits for which energy storage and mobilization play key roles and also because of their high cell homogeneity. To predict lncRNAs, we used a recently developed tool called FEELnc, which also classifies them with respect to their distance and strand orientation to the closest protein-coding genes. Moreover, to confidently identify the genes/transcripts expressed in each tissue (a complex task for weakly expressed molecules such as lncRNAs), we probed a particularly large number of biological replicates (16 per tissue) compared to common multi-tissue studies with a larger set of tissues but less sampling. We predicted 2193 lncRNA genes, among which 1670 were robustly expressed across replicates in the liver and/or adipose tissue and which were classified into 1493 intergenic and 177 intragenic lncRNAs located between and within protein-coding genes, respectively. We observed similar structural features between chickens and mammals, with strong synteny conservation but without sequence conservation. As previously reported, we confirm that lncRNAs have a lower and more tissue-specific expression than mRNAs. Finally, we showed that adjacent lncRNA-mRNA genes in divergent orientation have a higher co-expression level when separated by less than 1 kb compared to more distant divergent pairs. Among these, we highlighted for the first time a novel lncRNA candidate involved in lipid metabolism, lnc_DHCR24, which is highly

  14. The effect of diabetes on the wound healing potential of adipose-tissue derived stem cells.

    PubMed

    Kim, Sue Min; Kim, Yun Ho; Jun, Young Joon; Yoo, Gyeol; Rhie, Jong Won

    2016-03-01

    To investigate whether diabetes mellitus affects the wound-healing-promoting potential of adipose tissue-derived stem cells, we designed a wound-healing model using diabetic mice. We compared the degree of wound healing between wounds treated with normal adipose tissue-derived stem cells and wounds treated with diabetic adipose tissue-derived stem cells. We evaluated the wound-healing rate, the epithelial tongue distance, the area of granulation tissue, the number of capillary and the number of Ki-67-stained cells. The wound-healing rate was significantly higher in the normal adipose tissue-derived stem cells group than in the diabetic adipose tissue-derived stem cells group; it was also significantly higher in the normal adipose tissue-derived stem cells group than in the control group. Although the diabetic adipose tissue-derived stem cells group showed a better wound-healing rate than the control group, the difference was not statistically significant. Similar trends were observed for the other parameters examined: re-epithelisation and keratinocyte proliferation; granulation tissue formation; and dermal regeneration. However, with regard to the number of capillary, diabetic adipose tissue-derived stem cells retained their ability to promote neovasculisation and angiogenesis. These results reflect the general impairment of the therapeutic potential of diabetic adipose tissue-derived stem cells in vivo.

  15. Advantages of Sheep Infrapatellar Fat Pad Adipose Tissue Derived Stem Cells in Tissue Engineering

    PubMed Central

    Vahedi, Parviz; Soleimanirad, Jafar; Roshangar, Leila; Shafaei, Hajar; Jarolmasjed, Seyedhosein; Nozad Charoudeh, Hojjatollah

    2016-01-01

    Purpose: The goal of this study has been to evaluate adipose tissue derived stem cells (ADSCs) from infrapatellar fat pad and characterize their cell surface markers using anti-human antibodies, as adipose tissue derived stem cells (ADSCs) have great potential for cellular therapies to restore injured tissues. Methods: Adipose tissue was obtained from infrapatellar fat pad of sheep. Surface markers evaluated by flow cytometry. In order to evaluate cell adhesion, the Polycaprolactone (PCL) was sterilized under Ultraviolet (UV) light and about 1×105 cells were seeded on PCL. Then, ASCs- PCL construct were evaluated by Scanning Electron Microscopy (Mira3 Te Scan, Czech Republic). Results: We showed that adipose tissue derived stem cells (ADSCs) maintain their fibroblastic-like morphology during different subcultures and cell adhesion. They were positive for CD44 and CD90 markers and negative for CD31 and Cd45 markers by human antibodies. Conclusion: Our results suggest that ASCs surface markers can be characterized by anti-human antibodies in sheep. As stem cells, they can be used in tissue engineering. PMID:27123425

  16. Relevance of Adipose Tissue Stiffness Evaluated by Transient Elastography (AdipoScan™) in Morbidly Obese Patients before Bariatric Surgery

    NASA Astrophysics Data System (ADS)

    Sasso, Magali; Abdennour, Meriem; Liu, Yuejun; Hazrak, Hecham; Aron-Wisnewsky, Judith; Bouillot, Jean-Luc; Le Naour, Gilles; Bedossa, Pierre; Torjman, Joan; Clément, Karine; Miette, Véronique

    Subcutaneous adipose tissue (scAT) in human obesity undergoes severe alteration such as fibrosis which is related to metabolic alterations and to less efficiency in losing weight after bariatric surgery. There is currently no non-invasive tool to assess fibrosis in scAT. Vibration Controlled Transient Elastography (VCTE) using FibroScan® is widely used to assess liver fibrosis in clinical practice. A novel device named AdipoScan™ which is based on VCTE has been developed by Echosens (Paris) so as to assess scAT. The objective of this study is to show the first AdipoScan clinical results. AdipoScan™ was assessed in vivo on 73 morbidly obese patients candidate for bariatric surgery who were enrolled in the Pitié Salpêtrière hospital. scAT shear wave speed measured by AdipoScan™ is significantly associated with scAT fibrosis, gender, hypertension status, total body fat mass assessed by DXA, hypertension status, glycemic, lipid, hepatic parameters and adiponectin. Results suggest that scAT evaluation before bariatric surgery can be useful in clinical practice since it is related to scAT fibrosis -who plays in role in weight loss resistance after bariatric surgery- and to obesity induced co-morbidities such as diabetes, hypertension liver dysfunction.

  17. Physiological functions of Vitamin D in adipose tissue.

    PubMed

    Abbas, Manal A

    2017-01-01

    Adipose tissue has long been identified as the major site of vitamin D storage. Recent studies have demonstrated that VDR and vitamin D metabolizing enzymes are expressed in adipocytes. Furthermore, it has been shown that vitamin D regulates adipogenic gene expression as well as adipocyte apoptosis. Vitamin D is active in adipocytes at all levels. It interacts with membrane receptors, adaptor molecules, and nuclear coregulator proteins. Several functions of unliganded nVDR were discovered by studying human samples from patients having hereditary vitamin D resistant rickets, transgenic mice overexpressing the VDR and VDR knockout mice. Through its genomic action, vitamin D participates in the regulation of energy metabolism by controlling the expression of uncoupling proteins. In vitro, vitamin D stimulates lipogenesis and inhibits lipolysis by interacting with mVDR. mVDR is present in caveolae of the plasma membrane and is the same as the classic nVDR. In addition, vitamin D affects directly the expression of the appetite regulating hormone, leptin. Some researchers reported also that vitamin D regulates the expression of the insulin sensitizing hormone, adiponectin. Vitamin D reduced cytokine release and adipose tissue inflammation through the inhibition of NF-κB signaling. Scientific research investigating the role of adipose tissue resident immune cells in the pathogenesis of obesity-associated inflammation is scarce. Obesity is associated with vitamin D deficiency. However there is no scientific evidence to prove that vitamin D deficiency predispose to obesity. Vitamin D supplementation may prevent obesity but it does not lead to weight loss in obese subjects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Organochlorine pesticide levels in female adipose tissue from Puebla, Mexico.

    PubMed

    Waliszewski, Stefan M; Sanchez, K; Caba, M; Saldariaga-Noreña, H; Meza, E; Zepeda, R; Valencia Quintana, R; Infanzon, R

    2012-02-01

    The objective of this study was to determine the levels of organochlorine pesticides HCB, α-β-γ-HCH, pp'DDE, op'DDT and pp'DDT in adipose tissue of females living in Puebla, Mexico. Organochlorine pesticides were analyzed in 75 abdominal adipose tissue samples taken during 2010 by autopsy at the Forensic Services of Puebla. The results were expressed as mg/kg on fat basis. In analyzed samples the following pesticides were detected: p,p'-DDE in 100% of samples at mean 1.464 mg/kg; p,p'-DDT in 96.0.% of samples at mean 0.105 mg/kg; op'DDT in 89.3% of monitored samples at mean 0.025 mg/kg and β-HCH in 94.7% of the samples at mean 0.108 mg/kg. To show if organochlorine pesticide levels in monitored female's adipose tissues are age dependant, the group was divided in three ages ranges (13-26, 26-57 and 57-96 years). The mean and median levels of all organochlorine pesticides increase significantly (p < 0.05) from the first to second and from the first to third group. At the same time, the increase of mean and medians levels from the second to third group were not statistically significant (p > 0.05). The present results compared to previous ones from 2008 indicates an increase in the concentrations during the 2010 study, but only the differences for pp'DDE and op'DDT were statistically significant. The 2010 group of females was older compared to the 2008 group. The presence of organochlorine pesticide residues is still observed, indicating uniform and permanent exposure to the pesticides by Puebla inhabitants.

  19. Sexual Dimorphism in Clock Genes Expression in Human Adipose Tissue

    PubMed Central

    Gómez-Abellán, P.; Madrid, J. A.; Luján, J. A.; Frutos, M. D.; González, R.; Martínez-Augustín, O.; de Medina, F. Sánchez; Ordovás, J. M.; Garaulet, M.

    2015-01-01

    Background This study was carried out to investigate whether sex-related differences exist in the adipocyte expression of clock genes from subcutaneous abdominal and visceral fat depots in severely obese patients. Methods We investigated 16 morbidly obese patients, eight men and eight women (mean age 45±20 years; mean BMI 46±6 kg/m2), undergoing laparoscopic gastric bypass surgery. Biopsies were taken as paired samples [subcutaneous and visceral adipose tissue (AT)] at the beginning of the surgical process at 11:00 h in the morning. Metabolic syndrome features such as waist circumference, plasma glucose, triglycerides, total cholesterol, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were also studied. The expression of clock genes (PER2, BMAL1, and CRY1) was measured by quantitative real-time PCR, Western blot, and immunohistochemical analysis. Results Gene expression was significantly higher in women than in men for the three genes studied in both ATs (P<0.05). In visceral fat, these differences were more marked. (P<0.001). Western blot analysis partially confirmed these results since statistical differences were observed for PER2 in both ATs and for CRY1 in subcutaneous adipose tissue. There were no differences in BMAL1 protein expression. Interestingly, clock gene expression level was correlated with LDL-C and HDL-C (P<0.05). Moreover, we found significant associations with body fat mass in women and with age in men. Conclusions Clock genes expression is sex dependent in human adipose tissue from morbidly obese subjects and correlates to a decreased in metabolic syndrome-related traits. These preliminary results make necessary to go deep into the knowledge of the molecular basis of the sexual dimorphism in chronobiology. PMID:22081238

  20. Divergent phenotype of rat thoracic and abdominal perivascular adipose tissues

    PubMed Central

    Jenkins, Nathan T.; Vieira-Potter, Victoria J.; Laughlin, M. Harold

    2013-01-01

    Perivascular adipose tissue (PVAT) is implicated as a source of proatherogenic cytokines. Phenotypic differences in local PVAT depots may contribute to differences in disease susceptibility among arteries and even regions within an artery. It has been proposed that PVAT around the abdominal and thoracic aorta shares characteristics of white and brown adipose tissue (BAT), respectively; however, a detailed comparison of the phenotype of these PVAT depots has not been performed. Using young and older adult rats, we compared the phenotype of PVATs surrounding the abdominal and thoracic aorta to each other and also to epididymal white and subscapular BAT. Compared with young rats, older rats exhibited greater percent body fat (34.5 ± 3.1 vs. 10.4 ± 0.9%), total cholesterol (112.2 ± 7.5 vs. 58.7 ± 6.3 mg/dl), HOMA-insulin resistance (1.7 ± 0.1 vs. 0.9 ± 0.1 a.u.), as well as reduced ACh-induced relaxation of the aorta (maximal relaxation: 54 ± 10 vs. 77 ± 6%) (all P < 0.05). Expression of inflammatory genes and markers of immune cell infiltration were greater in abdominal PVAT than in thoracic PVAT, and overall, abdominal and thoracic PVATs resembled the phenotype of white adipose tissue (WAT) and BAT, respectively. Histology and electron microscopy indicated structural similarity between visceral WAT and abdominal PVAT and between BAT and thoracic PVAT. Our data provide evidence that abdominal PVAT is more inflamed than thoracic PVAT, a difference that was by and large independent of sedentary aging. Phenotypic differences in PVAT between regions of the aorta may be relevant in light of the evidence in large animals and humans that the abdominal aorta is more vulnerable to atherosclerosis than the thoracic aorta. PMID:23389108

  1. Adipose tissue and adipocytes support tumorigenesis and metastasis.

    PubMed

    Nieman, Kristin M; Romero, Iris L; Van Houten, Bennett; Lengyel, Ernst

    2013-10-01

    Adipose tissue influences tumor development in two major ways. First, obese individuals have a higher risk of developing certain cancers (endometrial, esophageal, and renal cell cancer). However, the risk of developing other cancers (melanoma, rectal, and ovarian) is not altered by body mass. In obesity, hypertrophied adipose tissue depots are characterized by a state of low grade inflammation. In this activated state, adipocytes and inflammatory cells secrete adipokines and cytokines which are known to promote tumor development. In addition, the adipocyte mediated conversion of androgens to estrogen specifically contributes to the development of endometrial cancer, which shows the greatest relative risk (6.3-fold) increase between lean and obese individuals. Second, many tumor types (gastric, breast, colon, renal, and ovarian) grow in the anatomical vicinity of adipose tissue. During their interaction with cancer cells, adipocytes dedifferentiate into pre-adipocytes or are reprogrammed into cancer-associated adipocytes (CAA). CAA secrete adipokines which stimulate the adhesion, migration, and invasion of tumor cells. Cancer cells and CAA also engage in a dynamic exchange of metabolites. Specifically, CAA release fatty acids through lipolysis which are then transferred to cancer cells and used for energy production through β-oxidation. The abundant availability of lipids from adipocytes in the tumor microenvironment, supports tumor progression and uncontrolled growth. Given that adipocytes are a major source of adipokines and energy for the cancer cell, understanding the mechanisms of metabolic symbiosis between cancer cells and adipocytes, should reveal new therapeutic possibilities. This article is part of a Special Issue entitled Lipid Metabolism in Cancer. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Epicardial adipose tissue thickness in type 1 diabetic patients.

    PubMed

    Yazıcı, Dilek; Özben, Beste; Yavuz, Dilek; Deyneli, Oğuzhan; Aydın, Hasan; Tarcin, Özlem; Akalın, Sema

    2011-10-01

    Insulin resistance is getting important in the course of type 1 diabetes mellitus. Visceral fat depot is associated with insulin resistance and assessment of epicardial fat thickness is a way of measuring visceral fat. The aim of the study was to measure epicardial adipose tissue (EAT) thickness and to determine its relationship with waist-hip-ratio (WHR) and estimated glucose disposal rate (eGDR) in adult type 1 diabetic patients. Thirty-six type 1 diabetic patients (aged 31±8 years; Female/Male: 22/14) and 43 age, gender and BMI matched healthy controls were included. Fasting blood glucose (FBG), hemoglobin A1c, and lipid profiles were measured. Waist-hip-ratio (WHR) was calculated. Daily insulin dose/kg of patients were recorded and eGDR of all subjects was calculated. Epicardial adipose tissue (EAT) thickness was evaluated by echocardiography. EAT thickness of the type 1 diabetic patients was significantly higher than controls (3.30±1.06 vs. 2.30±0.34 mm, P<0.0001). EAT thickness was correlated with age (P=0.05; r=0.35), WHR (P=0.003; r=0.67), daily insulin dose/kg (r=0.45, P=0.005), and eGDR (r=-0.55, P=0.0004). Multivariate analysis revealed WHR and eGDR to be related to EAT among age, WHR, daily insulin dose/kg, eGDR, FBG, and hemoglobin A1c (r2 of the model=0.64). Epicardial adipose tissue thickness is increased in type 1 diabetic patients compared to controls and is related to WHR and eGDR in this group of patients. This measurement may point to the presence of insulin resistance in type 1 diabetic patients.

  3. Laminin α4 Deficient Mice Exhibit Decreased Capacity for Adipose Tissue Expansion and Weight Gain

    PubMed Central

    Movérare-Skrtic, Sofia; Kortesmaa, Jarkko; Soininen, Raija; Bergström, Göran; Ohlsson, Claes; Chong, Li Yen; Rozell, Björn; Emont, Margo; Cohen, Ronald N.; Brey, Eric M.; Tryggvason, Karl

    2014-01-01

    Obesity is a global epidemic that contributes to the increasing medical burdens related to type 2 diabetes, cardiovascular disease and cancer. A better understanding of the mechanisms regulating adipose tissue expansion could lead to therapeutics that eliminate or reduce obesity-associated morbidity and mortality. The extracellular matrix (ECM) has been shown to regulate the development and function of numerous tissues and organs. However, there is little understanding of its function in adipose tissue. In this manuscript we describe the role of laminin α4, a specialized ECM protein surrounding adipocytes, on weight gain and adipose tissue function. Adipose tissue accumulation, lipogenesis, and structure were examined in mice with a null mutation of the laminin α4 gene (Lama4−/−) and compared to wild-type (Lama4+/+) control animals. Lama4−/− mice exhibited reduced weight gain in response to both age and high fat diet. Interestingly, the mice had decreased adipose tissue mass and altered lipogenesis in a depot-specific manner. In particular, epididymal adipose tissue mass was specifically decreased in knock-out mice, and there was also a defect in lipogenesis in this depot as well. In contrast, no such differences were observed in subcutaneous adipose tissue at 14 weeks. The results suggest that laminin α4 influences adipose tissue structure and function in a depot-specific manner. Alterations in laminin composition offers insight into the roll the ECM potentially plays in modulating cellular behavior in adipose tissue expansion. PMID:25310607

  4. Iron homeostasis: a new job for macrophages in adipose tissue?

    PubMed Central

    Hubler, Merla J.; Peterson, Kristin R.; Hasty, Alyssa H.

    2015-01-01

    Elevated serum ferritin and increased cellular iron concentrations are risk factors for diabetes; however, the etiology of this association is unclear. Metabolic tissues such as pancreas, liver, and adipose tissue (AT), as well as the immune cells resident in these tissues, may be involved. Recent studies demonstrate that the polarization status of macrophages has important relevance to their iron handling capabilities. Furthermore, a subset of macrophages in AT have elevated iron concentrations and a gene expression profile indicative of iron handling, a capacity diminished in obesity. Because iron overload in adipocytes increases systemic insulin resistance, iron handling by AT macrophages may have relevance not only to adipocyte iron stores but also to local and systemic insulin sensitivity. PMID:25600948

  5. Subcutaneous adipose tissue thickness alters cooling time during cryotherapy.

    PubMed

    Otte, Jeffrey W; Merrick, Mark A; Ingersoll, Christopher D; Cordova, Mitchell L

    2002-11-01

    To determine if differing subcutaneous adipose thickness alters the treatment duration required to produce a standard cooling effect during cryotherapy. A 4-group, between-groups comparison in which the independent variable was skinfold thickness (0-10mm, 11-20mm, 21-30mm, 31-40mm) and the dependent variable was cooling time, defined as the treatment duration required to decrease intramuscular (IM) temperature 7 degrees C from baseline. A sports injury research laboratory. Forty-seven volunteers with anterior thigh skinfold measurement of less than 40mm. Topical cryotherapy (750g crushed-ice bag) to the anterior thigh to produce a typical cooling effect, defined as IM temperature at 1cm subadipose declining by 7 degrees C. Cryotherapy treatment duration required to produce a standardized cooling effect in subjects with differing subcutaneous adipose thickness. Analysis of variance revealed that mean time to cool IM tissues by 7 degrees C differed across all groups, with cooling time increasing as adipose thickness increased. The mean +/- standard deviation cooling times were as follows: 31-40mm (58.6+/-11.7min), 21-30mm (37.8+/-9.6min), 11-20mm (23.3+/-6.7min), and 0-10mm (8.0+/-3.4min). During cold application, there is a clinically important direct relationship between adipose thickness and required cooling time. This relationship necessitates dramatic adjustments to cryotherapy duration to produce similar IM temperature changes. A 25-minute treatment may be adequate for a patient with a skinfold of 20mm or less; however, a 40-minute application is required to produce similar results in a patients with skinfolds between 21 and 30mm, whereas a 60-minute application is required for patients with skinfolds of 30 to 40mm. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  6. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue

    PubMed Central

    Schafer, Marissa J.; White, Thomas A.; Evans, Glenda; Tonne, Jason M.; Verzosa, Grace C.; Stout, Michael B.; Mazula, Daniel L.; Palmer, Allyson K.; Baker, Darren J.; Jensen, Michael D.; Torbenson, Michael S.; Miller, Jordan D.; Ikeda, Yasuhiro; Tchkonia, Tamara; van Deursen, Jan M.; Kirkland, James L.

    2016-01-01

    Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the hypothesis that exercise prevents premature senescent cell accumulation and systemic metabolic dysfunction induced by a fast-food diet (FFD). Using transgenic mice that express EGFP in response to activation of the senescence-associated p16INK4a promoter, we demonstrate that FFD consumption causes deleterious changes in body weight and composition as well as in measures of physical, cardiac, and metabolic health. The harmful effects of the FFD were associated with dramatic increases in several markers of senescence, including p16, EGFP, senescence-associated β-galactosidase, and the senescence-associated secretory phenotype (SASP) specifically in visceral adipose tissue. We show that exercise prevents the accumulation of senescent cells and the expression of the SASP while nullifying the damaging effects of the FFD on parameters of health. We also demonstrate that exercise initiated after long-term FFD feeding reduces senescent phenotype markers in visceral adipose tissue while attenuating physical impairments, suggesting that exercise may provide restorative benefit by mitigating accrued senescent burden. These findings highlight a novel mechanism by which exercise mediates its beneficial effects and reinforces the effect of modifiable lifestyle choices on health span. PMID:26983960

  7. Hepatic ANGPTL3 regulates adipose tissue energy homeostasis

    PubMed Central

    Wang, Yan; McNutt, Markey C.; Banfi, Serena; Levin, Michael G.; Holland, William L.; Gusarova, Viktoria; Gromada, Jesper; Cohen, Jonathan C.; Hobbs, Helen H.

    2015-01-01

    Angiopoietin-like protein 3 (ANGPTL3) is a circulating inhibitor of lipoprotein and endothelial lipase whose physiological function has remained obscure. Here we show that ANGPTL3 plays a major role in promoting uptake of circulating very low density lipoprotein-triglycerides (VLDL-TGs) into white adipose tissue (WAT) rather than oxidative tissues (skeletal muscle, heart brown adipose tissue) in the fed state. This conclusion emerged from studies of Angptl3−/− mice. Whereas feeding increased VLDL-TG uptake into WAT eightfold in wild-type mice, no increase occurred in fed Angptl3−/− animals. Despite the reduction in delivery to and retention of TG in WAT, fat mass was largely preserved by a compensatory increase in de novo lipogenesis in Angptl3−/− mice. Glucose uptake into WAT was increased 10-fold in KO mice, and tracer studies revealed increased conversion of glucose to fatty acids in WAT but not liver. It is likely that the increased uptake of glucose into WAT explains the increased insulin sensitivity associated with inactivation of ANGPTL3. The beneficial effects of ANGPTL3 deficiency on both glucose and lipoprotein metabolism make it an attractive therapeutic target. PMID:26305978

  8. Genetics-based manipulation of adipose tissue sympathetic innervation.

    PubMed

    François, Marie; Qualls-Creekmore, Emily; Berthoud, Hans-Rudolf; Münzberg, Heike; Yu, Sangho

    2017-08-28

    There is renewed interest in leveraging the thermogenic capacity of brown adipose tissue (BAT) and browning of white adipose tissue (WAT) to improve energy balance and prevent obesity. In addition to these effects on energy expenditure, both BAT and WAT secrete large numbers of hormones and cytokines that play important roles in maintaining metabolic health. Both BAT and WAT are densely innervated by the sympathetic nervous system (SNS) and this innervation is crucial for BAT thermogenesis and WAT browning, making it a potentially interesting target for manipulating energy balance and treatment of obesity and metabolic disease. Peripheral neuromodulation in the form of electrical manipulation of the SNS and parasympathetic nervous system (PSNS) has been used for the management of pain and many other conditions, but progress is hampered by lack of detailed knowledge of function-specific neurons and nerves innervating particular organs and tissues. Therefore, the goal of the National Institutes of Health (NIH) Common Fund project "Stimulating Peripheral Activity to Relieve Conditions (SPARC)" is to comprehensively map both anatomical and neurochemical aspects of the peripheral nervous system in animal model systems to ultimately guide optimal neuromodulation strategies in humans. Compared to electrical manipulation, neuron-specific opto- and chemogenetic manipulation, now being extensively used to decode the function of brain circuits, will further increase the functional specificity of peripheral neuromodulation. Copyright © 2017. Published by Elsevier Inc.

  9. Non-sympathetic control of brown adipose tissue.

    PubMed

    Cereijo, R; Villarroya, J; Villarroya, F

    2015-08-01

    The thermogenic activity of brown adipose tissue (BAT) in the organism is tightly regulated through different processes, from short-term induction of uncoupling protein-1-mediated mitochondrial proton conductance to complex processes of BAT recruitment, and appearance of the beige/brite adipocytes in white adipose tissue (WAT), the so-called browning process. The sympathetic nervous system is classically recognized as the main mediator of BAT activation. However, novel factors capable of activating BAT through non-sympathetic mechanisms have been recently identified. Among them are members of the bone morphogenetic protein family, with likely autocrine actions, and activators of nuclear hormone receptors, especially vitamin A derivatives. Multiple endocrine factors released by peripheral tissues that act on BAT have also been identified. Some are natriuretic peptides of cardiac origin, whereas others include irisin, originating in skeletal muscle, and fibroblast growth factor-21, mainly produced in the liver. These factors have cell-autonomous effects in brown adipocytes, but indirect effects in vivo that modulate sympathetic activity toward BAT cannot be excluded. Moreover, these factors can affect to different extents such as the activation of existing BAT, the induction of browning in WAT or both. The identification of non-sympathetic controllers of BAT activity is of special biomedical interest as a prerequisite for developing pharmacological tools that influence BAT activity without the side effects of sympathomimetics.

  10. Direct effects of leptin on brown and white adipose tissue.

    PubMed

    Siegrist-Kaiser, C A; Pauli, V; Juge-Aubry, C E; Boss, O; Pernin, A; Chin, W W; Cusin, I; Rohner-Jeanrenaud, F; Burger, A G; Zapf, J; Meier, C A

    1997-12-01

    Leptin is thought to exert its actions on energy homeostasis through the long form of the leptin receptor (OB-Rb), which is present in the hypothalamus and in certain peripheral organs, including adipose tissue. In this study, we examined whether leptin has direct effects on the function of brown and white adipose tissue (BAT and WAT, respectively) at the metabolic and molecular levels. The chronic peripheral intravenous administration of leptin in vivo for 4 d resulted in a 1.6-fold increase in the in vivo glucose utilization index of BAT, whereas no significant change was found after intracerebroventricular administration compared with pair-fed control rats, compatible with a direct effect of leptin on BAT. The effect of leptin on WAT fat pads from lean Zucker Fa/ fa rats was assessed ex vivo, where a 9- and 16-fold increase in the rate of lipolysis was observed after 2 h of exposure to 0.1 and 10 nM leptin, respectively. In contrast, no increase in lipolysis was observed in the fat pads from obese fa/fa rats, which harbor an inactivating mutation in the OB-Rb. At the level of gene expression, leptin treatment for 24 h increased malic enzyme and lipoprotein lipase RNA 1.8+/-0.17 and 1.9+/-0.14-fold, respectively, while aP2 mRNA levels were unaltered in primary cultures of brown adipocytes from lean Fa/fa rats. Importantly, however, no significant effect of leptin was observed on these genes in brown adipocytes from obese fa/fa animals. The presence of OB-Rb receptors in adipose tissue was substantiated by the detection of its transcripts by RT-PCR, and leptin treatment in vivo and in vitro activated the specific STATs implicated in the signaling pathway of the OB-Rb. Taken together, our data strongly suggest that leptin has direct effects on BAT and WAT, resulting in the activation of the Jak/STAT pathway and the increased expression of certain target genes, which may partially account for the observed increase in glucose utilization and lipolysis in leptin

  11. Direct effects of leptin on brown and white adipose tissue.

    PubMed Central

    Siegrist-Kaiser, C A; Pauli, V; Juge-Aubry, C E; Boss, O; Pernin, A; Chin, W W; Cusin, I; Rohner-Jeanrenaud, F; Burger, A G; Zapf, J; Meier, C A

    1997-01-01

    Leptin is thought to exert its actions on energy homeostasis through the long form of the leptin receptor (OB-Rb), which is present in the hypothalamus and in certain peripheral organs, including adipose tissue. In this study, we examined whether leptin has direct effects on the function of brown and white adipose tissue (BAT and WAT, respectively) at the metabolic and molecular levels. The chronic peripheral intravenous administration of leptin in vivo for 4 d resulted in a 1.6-fold increase in the in vivo glucose utilization index of BAT, whereas no significant change was found after intracerebroventricular administration compared with pair-fed control rats, compatible with a direct effect of leptin on BAT. The effect of leptin on WAT fat pads from lean Zucker Fa/ fa rats was assessed ex vivo, where a 9- and 16-fold increase in the rate of lipolysis was observed after 2 h of exposure to 0.1 and 10 nM leptin, respectively. In contrast, no increase in lipolysis was observed in the fat pads from obese fa/fa rats, which harbor an inactivating mutation in the OB-Rb. At the level of gene expression, leptin treatment for 24 h increased malic enzyme and lipoprotein lipase RNA 1.8+/-0.17 and 1.9+/-0.14-fold, respectively, while aP2 mRNA levels were unaltered in primary cultures of brown adipocytes from lean Fa/fa rats. Importantly, however, no significant effect of leptin was observed on these genes in brown adipocytes from obese fa/fa animals. The presence of OB-Rb receptors in adipose tissue was substantiated by the detection of its transcripts by RT-PCR, and leptin treatment in vivo and in vitro activated the specific STATs implicated in the signaling pathway of the OB-Rb. Taken together, our data strongly suggest that leptin has direct effects on BAT and WAT, resulting in the activation of the Jak/STAT pathway and the increased expression of certain target genes, which may partially account for the observed increase in glucose utilization and lipolysis in leptin

  12. Observations on Preadipocytes and Their Distribution Patterns in Rat Adipose Tissue

    DTIC Science & Technology

    1981-01-01

    enzyme lipoprotein lipase (Hietanen and viously (Stiles et al., 󈨏) in rat adipose tissue Greenwood, 󈨑). Exercise training initiated and suggest that...Huston, C.G. Plopper, and A.L. Hecker increased hormone sensitivity during in vitro adipocyte (1975) Adipose tissue cellularity and lipolysis : Response to... adipose tissue developing into adipocytes. J. Usuku, G., K. Iyama, and K. Ohzono (1978) Ultrastructural Lipid Res., 19: 316-324. studies on the white

  13. Adipose tissue and metabolic syndrome: too much, too little or neither.

    PubMed

    Grundy, Scott M

    2015-11-01

    Obesity is strongly associated with metabolic syndrome. Recent research suggests that excess adipose tissue plays an important role in development of the syndrome. On the other hand, persons with a deficiency of adipose tissue (e.g. lipodystrophy) also manifest the metabolic syndrome. In some animal models, expansion of adipose tissue pools mitigates adverse metabolic components (e.g. insulin resistance, hyperglycaemia and dyslipidemia). Hence, there are conflicting data as to whether adipose tissue worsens the metabolic syndrome or protects against it. This conflict may relate partly to locations of adipose tissue pools. For instance, lower body adipose tissue may be protective whereas upper body adipose tissue may promote the syndrome. One view holds that in either case, the accumulation of ectopic fat in muscle and liver is the driving factor underlying the syndrome. If so, there may be some link between adipose tissue fat and ectopic fat. But the mechanisms underlying this connection are not clear. A stronger association appears to exist between excessive caloric intake and ectopic fat accumulation. Adipose tissue may act as a buffer to reduce the impact of excess energy consumption by fat storage; but once a constant weight has been achieved, it is unclear whether adipose tissue influences levels of ectopic fat. Another mechanism whereby adipose tissue could worsen the metabolic syndrome is through release of adipokines. This is an intriguing mechanism, but the impact of adipokines on metabolic syndrome risk factors is uncertain. Thus, many potential connections between adipose tissue and metabolic syndrome remain to unravelled. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  14. TRPV1 Involvement in Inflammatory Tissue Fibrosis in Mice

    PubMed Central

    Okada, Yuka; Reinach, Peter S.; Shirai, Kumi; Kitano, Ai; Kao, Winston W.-Y.; Flanders, Kathleen C.; Miyajima, Masayasu; Liu, Hongshan; Zhang, Jianhua; Saika, Shizuya

    2011-01-01

    We examined whether absence or blocking of transient receptor potential vanilloid subtype 1 (TRPV1) affects the level of inflammation and fibrosis/scarring during healing of injured tissue using an alkali burn model of cornea in mice. A cornea burn was produced with 1 N NaOH instilled into one eye of TRPV1−/− (KO) (n = 88) or TRPV1+/+ (n = 94) mice. Examinations of the corneal surface and eye globe size suggested that the loss of TRPV1 suppressed inflammation and fibrosis/scarring after alkali burn, and this was confirmed by histology, IHC, and gene expression analysis. The loss of TRPV1 inhibited inflammatory cell invasion and myofibroblast generation in association with reduction of expression of proinflammatory and profibrogenic components. Experiments of bone marrow transplantation between either genotype of mice showed that KO corneal tissue resident cells, but not KO bone marrow–derived cells, are responsible for KO-type wound healing with reduced inflammation and fibrosis. The absence of TRPV1 attenuated expression of transforming growth factor β 1 (TGFβ1) and other proinflammatory gene expression in cultured ocular fibroblasts, but did not affect TGFβ1 expression in macrophages. Loss of TRPV1 inhibited myofibroblast transdifferentiation in cultured fibroblasts. Systemic TRPV1 antagonists reproduced the KO type of healing. In conclusion, absence or blocking of TRPV1 suppressed inflammation and fibrosis/scarring during healing of alkali-burned mouse cornea. TRPV1 is a potential drug target for improving the outcome of inflammatory/fibrogenic wound healing. PMID:21641388

  15. A chromatin immunoprecipitation (ChIP) protocol for use in whole human adipose tissue.

    PubMed

    Haim, Yulia; Tarnovscki, Tanya; Bashari, Dana; Rudich, Assaf

    2013-11-01

    Chromatin immunoprecipitation (ChIP) has become a central method when studying in vivo protein-DNA interactions, with the major challenge being the hope to capture "authentic" interactions. While ChIP protocols have been optimized for use with specific cell types and tissues including adipose tissue-derived cells, a working ChIP protocol addressing the challenges imposed by fresh whole human adipose tissue has not been described. Utilizing human paired omental and subcutaneous adipose tissue obtained during elective abdominal surgeries, we have carefully identified and optimized individual steps in the ChIP protocol employed directly on fresh tissue fragments. We describe a complete working protocol for using ChIP on whole adipose tissue fragments. Specific steps required adaptation of the ChIP protocol to human whole adipose tissue. In particular, a cross-linking step was performed directly on fresh small tissue fragments. Nuclei were isolated before releasing chromatin, allowing better management of fat content; a sonication protocol to obtain fragmented chromatin was optimized. We also demonstrate the high sensitivity of immunoprecipitated chromatin from adipose tissue to freezing. In conclusion, we describe the development of a ChIP protocol optimized for use in studying whole human adipose tissue, providing solutions for the unique challenges imposed by this tissue. Unraveling protein-DNA interaction in whole human adipose tissue will likely contribute to elucidating molecular pathways contributing to common human diseases such as obesity and type 2 diabetes.

  16. Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues.

    PubMed

    Ramseyer, Vanesa D; Granneman, James G

    2016-01-01

    The discovery of brown adipose tissue in adult humans along with the recognition of adipocyte heterogeneity and plasticity of white fat depots has renewed the interest in targeting adipose tissue for therapeutic benefit. Adrenergic activation is a well-established means of recruiting catabolic adipocyte phenotypes in brown and white adipose tissues. In this article, we review mechanisms of brown adipocyte recruitment by the sympathetic nervous system and by direct β-adrenergic receptor activation. We highlight the distinct modes of brown adipocyte recruitment in brown, beige/brite, and white adipose tissues, UCP1-independent thermogenesis, and potential non-thermogenic, metabolically beneficial effects of brown adipocytes.

  17. Adipose tissue chromium and vanadium disbalance in high-fat fed Wistar rats.

    PubMed

    Tinkov, Alexey A; Popova, Elizaveta V; Polyakova, Valentina S; Kwan, Olga V; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-01-01

    The primary objective of the current study is to investigate the relationship between adipose tissue chromium and vanadium content and adipose tissue dysfunction in a model of diet-induced obesity. A total of 26 female Wistar rats were fed either standard or high-fat diet (31.6% of fat from total caloric content) for 3 months. High-fat-feeding resulted in 21 and 33% decrease in adipose tissue chromium and vanadium content, respectively. No change was seen in hair chromium or vanadium levels. Statistical analysis revealed a significant inverse correlation of adipose tissue Cr and V with animal morphometric parameters and adipocyte size. Significant inverse dependence was observed between adipose tissue Cr and V and serum leptin and proinflammatory cytokines' levels. At the same time, adipose tissue Cr and V levels were characterized by positive correlation between serum adiponectin and adiponectin/leptin ratio. Adipose tissue Cr and V were inversely correlated (p<0.05) with insulin and homeostatic model assessment insulin resistance index (HOMA-IR) levels. Cr and V concentrations were not correlated with serum glucose in either high-fat fed or control rats; however, both serum glucose and HOMA-IR levels were significantly higher in high-fat fed, compared to control, rats. The results allow to hypothesize that impairment of adipose tissue Cr and V content plays a certain role in the development of adipose tissue endocrine dysfunction in obesity.

  18. Acute Hypercortisolemia Exerts Depot-Specific Effects on Abdominal and Femoral Adipose Tissue Function.

    PubMed

    Manolopoulos, Konstantinos N; O'Reilly, Michael W; Bujalska, Iwona J; Tomlinson, Jeremy W; Arlt, Wiebke

    2017-04-01

    Glucocorticoids have pleiotropic metabolic functions, and acute glucocorticoid excess affects fatty acid metabolism, increasing systemic lipolysis. Whether glucocorticoids exert adipose tissue depot-specific effects remains unclear. To provide an in vivo assessment of femoral and abdominal adipose tissue responses to acute glucocorticoid administration. Nine healthy male volunteers were studied on two occasions, after a hydrocortisone infusion (0.2 mg/kg/min for 14 hours) and a saline infusion, respectively, given in randomized double-blind order. The subjects were studied in the fasting state and after a 75-g glucose drink with an in vivo assessment of femoral adipose tissue blood flow (ATBF) using radioactive xenon washout and of lipolysis and glucose uptake using the arteriovenous difference technique. In a separate study (same infusion design), eight additional healthy male subjects underwent assessment of fasting abdominal ATBF and lipolysis only. Lipolysis was assessed as the net release of nonesterified fatty acids (NEFAs) from femoral and abdominal subcutaneous adipose tissue. Acute hypercortisolemia significantly increased basal and postprandial ATBF in femoral adipose tissue, but the femoral net NEFA release did not change. In abdominal adipose tissue, hypercortisolemia induced substantial increases in basal ATBF and NEFA release. Acute hypercortisolemia induces differential lipolysis and ATBF responses in abdominal and femoral adipose tissue, suggesting depot-specific glucocorticoid effects. Abdominal, but not femoral, adipose tissue contributes to the hypercortisolemia-induced systemic NEFA increase, with likely contributions from other adipose tissue sources and intravascular triglyceride hydrolysis.

  19. Serially Transplanted Nonpericytic CD146(-) Adipose Stromal/Stem Cells in Silk Bioscaffolds Regenerate Adipose Tissue In Vivo.

    PubMed

    Frazier, Trivia P; Bowles, Annie; Lee, Stephen; Abbott, Rosalyn; Tucker, Hugh A; Kaplan, David; Wang, Mei; Strong, Amy; Brown, Quincy; He, Jibao; Bunnell, Bruce A; Gimble, Jeffrey M

    2016-04-01

    Progenitors derived from the stromal vascular fraction (SVF) of white adipose tissue (WAT) possess the ability to form clonal populations and differentiate along multiple lineage pathways. However, the literature continues to vacillate between defining adipocyte progenitors as "stromal" or "stem" cells. Recent studies have demonstrated that a nonpericytic subpopulation of adipose stromal cells, which possess the phenotype, CD45(-) /CD31(-) /CD146(-) /CD34(+) , are mesenchymal, and suggest this may be an endogenous progenitor subpopulation within adipose tissue. We hypothesized that an adipose progenitor could be sorted based on the expression of CD146, CD34, and/or CD29 and when implanted in vivo these cells can persist, proliferate, and regenerate a functional fat pad over serial transplants. SVF cells and culture expanded adipose stromal/stem cells (ASC) ubiquitously expressing the green fluorescent protein transgene (GFP-Tg) were fractionated by flow cytometry. Both freshly isolated SVF and culture expanded ASC were seeded in three-dimensional silk scaffolds, implanted subcutaneously in wild-type hosts, and serially transplanted. Six-week WAT constructs were removed and evaluated for the presence of GFP-Tg adipocytes and stem cells. Flow cytometry, quantitative polymerase chain reaction, and confocal microscopy demonstrated GFP-Tg cell persistence, proliferation, and expansion, respectively. Glycerol secretion and glucose uptake assays revealed GFP-Tg adipose was metabolically functional. Constructs seeded with GFP-Tg SVF cells or GFP-Tg ASC exhibited higher SVF yields from digested tissue, and higher construct weights, compared to nonseeded controls. Constructs derived from CD146(-) CD34(+) -enriched GFP-Tg ASC populations exhibited higher hemoglobin saturation, and higher frequency of GFP-Tg cells than unsorted or CD29(+) GFP-Tg ASC counterparts. These data demonstrated successful serial transplantation of nonpericytic adipose-derived progenitors that can

  20. Impaired Mitochondrial Biogenesis in Adipose Tissue in Acquired Obesity.

    PubMed

    Heinonen, Sini; Buzkova, Jana; Muniandy, Maheswary; Kaksonen, Risto; Ollikainen, Miina; Ismail, Khadeeja; Hakkarainen, Antti; Lundbom, Jesse; Lundbom, Nina; Vuolteenaho, Katriina; Moilanen, Eeva; Kaprio, Jaakko; Rissanen, Aila; Suomalainen, Anu; Pietiläinen, Kirsi H

    2015-09-01

    Low mitochondrial number and activity have been suggested as underlying factors in obesity, type 2 diabetes, and metabolic syndrome. However, the stage at which mitochondrial dysfunction manifests in adipose tissue after the onset of obesity remains unknown. Here we examined subcutaneous adipose tissue (SAT) samples from healthy monozygotic twin pairs, 22.8-36.2 years of age, who were discordant (ΔBMI >3 kg/m(2), mean length of discordance 6.3 ± 0.3 years, n = 26) and concordant (ΔBMI <3 kg/m(2), n = 14) for body weight, and assessed their detailed mitochondrial metabolic characteristics: mitochondrial-related transcriptomes with dysregulated pathways, mitochondrial DNA (mtDNA) amount, mtDNA-encoded transcripts, and mitochondrial oxidative phosphorylation (OXPHOS) protein levels. We report global expressional downregulation of mitochondrial oxidative pathways with concomitant downregulation of mtDNA amount, mtDNA-dependent translation system, and protein levels of the OXPHOS machinery in the obese compared with the lean co-twins. Pathway analysis indicated downshifting of fatty acid oxidation, ketone body production and breakdown, and the tricarboxylic acid cycle, which inversely correlated with adiposity, insulin resistance, and inflammatory cytokines. Our results suggest that mitochondrial biogenesis, oxidative metabolic pathways, and OXPHOS proteins in SAT are downregulated in acquired obesity, and are associated with metabolic disturbances already at the preclinical stage. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  1. Adipose Tissue-Derived Stem Cells in Regenerative Medicine.

    PubMed

    Frese, Laura; Dijkman, Petra E; Hoerstrup, Simon P

    2016-07-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.

  2. Decrease in FASN expression in adipose tissue of hypertensive individuals.

    PubMed

    Mayas, María D; Ortega, Francisco J; Gómez-Huelgas, Ricardo; Roca, Nuria; Fernández-Real, José M; Tinahones, Francisco J

    2009-12-01

    Fatty acid (FA) synthesis enzymes (FA synthase (FASN) and acetyl-CoA carboxylase (ACC)) are related to metabolic alterations such as obesity, insulin resistance, or dyslipidemia. Due to the fact that there is no literature that relates FASN and ACC expression with hypertension, we investigate how FASN and ACC expression in adipose tissue is related to hypertension. This study included 87 patients, undergoing laparoscopic surgery procedures after an overnight fast. These patients were classified according to hypertension levels into two groups, normotensive and hypertensive, with a wide range of body mass index (BMI) in order to measure gene expression levels of FASN and ACC and anthropometric and biochemical variables. The main result of this work is a significant decrease of FASN expression in adipose tissue of hypertensive vs. normotensive patients, and that FASN may predict systolic blood pressure (SBP) values by multiple regression analysis and there was also an inverse correlation between FASN expression and SBP. In conclusion, to our knowledge it has been proven, for the first time, that there is a decrease of FASN expression in hypertensive individuals. The clinical significance of this work represents an exciting challenge because it would need to be clarified whether the reduced values of FASN expression may be associated with hypertension or whether this is an adaptive mechanism to the presence of hypertension. Once this aspect is clarified, it could be a new target for the treatment of hypertension.

  3. The Gq signalling pathway inhibits brown and beige adipose tissue

    PubMed Central

    Klepac, Katarina; Kilić, Ana; Gnad, Thorsten; Brown, Loren M.; Herrmann, Beate; Wilderman, Andrea; Balkow, Aileen; Glöde, Anja; Simon, Katharina; Lidell, Martin E.; Betz, Matthias J.; Enerbäck, Sven; Wess, Jürgen; Freichel, Marc; Blüher, Matthias; König, Gabi; Kostenis, Evi; Insel, Paul A.; Pfeifer, Alexander

    2016-01-01

    Brown adipose tissue (BAT) dissipates nutritional energy as heat via the uncoupling protein-1 (UCP1) and BAT activity correlates with leanness in human adults. Here we profile G protein-coupled receptors (GPCRs) in brown adipocytes to identify druggable regulators of BAT. Twenty-one per cent of the GPCRs link to the Gq family, and inhibition of Gq signalling enhances differentiation of human and murine brown adipocytes. In contrast, activation of Gq signalling abrogates brown adipogenesis. We further identify the endothelin/Ednra pathway as an autocrine activator of Gq signalling in brown adipocytes. Expression of a constitutively active Gq protein in mice reduces UCP1 expression in BAT, whole-body energy expenditure and the number of brown-like/beige cells in white adipose tissue (WAT). Furthermore, expression of Gq in human WAT inversely correlates with UCP1 expression. Thus, our data indicate that Gq signalling regulates brown/beige adipocytes and inhibition of Gq signalling may be a novel therapeutic approach to combat obesity. PMID:26955961

  4. The Gq signalling pathway inhibits brown and beige adipose tissue.

    PubMed

    Klepac, Katarina; Kilić, Ana; Gnad, Thorsten; Brown, Loren M; Herrmann, Beate; Wilderman, Andrea; Balkow, Aileen; Glöde, Anja; Simon, Katharina; Lidell, Martin E; Betz, Matthias J; Enerbäck, Sven; Wess, Jürgen; Freichel, Marc; Blüher, Matthias; König, Gabi; Kostenis, Evi; Insel, Paul A; Pfeifer, Alexander

    2016-03-09

    Brown adipose tissue (BAT) dissipates nutritional energy as heat via the uncoupling protein-1 (UCP1) and BAT activity correlates with leanness in human adults. Here we profile G protein-coupled receptors (GPCRs) in brown adipocytes to identify druggable regulators of BAT. Twenty-one per cent of the GPCRs link to the Gq family, and inhibition of Gq signalling enhances differentiation of human and murine brown adipocytes. In contrast, activation of Gq signalling abrogates brown adipogenesis. We further identify the endothelin/Ednra pathway as an autocrine activator of Gq signalling in brown adipocytes. Expression of a constitutively active Gq protein in mice reduces UCP1 expression in BAT, whole-body energy expenditure and the number of brown-like/beige cells in white adipose tissue (WAT). Furthermore, expression of Gq in human WAT inversely correlates with UCP1 expression. Thus, our data indicate that Gq signalling regulates brown/beige adipocytes and inhibition of Gq signalling may be a novel therapeutic approach to combat obesity.

  5. Adipose Tissue-Derived Stem Cells in Regenerative Medicine

    PubMed Central

    Frese, Laura; Dijkman, Petra E.; Hoerstrup, Simon P.

    2016-01-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted. PMID:27721702

  6. Lipid storage by adipose tissue macrophages regulates systemic glucose tolerance

    PubMed Central

    Aouadi, Myriam; Vangala, Pranitha; Yawe, Joseph C.; Tencerova, Michaela; Nicoloro, Sarah M.; Cohen, Jessica L.; Shen, Yuefei

    2014-01-01

    Proinflammatory pathways in adipose tissue macrophages (ATMs) can impair glucose tolerance in obesity, but ATMs may also be beneficial as repositories for excess lipid that adipocytes are unable to store. To test this hypothesis, we selectively targeted visceral ATMs in obese mice with siRNA against lipoprotein lipase (LPL), leaving macrophages within other organs unaffected. Selective silencing of ATM LPL decreased foam cell formation in visceral adipose tissue of obese mice, consistent with a reduced supply of fatty acids from VLDL hydrolysis. Unexpectedly, silencing LPL also decreased the expression of genes involved in fatty acid uptake (CD36) and esterification in ATMs. This deficit in fatty acid uptake capacity was associated with increased circulating serum free fatty acids. Importantly, ATM LPL silencing also caused a marked increase in circulating fatty acid-binding protein-4, an adipocyte-derived lipid chaperone previously reported to induce liver insulin resistance and glucose intolerance. Consistent with this concept, obese mice with LPL-depleted ATMs exhibited higher hepatic glucose production from pyruvate and glucose intolerance. Silencing CD36 in ATMs also promoted glucose intolerance. Taken together, the data indicate that LPL secreted by ATMs enhances their ability to sequester excess lipid in obese mice, promoting systemic glucose tolerance. PMID:24986598

  7. Endogenous ways to stimulate brown adipose tissue in humans.

    PubMed

    Broeders, Evie; Bouvy, Nicole D; van Marken Lichtenbelt, Wouter D

    2015-03-01

    Obesity is the result of disequilibrium between energy intake and energy expenditure (EE). Successful long-term weight loss is difficult to achieve with current strategies for the correction of this caloric imbalance. Non-shivering thermogenesis (NST) in brown adipose tissue (BAT) is a possible therapeutic target for the prevention and treatment of obesity and associated metabolic diseases. In recent years, more knowledge about the function and stimulation of bat has been obtained. The sympathetic nervous system (SNS) is currently seen as the main effector for brown fat function. Also, interplay between the thyroid axis and SNS plays an important role in BAT thermogenesis. Almost daily new pathways for the induction of BAT thermogenesis and 'browning' of white adipose tissue (WAT) are identified. Especially the activation of BAT via endogenous pathways has received strong scientific attention. Here we will discuss the relevance of several pathways in activating BAT and their implications for the treatment of obesity. In this review we will focus on the discussion of the most promising endocrine and paracrine pathways to stimulate BAT, by factors and pathways that naturally occur in the human body.

  8. Characterization of stromal vascular fraction and adipose stem cells from subcutaneous, preperitoneal and visceral morbidly obese human adipose tissue depots

    PubMed Central

    Silva, Karina Ribeiro; Côrtes, Isis; Liechocki, Sally; Carneiro, João Regis Ivar; Souza, Antônio Augusto Peixoto; Borojevic, Radovan; Maya-Monteiro, Clarissa Menezes

    2017-01-01

    Background/Objectives The pathological condition of obesity is accompanied by a dysfunctional adipose tissue. We postulate that subcutaneous, preperitoneal and visceral obese abdominal white adipose tissue depots could have stromal vascular fractions (SVF) with distinct composition and adipose stem cells (ASC) that would differentially account for the pathogenesis of obesity. Methods In order to evaluate the distribution of SVF subpopulations, samples of subcutaneous, preperitoneal and visceral adipose tissues from morbidly obese women (n = 12, BMI: 46.2±5.1 kg/m2) were collected during bariatric surgery, enzymatically digested and analyzed by flow cytometry (n = 12). ASC from all depots were evaluated for morphology, surface expression, ability to accumulate lipid after induction and cytokine secretion (n = 3). Results A high content of preadipocytes was found in the SVF of subcutaneous depot (p = 0.0178). ASC from the three depots had similar fibroblastoid morphology with a homogeneous expression of CD34, CD146, CD105, CD73 and CD90. ASC from the visceral depot secreted the highest levels of IL-6, MCP-1 and G-CSF (p = 0.0278). Interestingly, preperitoneal ASC under lipid accumulation stimulus showed the lowest levels of all the secreted cytokines, except for adiponectin that was enhanced (p = 0.0278). Conclusions ASC from preperitoneal adipose tissue revealed the less pro-inflammatory properties, although it is an internal adipose depot. Conversely, ASC from visceral adipose tissue are the most pro-inflammatory. Therefore, ASC from subcutaneous, visceral and preperitoneal adipose depots could differentially contribute to the chronic inflammatory scenario of obesity. PMID:28323901

  9. New Adipose Tissue Formation by Human Adipose-Derived Stem Cells with Hyaluronic Acid Gel in Immunodeficient Mice

    PubMed Central

    Huang, Shu-Hung; Lin, Yun-Nan; Lee, Su-Shin; Chai, Chee-Yin; Chang, Hsueh-Wei; Lin, Tsai-Ming; Lai, Chung-Sheng; Lin, Sin-Daw

    2015-01-01

    Background: Currently available injectable fillers have demonstrated limited durability. This report proposes the in vitro culture of human adipose-derived stem cells (hASCs) on hyaluronic acid (HA) gel for in vivo growth of de novo adipose tissue. Methods: For in vitro studies, hASCs were isolated from human adipose tissue and were confirmed by multi-lineage differentiation and flow cytometry. hASCs were cultured on HA gel. The effectiveness of cell attachment and proliferation on HA gel was surveyed by inverted light microscopy. For in vivo studies, HA gel containing hASCs, hASCs without HA gel, HA gel alone were allocated and subcutaneously injected into the subcutaneous pocket in the back of nude mice (n=6) in each group. At eight weeks post-injection, the implants were harvested for histological examination by hematoxylin and eosin (H&E) stain, Oil-Red O stain and immunohistochemical staining. The human-specific Alu gene was examined. Results: hASCs were well attachment and proliferation on the HA gel. In vivo grafts showed well-organized new adipose tissue on the HA gel by histologic examination and Oil-Red O stain. Analysis of neo-adipose tissues by PCR revealed the presence of the Alu gene. This study demonstrated not only the successful culture of hASCs on HA gel, but also their full proliferation and differentiation into adipose tissue. Conclusions: The efficacy of injected filler could be permanent since the reduction of the volume of the HA gel after bioabsorption could be replaced by new adipose tissue generated by hASCs. This is a promising approach for developing long lasting soft tissue filler. PMID:25589892

  10. Encapsulation Thermogenic Preadipocytes for Transplantation into Adipose Tissue Depots

    PubMed Central

    Xu, Lu; Shen, Qiwen; Mao, Zhongqi; Lee, L. James; Ziouzenkova, Ouliana

    2015-01-01

    Cell encapsulation was developed to entrap viable cells within semi-permeable membranes. The engrafted encapsulated cells can exchange low molecular weight metabolites in tissues of the treated host to achieve long-term survival. The semipermeable membrane allows engrafted encapsulated cells to avoid rejection by the immune system. The encapsulation procedure was designed to enable a controlled release of bioactive compounds, such as insulin, other hormones, and cytokines. Here we describe a method for encapsulation of catabolic cells, which consume lipids for heat production and energy dissipation (thermogenesis) in the intra-abdominal adipose tissue of obese mice. Encapsulation of thermogenic catabolic cells may be potentially applicable to the prevention and treatment of obesity and type 2 diabetes. Another potential application of catabolic cells may include detoxification from alcohols or other toxic metabolites and environmental pollutants. PMID:26066392

  11. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  12. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  13. Examination of carnitine palmitoyl transferase 1 abundance in white adipose tissue: implications in obesity research.

    PubMed

    Warfel, Jaycob D; Vandanmagsar, Bolormaa; Dubuisson, Olga S; Hodgeson, Sydney M; Elks, Carrie M; Ravussin, Eric; Mynatt, Randall L

    2017-03-22

    Carnitine Palmitoyltransferase 1 (CPT1) is essential for the transport of long chain fatty acids into the mitochondria for oxidation. Recently, it was reported that decreased CPT1b mRNA in adipose tissue was a contributing factor for obesity in rats. We therefore closely examined the expression level of Cpt1 in adipose tissue from mice, rats, and humans. Cpt1a is the predominate isoform in adipose tissue from all three species. Rat white adipose tissue has a moderate amount of Cpt1b mRNA, but it is very minor compared to Cpt1b expression in muscle. Total CPT1 activity in adipose tissue is also minor relative to other tissues. Both Cpt1a and Cpt1b mRNA were increased in gonadal fat but not inguinal fat by diet-induced obesity in mice. We also measured CPT1a and CPT1b expression in subcutaneous adipose tissue from human subjects with a wide range of BMI. Interestingly, CPT1a expression positively correlated with BMI (R=0.46), but there was no correlation with CPT1b (R=0.04). Our findings indicate that white adipose tissue fatty acid oxidation capacity is minor compared to metabolically active tissues. Further, given the already low abundance of Cpt1b in white adipose tissue, it is unlikely that decreases in its expression can quantitatively decrease whole body energy expenditure enough to contribute to an obese phenotype.

  14. Retention of sedentary obese visceral white adipose tissue phenotype with intermittent physical activity despite reduced adiposity.

    PubMed

    Wainright, Katherine S; Fleming, Nicholas J; Rowles, Joe L; Welly, Rebecca J; Zidon, Terese M; Park, Young-Min; Gaines, T'Keaya L; Scroggins, Rebecca J; Anderson-Baucum, Emily K; Hasty, Alyssa H; Vieira-Potter, Victoria J; Padilla, Jaume

    2015-09-01

    Regular physical activity is effective in reducing visceral white adipose tissue (AT) inflammation and oxidative stress, and these changes are commonly associated with reduced adiposity. However, the impact of multiple periods of physical activity, intercalated by periods of inactivity, i.e., intermittent physical activity, on markers of AT inflammation and oxidative stress is unknown. In the present study, 5-wk-old male C57BL/6 mice were randomized into three groups (n = 10/group): sedentary, regular physical activity, and intermittent physical activity, for 24 wk. All animals were singly housed and fed a diet containing 45% kcal from fat. Regularly active mice had access to voluntary running wheels throughout the study period, whereas intermittently active mice had access to running wheels for 3-wk intervals (i.e., 3 wk on/3 wk off) throughout the study. At death, regular and intermittent physical activity was associated with similar reductions in visceral AT mass (approximately -24%, P < 0.05) relative to sedentary. However, regularly, but not intermittently, active mice exhibited decreased expression of visceral AT genes related to inflammation (e.g., monocyte chemoattractant protein 1), immune cell infiltration (e.g., CD68, CD11c, F4/80, CD11b/CD18), oxidative stress (e.g., p47 phagocyte oxidase), and endoplasmic reticulum stress (e.g., CCAAT enhancer-binding protein homologous protein; all P < 0.05). Furthermore, regular, but not intermittent, physical activity was associated with a trend toward improvement in glucose tolerance (P = 0.059). Collectively, these findings suggest that intermittent physical activity over a prolonged period of time may lead to a reduction in adiposity but with retention of a sedentary obese white AT and metabolic phenotype.

  15. 'Browning' the cardiac and peri-vascular adipose tissues to modulate cardiovascular risk.

    PubMed

    Aldiss, Peter; Davies, Graeme; Woods, Rachel; Budge, Helen; Sacks, Harold S; Symonds, Michael E

    2017-02-01

    Excess visceral adiposity, in particular that located adjacent to the heart and coronary arteries is associated with increased cardiovascular risk. In the pathophysiological state, dysfunctional adipose tissue secretes an array of factors modulating vascular function and driving atherogenesis. Conversely, brown and beige adipose tissues utilise glucose and lipids to generate heat and are associated with improved cardiometabolic health. The cardiac and thoracic perivascular adipose tissues are now understood to be composed of brown adipose tissue in the healthy state and undergo a brown-to-white transition i.e. during obesity which may be a driving factor of cardiovascular disease. In this review we discuss the risks of excess cardiac and vascular adiposity and potential mechanisms by which restoring the brown phenotype i.e. "re-browning" could potentially be achieved in clinically relevant populations.

  16. Visceral adipose tissue: emerging role of gluco- and mineralocorticoid hormones in the setting of cardiometabolic alterations

    PubMed Central

    Boscaro, Marco; Giacchetti, Gilberta; Ronconi, Vanessa

    2012-01-01

    Several clinical and experimental lines of evidence have highlighted the detrimental effects of visceral adipose tissue excess on cardiometabolic parameters. Besides, recent findings have shown the effects of gluco-and mineralocorticoid hormones on adipose tissue and have also underscored the interplay existing between such adrenal steroids and their respective receptors in the modulation of adipose tissue biology. While the fundamental role played by glucocorticoids on adipocyte differentiation and storage was already well known, the relevance of the mineralocorticoids in the physiology of the adipose organ is of recent acquisition. The local and systemic renin–angiotensin–aldosterone system (RAAS) acting on adipose tissue seems to contribute to the development of the cardiometabolic phenotype so that its modulation can have deep impact on human health. A better understanding of the pathophysiology of the adipose organ is of crucial importance in order to identify possible therapeutic approaches that can avoid the development of such cardiovascular and metabolic sequelae. PMID:22804097

  17. Hedgehog signalling in myeloid cells impacts on body weight, adipose tissue inflammation and glucose metabolism.

    PubMed

    Braune, Julia; Weyer, Ulrike; Matz-Soja, Madlen; Hobusch, Constance; Kern, Matthias; Kunath, Anne; Klöting, Nora; Kralisch, Susann; Blüher, Matthias; Gebhardt, Rolf; Zavros, Yana; Bechmann, Ingo; Gericke, Martin

    2017-05-01

    Recently, hedgehog (Hh) was identified as a crucial player in adipose tissue development and energy expenditure. Therefore, we tested whether Hh ligands are regulated in obesity. Further, we aimed at identifying potential target cells of Hh signalling and studied the functional impact of Hh signalling on adipose tissue inflammation and glucose metabolism. Hh ligands and receptors were analysed in adipose tissue or serum from lean and obese mice as well as in humans. To study the impact on adipose tissue inflammation and glucose metabolism, Hh signalling was specifically blocked in myeloid cells using a conditional knockout approach (Lys-Smo (-/-)). Desert Hh (DHH) and Indian Hh (IHH) are local Hh ligands, whereas Sonic Hh is not expressed in adipose tissue from mice or humans. In mice, obesity leads to a preferential upregulation of Hh ligands (Dhh) and signalling components (Ptch1, Smo and Gli1) in subcutaneous adipose tissue. Further, adipose tissue macrophages are Hh target cells owing to the expression of Hh receptors, such as Patched1 and 2. Conditional knockout of Smo (which encodes Smoothened, a mandatory Hh signalling component) in myeloid cells increases body weight and adipose tissue inflammation and attenuates glucose tolerance, suggesting an anti-inflammatory effect of Hh signalling. In humans, adipose tissue expression of DHH and serum IHH decrease with obesity and type 2 diabetes, which might be explained by the intake of metformin. Interestingly, metformin reduced Dhh and Ihh expression in mouse adipose tissue explants. Hh signalling in myeloid cells affects adipose tissue inflammation and glucose metabolism and may be a potential target to treat type 2 diabetes.

  18. β3-Adrenergic receptor stimulation induces E-selectin-mediated adipose tissue inflammation.

    PubMed

    Roth Flach, Rachel J; Matevossian, Anouch; Akie, Thomas E; Negrin, Kimberly A; Paul, Marina T; Czech, Michael P

    2013-01-25

    Inflammation induced by wound healing or infection activates local vascular endothelial cells to mediate leukocyte rolling, adhesion, and extravasation by up-regulation of leukocyte adhesion molecules such as E-selectin and P-selectin. Obesity-associated adipose tissue inflammation has been suggested to cause insulin resistance, but weight loss and lipolysis also promote adipose tissue immune responses. While leukocyte-endothelial interactions are required for obesity-induced inflammation of adipose tissue, it is not known whether lipolysis-induced inflammation requires activation of endothelial cells. Here, we show that β(3)-adrenergic receptor stimulation by CL 316,243 promotes adipose tissue neutrophil infiltration in wild type and P-selectin-null mice but not in E-selectin-null mice. Increased expression of adipose tissue cytokines IL-1β, CCL2, and TNF-α in response to CL 316,243 administration is also dependent upon E-selectin but not P-selectin. In contrast, fasting increases adipose-resident macrophages but not neutrophils, and does not activate adipose-resident endothelium. Thus, two models of lipolysis-induced inflammation induce distinct immune cell populations within adipose tissue and exhibit distinct dependences on endothelial activation. Importantly, our results indicate that β(3)-adrenergic stimulation acts through up-regulation of E-selectin in adipose tissue endothelial cells to induce neutrophil infiltration.

  19. Lipid profiling of in vitro cell models of adipogenic differentiation: relationships with mouse adipose tissues

    PubMed Central

    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A.; Anunciado-Koza, Rea V.; Siviski, Matthew E.; Lindner, Volkhard; Friesel, Robert E.; Rosen, Clifford J.; Baker, Paul R.S.; Simons, Brigitte; Vary, Calvin P.H.

    2016-01-01

    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MSALL. Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-derived BAT-C1 cells were also characterized. Over 3000 unique lipid species were quantified. Principal component analysis showed that perirenal versus inguinal white adipose tissues varied in lipid composition of triacyl- and diacylglycerols, sphingomyelins, glycerophospholipids and, notably, cardiolipin CL 72:3. In contrast, hexosylceramides and sphingomyelins distinguished brown from white adipose. Adipocyte differentiation models showed broad differences in lipid composition among themselves, upon adipogenic differentiation, and with adipose tissues. Palmitoyl triacylglycerides predominate in 3T3-L1 differentiation models, whereas cardiolipin CL 72:1 and SM 45:4 were abundant in brown adipose-derived cell differentiation models, respectively. MS/MSALL data suggest new lipid biomarkers for tissue-specific lipid contributions to adipogenesis, thus providing a foundation for using in vitro models of adipogenesis to reflect potential changes in adipose tissues in vivo. PMID:26910604

  20. Effects of Ang II receptor blocker irbesartan on adipose tissue function in mice with metabolic disorders.

    PubMed

    Maeda, Akinobu; Tamura, Kouichi; Wakui, Hiromichi; Ohsawa, Masato; Azushima, Kengo; Uneda, Kazushi; Kobayashi, Ryu; Tsurumi-Ikeya, Yuko; Kanaoka, Tomohiko; Dejima, Toru; Ohki, Koji; Haku, Sona; Yamashita, Akio; Umemura, Satoshi

    2014-01-01

    Recent studies indicate that the functional renin-angiotensin system (RAS) exists in the adipose tissue. The adipose tissue RAS is proposed in the pathophysiology of metabolic disorders. In the present study, we examined therapeutic effects of irbesartan, an angiotensin II (Ang II) type 1 receptor (AT1R)-specific blocker, in genetically obese diabetic KKAy mice, a model of human metabolic disorders without any dietary loading, with our focus on the analysis on possible effect of irbesartan on the adipose tissue. The treatment with irbesartan significantly lowered systolic blood pressure with a concomitant decrease in body weight in KKAy mice. In addition, irbesartan significantly decreased the adipose leptin mRNA expression and tended to decrease IL-6 mRNA expression in the adipose tissue of KKAy mice. Furthermore irbesartan preserved the adipose gene expression of AT1R-associated protein (ATRAP), an endogenous inhibitory molecule of tissue AT1R signaling, with a concomitant tendency of up-regulation of adipose tissue ATRAP/AT1R ratio. Collectively, these results suggest that the irbesartan-induced beneficial suppressive effect on the leptin-IL-6 axis in the adipose tissue in KKAy mice is partly mediated by a trend of up-regulation of the adipose ATRAP/AT1R ratio as one of pleiotropic effects of irbesartan.

  1. Functional brown adipose tissue limits cardiomyocyte injury and adverse remodeling in catecholamine-induced cardiomyopathy

    PubMed Central

    Thoonen, Robrecht; Ernande, Laura; Cheng, Juan; Nagasaka, Yasuko; Yao, Vincent; Miranda-Bezerra, Alexandre; Chen, Chan; Chao, Wei; Panagia, Marcello; Sosnovik, David E.; Puppala, Dheeraj; Armoundas, Antonis A.; Hindle, Allyson; Bloch, Kenneth D.; Buys, Emmanuel S.; Scherrer-Crosbie, Marielle

    2015-01-01

    Brown adipose tissue (BAT) has well recognized thermogenic properties mediated by uncoupling protein 1 (UCP1); more recently, BAT has been demonstrated to modulate cardiovascular risk factors. To investigate whether BAT also affects myocardial injury and remodeling, UCP1-deficient (UCP1−/−) mice, which have dysfunctional BAT, were subjected to catecholamine-induced cardiomyopathy. At baseline, there were no differences in echocardiographic parameters, plasma cardiac troponin I (cTnI) or myocardial fibrosis between wild-type (WT) and UCP1−/− mice. Isoproterenol infusion increased cTnI and myocardial fibrosis and induced left ventricular (LV) hypertrophy in both WT and UCP1−/− mice. UCP1−/− mice also demonstrated exaggerated myocardial injury, fibrosis, and adverse remodeling, as well as decreased survival. Transplantation of WT BAT to UCP1−/− mice prevented the isoproterenol-induced cTnI increase and improved survival, whereas UCP1−/− BAT transplanted to either UCP1−/− or WT mice had no effect on cTnI release. After 3 days of isoproterenol treatment, phosphorylated AKT and ERK were lower in the LV's of UCP1−/− mice than in those of WT mice. Activation of BAT was also noted in a model of chronic ischemic cardiomyopathy, and was correlated to LV dysfunction. Deficiency in UCP1, and accompanying BAT dysfunction, increases cardiomyocyte injury and adverse LV remodeling, and decreases survival in a mouse model of catecholamine-induced cardiomyopathy. Myocardial injury and decreased survival are rescued by transplantation of functional BAT to UCP1−/− mice, suggesting a systemic cardioprotective role of functional BAT. BAT is also activated in chronic ischemic cardiomyopathy. PMID:25968336

  2. Androgen Effects on Adipose Tissue Architecture and Function in Nonhuman Primates

    PubMed Central

    Varlamov, Oleg; White, Ashley E.; Carroll, Julie M.; Bethea, Cynthia L.; Reddy, Arubala; Slayden, Ov; O'Rourke, Robert W.

    2012-01-01

    The differential association of hypoandrogenism in men and hyperandrogenism in women with insulin resistance and obesity suggests that androgens may exert sex-specific effects on adipose and other tissues, although the underlying mechanisms remain poorly understood. Moreover, recent studies also suggest that rodents and humans may respond differently to androgen imbalance. To achieve better insight into clinically relevant sex-specific mechanisms of androgen action, we used nonhuman primates to investigate the direct effects of gonadectomy and hormone replacement on white adipose tissue. We also employed a novel ex vivo approach that provides a convenient framework for understanding of adipose tissue physiology under a controlled tissue culture environment. In vivo androgen deprivation of males did not result in overt obesity or insulin resistance but did induce the appearance of very small, multilocular white adipocytes. Testosterone replacement restored normal cell size and a unilocular phenotype and stimulated adipogenic gene transcription and improved insulin sensitivity of male adipose tissue. Ex vivo studies demonstrated sex-specific effects of androgens on adipocyte function. Female adipose tissue treated with androgens displayed elevated basal but reduced insulin-dependent fatty acid uptake. Androgen-stimulated basal uptake was greater in adipose tissue of ovariectomized females than in adipose tissue of intact females and ovariectomized females replaced with estrogen and progesterone in vivo. Collectively, these data demonstrate that androgens are essential for normal adipogenesis in males and can impair essential adipocyte functions in females, thus strengthening the experimental basis for sex-specific effects of androgens in adipose tissue. PMID:22547568

  3. Androgen effects on adipose tissue architecture and function in nonhuman primates.

    PubMed

    Varlamov, Oleg; White, Ashley E; Carroll, Julie M; Bethea, Cynthia L; Reddy, Arubala; Slayden, Ov; O'Rourke, Robert W; Roberts, Charles T

    2012-07-01

    The differential association of hypoandrogenism in men and hyperandrogenism in women with insulin resistance and obesity suggests that androgens may exert sex-specific effects on adipose and other tissues, although the underlying mechanisms remain poorly understood. Moreover, recent studies also suggest that rodents and humans may respond differently to androgen imbalance. To achieve better insight into clinically relevant sex-specific mechanisms of androgen action, we used nonhuman primates to investigate the direct effects of gonadectomy and hormone replacement on white adipose tissue. We also employed a novel ex vivo approach that provides a convenient framework for understanding of adipose tissue physiology under a controlled tissue culture environment. In vivo androgen deprivation of males did not result in overt obesity or insulin resistance but did induce the appearance of very small, multilocular white adipocytes. Testosterone replacement restored normal cell size and a unilocular phenotype and stimulated adipogenic gene transcription and improved insulin sensitivity of male adipose tissue. Ex vivo studies demonstrated sex-specific effects of androgens on adipocyte function. Female adipose tissue treated with androgens displayed elevated basal but reduced insulin-dependent fatty acid uptake. Androgen-stimulated basal uptake was greater in adipose tissue of ovariectomized females than in adipose tissue of intact females and ovariectomized females replaced with estrogen and progesterone in vivo. Collectively, these data demonstrate that androgens are essential for normal adipogenesis in males and can impair essential adipocyte functions in females, thus strengthening the experimental basis for sex-specific effects of androgens in adipose tissue.

  4. Identification of a Lipokine, a Lipid Hormone Linking Adipose Tissue to Systemic Metabolism

    PubMed Central

    Cao, Haiming; Gerhold, Kristin; Mayers, Jared R.; Wiest, Michelle M.; Watkins, Steve M.; Hotamisligil, Gökhan S.

    2008-01-01

    Dysregulation of lipid metabolism in individual tissues can lead to systemic disruption of insulin action and glucose metabolism. Utilizing a comprehensive lipidomic platform and mice deficient in adipose tissue lipid chaperones aP2 and mal1, we explored how metabolic alterations in adipose tissue are linked to whole-body metabolism through lipid signals. A robust increase in de novo lipogenesis rendered the adipose tissue of these mice resistant to the deleterious systemic effects of dietary lipid exposure. Systemic lipid profiling also led to identification of C16:1n7-palmitoleate as an adipose tissue-derived lipid hormone that strongly stimulates muscle insulin action and suppresses hepatosteatosis. Our data reveal a novel, lipid-mediated endocrine network and demonstrate that adipose tissue uses lipokines such as C16:1n7-palmitoleate to communicate with distant organs and regulate systemic metabolic homeostasis. PMID:18805087

  5. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism.

    PubMed

    Cao, Haiming; Gerhold, Kristin; Mayers, Jared R; Wiest, Michelle M; Watkins, Steven M; Hotamisligil, Gökhan S

    2008-09-19

    Dysregulation of lipid metabolism in individual tissues leads to systemic disruption of insulin action and glucose metabolism. Utilizing quantitative lipidomic analyses and mice deficient in adipose tissue lipid chaperones aP2 and mal1, we explored how metabolic alterations in adipose tissue are linked to whole-body metabolism through lipid signals. A robust increase in de novo lipogenesis rendered the adipose tissue of these mice resistant to the deleterious effects of dietary lipid exposure. Systemic lipid profiling also led to identification of C16:1n7-palmitoleate as an adipose tissue-derived lipid hormone that strongly stimulates muscle insulin action and suppresses hepatosteatosis. Our data reveal a lipid-mediated endocrine network and demonstrate that adipose tissue uses lipokines such as C16:1n7-palmitoleate to communicate with distant organs and regulate systemic metabolic homeostasis.

  6. Paracrine and intracrine contributions of androgens and estrogens to adipose tissue biology: physiopathological aspects.

    PubMed

    Waraich, Rizwana S; Mauvais-Jarvis, Franck

    2013-08-01

    In mammals, the male and female hormones androgen and estrogen act as endocrine regulators of energy metabolism. However, adipose tissue is also a site of androgen and estrogen synthesis; androgens convert to estrogens in these tissues, and adipose tissue is also a reservoir of steroids that act locally in a paracrine and intracrine manner. Thus, in adipose tissue, the local output of sex hormones is more complex than would be suggested by routine measurement of serum hormone concentrations. This review integrates studies on the effects of androgens and estrogens in the developmental programming of adipose tissue function in early life and addresses the contributions of local androgen and estrogen metabolism on adipose tissue function in adults.

  7. Decellularized Extracellular Matrix Derived from Porcine Adipose Tissue as a Xenogeneic Biomaterial for Tissue Engineering

    PubMed Central

    Choi, Young Chan; Choi, Ji Suk; Kim, Beob Soo; Kim, Jae Dong; Yoon, Hwa In

    2012-01-01

    Cells in tissues are surrounded by the extracellular matrix (ECM), a gel-like material of proteins and polysaccharides that are synthesized and secreted by cells. Here we propose that the ECM can be isolated from porcine adipose tissue and holds great promise as a xenogeneic biomaterial for tissue engineering and regenerative medicine. Porcine adipose tissue is easily obtained in large quantities from commonly discarded food waste. Decellularization protocols have been developed for extracting an intact ECM while effectively eliminating xenogeneic epitopes and minimally disrupting the ECM composition. Porcine adipose tissue was defatted by homogenization and centrifugation. It was then decellularized via chemical (1.5 M sodium chloride and 0.5% sodium dodecyl sulfate) and enzymatic treatments (DNase and RNase) with temperature control. After decellularization, immunogenic components such as nucleic acids and α-Gal were significantly reduced. However, abundant ECM components, such as collagen (332.9±12.1 μg/mg ECM dry weight), sulfated glycosaminoglycan (GAG, 85±0.7 μg/mg ECM dry weight), and elastin (152.6±4.5 μg/mg ECM dry weight), were well preserved in the decellularized material. The biochemical and mechanical features of a decellularized ECM supported the adhesion and growth of human cells in vitro. Moreover, the decellularized ECM exhibited biocompatibility, long-term stability, and bioinductivity in vivo. The overall results suggest that the decellularized ECM derived from porcine adipose tissue could be useful as an alternative biomaterial for xenograft tissue engineering. PMID:22559904

  8. The production and distribution of IL-6 and TNF-α in subcutaneous adipose tissue and their correlation with serum concentrations in Welsh ponies with equine metabolic syndrome

    PubMed Central

    Marycz, Krzysztof; Śmieszek, Agnieszka; Nicpoń, Jakub

    2015-01-01

    A main symptom of equine metabolic syndrome (EMS) in ponies is pathological obesity characterized by abnormal accumulation of fat deposits and inflammation. In this study, we analyzed the expression of two pro-inflammatory cytokines, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), in subcutaneous adipose tissue and the correlation with serum concentrations in peripheral blood of Welsh ponies. Based on clinical examination findings, the animals were divided into two groups: ponies affected with EMS (n = 8) and obese ponies (n = 8). The adipose tissue was examined using immunohistochemical analysis while concentrations IL-6 and TNF-α were measured using enzyme-linked immunosorbent assays (ELISAs). Additionally, histological characterization of the adipose tissue was performed. The results obtained showed that IL-6 expression in adipose tissue biopsies derived from animals with EMS was enhanced while TNF-α levels of both groups were comparable. Compared to the obese ponies, EMS animals also had significantly elevated levels of serum IL-6 and TNF-α. Histological analysis revealed macrophage infiltration and fibrosis in adipose tissue preparations from the EMS group. These data suggest that IL-6 may play a key role in the course of EMS in Welsh ponies. Our findings also demonstrated that analysis of pro-inflammatory cytokines levels in serum may serve as an additional tool for diagnosing EMS. PMID:25269712

  9. Obesity accelerates T cell senescence in murine visceral adipose tissue.

    PubMed

    Shirakawa, Kohsuke; Yan, Xiaoxiang; Shinmura, Ken; Endo, Jin; Kataoka, Masaharu; Katsumata, Yoshinori; Yamamoto, Tsunehisa; Anzai, Atsushi; Isobe, Sarasa; Yoshida, Naohiro; Itoh, Hiroshi; Manabe, Ichiro; Sekai, Miho; Hamazaki, Yoko; Fukuda, Keiichi; Minato, Nagahiro; Sano, Motoaki

    2016-12-01

    Chronic inflammation in visceral adipose tissue (VAT) precipitates the development of cardiometabolic disorders. Although changes in T cell function associated with visceral obesity are thought to affect chronic VAT inflammation, the specific features of these changes remain elusive. Here, we have determined that a high-fat diet (HFD) caused a preferential increase and accumulation of CD44hiCD62LloCD4+ T cells that constitutively express PD-1 and CD153 in a B cell-dependent manner in VAT. These cells possessed characteristics of cellular senescence and showed a strong activation of Spp1 (encoding osteopontin [OPN]) in VAT. Upon T cell receptor stimulation, these T cells also produced large amounts of OPN in a PD-1-resistant manner in vitro. The features of CD153+PD-1+CD44hiCD4+ T cells were highly reminiscent of senescence-associated CD4+ T cells that normally increase with age. Adoptive transfer of CD153+PD-1+CD44hiCD4+ T cells from HFD-fed WT, but not Spp1-deficient, mice into the VAT of lean mice fed a normal diet recapitulated the essential features of VAT inflammation and insulin resistance. Our results demonstrate that a distinct CD153+PD-1+CD44hiCD4+ T cell population that accumulates in the VAT of HFD-fed obese mice causes VAT inflammation by producing large amounts of OPN. This finding suggests a link between visceral adiposity and immune aging.

  10. Role of NKG2D in obesity-induced adipose tissue inflammation and insulin resistance.

    PubMed

    Chung, Jun-Jae; Markiewicz, Mary A; Polić, Bojan; Shaw, Andrey S

    2014-01-01

    The early events that initiate inflammation in the adipose tissue during obesity are not well defined. It is unclear whether the recruitment of CD8 T cells to the adipose tissue during onset of obesity occurs through antigen-dependent or -independent processes. We have previously shown that interaction between NKG2D (natural-killer group 2, member D) and its ligand Rae-1ε is sufficient to recruit cytotoxic T lymphocytes to the pancreas and induce insulitis. Here, we tested whether NKG2D-NKG2D ligand interaction is also involved in obesity-induced adipose tissue inflammation and insulin resistance. We observed a significant induction of NKG2D ligand expression in the adipose tissue of obese mice, especially during the early stages of obesity. However, mice lacking NKG2D developed similar levels of insulin resistance and adipose tissue inflammation compared to control mice when placed on a high-fat diet. Moreover, overexpression of Rae-1ε in the adipose tissue did not increase immune cell infiltration to the adipose tissue either in the setting of a normal or high-fat diet. These results indicate that, unlike in the pancreas, NKG2D-NKG2D ligand interaction does not play a critical role in obesity-induced inflammation in the adipose tissue.

  11. Adipose tissue inflammation: a cause or consequence of obesity-related insulin resistance?

    PubMed

    Blüher, Matthias

    2016-09-01

    The worldwide obesity epidemic has become a major health concern, because it contributes to higher mortality due to an increased risk for noncommunicable diseases including cardiovascular diseases, type 2 diabetes, musculoskeletal disorders and some cancers. Insulin resistance may link accumulation of adipose tissue in obesity to metabolic diseases, although the underlying mechanisms are not completely understood. In the past decades, data from human studies and transgenic animal models strongly suggested correlative, but also causative associations between activation of proinflammatory pathways and insulin resistance. Particularly chronic inflammation in adipose tissue seems to play an important role in the development of obesity-related insulin resistance. On the other hand, adipose tissue inflammation has been shown to be essential for healthy adipose tissue expansion and remodelling. However, whether adipose tissue inflammation represents a consequence or a cause of impaired insulin sensitivity remains an open question. A better understanding of the molecular pathways linking excess adipose tissue storage to chronic inflammation and insulin resistance may provide the basis for the future development of anti-inflammatory treatment strategies to improve adverse metabolic consequences of obesity. In this review, potential mechanisms of adipose tissue inflammation and how adipose tissue inflammation may cause insulin resistance are discussed. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  12. Modulations of calcium in adipose tissue by TRPC1: a key player in obesity

    USDA-ARS?s Scientific Manuscript database

    The disruption of metabolic homeostasis, the regulation of energy the body extracts, stores and uses, leads to excess adipose tissue accumulation and the onset of obesity. White adipose tissue (WAT) is a metabolically dynamic endocrine organ responsible for maintaining metabolic homeostasis through ...

  13. Methyl-ß-cyclodextrin alters adipokine gene expression and glucose metabolism in swine adipose tissue

    USDA-ARS?s Scientific Manuscript database

    This study was designed to determine if metabolic stress as induced by methyl-ß-cyclodextrin (MCD) can alter cytokine expression in neonatal swine adipose tissue explants. Subcutaneous adipose tissue explants (100 ± 10 mg) were prepared from 21 day old pigs. Explants were incubated in medium 199 s...

  14. Role of NKG2D in Obesity-Induced Adipose Tissue Inflammation and Insulin Resistance

    PubMed Central

    Chung, Jun-Jae; Markiewicz, Mary A.; Polić, Bojan; Shaw, Andrey S.

    2014-01-01

    The early events that initiate inflammation in the adipose tissue during obesity are not well defined. It is unclear whether the recruitment of CD8 T cells to the adipose tissue during onset of obesity occurs through antigen-dependent or -independent processes. We have previously shown that interaction between NKG2D (natural-killer group 2, member D) and its ligand Rae-1ε is sufficient to recruit cytotoxic T lymphocytes to the pancreas and induce insulitis. Here, we tested whether NKG2D–NKG2D ligand interaction is also involved in obesity-induced adipose tissue inflammation and insulin resistance. We observed a significant induction of NKG2D ligand expression in the adipose tissue of obese mice, especially during the early stages of obesity. However, mice lacking NKG2D developed similar levels of insulin resistance and adipose tissue inflammation compared to control mice when placed on a high-fat diet. Moreover, overexpression of Rae-1ε in the adipose tissue did not increase immune cell infiltration to the adipose tissue either in the setting of a normal or high-fat diet. These results indicate that, unlike in the pancreas, NKG2D–NKG2D ligand interaction does not play a critical role in obesity-induced inflammation in the adipose tissue. PMID:25333972

  15. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis

    PubMed Central

    Park, Byung Young; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Hong, Yeonhee; Lee, Hee Suk; Park, Eun Kyu; Hahm, Jong Cheon; Kim, Jin Woo; Shin, Soon Shik; Kim, Min-Young; Yoon, Michung

    2015-01-01

    It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS) prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP) activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9), whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors. PMID:26599360

  16. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity.

    PubMed

    Huh, Jin Young; Park, Yoon Jeong; Ham, Mira; Kim, Jae Bum

    2014-05-01

    Recent findings, notably on adipokines and adipose tissue inflammation, have revised the concept of adipose tissues being a mere storage depot for body energy. Instead, adipose tissues are emerging as endocrine and immunologically active organs with multiple effects on the regulation of systemic energy homeostasis. Notably, compared with other metabolic organs such as liver and muscle, various inflammatory responses are dynamically regulated in adipose tissues and most of the immune cells in adipose tissues are involved in obesity-mediated metabolic complications, including insulin resistance. Here, we summarize recent findings on the key roles of innate (neutrophils, macrophages, mast cells, eosinophils) and adaptive (regulatory T cells, type 1 helper T cells, CD8 T cells, B cells) immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. In particular, the roles of natural killer T cells, one type of innate lymphocyte, in adipose tissue inflammation will be discussed. Finally, a new role of adipocytes as antigen presenting cells to modulate T cell activity and subsequent adipose tissue inflammation will be proposed.

  17. Metabolic inflammation in inflammatory bowel disease: crosstalk between adipose tissue and bowel.

    PubMed

    Gonçalves, Pedro; Magro, Fernando; Martel, Fátima

    2015-02-01

    Epidemiological studies show that both the incidence of inflammatory bowel disease (IBD) and the proportion of people with obesity and/or obesity-associated metabolic syndrome increased markedly in developed countries during the past half century. Obesity is also associated with the development of more active IBD and requirement for hospitalization and with a decrease in the time span between diagnosis and surgery. Patients with IBD, especially Crohn's disease, present fat-wrapping or "creeping fat," which corresponds to ectopic adipose tissue extending from the mesenteric attachment and covering the majority of the small and large intestinal surface. Mesenteric adipose tissue in patients with IBD presents several morphological and functional alterations, e.g., it is more infiltrated with immune cells such as macrophages and T cells. All these lines of evidence clearly show an association between obesity, adipose tissue, and functional bowel disorders. In this review, we will show that the mesenteric adipose tissue and creeping fat are not innocent by standers but actively contribute to the intestinal and systemic inflammatory responses in patients with IBD. More specifically, we will review evidence showing that adipose tissue in IBD is associated with major alterations in the secretion of cytokines and adipokines involved in inflammatory process, in adipose tissue mesenchymal stem cells and adipogenesis, and in the interaction between adipose tissue and other intestinal components (immune, lymphatic, neuroendocrine, and intestinal epithelial systems). Collectively, these studies underline the importance of adipose tissue for the identification of novel therapeutic approaches for IBD.

  18. Brown adipose tissue. III. Effect of ethanol, nicotine and caffeine exposure.

    PubMed

    Sidlo, J; Zaviacic, M; Trutzová, H

    1996-05-01

    Brown adipose tissue is known to be the most important organ for generating heat in non-shivering thermogenesis. Process of thermogenesis and thermoregulation may be affected by many drugs. The paper deals with actual literary data of effect of ethanol, nicotine and caffeine on brown adipose tissue, heat production and its regulation in experimental animals and in human.

  19. Tissue engineering construct on the basis of multipotent stromal adipose tissue cells and Osteomatrix for regeneration of the bone tissue.

    PubMed

    Bukharova, T B; Arutyunyan, I V; Shustrov, S A; Alekseeva, I S; Fedyunina, I A; Logovskaya, L V; Volkov, A V; Rzhaninova, A A; Grigor'yan, A S; Kulakov, A A; Gol'dshtein, D V

    2011-11-01

    We developed a new method of creation of tissue engineering constructs for regeneration of the bone tissue based on the principle of free distribution of cells in a fibrin clot within a scaffold. The tissue engineering construct includes multipotent stromal adipose tissue cells committed in osteogenic lineage, platelet-rich plasma, and resorbed material on the basis of xenogeneic bone collagen. The culture of bone progenitor cells was characterized by the main markers of osteoblastic differon. The material meets all requirements for materials intended for tissue engineering. An innovative high-technological tissue engineering product for clinical application is prepared.

  20. Epithelial-mesenchymal transition in tissue repair and fibrosis.

    PubMed

    Stone, Rivka C; Pastar, Irena; Ojeh, Nkemcho; Chen, Vivien; Liu, Sophia; Garzon, Karen I; Tomic-Canic, Marjana

    2016-09-01

    The epithelial-mesenchymal transition (EMT) describes the global process by which stationary epithelial cells undergo phenotypic changes, including the loss of cell-cell adhesion and apical-basal polarity, and acquire mesenchymal characteristics that confer migratory capacity. EMT and its converse, MET (mesenchymal-epithelial transition), are integral stages of many physiologic processes and, as such, are tightly coordinated by a host of molecular regulators. Converging lines of evidence have identified EMT as a component of cutaneous wound healing, during which otherwise stationary keratinocytes (the resident skin epithelial cells) migrate across the wound bed to restore the epidermal barrier. Moreover, EMT plays a role in the development of scarring and fibrosis, as the matrix-producing myofibroblasts arise from cells of the epithelial lineage in response to injury but are pathologically sustained instead of undergoing MET or apoptosis. In this review, we summarize the role of EMT in physiologic repair and pathologic fibrosis of tissues and organs. We conclude that further investigation into the contribution of EMT to the faulty repair of fibrotic wounds might identify components of EMT signaling as common therapeutic targets for impaired healing in many tissues. Graphical Abstract Model for injury-triggered EMT activation in physiologic wound repair (left) and fibrotic wound healing (right).

  1. Decellularized extracellular matrix derived from human adipose tissue as a potential scaffold for allograft tissue engineering.

    PubMed

    Choi, Ji Suk; Kim, Beob Soo; Kim, Jun Young; Kim, Jae Dong; Choi, Young Chan; Yang, Hyun-Jin; Park, Kinam; Lee, Hee Young; Cho, Yong Woo

    2011-06-01

    Decellularized tissues composed of extracellular matrix (ECM) have been clinically used to support the regeneration of various human tissues and organs. Most decellularized tissues so far have been derived from animals or cadavers. Therefore, despite the many advantages of decellularized tissue, there are concerns about the potential for immunogenicity and the possible presence of infectious agents. Herein, we present a biomaterial composed of ECM derived from human adipose tissue, the most prevalent, expendable, and safely harvested tissue in the human body. The ECM was extracted by successive physical, chemical, and enzymatic treatments of human adipose tissue isolated by liposuction. Cellular components including nucleic acids were effectively removed without significant disruption of the morphology or structure of the ECM. Major ECM components were quantified, including acid/pepsin-soluble collagen, sulfated glycosaminoglycan (GAG), and soluble elastin. In an in vivo experiment using mice, the decellularized ECM graft exhibited good compatibility to surrounding tissues. Overall results suggest that the decellularized ECM containing biological and chemical cues of native human ECM could be an ideal scaffold material not only for autologous but also for allograft tissue engineering.

  2. Lipocalin 2 produces insulin resistance and can be upregulated by glucocorticoids in human adipose tissue.

    PubMed

    Kamble, Prasad G; Pereira, Maria J; Sidibeh, Cherno O; Amini, Sam; Sundbom, Magnus; Börjesson, Joey Lau; Eriksson, Jan W

    2016-05-15

    The adipokine lipocalin 2 is linked to obesity and metabolic disorders. However, its role in human adipose tissue glucose and lipid metabolism is not explored. Here we show that the synthetic glucocorticoid dexamethasone dose-dependently increased lipocalin 2 gene expression in subcutaneous and omental adipose tissue from pre-menopausal females, while it had no effect in post-menopausal females or in males. Subcutaneous adipose tissue from both genders treated with recombinant human lipocalin 2 showed a reduction in protein levels of GLUT1 and GLUT4 and in glucose uptake in isolated adipocytes. In subcutaneous adipose tissue, lipocalin 2 increased IL-6 gene expression whereas expression of PPARγ and adiponectin was reduced. Our findings suggest that lipocalin 2 can contribute to insulin resistance in human adipose tissue. In pre-menopausal females, it may partly mediate adverse metabolic effects exerted by glucocorticoid excess. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Factors involved in white-to-brown adipose tissue conversion and in thermogenesis: a review.

    PubMed

    Montanari, T; Pošćić, N; Colitti, M

    2017-02-10

    Obesity is the result of energy intake chronically exceeding energy expenditure. Classical treatments against obesity do not provide a satisfactory long-term outcome for the majority of patients. After the demonstration of functional brown adipose tissue in human adults, great effort is being devoted to develop therapies based on the adipose tissue itself, through the conversion of fat-accumulating white adipose tissue into energy-dissipating brown adipose tissue. Anti-obesity treatments that exploit endogenous, pharmacological and nutritional factors to drive such conversion are especially in demand. In the present review, we summarize the current knowledge about the various molecules that can be applied in promoting white-to-brown adipose tissue conversion and energy expenditure and the cellular mechanisms involved.

  4. The role of brown adipose tissue in temperature regulation. [of hibernating and hypothermic mammals

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1973-01-01

    The thermogenetic capacities of brown adipose tissue were studied on marmots, rats and monkeys in response to cold exposure. All experiments indicated that the brown fat produced heat and slowed the cooling of tissues.

  5. Insulin Mediated 14C-Glucose Incorporation Into Adipose Tissue: An Undergraduate Biochemistry Experiment

    ERIC Educational Resources Information Center

    Landman, A. D.; Eskin, N. A. M.

    1975-01-01

    Describes an experiment in which rat adipose tissue samples are exposed to labeled glucose; insulin is added to one sample. Subsequent scintillation counting demonstrates the ability of insulin to facilitate the entry of glucose into the tissue. (MLH)

  6. Insulin Mediated 14C-Glucose Incorporation Into Adipose Tissue: An Undergraduate Biochemistry Experiment

    ERIC Educational Resources Information Center

    Landman, A. D.; Eskin, N. A. M.

    1975-01-01

    Describes an experiment in which rat adipose tissue samples are exposed to labeled glucose; insulin is added to one sample. Subsequent scintillation counting demonstrates the ability of insulin to facilitate the entry of glucose into the tissue. (MLH)

  7. The role of brown adipose tissue in temperature regulation. [of hibernating and hypothermic mammals

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1973-01-01

    The thermogenetic capacities of brown adipose tissue were studied on marmots, rats and monkeys in response to cold exposure. All experiments indicated that the brown fat produced heat and slowed the cooling of tissues.

  8. Calcium Sensing Receptor (CaSR) activation elevates proinflammatory factor expression in human adipose cells and adipose tissue

    PubMed Central

    Cifuentes, Mariana; Fuentes, Cecilia; Acevedo, Ingrid; Villalobos, Elisa; Hugo, Eric; Ben Jonathan, Nira; Reyes, Marcela

    2013-01-01

    We have previously established that human adipose cells and the human adipose cell line LS14 express the calcium sensing receptor (CaSR) and that its expression is elevated upon exposure to inflammatory cytokines that are typically elevated in obese humans. Research in recent years has established that an important part of the adverse metabolic and cardiovascular consequences of obesity derive from a dysfunction of the tissue, one of the mechanisms being a disordered secretion pattern leading to an excess of proinflammatory cytokines and chemokines. Given the reported association of the CaSR to inflammatory processes in other tissues, we sought to evaluate its role elevating the adipose expression of inflammatory factors. We exposed adipose tissue and in-vitro cultured LS14 preadipocytes and differentiated adipocytes to the calcimimetic cinacalcet and evaluated the expression or production of the proinflammatory cytokines IL6, IL1β and TNFα as well as the chemoattractant factor CCL2. CaSR activation elicited an elevation in the expression of the inflammatory factors, which was in part reverted by SN50, an inhibitor of the inflammatory mediator NFκB. Our observations suggest that CaSR activation elevates cytokine and chemokine production through a signaling pathway involving activation of NFκB nuclear translocation. These findings confirm the relevance of the CaSR in the pathophysiology of obesity-induced adipose tissue dysfunction, with an interesting potential for pharmacological manipulation in the fight against obesity- associated diseases. PMID:22449852

  9. Activation of brown adipose tissue mitochondrial GDP binding sites

    SciTech Connect

    Swick, A.G.

    1987-01-01

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of (/sup 3/H)-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time.

  10. Protein turnover in adipose tissue from fasted or diabetic rats

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Ost, Alan H.; Coffman, Julia

    1986-01-01

    Protein synthesis and degradation in vitro were compared in epididymal fat pads from animals deprived of food for 48 h or treated 6 or 12 days prior with streptozotocin to induce diabetes. Although both fasting and diabetes led to depressed (-24 to -57 percent) protein synthesis, the diminution in protein degradation (-63 to -72 percent) was even greater, so that net in vitro protein balance improved dramatically. Insulin failed to inhibit protein degradation in fat pads of these rats as it does for fed animals. Although insulin stimulated protein synthesis in fat pads of fasted and 12 day diabetic rats, the absolute change was much smaller than that seen in the fed state. The inhibition of protein degradation by leucine also seems to be less in fasted animals, probably because leucine catabolism is slower in fasting. These results show that fasting and diabetes may improve protein balance in adipose tissue but diminish the regulatory effects of insulin.

  11. Estradiol Regulates Brown Adipose Tissue Thermogenesis via Hypothalamic AMPK

    PubMed Central

    Martínez de Morentin, Pablo B.; González-García, Ismael; Martins, Luís; Lage, Ricardo; Fernández-Mallo, Diana; Martínez-Sánchez, Noelia; Ruíz-Pino, Francisco; Liu, Ji; Morgan, Donald A.; Pinilla, Leonor; Gallego, Rosalía; Saha, Asish K.; Kalsbeek, Andries; Fliers, Eric; Bisschop, Peter H.; Diéguez, Carlos; Nogueiras, Rubén; Rahmouni, Kamal; Tena-Sempere, Manuel; López, Miguel

    2014-01-01

    Summary Estrogens play a major role in the modulation of energy balance through central and peripheral actions. Here, we demonstrate that central action of estradiol (E2) inhibits AMP-activated protein kinase (AMPK) through estrogen receptor alpha (ERα) selectively in the ventromedial nucleus of the hypothalamus (VMH), leading to activation of thermogenesis in brown adipose tissue (BAT) through the sympathetic nervous system (SNS) in a feeding-independent manner. Genetic activation of AMPK in the VMH prevented E2-induced increase in BAT-mediated thermogenesis and weight loss. Notably, fluctuations in E2 levels during estrous cycle also modulate this integrated physiological network. Together, these findings demonstrate that E2 regulation of the VMH AMPK-SNS-BAT axis is an important determinant of energy balance and suggest that dysregulation in this axis may account for the common changes in energy homeostasis and obesity linked to dysfunction of the female gonadal axis. PMID:24856932

  12. Brain insulin controls adipose tissue lipolysis and lipogenesis.

    PubMed

    Scherer, Thomas; O'Hare, James; Diggs-Andrews, Kelly; Schweiger, Martina; Cheng, Bob; Lindtner, Claudia; Zielinski, Elizabeth; Vempati, Prashant; Su, Kai; Dighe, Shveta; Milsom, Thomas; Puchowicz, Michelle; Scheja, Ludger; Zechner, Rudolf; Fisher, Simon J; Previs, Stephen F; Buettner, Christoph

    2011-02-02

    White adipose tissue (WAT) dysfunction plays a key role in the pathogenesis of type 2 diabetes (DM2). Unrestrained WAT lipolysis results in increased fatty acid release, leading to insulin resistance and lipotoxicity, while impaired de novo lipogenesis in WAT decreases the synthesis of insulin-sensitizing fatty acid species like palmitoleate. Here, we show that insulin infused into the mediobasal hypothalamus (MBH) of Sprague-Dawley rats increases WAT lipogenic protein expression, inactivates hormone-sensitive lipase (Hsl), and suppresses lipolysis. Conversely, mice that lack the neuronal insulin receptor exhibit unrestrained lipolysis and decreased de novo lipogenesis in WAT. Thus, brain and, in particular, hypothalamic insulin action play a pivotal role in WAT functionality. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Acetylation of Cavin-1 Promotes Lipolysis in White Adipose Tissue.

    PubMed

    Zhou, Shui-Rong; Guo, Liang; Wang, Xu; Liu, Yang; Peng, Wan-Qiu; Liu, Yuan; Wei, Xiang-Bo; Dou, Xin; Ding, Meng; Lei, Qun-Ying; Qian, Shu-Wen; Li, Xi; Tang, Qi-Qun

    2017-08-15

    White adipose tissue (WAT) serves as a reversible energy storage depot in the form of lipids in response to nutritional status. Cavin-1, an essential component in the biogenesis of caveolae, is a positive regulator of lipolysis in adipocytes. However, molecular mechanisms of cavin-1 in the modulation of lipolysis remain poorly understood. Here, we showed that cavin-1 was acetylated at lysines 291, 293, and 298 (3K), which were under nutritional regulation in WAT. We further identified GCN5 as the acetyltransferase and Sirt1 as the deacetylase of cavin-1. Acetylation-mimetic 3Q mutants of cavin-1 augmented fat mobilization in 3T3-L1 adipocytes and zebrafish. Mechanistically, acetylated cavin-1 preferentially interacted with hormone-sensitive lipase and recruited it to the caveolae, thereby promoting lipolysis. Our findings shed light on the essential role of cavin-1 in regulating lipolysis in an acetylation-dependent manner in WAT. Copyright © 2017 American Society for Microbiology.

  14. The Impact of Adipose Tissue on Insulin Resistance in Acromegaly.

    PubMed

    Olarescu, Nicoleta Cristina; Bollerslev, Jens

    2016-04-01

    Adipose tissue (AT) is recognized as key contributor to the systemic insulin resistance and overt diabetes seen in metabolic syndrome. Acromegaly is a disease characterized by excessive secretion of growth hormone (GH) and insulin-like growth factor I (IGF-I). GH is known both for its action on AT and for its detrimental effect on glucose metabolism and insulin signaling. In active acromegaly, while body fat deports are diminished, insulin resistance is increased. Early studies have demonstrated defects in insulin action, both at the hepatic and extrahepatic (i.e., muscle and fat) levels, in active disease. This review discusses recent data suggesting that AT inflammation, altered AT distribution, and impaired adipogenesis are potential mechanisms contributing to systemic insulin resistance in acromegaly. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Brown adipose tissue as a therapeutic target for human obesity.

    PubMed

    Saito, Masayuki

    2013-12-01

    Brown adipose tissue (BAT) is the major site of sympathetically activated adaptive thermogenesis during cold exposure and after spontaneous hyperphagia, thereby controlling whole-body energy expenditure and body fat. Recent radionuclide studies have demonstrated the existence of metabolically active BAT in healthy adult humans. Human BAT is activated by acute cold exposure, being positively correlated to cold-induced increases in energy expenditure. The metabolic activity of BAT is lower in older and obese individuals. The inverse relationship between the BAT activity and body fatness suggests that BAT, because of its energy dissipating activity, is protective against body fat accumulation. In fact, either repeated cold exposure or daily ingestion of some food ingredients acting on transient receptor potential channels recruited BAT in association with increased energy expenditure and decreased body fat even in individuals with low BAT activities before the treatment. Thus, BAT is a promising therapeutic target for combating human obesity and related metabolic disorders.

  16. Human brown adipose tissue: regulation and anti-obesity potential.

    PubMed

    Saito, Masayuki

    2014-01-01

    Brown adipose tissue (BAT) is the site of sympathetically activated adaptive thermognenesis during cold exposure and after hyperphagia, thereby controlling whole-body energy expenditure (EE) and body fat. Radionuclide imaging studies have demonstrated that adult humans have metabolically active BAT composed of mainly beige/brite adipocytes, recently identified brown-like adipocytes. The inverse relationship between the BAT activity and body fatness suggests that BAT is, because of its energy dissipating activity, protective against body fat accumulation in humans as it is in small rodents. In fact, either repeated cold exposure or daily ingestion of some food ingredients acting on transient receptor potential channels recruits BAT in parallel with increased EE and decreased body fat. In addition to the sympathetic nervous system, several endocrine factors are also shown to recruit BAT. Thus, BAT is a promising therapeutic target for combating human obesity and related metabolic disorders.

  17. Brown adipose tissue in humans: therapeutic potential to combat obesity.

    PubMed

    Carey, Andrew L; Kingwell, Bronwyn A

    2013-10-01

    Harnessing the considerable capacity of brown adipose tissue (BAT) to consume energy was first proposed as a potential target to control obesity nearly 40years ago. The plausibility of this approach was, however, questioned due to the prevailing view that BAT was either not present or not functional in adult humans. Recent definitive identification of functional BAT in adult humans as well as a number of important advances in the understanding of BAT biology has reignited interest in BAT as an anti-obesity target. Proof-of-concept evidence demonstrating drug-induced BAT activation provides an important foundation for development of targeted pharmacological approaches with clinical application. This review considers evidence from both human and relevant animal studies to determine whether harnessing BAT for the treatment of obesity via pharmacological intervention is a realistic goal. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Imaging of Brown Adipose Tissue: State of the Art

    PubMed Central

    Sampath, Srihari C.; Sampath, Srinath C.; Bredella, Miriam A.; Cypess, Aaron M.

    2016-01-01

    The rates of diabetes, obesity, and metabolic disease have reached epidemic proportions worldwide. In recent years there has been renewed interest in combating these diseases not only by modifying energy intake and lifestyle factors, but also by inducing endogenous energy expenditure. This approach has largely been stimulated by the recent recognition that brown adipose tissue (BAT)—long known to promote heat production and energy expenditure in infants and hibernating mammals—also exists in adult humans. This landmark finding relied on the use of clinical fluorine 18 fluorodeoxyglucose positron emission tomography/computed tomography, and imaging techniques continue to play a crucial and increasingly central role in understanding BAT physiology and function. Herein, the authors review the origins of BAT imaging, discuss current preclinical and clinical strategies for imaging BAT, and discuss imaging methods that will provide crucial insight into metabolic disease and how it may be treated by modulating BAT activity. © RSNA, 2016 PMID:27322970

  19. Epicardial adipose tissue: far more than a fat depot

    PubMed Central

    Talman, Andrew H.; Psaltis, Peter J.; Cameron, James D.; Meredith, Ian T.; Seneviratne, Sujith K.

    2014-01-01

    Epicardial adipose tissue (EAT) refers to the fat depot that exists on the surface of the myocardium and is contained entirely beneath the pericardium, thus surrounding and in direct contact with the major coronary arteries and their branches. EAT is a biologically active organ that may play a role in the association between obesity and coronary artery disease (CAD). Given recent advances in non-invasive imaging modalities such a multidetector computed tomography (MDCT), EAT can be accurately measured and quantified. In this review, we focus on the evidence suggesting a role for EAT as a quantifiable risk marker in CAD, as well as describe the role EAT may play in the development and vulnerability of coronary artery plaque. PMID:25610800

  20. Adipose tissue and sustainable development: a connection that needs protection

    PubMed Central

    Tremblay, Angelo; Picard-Deland, Éliane; Panahi, Shirin; Marette, André

    2015-01-01

    Obesity is generally considered as an excess body fat that increases the risk to develop ergonomic, metabolic, and psychosocial problems. As suggested in this paper, body fat gain is also a protective adaptation that prevents body lipotoxicity, contributes to the secretion of molecules involved in metabolic regulation, and dilutes lipid soluble persistent organic pollutants. Recent literature shows that this protective role of adipose tissue is more solicited in a modern context in which unsuspected factors can affect energy balance to a much greater extent than what is generally perceived by health care professionals. These factors include short sleep duration, demanding mental work, and chemical pollution whose impact is more detectable in a context dominated by economic productivity and competitiveness. Since these factors might also include the increase in atmospheric CO2, it is likely that obesity prevention will need the support of a promotion in sustainable development, whether it is for human health, and well-being or global ecological protection. PMID:26074821

  1. Adipose Tissue-Derived Stem Cells for Myocardial Regeneration

    PubMed Central

    Joo, Hyung Joon; Kim, Jong-Ho

    2017-01-01

    Over the past decade, stem cell therapy has been extensively studied for clinical application for heart diseases. Among various stem cells, adipose tissue-derived stem cell (ADSC) is still an attractive stem cell resource due to its abundance and easy accessibility. In vitro studies showed the multipotent differentiation potentials of ADSC, even differentiation into cardiomyocytes. Many pre-clinical animal studies have also demonstrated promising therapeutic results of ADSC. Furthermore, there were several clinical trials showing the positive results in acute myocardial infarction using ADSC. The present article covers the brief introduction, the suggested therapeutic mechanisms, application methods including cell dose and delivery, and human clinical trials of ADSC for myocardial regeneration. PMID:28382066

  2. Protein turnover in adipose tissue from fasted or diabetic rats

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Ost, Alan H.; Coffman, Julia

    1986-01-01

    Protein synthesis and degradation in vitro were compared in epididymal fat pads from animals deprived of food for 48 h or treated 6 or 12 days prior with streptozotocin to induce diabetes. Although both fasting and diabetes led to depressed (-24 to -57 percent) protein synthesis, the diminution in protein degradation (-63 to -72 percent) was even greater, so that net in vitro protein balance improved dramatically. Insulin failed to inhibit protein degradation in fat pads of these rats as it does for fed animals. Although insulin stimulated protein synthesis in fat pads of fasted and 12 day diabetic rats, the absolute change was much smaller than that seen in the fed state. The inhibition of protein degradation by leucine also seems to be less in fasted animals, probably because leucine catabolism is slower in fasting. These results show that fasting and diabetes may improve protein balance in adipose tissue but diminish the regulatory effects of insulin.

  3. Effect of diethylstilboestrol on adipose-tissue lipids

    PubMed Central

    Sink, J. D.; Huston, C. K.; Shigley, J. W.

    1965-01-01

    1. The effect of diethylstilboestrol on the fatty acid composition of adipose-tissue lipids of the ox (Bos taurus) was studied. 2. The capsula adiposa (perirenal) was shown to contain more total saturated fatty acids, whereas more total unsaturated fatty acids were found in the panniculus adiposus (subcutaneous). 3. Significantly more stearic acid and linolenic acid were obtained from the capsula adiposa, whereas the panniculus adiposus contained more myristoleic acid, palmitoleic acid and oleic acid. 4. Implanting diethylstilboestrol significantly increased the deposition of the saturated fatty acids, particularly stearic acid. 5. A decrease in the deposition of total unsaturated fatty acids, myristoleic acid, palmitoleic acid and linoleic acid can also be attributed to the diethylstilboestrol treatment. PMID:16749140

  4. Effect of diethylstilboestrol on adipose-tissue lipids.

    PubMed

    Sink, J D; Huston, C K; Shigley, J W

    1965-11-01

    1. The effect of diethylstilboestrol on the fatty acid composition of adipose-tissue lipids of the ox (Bos taurus) was studied. 2. The capsula adiposa (perirenal) was shown to contain more total saturated fatty acids, whereas more total unsaturated fatty acids were found in the panniculus adiposus (subcutaneous). 3. Significantly more stearic acid and linolenic acid were obtained from the capsula adiposa, whereas the panniculus adiposus contained more myristoleic acid, palmitoleic acid and oleic acid. 4. Implanting diethylstilboestrol significantly increased the deposition of the saturated fatty acids, particularly stearic acid. 5. A decrease in the deposition of total unsaturated fatty acids, myristoleic acid, palmitoleic acid and linoleic acid can also be attributed to the diethylstilboestrol treatment.

  5. Negative regulators of brown adipose tissue (BAT)-mediated thermogenesis.

    PubMed

    Sharma, Bal Krishan; Patil, Mallikarjun; Satyanarayana, Ande

    2014-12-01

    Brown adipose tissue (BAT) is specialized for energy expenditure, a process called adaptive thermogenesis. PET-CT scans recently demonstrated the existence of metabolically active BAT in adult humans, which revitalized our interest in BAT. Increasing the amount and/or activity of BAT holds tremendous promise for the treatment of obesity and its associated diseases. PGC1α is the master regulator of UCP1-mediated thermogenesis in BAT. A number of proteins have been identified to influence thermogenesis either positively or negatively through regulating the expression or transcriptional activity of PGC1α. Therefore, BAT activation can be achieved by either inducing the expression of positive regulators of PGC1α or by inhibiting the repressors of the PGC1α/UCP1 pathway. Here, we review the most important negative regulators of PGC1α/UCP1 signaling and their mechanism of action in BAT-mediated thermogenesis. © 2014 Wiley Periodicals, Inc.

  6. Adipose tissue and sustainable development: a connection that needs protection.

    PubMed

    Tremblay, Angelo; Picard-Deland, Éliane; Panahi, Shirin; Marette, André

    2015-01-01

    Obesity is generally considered as an excess body fat that increases the risk to develop ergonomic, metabolic, and psychosocial problems. As suggested in this paper, body fat gain is also a protective adaptation that prevents body lipotoxicity, contributes to the secretion of molecules involved in metabolic regulation, and dilutes lipid soluble persistent organic pollutants. Recent literature shows that this protective role of adipose tissue is more solicited in a modern context in which unsuspected factors can affect energy balance to a much greater extent than what is generally perceived by health care professionals. These factors include short sleep duration, demanding mental work, and chemical pollution whose impact is more detectable in a context dominated by economic productivity and competitiveness. Since these factors might also include the increase in atmospheric CO2, it is likely that obesity prevention will need the support of a promotion in sustainable development, whether it is for human health, and well-being or global ecological protection.

  7. Complex interaction between the immune system and adipose tissue (Review).

    PubMed

    Małgorzewicz, Sylwia; Dardzińska, Jolanta Anna; Gnacińska, Maria; Jankun, Jerzy; Bryl, Ewa; Sworczak, Krzysztof

    2014-01-01

    We review the studies on the links between obesity, the immune system and lifestyle (limited or excessive calorie intake) that provoke changes in the current therapeutic course. There is no doubt that the positive energy balance of the body affects the immune cells, and consequently, the changes intracellular pathways, leading to the disruption of their function. Research suggests that metformin, a drug long used to treat diabetes, and an alternative remedy in the treatment of obesity, increases the activity of 5-adenosinemonophosphate (AMP)-activated kinase (AMPK). Thus, this review comes to the conclusion that alongside traditional methods, such as reducing calorie intake and increasing the energy expenditure of the body, the therapeutic outcome may be improved by implementing drugs affecting the activity of AMPK. In future, other new therapeutic options may be available. The targeting receptors or immunocompetent cells residing in adipose tissue may help to reduce the effects of obesity.

  8. [Brown adipose tissue: the body's own weapon against obesity?].

    PubMed

    Boon, Mariëtte R; Bakker, Leontine E H; Meinders, A Edo; van Marken Lichtenbelt, Wouter; Rensen, Patrick C N; Jazet, Ingrid M

    2013-01-01

    Brown adipose tissue (BAT) dissipates energy stored in triglycerides as heat via the uncoupling protein UCP1. It has recently been discovered that BAT is present and active in adults. BAT is situated predominantly around the aorta and in the supraclavicular area. BAT volume and activity are lower in individuals who are obese. This suggests that BAT significantly contributes to total energy expenditure. Several pathological conditions that are accompanied by activation of BAT, such as hyperthyroidism and phaeochromocytoma, result in the increased expenditure of energy and in weight loss. Various ways in which BAT can be manipulated to increase the expenditure of energy have been identified, e.g. exposure to cold, the use of so-called uncoupling agents or the administration of the hormone irisin. The activation of BAT could potentially be used to induce weight loss.

  9. Decreased adipose tissue zinc content is associated with metabolic parameters in high fat fed Wistar rats.

    PubMed

    Tinkov, Alexey A; Popova, Elizaveta V; Gatiatulina, Evgenia R; Skalnaya, Anastasia A; Yakovenko, Elena N; Alchinova, Irina B; Karganov, Mikhail Y; Skalny, Anatoly V; Nikonorov, Alexandr A

    2016-01-01

    Limited data on adipose tissue zinc content in obesity exist. At the same time, the association between adipose tissue zinc content and metabolic parameters in dietary-induced obesity is poorly studied. Therefore, the primary objective of this study is to assess adipose tissue zinc content and its association  with morphometric parameters, adipokine spectrum, proinflammatory cytokines, and apolipoprotein profile in high fat fed Wistar rats. A total of 48 adult female Wistar rats were used in the present study. Rats were fed either control (10% of fat) or high fat diet (31.6% of fat). Adipose tissue zinc content was assessed using inductively coupled plasma mass spectrometry. Rats' serum was examined for adiponectin, leptin, insulin, interleukin-6, and tumor necrosis factor-α using enzyme-linked immunosorbent assay kits. Serum glucose and apolipoprotein spectrum were also evaluated. High fat feeding resulted in a significant 34% decrease in adipose tissue zinc content in comparison to the control values. Fat pad zinc levels were significantly inversely associated with morphometric parameters, circulating leptin, insulin, tumor necrosis factor-α levels and HOMA-IR values. At the same time,      a significant correlation with apolipoprotein A1 concentration was observed. Generally, the obtained data indicate that (1) high fat feeding results in decreased adipose tissue zinc content; (2) adipose tissue zinc content is tightly associated with excessive adiposity, inflammation, insulin resistance and potentially atherogenic changes.

  10. CT-based analysis of pericoronary adipose tissue density: Relation to cardiovascular risk factors and epicardial adipose tissue volume.

    PubMed

    Hell, Michaela M; Achenbach, Stephan; Schuhbaeck, Annika; Klinghammer, Lutz; May, Matthias S; Marwan, Mohamed

    2016-01-01

    Pericoronary adipose tissue (PCAT) can promote atherosclerosis. Metabolically active and inactive PCAT may display different CT densities. However, CT density could be influenced by partial volume effects and image interpolation. To investigate whether PCAT density values in CT displays differences that are larger than those attributable to interpolation and partial volume effects, which would manifest themselves through the relationship between PCAT density and distance from the contrast-enhanced coronary lumen. PCAT density analysis was performed (417 non-atherosclerotic segments, 63 patients) using dual-source CT with a threshold-based measurement method. Changes in PCAT density values depending on distance from the contrast-enhanced coronary lumen and the influence of cardiovascular risk profile were analyzed. Mean PCAT density was -78.1 ± 5.6 HU. PCAT density decreased from proximal to distal segments in the LAD (-78.0 ± 7.3 vs. -82.4 ± 7.7 HU; p < 0.001). PCAT density was higher close to the lumen compared to more peripheral locations (-76.0 ± 6.7 vs. -78.5 ± 5.4 HU; p < 0.001). Decreasing PCAT density was significantly associated with higher epicardial adipose tissue (EAT) volume and body mass index. There was a trend of lower PCAT values with a family history of coronary artery disease. CT-measured attenuation of PCAT is influenced by EAT volume and body mass index. A decrease of PCAT attenuation with increasing distance from the vessel and from proximal to distal segments may suggest variations in CT density of PCAT due to partial volume effects and image interpolation rather than solely due to differences in tissue composition or metabolic activity. Copyright © 2016 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  11. Insulin action in adipose tissue in type 1 diabetes

    PubMed Central

    Arrieta-Blanco, Francisco; Botella-Carretero, Jose Ignacio; Iglesias, Pedro; Balsa, José Antonio; Zamarrón, Isabel; De la Puerta, Cristina; Arrieta, Juan José; Ramos, Francisco; Vázquez, Clotilde; Rovira, Adela

    2011-01-01

    Background: Insulin action has been reported to be normal in type 1 diabetic patients. However, some studies have reported an insulin resistance state in these patients. The aim of this study was to investigate insulin resistance in a group of type 1 diabetic patients. We studied the insulin action in adipose tissue and analyzed the effects of duration of disease, body mass index (BMI), and glycosylated hemoglobin on insulin action at the receptor and postreceptor levels in adipocytes. Methods: Nine female type 1 diabetic patients with different durations of disease and eight nondiabetic female patients of comparable age and BMI were studied. 125I-insulin binding and U-[14C]-D-glucose transport was measured in a sample of subcutaneous gluteus adipose tissue obtained by open surgical biopsy from each subject. Results: The duration of disease was negatively correlated with both 125I-insulin binding capacity (r = −0.70, P < 0.05) and basal and maximum insulin-stimulated glucose transport (r = −0.87, P < 0.01, and r = −0.88, P < 0.01, respectively). Maximum specific 125I-insulin binding to the receptors in adipocytes was higher in the group of patients with a shorter duration of disease (P < 0.01). Basal and maximum insulin-stimulated glucose transport was significantly higher in the group with less than 5 years of disease (P < 0.01). No correlation was found between BMI and insulin action. Conclusion: Female type 1 diabetic patients have normal insulin action. There is a high glucose uptake in the early phase of the disease, although a longer duration of disease appears to be a contributing factor to a decrease in insulin action in these patients, and involving both receptor and postreceptor mechanisms. PMID:21475629

  12. Adipose tissue gene expression and metabolic health of obese adults

    PubMed Central

    Das, Swapan Kumar; Ma, Lijun; Sharma, Neeraj

    2014-01-01

    Obese subjects with a similar body mass index (BMI) exhibit substantial heterogeneity in gluco- and cardio-metabolic heath phenotypes. However, defining genes that underlie the heterogeneity of metabolic features among obese individuals and determining metabolically healthy and unhealthy phenotypes remain challenging. We conducted unsupervised hierarchical clustering analysis of subcutaneous adipose tissue transcripts from 30 obese men and women ≥40 years old. Despite similar BMIs in all subjects, we found two distinct subgroups, one metabolically healthy (Group 1) and one metabolically unhealthy (Group 2). Subjects in Group 2 showed significantly higher total cholesterol (p=0.005), LDL cholesterol (p=0.006), 2h-Insulin during OGTT (p=0.015) and lower insulin sensitivity (SI, p=0.029) compared to Group 1. We identified significant up-regulation of 141 genes (e.g. MMP9 and SPP1) and down-regulation of 17 genes (e.g. NDRG4 and GINS3) in group 2 subjects. Intriguingly, these differentially expressed transcripts were enriched for genes involved in cardiovascular disease-related processes (p=2.81×10−11–3.74×10−02) and pathways involved in immune and inflammatory response (p=8.32×10−5–0.04). Two down-regulated genes, NDRG4 and GINS3, have been located in a genomic interval associated with cardiac repolarization in published GWASs and zebra fish knockout models. Our study provides evidence that perturbations in the adipose tissue gene expression network are important in defining metabolic health in obese subjects. PMID:25520251

  13. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

    PubMed

    Carrasco-Benso, Maria P; Rivero-Gutierrez, Belen; Lopez-Minguez, Jesus; Anzola, Andrea; Diez-Noguera, Antoni; Madrid, Juan A; Lujan, Juan A; Martínez-Augustin, Olga; Scheer, Frank A J L; Garaulet, Marta

    2016-09-01

    In humans, insulin sensitivity varies according to time of day, with decreased values in the evening and at night. Mechanisms responsible for the diurnal variation in insulin sensitivity are unclear. We investigated whether human adipose tissue (AT) expresses intrinsic circadian rhythms in insulin sensitivity that could contribute to this phenomenon. Subcutaneous and visceral AT biopsies were obtained from extremely obese participants (body mass index, 41.8 ± 6.3 kg/m(2); 46 ± 11 y) during gastric-bypass surgery. To assess the rhythm in insulin signaling, AKT phosphorylation was determined every 4 h over 24 h in vitro in response to different insulin concentrations (0, 1, 10, and 100 nM). Data revealed that subcutaneous AT exhibited robust circadian rhythms in insulin signaling (P < 0.00001). Insulin sensitivity reached its maximum (acrophase) around noon, being 54% higher than during midnight (P = 0.009). The amplitude of the rhythm was positively correlated with in vivo sleep duration (r = 0.53; P = 0.023) and negatively correlated with in vivo bedtime (r = -0.54; P = 0.020). No circadian rhythms were detected in visceral AT (P = 0.643). Here, we demonstrate the relevance of the time of the day for how sensitive AT is to the effects of insulin. Subcutaneous AT shows an endogenous circadian rhythm in insulin sensitivity that could provide an underlying mechanism for the daily rhythm in systemic insulin sensitivity.-Carrasco-Benso, M. P., Rivero-Gutierrez, B., Lopez-Minguez, J., Anzola, A., Diez-Noguera, A., Madrid, J. A., Lujan, J. A., Martínez-Augustin, O., Scheer, F. A. J. L., Garaulet, M. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

  14. Opposite Effects of Soluble Factors Secreted by Adipose Tissue on Proliferating and Quiescent Osteosarcoma Cells.

    PubMed

    Avril, Pierre; Duteille, Franck; Ridel, Perrine; Heymann, Marie-Françoise; De Pinieux, Gonzague; Rédini, Françoise; Blanchard, Frédéric; Heymann, Dominique; Trichet, Valérie; Perrot, Pierre

    2016-03-01

    Autologous adipose tissue transfer may be performed for aesthetic needs following resection of osteosarcoma, the most frequent primary malignant tumor of bone, excluding myeloma. The safety of autologous adipose tissue transfer regarding the potential risk of cancer recurrence must be addressed. Adipose tissue injection was tested in a human osteosarcoma preclinical model induced by MNNG-HOS cells. Culture media without growth factors from fetal bovine serum were conditioned with adipose tissue samples and added to two osteosarcoma cell lines (MNNG-HOS and MG-63) that were cultured in monolayer or maintained in nonadherent spheres, favoring a proliferation or quiescent stage, respectively. Proliferation and cell cycle were analyzed. Adipose tissue injection increased local growth of osteosarcoma in mice but was not associated with aggravation of lung metastasis or osteolysis. Adipose tissue-derived soluble factors increased the in vitro proliferation of osteosarcoma cells up to 180 percent. Interleukin-6 and leptin were measured in higher concentrations in adipose tissue-conditioned medium than in osteosarcoma cell-conditioned medium, but the authors' results indicated that they were not implicated alone. Furthermore, adipose tissue-derived soluble factors did not favor a G0-to-G1 phase transition of MNNG-HOS cells in nonadherent oncospheres. This study indicates that adipose tissue-soluble factors activate osteosarcoma cell cycle from G1 to mitosis phases, but do not promote the transition from quiescent G0 to G1 phases. Autologous adipose tissue transfer may not be involved in the activation of dormant tumor cells or cancer stem cells.

  15. Adipose Tissue Dendritic Cells Are Independent Contributors to Obesity-Induced Inflammation and Insulin Resistance.

    PubMed

    Cho, Kae Won; Zamarron, Brian F; Muir, Lindsey A; Singer, Kanakadurga; Porsche, Cara E; DelProposto, Jennifer B; Geletka, Lynn; Meyer, Kevin A; O'Rourke, Robert W; Lumeng, Carey N

    2016-11-01

    Dynamic changes of adipose tissue leukocytes, including adipose tissue macrophage (ATM) and adipose tissue dendritic cells (ATDCs), contribute to obesity-induced inflammation and metabolic disease. However, clear discrimination between ATDC and ATM in adipose tissue has limited progress in the field of immunometabolism. In this study, we use CD64 to distinguish ATM and ATDC, and investigated the temporal and functional changes in these myeloid populations during obesity. Flow cytometry and immunostaining demonstrated that the definition of ATM as F4/80(+)CD11b(+) cells overlaps with other leukocytes and that CD45(+)CD64(+) is specific for ATM. The expression of core dendritic cell genes was enriched in CD11c(+)CD64(-) cells (ATDC), whereas core macrophage genes were enriched in CD45(+)CD64(+) cells (ATM). CD11c(+)CD64(-) ATDCs expressed MHC class II and costimulatory receptors, and had similar capacity to stimulate CD4(+) T cell proliferation as ATMs. ATDCs were predominantly CD11b(+) conventional dendritic cells and made up the bulk of CD11c(+) cells in adipose tissue with moderate high-fat diet exposure. Mixed chimeric experiments with Ccr2(-/-) mice demonstrated that high-fat diet-induced ATM accumulation from monocytes was dependent on CCR2, whereas ATDC accumulation was less CCR2 dependent. ATDC accumulation during obesity was attenuated in Ccr7(-/-) mice and was associated with decreased adipose tissue inflammation and insulin resistance. CD45(+)CD64(+) ATM and CD45(+)CD64(-)CD11c(+) ATDCs were identified in human obese adipose tissue and ATDCs were increased in s.c. adipose tissue compared with omental adipose tissue. These results support a revised strategy for unambiguous delineation of ATM and ATDC, and suggest that ATDCs are independent contributors to adipose tissue inflammation during obesity. Copyright © 2016 by The American Association of Immunologists, Inc.

  16. Role of cannabinoid receptor 1 in human adipose tissue for lipolysis regulation and insulin resistance.

    PubMed

    Sidibeh, Cherno O; Pereira, Maria J; Lau Börjesson, Joey; Kamble, Prasad G; Skrtic, Stanko; Katsogiannos, Petros; Sundbom, Magnus; Svensson, Maria K; Eriksson, Jan W

    2017-03-01

    We recently showed that the peripheral cannabinoid receptor type 1 (CNR1) gene is upregulated by the synthetic glucocorticoid dexamethasone. CNR1 is highly expressed in the central nervous system and has been a drug target for the treatment of obesity. Here we explore the role of peripheral CNR1 in states of insulin resistance in human adipose tissue. Subcutaneous adipose tissue was obtained from well-controlled type 2 diabetes subjects and controls. Subcutaneous adipose tissue gene expression levels of CNR1 and endocannabinoid synthesizing and degrading enzymes were assessed. Furthermore, paired human subcutaneous adipose tissue and omental adipose tissue from non-diabetic volunteers undergoing kidney donation or bariatric surgery, was incubated with or without dexamethasone. Subcutaneous adipose tissue obtained from volunteers through needle biopsy was incubated with or without dexamethasone and in the presence or absence of the CNR1-specific antagonist AM281. CNR1 gene and protein expression, lipolysis and glucose uptake were evaluated. Subcutaneous adipose tissue CNR1 gene expression levels were 2-fold elevated in type 2 diabetes subjects compared with control subjects. Additionally, gene expression levels of CNR1 and endocannabinoid-regulating enzymes from both groups correlated with markers of insulin resistance. Dexamethasone increased CNR1 expression dose-dependently in subcutaneous adipose tissue and omental adipose tissue by up to 25-fold. Dexamethasone pre-treatment of subcutaneous adipose tissue increased lipolysis rate and reduced glucose uptake. Co-incubation with the CNR1 antagonist AM281 prevented the stimulatory effect on lipolysis, but had no effect on glucose uptake. CNR1 is upregulated in states of type 2 diabetes and insulin resistance. Furthermore, CNR1 is involved in glucocorticoid-regulated lipolysis. Peripheral CNR1 could be an interesting drug target in type 2 diabetes and dyslipidemia.

  17. The Use of Adipose Tissue-Derived Progenitors in Bone Tissue Engineering - a Review

    PubMed Central

    Bhattacharya, Indranil; Ghayor, Chafik; Weber, Franz E.

    2016-01-01

    2500 years ago, Hippocrates realized that bone can heal without scaring. The natural healing potential of bone is, however, restricted to small defects. Extended bone defects caused by trauma or during tumor resections still pose a huge problem in orthopedics and cranio-maxillofacial surgery. Bone tissue engineering strategies using stem cells, growth factors, and scaffolds could overcome the problems with the treatment of extended bone defects. In this review, we give a short overview on bone tissue engineering with emphasis on the use of adipose tissue-derived stem cells and small molecules. PMID:27781021

  18. Implication of low level inflammation in the insulin resistance of adipose tissue at late pregnancy.

    PubMed

    de Castro, J; Sevillano, J; Marciniak, J; Rodriguez, R; González-Martín, C; Viana, M; Eun-suk, O H; de Mouzon, S Hauguel; Herrera, E; Ramos, M P

    2011-11-01

    Insulin resistance is a characteristic of late pregnancy, and adipose tissue is one of the tissues that most actively contributes to the reduced maternal insulin sensitivity. There is evidence that pregnancy is a condition of moderate inflammation, although the physiological role of this low-grade inflammation remains unclear. The present study was designed to validate whether low-grade inflammation plays a role in the development of insulin resistance in adipose tissue during late pregnancy. To this end, we analyzed proinflammatory adipokines and kinases in lumbar adipose tissue of nonpregnant and late pregnant rats at d 18 and 20 of gestation. We found that circulating and tissue levels of adipokines, such as IL-1β, plasminogen activator inhibitor-1, and TNF-α, were increased at late pregnancy, which correlated with insulin resistance. The observed increase in adipokines coincided with an enhanced activation of p38 MAPK in adipose tissue. Treatment of pregnant rats with the p38 MAPK inhibitor SB 202190 increased insulin-stimulated tyrosine phosphorylation of the insulin receptor (IR) and IR substrate-1 in adipose tissue, which was paralleled by a reduction of IR substrate-1 serine phosphorylation and an enhancement of the metabolic actions of insulin. These results indicate that activation of p38 MAPK in adipose tissue contributes to adipose tissue insulin resistance at late pregnancy. Furthermore, the results of the present study support the hypothesis that physiological low-grade inflammation in the maternal organism is relevant to the development of pregnancy-associated insulin resistance.

  19. Implication of Low Level Inflammation in the Insulin Resistance of Adipose Tissue at Late Pregnancy

    PubMed Central

    de Castro, J.; Sevillano, J.; Marciniak, J.; Rodriguez, R.; González-Martín, C.; Viana, M.; Eun-suk, O. H.; de Mouzon, S. Hauguel; Herrera, E.

    2011-01-01

    Insulin resistance is a characteristic of late pregnancy, and adipose tissue is one of the tissues that most actively contributes to the reduced maternal insulin sensitivity. There is evidence that pregnancy is a condition of moderate inflammation, although the physiological role of this low-grade inflammation remains unclear. The present study was designed to validate whether low-grade inflammation plays a role in the development of insulin resistance in adipose tissue during late pregnancy. To this end, we analyzed proinflammatory adipokines and kinases in lumbar adipose tissue of nonpregnant and late pregnant rats at d 18 and 20 of gestation. We found that circulating and tissue levels of adipokines, such as IL-1β, plasminogen activator inhibitor-1, and TNF-α, were increased at late pregnancy, which correlated with insulin resistance. The observed increase in adipokines coincided with an enhanced activation of p38 MAPK in adipose tissue. Treatment of pregnant rats with the p38 MAPK inhibitor SB 202190 increased insulin-stimulated tyrosine phosphorylation of the insulin receptor (IR) and IR substrate-1 in adipose tissue, which was paralleled by a reduction of IR substrate-1 serine phosphorylation and an enhancement of the metabolic actions of insulin. These results indicate that activation of p38 MAPK in adipose tissue contributes to adipose tissue insulin resistance at late pregnancy. Furthermore, the results of the present study support the hypothesis that physiological low-grade inflammation in the maternal organism is relevant to the development of pregnancy-associated insulin resistance. PMID:21914778

  20. Macrophage and adipocyte IGF1 maintain adipose tissue homeostasis during metabolic stresses

    PubMed Central

    Chang, Hye Rim; Kim, Hae Jin; Xu, Xiaoyuan; Ferrante, Anthony W.

    2015-01-01

    Objective IGF1 regulates differentiation and growth of tissues and reduces stress and injury. IGF1 also in a tissue specific manner modulates the differentiation and lipid storage capacity of adipocytes in vitro, but its roles in adipose tissue development and response to stress are not known. Methods To study IGF1 in vivo, we identified the cellular sources of adipose tissue Igf1 expression and generated mice with targeted deletion in adipocytes and macrophages. We studied the effects of adipocyte and macrophage deficiency of IGF1 on adipose tissue development, and the response to a chronic (high fat feeding) and acute (cold challenge) stress. Results The expression of Igf1 by adipose tissue is derived from multiple cell types including adipocytes and macrophages. In lean animals, adipocytes are the primary source of IGF1 but in obesity expression by adipocytes is reduced and by macrophages increased, so as to maintain overall adipose tissue Igf1 expression. Genetic deletion studies reveal that adipocyte-derived IGF1 regulates perigonadal but not subcutaneous adipose tissue mass during high fat feeding and the development of obesity. Conversely, macrophage-derived IGF1 acutely modulates PGAT (PGAT) mass during thermogenic challenges. Conclusions Local IGF1 is not required in lean adipose tissue development but required to maintain homeostasis during both chronic and acute metabolic stresses. PMID:26663512

  1. Castration-Induced Changes in Mouse Epididymal White Adipose Tissue

    PubMed Central

    Floryk, Daniel; Kurosaka, Shinji; Tanimoto, Ryuta; Yang, Guang; Goltsov, Alexei; Park, Sanghee; Thompson, Timothy C.

    2013-01-01

    We analyzed the effects of castration on epididymal white adipose tissue (WAT) in C57BL/6J mice which were fed a regular or high-fat diet. Fourteen days following surgical castration profound effects on WAT tissue such as reductions in WAT wet weight and WAT/body weight ratio, induction of lipolysis and morphologic changes characterized by smaller adipocytes, and increased stromal cell compartment were documented in both dietary groups. Castrated animals had decreased serum leptin levels independent of diet but diet-dependent decreases in serum adiponectin and resistin. The castrated high-fat group had dramatically lower serum triglyceride levels. Immunohistochemical analysis revealed higher staining for smooth muscle actin, macrophage marker Mac-3, and Cxcl5 in the castrated than in the control mice in both dietary groups. We also detected increased fatty-acid synthase expression in the stromal compartment of WAT in the regular-diet group. Castration also reduces the expression of androgen receptor in WAT in the regular-diet group. We conclude that that castration reduces tissue mass and affects biologic function of WAT in mice. PMID:21782885

  2. ApoE and the role of very low density lipoproteins in adipose tissue inflammation Wang: ApoE and adipose tissue inflammation

    PubMed Central

    Wang, Jiali; Perrard, Xiaoyuan Dai; Perrard, Jerry L.; Mukherjee, Aparna; Rosales, Corina; Chen, Yuguo; Smith, C. Wayne; Pownall, Henry J.; Ballantyne, Christie M.; Wu, Huaizhu

    2012-01-01

    Objective To identify the role of triglyceride-rich lipoproteins (TGRLs) and apoE, a major apolipoprotein in TGRLs, in adipose tissue inflammation with high-fat diet (HFD)–induced obesity. Methods Male apoE−/− and C57BL/6J wild-type (WT) mice fed HFD for 12 weeks were assessed for metabolic and inflammatory parameters. ApoE−/− and WT mice were orally gavaged with [3H]palmitic acid to examine the role of apoE in fat delivery to adipose tissue. VLDL from obese apoE−/− mice were intravenously injected into lean WT or apoE−/− mice to test potential contribution of TGRLs-derived fat delivery to inflammation in adipose tissue and the role of apoE. Results ApoE−/− mice gained less body weight, and had less fat mass and lower triglyceride levels in skeletal muscle than WT. ApoE−/− mice on HFD had better insulin sensitivity than WT even when comparing body weight–matched mice. Compared to WT mice, apoE−/− mice on HFD had lower levels of inflammatory cytokines/chemokines and CD11c in adipose tissue, and lower levels of inflammatory markers in skeletal muscle. At 6 hours after oral gavage with [3H]palmitic acid, incorporation of [3H]palmitic acid into adipose tissue and skeletal muscle was lower in apoE−/− mice. After repeated daily injection for 3 days, VLDL from obese apoE−/− mice induced inflammation in adipose tissue of recipient WT but not apoE−/− mice. Conclusion In HFD-induced obesity, apoE plays an important role in inflammation in adipose tissue and skeletal muscle, likely by mediating TGRL-derived fat delivery to these tissues. PMID:22770993

  3. Role of developmental transcription factors in white, brown and beige adipose tissues.

    PubMed

    Hilton, Catriona; Karpe, Fredrik; Pinnick, Katherine E

    2015-05-01

    In this review we discuss the role of developmental transcription factors in adipose tissue biology with a focus on how these developmental genes may contribute to regional variation in adipose tissue distribution and function. Regional, depot-specific, differences in lipid handling and signalling (lipolysis, lipid storage and adipokine/lipokine signalling) are important determinants of metabolic health. At a cellular level, preadipocytes removed from their original depot and cultured in vitro retain depot-specific functional properties, implying that these are intrinsic to the cells and not a function of their environment in situ. High throughput screening has identified a number of developmental transcription factors involved in embryological development, including members of the Homeobox and T-Box gene families, that are strongly differentially expressed between regional white adipose tissue depots and also between brown and white adipose tissue. However, the significance of depot-specific developmental signatures remains unclear. Developmental transcription factors determine body patterning during embryogenesis. The divergent developmental origins of regional adipose tissue depots may explain their differing functional characteristics. There is evidence from human genetics that developmental genes determine adipose tissue distribution: in GWAS studies a number of developmental genes have been identified as being correlated with anthropometric measures of adiposity and fat distribution. Additionally, compelling functional studies have recently implicated developmental genes in both white adipogenesis and the so-called 'browning' of white adipose tissue. Understanding the genetic and developmental pathways in adipose tissue may help uncover novel ways to intervene with the function of adipose tissue in order to promote health.

  4. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue.

    PubMed

    Ribeiro, Ricardo; Monteiro, Cátia; Catalán, Victoria; Hu, Pingzhao; Cunha, Virgínia; Rodríguez, Amaia; Gómez-Ambrosi, Javier; Fraga, Avelino; Príncipe, Paulo; Lobato, Carlos; Lobo, Francisco; Morais, António; Silva, Vitor; Sanches-Magalhães, José; Oliveira, Jorge; Pina, Francisco; Lopes, Carlos; Medeiros, Rui; Frühbeck, Gema

    2012-09-25

    Periprostatic (PP) adipose tissue surrounds the prostate, an organ with a high predisposition to become malignant. Frequently, growing prostatic tumor cells extend beyond the prostatic organ towards this fat depot. This study aimed to determine the genome-wide expression of genes in PP adipose tissue in obesity/overweight (OB/OW) and prostate cancer patients. Differentially expressed genes in human PP adipose tissue were identified using microarrays. Analyses were conducted according to the donors' body mass index characteristics (OB/OW versus lean) and prostate disease (extra prostatic cancer versus organ confined prostate cancer versus benign prostatic hyperplasia). Selected genes with altered expression were validated by real-time PCR. Ingenuity Pathway Analysis (IPA) was used to investigate gene ontology, canonical pathways and functional networks. In the PP adipose tissue of OB/OW subjects, we found altered expression of genes encoding molecules involved in adipogenic/anti-lipolytic, proliferative/anti-apoptotic, and mild immunoinflammatory processes (for example, FADS1, down-regulated, and LEP and ANGPT1, both up-regulated). Conversely, in the PP adipose tissue of subjects with prostate cancer, altered genes were related to adipose tissue cellular activity (increased cell proliferation/differentiation, cell cycle activation and anti-apoptosis), whereas a downward impact on immunity and inflammation was also observed, mostly related to the complement (down-regulation of CFH). Interestingly, we found that the microRNA MIRLET7A2 was overexpressed in the PP adipose tissue of prostate cancer patients. Obesity and excess adiposity modified the expression of PP adipose tissue genes to ultimately foster fat mass growth. In patients with prostate cancer the expression profile of PP adipose tissue accounted for hypercellularity and reduced immunosurveillance. Both findings may be liable to promote a favorable environment for prostate cancer progression.

  5. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue

    PubMed Central

    2012-01-01

    Background Periprostatic (PP) adipose tissue surrounds the prostate, an organ with a high predisposition to become malignant. Frequently, growing prostatic tumor cells extend beyond the prostatic organ towards this fat depot. This study aimed to determine the genome-wide expression of genes in PP adipose tissue in obesity/overweight (OB/OW) and prostate cancer patients. Methods Differentially expressed genes in human PP adipose tissue were identified using microarrays. Analyses were conducted according to the donors' body mass index characteristics (OB/OW versus lean) and prostate disease (extra prostatic cancer versus organ confined prostate cancer versus benign prostatic hyperplasia). Selected genes with altered expression were validated by real-time PCR. Ingenuity Pathway Analysis (IPA) was used to investigate gene ontology, canonical pathways and functional networks. Results In the PP adipose tissue of OB/OW subjects, we found altered expression of genes encoding molecules involved in adipogenic/anti-lipolytic, proliferative/anti-apoptotic, and mild immunoinflammatory processes (for example, FADS1, down-regulated, and LEP and ANGPT1, both up-regulated). Conversely, in the PP adipose tissue of subjects with prostate cancer, altered genes were related to adipose tissue cellular activity (increased cell proliferation/differentiation, cell cycle activation and anti-apoptosis), whereas a downward impact on immunity and inflammation was also observed, mostly related to the complement (down-regulation of CFH). Interestingly, we found that the microRNA MIRLET7A2 was overexpressed in the PP adipose tissue of prostate cancer patients. Conclusions Obesity and excess adiposity modified the expression of PP adipose tissue genes to ultimately foster fat mass growth. In patients with prostate cancer the expression profile of PP adipose tissue accounted for hypercellularity and reduced immunosurveillance. Both findings may be liable to promote a favorable environment for

  6. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    PubMed Central

    He, Yunfan; Lu, Feng

    2016-01-01

    Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells. PMID:26977158

  7. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells.

    PubMed

    He, Yunfan; Lu, Feng

    2016-01-01

    Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  8. Macrophages Undergo M1-to-M2 Transition in Adipose Tissue Regeneration in a Rat Tissue Engineering Model.

    PubMed

    Li, Zhijin; Xu, Fangfang; Wang, Zhifa; Dai, Taiqiang; Ma, Chao; Liu, Bin; Liu, Yanpu

    2016-10-01

    Macrophages are involved in the full processes of tissue healing or regeneration and play an important role in the regeneration of a variety of tissues. Although recent evidence suggests the role of different macrophage phenotypes in adipose tissue expansion, metabolism, and remodeling, the spectrum of macrophage phenotype in the adipose tissue engineering field remains unknown. The present study established a rat model of adipose tissue regeneration using a tissue engineering chamber. Macrophage phenotypes were assessed during the regenerative process in the model. Neo-adipose tissue was generated 6 weeks after implantation. Macrophages were obvious in the chamber constructs 3 days after implantation, peaked at day 7, and significantly decreased thereafter. At day 3, macrophages were predominantly M1 macrophages (CCR7+), and there were few M2 macrophages (CD206+). At day 7, the percentage of M2 macrophages significantly increased and remained stable at day 14. M2 macrophages became the predominant macrophage population at 42 days. Enzyme-linked immunosorbent assay demonstrated transition of cytokines from pro-inflammatory to anti-inflammatory, which was consistent with the transition of macrophage phenotype from M1 to M2. These results showed distinct transition of macrophage phenotypes from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 in adipose tissue regeneration in our tissue engineering model. This study provides new insight into macrophage phenotype transition in the regeneration of adipose tissue.

  9. Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation[S

    PubMed Central

    Burhans, Maggie S.; Flowers, Matthew T.; Harrington, Kristin R.; Bond, Laura M.; Guo, Chang-An; Anderson, Rozalyn M.; Ntambi, James M.

    2015-01-01

    Hepatic steatosis is associated with detrimental metabolic phenotypes including enhanced risk for diabetes. Stearoyl-CoA desaturases (SCDs) catalyze the synthesis of MUFAs. In mice, genetic ablation of SCDs reduces hepatic de novo lipogenesis (DNL) and protects against diet-induced hepatic steatosis and adiposity. To understand the mechanism by which hepatic MUFA production influences adipose tissue stores, we created two liver-specific transgenic mouse models in the SCD1 knockout that express either human SCD5 or mouse SCD3, that synthesize oleate and palmitoleate, respectively. We demonstrate that hepatic de novo synthesized oleate, but not palmitoleate, stimulate hepatic lipid accumulation and adiposity, reversing the protective effect of the global SCD1 knockout under lipogenic conditions. Unexpectedly, the accumulation of hepatic lipid occurred without induction of the hepatic DNL program. Changes in hepatic lipid composition were reflected in plasma and in adipose tissue. Importantly, endogenously synthesized hepatic oleate was associated with suppressed DNL and fatty acid oxidation in white adipose tissue. Regression analysis revealed a strong correlation between adipose tissue lipid fuel utilization and hepatic and adipose tissue lipid storage. These data suggest an extrahepatic mechanism where endogenous hepatic oleate regulates lipid homeostasis in adipose tissues. PMID:25555387

  10. Automatic Segmentation and Quantification of White and Brown Adipose Tissues from PET/CT Scans.

    PubMed

    Hussein, Sarfaraz; Green, Aileen; Watane, Arjun; Reiter, David; Chen, Xinjian; Papadakis, Georgios Z; Wood, Bradford; Cypess, Aaron; Osman, Medhat; Bagci, Ulas

    2016-12-06

    In this paper, we investigate the automatic detection of white and brown adipose tissues using Positron Emission Tomography/ Computed Tomography (PET/CT) scans, and develop methods for the quantification of these tissues at the whole-body and body-region levels. We propose a patient-specific automatic adiposity analysis system with two modules. In the first module, we detect white adipose tissue (WAT) and its two sub-types from CT scans: Visceral Adipose Tissue (VAT) and Subcutaneous Adipose Tissue (SAT). This process relies conventionally on manual or semi-automated segmentation, leading to inefficient solutions. Our novel framework addresses this challenge by proposing an unsupervised learning method to separate VAT from SAT in the abdominal region for the clinical quantification of central obesity. This step is followed by a context driven label fusion algorithm through sparse 3D Conditional Random Fields (CRF) for volumetric adiposity analysis. In the second module, we automatically detect, segment, and quantify brown adipose tissue (BAT) using PET scans because unlike WAT, BAT is metabolically active. After identifying BAT regions using PET, we perform a co-segmentation procedure utilizing asymmetric complementary information from PET and CT. Finally, we present a new probabilistic distance metric for differentiating BAT from non-BAT regions. Both modules are integrated via an automatic body-region detection unit based on one-shot learning. Experimental evaluations conducted on 151 PET/CT scans achieve state-of-the-art performances in both central obesity as well as brown adiposity quantification.

  11. Rorα deficiency and decreased adiposity are associated with induction of thermogenic gene expression in subcutaneous white adipose and brown adipose tissue.

    PubMed

    Lau, Patrick; Tuong, Zewen K; Wang, Shu-Ching; Fitzsimmons, Rebecca L; Goode, Joel M; Thomas, Gethin P; Cowin, Gary J; Pearen, Michael A; Mardon, Karine; Stow, Jennifer L; Muscat, George E O

    2015-01-15

    The Rar-related orphan receptor-α (Rorα) is a nuclear receptor that regulates adiposity and is a potential regulator of energy homeostasis. We have demonstrated that the Rorα-deficient staggerer (sg/sg) mice display a lean and obesity-resistant phenotype. Adaptive Ucp1-dependent thermogenesis in beige/brite and brown adipose tissue serves as a mechanism to increase energy expenditure and resist obesity. DEXA and MRI analysis demonstrated significantly decreased total fat mass and fat/lean mass tissue ratio in male chow-fed sg/sg mice relative to wt mice. In addition, we observed increased Ucp1 expression in brown adipose and subcutaneous white adipose tissue but not in visceral adipose tissue from Rorα-deficient mice. Moreover, this was associated with significant increases in the expression of the mRNAs encoding the thermogenic genes (i.e., markers of brown and beige adipose) Pparα, Errα, Dio2, Acot11/Bfit, Cpt1β, and Cidea in the subcutaneous adipose in the sg/sg relative to WT mice. These changes in thermogenic gene expression involved the significantly increased expression of the (cell-fate controlling) histone-lysine N-methyltransferase 1 (Ehmt1), which stabilizes the Prdm16 transcriptional complex. Moreover, primary brown adipocytes from sg/sg mice displayed a higher metabolic rate, and further analysis was consistent with increased uncoupling. Finally, core body temperature analysis and infrared thermography demonstrated that the sg/sg mice maintained greater thermal control and cold tolerance relative to the WT littermates. We suggest that enhanced Ucp1 and thermogenic gene expression/activity may be an important contributor to the lean, obesity-resistant phenotype in Rorα-deficient mice.

  12. Impact of the cardiovascular system-associated adipose tissue on atherosclerotic pathology.

    PubMed

    Chistiakov, Dimitry A; Grechko, Andrey V; Myasoedova, Veronika A; Melnichenko, Alexandra A; Orekhov, Alexander N

    2017-08-01

    Cardiac obesity makes an important contribution to the pathogenesis of cardiovascular disease. One of the important pathways of this contribution is the inflammatory process that takes place in the adipose tissue. In this review, we consider the role of the cardiovascular system-associated fat in atherosclerotic cardiovascular pathology and a non-atherosclerotic cause of coronary artery disease, such as atrial fibrillation. Cardiovascular system-associated fat not only serves as the energy store, but also releases adipokines that control local and systemic metabolism, heart/vascular function and vessel tone, and a number of vasodilating and anti-inflammatory substances. Adipokine appears to play an important protective role in cardiovascular system. Under chronic inflammation conditions, the repertoire of signaling molecules secreted by cardiac fat can be altered, leading to a higher amount of pro-inflammatory messengers, vasoconstrictors, profibrotic modulators. This further aggravates cardiovascular inflammation and leads to hypertension, induction of the pathological tissue remodeling and cardiac fibrosis. Contemporary imaging techniques showed that epicardial fat thickness correlates with the visceral fat mass, which is an established risk factor and predictor of cardiovascular disease in obese subjects. However, this correlation is no longer present after adjustment for other covariates. Nevertheless, recent studies showed that pericardial fat volume and epicardial fat thickness can probably serve as a better indicator for atrial fibrillation. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Adipose Tissue Derived Stem Cells Promote Prostate Tumor Growth

    PubMed Central

    Prantl, Lukas; Muehlberg, Fabian; Navone, Nora M.; Song, Yao-Hua; Vykoukal, Jody; Logothetis, Christopher J.; Alt, Eckhard U.

    2016-01-01

    BACKGROUND Recent evidence indicates that cancer stem cells play an important role in tumor initiation and maintenance. Additionally, the effect of tissue-resident stem cells located in the surrounding healthy tissue on tumor progression has been demonstrated. While most knowledge has been derived from studies of breast cancer cells, little is known regarding the influence of tissue resident stem cells on the tumor biology of prostate cancer. METHODS Twenty male athymic Swiss nu/nu mice (age: 6–8 weeks) were randomized into two treatment groups: 1) subcutaneous injection of 106 MDA PCa 118b human prostate cancer cells into the upper back or 2) subcutaneous injection of 106 MDA PCa 118b cells mixed directly with 105 GFP-labeled human adipose tissue-derived stem cells (hASCs). Tumor growth and volumes over the ensuing 3 weeks were assessed using calipers and micro-computed tomography. Immunohistochemistry was performed to identify engrafted hASCs in tumor sections. RESULTS At 3 weeks after injection, the mean tumor volume in the MDA PCa 118b/hASC co-injection group (1019.9