Science.gov

Sample records for adipose tissue increased

  1. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    SciTech Connect

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo; Horiuchi, Masatsugu

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  2. Ovariectomy in mature mice does not increase food intake, but increases adiposity and adipose tissue inflammation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Menopause, characterized by reduced estrogen (E2), is associated with increased adiposity and metabolic pathology. Molecular mechanisms underlying this association between low E2 status and metabolic disease are not fully elucidated. When mice are fed a high fat diet (HFD) to induce obesity and diab...

  3. Mice that are fed a high-fat diet display increased hepcidin expression in adipose tissue.

    PubMed

    Gotardo, Érica Martins Ferreira; dos Santos, Aline Noronha; Miyashiro, Renan Akira; Gambero, Sheley; Rocha, Thalita; Ribeiro, Marcelo Lima; Gambero, Alessandra

    2013-01-01

    Since the discovery that hepcidin is expressed in the adipose tissue of obese subjects, attention has been increasingly focused on alterations in iron homeostasis that are associated with adiposity. We examined the production of hepcidin, the expression of hepcidin-related genes and the iron content of the adipose tissue in obesity using Swiss mice fed a high-fat diet (HFD). The mice were maintained on a control diet or HFD for 12 or 24 wk, and body weight, adiposity and glucose homeostasis were evaluated. The expression of several genes (hepcidin, TfR1, TfR2, DMT1, FT-heavy, ferroportin, IRP-1, IRP-2 and HIF-1) and the protein expression of hepcidin and IL-6 were quantified. The iron level was assessed using a Prussian blue reaction in paraffin-embedded tissue. After 24 wk on the HFD, we observed increases in the levels of hepcidin in the serum and the visceral adipose tissue. The IL-6 levels also increased in the visceral adipose tissue. Adipocytes isolated from the visceral adipose tissues of lean and obese mice expressed hepcidin at comparable levels; however, isolated macrophages from the stromal vascular fraction expressed higher hepcidin levels. Adipose tissues from obese mice displayed increased tfR2 expression and the presence of iron. Our results indicate that IL-6 and iron may affect the signaling pathways governing hepcidin expression. Thus, the mice fed HFD for 24 wk represent a suitable model for the study of obesity-linked hepcidin alterations. In addition, hepcidin may play local roles in controlling iron availability and interfering with inflammation in adipose tissue.

  4. Increased adipose tissue expression of Grb14 in several models of insulin resistance.

    PubMed

    Cariou, Bertrand; Capitaine, Nadège; Le Marcis, Véronique; Vega, Nathalie; Béréziat, Véronique; Kergoat, Micheline; Laville, Martine; Girard, Jean; Vidal, Hubert; Burnol, Anne-Françoise

    2004-06-01

    Grb14 is an effector of insulin signaling, which directly inhibits insulin receptor catalytic activity in vitro. Here, we investigated whether the expression of Grb14 and its binding partner ZIP (PKC zeta interacting protein) is regulated during insulin resistance in type 2 diabetic rodents and humans. Grb14 expression was increased in adipose tissue of both ob/ob mice and Goto-Kakizaki (GK) rats, whereas there was no difference in liver. An increase was also observed in subcutaneous adipose tissue of type 2 diabetic subjects when compared with controls. ZIP expression was increased in adipose tissue of ob/ob mice and type 2 diabetic patients, but it did not vary in GK rats. Hormonal regulation of Grb14 and ZIP expression was then investigated in 3T3-F442A adipocytes. In this model, insulin stimulated Grb14 expression, while TNF-alpha increased ZIP expression. Moreover, the insulin-sensitizing drugs thiazolidinediones (TZDs) decreased Grb14 expression in 3T3-F442A adipocytes. Finally, we investigated the dynamic regulation of Grb14 expression in ob/ob mice in several conditions improving their insulin sensitivity. Prolonged fasting and treatment with metformin significantly decreased Grb14 expression in peri-epidydimal adipose tissue, while there was only a trend to a diminution after TZD treatment. Taken together, these results suggest that the regulation of Grb14 expression in adipose tissue may play a physiological role in insulin sensitivity.

  5. Exercise and adrenaline increase PGC-1α mRNA expression in rat adipose tissue

    PubMed Central

    Sutherland, Lindsey N; Bomhof, Marc R; Capozzi, Lauren C; Basaraba, Susan A U; Wright, David C

    2009-01-01

    The purpose of the present investigation was to explore the effects of exercise and adrenaline on the mRNA expression of PGC-1α, a master regulator of mitochondrial biogenesis, in rat abdominal adipose tissue. We hypothesized that (1) exercise training would increase PGC-1α mRNA expression in association with increases in mitochondrial marker enzymes, (2) adrenaline would increase PGC-1α mRNA expression and (3) the effect of exercise on PGC-1α mRNA expression in white adipose tissue would be attenuated by a β-blocker. Two hours of daily swim training for 4 weeks led to increases in mitochondrial marker proteins and PGC-1α mRNA expression in epididymal and retroperitoneal fat depots. Additionally, a single 2 h bout of exercise led to increases in PGC-1α mRNA expression immediately following exercise cessation. Adrenaline treatment of adipose tissue organ cultures led to dose-dependent increases in PGC-1α mRNA expression. A supra-physiological concentration of adrenaline increased PGC-1α mRNA expression in epididymal but not retroperitoneal adipose tissue. β-Blockade attenuated the effects of an acute bout of exercise on PGC-1α mRNA expression in epididymal but not retroperitoneal fat pads. In summary, this is the first investigation to demonstrate that exercise training, an acute bout of exercise and adrenaline all increase PGC-1α mRNA expression in rat white adipose tissue. Furthermore it would appear that increases in circulating catecholamine levels may be one potential mechanism mediating exercise induced increases in PGC-1α mRNA expression in rat abdominal adipose tissue. PMID:19221126

  6. Agouti expression in human adipose tissue: functional consequences and increased expression in type 2 diabetes.

    PubMed

    Smith, Steven R; Gawronska-Kozak, Barbara; Janderová, Lenka; Nguyen, Taylor; Murrell, Angela; Stephens, Jacqueline M; Mynatt, Randall L

    2003-12-01

    It is well recognized that the agouti/melanocortin system is an important regulator of body weight homeostasis. Given that agouti is expressed in human adipose tissue and that the ectopic expression of agouti in adipose tissue results in moderately obese mice, the link between agouti expression in human adipose tissue and obesity/type 2 diabetes was investigated. Although there was no apparent relationship between agouti mRNA levels and BMI, agouti mRNA levels were significantly elevated in subjects with type 2 diabetes. The regulation of agouti in cultured human adipocytes revealed that insulin did not regulate agouti mRNA, whereas dexamethasone treatment potently increased the levels of agouti mRNA. Experiments with cultured human preadipocytes and with cells obtained from transgenic mice that overexpress agouti demonstrated that melanocortin receptor (MCR) signaling in adipose tissue can regulate both preadipocyte proliferation and differentiation. Taken together, these results reveal that agouti can regulate adipogenesis at several levels and suggest that there are functional consequences of elevated agouti levels in human adipose tissue. The influence of MCR signaling on adipogenesis combined with the well-established role of MCR signaling in the hypothalamus suggest that adipogenesis is coordinately regulated with food intake and energy expenditure.

  7. Pharmacologic activation of estrogen receptor β increases mitochondrial function, energy expenditure, and brown adipose tissue.

    PubMed

    Ponnusamy, Suriyan; Tran, Quynh T; Harvey, Innocence; Smallwood, Heather S; Thiyagarajan, Thirumagal; Banerjee, Souvik; Johnson, Daniel L; Dalton, James T; Sullivan, Ryan D; Miller, Duane D; Bridges, Dave; Narayanan, Ramesh

    2017-01-01

    Most satiety-inducing obesity therapeutics, despite modest efficacy, have safety concerns that underscore the need for effective peripherally acting drugs. An attractive therapeutic approach for obesity is to optimize/maximize energy expenditure by increasing energy-utilizing thermogenic brown adipose tissue. We used in vivo and in vitro models to determine the role of estrogen receptor β (ER-β) and its ligands on adipose biology. RNA sequencing and metabolomics were used to determine the mechanism of action of ER-β and its ligands. Estrogen receptor β (ER-β) and its selective ligand reprogrammed preadipocytes and precursor stem cells into brown adipose tissue and increased mitochondrial respiration. An ER-β-selective ligand increased markers of tricarboxylic acid-dependent and -independent energy biogenesis and oxygen consumption in mice without a concomitant increase in physical activity or food consumption, all culminating in significantly reduced weight gain and adiposity. The antiobesity effects of ER-β ligand were not observed in ER-β-knockout mice. Serum metabolite profiles of adult lean and juvenile mice were comparable, while that of adult obese mice was distinct, indicating a possible impact of obesity on age-dependent metabolism. This phenotype was partially reversed by ER-β-selective ligand. These data highlight a new role for ER-β in adipose biology and its potential to be a safer alternative peripheral therapeutic target for obesity.-Ponnusamy, S., Tran, Q. T., Harvey, I., Smallwood, H. S., Thiyagarajan, T., Banerjee, S., Johnson, D. L., Dalton, J. T., Sullivan, R. D., Miller, D. D., Bridges, D., Narayanan, R. Pharmacologic activation of estrogen receptor β increases mitochondrial function, energy expenditure, and brown adipose tissue.

  8. Loss of fat with increased adipose triglyceride lipase-mediated lipolysis in adipose tissue during laying stages in quail.

    PubMed

    Yang, Shujin; Suh, Yeunsu; Choi, Young Min; Shin, Sangsu; Han, Jae Yong; Lee, Kichoon

    2013-01-01

    The goal of the current study was to investigate regulation of key genes involved in lipid metabolism in adipose and liver to relate lipolytic and lipogenic capacities with physiological changes at the pre-laying, onset of laying, and actively laying stages of quail. Followed by a 50 % increase from pre-laying to onset of laying, adipose to body weight ratio was significantly reduced by 60 % from the onset of laying to the actively laying stage (P < 0.05), mainly resulting from the significantly increased adipocyte size from the pre-laying stage to the onset of laying and reduction of adipocyte size from the onset of laying to the actively laying stage (P < 0.05). In the adipose tissue of actively laying quail, increased protein expression and phosphorylation of adipose triglyceride lipase (ATGL) together with an elevated mRNA expression of comparative gene identification-58, an activator of ATGL, contributes to increased lipolytic activity, as proved by increased amounts of plasma non-esterified fatty acid (P < 0.05). In addition, decreased mRNA expression of fatty acid transport protein in the actively laying quail could contribute to the adipocyte hypotrophy (P < 0.05). In the liver, relative mRNA expression of apo-very low density lipoprotein (VLDL)-II increased significantly from the pre-laying to actively laying stages (P < 0.05), indicating increased apoVLDL-II actively facilitated VLDL secretion in the actively laying quail. These results suggest that the laying birds undergo active lipolysis in the adipocyte, and increase VLDL secretion from the liver in order to secure a lipid supply for yolk maturation.

  9. Effects of Increased Free Fatty Acid Availability on Adipose Tissue Fatty Acid Storage in Men

    PubMed Central

    Mundi, Manpreet S.; Koutsari, Chistina

    2014-01-01

    Context: A portion of free fatty acids (FFA) released from adipose tissue lipolysis are re-stored in adipocytes via direct uptake. Rates of direct adipose tissue FFA storage are much greater in women than men, but women also have greater systemic FFA flux and more body fat. Objective: We tested the hypotheses that experimental increases in FFA in men would equalize the rates of direct adipose tissue FFA storage in men and women. Design: We used a lipid emulsion infusion to raise FFA in men to levels seen in post-absorptive women. Direct FFA storage (μmol·kg fat−1·min−1) rates in abdominal and femoral fat was assessed using stable isotope tracer infusions to measure FFA disappearance rates and an iv FFA radiotracer bolus/timed biopsy. Setting: These studies were performed in a Clinical Research Center. Participants: Data from 13 non-obese women was compared with that from eight obese and eight non-obese men. Intervention: The men received a lipid emulsion infusion to raise FFA. Main Outcome Measures: We measured the rates of direct FFA storage in abdominal and femoral adipose tissue. Results: The three groups were similar in age and FFA flux by design; obese men had similar body fat percentage as non-obese women. Despite matching for FFA concentrations and flux, FFA storage per kg abdominal (P < .01) and femoral (P < .001) fat was less in both lean and obese men than in non-obese women. Abdominal FFA storage rates were correlated with proteins/enzymes in the FFA uptake/triglyceride synthesis pathway in men. Conclusion: The lesser rates of direct FFA adipose tissue in men compared with women cannot be explained by reduced FFA availability. PMID:25192251

  10. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity.

    PubMed

    Lumeng, Carey N; Deyoung, Stephanie M; Bodzin, Jennifer L; Saltiel, Alan R

    2007-01-01

    Although recent studies show that adipose tissue macrophages (ATMs) participate in the inflammatory changes in obesity and contribute to insulin resistance, the properties of these cells are not well understood. We hypothesized that ATMs recruited to adipose tissue during a high-fat diet have unique inflammatory properties compared with resident tissue ATMs. Using a dye (PKH26) to pulse label ATMs in vivo, we purified macrophages recruited to white adipose tissue during a high-fat diet. Comparison of gene expression in recruited and resident ATMs using real-time RT-PCR and cDNA microarrays showed that recruited ATMs overexpress genes important in macrophage migration and phagocytosis, including interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and C-C chemokine receptor 2 (CCR2). Many of these genes were not induced in ATMs from high-fat diet-fed CCR2 knockout mice, supporting the importance of CCR2 in regulating recruitment of inflammatory ATMs during obesity. Additionally, expression of Apoe was decreased, whereas genes important in lipid metabolism, such as Pparg, Adfp, Srepf1, and Apob48r, were increased in the recruited macrophages. In agreement with this, ATMs from obese mice had increased lipid content compared with those from lean mice. These studies demonstrate that recruited ATMs in obese animals represent a subclass of macrophages with unique properties.

  11. Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity.

    PubMed

    Kooijman, Sander; van den Berg, Rosa; Ramkisoensing, Ashna; Boon, Mariëtte R; Kuipers, Eline N; Loef, Marieke; Zonneveld, Tom C M; Lucassen, Eliane A; Sips, Hetty C M; Chatzispyrou, Iliana A; Houtkooper, Riekelt H; Meijer, Johanna H; Coomans, Claudia P; Biermasz, Nienke R; Rensen, Patrick C N

    2015-05-26

    Disruption of circadian rhythmicity is associated with obesity and related disorders, including type 2 diabetes and cardiovascular disease. Specifically, prolonged artificial light exposure associates with obesity in humans, although the underlying mechanism is unclear. Here, we report that increasing the daily hours of light exposure increases body adiposity through attenuation of brown adipose tissue (BAT) activity, a major contributor of energy expenditure. Mice exposed to a prolonged day length of 16- and 24-h light, compared with regular 12-h light, showed increased adiposity without affecting food intake or locomotor activity. Mechanistically, we demonstrated that prolonged day length decreases sympathetic input into BAT and reduces β3-adrenergic intracellular signaling. Concomitantly, prolonging day length decreased the uptake of fatty acids from triglyceride-rich lipoproteins, as well as of glucose from plasma selectively by BAT. We conclude that impaired BAT activity is an important mediator in the association between disturbed circadian rhythm and adiposity, and anticipate that activation of BAT may overcome the adverse metabolic consequences of disturbed circadian rhythmicity.

  12. Prolonged daily light exposure increases body fat mass through attenuation of brown adipose tissue activity

    PubMed Central

    Kooijman, Sander; van den Berg, Rosa; Ramkisoensing, Ashna; Boon, Mariëtte R.; Kuipers, Eline N.; Loef, Marieke; Zonneveld, Tom C. M.; Lucassen, Eliane A.; Sips, Hetty C. M.; Chatzispyrou, Iliana A.; Houtkooper, Riekelt H.; Meijer, Johanna H.; Coomans, Claudia P.; Biermasz, Nienke R.; Rensen, Patrick C. N.

    2015-01-01

    Disruption of circadian rhythmicity is associated with obesity and related disorders, including type 2 diabetes and cardiovascular disease. Specifically, prolonged artificial light exposure associates with obesity in humans, although the underlying mechanism is unclear. Here, we report that increasing the daily hours of light exposure increases body adiposity through attenuation of brown adipose tissue (BAT) activity, a major contributor of energy expenditure. Mice exposed to a prolonged day length of 16- and 24-h light, compared with regular 12-h light, showed increased adiposity without affecting food intake or locomotor activity. Mechanistically, we demonstrated that prolonged day length decreases sympathetic input into BAT and reduces β3-adrenergic intracellular signaling. Concomitantly, prolonging day length decreased the uptake of fatty acids from triglyceride-rich lipoproteins, as well as of glucose from plasma selectively by BAT. We conclude that impaired BAT activity is an important mediator in the association between disturbed circadian rhythm and adiposity, and anticipate that activation of BAT may overcome the adverse metabolic consequences of disturbed circadian rhythmicity. PMID:25964318

  13. Defining dermal adipose tissue.

    PubMed

    Driskell, Ryan R; Jahoda, Colin A B; Chuong, Cheng-Ming; Watt, Fiona M; Horsley, Valerie

    2014-09-01

    Here, we explore the evolution and development of skin-associated adipose tissue with the goal of establishing nomenclature for this tissue. Underlying the reticular dermis, a thick layer of adipocytes exists that encases mature hair follicles in rodents and humans. The association of lipid-filled cells with the skin is found in many invertebrate and vertebrate species. Historically, this layer of adipocytes has been termed subcutaneous adipose, hypodermis and subcutis. Recent data have revealed a common precursor for dermal fibroblasts and intradermal adipocytes during development. Furthermore, the development of adipocytes in the skin is independent from that of subcutaneous adipose tissue development. Finally, the role of adipocytes has been shown to be relevant for epidermal homoeostasis during hair follicle regeneration and wound healing. Thus, we propose a refined nomenclature for the cells and adipose tissue underlying the reticular dermis as intradermal adipocytes and dermal white adipose tissue, respectively.

  14. Adipose tissue inflammation and reduced insulin sensitivity in ovariectomized mice occurs in the absence of increased adiposity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Menopause promotes central obesity, adipose tissue (AT) inflammation and insulin resistance (IR). Both obesity and the loss of estrogen can activate innate and adaptive immune cells (macrophages (M's), T-cells). The respective impacts of weight gain and loss of ovarian hormones on AT inflammation an...

  15. Caloric restriction increases adiponectin expression by adipose tissue and prevents the inhibitory effect of insulin on circulating adiponectin in rats.

    PubMed

    Ding, Qi; Ash, Catherine; Mracek, Tomas; Merry, Brian; Bing, Chen

    2012-08-01

    Aging is associated with redistribution of body fat and the development of insulin resistance. White adipose tissue emerges as an important organ in controlling life span. Caloric restriction (CR) delays the rate of aging possibly modulated partly by altering the amount and function of adipose tissue. Adiponectin is a major adipose-derived adipokine that has anti-inflammatory and insulin-sensitizing properties. This study examined the effects of CR on adiposity and gene expression of adiponectin, its receptors (AdipoR1 and AdipoR2) in adipose tissue and in isolated adipocytes of Brown Norway rats that had undergone CR for 4 months or fed ad libitum. The study also determined plasma concentrations of adiponectin and insulin in these animals and whether insulin infusion for 7 days affects adiponectin expression and its circulating concentrations under CR conditions. CR markedly reduced body weight as anticipated, epididymal fat mass and adipocyte size. CR led to an increase in plasma free fatty acid and glycerol (both twofold), and adipose triglyceride lipase messenger RNA (mRNA) in adipose tissue and isolated adipocytes (both >2-fold). Adiponectin mRNA levels were elevated in adipose tissue and adipocytes (both >2-fold) as was plasma adiponectin concentration (2.8-fold) in CR rats. However, CR did not alter tissue or cellular AdipoR1 and AdipoR2 expression. Seven days of insulin infusion decreased adiponectin mRNA in adipose tissue but did not reverse the CR-induced up-regulation of circulating adiponectin levels. Our results suggest that the benefits of CR could be, at least in part, dependent on enhanced expression and secretion of adiponectin by adipocytes.

  16. [Human brown adipose tissue].

    PubMed

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  17. A Hyperlipidic Diet Combined with Short-Term Ovariectomy Increases Adiposity and Hyperleptinemia and Decreases Cytokine Content in Mesenteric Adipose Tissue

    PubMed Central

    Neto, Nelson Inacio Pinto; Rodrigues, Maria Elizabeth Sousa; Hachul, Ana Claudia Losinskas; Moreno, Mayara Franzoi; Boldarine, Valter Tadeu; Ribeiro, Eliane Beraldi; Oyama, Lila Missae; Oller do Nascimento, Claudia Maria

    2015-01-01

    Four-week-old female Wistar rats were divided into two groups and fed a control diet (C) or a hyperlipidic diet (H) for 4 weeks. Rats from each group underwent ovariectomy (OVX) or sham surgery (SHAM). They received C or H for the next four weeks. The body weight gain (BW), food efficiency (FE), and carcass lipid content were higher in the OVX H than in the SHAM H. The OVX H exhibited a higher serum leptin level than other groups. IL-6, TNF-α, and IL-10 content of mesenteric (MES) adipose tissue was lower in the OVX H than in the OVX C. IL-6, TNF-α, and IL-10 content of retroperitoneal (RET) adipose tissue was lower in the SHAM H than in the SHAM C. The SHAM H showed decreased TG relative to the SHAM C. Similar results were obtained in relation to IL-6Rα, TNFR1, TLR-4, and MyD88 contents in the MES and RET white adipose tissue among the groups. A hyperlipidic diet for 8 weeks combined with short-term ovariectomy decreases the cytokine content of MES adipose tissues but increases BW, enhancing FE and elevating serum leptin levels. These suggest that the absence of estrogens promotes metabolic changes that may contribute to installation of a proinflammatory process induced by a hyperlipidic diet. PMID:26170534

  18. A Ketogenic Diet Increases Brown Adipose Tissue Mitochondrial Proteins and UCP1 Levels in Mice

    PubMed Central

    Srivastava, Shireesh; Baxa, Ulrich; Niu, Gang; Chen, Xiaoyuan; Veech, Richard L.

    2013-01-01

    We evaluated the effects of feeding a ketogenic diet (KD) for a month on general physiology with emphasis on brown adipose tissue (BAT) in mice. KD did not reduce the caloric intake, or weight or lipid content of BAT. Relative epididymal fat pads were 40% greater in the mice fed the KD (P = 0.06) while leptin was lower (P < 0.05). Blood glucose levels were 30% lower while D-β-hydroxybutyrate levels were about 3.5-fold higher in the KD group. Plasma insulin and leptin levels in the KD group were about half of that of the mice fed NIH-31 pellets (chow group). Median mitochondrial size in the inter-scapular BAT (IBAT) of the KD group was about 60% greater, whereas the median lipid droplet size was about half of that in the chow group. Mitochondrial oxidative phosphorylation proteins were increased (1.5–3-fold) and the uncoupling protein 1 levels were increased by threefold in mice fed the KD. The levels of PPARγ, PGC-1α, and Sirt1 in KD group were 1.5–3-fold while level of Sirt3 was about half of that in the chow-fed group. IBAT cyclic AMP levels were 60% higher in the KD group and cAMP response element binding protein was 2.5-fold higher, suggesting increased sympathetic system activity. These results demonstrate that a KD can also increase BAT mitochondrial size and protein levels. PMID:23233333

  19. Growth hormone receptor antagonist (GHA) transgenic mice have increased subcutaneous adipose tissue mass, altered glucose homeostasis, and no change in white adipose tissue cellular senescence

    PubMed Central

    Comisford, Ross; Lubbers, Ellen R.; Householder, Lara; Suer, Ozan; Tchkonia, Tamara; Kirkland, James L.; List, Edward O.; Kopchick, John J.; Berryman, Darlene E.

    2015-01-01

    Background Growth hormone (GH) resistant/deficient mice experience improved glucose homeostasis and substantially increased lifespan. Recent evidence suggests long-lived GH resistant/deficient mice are protected from white adipose tissue (WAT) dysfunction, including WAT cellular senescence, impaired adipogenesis and loss of subcutaneous WAT in old age. This preservation of WAT function has been suggested to be a potential mechanism for the extended lifespan of these mice. OBJECTIVE The objective of this study was to examine white adipose tissue (WAT) senescence, WAT distribution, and glucose homeostasis in dwarf growth hormone receptor antagonist (GHA) transgenic mice, a unique mouse strain having decreased GH action but normal longevity. METHODS 18mo old female GHA mice and wild type (WT) littermate controls were used. Prior to dissection, body composition, fasting blood glucose, and glucose and insulin tolerance tests were performed. WAT distribution was determined by weighing four distinct WAT depots at the time of dissection. Cellular senescence in four WAT depots was assessed using senescence-associated β-galactosidase (SA-β-gal) staining to quantify the senescent cell burden and real time qPCR to quantify gene expression of senescence markers p16 and IL-6. RESULTS GHA mice had a 22% reduction in total body weight, 33% reduction in lean mass, and a 10% increase in body fat percentage compared to WT controls. GHA mice had normal fasting blood glucose and improved insulin sensitivity; however, they exhibited impaired glucose tolerance. Moreover, GHA mice displayed enhanced lipid storage in the inguinal subcutaneous WAT depot (p<.05) and a 1.7 fold increase in extra-/intraperitoneal WAT ratio compared to controls (p<.05). Measurements of WAT cellular senescence showed no difference between GHA mice and WT controls. CONCLUSIONS Similar to other mice with decreased GH action, female GHA mice display reduced age-related lipid redistribution and improved insulin

  20. Increased Glycogen Synthase Kinase-3β and Hexose-6-Phosphate Dehydrogenase Expression in Adipose Tissue May Contribute to Glucocorticoid-Induced Mouse Visceral Adiposity

    PubMed Central

    Yan, Chaoying; Yang, Huabing; Wang, Ying; Dong, Yunzhou; Yu, Fei; Wu, Yong; Wang, Wei; Ume, Adaku; Lutfy, Kabirullah; Friedman, Theodore C.; Tian, Shiliu; Liu, Yanjun

    2016-01-01

    BACKGROUND Increased adiposity in visceral depots is a crucial feature associated with glucocorticoid (GC) excess. The action of GCs in target tissue is regulated by GC receptor (GR) and 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) coupled with hexose-6-phosphate dehydrogenase (H6pdh). Glycogen synthase kinase-3β (GSK3β) is known to be a crucial mediator of ligand-dependent gene transcription. We hypothesized that the major effects of corticosteroids on adipose fat accumulation are in part medicated by changes in GSK3β and H6pdh. METHODS We characterized the alterations of GSK3β and GC metabolic enzymes, and determined the impact of GR antagonist mifepristone on obesity-related genes and the expression of H6pdh and 11ß-HSD1 in adipose tissue of mice exposed to excess GC as well as in in vitro studies using 3T3-L1 adipocytes treated with GCs. RESULTS Corticosterone (CORT) exposure increased abdominal fat mass and induced expression of lipid synthase ACC and ACL with activation of GSK3β phosphorylation in abdominal adipose tissue of C57BL/6J mice. Increased pSer9 GSK3β was correlated with induction of H6pdh and 11ß-HSD1. Additionally, mifepristone treatment reversed the production of H6pdh and attenuated CORT-mediated production of 11ß-HSD1 and lipogenic gene expression with reduction of pSer9 GSK3β, thereby leading to improvement of phenotype of adiposity within adipose tissue in mice treated with excess GCs. Suppression of pSer9 GSK3β by mifepristone was accompanied by activation of pThr308 Akt and blockade of CORT-induced adipogenic transcriptor C/EBPα and PPARγ. In addition, mifepristone also attenuated CORT-mediated activation of IRE1α/XBP1. Additionally, reduction of H6pdh by shRNA showed comparable effects to mifepristone on attenuating CORT-induced expression of GC metabolic enzymes and improved lipid accumulation in vitro in 3T3-L1 adipocytes. CONCLUSION These findings suggest that elevated adipose GSK3β and H6pdh expression contribute

  1. Dietary oleic acid increases m2 macrophages in the mesenteric adipose tissue.

    PubMed

    Camell, Christina; Smith, C Wayne

    2013-01-01

    Several studies have implicated fatty-acids as inflammatory regulators, suggesting that there may be a direct role for common dietary fatty-acids in regulating innate immune cells. In humans, a single high-fat meal increases systemic cytokines and leukocytes. In mice, short term high-fat feeding increases adipose tissue (AT) leukocytes and alters the inflammatory profile of AT macrophages. We have seen that short term high fat feeding to C57BL/6J male mice increases palmitic and oleic acid within AT depots, but oleic acid increase is highest in the mesenteric AT (MAT). In vitro, oleic acid increases M2 macrophage markers (CD206, MGL1, and ARG1) in a murine macrophage cell line, while addition of palmitic acid is able to inhibit that increase. Three day supplementation of a chow diet, with oleic acid, induced an increase in M2 macrophage markers in the MAT, but not in the epididymal AT. We tested whether increases in M2 macrophages occur during short term ad lib feeding of a high fat diet, containing oleic acid. Experiments revealed two distinct populations of macrophages were altered by a three day high milk-fat diet. One population, phenotypically intermediate for F4/80, showed diet-induced increases in CD206, an anti-inflammatory marker characteristic of M2 macrophages intrinsic to the AT. Evidence for a second population, phenotypically F4/80(HI)CD11b(HI) macrophages, showed increased association with the MAT following short term feeding that is dependent on the adhesion molecule, ICAM-1. Collectively, we have shown that short term feeding of a high-fat diet changes two population of macrophages, and that dietary oleic acid is responsible for increases in M2 macrophage polarization.

  2. Dietary glucose increases plasma insulin and decreases brown adipose tissue thermogenic activity in adrenalectomized ob/ob mice.

    PubMed

    Nei, Y M; Romsos, D R

    1991-09-01

    The purpose of this study was to determine whether consumption of a high glucose diet would increase plasma insulin concentrations and decrease brown adipose tissue metabolism in adrenalectomized ob/ob mice previously fed a high starch diet. Male sham-operated and adrenalectomized ob/ob and lean mice were fed a high starch diet for 12 d, then switched to a high glucose diet for the last 2 or 4 d of the 14- or 16-d feeding trials. Adrenalectomized ob/ob mice consumed 16% more energy and gained 50% more weight without an increase in oxygen consumption when switched from a high starch diet to a high glucose diet. Within 2 d after the switch to the high glucose diet, plasma insulin concentrations increased by 70% without any change in plasma glucose concentrations; brown adipose tissue metabolism, as assessed by GDP binding to brown adipose tissue mitochondria, was decreased by 26% 4 d after the diet switch. Sham-operated ob/ob and lean mice and adrenalectomized lean mice were minimally affected by the switch to the high glucose diet. The increase in plasma insulin concentrations in adrenalectomized ob/ob mice induced by the high glucose diet may contribute to the observed depression in brown adipose tissue metabolism.

  3. Adipose tissue-specific inactivation of the retinoblastoma protein protects against diabesity because of increased energy expenditure

    PubMed Central

    Dali-Youcef, Nassim; Mataki, Chikage; Coste, Agnès; Messaddeq, Nadia; Giroud, Sylvain; Blanc, Stéphane; Koehl, Christian; Champy, Marie-France; Chambon, Pierre; Fajas, Lluis; Metzger, Daniel; Schoonjans, Kristina; Auwerx, Johan

    2007-01-01

    The role of the tumor suppressor retinoblastoma protein (pRb) has been firmly established in the control of cell cycle, apoptosis, and differentiation. Recently, it was demonstrated that lack of pRb promotes a switch from white to brown adipocyte differentiation in vitro. We used the Cre-Lox system to specifically inactivate pRb in adult adipose tissue. Under a high-fat diet, pRb-deficient (pRbad−/−) mice failed to gain weight because of increased energy expenditure. This protection against weight gain was caused by the activation of mitochondrial activity in white and brown fat as evidenced by histologic, electron microscopic, and gene expression studies. Moreover, pRb−/− mouse embryonic fibroblasts displayed higher proliferation and apoptosis rates than pRb+/+ mouse embryonic fibroblasts, which could contribute to the altered white adipose tissue morphology. Taken together, our data support a direct role of pRb in adipocyte cell fate determination in vivo and suggest that pRb could serve as a potential therapeutic target to trigger mitochondrial activation in white adipose tissue and brown adipose tissue, favoring an increase in energy expenditure and subsequent weight loss. PMID:17556545

  4. Sucrose Counteracts the Anti-Inflammatory Effect of Fish Oil in Adipose Tissue and Increases Obesity Development in Mice

    PubMed Central

    Ma, Tao; Liaset, Bjørn; Hao, Qin; Petersen, Rasmus Koefoed; Fjære, Even; Ngo, Ha Thi; Lillefosse, Haldis Haukås; Ringholm, Stine; Sonne, Si Brask; Treebak, Jonas Thue; Pilegaard, Henriette; Frøyland, Livar; Kristiansen, Karsten; Madsen, Lise

    2011-01-01

    Background Polyunsaturated n-3 fatty acids (n-3 PUFAs) are reported to protect against high fat diet-induced obesity and inflammation in adipose tissue. Here we aimed to investigate if the amount of sucrose in the background diet influences the ability of n-3 PUFAs to protect against diet-induced obesity, adipose tissue inflammation and glucose intolerance. Methodology/Principal Findings We fed C57BL/6J mice a protein- (casein) or sucrose-based high fat diet supplemented with fish oil or corn oil for 9 weeks. Irrespective of the fatty acid source, mice fed diets rich in sucrose became obese whereas mice fed high protein diets remained lean. Inclusion of sucrose in the diet also counteracted the well-known anti-inflammatory effect of fish oil in adipose tissue, but did not impair the ability of fish oil to prevent accumulation of fat in the liver. Calculation of HOMA-IR indicated that mice fed high levels of proteins remained insulin sensitive, whereas insulin sensitivity was reduced in the obese mice fed sucrose irrespectively of the fat source. We show that a high fat diet decreased glucose tolerance in the mice independently of both obesity and dietary levels of n-3 PUFAs and sucrose. Of note, increasing the protein∶sucrose ratio in high fat diets decreased energy efficiency irrespective of fat source. This was accompanied by increased expression of Ppargc1a (peroxisome proliferator-activated receptor, gamma, coactivator 1 alpha) and increased gluconeogenesis in the fed state. Conclusions/Significance The background diet influence the ability of n-3 PUFAs to protect against development of obesity, glucose intolerance and adipose tissue inflammation. High levels of dietary sucrose counteract the anti-inflammatory effect of fish oil in adipose tissue and increases obesity development in mice. PMID:21738749

  5. Increased in vivo glucose utilization in 30-day-old obese Zucker rat: Role of white adipose tissue

    SciTech Connect

    Krief, S.; Bazin, R.; Dupuy, F.; Lavau, M. )

    1988-03-01

    In vivo whole-body glucose utilization and uptake in multiple individual tissues were investigated in conscious 30-day-old Zucker rats, which when obese are hyperphagic, hyperinsulinemic, and normoglycemic. Whole-body glucose metabolism (assessed by (3-{sup 3}H)glucose) was 40% higher in obese (fa/fa) than in lean (Fa/fa) rats, suggesting that obese rats were quite responsive to their hyperinsulinemia. In obese compared with lean rats, tissue glucose uptake was increased by 15, 12, and 6 times in dorsal, inguinal, perigonadal white depots, respectively; multiplied by 2.5 in brown adipose tissue; increased by 50% in skin from inguinal region but not in that from cranial, thoracic, or dorsal area; and increased twofold in diaphragm but similar in heart in proximal intestine, and in total muscular mass of limbs. The data establish that in young obese rats the hypertrophied white adipose tissue was a major glucose-utilizing tissue whose capacity for glucose disposal compared with that of half the muscular mass. Adipose tissue could therefore play an important role in the homeostasis of glucose in obese rats in the face of their increased carbohydrate intake.

  6. Vagus Nerve Stimulation Increases Energy Expenditure: Relation to Brown Adipose Tissue Activity

    PubMed Central

    Vijgen, Guy H. E. J.; Bouvy, Nicole D.; Leenen, Loes; Rijkers, Kim; Cornips, Erwin; Majoie, Marian; Brans, Boudewijn; van Marken Lichtenbelt, Wouter D.

    2013-01-01

    Background Human brown adipose tissue (BAT) activity is inversely related to obesity and positively related to energy expenditure. BAT is highly innervated and it is suggested the vagus nerve mediates peripheral signals to the central nervous system, there connecting to sympathetic nerves that innervate BAT. Vagus nerve stimulation (VNS) is used for refractory epilepsy, but is also reported to generate weight loss. We hypothesize VNS increases energy expenditure by activating BAT. Methods and Findings Fifteen patients with stable VNS therapy (age: 45±10yrs; body mass index; 25.2±3.5 kg/m2) were included between January 2011 and June 2012. Ten subjects were measured twice, once with active and once with inactivated VNS. Five other subjects were measured twice, once with active VNS at room temperature and once with active VNS under cold exposure in order to determine maximal cold-induced BAT activity. BAT activity was assessed by 18-Fluoro-Deoxy-Glucose-Positron-Emission-Tomography-and-Computed-Tomography. Basal metabolic rate (BMR) was significantly higher when VNS was turned on (mean change; +2.2%). Mean BAT activity was not significantly different between active VNS and inactive VNS (BAT SUVMean; 0.55±0.25 versus 0.67±0.46, P = 0.619). However, the change in energy expenditure upon VNS intervention (On-Off) was significantly correlated to the change in BAT activity (r = 0.935, P<0.001). Conclusions VNS significantly increases energy expenditure. The observed change in energy expenditure was significantly related to the change in BAT activity. This suggests a role for BAT in the VNS increase in energy expenditure. Chronic VNS may have a beneficial effect on the human energy balance that has potential application for weight management therapy. Trial Registration The study was registered in the Clinical Trial Register under the ClinicalTrials.gov Identifier NCT01491282. PMID:24194874

  7. Increased Epicardial Adipose Tissue Is Associated with the Airway Dominant Phenotype of Chronic Obstructive Pulmonary Disease

    PubMed Central

    Higami, Yuichi; Ogawa, Emiko; Ryujin, Yasushi; Goto, Kenichi; Seto, Ruriko; Wada, Hiroshi; Tho, Nguyen Van; Lan, Le Thi Tuyet; Paré, Peter D.; Nakano, Yasutaka

    2016-01-01

    Background Epicardial adipose tissue (EAT) has been shown to be a non-invasive marker that predicts the progression of cardiovascular disease (CVD). It has been reported that the EAT volume is increased in patients with chronic obstructive pulmonary disease (COPD). However, little is known about which phenotypes of COPD are associated with increased EAT. Methods One hundred and eighty smokers who were referred to the clinic were consecutively enrolled. A chest CT was used for the quantification of the emphysematous lesions, airway lesions, and EAT. These lesions were assessed as the percentage of low attenuation volume (LAV%), the square root of airway wall area of a hypothetical airway with an internal perimeter of 10 mm (√Aaw at Pi10) and the EAT area, respectively. The same measurements were made on 225 Vietnamese COPD patients to replicate the results. Results Twenty-six of the referred patients did not have COPD, while 105 were diagnosed as having COPD based on a FEV1/FVC<0.70. The EAT area was significantly associated with age, BMI, FEV1 (%predicted), FEV1/FVC, self-reported hypertension, self-reported CVD, statin use, LAV%, and √Aaw at Pi10 in COPD patients. The multiple regression analyses showed that only BMI, self-reported CVD and √Aaw at Pi10 were independently associated with the EAT area (R2 = 0.51, p<0.0001). These results were replicated in the Vietnamese population. Conclusions The EAT area is independently associated with airway wall thickness. Because EAT is also an independent predictor of CVD risk, these data suggest a mechanistic link between the airway predominant form of COPD and CVD. PMID:26866482

  8. Expansion of Bone Marrow Adipose Tissue During Caloric Restriction Is Associated With Increased Circulating Glucocorticoids and Not With Hypoleptinemia.

    PubMed

    Cawthorn, William P; Scheller, Erica L; Parlee, Sebastian D; Pham, H An; Learman, Brian S; Redshaw, Catherine M H; Sulston, Richard J; Burr, Aaron A; Das, Arun K; Simon, Becky R; Mori, Hiroyuki; Bree, Adam J; Schell, Benjamin; Krishnan, Venkatesh; MacDougald, Ormond A

    2016-02-01

    Bone marrow adipose tissue (MAT) accounts for up to 70% of bone marrow volume in healthy adults and increases further in clinical conditions of altered skeletal or metabolic function. Perhaps most strikingly, and in stark contrast to white adipose tissue, MAT has been found to increase during caloric restriction (CR) in humans and many other species. Hypoleptinemia may drive MAT expansion during CR but this has not been demonstrated conclusively. Indeed, MAT formation and function are poorly understood; hence, the physiological and pathological roles of MAT remain elusive. We recently revealed that MAT contributes to hyperadiponectinemia and systemic adaptations to CR. To further these observations, we have now performed CR studies in rabbits to determine whether CR affects adiponectin production by MAT. Moderate or extensive CR decreased bone mass, white adipose tissue mass, and circulating leptin but, surprisingly, did not cause hyperadiponectinemia or MAT expansion. Although this unexpected finding limited our subsequent MAT characterization, it demonstrates that during CR, bone loss can occur independently of MAT expansion; increased MAT may be required for hyperadiponectinemia; and hypoleptinemia is not sufficient for MAT expansion. We further investigated this relationship in mice. In females, CR increased MAT without decreasing circulating leptin, suggesting that hypoleptinemia is also not necessary for MAT expansion. Finally, circulating glucocorticoids increased during CR in mice but not rabbits, suggesting that glucocorticoids might drive MAT expansion during CR. These observations provide insights into the causes and consequences of CR-associated MAT expansion, knowledge with potential relevance to health and disease.

  9. Expansion of Bone Marrow Adipose Tissue During Caloric Restriction Is Associated With Increased Circulating Glucocorticoids and Not With Hypoleptinemia

    PubMed Central

    Scheller, Erica L.; Parlee, Sebastian D.; Pham, H. An; Learman, Brian S.; Redshaw, Catherine M. H.; Sulston, Richard J.; Burr, Aaron A.; Das, Arun K.; Simon, Becky R.; Mori, Hiroyuki; Bree, Adam J.; Schell, Benjamin; Krishnan, Venkatesh

    2016-01-01

    Bone marrow adipose tissue (MAT) accounts for up to 70% of bone marrow volume in healthy adults and increases further in clinical conditions of altered skeletal or metabolic function. Perhaps most strikingly, and in stark contrast to white adipose tissue, MAT has been found to increase during caloric restriction (CR) in humans and many other species. Hypoleptinemia may drive MAT expansion during CR but this has not been demonstrated conclusively. Indeed, MAT formation and function are poorly understood; hence, the physiological and pathological roles of MAT remain elusive. We recently revealed that MAT contributes to hyperadiponectinemia and systemic adaptations to CR. To further these observations, we have now performed CR studies in rabbits to determine whether CR affects adiponectin production by MAT. Moderate or extensive CR decreased bone mass, white adipose tissue mass, and circulating leptin but, surprisingly, did not cause hyperadiponectinemia or MAT expansion. Although this unexpected finding limited our subsequent MAT characterization, it demonstrates that during CR, bone loss can occur independently of MAT expansion; increased MAT may be required for hyperadiponectinemia; and hypoleptinemia is not sufficient for MAT expansion. We further investigated this relationship in mice. In females, CR increased MAT without decreasing circulating leptin, suggesting that hypoleptinemia is also not necessary for MAT expansion. Finally, circulating glucocorticoids increased during CR in mice but not rabbits, suggesting that glucocorticoids might drive MAT expansion during CR. These observations provide insights into the causes and consequences of CR-associated MAT expansion, knowledge with potential relevance to health and disease. PMID:26696121

  10. Beneficial Effects of Evogliptin, a Novel Dipeptidyl Peptidase 4 Inhibitor, on Adiposity with Increased Ppargc1a in White Adipose Tissue in Obese Mice.

    PubMed

    Chae, Yu-Na; Kim, Tae-Hyoung; Kim, Mi-Kyung; Shin, Chang-Yell; Jung, Il-Hoon; Sohn, Yong Sung; Son, Moon-Ho

    2015-01-01

    Although dipeptidyl peptidase 4 (DPP4) is an adipokine known to positively correlate with adiposity, the effects of pharmacological DPP4 inhibition on body composition have not been fully understood. This study was aimed to assess the effects of DPP4 inhibitors on adiposity for the first time in the established obese mice model. The weight loss effects of multiple DPP4 inhibitors were compared after a 4 week treatment in diet-induced obese mice. In addition, a 2 week study was performed to explore and compare the acute effects of evogliptin, a novel DPP4 inhibitor, and exenatide, a glucagon-like peptide-1 (GLP-1) analogue, on whole body composition, energy consumption, various plasma adipokines and gene expression in white adipose tissue (WAT). After the 4 week treatment, weight loss and blood glucose reductions were consistently observed with multiple DPP4 inhibitors. Moreover, after 2-week treatment, evogliptin dose-dependently reduced whole body fat mass while increasing the proportion of smaller adipocytes. However, insulin sensitivity or plasma lipid levels were not significantly altered. In addition to increased active GLP-1 levels by plasma DPP4 inhibition, evogliptin also enhanced basal metabolic rate without reduction in caloric intake, in contrast to exenatide; this finding suggested evogliptin's effects may be mediated by pathways other than via GLP-1. Evogliptin treatment also differentially increased Ppargc1a expression, a key metabolic regulator, in WAT, but not in skeletal muscle and brown adipose tissue. The increased expression of the downstream mitochondrial gene, Cox4i1, was also suggestive of the potential metabolic alteration in WAT by DPP4 inhibitors. We are the first to demonstrate that pharmacological DPP4 inhibition by evogliptin directly causes fat loss in established obese mice. In contradistinction to exenatide, the fat-loss effect of DPP4 inhibitor is partly attributed to enhanced energy expenditure along with metabolic changes in WAT

  11. Mitochondria and endocrine function of adipose tissue.

    PubMed

    Medina-Gómez, Gema

    2012-12-01

    Excess of adipose tissue is accompanied by an increase in the risk of developing insulin resistance, type 2 diabetes (T2D) and other complications. Nevertheless, total or partial absence of fat or its accumulation in other tissues (lipotoxicity) is also associated to these complications. White adipose tissue (WAT) was traditionally considered a metabolically active storage tissue for lipids while brown adipose tissue (BAT) was considered as a thermogenic adipose tissue with higher oxidative capacity. Nowadays, WAT is also considered an endocrine organ that contributes to energy homeostasis. Experimental evidence tends to link the malfunction of adipose mitochondria with the development of obesity and T2D. This review discusses the importance of mitochondrial function in adipocyte biology and the increased evidences of mitochondria dysfunction in these epidemics. New strategies targeting adipocyte mitochondria from WAT and BAT are also discussed as therapies against obesity and its complications in the near future.

  12. Adipose tissue: cell heterogeneity and functional diversity.

    PubMed

    Esteve Ràfols, Montserrat

    2014-02-01

    There are two types of adipose tissue in the body whose function appears to be clearly differentiated. White adipose tissue stores energy reserves as fat, whereas the metabolic function of brown adipose tissue is lipid oxidation to produce heat. A good balance between them is important to maintain energy homeostasis. The concept of white adipose tissue has radically changed in the past decades, and is now considered as an endocrine organ that secretes many factors with autocrine, paracrine, and endocrine functions. In addition, we can no longer consider white adipose tissue as a single tissue, because it shows different metabolic profiles in its different locations, with also different implications. Although the characteristic cell of adipose tissue is the adipocyte, this is not the only cell type present in adipose tissue, neither the most abundant. Other cell types in adipose tissue described include stem cells, preadipocytes, macrophages, neutrophils, lymphocytes, and endothelial cells. The balance between these different cell types and their expression profile is closely related to maintenance of energy homeostasis. Increases in adipocyte size, number and type of lymphocytes, and infiltrated macrophages are closely related to the metabolic syndrome diseases. The study of regulation of proliferation and differentiation of preadipocytes and stem cells, and understanding of the interrelationship between the different cell types will provide new targets for action against these diseases.

  13. Adipose tissue immunity and cancer.

    PubMed

    Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Frühbeck, Gema

    2013-10-02

    Inflammation and altered immune response are important components of obesity and contribute greatly to the promotion of obesity-related metabolic complications, especially cancer development. Adipose tissue expansion is associated with increased infiltration of various types of immune cells from both the innate and adaptive immune systems. Thus, adipocytes and infiltrating immune cells secrete pro-inflammatory adipokines and cytokines providing a microenvironment favorable for tumor growth. Accumulation of B and T cells in adipose tissue precedes macrophage infiltration causing a chronic low-grade inflammation. Phenotypic switching toward M1 macrophages and Th1 T cells constitutes an important mechanism described in the obese state correlating with increased tumor growth risk. Other possible synergic mechanisms causing a dysfunctional adipose tissue include fatty acid-induced inflammation, oxidative stress, endoplasmic reticulum stress, and hypoxia. Recent investigations have started to unravel the intricacy of the cross-talk between tumor cell/immune cell/adipocyte. In this sense, future therapies should take into account the combination of anti-inflammatory approaches that target the tumor microenvironment with more sophisticated and selective anti-tumoral drugs.

  14. Brown adipose tissue and thermogenesis.

    PubMed

    Fenzl, Anna; Kiefer, Florian W

    2014-07-01

    The growing understanding of adipose tissue as an important endocrine organ with multiple metabolic functions has directed the attention to the (patho)physiology of distinct fat depots. Brown adipose tissue (BAT), in contrast to bona fide white fat, can dissipate significant amounts of chemical energy through uncoupled respiration and heat production (thermogenesis). This process is mediated by the major thermogenic factor uncoupling protein-1 and can be activated by certain stimuli, such as cold exposure, adrenergic compounds or genetic alterations. White adipose tissue (WAT) depots, however, also possess the capacity to acquire brown fat characteristics in response to thermogenic stimuli. The induction of a BAT-like cellular and molecular program in WAT has recently been termed "browning" or "beiging". Promotion of BAT activity or the browning of WAT is associated with in vivo cold tolerance, increased energy expenditure, and protection against obesity and type 2 diabetes. These preclinical observations have gained additional significance with the recent discovery that active BAT is present in adult humans and can be detected by 18fluor-deoxy-glucose positron emission tomography coupled with computed tomography. As in rodents, human BAT can be activated by cold exposure and is associated with increased energy turnover and lower body fat mass. Despite the tremendous progress in brown fat research in recent years, pharmacological concepts to harness BAT function therapeutically are currently still lacking.

  15. Beneficial Effects of Evogliptin, a Novel Dipeptidyl Peptidase 4 Inhibitor, on Adiposity with Increased Ppargc1a in White Adipose Tissue in Obese Mice

    PubMed Central

    Kim, Mi-Kyung; Shin, Chang-Yell; Jung, Il-Hoon; Sohn, Yong Sung; Son, Moon-Ho

    2015-01-01

    Although dipeptidyl peptidase 4 (DPP4) is an adipokine known to positively correlate with adiposity, the effects of pharmacological DPP4 inhibition on body composition have not been fully understood. This study was aimed to assess the effects of DPP4 inhibitors on adiposity for the first time in the established obese mice model. The weight loss effects of multiple DPP4 inhibitors were compared after a 4 week treatment in diet-induced obese mice. In addition, a 2 week study was performed to explore and compare the acute effects of evogliptin, a novel DPP4 inhibitor, and exenatide, a glucagon-like peptide-1 (GLP-1) analogue, on whole body composition, energy consumption, various plasma adipokines and gene expression in white adipose tissue (WAT). After the 4 week treatment, weight loss and blood glucose reductions were consistently observed with multiple DPP4 inhibitors. Moreover, after 2-week treatment, evogliptin dose-dependently reduced whole body fat mass while increasing the proportion of smaller adipocytes. However, insulin sensitivity or plasma lipid levels were not significantly altered. In addition to increased active GLP-1 levels by plasma DPP4 inhibition, evogliptin also enhanced basal metabolic rate without reduction in caloric intake, in contrast to exenatide; this finding suggested evogliptin's effects may be mediated by pathways other than via GLP-1. Evogliptin treatment also differentially increased Ppargc1a expression, a key metabolic regulator, in WAT, but not in skeletal muscle and brown adipose tissue. The increased expression of the downstream mitochondrial gene, Cox4i1, was also suggestive of the potential metabolic alteration in WAT by DPP4 inhibitors. We are the first to demonstrate that pharmacological DPP4 inhibition by evogliptin directly causes fat loss in established obese mice. In contradistinction to exenatide, the fat-loss effect of DPP4 inhibitor is partly attributed to enhanced energy expenditure along with metabolic changes in WAT

  16. Increased Oxidative Stress Impairs Adipose Tissue Function in Sphingomyelin Synthase 1 Null Mice

    PubMed Central

    Nishimura, Naotaka; Gotoh, Tomomi; Watanabe, Ken; Ikeda, Kazutaka; Garan, Yohei; Taguchi, Ryo; Node, Koichi; Okazaki, Toshiro; Oike, Yuichi

    2013-01-01

    Sphingomyelin synthase 1 (SMS1) catalyzes the conversion of ceramide to sphingomyelin. Here, we found that SMS1 null mice showed lipodystrophic phenotype. Mutant mice showed up-regulation of plasma triglyceride concentrations accompanied by reduction of white adipose tissue (WAT) as they aged. Lipoprotein lipase (LPL) activity was severely reduced in mutant mice. In vivo analysis indicated that fatty acid uptake in WAT but not in liver decreased in SMS1 null compared to wild-type mice. In vitro analysis using cultured cell revealed that SMS1 depletion reduced fatty acid uptake. Proteins extracted from WAT of mutant mice were severely modified by oxidative stress, and up-regulation of mRNAs related to apoptosis, redox adjustment, mitochondrial stress response and mitochondrial biogenesis was observed. ATP content of WAT was reduced in SMS1 null mice. Blue native gel analysis indicated that accumulation of mitochondrial respiratory chain complexes was reduced. These results suggest that WAT of SMS1 null mice is severely damaged by oxidative stress and barely functional. Indeed, mutant mice treated with the anti-oxidant N-acetyl cysteine (NAC) showed partial recovery of lipodystrophic phenotypes together with normalized plasma triglyceride concentrations. Altogether, our data suggest that SMS1 is crucial to control oxidative stress in order to maintain WAT function. PMID:23593476

  17. Human adipose tissue derived pericytes increase life span in Utrn (tm1Ked) Dmd (mdx) /J mice.

    PubMed

    Valadares, M C; Gomes, J P; Castello, G; Assoni, A; Pellati, M; Bueno, C; Corselli, M; Silva, H; Bartolini, P; Vainzof, M; Margarido, P F; Baracat, E; Péault, B; Zatz, M

    2014-12-01

    Duchenne muscular dystrophy (DMD) is still an untreatable lethal X-linked disorder, which affects 1 in 3500 male births. It is caused by the absence of muscle dystrophin due to mutations in the dystrophin gene. The potential regenerative capacity as well as immune privileged properties of mesenchymal Stem Cells (MSC) has been under investigation for many years in an attempt to treat DMD. One of the questions to be addressed is whether stem cells from distinct sources have comparable clinical effects when injected in murine or canine muscular dystrophy animal models. Many studies comparing different stem cells from various sources were reported but these cells were obtained from different donors and thus with different genetic backgrounds. Here we investigated whether human pericytes obtained from 4 different tissues (muscle, adipose tissue, fallopian tube and endometrium) from the same donor have a similar clinical impact when injected in double mutant Utrn (tm1Ked) Dmd (mdx) /J mice, a clinically relevant model for DMD. After a weekly regimen of intraperitoneal injections of 10(6) cells per 8 weeks we evaluated the motor ability as well as the life span of the treated mice as compared to controls. Our experiment showed that only adipose tissue derived pericytes are able to increase significantly (39 days on average) the life span of affected mice. Microarray analysis showed an inhibition of the interferon pathway by adipose derived pericytes. Our results suggest that the clinical benefit associated with intraperitoneal injections of these adult stem cells is related to immune modulation rather than tissue regeneration.

  18. Biochemistry of adipose tissue: an endocrine organ.

    PubMed

    Coelho, Marisa; Oliveira, Teresa; Fernandes, Ruben

    2013-04-20

    Adipose tissue is no longer considered to be an inert tissue that stores fat. This tissue is capable of expanding to accommodate increased lipids through hypertrophy of existing adipocytes and by initiating differentiation of pre-adipocytes. Adipose tissue metabolism exerts an impact on whole-body metabolism. As an endocrine organ, adipose tissue is responsible for the synthesis and secretion of several hormones. These are active in a range of processes, such as control of nutritional intake (leptin, angiotensin), control of sensitivity to insulin and inflammatory process mediators (tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), resistin, visfatin, adiponectin, among others) and pathways (plasminogen activator inhibitor 1 (PAI-1) and acylation stimulating protein (ASP) for example). This paper reviews some of the biochemical and metabolic aspects of adipose tissue and its relationship to inflammatory disease and insulin resistance.

  19. Biochemistry of adipose tissue: an endocrine organ

    PubMed Central

    Coelho, Marisa; Oliveira, Teresa

    2013-01-01

    Adipose tissue is no longer considered to be an inert tissue that stores fat. This tissue is capable of expanding to accommodate increased lipids through hypertrophy of existing adipocytes and by initiating differentiation of pre-adipocytes. Adipose tissue metabolism exerts an impact on whole-body metabolism. As an endocrine organ, adipose tissue is responsible for the synthesis and secretion of several hormones. These are active in a range of processes, such as control of nutritional intake (leptin, angiotensin), control of sensitivity to insulin and inflammatory process mediators (tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), resistin, visfatin, adiponectin, among others) and pathways (plasminogen activator inhibitor 1 (PAI-1) and acylation stimulating protein (ASP) for example). This paper reviews some of the biochemical and metabolic aspects of adipose tissue and its relationship to inflammatory disease and insulin resistance. PMID:23671428

  20. Ageing, adipose tissue, fatty acids and inflammation.

    PubMed

    Pararasa, Chathyan; Bailey, Clifford J; Griffiths, Helen R

    2015-04-01

    A common feature of ageing is the alteration in tissue distribution and composition, with a shift in fat away from lower body and subcutaneous depots to visceral and ectopic sites. Redistribution of adipose tissue towards an ectopic site can have dramatic effects on metabolic function. In skeletal muscle, increased ectopic adiposity is linked to insulin resistance through lipid mediators such as ceramide or DAG, inhibiting the insulin receptor signalling pathway. Additionally, the risk of developing cardiovascular disease is increased with elevated visceral adipose distribution. In ageing, adipose tissue becomes dysfunctional, with the pathway of differentiation of preadipocytes to mature adipocytes becoming impaired; this results in dysfunctional adipocytes less able to store fat and subsequent fat redistribution to ectopic sites. Low grade systemic inflammation is commonly observed in ageing, and may drive the adipose tissue dysfunction, as proinflammatory cytokines are capable of inhibiting adipocyte differentiation. Beyond increased ectopic adiposity, the effect of impaired adipose tissue function is an elevation in systemic free fatty acids (FFA), a common feature of many metabolic disorders. Saturated fatty acids can be regarded as the most detrimental of FFA, being capable of inducing insulin resistance and inflammation through lipid mediators such as ceramide, which can increase risk of developing atherosclerosis. Elevated FFA, in particular saturated fatty acids, maybe a driving factor for both the increased insulin resistance, cardiovascular disease risk and inflammation in older adults.

  1. New Physiological Aspects of Brown Adipose Tissue.

    PubMed

    Trayhurn, Paul; Arch, Jonathan R S

    2014-12-01

    Brown adipose tissue is specialised for the generation of heat by non-shivering mechanisms. In rodents, the tissue plays a role in energy balance and the development of obesity, as well as in thermoregulation. Studies using fluorodeoxyglucose positron emission tomography (FDG-PET), together with the identification of uncoupling protein-1, have provided definitive evidence that brown adipose tissue is present in adult humans. Brown fat activity is stimulated by cold exposure, declines with age and is inversely proportional to BMI. This has led to renewed interest in the tissue as a therapeutic target for the treatment of obesity. Brown adipose tissue also plays a role in glucose disposal and triglyceride clearance, implicating it in the metabolic syndrome. A potential mechanism for increasing thermogenesis is by the 'browning' of white adipose depots through the recruitment of the recently identified third type of adipocyte - the brite (or beige) fat cell.

  2. Brown adipose tissue and its therapeutic potential.

    PubMed

    Lidell, M E; Betz, M J; Enerbäck, S

    2014-10-01

    Obesity and related diseases are a major cause of human morbidity and mortality and constitute a substantial economic burden for society. Effective treatment regimens are scarce, and new therapeutic targets are needed. Brown adipose tissue, an energy-expending tissue that produces heat, represents a potential therapeutic target. Its presence is associated with low body mass index, low total adipose tissue content and a lower risk of type 2 diabetes mellitus. Knowledge about the development and function of thermogenic adipocytes in brown adipose tissue has increased substantially in the last decade. Important transcriptional regulators have been identified, and hormones able to modulate the thermogenic capacity of the tissue have been recognized. Intriguingly, it is now clear that humans, like rodents, possess two types of thermogenic adipocytes: the classical brown adipocytes found in the interscapular brown adipose organ and the so-called beige adipocytes primarily found in subcutaneous white adipose tissue after adrenergic stimulation. The presence of two distinct types of energy-expending adipocytes in humans is conceptually important because these cells might be stimulated and recruited by different signals, raising the possibility that they might be separate potential targets for therapeutic intervention. In this review, we will discuss important features of the energy-expending brown adipose tissue and highlight those that may serve as potential targets for pharmacological intervention aimed at expanding the tissue and/or enhancing its function to counteract obesity.

  3. Adipose tissues and thyroid hormones

    PubMed Central

    Obregon, Maria-Jesus

    2014-01-01

    The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases). The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT) with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. “Brite” or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs) that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2, and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that lead to activation of UCP1 in WAT

  4. Melatonin increases intracellular calcium in the liver, muscle, white adipose tissues and pancreas of diabetic obese rats.

    PubMed

    Agil, A; Elmahallawy, E K; Rodríguez-Ferrer, J M; Adem, A; Bastaki, S M; Al-Abbadi, I; Fino Solano, Y A; Navarro-Alarcón, M

    2015-08-01

    Melatonin, a widespread substance with antioxidant and anti-inflammatory properties, has been found to act as an antidiabetic agent in animal models, regulating the release and action of insulin. However, the molecular bases of this antidiabetic action are unknown, limiting its application in humans. Several studies have recently shown that melatonin can modify calcium (Ca(2+)) in diabetic animals, and Ca(2+) has been reported to be involved in glucose homeostasis. The objective of the present study was to assess whether the antidiabetic effect of chronic melatonin at pharmacological doses is established via Ca(2+) regulation in different tissues in an animal model of obesity-related type 2 diabetes, using Zücker diabetic fatty (ZDF) rats and their lean littermates, Zücker lean (ZL) rats. After the treatments, flame atomic absorption spectrometry was used to determine Ca(2+) levels in the liver, muscle, main types of internal white adipose tissue, subcutaneous lumbar fat, pancreas, brain, and plasma. This study reports for the first time that chronic melatonin administration (10 mg per kg body weight per day for 6 weeks) increases Ca(2+) levels in muscle, liver, different adipose tissues, and pancreas in ZDF rats, although there were no significant changes in their brain or plasma Ca(2+) levels. We propose that this additional peripheral dual action mechanism underlies the improvement in insulin sensitivity and secretion previously documented in samples from the same animals. According to these results, indoleamine may be a potential candidate for the treatment of type 2 diabetes mellitus associated with obesity.

  5. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet

    PubMed Central

    Srivastava, Shireesh; Kashiwaya, Yoshihiro; King, M. Todd; Baxa, Ulrich; Tam, Joseph; Niu, Gang; Chen, Xiaoyuan; Clarke, Kieran; Veech, Richard L.

    2012-01-01

    We measured the effects of a diet in which d-β-hydroxybutyrate-(R)-1,3 butanediol monoester [ketone ester (KE)] replaced equicaloric amounts of carbohydrate on 8-wk-old male C57BL/6J mice. Diets contained equal amounts of fat, protein, and micronutrients. The KE group was fed ad libitum, whereas the control (Ctrl) mice were pair-fed to the KE group. Blood d-β-hydroxybutyrate levels in the KE group were 3-5 times those reported with high-fat ketogenic diets. Voluntary food intake was reduced dose dependently with the KE diet. Feeding the KE diet for up to 1 mo increased the number of mitochondria and doubled the electron transport chain proteins, uncoupling protein 1, and mitochondrial biogenesis-regulating proteins in the interscapular brown adipose tissue (IBAT). [18F]-Fluorodeoxyglucose uptake in IBAT of the KE group was twice that in IBAT of the Ctrl group. Plasma leptin levels of the KE group were more than 2-fold those of the Ctrl group and were associated with increased sympathetic nervous system activity to IBAT. The KE group exhibited 14% greater resting energy expenditure, but the total energy expenditure measured over a 24-h period or body weights was not different. The quantitative insulin-sensitivity check index was 73% higher in the KE group. These results identify KE as a potential antiobesity supplement.—Srivastava, S., Kashiwaya, Y., King, M. T. Baxa, U., Tam, J., Niu, G., Chen, X., Clarke, K., Veech, R. L. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet. PMID:22362892

  6. Molecular and metabolic profiles suggest that increased lipid catabolism in adipose tissue contributes to leanness in domestic chickens.

    PubMed

    Ji, Bo; Middleton, Jesse L; Ernest, Ben; Saxton, Arnold M; Lamont, Susan J; Campagna, Shawn R; Voy, Brynn H

    2014-05-01

    Domestic broiler chickens rapidly accumulate fat and are naturally hyperglycemic and insulin resistant, making them an attractive model for studies of human obesity. We previously demonstrated that short-term (5 h) fasting rapidly upregulates pathways of fatty acid oxidation in broiler chickens and proposed that activation of these pathways may promote leanness. The objective of the current study was to characterize adipose tissue from relatively lean and fatty lines of chickens and determine if heritable leanness in chickens is associated with activation of some of the same pathways induced by fasting. We compared adipose gene expression and metabolite profiles in white adipose tissue of lean Leghorn and Fayoumi breeds to those of fattier commercial broiler chickens. Both lipolysis and expression of genes involved in fatty acid oxidation were upregulated in lean chickens compared with broilers. Although there were strong similarities between the lean lines compared with broilers, distinct expression signatures were also found between Fayoumi and Leghorn, including differences in adipogenic genes. Similarities between genetically lean and fasted chickens suggest that fatty acid oxidation in white adipose tissue is adaptively coupled to lipolysis and plays a role in heritable differences in fatness. Unique signatures of leanness in Fayoumi and Leghorn lines highlight distinct pathways that may provide insight into the basis for leanness in humans. Collectively, our results provide a number of future directions through which to fully exploit chickens as unique models for the study of human obesity and adipose metabolism.

  7. Grains of paradise (Aframomum melegueta) extract activates brown adipose tissue and increases whole-body energy expenditure in men.

    PubMed

    Sugita, Jun; Yoneshiro, Takeshi; Hatano, Takuya; Aita, Sayuri; Ikemoto, Takeshi; Uchiwa, Hideyo; Iwanaga, Toshihiko; Kameya, Toshimitsu; Kawai, Yuko; Saito, Masayuki

    2013-08-01

    Brown adipose tissue (BAT) is responsible for cold- and diet-induced thermogenesis, and thereby contributes to the control of whole-body energy expenditure (EE) and body fat content. BAT activity can be assessed by fluoro-2-deoxyglucose (FDG)-positron emission tomography (PET) in human subjects. Grains of paradise (GP, Aframomum melegueta), a species of the ginger family, contain pungent, aromatic ketones such as 6-paradol, 6-gingerol and 6-shogaol. An alcohol extract of GP seeds and 6-paradol are known to activate BAT thermogenesis in small rodents. The present study aimed to examine the effects of the GP extract on whole-body EE and to analyse its relation to BAT activity in men. A total of nineteen healthy male volunteers aged 20-32 years underwent FDG-PET after 2 h of exposure to cold at 19°C with light clothing. A total of twelve subjects showed marked FDG uptake into the adipose tissue of the supraclavicular and paraspinal regions (BAT positive). The remaining seven showed no detectable uptake (BAT negative). Within 4 weeks after the FDG-PET examination, whole-body EE was measured at 27°C before and after oral ingestion of GP extract (40 mg) in a single-blind, randomised, placebo-controlled, crossover design. The resting EE of the BAT-positive group did not differ from that of the BAT-negative group. After GP extract ingestion, the EE of the BAT-positive group increased within 2 h to a significantly greater (P<0·01) level than that of the BAT-negative group. Placebo ingestion produced no significant change in EE. These results suggest that oral ingestion of GP extract increases whole-body EE through the activation of BAT in human subjects.

  8. Development of thermogenic adipose tissue.

    PubMed

    Loncar, D

    1991-09-01

    Besides having a metabolic and insulatory-supporting function, adipose tissue in endotherms also performs a thermogenic function. Thermogenic adipocytes contain specific UC-mitochondria with uncoupling protein (UCP) and produce heat. Thermogenic adipose tissue has two forms: brown adipose tissue (BAT) and convertible adipose tissue (CAT). Brown adipocytes have UC-mitochondria and express UCP throughout the entire life of small rodents, chiropterans, and insectivores. However, in other endotherms and in humans CAT participates as thermogenic tissue only during early postnatal period. Both BAT and CAT start to develop in utero, although in some animals (hamsters, marsupials) or in some particular areas (thoraco-periaortal and medio-perirenal areas in rats) development of thermogenic adipose tissue starts after birth. Postnatal development of BAT in small endotherms is characterized by quantitative changes (the amount of UC-mitochondria, UCP, and lipids). Postnatal development of CAT causes qualitative changes during which UC-mitochondria in convertible adipocytes are replaced by common, nonthermogenic C-mitochondria; vascularization of adipocytes drops to a low level and, with lipid accumulation, convertible adipocytes appear as lipid-store cells. Postnatal development of CAT can be modulated or reversed by the environmental temperature. The duration of postnatal changes varies between species; i.e., cats, rabbits and sheep, change their thermogenic form of CAT into the lipid-store form within the first postnatal month, while in humans the same process takes up to 15-20 years. In maturity all these large endotherms have CAT in lipid-store form. In light of these results, the question of participation of thermogenic adipose tissue in the regulation of human obesity needs to be answered.

  9. Brown adipose tissue growth and development.

    PubMed

    Symonds, Michael E

    2013-01-01

    Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP) 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle.

  10. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats

    PubMed Central

    Kelly, Karen B.; Kennelly, John P.; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J.; Jacobs, René L.

    2016-01-01

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet. PMID:27669293

  11. Excess Folic Acid Increases Lipid Storage, Weight Gain, and Adipose Tissue Inflammation in High Fat Diet-Fed Rats.

    PubMed

    Kelly, Karen B; Kennelly, John P; Ordonez, Marta; Nelson, Randal; Leonard, Kelly; Stabler, Sally; Gomez-Muñoz, Antonio; Field, Catherine J; Jacobs, René L

    2016-09-23

    Folic acid intake has increased to high levels in many countries, raising concerns about possible adverse effects, including disturbances to energy and lipid metabolism. Our aim was to investigate the effects of excess folic acid (EFA) intake compared to adequate folic acid (AFA) intake on metabolic health in a rodent model. We conducted these investigations in the setting of either a 15% energy low fat (LF) diet or 60% energy high fat (HF) diet. There was no difference in weight gain, fat mass, or glucose tolerance in EFA-fed rats compared to AFA-fed rats when they were fed a LF diet. However, rats fed EFA in combination with a HF diet had significantly greater weight gain and fat mass compared to rats fed AFA (p < 0.05). Gene expression analysis showed increased mRNA levels of peroxisome proliferator-activated receptor γ (PPARγ) and some of its target genes in adipose tissue of high fat-excess folic acid (HF-EFA) fed rats. Inflammation was increased in HF-EFA fed rats, associated with impaired glucose tolerance compared to high fat-adequate folic acid (HF-AFA) fed rats (p < 0.05). In addition, folic acid induced PPARγ expression and triglyceride accumulation in 3T3-L1 cells. Our results suggest that excess folic acid may exacerbate weight gain, fat accumulation, and inflammation caused by consumption of a HF diet.

  12. Maternal low protein diet reduces birth weight and increases brown adipose tissue UCP-1 and FNDC5 gene expression in male neonatal Sprague-Dawley rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown adipose tissue (BAT) plays an important role in regulating body weight (BW) by modifying thermogenesis. Maternal low protein (LP) diets reduce offspring birth weight. Increased BAT thermogenesis in utero may be one mechanism for the lower BW. However, whether maternal LP nutrition alters BAT...

  13. Adipose Tissue-Derived Mesenchymal Stem Cells Increase Skin Allograft Survival and Inhibit Th-17 Immune Response

    PubMed Central

    Larocca, Rafael Assumpção; Moraes-Vieira, Pedro Manoel; Bassi, Ênio José; Semedo, Patrícia; de Almeida, Danilo Candido; da Silva, Marina Burgos; Thornley, Thomas; Pacheco-Silva, Alvaro; Câmara, Niels Olsen Saraiva

    2013-01-01

    Adipose tissue-derived mesenchymal stem cells (ADSC) exhibit immunosuppressive capabilities both in vitro and in vivo. Their use for therapy in the transplant field is attractive as they could render the use of immunosuppressive drugs unnecessary. The aim of this study was to investigate the effect of ADSC therapy on prolonging skin allograft survival. Animals that were treated with a single injection of donor allogeneic ADSC one day after transplantation showed an increase in donor skin graft survival by approximately one week. This improvement was associated with preserved histological morphology, an expansion of CD4+ regulatory T cells (Treg) in draining lymph nodes, as well as heightened IL-10 expression and down-regulated IL-17 expression. In vitro, ADSC inhibit naïve CD4+ T cell proliferation and constrain Th-1 and Th-17 polarization. In summary, infusion of ADSC one day post-transplantation dramatically increases skin allograft survival by inhibiting the Th-17 pathogenic immune response and enhancing the protective Treg immune response. Finally, these data suggest that ADSC therapy will open new opportunities for promoting drug-free allograft survival in clinical transplantation. PMID:24124557

  14. Mitochondrial biogenesis and increased uncoupling protein 1 in brown adipose tissue of mice fed a ketone ester diet.

    PubMed

    Srivastava, Shireesh; Kashiwaya, Yoshihiro; King, M Todd; Baxa, Ulrich; Tam, Joseph; Niu, Gang; Chen, Xiaoyuan; Clarke, Kieran; Veech, Richard L

    2012-06-01

    We measured the effects of a diet in which D-β-hydroxybutyrate-(R)-1,3 butanediol monoester [ketone ester (KE)] replaced equicaloric amounts of carbohydrate on 8-wk-old male C57BL/6J mice. Diets contained equal amounts of fat, protein, and micronutrients. The KE group was fed ad libitum, whereas the control (Ctrl) mice were pair-fed to the KE group. Blood d-β-hydroxybutyrate levels in the KE group were 3-5 times those reported with high-fat ketogenic diets. Voluntary food intake was reduced dose dependently with the KE diet. Feeding the KE diet for up to 1 mo increased the number of mitochondria and doubled the electron transport chain proteins, uncoupling protein 1, and mitochondrial biogenesis-regulating proteins in the interscapular brown adipose tissue (IBAT). [(18)F]-Fluorodeoxyglucose uptake in IBAT of the KE group was twice that in IBAT of the Ctrl group. Plasma leptin levels of the KE group were more than 2-fold those of the Ctrl group and were associated with increased sympathetic nervous system activity to IBAT. The KE group exhibited 14% greater resting energy expenditure, but the total energy expenditure measured over a 24-h period or body weights was not different. The quantitative insulin-sensitivity check index was 73% higher in the KE group. These results identify KE as a potential antiobesity supplement.

  15. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity.

    PubMed

    Cancello, Raffaella; Tordjman, Joan; Poitou, Christine; Guilhem, Gaël; Bouillot, Jean Luc; Hugol, Danielle; Coussieu, Christiane; Basdevant, Arnaud; Bar Hen, Avner; Bedossa, Pierre; Guerre-Millo, Michèle; Clément, Karine

    2006-06-01

    In human obesity, white adipose tissue (WAT) is enriched in macrophages. How macrophage infiltration in WAT contributes to the complications of obesity is unknown. This study tested the hypothesis that recruitment of macrophages in omental WAT is associated with hepatic damage in obese patients. Paired biopsies of subcutaneous and omental WAT and a liver biopsy were collected during gastric surgery in 46 obese women and 9 obese men (BMI 47.9 +/- 0.93 kg/m(2)). The number of HAM56+ macrophages in WAT was quantified microscopically, and correlations with clinical and biological parameters and histological liver pathology were investigated. There were twice as many macrophages in omental as in subcutaneous WAT (P<0.0001). After adjustment for age, omental WAT macrophage infiltration was correlated to fasting glucose and insulin, quantitative insulin sensitivity check index, triglycerides, aspartate aminotransferase (AST), and gamma-glutamyltranspeptidase. We propose an easy equation to estimate the amount of macrophages in omental WAT. Increased macrophage accumulation specifically in omental WAT was associated with hepatic fibroinflammatory lesions (P=0.01). The best predictive model for the severity of hepatic damage includes adiponectinemia, AST, and omental WAT macrophages. These data suggest that the presence of macrophages in omental WAT participates in the cellular mechanisms favoring hepatic fibroinflammatory lesions in obese patients.

  16. Gluteal and abdominal subcutaneous adipose tissue depots as stroma cell source: gluteal cells display increased adipogenic and osteogenic differentiation potentials.

    PubMed

    Iwen, Karl Alexander; Priewe, Anna-Christin; Winnefeld, Marc; Rose, Christian; Siemers, Frank; Rohwedel, Jürgen; Cakiroglu, Figen; Lehnert, Hendrik; Schepky, Andreas; Klein, Johannes; Kramer, Jan

    2014-06-01

    Human adipose-derived stroma cells (ADSCs) have successfully been employed in explorative therapeutic studies. Current evidence suggests that ADSCs are unevenly distributed in subcutaneous adipose tissue; therefore, the anatomical origin of ADSCs may influence clinical outcomes. This study was designed to investigate proliferation and differentiation capacities of ADSCs from the gluteal and abdominal depot of 8 females. All had normal BMI (22.01 ± 0.39 kg/m(2) ) and waist circumference (81.13 ± 2.33 cm). Examination by physicians and analysis of 31 laboratory parameters did not reveal possibly confounding medical disorders. Gluteal and abdominal adipose tissue was sampled by en bloc resection on day 7 (±1) after the last menses. Histological examination did not reveal significant depot-specific differences. As assessed by BrdU assay, proliferation of cells from both depots was similar after 24 h and analysis of 15 cell surface markers by flow cytometry identified the isolated cells as ADSCs, again without depot-specific differences. ADSCs from both depots differentiated poorly to chondroblasts. Gluteal ADSCs displayed significantly higher adipogenic differentiation potential than abdominal cells. Osteogenic differentiation was most pronounced in gluteal cells, whereas differentiation of abdominal ADSCs was severely impaired. Our data demonstrate a depot-specific difference in ADSC differentiation potential with abdominal cells failing to meet the criteria of multipotent ADSCs. This finding should be taken into account in future explorations of ADSC-derived therapeutic strategies.

  17. Intracellular pH of brown adipose tissue increases during norepinephrine stimulation of thermogenesis

    SciTech Connect

    Horwitz, B.A.; Hamilton, J.S.

    1986-03-01

    Norepinephrine (NE) activation of brown fat (BAT) thermogenesis appears to involve dissociation of purine nucleotides from the mitochondrial uncoupling protein, resulting in release of normal respiratory control and enhanced substrate oxidation. Since the affinity of the uncoupling protein for purine nucleotides decreases significantly with increasing pH, the authors wished to determine if NE administration shifted the intracellular pH of BAT. To examine this question under in vivo conditions, they positioned a nuclear magnetic resonance (NMR) surface coil over the interscapular BAT of anesthetized male Syrian hamsters. The underlying and surrounding musculature was shielded to minimize their contribution to the /sup 31/P spectra. The hamster was placed in a Nicolet 200 Mhz spectrometer, operating in the Fourier Transform mode and tuned to /sup 31/P. Scans taken during infusion of ascorbate buffer (vehicle for NE) were compared to those taken during NE infusion (8 ng/g x min). During this infusion, BAT temperature increased 3.7 +/- 0.5/sup 0/C, confirming that BAT thermogenesis was activated. There also occurred a statistically significant PPM (parts per million) shift, averaging 0.070 +/- 0.022 (n = 22) and corresponding to an increase of approximately 0.07 pH units. This shift in intracellular pH from 7.32 to 7.39, although small, would facilitate the maintenance of loosely coupled brown fat mitochondria.

  18. CCR2 deficiency leads to increased eosinophils, alternative macrophage activation, and type 2 cytokine expression in adipose tissue.

    PubMed

    Bolus, W Reid; Gutierrez, Dario A; Kennedy, Arion J; Anderson-Baucum, Emily K; Hasty, Alyssa H

    2015-10-01

    Adipose tissue (AT) inflammation during obesity is mediated by immune cells and closely correlates with systemic insulin resistance. In lean AT, eosinophils are present in low but significant numbers and capable of promoting alternative macrophage activation in an IL-4/IL-13-dependent manner. In WT mice, obesity causes the proportion of AT eosinophils to decline, concomitant with inflammation and classical activation of AT macrophages. In this study, we show that CCR2 deficiency leads to increased eosinophil accumulation in AT. Furthermore, in contrast to WT mice, the increase in eosinophils in CCR2(-/-) AT is sustained and even amplified during obesity. Interestingly, a significant portion of eosinophils is found in CLSs in AT of obese CCR2(-/-) mice, which is the first time eosinophils have been shown to localize to these inflammatory hot spots. CCR2(-/-) bone marrow precursors displayed increased expression of various key eosinophil genes during in vitro differentiation to eosinophils, suggesting a potentially altered eosinophil phenotype in the absence of CCR2. In addition, the proportion of eosinophils in AT positively correlated with local expression of Il5, a potent eosinophil stimulator. The increase in eosinophils in CCR2(-/-) mice was detected in all white fat pads analyzed and in the peritoneal cavity but not in bone marrow, blood, spleen, or liver. In AT of CCR2(-/-) mice, an increased eosinophil number positively correlated with M2-like macrophages, expression of the Treg marker Foxp3, and type 2 cytokines, Il4, Il5, and Il13. This is the first study to link CCR2 function with regulation of AT eosinophil accumulation.

  19. Increased Visceral Adipose Tissue as a Potential Risk Factor in Patients with Embolic Stroke of Undetermined Source (ESUS)

    PubMed Central

    Muuronen, Antti T.; Taina, Mikko; Hedman, Marja; Marttila, Jarkko; Kuusisto, Johanna; Onatsu, Juha; Vanninen, Ritva; Jäkälä, Pekka; Sipola, Petri; Mustonen, Pirjo

    2015-01-01

    Purpose The etiology of an ischemic stroke remains undetermined in 20–35% of cases and many patients do not have any of the conventional risk factors. Increased visceral adipose tissue (VAT) is a suggested new risk factor for both carotid artery atherosclerosis (CAA) and atrial fibrillation (AF), but its role in the remaining stroke population is unknown. We assessed the amount of VAT in patients with embolic stroke of undetermined source (ESUS) after excluding major-risk cardioembolic sources, occlusive atherosclerosis, and lacunar stroke. Methods Altogether 58 patients (mean age 57.7±10.2 years, 44 men) with ischemic stroke of unknown etiology but without CAA, known AF or small vessel disease underwent computed tomography angiography and assessment of VAT. For comparison VAT values from three different reference populations were used. Conventional risk factors (smoking, hypertension, diabetes, increased total and LDL-cholesterol, decreased HDL-cholesterol) were also registered. Results Mean VAT area was significantly higher in stroke patients (205±103 cm2 for men and 168±99 cm2 for women) compared to all reference populations (P<0.01). 50% of male and 57% of female patients had an increased VAT area. In male patients, VAT was significantly higher despite similar body mass index (BMI). Increased VAT was more common than any of the conventional risk factors. Conclusion Increased VAT was found in over half of our patients with ESUS suggesting it may have a role in the pathogenesis of thromboembolism in this selected group of patients. PMID:25756793

  20. Chronic REM-sleep deprivation of rats elevates metabolic rate and increases UCP1 gene expression in brown adipose tissue.

    PubMed

    Koban, Michael; Swinson, Kevin L

    2005-07-01

    A cluster of unique pathologies progressively develops during chronic total- or rapid eye movement-sleep deprivation (REM-SD) of rats. Two prominent and readily observed symptoms are hyperphagia and decline in body weight. For body weight to be lost despite a severalfold increase in food consumption suggests that SD elevates metabolism as the subject enters a state of negative energy balance. To test the hypothesis that mediation of this hypermetabolism involves increased gene expression of uncoupling protein-1 (UCP1), which dissipates the thermodynamic energy of the mitochondrial proton-motive force as heat instead of ATP formation in brown adipose tissue (BAT), we 1) established the time course and magnitude of change in metabolism by measuring oxygen consumption, 2) estimated change in UCP1 gene expression in BAT by RT-PCR and Western blot, and 3) assayed serum leptin because of its role in regulating energy balance and food intake. REM-SD of male Sprague-Dawley rats was enforced for 20 days with the platform (flowerpot) method, wherein muscle atonia during REM sleep causes contact with surrounding water and awakens it. By day 20, rats more than doubled food consumption while losing approximately 11% of body weight; metabolism rose to 166% of baseline with substantial increases in UCP1 mRNA and immunoreactive UCP1 over controls; serum leptin decreased and remained suppressed. The decline in leptin is consistent with the hyperphagic response, and we conclude that one of the mediators of elevated metabolism during prolonged REM-SD is increased gene expression of UCP1 in BAT.

  1. Assessment of brown adipose tissue function.

    PubMed

    Virtue, Sam; Vidal-Puig, Antonio

    2013-01-01

    In this review we discuss practical considerations for the assessment of brown adipose tissue in rodent models, focusing on mice. The central aim of the review is to provide a critical appraisal of the utility of specialized techniques for assessing brown adipose tissue function in vivo. We cover several of the most common specialized methods for analysing brown adipose tissue function in vivo, including assessment of maximal thermogenic capacity by indirect calorimetry and the measurement of sympathetic tone to brown adipose tissue. While these techniques are powerful, they are not readily available to all laboratories; therefore we also cover several simple measurements that, particularly in combination, can be used to determine if a mouse model is likely to have alterations in brown adipose tissue function. Such techniques include: pair feeding, analysis of brown adipose tissue lipid content and mRNA and protein markers of brown adipose tissue activation.

  2. Assessment of brown adipose tissue function

    PubMed Central

    Virtue, Sam; Vidal-Puig, Antonio

    2013-01-01

    In this review we discuss practical considerations for the assessment of brown adipose tissue in rodent models, focusing on mice. The central aim of the review is to provide a critical appraisal of the utility of specialized techniques for assessing brown adipose tissue function in vivo. We cover several of the most common specialized methods for analysing brown adipose tissue function in vivo, including assessment of maximal thermogenic capacity by indirect calorimetry and the measurement of sympathetic tone to brown adipose tissue. While these techniques are powerful, they are not readily available to all laboratories; therefore we also cover several simple measurements that, particularly in combination, can be used to determine if a mouse model is likely to have alterations in brown adipose tissue function. Such techniques include: pair feeding, analysis of brown adipose tissue lipid content and mRNA and protein markers of brown adipose tissue activation. PMID:23760815

  3. [White adipose tissue dysfunction observed in obesity].

    PubMed

    Lewandowska, Ewa; Zieliński, Andrzej

    2016-05-01

    Obesity is a disease with continuingly increasing prevalence. It occurs worldwide independently of age group, material status or country of origin. At these times the most common reasons for obesity are bad eating habits and dramatic reduction of physical activity, which cause the energy imbalance of organism. Fundamental alteration observed in obese subjects is white adipose tissue overgrowth, which is linked to increased incidence of obesity-related comorbidities, such as: cardiovascular diseases, type 2 diabetes or digestive tract diseases. What is more, obesity is also a risk factor for some cancers. Special risk for diseases linked to excessive weight is associated with overgrowth of visceral type of adipose tissue. Adipose tissue, which is the main energy storehouse in body and acts also as an endocrine organ, undergoes both the morphological and the functional changes in obesity, having a negative impact on whole body function. In this article we summarize the most important alterations in morphology and function of white adipose tissue, observed in obese subjects.

  4. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues

    PubMed Central

    Hausman, Gary J; Basu, Urmila; Du, Min; Fernyhough-Culver, Melinda; Dodson, Michael V

    2014-01-01

    Human studies of the influence of aging and other factors on intermuscular fat (INTMF) were reviewed. Intermuscular fat increased with weight loss, weight gain, or with no weight change with age in humans. An increase in INTMF represents a similar threat to type 2 diabetes and insulin resistance as does visceral adipose tissue (VAT). Studies of INTMF in animals covered topics such as quantitative deposition and genetic relationships with other fat depots. The relationship between leanness and higher proportions of INTMF fat in pigs was not observed in human studies and was not corroborated by other pig studies. In humans, changes in muscle mass, strength and quality are associated with INTMF accretion with aging. Gene expression profiling and intrinsic methylation differences in pigs demonstrated that INTMF and VAT are primarily associated with inflammatory and immune processes. It seems that in the pig and humans, INTMF and VAT share a similar pattern of distribution and a similar association of components dictating insulin sensitivity. Studies on intramuscular (IM) adipocyte development in meat animals were reviewed. Gene expression analysis and genetic analysis have identified candidate genes involved in IM adipocyte development. Intramuscular (IM) adipocyte development in human muscle is only seen during aging and some pathological circumstance. Several genetic links between human and meat animal adipogenesis have been identified. In pigs, the Lipin1 and Lipin 2 gene have strong genetic effects on IM accumulation. Lipin1 deficiency results in immature adipocyte development in human lipodystrophy. In humans, overexpression of Perilipin 2 (PLIN2) facilitates intramyocellular lipid accretion whereas in pigs PLIN2 gene expression is associated with IM deposition. Lipins and perilipins may influence intramuscular lipid regardless of species. PMID:26317048

  5. The immunosuppressive agents rapamycin, cyclosporin A and tacrolimus increase lipolysis, inhibit lipid storage and alter expression of genes involved in lipid metabolism in human adipose tissue.

    PubMed

    Pereira, Maria J; Palming, Jenny; Rizell, Magnus; Aureliano, Manuel; Carvalho, Eugénia; Svensson, Maria K; Eriksson, Jan W

    2013-01-30

    Cyclosporin A (CsA), tacrolimus and rapamycin are immunosuppressive agents (IAs) associated with insulin resistance and dyslipidemia, although their molecular effects on lipid metabolism in adipose tissue are unknown. We explored IAs effects on lipolysis, lipid storage and expression of genes involved on lipid metabolism in isolated human adipocytes and/or adipose tissue obtained via subcutaneous and omental fat biopsies. CsA, tacrolimus and rapamycin increased isoproterenol-stimulated lipolysis and inhibited lipid storage by 20-35% and enhanced isoproterenol-stimulated hormone-sensitive lipase Ser552 phosphorylation. Rapamycin also increased basal lipolysis (~20%) and impaired insulin's antilipolytic effect. Rapamycin, down-regulated the gene expression of perilipin, sterol regulatory element-binding protein 1 (SREBP1) and lipin 1, while tacrolimus down-regulated CD36 and aP2 gene expression. All three IAs increased IL-6 gene expression and secretion, but not expression and secretion of TNF-α or adiponectin. These findings suggest that CsA, tacrolimus and rapamycin enhance lipolysis, inhibit lipid storage and expression of lipogenic genes in adipose tissue, which may contribute to the development of dyslipidemia and insulin resistance associated with immunosuppressive therapy.

  6. Obesogenic memory can confer long-term increases in adipose tissue but not liver inflammation and insulin resistance after weight loss

    PubMed Central

    Schmitz, J.; Evers, N.; Awazawa, M.; Nicholls, H.T.; Brönneke, H.S.; Dietrich, A.; Mauer, J.; Blüher, M.; Brüning, J.C.

    2016-01-01

    Objective Obesity represents a major risk factor for the development of type 2 diabetes mellitus, atherosclerosis and certain cancer entities. Treatment of obesity is hindered by the long-term maintenance of initially reduced body weight, and it remains unclear whether all pathologies associated with obesity are fully reversible even upon successfully maintained weight loss. Methods We compared high fat diet-fed, weight reduced and lean mice in terms of body weight development, adipose tissue and liver insulin sensitivity as well as inflammatory gene expression. Moreover, we assessed similar parameters in a human cohort before and after bariatric surgery. Results Compared to lean animals, mice that demonstrated successful weight reduction showed increased weight gain following exposure to ad libitum control diet. However, pair-feeding weight-reduced mice with lean controls efficiently stabilized body weight, indicating that hyperphagia was the predominant cause for the observed weight regain. Additionally, whereas glucose tolerance improved rapidly after weight loss, systemic insulin resistance was retained and ameliorated only upon prolonged pair-feeding. Weight loss enhanced insulin action and resolved pro-inflammatory gene expression exclusively in the liver, whereas visceral adipose tissue displayed no significant improvement of metabolic and inflammatory parameters compared to obese mice. Similarly, bariatric surgery in humans (n = 55) resulted in massive weight reduction, improved hepatic inflammation and systemic glucose homeostasis, while adipose tissue inflammation remained unaffected and adipocyte-autonomous insulin action only exhibit minor improvements in a subgroup of patients (42%). Conclusions These results demonstrate that although sustained weight loss improves systemic glucose homeostasis, primarily through improved inflammation and insulin action in liver, a remarkable obesogenic memory can confer long-term increases in adipose tissue

  7. Selective blockade of 5-HT2A receptors attenuates the increased temperature response in brown adipose tissue to restraint stress in rats.

    PubMed

    Ootsuka, Youichirou; Blessing, William W; Nalivaiko, Eugene

    2008-03-01

    Previous studies have demonstrated that 5-HT2A receptors may be involved in the central control of thermoregulation and of the cardiovascular system. Our aim was to test whether these receptors mediate thermogenic and tachycardiac responses induced by acute psychological stress. Three groups of adult male Hooded Wistar rats were instrumented with: (i) a thermistor in the interscapular area (for recording brown adipose tissue temperature) and an ultrasound Doppler probe (to record tail blood flow); (ii) temperature dataloggers to record core body temperature; (iii) ECG electrodes. On the day of the experiment, rats were subjected to a 30-min restraint stress preceded by s.c. injection of either vehicle or SR-46349B (a serotonin 2A receptor antagonist) at doses of 0.01, 0.1 and 1.0 mg/kg. The restraint stress caused a rise in brown adipose tissue temperature (from, mean +/- s.e.m., 36.6 +/- 0.2 to 38.0 +/- 0.2 degrees C), transient cutaneous vasoconstriction (tail blood flow decreased from 12 +/- 2 to 5 +/- 1 cm/s), increase in heart rate (from 303 +/- 15 to 453 +/- 15 bpm at the peak, then reduced to 393 +/- 12 bpm at the steady state), and defaecation (6 +/- 1 pellets per restraint session). The core body temperature was not affected by the restraint. Blockade of 5-HT2A receptors attenuated the increase in brown adipose tissue temperature and transient cutaneous vasoconstriction, but not tachycardia and defaecation elicited by restraint stress. These results indicate that psychological stress causes activation of 5-HT2A receptors in neural pathways that control thermogenesis in the brown adipose tissue and facilitate cutaneous vasoconstriction.

  8. Sex differences in adipose tissue

    PubMed Central

    Fuente-Martín, Esther; Argente-Arizón, Pilar; Ros, Purificación; Argente, Jesús; Chowen, Julie A

    2013-01-01

    Obesity and its associated secondary complications are active areas of investigation in search of effective treatments. As a result of this intensified research numerous differences between males and females at all levels of metabolic control have come to the forefront. These differences include not only the amount and distribution of adipose tissue, but also differences in its metabolic capacity and functions between the sexes. Here, we review some of the recent advances in our understanding of these dimorphisms and emphasize the fact that these differences between males and females must be taken into consideration in hopes of obtaining successful treatments for both sexes. PMID:23991358

  9. Glyceroneogenesis is reduced and glucose uptake is increased in adipose tissue from cafeteria diet-fed rats independently of tissue sympathetic innervation.

    PubMed

    Chaves, Valéria E; Frasson, Danúbia; Martins-Santos, Maria E S; Boschini, Renata P; Garófalo, Maria A R; Festuccia, William T L; Kettelhut, Isis C; Migliorini, Renato H

    2006-10-01

    The pathways of glycerol-3-P (G3P) generation were examined in retroperitoneal (RETRO) and epididymal (EPI) adipose tissues from rats fed a cafeteria diet for 3 wk. The cafeteria diet induced marked increases in body fat mass and in the plasma levels of insulin and triacylglycerol (TAG). RETRO and EPI from cafeteria diet-fed rats had increased rates of norepinephrine turnover (143 and 60%, respectively) and of de novo fatty acid (FA) synthesis (58 and 98%), compared with controls fed a balanced commercial diet. Cafeteria diet feeding induced marked increases in RETRO and EPI in vivo rates of glucose uptake (52 and 51%, respectively), used to evaluate G3P generation via glycolysis, as well as in glycerokinase activity (119 and 36%) and TAG-glycerol synthesis from glycerol (56 and 71%, respectively). In contrast, there was a marked reduction of glyceroneogenesis in RETRO and EPI from cafeteria diet-fed rats, which was evidenced by the significant decreases of P-enolpyruvate carboxykinase (PEPCK-C) activity (48 and 36%) and TAG-glycerol synthesis from pyruvate (45 and 56%, respectively). Denervation of RETRO from cafeteria diet-fed rats reduced the activity of glycerokinase by 50%, but did not affect glucose uptake or PEPCK-C activity and TAG-glycerol synthesis from pyruvate by the tissue. The data show that glyceroneogenesis can also be inhibited to adjust the supply of G3P to the existing rates of FA esterification and TAG synthesis and suggest that this adjustment is made by reciprocal changes in the generation of G3P from glucose via glycolysis and from glyceroneogenesis, independently from G3P production by glycerokinase.

  10. Targeting adipose tissue via systemic gene therapy.

    PubMed

    O'Neill, S M; Hinkle, C; Chen, S-J; Sandhu, A; Hovhannisyan, R; Stephan, S; Lagor, W R; Ahima, R S; Johnston, J C; Reilly, M P

    2014-07-01

    Adipose tissue has a critical role in energy and metabolic homeostasis, but it is challenging to adapt techniques to modulate adipose function in vivo. Here we develop an in vivo, systemic method of gene transfer specifically targeting adipose tissue using adeno-associated virus (AAV) vectors. We constructed AAV vectors containing cytomegalovirus promoter-regulated reporter genes, intravenously injected adult mice with vectors using multiple AAV serotypes, and determined that AAV2/8 best targeted adipose tissue. Altering vectors to contain adiponectin promoter/enhancer elements and liver-specific microRNA-122 target sites restricted reporter gene expression to adipose tissue. As proof of efficacy, the leptin gene was incorporated into the adipose-targeted expression vector, package into AAV2/8 and administered intravenously to 9- to 10-week-old ob/ob mice. Phenotypic changes were measured over an 8-week period. Leptin mRNA and protein were expressed in adipose and leptin protein was secreted into plasma. Mice responded with reversal of weight gain, decreased hyperinsulinemia and improved glucose tolerance. AAV2/8-mediated systemic delivery of an adipose-targeted expression vector can replace a gene lacking in adipose tissue and correct a mouse model of human disease, demonstrating experimental application and therapeutic potential in disorders of adipose.

  11. Brown adipose tissue and bone

    PubMed Central

    Lidell, M E; Enerbäck, S

    2015-01-01

    Brown adipose tissue (BAT) is capable of transforming chemically stored energy, in the form of triglycerides, into heat. Recent studies have shown that metabolically active BAT is present in a large proportion of adult humans, where its activity correlates with a favorable metabolic status. Hence, the tissue is now regarded as an interesting target for therapies against obesity and associated diseases such as type 2 diabetes, the hypothesis being that an induction of BAT would be beneficial for these disease states. Apart from the association between BAT activity and a healthier metabolic status, later studies have also shown a positive correlation between BAT volume and both bone cross-sectional area and bone mineral density, suggesting that BAT might stimulate bone anabolism. The aim of this review is to give the reader a brief overview of the BAT research field and to summarize and discuss recent findings regarding BAT being a potential player in bone metabolism. PMID:27152171

  12. Palmitic acid feeding increases ceramide supply in association with increased milk yield, circulating nonesterified fatty acids, and adipose tissue responsiveness to a glucose challenge.

    PubMed

    Rico, J E; Mathews, A T; Lovett, J; Haughey, N J; McFadden, J W

    2016-11-01

    Reduced insulin action is a key adaptation that facilitates glucose partitioning to the mammary gland for milk synthesis and enhances adipose tissue lipolysis during early lactation. The progressive recovery of insulin sensitivity as cows advance toward late lactation is accompanied by reductions in circulating nonesterified fatty acids (NEFA) and milk yield. Because palmitic acid can promote insulin resistance in monogastrics through sphingolipid ceramide-dependent mechanisms, palmitic acid (C16:0) feeding may enhance milk production by restoring homeorhetic responses. We hypothesized that feeding C16:0 to mid-lactation cows would enhance ceramide supply and ceramide would be positively associated with milk yield. Twenty multiparous mid-lactation Holstein cows were enrolled in a study consisting of a 5-d covariate, 49-d treatment, and 14-d posttreatment period. All cows were randomly assigned to a sorghum silage-based diet containing no supplemental fat (control; n=10; 138±45 d in milk) or C16:0 at 4% of ration dry matter (PALM; 98% C16:0; n=10; 136±44 d in milk). Blood and milk were collected at routine intervals. Liver and skeletal muscle tissue were biopsied at d 47 of treatment. Intravenous glucose tolerance tests (300mg/kg of body weight) were performed at d -1, 24, and 49 relative to start of treatment. The plasma and tissue concentrations of ceramide and glycosylated ceramide were determined using liquid chromatography coupled with tandem mass spectrometry. Data were analyzed as repeated measures using a mixed model with fixed effects of treatment and time, and milk yield served as a covariate. The PALM treatment increased milk yield, energy-corrected milk, and milk fat yield. The most abundant plasma and tissue sphingolipids detected were C24:0-ceramide, C24:0-monohexosylceramide (GlcCer), and C16:0-lactosylceramide. Plasma concentrations of total ceramide and GlcCer decreased as lactation advanced, and ceramide and GlcCer were elevated in cows fed PALM

  13. Regulation of systemic energy homeostasis by serotonin in adipose tissues

    PubMed Central

    Oh, Chang-Myung; Namkung, Jun; Go, Younghoon; Shong, Ko Eun; Kim, Kyuho; Kim, Hyeongseok; Park, Bo-Yoon; Lee, Ho Won; Jeon, Yong Hyun; Song, Junghan; Shong, Minho; Yadav, Vijay K.; Karsenty, Gerard; Kajimura, Shingo; Lee, In-Kyu; Park, Sangkyu; Kim, Hail

    2015-01-01

    Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis. PMID:25864946

  14. Non-invasive assessments of adipose tissue metabolism in vitro

    PubMed Central

    Abbott, Rosalyn D.; Borowsky, Francis E.; Quinn, Kyle P.; Bernstein, David L.; Georgakoudi, Irene; Kaplan, David L.

    2015-01-01

    Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with noninvasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored. PMID:26399988

  15. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance.

    PubMed

    Yang, Hyunwon; Youm, Yun-Hee; Vandanmagsar, Bolormaa; Ravussin, Anthony; Gimble, Jeffrey M; Greenway, Frank; Stephens, Jacqueline M; Mynatt, Randall L; Dixit, Vishwa Deep

    2010-08-01

    Emerging evidence suggests that increases in activated T cell populations in adipose tissue may contribute toward obesity-associated metabolic syndrome. The present study investigates three unanswered questions: 1) Do adipose-resident T cells (ARTs) from lean and obese mice have altered cytokine production in response to TCR ligation?; 2) Do the extralymphoid ARTs possess a unique TCR repertoire compared with lymphoid-resident T cells and whether obesity alters the TCR diversity in specific adipose depots?; and 3) Does short-term elimination of T cells in epididymal fat pad without disturbing the systemic T cell homeostasis regulate inflammation and insulin-action during obesity? We found that obesity reduced the frequency of naive ART cells in s.c. fat and increased the effector-memory populations in visceral fat. The ARTs from diet-induced obese (DIO) mice had a higher frequency of IFN-gamma(+), granzyme B(+) cells, and upon TCR ligation, the ARTs from DIO mice produced increased levels of proinflammatory mediators. Importantly, compared with splenic T cells, ARTs exhibited markedly restricted TCR diversity, which was further compromised by obesity. Acute depletion of T cells from epididymal fat pads improved insulin action in young DIO mice but did not reverse obesity-associated feed forward cascade of chronic systemic inflammation and insulin resistance in middle-aged DIO mice. Collectively, these data establish that ARTs have a restricted TCR-Vbeta repertoire, and T cells contribute toward the complex proinflammatory microenvironment of adipose tissue in obesity. Development of future long-term T cell depletion protocols specific to visceral fat may represent an additional strategy to manage obesity-associated comorbidities.

  16. Obesity Increases the Production of Proinflammatory Mediators from Adipose Tissue T Cells and Compromises TCR Repertoire Diversity: Implications for Systemic Inflammation and Insulin Resistance

    PubMed Central

    Yang, Hyunwon; Youm, Yun-Hee; Vandanmagsar, Bolormaa; Ravussin, Anthony; Gimble, Jeffrey M.; Greenway, Frank; Stephens, Jacqueline M.; Mynatt, Randall L.; Dixit, Vishwa Deep

    2016-01-01

    Emerging evidence suggests that increases in activated T cell populations in adipose tissue may contribute toward obesity-associated metabolic syndrome. The present study investigates three unanswered questions: 1) Do adipose-resident T cells (ARTs) from lean and obese mice have altered cytokine production in response to TCR ligation?; 2) Do the extralymphoid ARTs possess a unique TCR repertoire compared with lymphoid-resident T cells and whether obesity alters the TCR diversity in specific adipose depots?; and 3) Does short-term elimination of T cells in epididymal fat pad without disturbing the systemic T cell homeostasis regulate inflammation and insulin-action during obesity? We found that obesity reduced the frequency of naive ART cells in s.c. fat and increased the effector-memory populations in visceral fat. The ARTs from diet-induced obese (DIO) mice had a higher frequency of IFN-γ+, granzyme B+ cells, and upon TCR ligation, the ARTs from DIO mice produced increased levels of proinflammatory mediators. Importantly, compared with splenic T cells, ARTs exhibited markedly restricted TCR diversity, which was further compromised by obesity. Acute depletion of T cells from epididymal fat pads improved insulin action in young DIO mice but did not reverse obesity-associated feed forward cascade of chronic systemic inflammation and insulin resistance in middle-aged DIO mice. Collectively, these data establish that ARTs have a restricted TCR-Vβ repertoire, and T cells contribute toward the complex proinflammatory microenvironment of adipose tissue in obesity. Development of future long-term T cell depletion protocols specific to visceral fat may represent an additional strategy to manage obesity-associated comorbidities. PMID:20581149

  17. Self-synthesized extracellular matrix contributes to mature adipose tissue regeneration in a tissue engineering chamber.

    PubMed

    Zhan, Weiqing; Chang, Qiang; Xiao, Xiaolian; Dong, Ziqing; Zeng, Zhaowei; Gao, Jianhua; Lu, Feng

    2015-01-01

    The development of an engineered adipose tissue substitute capable of supporting reliable, predictable, and complete fat tissue regeneration would be of value in plastic and reconstructive surgery. For adipogenesis, a tissue engineering chamber provides an optimized microenvironment that is both efficacious and reproducible; however, for reasons that remain unclear, tissues regenerated in a tissue engineering chamber consist mostly of connective rather than adipose tissue. Here, we describe a chamber-based system for improving the yield of mature adipose tissue and discuss the potential mechanism of adipogenesis in tissue-chamber models. Adipose tissue flaps with independent vascular pedicles placed in chambers were implanted into rabbits. Adipose volume increased significantly during the observation period (week 1, 2, 3, 4, 16). Histomorphometry revealed mature adipose tissue with signs of adipose tissue remolding. The induced engineered constructs showed high-level expression of adipogenic (peroxisome proliferator-activated receptor γ), chemotactic (stromal cell-derived factor 1a), and inflammatory (interleukin 1 and 6) genes. In our system, the extracellular matrix may have served as a scaffold for cell migration and proliferation, allowing mature adipose tissue to be obtained in a chamber microenvironment without the need for an exogenous scaffold. Our results provide new insights into key elements involved in the early development of adipose tissue regeneration.

  18. Renin dynamics in adipose tissue: adipose tissue control of local renin concentrations.

    PubMed

    Fowler, Jason D; Krueth, Stacy B; Bernlohr, David A; Katz, Stephen A

    2009-02-01

    The renin-angiotensin system (RAS) has been implicated in a variety of adipose tissue functions, including tissue growth, differentiation, metabolism, and inflammation. Although expression of all components necessary for a locally derived adipose tissue RAS has been demonstrated within adipose tissue, independence of local adipose RAS component concentrations from corresponding plasma RAS fluctuations has not been addressed. To analyze this, we varied in vivo rat plasma concentrations of two RAS components, renin and angiotensinogen (AGT), to determine the influence of their plasma concentrations on adipose and cardiac tissue levels in both perfused (plasma removed) and nonperfused samples. Variation of plasma RAS components was accomplished by four treatment groups: normal, DOCA salt, bilateral nephrectomy, and losartan. Adipose and cardiac tissue AGT concentrations correlated positively with plasma values. Perfusion of adipose tissue decreased AGT concentrations by 11.1%, indicating that adipose tissue AGT was in equilibrium with plasma. Cardiac tissue renin levels positively correlated with plasma renin concentration for all treatments. In contrast, adipose tissue renin levels did not correlate with plasma renin, with the exception of extremely high plasma renin concentrations achieved in the losartan-treated group. These results suggest that adipose tissue may control its own local renin concentration independently of plasma renin as a potential mechanism for maintaining a functional local adipose RAS.

  19. Adipose tissue and skeletal muscle blood flow during mental stress

    SciTech Connect

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  20. Role of adipose tissue in the pathogenesis of cardiac arrhythmias.

    PubMed

    Samanta, Rahul; Pouliopoulos, Jim; Thiagalingam, Aravinda; Kovoor, Pramesh

    2016-01-01

    Epicardial adipose tissue is present in normal healthy individuals. It is a unique fat depot that, under physiologic conditions, plays a cardioprotective role. However, excess epicardial adipose tissue has been shown to be associated with prevalence and severity of atrial fibrillation. In arrhythmogenic right ventricular cardiomyopathy and myotonic dystrophy, fibrofatty infiltration of the myocardium is associated with ventricular arrhythmias. In the ovine model of ischemic cardiomyopathy, the presence of intramyocardial adipose or lipomatous metaplasia has been associated with increased propensity to ventricular tachycardia. These observations suggest a role of adipose tissue in the pathogenesis of cardiac arrhythmias. In this article, we review the role of cardiac adipose tissue in various cardiac arrhythmias and discuss the possible pathophysiologic mechanisms.

  1. Cellularity of adipose tissue in fetal pig.

    PubMed

    Desnoyers, F; Pascal, G; Etienne, M; Vodovar, N

    1980-03-01

    Adipose tissue cellularity was studied in the 85-day-old Large-White pig fetus. The aim of this work was to count the adipose cells of forming tissue in an animal species which could be a possible model for studying adipose tissue in humans. Using a morphometric method with electron microscopy, mean triglyceride volume per cell was determined independently of mean cell volume. This method is suitable for counting adipose cells in the early stage of differentiation whatever their size and lipid inclusion volume. Site-by-site dissection of adipose tissue was not feasible in the 85-day old fetus and adipose cell number was computed by dividing total carcass triglyceride volume by mean triglyceride volume per cell. The carcass triglyceride seemed to originate only from adipose cells. The mean total carcass triglyceride volume per fetus (1.84 g) was low but, owing to the low mean triglyceride volume per cell (180.28 microns3), the adipose cell number (11.15 X 10(9)) was relatively important, as it represented about 27% of the extramuscular adipose cell number in the Large-White adult pig (41 X 10(9)).

  2. Plasma and adipose tissue level of angiopoietin-like 7 (ANGPTL7) are increased in obesity and reduced after physical exercise

    PubMed Central

    Cherian, Preethi; Al-Khairi, Irina; Madhu, Dhanya; Tiss, Ali; Warsam, Samia; Alhubail, Asma; Sriraman, Devarajan; Al-Refaei, Faisal; Abubaker, Jehad

    2017-01-01

    Objective ANGPTL7 is a member of the Angiopoietin-like (ANGPTL) protein family that is composed of eight proteins (1–8). Increasing evidence is associating ANGPTL proteins to obesity and insulin resistance. The biological role of ANGPTL7 is yet to be understood except for a recently proposed role in the pathophysiology of glaucoma. This study was designed to shed light on the function of ANGPTL7 in obesity and its modulation by physical exercise as well as its potential association with lipid profile. Methods A total of 144 subjects were enrolled in this study and finished three months of physical exercise. The participants were classified based on their BMI, 82 subjects were non-obese and 62 obese. ANGPTL7 levels in plasma and adipose tissue were measured by ELISA, RT-PCR and immunohistochemistry. Results In this study, we showed that ANGPTL7 level was increased in the plasma of obese subjects (1249.05± 130.39 pg/mL) as compared to non-obese (930.34 ± 87.27 pg/mL) (p-Value = 0.032). ANGPTL7 Gene and protein expression levels in adipose tissue also showed over two fold increase. Physical exercise reduced circulating level of ANGPTL7 in the obese subjects to 740.98± 127.18 pg/mL, (p-Value = 0.007). ANGPTL7 expression in adipose tissue was also reduced after exercise. Finally, ANGPTL7 circulating level showed significant association with TG level in the obese subjects (R2 = 0.183, p-Value = 0.03). Conclusion In conclusion, our data shows for the first time that obesity increases the level of ANGPTL7 in both plasma and adipose tissue. Increased expression of ANGPTL7 might play a minor role in the regulation of TG level in obese subjects either directly or through interaction with other ANGPTL protein members. Physical exercise reduced the level of ANGPTL7 highlighting the potential for targeting this protein as a therapeutic target for regulating dyslipidemia. PMID:28264047

  3. Different adipose tissue depots: Metabolic implications and effects of surgical removal.

    PubMed

    Marcadenti, Aline; de Abreu-Silva, Erlon Oliveira

    2015-11-01

    Increased adiposity has been associated to worse metabolic profile, cardiovascular disease, and mortality. There are two main adipose tissue depots in the body, subcutaneous and visceral adipose tissue, which differ in anatomical location. A large body of evidence has shown the metabolic activity of adipose tissue; lipectomy and/or liposuction therefore appear to be alternatives for improving metabolic profile through rapid loss of adipose tissue. However, surgical removal of adipose tissue may be detrimental for metabolism, because subcutaneous adipose tissue has not been associated to metabolic disorders such as insulin resistance and type 2 diabetes mellitus. In addition, animal studies have shown a compensatory growth of adipose tissue in response to lipectomy. This review summarizes the implications of obesity-induced metabolic dysfunction, its relationship with the different adipose tissue depots, and the effects of lipectomy on cardiometabolic risk factors.

  4. Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice

    PubMed Central

    Weiner, Juliane; Kranz, Mathias; Klöting, Nora; Kunath, Anne; Steinhoff, Karen; Rijntjes, Eddy; Köhrle, Josef; Zeisig, Vilia; Hankir, Mohammed; Gebhardt, Claudia; Deuther-Conrad, Winnie; Heiker, John T.; Kralisch, Susan; Stumvoll, Michael; Blüher, Matthias; Sabri, Osama; Hesse, Swen; Brust, Peter; Tönjes, Anke; Krause, Kerstin

    2016-01-01

    The present study aimed to determine the effect of thyroid hormone dysfunction on brown adipose tissue activity and white adipose tissue browning in mice. Twenty randomized female C57BL/6NTac mice per treatment group housed at room temperature were rendered hypothyroid or hyperthyroid. In-vivo small animal 18F-FDG PET/MRI was performed to determine the effects of hypo- and hyperthyroidism on BAT mass and BAT activity. Ex-vivo14C-acetate loading assay and assessment of thermogenic gene and protein expression permitted analysis of oxidative and thermogenic capacities of WAT and BAT of eu-, hyper and hypothyroid mice. 18F-FDG PET/MRI revealed a lack of brown adipose tissue activity in hypothyroid mice, whereas hyperthyroid mice displayed increased BAT mass alongside enhanced 18F-FDG uptake. In white adipose tissue of both, hyper- and hypothyroid mice, we found a significant induction of thermogenic genes together with multilocular adipocytes expressing UCP1. Taken together, these results suggest that both the hyperthyroid and hypothyroid state stimulate WAT thermogenesis most likely as a consequence of enhanced adrenergic signaling or compensation for impaired BAT function, respectively. PMID:27941950

  5. Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice.

    PubMed

    Weiner, Juliane; Kranz, Mathias; Klöting, Nora; Kunath, Anne; Steinhoff, Karen; Rijntjes, Eddy; Köhrle, Josef; Zeisig, Vilia; Hankir, Mohammed; Gebhardt, Claudia; Deuther-Conrad, Winnie; Heiker, John T; Kralisch, Susan; Stumvoll, Michael; Blüher, Matthias; Sabri, Osama; Hesse, Swen; Brust, Peter; Tönjes, Anke; Krause, Kerstin

    2016-12-12

    The present study aimed to determine the effect of thyroid hormone dysfunction on brown adipose tissue activity and white adipose tissue browning in mice. Twenty randomized female C57BL/6NTac mice per treatment group housed at room temperature were rendered hypothyroid or hyperthyroid. In-vivo small animal (18)F-FDG PET/MRI was performed to determine the effects of hypo- and hyperthyroidism on BAT mass and BAT activity. Ex-vivo(14)C-acetate loading assay and assessment of thermogenic gene and protein expression permitted analysis of oxidative and thermogenic capacities of WAT and BAT of eu-, hyper and hypothyroid mice. (18)F-FDG PET/MRI revealed a lack of brown adipose tissue activity in hypothyroid mice, whereas hyperthyroid mice displayed increased BAT mass alongside enhanced (18)F-FDG uptake. In white adipose tissue of both, hyper- and hypothyroid mice, we found a significant induction of thermogenic genes together with multilocular adipocytes expressing UCP1. Taken together, these results suggest that both the hyperthyroid and hypothyroid state stimulate WAT thermogenesis most likely as a consequence of enhanced adrenergic signaling or compensation for impaired BAT function, respectively.

  6. Cardiac adipose tissue and atrial fibrillation: the perils of adiposity.

    PubMed

    Hatem, Stéphane N; Redheuil, Alban; Gandjbakhch, Estelle

    2016-04-01

    The amount of adipose tissue that accumulates around the atria is associated with the risk, persistence, and severity of atrial fibrillation (AF). A strong body of clinical and experimental evidence indicates that this relationship is not an epiphenomenon but is the result of complex crosstalk between the adipose tissue and the neighbouring atrial myocardium. For instance, epicardial adipose tissue is a major source of adipokines, inflammatory cytokines, or reactive oxidative species, which can contribute to the fibrotic remodelling of the atrial myocardium. Fibro-fatty infiltrations of the subepicardium could also contribute to the functional disorganization of the atrial myocardium. The observation that obesity is associated with distinct structural and functional remodelling of the atria has opened new perspectives of treating AF substrate with aggressive risk factor management. Advances in cardiac imaging should lead to an improved ability to visualize myocardial fat depositions and to localize AF substrates.

  7. Abalation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show ...

  8. Increased thermogenic capacity of brown adipose tissue under low temperature and its contribution to arousal from hibernation in Syrian hamsters.

    PubMed

    Kitao, Naoya; Hashimoto, Masaaki

    2012-01-01

    Brown adipose tissue (BAT) is thought to play a significant physiological role during arousal when body temperature rises from the extremely low body temperature that occurs during hibernation. The dominant pathway of BAT thermogenesis occurs through the β(3)-adrenergic receptor. In this study, we investigated the role of the β(3)-adrenergic system in BAT thermogenesis during arousal from hibernation both in vitro and in vivo. Syrian hamsters in the hibernation group contained BAT that was significantly greater in overall mass, total protein, and thermogenic uncoupling protein-1 than BAT from the warm-acclimated group. Although the ability of the β(3)-agonist CL316,243 to induce BAT thermogenesis at 36°C was no different between the hibernation and warm-acclimated groups, its maximum ratio over the basal value at 12°C in the hibernation group was significantly larger than that in the warm-acclimated group. Forskolin stimulation at 12°C produced equivalent BAT responses in these two groups. In vivo thermogenesis was assessed with the arousal time determined by the time course of BAT temperature or heart rate. Stimulation of BAT by CL316,243 significantly shortened the time of arousal from hibernation compared with that induced by vehicle alone, and it also induced arousal in deep hibernating animals. The β(3)-antagonist SR59230A inhibited arousal from hibernation either in part or completely. These results suggest that BAT in hibernating animals has potent thermogenic activity with a highly effective β(3)-receptor mechanism at lower temperatures.

  9. Miglitol increases energy expenditure by upregulating uncoupling protein 1 of brown adipose tissue and reduces obesity in dietary-induced obese mice

    PubMed Central

    2014-01-01

    Background Miglitol is an oral anti-diabetic drug that acts by inhibiting carbohydrate absorption in the small intestine. Recent studies have shown that miglitol reduces obesity in humans and rodents. However, its mechanisms have remained unclear. The purpose of this study was to determine whether miglitol generates heat by activating uncoupling protein 1 (UCP1), an enzyme involved in thermogenesis, in brown adipose tissue (BAT) in mice. Methods Four-week-old male C57BL/6 J mice were fed a high-fat diet alone (HF) or a high fat diet plus miglitol (HFM). Oxygen consumption (VO2) was used to estimate metabolic rate. A thermal imaging camera was used to quantify heat generation from interscapular brown adipose tissue. We analyzed the protein and gene expressions of UCP1 and the expressions of four proteins related to β3-adrenergic signaling in the pathway activating UCP1 (protein kinase A (PKA), hormone-sensitive lipase (HSL), p38 α mitogen-activated protein kinase (p38αMAPK) and peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α)). Results At 8 weeks, body weight, epididymal and subcutaneous white adipose tissue and the HOMA-R value of the HFM mice were significantly less than those of the HF mice. Food intake was not different between the HF and HFM mice. VO2 and BAT temperature were significantly higher in the HFM mice. Miglitol significantly enhanced the gene and protein expressions of UCP1 and the expressions of proteins related to β3-adrenergic signaling. Conclusions Miglitol’s anti-obesity effect was attributed to increased energy expenditure by upregulating UCP1 in BAT (i.e., by thermogenesis) and to enhancement of β3-adrenergic signaling in BAT. PMID:24669882

  10. trans-10,cis-12 Conjugated linoleic acid inhibits lipoprotein lipase but increases the activity of lipogenic enzymes in adipose tissue from hamsters fed an atherogenic diet.

    PubMed

    Zabala, Amaia; Churruca, Itziar; Fernández-Quintela, Alfredo; Rodríguez, Víctor M; Macarulla, M Teresa; Martínez, J Alfredo; Portillo, María P

    2006-06-01

    The aim of the present work was to investigate the effects of trans-10,cis-12 conjugated linoleic acid (CLA) on the activity and expression of lipogenic enzymes and lipoprotein lipase (LPL), as well as on the expression of transcriptional factors controlling these enzymes, in adipose tissue from hamsters, and to evaluate the involvement of these changes in the body fat-reducing effect of this CLA isomer. Thirty male hamsters were divided into three groups and fed atherogenic diets supplemented with 0 (linoleic group), 5 or 10 g trans-10,cis-12 CLA/kg diet, for 6 weeks. Body and adipose tissue weights, food intake and serum insulin were measured. Total and heparin-releasable LPL and lipogenic enzyme activities (acetyl-CoA carboxylase (ACC); fatty acid synthase (FAS); glucose-6-phosphate dehydrogenase (G6PDH); and malic enzyme (ME)) were assessed. ACC, FAS, LPL, sterol regulatory element-binding proteins (SREBP-1a), SREBP-1c and PPARgamma mRNA levels were also determined by real-time PCR. CLA did not modify food intake, body weight and serum insulin level. CLA feeding reduced adipose tissue weight, LPL activity and expression, and increased lipogenic enzyme activities, despite a significant reduction in ACC and FAS mRNA levels. The expression of the three transcriptional factors analysed (SREBP-1a, SREBP-1c and PPARgamma) was also reduced. These results appear to provide a framework for partially understanding the reduction in body fat induced by CLA. Inhibition of LPL activity seems to be an important mechanism underlying body fat reduction in hamsters. Further research is needed to better characterize the effects of CLA on lipogenesis and the role of these effects in CLA action.

  11. Proline oxidase-adipose triglyceride lipase pathway restrains adipose cell death and tissue inflammation.

    PubMed

    Lettieri Barbato, D; Aquilano, K; Baldelli, S; Cannata, S M; Bernardini, S; Rotilio, G; Ciriolo, M R

    2014-01-01

    The nutrient-sensing lipolytic enzyme adipose triglyceride lipase (ATGL) has a key role in adipose tissue function, and alterations in its activity have been implicated in many age-related metabolic disorders. In adipose tissue reduced blood vessel density is related to hypoxia state, cell death and inflammation. Here we demonstrate that adipocytes of poorly vascularized enlarged visceral adipose tissue (i.e. adipose tissue of old mice) suffer from limited nutrient delivery. In particular, nutrient starvation elicits increased activity of mitochondrial proline oxidase/dehydrogenase (POX/PRODH) that is causal in triggering a ROS-dependent induction of ATGL. We demonstrate that ATGL promotes the expression of genes related to mitochondrial oxidative metabolism (peroxisome proliferator-activated receptor-α, peroxisome proliferator-activated receptor-γ coactivator-1α), thus setting a metabolic switch towards fat utilization that supplies energy to starved adipocytes and prevents cell death, as well as adipose tissue inflammation. Taken together, these results identify ATGL as a stress resistance mediator in adipocytes, restraining visceral adipose tissue dysfunction typical of age-related metabolic disorders.

  12. Brown adipose tissue, thermogenesis, angiogenesis: pathophysiological aspects.

    PubMed

    Honek, Jennifer; Lim, Sharon; Fischer, Carina; Iwamoto, Hideki; Seki, Takahiro; Cao, Yihai

    2014-07-01

    The number of obese and overweight individuals is globally rising, and obesity-associated disorders such as type 2 diabetes, cardiovascular disease and certain types of cancer are among the most common causes of death. While white adipose tissue is the key player in the storage of energy, active brown adipose tissue expends energy due to its thermogenic capacity. Expanding and activating brown adipose tissue using pharmacological approaches therefore might offer an attractive possibility for therapeutic intervention to counteract obesity and its consequences for metabolic health.

  13. Increased PUFA Content and 5-Lipoxygenase Pathway Expression Are Associated with Subcutaneous Adipose Tissue Inflammation in Obese Women with Type 2 Diabetes.

    PubMed

    Heemskerk, Mattijs M; Giera, Martin; Bouazzaoui, Fatiha El; Lips, Mirjam A; Pijl, Hanno; van Dijk, Ko Willems; van Harmelen, Vanessa

    2015-09-11

    Obese women with type 2 diabetes mellitus (T2DM) have more inflammation in their subcutaneous white adipose tissue (sWAT) than age-and-BMI similar obese women with normal glucose tolerance (NGT). We aimed to investigate whether WAT fatty acids and/or oxylipins are associated with the enhanced inflammatory state in WAT of the T2DM women. Fatty acid profiles were measured in both subcutaneous and visceral adipose tissue (vWAT) of 19 obese women with NGT and 16 age-and-BMI similar women with T2DM. Oxylipin levels were measured in sWAT of all women. Arachidonic acid (AA) and docosahexaenoic acid (DHA) percentages were higher in sWAT, but not vWAT of the T2DM women, and AA correlated positively to the gene expression of macrophage marker CD68. We found tendencies for higher oxylipin concentrations of the 5-LOX leukotrienes in sWAT of T2DM women. Gene expression of the 5-LOX leukotriene biosynthesis pathway was significantly higher in sWAT of T2DM women. In conclusion, AA and DHA content were higher in sWAT of T2DM women and AA correlated to the increased inflammatory state in sWAT. Increased AA content was accompanied by an upregulation of the 5-LOX pathway and seems to have led to an increase in the conversion of AA into proinflammatory leukotrienes in sWAT.

  14. Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth.

    PubMed

    Jo, Junghyo; Gavrilova, Oksana; Pack, Stephanie; Jou, William; Mullen, Shawn; Sumner, Anne E; Cushman, Samuel W; Periwal, Vipul

    2009-03-01

    Adipose tissue grows by two mechanisms: hyperplasia (cell number increase) and hypertrophy (cell size increase). Genetics and diet affect the relative contributions of these two mechanisms to the growth of adipose tissue in obesity. In this study, the size distributions of epididymal adipose cells from two mouse strains, obesity-resistant FVB/N and obesity-prone C57BL/6, were measured after 2, 4, and 12 weeks under regular and high-fat feeding conditions. The total cell number in the epididymal fat pad was estimated from the fat pad mass and the normalized cell-size distribution. The cell number and volume-weighted mean cell size increase as a function of fat pad mass. To address adipose tissue growth precisely, we developed a mathematical model describing the evolution of the adipose cell-size distributions as a function of the increasing fat pad mass, instead of the increasing chronological time. Our model describes the recruitment of new adipose cells and their subsequent development in different strains, and with different diet regimens, with common mechanisms, but with diet- and genetics-dependent model parameters. Compared to the FVB/N strain, the C57BL/6 strain has greater recruitment of small adipose cells. Hyperplasia is enhanced by high-fat diet in a strain-dependent way, suggesting a synergistic interaction between genetics and diet. Moreover, high-fat feeding increases the rate of adipose cell size growth, independent of strain, reflecting the increase in calories requiring storage. Additionally, high-fat diet leads to a dramatic spreading of the size distribution of adipose cells in both strains; this implies an increase in size fluctuations of adipose cells through lipid turnover.

  15. Adipose tissue inflammation and metabolic dysfunction: a clinical perspective.

    PubMed

    Tam, Charmaine S; Redman, Leanne M

    2013-09-01

    Obesity is characterized by a state of chronic low-grade inflammation due to increased immune cells, specifically infiltrated macrophages into adipose tissue, which in turn secrete a range of proinflammatory mediators. This nonselective low-grade inflammation of adipose tissue is systemic in nature and can impair insulin signaling pathways, thus, increasing the risk of developing insulin resistance and type 2 diabetes. The aim of this review is to provide an update on clinical studies examining the role of adipose tissue in the development of obesity-associated complications in humans. We will discuss adipose tissue inflammation during different scenarios of energy imbalance and metabolic dysfunction including obesity and overfeeding, weight loss by calorie restriction or bariatric surgery, and conditions of insulin resistance (diabetes, polycystic ovarian syndrome).

  16. Flow Cytometry Analyses of Adipose Tissue Macrophages

    PubMed Central

    Cho, Kae Won; Morris, David L.; Lumeng, Carey N.

    2014-01-01

    Within adipose tissue, multiple leukocyte interactions contribute to metabolic homeostasis in health as well as to the pathogenesis of insulin resistance with obesity. Adipose tissue macrophages (ATMs) are the predominant leukocyte population in fat and contribute to obesity-induced inflammation. Characterization of ATMs and other leukocytes in the stromal vascular fraction from fat has benefited from the use of flow cytometry and flow-assisted cell sorting techniques. These methods permit the immunophenotyping, quantification, and purification of these unique cell populations from multiple adipose tissue depots in rodents and humans. Proper isolation, quantification, and characterization of ATM phenotypes are critical for understanding their role in adipose tissue function and obesity-induced metabolic diseases. Here, we present the flow cytometry protocols for phenotyping ATMs in lean and obese mice employed by our laboratory. PMID:24480353

  17. Molecular pathways regulating the formation of brown-like adipocytes in white adipose tissue.

    PubMed

    Fu, Jianfei; Li, Zhen; Zhang, Huiqin; Mao, Yushan; Wang, Anshi; Wang, Xin; Zou, Zuquan; Zhang, Xiaohong

    2015-07-01

    Adipose tissue is functionally composed of brown adipose tissue and white adipose tissue. The unique thermogenic capacity of brown adipose tissue results from expression of uncoupling protein 1 in the mitochondrial inner membrane. On the basis of recent findings that adult humans have functionally active brown adipose tissue, it is now recognized as playing a much more important role in human metabolism than was previously thought. More importantly, brown-like adipocytes can be recruited in white adipose tissue upon environmental stimulation and pharmacologic treatment, and this change is associated with increased energy expenditure, contributing to a lean and healthy phenotype. Thus, the promotion of brown-like adipocyte development in white adipose tissue offers novel possibilities for the development of therapeutic strategies to combat obesity and related metabolic diseases. In this review, we summarize recent advances in understanding the molecular mechanisms involved in the recruitment of brown-like adipocyte in white adipose tissue.

  18. Influencing Factors of Thermogenic Adipose Tissue Activity

    PubMed Central

    Zhang, Guoqing; Sun, Qinghua; Liu, Cuiqing

    2016-01-01

    Obesity is an escalating public health challenge and contributes tremendously to the disease burden globally. New therapeutic strategies are required to alleviate the health impact of obesity-related metabolic dysfunction. Brown adipose tissue (BAT) is specialized for dissipating chemical energy for thermogenesis as a defense against cold environment. Intriguingly, the brown-fat like adipocytes that dispersed throughout white adipose tissue (WAT) in rodents and humans, called “brite” or “beige” adipocytes, share similar thermogenic characteristics to brown adipocytes. Recently, researchers have focused on cognition of these thermogenic adipose tissues. Some factors have been identified to regulate the development and function of thermogenic adipose tissues. Cold exposure, pharmacological conditions, and lifestyle can enhance non-shivering thermogenesis and metabolism via some mechanisms. However, environmental pollutants, such as ambient fine particulates and ozone, may impair the function of these thermogenic adipose tissues and thereby induce metabolic dysfunction. In this review, the origin, function and influencing factors of thermogenic adipose tissues were summarized and it will provide insights into identifying new therapeutic strategies for the treatment of obesity and obesity-related diseases. PMID:26903879

  19. A peptide probe for targeted brown adipose tissue imaging.

    PubMed

    Azhdarinia, Ali; Daquinag, Alexes C; Tseng, Chieh; Ghosh, Sukhen C; Ghosh, Pradip; Amaya-Manzanares, Felipe; Sevick-Muraca, Eva; Kolonin, Mikhail G

    2013-01-01

    The presence of brown adipose tissue responsible for thermogenic energy dissipation has been revealed in adult humans and has high clinical importance. Owing to limitations of current methods for brown adipose tissue detection, analysing the abundance and localization of brown adipose tissue in the body has remained challenging. Here we screen a combinatorial peptide library in mice and characterize a peptide (with the sequence CPATAERPC) that selectively binds to the vascular endothelium of brown adipose tissue, but not of intraperitoneal white adipose tissue. We show that in addition to brown adipose tissue, this peptide probe also recognizes the vasculature of brown adipose tissue-like depots of subcutaneous white adipose tissue. Our results indicate that the CPATAERPC peptide localizes to brown adipose tissue even in the absence of sympathetic nervous system stimulation. Finally, we demonstrate that this probe can be used to identify brown adipose tissue depots in mice by whole-body near-infrared fluorescence imaging.

  20. HOXC10 suppresses browning of white adipose tissues

    PubMed Central

    Ng, Yvonne; Tan, Shi-Xiong; Chia, Sook Yoong; Tan, Hwee Yim Angeline; Gun, Sin Yee; Sun, Lei; Hong, Wanjin; Han, Weiping

    2017-01-01

    Given that increased thermogenesis in white adipose tissue, also known as browning, promotes energy expenditure, significant efforts have been invested to determine the molecular factors involved in this process. Here we show that HOXC10, a homeobox domain-containing transcription factor expressed in subcutaneous white adipose tissue, is a suppressor of genes involved in browning white adipose tissue. Ectopic expression of HOXC10 in adipocytes suppresses brown fat genes, whereas the depletion of HOXC10 in adipocytes and myoblasts increases the expression of brown fat genes. The protein level of HOXC10 inversely correlates with brown fat genes in subcutaneous white adipose tissue of cold-exposed mice. Expression of HOXC10 in mice suppresses cold-induced browning in subcutaneous white adipose tissue and abolishes the beneficial effect of cold exposure on glucose clearance. HOXC10 exerts its effect, at least in part, by suppressing PRDM16 expression. The results support that HOXC10 is a key negative regulator of the process of browning in white adipose tissue. PMID:28186086

  1. Ghrelin receptor regulates adipose tissue inflammation in aging

    PubMed Central

    Buras, Eric D.; Yu, Kaijiang; Wang, Ruitao; Smith, C. Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr−/− mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsr−/− mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsr−/− mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance. PMID:26837433

  2. Ghrelin receptor regulates adipose tissue inflammation in aging.

    PubMed

    Lin, Ligen; Lee, Jong Han; Buras, Eric D; Yu, Kaijiang; Wang, Ruitao; Smith, C Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr(-/-) mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsrp(-/-) mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsrp(-/-) mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance.

  3. Adipose-derived stem cells and periodontal tissue engineering.

    PubMed

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  4. Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro

    PubMed Central

    2012-01-01

    Background Obesity is associated with prostate cancer aggressiveness and mortality. The contribution of periprostatic adipose tissue, which is often infiltrated by malignant cells, to cancer progression is largely unknown. Thus, this study aimed to determine if periprostatic adipose tissue is linked with aggressive tumor biology in prostate cancer. Methods Supernatants of whole adipose tissue (explants) or stromal vascular fraction (SVF) from paired fat samples of periprostatic (PP) and pre-peritoneal visceral (VIS) anatomic origin from different donors were prepared and analyzed for matrix metalloproteinases (MMPs) 2 and 9 activity. The effects of those conditioned media (CM) on growth and migration of hormone-refractory (PC-3) and hormone-sensitive (LNCaP) prostate cancer cells were measured. Results We show here that PP adipose tissue of overweight men has higher MMP9 activity in comparison with normal subjects. The observed increased activities of both MMP2 and MMP9 in PP whole adipose tissue explants, likely reveal the contribution of adipocytes plus stromal-vascular fraction (SVF) as opposed to SVF alone. MMP2 activity was higher for PP when compared to VIS adipose tissue. When PC-3 cells were stimulated with CM from PP adipose tissue explants, increased proliferative and migratory capacities were observed, but not in the presence of SVF. Conversely, when LNCaP cells were stimulated with PP explants CM, we found enhanced motility despite the inhibition of proliferation, whereas CM derived from SVF increased both cell proliferation and motility. Explants culture and using adipose tissue of PP origin are most effective in promoting proliferation and migration of PC-3 cells, as respectively compared with SVF culture and using adipose tissue of VIS origin. In LNCaP cells, while explants CM cause increased migration compared to SVF, the use of PP adipose tissue to generate CM result in the increase of both cellular proliferation and migration. Conclusions Our

  5. 5'AMP-activated protein kinase activity is increased in adipose tissue of northern elephant seal pups during prolonged fasting-induced insulin resistance.

    PubMed

    Viscarra, Jose A; Champagne, Cory D; Crocker, Daniel E; Ortiz, Rudy M

    2011-06-01

    Northern elephant seals endure a 2- to 3-month fast characterized by sustained hyperglycemia, hypoinsulinemia, and increased plasma cortisol and free fatty acids, conditions often seen in insulin-resistant humans. We had previously shown that adipose Glut4 expression and 5'AMP-activated protein kinase (AMPK) activity increase and plasma glucose decreases in fasting seals suggesting that AMPK activity contributes to glucose regulation during insulin-resistant conditions. To address the hypothesis that AMPK activity increases during fasting-induced insulin resistance, we performed glucose tolerance tests (GTT) on early (n=5) and late (n=8)-fasted seal pups and compared adipose tissue expression of insulin signaling proteins, peroxisome proliferator-activated receptor γ (PPARγ), and AMPK, in addition to plasma adiponectin, leptin, cortisol, insulin, and non-esterified fatty acid (NEFA) levels. Fasting was associated with decreased glucose clearance, plasma insulin and adiponectin, and intracellular insulin signaling, as well as increased plasma cortisol and NEFAs, supporting the suggestion that seals develop insulin resistance late in the fast. The expression of Glut4 and VAMP2 increased (52 and 63% respectively) with fasting but did not change significantly during the GTT. PPARγ and phosphorylated AMPK did not change in the early fasted seals, but increased significantly (73 and 50% respectively) in the late-fasted seals during the GTT. Increased AMPK activity along with the reduction in the activity of insulin-signaling proteins supports our hypothesis that AMPK activity is increased following the onset of insulin resistance. The association between increased AMPK activity and Glut4 expression suggests that AMPK plays a greater role in regulating glucose metabolism in mammals adapted to prolonged fasting than in non-fasting mammals.

  6. Adipose Tissue Oxygenation in Obesity: A Matter of Cardiovascular Risk?

    PubMed

    Landini, Linda; Honka, Miikka-Juhani; Ferrannini, Ele; Nuutila, Pirjo

    2016-01-01

    Obesity, a chronic low-grade inflammation disorder characterized by an expansion in adipose tissue mass, is rapidly expanding worldwide leading to an increase in the incidence of comorbidities such as insulin resistance, type 2 diabetes and cardiovascular diseases. This has led to a renewed interest in the adipose tissue function, historically considered as a passive fat storage. It is now well established that adipose tissue is an organ with an active role in production and release of a variety of molecules called adipocytokines. Dysregulated production of adipocytokines seems to be responsible for the pathogenesis of insulin resistance and type 2 diabetes; however, the mechanisms are still unclear. Hypoxia, that occurs when adipocytes expand in obesity, has been proposed as a possible cause of adipose tissue inflammation. On the other hand, recent studies have shown that adipose tissue oxygen tension was actually higher (hyperoxia) than normal and associated with insulin resistance in obesity, despite a reduction in blood flow. This might be explained by the role of mitochondrial oxygen consumption. Hence, further studies are needed to understand the role of adipose tissue oxygenation and perfusion in obesity to assess pathophysiology and novel opportunities for treating the diseases.

  7. Platelet-Rich Plasma Increases Growth and Motility of Adipose Tissue-Derived Mesenchymal Stem Cells and Controls Adipocyte Secretory Function.

    PubMed

    D'Esposito, Vittoria; Passaretti, Federica; Perruolo, Giuseppe; Ambrosio, Maria Rosaria; Valentino, Rossella; Oriente, Francesco; Raciti, Gregory A; Nigro, Cecilia; Miele, Claudia; Sammartino, Gilberto; Beguinot, Francesco; Formisano, Pietro

    2015-10-01

    Adipose tissue-derived mesenchymal stem cells (Ad-MSC) and platelet derivatives have been used alone or in combination to achieve regeneration of injured tissues. We have tested the effect of platelet-rich plasma (PRP) on Ad-MSC and adipocyte function. PRP increased Ad-MSC viability, proliferation rate and G1-S cell cycle progression, by at least 7-, 2-, and 2.2-fold, respectively, and reduced caspase 3 cleavage. Higher PRP concentrations or PRPs derived from individuals with higher platelet counts were more effective in increasing Ad-MSC growth. PRP also accelerated cell migration by at least 1.5-fold. However, PRP did not significantly affect mature adipocyte viability, differentiation and expression levels of PPAR-γ and AP-2 mRNAs, while it increased leptin production by 3.5-fold. Interestingly, PRP treatment of mature adipocytes also enhanced the release of Interleukin (IL)-6, IL-8, IL-10, Interferon-γ, and Vascular Endothelial Growth Factor. Thus, data are consistent with a stimulatory effect of platelet derivatives on Ad-MSC growth and motility. Moreover, PRP did not reduce mature adipocyte survival and increased the release of pro-angiogenic factors, which may facilitate tissue regeneration processes.

  8. [New anatomo clinic approach of adipose tissue].

    PubMed

    Dardour, J-C

    2012-10-01

    For a long time, adipose tissue was supposed to be inert with only a function of long-term energetic reserve. The obesity, abnormal accumulation of fat, for its part has always been considered the sole result of hyperphagia, itself secondary to a lack of willingness of the subject. This article focuses on the multiple aspects and functions of the different fatty tissues. One must distinguish brown adipose tissue (AT) and the white AT. This includes visceral fat and subcutaneous AT, which itself is divided into two sectors, a genetic fat and grease that we called ecological. The brown adipose tissue has essentially a function of thermogenesis. Visceral adipose tissue (VAT), from a certain volume, behaves as true endocrine gland acting on glycemic and lipid function. In addition to its role of energy reserve, the sub cutaneous AT has a mechanical role of shock absorber and fabric slip. We will emphasize finally the genetic aspect still too misunderstood and underestimated that regulates the different functions of the adipose tissue.

  9. UCP1 in adipose tissues: two steps to full browning.

    PubMed

    Kalinovich, Anastasia V; de Jong, Jasper M A; Cannon, Barbara; Nedergaard, Jan

    2017-03-01

    The possibility that brown adipose tissue thermogenesis can be recruited in order to combat the development of obesity has led to a high interest in the identification of "browning agents", i.e. agents that increase the amount and activity of UCP1 in brown and brite/beige adipose tissues. However, functional analysis of the browning process yields confusingly different results when the analysis is performed in one of two alternative steps. Thus, in one of the steps, using cold acclimation as a potent model browning agent, we find that if the browning process is followed in mice initially housed at 21 °C (the most common procedure), there is only weak molecular evidence for increases in UCP1 gene expression or UCP1 protein abundance in classical brown adipose tissue; however, in brite/beige adipose depots, there are large increases, apparently associating functional browning with events only in the brite/beige tissues. Contrastingly, in another step, if the process is followed starting with mice initially housed at 30 °C (thermoneutrality for mice, thus similar to normal human conditions), large increases in UCP1 gene expression and UCP1 protein abundance are observed in the classical brown adipose tissue depots; there is then practically no observable UCP1 gene expression in brite/beige tissues. This apparent conundrum can be resolved when it is realized that the classical brown adipose tissue at 21 °C is already essentially fully differentiated and thus expands extensively through proliferation upon further browning induction, rather than by further enhancing cellular differentiation. When the limiting factor for thermogenesis, i.e. the total amount of UCP1 protein per depot, is analyzed, classical brown adipose tissue is by far the predominant site for the browning process, irrespective of which of the two steps is analyzed. There are to date no published data demonstrating that alternative browning agents would selectively promote brite/beige tissues

  10. Adipose Tissue Dysfunction: Clinical Relevance and Diagnostic Possibilities.

    PubMed

    Schrover, I M; Spiering, W; Leiner, T; Visseren, F L J

    2016-04-01

    Adipose tissue dysfunction is defined as an imbalance between pro- and anti-inflammatory adipokines, causing insulin resistance, systemic low-grade inflammation, hypercoagulability, and elevated blood pressure. These can lead to cardiovascular disease and diabetes mellitus type 2. Although quantity of adipose tissue is an important determinant of adipose tissue dysfunction, it can be diagnosed in both obese and lean individuals. This implies that not only quantity of adipose tissue should be used as a measure for adipose tissue dysfunction. Instead, focus should be on measuring quality of adipose tissue, which can be done with diagnostic modalities ranging from anthropometric measurements to tissue biopsies and advanced imaging techniques. In daily clinical practice, high quantity of visceral adipose tissue (reflected in high waist circumference or adipose tissue imaging), insulin resistance, or presence of the metabolic syndrome are easy and low-cost diagnostic modalities to evaluate presence or absence of adipose tissue dysfunction.

  11. cGMP and Brown Adipose Tissue.

    PubMed

    Hoffmann, Linda S; Larson, Christopher J; Pfeifer, Alexander

    2016-01-01

    The second messenger cyclic guanosine monophosphate (cGMP) is a key mediator in physiological processes such as vascular tone, and its essential involvement in pathways regulating metabolism has been recognized in recent years. Here, we focus on the fundamental role of cGMP in brown adipose tissue (BAT) differentiation and function. In contrast to white adipose tissue (WAT), which stores energy in the form of lipids, BAT consumes energy stored in lipids to generate heat. This so-called non-shivering thermogenesis takes place in BAT mitochondria, which express the specific uncoupling protein 1 (UCP1). The energy combusting properties of BAT render it a promising target in antiobesity strategies in which BAT could burn the surplus energy that has accumulated in obese and overweight individuals. cGMP is generated by guanylyl cyclases upon activation by nitric oxide or natriuretic peptides. It affects several downstream molecules including cGMP-receptor proteins such as cGMP-dependent protein kinase and is degraded by phosphodiesterases. The cGMP pathway contains several signaling molecules that can increase cGMP signaling, resulting in activation and recruitment of brown adipocytes, and hence can enhance the energy combusting features of BAT. In this review we highlight recent results showing the physiological significance of cGMP signaling in BAT, as well as pharmacological options targeting cGMP signaling that bear a high potential to become BAT-centered therapies for the treatment of obesity.

  12. Growth hormone and adipose tissue: beyond the adipocyte

    PubMed Central

    Berryman, Darlene E.; List, Edward O.; Sackmann-Sala, Lucila; Lubbers, Ellen; Munn, Rachel; Kopchick, John J.

    2011-01-01

    The last two decades have seen resurgence in the interest in, and research on, adipose tissue. In part, the increased interest stems from an alarming increase in obesity rates worldwide. However, an understanding that this once simple tissue is significantly more intricate and interactive than previously realized has fostered additional attention. While few would argue that growth hormone (GH) radically alters adipose tissue, a better appreciation of the newer complexities requires that GH's influence on this tissue be reexamined. Therefore, the objective of this review is to describe the more recent understanding of adipose tissue and how GH may influence and contribute to these newer complexities with special focus on the available data from mice with altered GH action. PMID:21470887

  13. Uncoupling protein-3 mRNA levels are increased in white adipose tissue and skeletal muscle of bezafibrate-treated rats.

    PubMed

    Cabrero, A; Llaverías, G; Roglans, N; Alegret, M; Sánchez, R; Adzet, T; Laguna, J C; Vázquez, M

    1999-07-05

    Fibrates are hypolipidemic drugs that are also able to improve glucose tolerance in animals and diabetic patients through an unknown mechanism. Since uncoupling proteins (UCP) seem to play an important role in the pathogenesis of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether treatment of rats with bezafibrate for 3, 7, or 15 days modified UCP mRNA levels. Using RT-PCR, we observed a weak ectopic expression of UCP-1 and a 2-fold increase in UCP-3 mRNA levels in white adipose tissue after 7 and 15 days of treatment. Moreover, bezafibrate administration caused a 1. 7-fold induction in UCP-3 mRNA levels in skeletal muscle on day 7. Since UCP-3 mRNA levels are reduced in skeletal muscle of diabetic patients, this effect may be involved in the improvement of insulin sensitivity caused by bezafibrate in NIDDM.

  14. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels.

    PubMed

    Herman, Mark A; She, Pengxiang; Peroni, Odile D; Lynch, Christopher J; Kahn, Barbara B

    2010-04-09

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels.

  15. Integrated control of brown adipose tissue.

    PubMed

    Marzetti, Emanuele; D'Angelo, Emanuela; Savera, Giulia; Leeuwenburgh, Christiaan; Calvani, Riccardo

    2016-03-01

    Brown adipose tissue (BAT) has evolved as a unique thermogenic organ that allows placental mammals to withstand cold environmental temperatures through the dissipation of metabolic energy in the form of heat. Although traditionally believed to be lost shortly after birth, metabolically active BAT depots have recently been identified in a large percentage of human adults. Besides classical brown cells, a distinct type of thermogenic adipocytes named beige or brite (brown in white) cells are recruited in white adipose tissue depots under specific stimuli. Given the well-known energy-dissipating properties of thermogenic adipose tissue and its function of metabolic sink for glucose and lipids, this tissue has attracted considerable research interest as a possible target for treating obesity and metabolic disease. The complex network of interorgan connections that regulate BAT and brite tissue mass and function is a major hurdle for the development of therapeutic strategies against metabolic disorders. This review provides an overview of the current knowledge on the regulation of BAT and brite adipose tissue function. The possibility of targeting these tissues to treat obesity and other metabolic disorders is also discussed.

  16. Adipose Tissue - Adequate, Accessible Regenerative Material

    PubMed Central

    Kolaparthy, Lakshmi Kanth.; Sanivarapu, Sahitya; Moogla, Srinivas; Kutcham, Rupa Sruthi

    2015-01-01

    The potential use of stem cell based therapies for the repair and regeneration of various tissues offers a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. The use of either embryonic stem cells (ESCs) or induced pluripotent stem cells in clinical situations is limited due to cell regulations and to technical and ethical considerations involved in genetic manipulation of human ESCs, even though these cells are highly beneficial. Mesenchymal stem cells seen to be an ideal population of stem cells in particular, Adipose derived stem cells (ASCs) which can be obtained in large number and easily harvested from adipose tissue. It is ubiquitously available and has several advantages compared to other sources as easily accessible in large quantities with minimal invasive harvesting procedure, and isolation of adipose derived mesenchymal stem cells yield a high amount of stem cells which is essential for stem cell based therapies and tissue engineering. Recently, periodontal tissue regeneration using ASCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because various secreted growth factors from ASCs might not only promote the regeneration of periodontal tissues but also encourage neovascularization of the damaged tissues. This review summarizes the sources, isolation and characteristics of adipose derived stem cells and its potential role in periodontal regeneration is discussed. PMID:26634060

  17. Integrated control of brown adipose tissue

    PubMed Central

    Marzetti, Emanuele; D’Angelo, Emanuela; Savera, Giulia; Leeuwenburgh, Christiaan; Calvani, Riccardo

    2016-01-01

    Brown adipose tissue (BAT) has evolved as a unique thermogenic organ that allows placental mammals to withstand cold environmental temperatures through the dissipation of metabolic energy in the form of heat. Although traditionally believed to be lost shortly after birth, metabolically active BAT depots have recently been identified in a large percentage of human adults. Besides classical brown cells, a distinct type of thermogenic adipocytes named beige or brite (brown in white) cells are recruited in white adipose tissue depots under specific stimuli. Given the well-known energy-dissipating properties of thermogenic adipose tissue and its function of metabolic sink for glucose and lipids, this tissue has attracted considerable research interest as a possible target for treating obesity and metabolic disease. The complex network of interorgan connections that regulate BAT and brite tissue mass and function is a major hurdle for the development of therapeutic strategies against metabolic disorders. This review provides an overview of the current knowledge on the regulation of BAT and brite adipose tissue function. The possibility of targeting these tissues to treat obesity and other metabolic disorders is also discussed. PMID:27524955

  18. Circadian Rhythms in Adipose Tissue Physiology.

    PubMed

    Kiehn, Jana-Thabea; Tsang, Anthony H; Heyde, Isabel; Leinweber, Brinja; Kolbe, Isa; Leliavski, Alexei; Oster, Henrik

    2017-03-16

    The different types of adipose tissues fulfill a wide range of biological functions-from energy storage to hormone secretion and thermogenesis-many of which show pronounced variations over the course of the day. Such 24-h rhythms in physiology and behavior are coordinated by endogenous circadian clocks found in all tissues and cells, including adipocytes. At the molecular level, these clocks are based on interlocked transcriptional-translational feedback loops comprised of a set of clock genes/proteins. Tissue-specific clock-controlled transcriptional programs translate time-of-day information into physiologically relevant signals. In adipose tissues, clock gene control has been documented for adipocyte proliferation and differentiation, lipid metabolism as well as endocrine function and other adipose oscillations are under control of systemic signals tied to endocrine, neuronal, or behavioral rhythms. Circadian rhythm disruption, for example, by night shift work or through genetic alterations, is associated with changes in adipocyte metabolism and hormone secretion. At the same time, adipose metabolic state feeds back to central and peripheral clocks, adjusting behavioral and physiological rhythms. In this overview article, we summarize our current knowledge about the crosstalk between circadian clocks and energy metabolism with a focus on adipose physiology. © 2017 American Physiological Society. Compr Physiol 7:383-427, 2017.

  19. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our data demonstrate that estrogens, estrogen receptor-alpha (ERalpha), and estrogen receptor-ßeta (ERßeta) regulate adipose tissue distribution, inflammation, fibrosis, and glucose homeostasis, by determining that alphaERKO mice have increased adipose tissue inflammation and fibrosis prior to obesi...

  20. Porous decellularized adipose tissue foams for soft tissue regeneration.

    PubMed

    Yu, Claire; Bianco, Juares; Brown, Cody; Fuetterer, Lydia; Watkins, John F; Samani, Abbas; Flynn, Lauren E

    2013-04-01

    To design tissue-specific bioscaffolds with well-defined properties and 3-D architecture, methods were developed for preparing porous foams from enzyme-solubilized human decellularized adipose tissue (DAT). Additionally, a technique was established for fabricating "bead foams" comprised of interconnected networks of porous DAT beads fused through a controlled freeze-thawing and lyophilization procedure. In characterization studies, the foams were stable without the need for chemical crosslinking, with properties that could be tuned by controlling the protein concentration and freezing rate during synthesis. Adipogenic differentiation studies with human adipose-derived stem cells (ASCs) suggested that stiffness influenced ASC adipogenesis on the foams. In support of our previous work with DAT scaffolds and microcarriers, the DAT foams and bead foams strongly supported adipogenesis and were also adipo-inductive, as demonstrated by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, endpoint RT-PCR analysis of adipogenic gene expression, and intracellular lipid accumulation. Adipogenic differentiation was enhanced on the microporous DAT foams, potentially due to increased cell-cell interactions in this group. In vivo assessment in a subcutaneous Wistar rat model demonstrated that the DAT bioscaffolds were well tolerated and integrated into the host tissues, supporting angiogenesis and adipogenesis. The DAT-based foams induced a strong angiogenic response, promoted inflammatory cell migration and gradually resorbed over the course of 12 weeks, demonstrating potential as scaffolds for wound healing and soft tissue regeneration.

  1. SFRP2 Is Associated with Increased Adiposity and VEGF Expression

    PubMed Central

    Crowley, Rachel K.; Bujalska, Iwona J.; Hassan-Smith, Zaki K.; Hazlehurst, Jonathan M.; Foucault, Danielle R.; Stewart, Paul M.; Tomlinson, Jeremy W.

    2016-01-01

    Aims The aim of this study was to assess depot-specific expression and secretion of secreted frizzled-related protein 2 (sFRP2) by adipose tissue and its effect on adipocyte biology. We measured serum sFRP2 concentrations in 106 patients in vivo to explore its relationship to fat mass, glycaemia and insulin resistance. Methods Expression of sFRP2 in mouse and human tissues was assessed using polymerase chain reaction and Western blot. Western blot confirmed secretion of sFRP2 by adipose tissue into cell culture medium. Effects of recombinant sFRP2 on lipogenesis and preadipocyte proliferation were measured. Preadipocyte expression of the angiogenic genes vascular endothelial growth factor (VEGF) and nuclear factor of activated T-cells 3 (NFATC3) was measured after recombinant sFRP2 exposure. Complementary clinical studies correlating human serum sFRP2 with age, gender, adiposity and insulin secretion were also performed. Results sFRP2 messenger RNA (mRNA) was expressed in mouse and human adipose tissue. In humans, sFRP2 mRNA expression was 4.2-fold higher in omental than subcutaneous adipose. Omental adipose tissue secreted 63% more sFRP2 protein than subcutaneous. Treatment with recombinant sFRP2 did not impact on lipogenesis or preadipocyte proliferation but was associated with increased VEGF mRNA expression. In human subjects, circulating insulin levels positively correlated with serum sFRP2, and levels were higher in patients with abnormal glucose tolerance (34.2ng/ml) compared to controls (29.5ng/ml). A positive correlation between sFRP2 and BMI was also observed. Conclusions Circulating sFRP2 is associated with adipose tissue mass and has a potential role to drive adipose angiogenesis through enhanced VEGF expression. PMID:27685706

  2. Regulation of cholesteryl ester transfer activity in adipose tissue: comparison between hamster and rat species.

    PubMed

    Shen, G X; Angel, A

    1995-07-01

    The present study demonstrates cholesteryl ester transfer activity (CETA) in cultured hamster and rat adipose tissue. Cultured hamster and rat adipose tissue fragments released CETA into the conditioned medium, and this was associated with a reciprocal decrease in adipose tissue CETA. Regional variations in adipose CETA were observed. The levels of CETA released from cultured hamster and rat adipocytes were higher than those from adipose tissue fragments. In hamsters but not in rats, the secretion of CETA from cultured adipose tissue was increased by insulin and inhibited by EDTA in a dose-dependent fashion. Monoclonal antibodies against human cholesteryl ester transfer protein inhibited the CETA secreted from hamster adipose tissue but not that from rat adipose tissue. Fasting for 24 h and a high-cholesterol saturated fat-rich diet increased adipose CETA in hamsters and rats, and this was associated with an elevation of plasma CETA only in hamsters. This supports the view that, in hamsters, adipose CETA has in situ and intravascular functions, whereas in rats the role of adipose CETA is restricted to tissue-specific functions. Hamster cholesteryl ester transfer protein may differ from rat adipose-associated CETA in the structure of the active site and the regulatory mechanism for its secretion.

  3. CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis

    PubMed Central

    Park, Jong-Gil; Xu, Xu; Cho, Sungyun; Hur, Kyu Yeon; Lee, Myung-Shik; Kersten, Sander; Lee, Ann-Hwee

    2016-01-01

    Adipose tissue lipolysis produces glycerol and nonesterified fatty acids (NEFA) that serve as energy sources during nutrient scarcity. Adipose tissue lipolysis is tightly regulated and excessive lipolysis causes hepatic steatosis, as NEFA released from adipose tissue constitutes a major source of TG in the liver of patients with nonalcoholic fatty liver diseases. Here we show that the liver-enriched transcription factor CREBH is activated by TG accumulation and induces FGF21, which suppresses adipose tissue lipolysis, ameliorating hepatic steatosis. CREBH-deficient mice developed severe hepatic steatosis due to increased adipose tissue lipolysis, when fasted or fed a high-fat low-carbohydrate ketogenic diet. FGF21 production was impaired in CREBH-deficient mice, and adenoviral overexpression of FGF21 suppressed adipose tissue lipolysis and improved hepatic steatosis in these mice. Thus, our results uncover a negative feedback loop in which CREBH regulates NEFA flux from adipose tissue to the liver via FGF21. PMID:27301791

  4. The effect of hypokinesia on lipid metabolism in adipose tissue

    NASA Astrophysics Data System (ADS)

    Macho, Ladislav; Kvetn̆anský, Richard; Ficková, Mária

    The increase of nonesterified fatty acid (NEFA) concentration in plasma was observed in rats subjected to hypokinesia for 1-60 days. In the period of recovery (7 and 21 days after 60 days immobilization) the content of NEFA returned to control values. The increase of fatty acid release from adipose tissue was observed in hypokinetic rats, however the stimulation of lipolysis by norepinephrine was lower in rats exposed to hypokinesis. The decrease of the binding capacity and a diminished number of beta-adrenergic receptors were found in animals after hypokinesia. The augmentation of the incorporation of glucose into lipids and the marked increase in the stimulation of lipogenesis by insulin were found in adipose tissue of rats subjected to long-term hypokinesia. These results showed an important effect of hypokinesia on lipid mobilization, on lipogenesis and on the processes of hormone regulation in adipose tissue.

  5. Recent Advances in Proteomic Studies of Adipose Tissues and Adipocytes

    PubMed Central

    Kim, Eun Young; Kim, Won Kon; Oh, Kyoung-Jin; Han, Baek Soo; Lee, Sang Chul; Bae, Kwang-Hee

    2015-01-01

    Obesity is a chronic disease that is associated with significantly increased levels of risk of a number of metabolic disorders. Despite these enhanced health risks, the worldwide prevalence of obesity has increased dramatically over the past few decades. Obesity is caused by the accumulation of an abnormal amount of body fat in adipose tissue, which is composed mostly of adipocytes. Thus, a deeper understanding of the regulation mechanism of adipose tissue and/or adipocytes can provide a clue for overcoming obesity-related metabolic diseases. In this review, we describe recent advances in the study of adipose tissue and/or adipocytes, focusing on proteomic approaches. In addition, we suggest future research directions for proteomic studies which may lead to novel treatments of obesity and obesity-related diseases. PMID:25734986

  6. Dietary gamma-linolenic acid in the form of borage oil causes less body fat accumulation accompanying an increase in uncoupling protein 1 mRNA level in brown adipose tissue.

    PubMed

    Takahashi, Y; Ide, T; Fujita, H

    2000-10-01

    Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid

  7. Natural killer T cells in adipose tissue prevent insulin resistance.

    PubMed

    Schipper, Henk S; Rakhshandehroo, Maryam; van de Graaf, Stan F J; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E S; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-09-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell-deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue-resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue-resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance.

  8. Combined effects of electromagnetic field and low-level laser increase proliferation and alter the morphology of human adipose tissue-derived mesenchymal stem cells.

    PubMed

    Nurković, Jasmin; Zaletel, Ivan; Nurković, Selmina; Hajrović, Šefćet; Mustafić, Fahrudin; Isma, Jovan; Škevin, Aleksandra Jurišić; Grbović, Vesna; Filipović, Milica Kovačević; Dolićanin, Zana

    2017-01-01

    In recent years, electromagnetic field (EMF) and low-level laser (LLL) have been found to affect various biological processes, the growth and proliferation of cells, and especially that of stem cells. The aim of this study was to investigate the effects of EMF and LLL on proliferation of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) and thus to examine the impact of these therapeutic physical modalities on stem cell engraftment. hAT-MSCs were isolated from subcutaneous adipose tissue of six persons ranging in age from 21 to 56 years. EMF was applied for a period of 7 days, once a day for 30 min, via a magnetic cushion surface at a frequency of 50 Hz and an intensity of 3 mT. LLL was applied also for 7 days, once a day for 5 min, at radiation energies of 3 J/cm(2), with a wavelength of 808 nm, power output of 200 mW, and power density of 0.2 W/cm(2). Nonexposed cells (control) were cultivated under the same culture conditions. Seven days after treatment, the cells were examined for cell viability, proliferation, and morphology. We found that after 7 days, the number of EMF-treated hAT-MSCs was significantly higher than the number of the untreated cells, LLL-treated hAT-MSCs were more numerous than EMF-treated cells, and hAT-MSCs that were treated with the combination of EMF and LLL were the most numerous. EMF and/or LLL treatment did not significantly affect hAT-MSC viability by itself. Changes in cell morphology were also observed, in terms of an increase in cell surface area and fractal dimension in hAT-MSCs treated with EMF and the combination of EMF and LLL. In conclusion, EMF and/or LLL treatment accelerated the proliferation of hAT-MSCs without compromising their viability, and therefore, they may be used in stem cell tissue engineering.

  9. Does bariatric surgery improve adipose tissue function?

    PubMed Central

    Frikke-Schmidt, H.; O’Rourke, R. W.; Lumeng, C. N.; Sandoval, D. A.; Seeley, R. J.

    2017-01-01

    Summary Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. PMID:27272117

  10. Influence of increased epicardial adipose tissue volume on 1-year in-stent restenosis in patients who received coronary stent implantation

    PubMed Central

    Zhou, Ying; Zhang, Hua-Wei; Tian, Feng; Chen, Jin-Song; Han, Tian-Wen; Tan, Ya-Hang; Zhou, Jia; Zhang, Tao; Jing, Jing; Chen, Yun-Dai

    2016-01-01

    Background Epicardial adipose tissue (EAT) is significantly associated with the formation and composition of coronary atherosclerotic plaque, cardiac events and the clinical prognosis of coronary heart disease. But, whether increased EAT deposition may affect the incidence of in-stent restenosis (ISR) is currently unclear. This study used coronary computed tomography angiography (CCTA) as a mean to investigate whether increased EAT volume was associated with ISR. Methods A total of 364 patients who underwent 64-slice CCTA examination for the evaluation of suspected coronary artery disease, and subsequently underwent percutaneous coronary intervention (PCI) for the first time, and then accepted coronary angiography (CA) follow-up for ISR examination in one year, were retrospectively included in this study. EAT volume was measured by CCTA examination. CA follow-up was obtained between 9 and 15 months. ISR was defined as ≥ 50% luminal diameter narrowing of the stent segment or peri-stent segment. EAT volume was compared between patients with and without ISR and additional well-known predictors of ISR were compared. Results EAT volume was significantly increased in patients with ISR compared with those without ISR (154.5 ± 74.6 mL vs. 131.0 ± 52.2 mL, P < 0.001). The relation between ISR and EAT volume remained significant after adjustment for conventional cardiovascular risk factors and angiographic parameters. Conclusions EAT volume was related with ISR and may provide additional information for future ISR. PMID:27899941

  11. Depletion of H2S during obesity enhances store-operated Ca2+ entry in adipose tissue macrophages to increase cytokine production.

    PubMed

    Velmurugan, Gopal V; Huang, Huiya; Sun, Hongbin; Candela, Joseph; Jaiswal, Mukesh K; Beaman, Kenneth D; Yamashita, Megumi; Prakriya, Murali; White, Carl

    2015-12-15

    The increased production of proinflammatory cytokines by adipose tissue macrophages (ATMs) contributes to chronic, low-level inflammation during obesity. We found that obesity in mice reduced the bioavailability of the gaseous signaling molecule hydrogen sulfide (H2S). Steady-state, intracellular concentrations of H2S were lower in ATMs isolated from mice with diet-induced obesity than in ATMs from lean mice. In addition, the intracellular concentration of H2S in the macrophage cell line RAW264.7 was reduced during an acute inflammatory response evoked by the microbial product lipopolysaccharide (LPS). Reduced intracellular concentrations of H2S led to increased Ca(2+) influx through the store-operated Ca(2+) entry (SOCE) pathway, which was prevented by the exogenous H2S donor GYY4137. Furthermore, GYY4137 inhibited the Orai3 channel, a key component of the SOCE machinery. The enhanced production of proinflammatory cytokines by RAW264.7 cells and ATMs from obese mice was reduced by exogenous H2S or by inhibition of SOCE. Together, these data suggest that the depletion of macrophage H2S that occurs during acute (LPS-induced) or chronic (obesity) inflammation increases SOCE through disinhibition of Orai3 and promotes the production of proinflammatory cytokines.

  12. Free fatty acids and IL-6 induce adipocyte galectin-3 which is increased in white and brown adipose tissues of obese mice.

    PubMed

    Krautbauer, Sabrina; Eisinger, Kristina; Hader, Yvonne; Buechler, Christa

    2014-10-01

    Galectin-3 regulates immune cell function and clearance of advanced glycation end products. Galectin-3 is increased in serum of obese humans and mice and most studies suggest that this protein protects from inflammation in metabolic diseases. Current data show that galectin-3 is markedly elevated in the liver, subcutaneous and intra-abdominal fat depots of mice fed a high fat diet and ob/ob mice. Galectin-3 is also increased in brown adipose tissues of these animals and immunohistochemistry confirms higher levels in adipocytes. Raised galectin-3 in obese white adipocytes has been described in the literature and regulation of adipocyte galectin-3 by metabolites with a role in obesity has been analyzed. Galectin-3 is expressed in 3T3-L1 fibroblasts and human preadipocytes and is modestly induced in mature adipocytes. In 3T3-L1 adipocytes galectin-3 is localized in the cytoplasm and is also detected in cell supernatants. Glucose does not alter soluble galectin-3. Lipopolysaccharide has no effect while TNF reduces and IL-6 raises this lectin in cell supernatants. Palmitate and oleate modestly elevate soluble galectin-3. Differentiation of 3T3-L1 cells in the presence of 100 μM and 200 μM linoleate induces soluble galectin-3 and cellular levels are upregulated by the higher concentration. Current data suggest that free fatty acids and IL-6 increase galectin-3 in adipocytes and thereby may contribute to higher levels in obesity.

  13. NPY antagonism reduces adiposity and attenuates age-related imbalance of adipose tissue metabolism.

    PubMed

    Park, Seongjoon; Fujishita, Chika; Komatsu, Toshimitsu; Kim, Sang Eun; Chiba, Takuya; Mori, Ryoichi; Shimokawa, Isao

    2014-12-01

    An orexigenic hormone, neuropeptide Y (NPY), plays a role not only in the hypothalamic regulation of appetite, but also in the peripheral regulation of lipid metabolism. However, the intracellular mechanisms triggered by NPY to regulate lipid metabolism are poorly understood. Here we report that NPY deficiency reduces white adipose tissue (WAT) mass and ameliorates the age-related imbalance of adipose tissue metabolism in mice. Gene expression involved in adipogenesis/lipogenesis was found to decrease, whereas proteins involved in lipolysis increased in gonadal WAT (gWAT) of NPY-knockout mice. These changes were associated with an activated SIRT1- and PPARγ-mediated pathway. Moreover, the age-related decrease of de novo lipogenesis in gWAT and thermogenesis in inguinal WAT was inhibited by NPY deficiency. Further analysis using 3T3-L1 cells showed that NPY inhibited lipolysis through the Y1 receptor and enhanced lipogenesis following a reduction in cAMP response element-binding protein (CREB) and SIRT1 protein expression. Therefore, NPY appears to act as a key regulator of adipose tissue metabolism via the CREB-SIRT1 signaling pathway. Taken together, NPY deficiency reduces adiposity and ameliorates the age-related imbalance of adipose tissue metabolism, suggesting that antagonism of NPY may be a promising target for drug development to prevent age-related metabolic diseases.

  14. Assessment of feline abdominal adipose tissue using computed tomography.

    PubMed

    Lee, Hyeyeon; Kim, Mieun; Choi, Mihyun; Lee, Namsoon; Chang, Jinhwa; Yoon, Junghee; Choi, Mincheol

    2010-12-01

    Obesity is a common nutritional disorder in cats and it increases the risk factors for various diseases. The aim of this study is to suggest a method for the evaluation of feline obesity using computed tomography. The attenuation range from -156 to -106 was determined as the range of feline abdominal adipose tissue. With this range, total (TAT), visceral (VAT) and subcutaneous (SAT) adipose tissues were measured. The best correlation between the adipose tissue in cross-sectional image and entire abdomen volume was obtained at the L3 and L5 levels. The mean VAT/SAT ratio was 1.18±0.32, which was much higher than in humans. The cats with an overweight body condition had a significantly lower VAT/SAT ratio than cats with an ideal body condition. This technique may contribute to both the clinical diagnosis and the experimental study of feline obesity.

  15. Nutritional regulation of lipid metabolism in human adipose tissue.

    PubMed

    Coppack, S W; Patel, J N; Lawrence, V J

    2001-01-01

    Pfeiffer and colleagues years ago pointed out that different distributions and amounts of adipose tissue are associated with abnormalities of lipolysis and lipoprotein metabolism. Adipose tissue has several crucial roles including (i) mobilization from stores of fatty acids as an energy source, (ii) catabolism of lipoproteins such as very-low-density lipoprotein and (iii) synthesis and release of hormonal signals such as leptin and interleukin-6. These adipose tissue actions are crucially regulated by nutrition. The review considers the existence of metabolic pathways and modes of regulation within adipose tissue, and how such metabolic activity can be quantitated in humans. Nutrition can influence adipose tissue at several 'levels'. Firstly the level of obesity or malnutrition has important effects on many aspects of adipose tissue metabolism. Secondly short-term overfeeding, underfeeding and exercise have major impacts on adipose tissue behaviour. Lastly, specific nutrients are capable of regulating adipose tissue metabolism. Recently there have been considerable advances in understanding adipose tissue metabolism and in particular its regulation. This review discusses the behaviour of adipose tissue under various nutritional conditions. There is then a review of recent work examining the ways in which nutritional influences act via intra-cellular mechanisms, insulin and the sympathetic innervation of adipose tissue.

  16. Natural killer T cells in adipose tissue prevent insulin resistance

    PubMed Central

    Schipper, Henk S.; Rakhshandehroo, Maryam; van de Graaf, Stan F.J.; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E.S.; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-01-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell–deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue–resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue–resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance. PMID:22863618

  17. Hkat, a novel nutritionally regulated transmembrane protein in adipose tissues.

    PubMed

    Zhang, Ren

    2012-01-01

    White adipose tissue is an active endocrine organ regulating many aspects of whole body physiology and pathology. Adipogenesis, a process in which premature cells differentiate into adipocytes, is a complex process that includes orchestrated changes in gene expression and cell morphology in response to various nutritional and hormonal stimuli. To profile transcriptome changes in response to nutritional stimulation, we performed RNA-seq on fat in mice treated with either a high-fat diet or fasting. We identified a novel nutritionally regulated gene, Gm12824, named Hkat (heart, kidney, adipose-enriched transmembrane protein). We show that both fasting and obesity dramatically reduce Hkat in white adipose tissue, and that fasting reduces while obesity increases its expression in brown fat. Hkat is localized to the plasma membrane and induced during adipogenesis. Therefore, Hkat is a novel nutritionally regulated gene that is potentially involved in metabolism.

  18. Oestrone sulphate, adipose tissue, and breast cancer.

    PubMed

    Hawkins, R A; Thomson, M L; Killen, E

    1985-01-01

    Oestrone sulphate, the oestrogen in highest concentration in the plasma, may play a role in the induction and growth of breast cancers. By enzymolysis and radioimmunoassay, oestrone sulphate concentrations were measured in 3 biological fluids. High concentrations of the conjugate (up to 775 nmol/l) were detected in breast cyst fluids from some premenopausal women, the concentrations in blood plasma (0.91-4.45 nmol/l) being much lower. Concentrations in the plasmas from postmenopausal women with (0.23-4.63 nmol/l) or without (0.18-1.27 nmol/l) breast cancer were still lower. Oestrone sulphate concentration in cow's milk or cream (0.49-0.67 nmol/l) was also low: dietary intake in these fluids is probably of little consequence. The capacity of breast tissues for hydrolysis of oestrone sulphate was examined in two ways: In tissue slices incubated with 85 pM (3H) oestrone sulphate solution at 37 degrees C, cancers (131-412 fmol/g tissue/hr) and adipose tissues (23-132 fmol/g tissue/hr) hydrolysed significantly more sulphate than did benign tissues (1-36 fmol/g tissue/hr). In tissue homogenates incubated with 5-25 microM [3H] oestrone sulphate at 37 degrees much higher capacities for hydrolysis (nmol/g tissue/hr) were demonstrated with a Km of 2-16.5 microM: cancers (34-394) and benign tissues (9-485) had significantly higher sulphatase activities than adipose tissues (9-39). On a protein basis, however, the sulphatase activities in the 3 tissues were comparable. It is concluded that oestrone sulphate is present in breast cysts and blood plasma and that in vitro, the conjugated hormone can be hydrolysed by breast tissues. The biological significance of these findings in vivo remains to be established.

  19. Maternal nutritional manipulations program adipose tissue dysfunction in offspring

    PubMed Central

    Lecoutre, Simon; Breton, Christophe

    2015-01-01

    Based on the concept of Developmental Origin of Health and Disease, both human and animal studies have demonstrated a close link between nutrient supply perturbations in the fetus or neonate (i.e., maternal undernutrition, obesity, gestational diabetes and/or rapid catch-up growth) and increased risk of adult-onset obesity. Indeed, the adipose tissue has been recognized as a key target of developmental programming in a sex-and depot-specific manner. Despite different developmental time windows, similar mechanisms of adipose tissue programming have been described in rodents and in bigger mammals (sheep, primates). Maternal nutritional manipulations reprogram offspring's adipose tissue resulting in series of alterations: enhanced adipogenesis and lipogenesis, impaired sympathetic activity with reduced noradrenergic innervations and thermogenesis as well as low-grade inflammation. These changes affect adipose tissue development, distribution and composition predisposing offspring to fat accumulation. Modifications of hormonal tissue sensitivity (i.e., leptin, insulin, glucocorticoids) and/or epigenetic mechanisms leading to persistent changes in gene expression may account for long-lasting programming across generations. PMID:26029119

  20. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations.

    PubMed

    Stanford, Kristin I; Middelbeek, Roeland J W; Goodyear, Laurie J

    2015-07-01

    Regular physical activity and exercise training have long been known to cause adaptations to white adipose tissue (WAT), including decreases in cell size and lipid content and increases in mitochondrial proteins. In this article, we discuss recent studies that have investigated the effects of exercise training on mitochondrial function, the "beiging" of WAT, regulation of adipokines, metabolic effects of trained adipose tissue on systemic metabolism, and depot-specific responses to exercise training. The major WAT depots in the body are found in the visceral cavity (vWAT) and subcutaneously (scWAT). In rodent models, exercise training increases mitochondrial biogenesis and activity in both these adipose tissue depots. Exercise training also increases expression of the brown adipocyte marker uncoupling protein 1 (UCP1) in both adipose tissue depots, although these effects are much more pronounced in scWAT. Consistent with the increase in UCP1, exercise training increases the presence of brown-like adipocytes in scWAT, also known as browning or beiging. Training results in changes in the gene expression of thousands of scWAT genes and an altered adipokine profile in both scWAT and vWAT. Transplantation of trained scWAT in sedentary recipient mice results in striking improvements in skeletal muscle glucose uptake and whole-body metabolic homeostasis. Human and rodent exercise studies have indicated that exercise training can alter circulating adipokine concentration as well as adipokine expression in adipose tissue. Thus, the profound changes to WAT in response to exercise training may be part of the mechanism by which exercise improves whole-body metabolic health.

  1. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations

    PubMed Central

    Stanford, Kristin I.; Middelbeek, Roeland J.W.

    2015-01-01

    Regular physical activity and exercise training have long been known to cause adaptations to white adipose tissue (WAT), including decreases in cell size and lipid content and increases in mitochondrial proteins. In this article, we discuss recent studies that have investigated the effects of exercise training on mitochondrial function, the “beiging” of WAT, regulation of adipokines, metabolic effects of trained adipose tissue on systemic metabolism, and depot-specific responses to exercise training. The major WAT depots in the body are found in the visceral cavity (vWAT) and subcutaneously (scWAT). In rodent models, exercise training increases mitochondrial biogenesis and activity in both these adipose tissue depots. Exercise training also increases expression of the brown adipocyte marker uncoupling protein 1 (UCP1) in both adipose tissue depots, although these effects are much more pronounced in scWAT. Consistent with the increase in UCP1, exercise training increases the presence of brown-like adipocytes in scWAT, also known as browning or beiging. Training results in changes in the gene expression of thousands of scWAT genes and an altered adipokine profile in both scWAT and vWAT. Transplantation of trained scWAT in sedentary recipient mice results in striking improvements in skeletal muscle glucose uptake and whole-body metabolic homeostasis. Human and rodent exercise studies have indicated that exercise training can alter circulating adipokine concentration as well as adipokine expression in adipose tissue. Thus, the profound changes to WAT in response to exercise training may be part of the mechanism by which exercise improves whole-body metabolic health. PMID:26050668

  2. Adipose tissue and skeletal muscle plasticity modulates metabolic health.

    PubMed

    Ukropec, Jozef; Ukropcova, Barbara; Kurdiova, Timea; Gasperikova, Daniela; Klimes, Iwar

    2008-12-01

    Obesity, accumulation of adipose tissue, develops when energy intake exceeds energy expenditure. Adipose tissue is essential for buffering the differences between energy intake and expenditure by accumulating lipids while skeletal muscle is the energy burning machine. Here we adopted the concept that (i) adipose tissue ability to regulate the storage capacity for lipids as well as (ii) dynamic regulation of muscle and adipose tissue secretory and metabolic activity is important for maintaining the metabolic health. This might be at least in part related to tissue plasticity, a phenomenon enabling dynamic modulation of the tissue phenotype in different physiological and pathophysiological situations. Recent advances in our understanding of the complex endocrine function of adipose tissue in regulating lipid metabolism, adipogenesis, angiogenesis, extracellular matrix remodelling, inflammation and oxidative stress prompted us to review the role of tissue plasticity--dynamic changes in adipose tissue and skeletal muscle metabolic and endocrine phenotype--in determining the difference between metabolic health and disease.

  3. A Citrus bergamia Extract Decreases Adipogenesis and Increases Lipolysis by Modulating PPAR Levels in Mesenchymal Stem Cells from Human Adipose Tissue

    PubMed Central

    Lo Furno, Debora; Avola, Rosanna; Bonina, Francesco; Mannino, Giuliana

    2016-01-01

    The aim of this research was to assess the impact of a well-characterized extract from Citrus bergamia juice on adipogenesis and/or lipolysis using mesenchymal stem cells from human adipose tissue as a cell model. To evaluate the effects on adipogenesis, some cell cultures were treated with adipogenic medium plus 10 or 100 μg/mL of extract. To determine the properties on lipolysis, additional mesenchymal stem cells were cultured with adipogenic medium for 14 days and after this time added with Citrus bergamia for further 14 days. To verify adipogenic differentiation, oil red O staining at 7, 14, 21, and 28 days was performed. Moreover, the expression of peroxisome proliferator-activated receptor gamma (PPAR-γ), adipocytes fatty acid-binding protein (A-FABP), adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), monoglyceride lipase (MGL), 5′-adenosine monophosphate-activated protein kinase (AMPK)α1/2, and pAMPKα1/2 was evaluated by Western blot analysis and the release of glycerol by colorimetric assay. Citrus bergamia extract suppressed the accumulation of intracellular lipids in mesenchymal stem cells during adipogenic differentiation and promoted lipolysis by repressing the expression of adipogenic genes and activating lipolytic genes. Citrus bergamia extract could be a useful natural product for improving adipose mobilization in obesity-related disorders. PMID:27403151

  4. Human omental and subcutaneous adipose tissue exhibit specific lipidomic signatures.

    PubMed

    Jové, Mariona; Moreno-Navarrete, José María; Pamplona, Reinald; Ricart, Wifredo; Portero-Otín, Manuel; Fernández-Real, José Manuel

    2014-03-01

    Despite their differential effects on human metabolic pathophysiology, the differences in omental and subcutaneous lipidomes are largely unknown. To explore this field, liquid chromatography coupled with mass spectrometry was used for lipidome analyses of adipose tissue samples (visceral and subcutaneous) selected from a group of obese subjects (n=38). Transcriptomics and in vitro studies in adipocytes were used to confirm the pathways affected by location. The analyses revealed the existence of obesity-related specific lipidome signatures in each of these locations, attributed to selective enrichment of specific triglycerides, glycerophospholipids, and sphingolipids, because these were not observed in adipose tissues from nonobese individuals. The changes were compatible with subcutaneous enrichment in pathways involved in adipogenesis, triacylglyceride synthesis, and lipid droplet formation, as well as increased α-oxidation. Marked differences between omental and subcutaneous depots in obese individuals were seen in the association of lipid species with metabolic traits (body mass index and insulin sensitivity). Targeted studies also revealed increased cholesterol (Δ56%) and cholesterol epoxide (Δ34%) concentrations in omental adipose tissue. In view of the effects of cholesterol epoxide, which induced enhanced expression of adipocyte differentiation and α-oxidation genes in human omental adipocytes, a novel role for cholesterol epoxide as a signaling molecule for differentiation is proposed. In summary, in obesity, adipose tissue exhibits a location-specific differential lipid profile that may contribute to explaining part of its distinct pathogenic role.

  5. Myocardial regeneration potential of adipose tissue-derived stem cells

    SciTech Connect

    Bai, Xiaowen; Alt, Eckhard

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  6. Caspase Induction and BCL2 Inhibition in Human Adipose Tissue

    PubMed Central

    Tinahones, Francisco José; Coín Aragüez, Leticia; Murri, Mora; Oliva Olivera, Wilfredo; Mayas Torres, María Dolores; Barbarroja, Nuria; Gomez Huelgas, Ricardo; Malagón, Maria M.; El Bekay, Rajaa

    2013-01-01

    OBJECTIVE Cell death determines the onset of obesity and associated insulin resistance. Here, we analyze the relationship among obesity, adipose tissue apoptosis, and insulin signaling. RESEARCH DESIGN AND METHODS The expression levels of initiator (CASP8/9) and effector (CASP3/7) caspases as well as antiapoptotic B-cell lymphoma (BCL)2 and inflammatory markers were assessed in visceral (VAT) and subcutaneous (SAT) adipose tissue from patients with different degrees of obesity and without insulin resistance or diabetes. Adipose tissue explants from lean subjects were cultured with TNF-α or IL-6, and the expression of apoptotic and insulin signaling components was analyzed and compared with basal expression levels in morbidly obese subjects. RESULTS SAT and VAT exhibited increased CASP3/7 and CASP8/9 expression levels and decreased BCL2 expression with BMI increase. These changes were accompanied by increased inflammatory cytokine mRNA levels and macrophage infiltration markers. In obese subjects, CASP3/7 activation and BCL2 downregulation correlated with the IRS-1/2–expression levels. Expression levels of caspases, BCL2, p21, p53, IRS-1/2, GLUT4, protein tyrosine phosphatase 1B, and leukocyte antigen-related phosphatase in TNF-α– or IL-6–treated explants from lean subjects were comparable with those found in adipose tissue samples from morbidly obese subjects. These insulin component expression levels were reverted with CASP3/7 inhibition in these TNF-α– or IL-6–treated explants. CONCLUSIONS Body fat mass increase is associated with CASP3/7 and BCL2 expression in adipose tissue. Moreover, this proapoptotic state correlated with insulin signaling, suggesting its potential contribution to the development of insulin resistance. PMID:23193206

  7. A fish protein hydrolysate alters fatty acid composition in liver and adipose tissue and increases plasma carnitine levels in a mouse model of chronic inflammation

    PubMed Central

    2013-01-01

    Background There is growing evidence that fish protein hydrolysate (FPH) diets affect mitochondrial fatty acid metabolism in animals. The aim of the study was to determine if FPH could influence fatty acid metabolism and inflammation in transgene mice expressing human tumor necrosis factor alpha (hTNFα). Methods hTNFα mice (C57BL/6 hTNFα) were given a high-fat (23%, w/w) diet containing 20% casein (control group) or 15% FPH and 5% casein (FPH group) for two weeks. After an overnight fast, blood, adipose tissue, and liver samples were collected. Gene expression and enzyme activity was analysed in liver, fatty acid composition was analyzed in liver and ovarian white adipose tissue, and inflammatory parameters, carnitine, and acylcarnitines were analyzed in plasma. Results The n-3/n-6 fatty acid ratio was higher in mice fed the FPH diet than in mice fed the control diet in both adipose tissue and liver, and the FPH diet affected the gene expression of ∆6 and ∆9 desaturases. Mice fed this diet also demonstrated lower hepatic activity of fatty acid synthase. Concomitantly, a lower plasma INF-γ level was observed. Plasma carnitine and the carnitine precursor γ-butyrobetaine was higher in the FPH-group compared to control, as was plasma short-chained and medium-chained acylcarnitine esters. The higher level of plasma acetylcarnitine may reflect a stimulated mitochondrial and peroxisomal β-oxidation of fatty acids, as the hepatic activities of peroxisomal acyl-CoA oxidase 1 and mitochondrial carnitine palmitoyltransferase-II were higher in the FPH-fed mice. Conclusions The FPH diet was shown to influence hepatic fatty acid metabolism and fatty acid composition. This indicates that effects on fatty acid metabolism are important for the bioactivity of protein hydrolysates of marine origin. PMID:24098955

  8. Laminin α4 Deficient Mice Exhibit Decreased Capacity for Adipose Tissue Expansion and Weight Gain

    PubMed Central

    Movérare-Skrtic, Sofia; Kortesmaa, Jarkko; Soininen, Raija; Bergström, Göran; Ohlsson, Claes; Chong, Li Yen; Rozell, Björn; Emont, Margo; Cohen, Ronald N.; Brey, Eric M.; Tryggvason, Karl

    2014-01-01

    Obesity is a global epidemic that contributes to the increasing medical burdens related to type 2 diabetes, cardiovascular disease and cancer. A better understanding of the mechanisms regulating adipose tissue expansion could lead to therapeutics that eliminate or reduce obesity-associated morbidity and mortality. The extracellular matrix (ECM) has been shown to regulate the development and function of numerous tissues and organs. However, there is little understanding of its function in adipose tissue. In this manuscript we describe the role of laminin α4, a specialized ECM protein surrounding adipocytes, on weight gain and adipose tissue function. Adipose tissue accumulation, lipogenesis, and structure were examined in mice with a null mutation of the laminin α4 gene (Lama4−/−) and compared to wild-type (Lama4+/+) control animals. Lama4−/− mice exhibited reduced weight gain in response to both age and high fat diet. Interestingly, the mice had decreased adipose tissue mass and altered lipogenesis in a depot-specific manner. In particular, epididymal adipose tissue mass was specifically decreased in knock-out mice, and there was also a defect in lipogenesis in this depot as well. In contrast, no such differences were observed in subcutaneous adipose tissue at 14 weeks. The results suggest that laminin α4 influences adipose tissue structure and function in a depot-specific manner. Alterations in laminin composition offers insight into the roll the ECM potentially plays in modulating cellular behavior in adipose tissue expansion. PMID:25310607

  9. The development and endocrine functions of adipose tissue.

    PubMed

    Poulos, Sylvia P; Hausman, Dorothy B; Hausman, Gary J

    2010-07-08

    White adipose tissue is a mesenchymal tissue that begins developing in the fetus. Classically known for storing the body's fuel reserves, adipose tissue is now recognized as an endocrine organ. As such, the secretions from adipose tissue are known to affect several systems such as the vascular and immune systems and play major roles in metabolism. Numerous studies have shown nutrient or hormonal manipulations can greatly influence adipose tissue development. In addition, the associations between various disease states, such as insulin resistance and cardiovascular disease, and disregulation of adipose tissue seen in epidemiological and intervention studies are great. Evaluation of known adipokines suggests these factors secreted from adipose tissue play roles in several pathologies. As the identification of more adipokines and determination of their role in biological systems, and the interactions between adipocytes and other cells types continues, there is little doubt that we will gain a greater appreciation for a tissue once thought to simply store excess energy.

  10. Adipose tissue lymphocytes: types and roles.

    PubMed

    Caspar-Bauguil, S; Cousin, B; Bour, S; Casteilla, L; Castiella, L; Penicaud, L; Carpéné, C

    2009-12-01

    Besides adipocytes, specialized in lipid handling and involved in energy balance regulation, white adipose tissue (WAT) is mainly composed of other cell types among which lymphocytes represent a non-negligible proportion. Different types of lymphocytes (B, alphabetaT, gammadeltaT, NK and NKT) have been detected in WAT of rodents or humans, and vary in their relative proportion according to the fat pad anatomical location. The lymphocytes found in intra-abdominal, visceral fat pads seem representative of innate immunity, while those present in subcutaneous fat depots are part of adaptive immunity, at least in mice. Both the number and the activity of the different lymphocyte classes, except B lymphocytes, are modified in obesity. Several of these modifications in the relative proportions of the lymphocyte classes depend on the degree of obesity, or on leptin concentration, or even fat depot anatomical location. Recent studies suggest that alterations of lymphocyte number and composition precede the macrophage increase and the enhanced inflammatory state of WAT found in obesity. Lymphocytes express receptors to adipokines while several proinflammatory chemokines are produced in WAT, rendering intricate crosstalk between fat and immune cells. However, the evidences and controversies available so far are in favour of an involvement of lymphocytes in the control of the number of other cells in WAT, either adipocytes or immune cells and of their secretory and metabolic activities. Therefore, immunotherapy deserves to be considered as a promising approach to treat the endocrino-metabolic disorders associated to excessive fat mass development.

  11. Central Control of Brown Adipose Tissue Thermogenesis

    PubMed Central

    Morrison, Shaun F.; Madden, Christopher J.; Tupone, Domenico

    2011-01-01

    Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. Mitochondrial oxidation in brown adipose tissue (BAT) is a significant source of neurally regulated metabolic heat production in many species from mouse to man. BAT thermogenesis is regulated by neural networks in the central nervous system which responds to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate BAT sympathetic nerve activity. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates BAT thermogenesis and includes the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E2, to increase body temperature during fever. The cold thermal afferent circuit from cutaneous thermal receptors, through second-order thermosensory neurons in the dorsal horn of the spinal cord ascends to activate neurons in the lateral parabrachial nucleus which drive GABAergic interneurons in the preoptic area (POA) to inhibit warm-sensitive, inhibitory output neurons of the POA. The resulting disinhibition of BAT thermogenesis-promoting neurons in the dorsomedial hypothalamus activates BAT sympathetic premotor neurons in the rostral ventromedial medulla, including the rostral raphe pallidus, which provide excitatory, and possibly disinhibitory, inputs to spinal sympathetic circuits to drive BAT thermogenesis. Other recently recognized central sites influencing BAT thermogenesis and energy expenditure are also described. PMID:22389645

  12. Obesity induces a phenotypic switch in adipose tissue macrophage polarization.

    PubMed

    Lumeng, Carey N; Bodzin, Jennifer L; Saltiel, Alan R

    2007-01-01

    Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80(+)CD11c(+) population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or "alternatively activated" macrophages, including Ym1, arginase 1, and Il10. Diet-induced obesity decreased expression of these genes in ATMs while increasing expression of genes such as those encoding TNF-alpha and iNOS that are characteristic of M1 or "classically activated" macrophages. Interestingly, ATMs from obese C-C motif chemokine receptor 2-KO (Ccr2-KO) mice express M2 markers at levels similar to those from lean mice. The antiinflammatory cytokine IL-10, which was overexpressed in ATMs from lean mice, protected adipocytes from TNF-alpha-induced insulin resistance. Thus, diet-induced obesity leads to a shift in the activation state of ATMs from an M2-polarized state in lean animals that may protect adipocytes from inflammation to an M1 proinflammatory state that contributes to insulin resistance.

  13. Obesity induces a phenotypic switch in adipose tissue macrophage polarization

    PubMed Central

    Lumeng, Carey N.; Bodzin, Jennifer L.; Saltiel, Alan R.

    2007-01-01

    Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80+CD11c+ population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or “alternatively activated” macrophages, including Ym1, arginase 1, and Il10. Diet-induced obesity decreased expression of these genes in ATMs while increasing expression of genes such as those encoding TNF-α and iNOS that are characteristic of M1 or “classically activated” macrophages. Interestingly, ATMs from obese C-C motif chemokine receptor 2–KO (Ccr2-KO) mice express M2 markers at levels similar to those from lean mice. The antiinflammatory cytokine IL-10, which was overexpressed in ATMs from lean mice, protected adipocytes from TNF-α–induced insulin resistance. Thus, diet-induced obesity leads to a shift in the activation state of ATMs from an M2-polarized state in lean animals that may protect adipocytes from inflammation to an M1 proinflammatory state that contributes to insulin resistance. PMID:17200717

  14. Androgenic Regulation of White Adipose Tissue-Prostate Cancer Interactions

    DTIC Science & Technology

    2015-08-01

    rights reserved.1. Introduction White adipose tissue (WAT) is a loose connective tissue that is crucial in the regulation of whole-body fatty-acid...AWARD NUMBER: W81XWH-10-1-0275 TITLE: Androgenic Regulation of White Adipose Tissue -Prostate Cancer Interactions PRINCIPAL INVESTIGATOR...2010-05/31/2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-10-1-0275 Androgenic Regulation of White Adipose Tissue -Prostate Cancer

  15. Multivitamin restriction increases adiposity and disrupts glucose homeostasis in mice.

    PubMed

    Amara, Nisserine Ben; Marcotorchino, Julie; Tourniaire, Franck; Astier, Julien; Amiot, Marie-Josèphe; Darmon, Patrice; Landrier, Jean-François

    2014-07-01

    A strong association between obesity and low plasma concentrations of vitamins has been widely reported; however, the causality of this relationship is still not established. Our goal was to evaluate the impact of a multivitamin restriction diet (MRD) on body weight, adiposity and glucose homeostasis in mice. The mice were given a standard diet or a diet containing 50 % of the recommended vitamin intake (MRD) for 12 weeks. At the end of the experiment, total body weight was 6 % higher in MRD animals than in the control group, and the adiposity of the MRD animals more than doubled. The HOMA-IR index of the MRD animals was significantly increased. The adipose tissue of MRD animals had lower expression of mRNA encoding adiponectin and Pnpla2 (47 and 32 %, respectively) and 43 % higher leptin mRNA levels. In the liver, the mRNA levels of Pparα and Pgc1α were reduced (29 and 69 %, respectively) in MRD mice. Finally, the level of β-hydroxybutyrate, a ketonic body reflecting fatty acid oxidation, was decreased by 45 % in MRD mice. Our results suggest that MRD promotes adiposity, possibly by decreasing adipose tissue lipolysis and hepatic β-oxidation. These results could highlight a possible role of vitamin deficiency in the etiology of obesity and associated disorders.

  16. Metabolic remodeling of white adipose tissue in obesity

    PubMed Central

    Cummins, Timothy D.; Holden, Candice R.; Sansbury, Brian E.; Gibb, Andrew A.; Shah, Jasmit; Zafar, Nagma; Tang, Yunan; Hellmann, Jason; Rai, Shesh N.; Spite, Matthew; Bhatnagar, Aruni

    2014-01-01

    Adipose tissue metabolism is a critical regulator of adiposity and whole body energy expenditure; however, metabolic changes that occur in white adipose tissue (WAT) with obesity remain unclear. The purpose of this study was to understand the metabolic and bioenergetic changes occurring in WAT with obesity. Wild-type (C57BL/6J) mice fed a high-fat diet (HFD) showed significant increases in whole body adiposity, had significantly lower V̇o2, V̇co2, and respiratory exchange ratios, and demonstrated worsened glucose and insulin tolerance compared with low-fat-fed mice. Metabolomic analysis of WAT showed marked changes in lipid, amino acid, carbohydrate, nucleotide, and energy metabolism. Tissue levels of succinate and malate were elevated, and metabolites that could enter the Krebs cycle via anaplerosis were mostly diminished in high-fat-fed mice, suggesting altered mitochondrial metabolism. Despite no change in basal oxygen consumption or mitochondrial DNA abundance, citrate synthase activity was decreased by more than 50%, and responses to FCCP were increased in WAT from mice fed a high-fat diet. Moreover, Pgc1a was downregulated and Cox7a1 upregulated after 6 wk of HFD. After 12 wk of high-fat diet, the abundance of several proteins in the mitochondrial respiratory chain or matrix was diminished. These changes were accompanied by increased Parkin and Pink1, decreased p62 and LC3-I, and ultrastructural changes suggestive of autophagy and mitochondrial remodeling. These studies demonstrate coordinated restructuring of metabolism and autophagy that could contribute to the hypertrophy and whitening of adipose tissue in obesity. PMID:24918202

  17. Effect of increasing body condition on key regulators of fat metabolism in subcutaneous adipose tissue depot and circulation of nonlactating dairy cows.

    PubMed

    Locher, L; Häussler, S; Laubenthal, L; Singh, S P; Winkler, J; Kinoshita, A; Kenéz, Á; Rehage, J; Huber, K; Sauerwein, H; Dänicke, S

    2015-02-01

    In response to negative energy balance, overconditioned cows mobilize more body fat than thin cows and subsequently are prone to develop metabolic disorders. Changes in adipose tissue (AT) metabolism are barely investigated in overconditioned cows. Therefore, the objective was to investigate the effect of increasing body condition on key regulator proteins of fat metabolism in subcutaneous AT and circulation of dairy cows. Nonlactating, nonpregnant dairy cows (n=8) investigated in the current study served as a model to elucidate the changes in the course of overcondition independent from physiological changes related to gestation, parturition, and lactation. Cows were fed diets with increasing portions of concentrate during the first 6wk of the experiment until 60% were reached, which was maintained for 9wk. Biopsy samples from AT of the subcutaneous tailhead region were collected every 8wk, whereas blood was sampled monthly. Within the experimental period cows had an average BW gain of 243±33.3 kg. Leptin and insulin concentrations were increased until wk 12. Based on serum concentrations of glucose, insulin, and nonesterified fatty acids, the surrogate indices for insulin sensitivity were calculated. High-concentrate feeding led to decreased quantitative insulin sensitivity check index and homeostasis model assessment due to high insulin and glucose concentrations indicating decreased insulin sensitivity. Adiponectin, an adipokine-promoting insulin sensitivity, decreased in subcutaneous AT, but remained unchanged in the circulation. The high-concentrate diet affected key enzymes reflecting AT metabolism such as AMP-activated protein kinase and hormone-sensitive lipase, both represented as the proportion of the phosphorylated protein to total protein, as well as fatty acid synthase. The extent of phosphorylation of AMP-activated protein kinase and the protein expression of fatty acid synthase were inversely regulated throughout the experimental period, whereas

  18. Angiotensin II stimulates sympathetic neurotransmission to adipose tissue

    PubMed Central

    King, Victoria L; English, Victoria L; Bharadwaj, Kalyani; Cassis, Lisa A

    2013-01-01

    Angiotensin II (AngII) facilitates sympathetic neurotransmission by regulating norepinephrine (NE) synthesis, release, and uptake. These effects of AngII contribute to cardiovascular control. Previous studies in our laboratory demonstrated that chronic AngII infusion decreased body weight of rats. We hypothesized that AngII facilitates sympathetic neurotransmission to adipose tissue and may thereby decrease body weight. The effect of chronic AngII infusion on the NE uptake transporter and NE turnover was examined in metabolic (interscapular brown adipose tissue, ISBAT; epididymal fat, EF) and cardiovascular tissues (left ventricle, LV; kidney) of rats. To examine the uptake transporter saturation isotherms were performed using [3H]nisoxetine (NIS). At doses that lowered body weight, AngII significantly increased ISBAT [3H]NIS binding density. To quantify NE turnover, alpha-methyl-para-tyrosine (AMPT) was injected in saline-infused, AngII-infused, or saline-infused rats that were pair-fed to food intake of AngII-infused rats. AngII significantly increased the rate of NE decline in all tissues compared to saline. The rate of NE decline in EF was increased to a similar extent by AngII and by pair feeding. In rats administered AngII and propranolol, reductions in food and water intake and body weight were eliminated. These data support the hypothesis that AngII facilitates sympathetic neurotransmission to adipose tissue. Increased sympathetic neurotransmission to adipose tissue following AngII exposure is suggested to contribute to reductions in body weight. PMID:24224084

  19. 'Browning' the cardiac and peri-vascular adipose tissues to modulate cardiovascular risk.

    PubMed

    Aldiss, Peter; Davies, Graeme; Woods, Rachel; Budge, Helen; Sacks, Harold S; Symonds, Michael E

    2017-02-01

    Excess visceral adiposity, in particular that located adjacent to the heart and coronary arteries is associated with increased cardiovascular risk. In the pathophysiological state, dysfunctional adipose tissue secretes an array of factors modulating vascular function and driving atherogenesis. Conversely, brown and beige adipose tissues utilise glucose and lipids to generate heat and are associated with improved cardiometabolic health. The cardiac and thoracic perivascular adipose tissues are now understood to be composed of brown adipose tissue in the healthy state and undergo a brown-to-white transition i.e. during obesity which may be a driving factor of cardiovascular disease. In this review we discuss the risks of excess cardiac and vascular adiposity and potential mechanisms by which restoring the brown phenotype i.e. "re-browning" could potentially be achieved in clinically relevant populations.

  20. Examination of carnitine palmitoyl transferase 1 abundance in white adipose tissue: implications in obesity research.

    PubMed

    Warfel, Jaycob D; Vandanmagsar, Bolormaa; Dubuisson, Olga S; Hodgeson, Sydney M; Elks, Carrie M; Ravussin, Eric; Mynatt, Randall L

    2017-03-22

    Carnitine Palmitoyltransferase 1 (CPT1) is essential for the transport of long chain fatty acids into the mitochondria for oxidation. Recently, it was reported that decreased CPT1b mRNA in adipose tissue was a contributing factor for obesity in rats. We therefore closely examined the expression level of Cpt1 in adipose tissue from mice, rats, and humans. Cpt1a is the predominate isoform in adipose tissue from all three species. Rat white adipose tissue has a moderate amount of Cpt1b mRNA, but it is very minor compared to Cpt1b expression in muscle. Total CPT1 activity in adipose tissue is also minor relative to other tissues. Both Cpt1a and Cpt1b mRNA were increased in gonadal fat but not inguinal fat by diet-induced obesity in mice. We also measured CPT1a and CPT1b expression in subcutaneous adipose tissue from human subjects with a wide range of BMI. Interestingly, CPT1a expression positively correlated with BMI (R=0.46), but there was no correlation with CPT1b (R=0.04). Our findings indicate that white adipose tissue fatty acid oxidation capacity is minor compared to metabolically active tissues. Further, given the already low abundance of Cpt1b in white adipose tissue, it is unlikely that decreases in its expression can quantitatively decrease whole body energy expenditure enough to contribute to an obese phenotype.

  1. Characterization of adipose tissue macrophages and adipose-derived stem cells in critical wounds

    PubMed Central

    Tilstam, Pathricia V.; Springenberg-Jung, Katrin; Boecker, Arne Hendrick; Schmitz, Corinna; Heinrichs, Daniel; Hwang, Soo Seok; Stromps, Jan Philipp; Ganse, Bergita; Kopp, Ruedger; Knobe, Matthias; Bernhagen, Juergen

    2017-01-01

    Background Subcutaneous adipose tissue is a rich source of adipose tissue macrophages and adipose-derived stem cells which both play a key role in wound repair. While macrophages can be divided into the classically-activated M1 and the alternatively-activated M2 phenotype, ASCs are characterized by the expression of specific stem cell markers. Methods In the present study, we have investigated the expression of common macrophage polarization and stem cell markers in acutely inflamed adipose tissue. Subcutaneous adipose tissue adjacent to acutely inflamed wounds of 20 patients and 20 healthy subjects were harvested and underwent qPCR and flow cytometry analysis. Results Expression levels of the M1-specific markers CD80, iNOS, and IL-1b were significantly elevated in inflammatory adipose tissue when compared to healthy adipose tissue, whereas the M2-specific markers CD163 and TGF-β were decreased. By flow cytometry, a significant shift of adipose tissue macrophage populations towards the M1 phenotype was confirmed. Furthermore, a decrease in the mesenchymal stem cell markers CD29, CD34, and CD105 was observed whereas CD73 and CD90 remained unchanged. Discussion This is the first report describing the predominance of M1 adipose tissue macrophages and the reduction of stem cell marker expression in acutely inflamed, non-healing wounds. PMID:28070458

  2. Assessing the effect of a high-fat diet on rodents' adipose tissue using Brillouin and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Troyanova-Wood, Maria; Gobbell, Cassidy; Meng, Zhaokai; Yakovlev, Vladislav V.

    2016-03-01

    The purpose of this study is to evaluate the effect of a high-lipid diet on elasticity of adipose tissue. We employed dual Raman/Brillouin microspectroscopy to analyze brown and white adipose tissues obtained from adult rats. The rats were divided into two groups, one of which received a high-fat feed, while the other served as a control. We hypothesized that the changes in the elasticity of adipose tissues between the two groups can be successfully assessed using Brillouin spectroscopy. We found that the brown adipose tissue possessed a lesser Brillouin shift than the white adipose within each group and that the elastic modulus of both adipose tissues increases in the high-fat diet group. The Raman spectra provided supplementary chemical information and indicated an increase in the lipid-to-protein ratio in the brown adipose, but not in the white adipose.

  3. Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults.

    PubMed

    Dordevic, Aimee L; Pendergast, Felicity J; Morgan, Han; Villas-Boas, Silas; Caldow, Marissa K; Larsen, Amy E; Sinclair, Andrew J; Cameron-Smith, David

    2015-07-01

    Adipose tissue is a primary site of meta-inflammation. Diet composition influences adipose tissue metabolism and a single meal can drive an inflammatory response in postprandial period. This study aimed to examine the effect lipid and carbohydrate ingestion compared with a non-caloric placebo on adipose tissue response. Thirty-three healthy adults (age 24.5 ± 3.3 year (mean ± standard deviation (SD)); body mass index (BMI) 24.1 ± 3.2 kg/m2, were randomised into one of three parallel beverage groups; placebo (water), carbohydrate (maltodextrin) or lipid (dairy-cream). Subcutaneous, abdominal adipose tissue biopsies and serum samples were collected prior to (0 h), as well as 2 h and 4 h after consumption of the beverage. Adipose tissue gene expression levels of monocyte chemoattractant protein-1 (MCP-1), interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) increased in all three groups, without an increase in circulating TNF-α. Serum leptin (0.6-fold, p = 0.03) and adipose tissue leptin gene expression levels (0.6-fold, p = 0.001) decreased in the hours following the placebo beverage, but not the nutrient beverages. Despite increased inflammatory cytokine gene expression in adipose tissue with all beverages, suggesting a confounding effect of the repeated biopsy method, differences in metabolic responses of adipose tissue and circulating adipokines to ingestion of lipid and carbohydrate beverages were observed.

  4. Adipose Tissue in Metabolic Syndrome: Onset and Progression of Atherosclerosis.

    PubMed

    Luna-Luna, María; Medina-Urrutia, Aida; Vargas-Alarcón, Gilberto; Coss-Rovirosa, Fernanda; Vargas-Barrón, Jesús; Pérez-Méndez, Óscar

    2015-07-01

    Metabolic syndrome (MetS) should be considered a clinical entity when its different symptoms share a common etiology: obesity/insulin resistance as a result of a multi-organ dysfunction. The main interest in treating MetS as a clinical entity is that the addition of its components drastically increases the risk of atherosclerosis. In MetS, the adipose tissue plays a central role along with an unbalanced gut microbiome, which has become relevant in recent years. Once visceral adipose tissue (VAT) increases, dyslipidemia and endothelial dysfunction follow as additive risk factors. However, when the nonalcoholic fatty liver is present, risk of a cardiovascular event is highly augmented. Epicardial adipose tissue (EAT) seems to increase simultaneously with the VAT. In this context, the former may play a more important role in the development of the atherosclerotic plaque than the latter. Hence, EAT may act as a paracrine tissue vis-à-vis the coronary arteries favoring the local inflammation and the atheroma calcification.

  5. Adipose tissue-organotypic culture system as a promising model for studying adipose tissue biology and regeneration

    PubMed Central

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Sonoda, Emiko; Yamasaki, Fumio; Piao, Meihua; Ootani, Akifumi; Yonemitsu, Nobuhisa; Sugihara, Hajime

    2009-01-01

    Adipose tissue consists of mature adipocytes, preadipocytes and mesenchymal stem cells (MSCs), but a culture system for analyzing their cell types within the tissue has not been established. We have recently developed “adipose tissue-organotypic culture system” that maintains unilocular structure, proliferative ability and functions of mature adipocytes for a long term, using three-dimensional collagen gel culture of the tissue fragments. In this system, both preadipocytes and MSCs regenerate actively at the peripheral zone of the fragments. Our method will open up a new way for studying both multiple cell types within adipose tissue and the cell-based mechanisms of obesity and metabolic syndrome. Thus, it seems to be a promising model for investigating adipose tissue biology and regeneration. In this article, we introduce adipose tissue-organotypic culture, and propose two theories regarding the mechanism of tissue regeneration that occurs specifically at peripheral zone of tissue fragments in vitro. PMID:19794899

  6. Brown adipose tissue in cetacean blubber.

    PubMed

    Hashimoto, Osamu; Ohtsuki, Hirofumi; Kakizaki, Takehiko; Amou, Kento; Sato, Ryo; Doi, Satoru; Kobayashi, Sara; Matsuda, Ayaka; Sugiyama, Makoto; Funaba, Masayuki; Matsuishi, Takashi; Terasawa, Fumio; Shindo, Junji; Endo, Hideki

    2015-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall's and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during

  7. Brown Adipose Tissue in Cetacean Blubber

    PubMed Central

    Hashimoto, Osamu; Ohtsuki, Hirofumi; Kakizaki, Takehiko; Amou, Kento; Sato, Ryo; Doi, Satoru; Kobayashi, Sara; Matsuda, Ayaka; Sugiyama, Makoto; Funaba, Masayuki; Matsuishi, Takashi; Terasawa, Fumio; Shindo, Junji; Endo, Hideki

    2015-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall’s and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during

  8. Exercise Regulation of Marrow Adipose Tissue

    PubMed Central

    Pagnotti, Gabriel M.; Styner, Maya

    2016-01-01

    Despite association with low bone density and skeletal fractures, marrow adipose tissue (MAT) remains poorly understood. The marrow adipocyte originates from the mesenchymal stem cell (MSC) pool that also gives rise to osteoblasts, chondrocytes, and myocytes, among other cell types. To date, the presence of MAT has been attributed to preferential biasing of MSC into the adipocyte rather than osteoblast lineage, thus negatively impacting bone formation. Here, we focus on understanding the physiology of MAT in the setting of exercise, dietary interventions, and pharmacologic agents that alter fat metabolism. The beneficial effect of exercise on musculoskeletal strength is known: exercise induces bone formation, encourages growth of skeletally supportive tissues, inhibits bone resorption, and alters skeletal architecture through direct and indirect effects on a multiplicity of cells involved in skeletal adaptation. MAT is less well studied due to the lack of reproducible quantification techniques. In recent work, osmium-based 3D quantification shows a robust response of MAT to both dietary and exercise intervention in that MAT is elevated in response to high-fat diet and can be suppressed following daily exercise. Exercise-induced bone formation correlates with suppression of MAT, such that exercise effects might be due to either calorie expenditure from this depot or from mechanical biasing of MSC lineage away from fat and toward bone, or a combination thereof. Following treatment with the anti-diabetes drug rosiglitazone – a PPARγ-agonist known to increase MAT and fracture risk – mice demonstrate a fivefold higher femur MAT volume compared to the controls. In addition to preventing MAT accumulation in control mice, exercise intervention significantly lowers MAT accumulation in rosiglitazone-treated mice. Importantly, exercise induction of trabecular bone volume is unhindered by rosiglitazone. Thus, despite rosiglitazone augmentation of MAT, exercise

  9. Sleep deprivation affects inflammatory marker expression in adipose tissue

    PubMed Central

    2010-01-01

    Sleep deprivation has been shown to increase inflammatory markers in rat sera and peripheral blood mononuclear cells. Inflammation is a condition associated with pathologies such as obesity, cancer, and cardiovascular diseases. We investigated changes in the pro and anti-inflammatory cytokines and adipokines in different depots of white adipose tissue in rats. We also assessed lipid profiles and serum levels of corticosterone, leptin, and adiponectin after 96 hours of sleep deprivation. Methods The study consisted of two groups: a control (C) group and a paradoxical sleep deprivation by 96 h (PSD) group. Ten rats were randomly assigned to either the control group (C) or the PSD. Mesenteric (MEAT) and retroperitoneal (RPAT) adipose tissue, liver and serum were collected following completion of the PSD protocol. Levels of interleukin (IL)-6, interleukin (IL)-10 and tumour necrosis factor (TNF)-α were analysed in MEAT and RPAT, and leptin, adiponectin, glucose, corticosterone and lipid profile levels were analysed in serum. Results IL-6 levels were elevated in RPAT but remained unchanged in MEAT after PSD. IL-10 protein concentration was not altered in either depot, and TNF-α levels decreased in MEAT. Glucose, triglycerides (TG), VLDL and leptin decreased in serum after 96 hours of PSD; adiponectin was not altered and corticosterone was increased. Conclusion PSD decreased fat mass and may modulate the cytokine content in different depots of adipose tissue. The inflammatory response was diminished in both depots of adipose tissue, with increased IL-6 levels in RPAT and decreased TNF-α protein concentrations in MEAT and increased levels of corticosterone in serum. PMID:21034496

  10. Adipose tissue macrophages impair preadipocyte differentiation in humans

    PubMed Central

    Liu, Li Fen; Craig, Colleen M.; Tolentino, Lorna L.; Choi, Okmi; Morton, John; Rivas, Homero; Cushman, Samuel W.; Engleman, Edgar G.; McLaughlin, Tracey

    2017-01-01

    Aim The physiologic mechanisms underlying the relationship between obesity and insulin resistance are not fully understood. Impaired adipocyte differentiation and localized inflammation characterize adipose tissue from obese, insulin-resistant humans. The directionality of this relationship is not known, however. The aim of the current study was to investigate whether adipose tissue inflammation is causally-related to impaired adipocyte differentiation. Methods Abdominal subcutaneous(SAT) and visceral(VAT) adipose tissue was obtained from 20 human participants undergoing bariatric surgery. Preadipocytes were isolated, and cultured in the presence or absence of CD14+ macrophages obtained from the same adipose tissue sample. Adipocyte differentiation was quantified after 14 days via immunofluorescence, Oil-Red O, and adipogenic gene expression. Cytokine secretion by mature adipocytes cultured with or without CD14+macrophages was quantified. Results Adipocyte differentiation was significantly lower in VAT than SAT by all measures (p<0.001). With macrophage removal, SAT preadipocyte differentiation increased significantly as measured by immunofluorescence and gene expression, whereas VAT preadipocyte differentiation was unchanged. Adipocyte-secreted proinflammatory cytokines were higher and adiponectin lower in media from VAT vs SAT: macrophage removal reduced inflammatory cytokine and increased adiponectin secretion from both SAT and VAT adipocytes. Differentiation of preadipocytes from SAT but not VAT correlated inversely with systemic insulin resistance. Conclusions The current results reveal that proinflammatory immune cells in human SAT are causally-related to impaired preadipocyte differentiation, which in turn is associated with systemic insulin resistance. In VAT, preadipocyte differentiation is poor even in the absence of tissue macrophages, pointing to inherent differences in fat storage potential between the two depots. PMID:28151993

  11. Metabolic inflammation in inflammatory bowel disease: crosstalk between adipose tissue and bowel.

    PubMed

    Gonçalves, Pedro; Magro, Fernando; Martel, Fátima

    2015-02-01

    Epidemiological studies show that both the incidence of inflammatory bowel disease (IBD) and the proportion of people with obesity and/or obesity-associated metabolic syndrome increased markedly in developed countries during the past half century. Obesity is also associated with the development of more active IBD and requirement for hospitalization and with a decrease in the time span between diagnosis and surgery. Patients with IBD, especially Crohn's disease, present fat-wrapping or "creeping fat," which corresponds to ectopic adipose tissue extending from the mesenteric attachment and covering the majority of the small and large intestinal surface. Mesenteric adipose tissue in patients with IBD presents several morphological and functional alterations, e.g., it is more infiltrated with immune cells such as macrophages and T cells. All these lines of evidence clearly show an association between obesity, adipose tissue, and functional bowel disorders. In this review, we will show that the mesenteric adipose tissue and creeping fat are not innocent by standers but actively contribute to the intestinal and systemic inflammatory responses in patients with IBD. More specifically, we will review evidence showing that adipose tissue in IBD is associated with major alterations in the secretion of cytokines and adipokines involved in inflammatory process, in adipose tissue mesenchymal stem cells and adipogenesis, and in the interaction between adipose tissue and other intestinal components (immune, lymphatic, neuroendocrine, and intestinal epithelial systems). Collectively, these studies underline the importance of adipose tissue for the identification of novel therapeutic approaches for IBD.

  12. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis

    PubMed Central

    Park, Byung Young; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Hong, Yeonhee; Lee, Hee Suk; Park, Eun Kyu; Hahm, Jong Cheon; Kim, Jin Woo; Shin, Soon Shik; Kim, Min-Young; Yoon, Michung

    2015-01-01

    It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS) prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP) activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9), whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors. PMID:26599360

  13. Mechanobiology and Mechanotherapy of Adipose Tissue-Effect of Mechanical Force on Fat Tissue Engineering.

    PubMed

    Yuan, Yi; Gao, Jianhua; Ogawa, Rei

    2015-12-01

    Our bodies are subjected to various mechanical forces, which in turn affect both the structure and function of our bodies. In particular, these mechanical forces play an important role in tissue growth and regeneration. Adipocytes and adipose-derived stem cells are both mechanosensitive and mechanoresponsive. The aim of this review is to summarize the relationship between mechanobiology and adipogenesis. PubMed was used to search for articles using the following keywords: mechanobiology, adipogenesis, adipose-derived stem cells, and cytoskeleton. In vitro and in vivo experiments have shown that adipogenesis is strongly promoted/inhibited by various internal and external mechanical forces, and that these effects are mediated by changes in the cytoskeleton of adipose-derived stem cells and/or various signaling pathways. Thus, adipose tissue engineering could be enhanced by the careful application of mechanical forces. It was shown recently that mature adipose tissue regenerates in an adipose tissue-engineering chamber. This observation has great potential for the reconstruction of soft tissue deficiencies, but the mechanisms behind it remain to be elucidated. On the basis of our understanding of mechanobiology, we hypothesize that the chamber removes mechanical force on the fat that normally impose high cytoskeletal tension. The reduction in tension in adipose stem cells triggers their differentiation into adipocytes. The improvement in our understanding of the relationship between mechanobiology and adipogenesis means that in the near future, we may be able to increase or decrease body fat, as needed in the clinic, by controlling the tension that is loaded onto fat.

  14. Mechanobiology and Mechanotherapy of Adipose Tissue-Effect of Mechanical Force on Fat Tissue Engineering

    PubMed Central

    Yuan, Yi

    2015-01-01

    Summary: Our bodies are subjected to various mechanical forces, which in turn affect both the structure and function of our bodies. In particular, these mechanical forces play an important role in tissue growth and regeneration. Adipocytes and adipose-derived stem cells are both mechanosensitive and mechanoresponsive. The aim of this review is to summarize the relationship between mechanobiology and adipogenesis. PubMed was used to search for articles using the following keywords: mechanobiology, adipogenesis, adipose-derived stem cells, and cytoskeleton. In vitro and in vivo experiments have shown that adipogenesis is strongly promoted/inhibited by various internal and external mechanical forces, and that these effects are mediated by changes in the cytoskeleton of adipose-derived stem cells and/or various signaling pathways. Thus, adipose tissue engineering could be enhanced by the careful application of mechanical forces. It was shown recently that mature adipose tissue regenerates in an adipose tissue-engineering chamber. This observation has great potential for the reconstruction of soft tissue deficiencies, but the mechanisms behind it remain to be elucidated. On the basis of our understanding of mechanobiology, we hypothesize that the chamber removes mechanical force on the fat that normally impose high cytoskeletal tension. The reduction in tension in adipose stem cells triggers their differentiation into adipocytes. The improvement in our understanding of the relationship between mechanobiology and adipogenesis means that in the near future, we may be able to increase or decrease body fat, as needed in the clinic, by controlling the tension that is loaded onto fat. PMID:26894003

  15. [The adipose tissue as a regulatory center of the metabolism].

    PubMed

    Fonseca-Alaniz, Miriam H; Takada, Julie; Alonso-Vale, Maria Isabel C; Lima, Fabio Bessa

    2006-04-01

    The recent progress in the research about the metabolic properties of the adipose tissue and the discovery of its ability to produce hormones that are very active in pathophysiologic as well as physiologic processes is rebuilding the concepts about its biology. Its involvement in conditions like obesity, type 2 diabetes mellitus, arterial hypertension, arteriosclerosis, dislipidemias and chronic and acute inflammatory processes indicate that the understanding of its functional capacities may contribute to improve the prognosis of those diseases whose prevalence increased in a preoccupying manner. Here we review some functional aspects of adipocytes, such as the metabolism, its influence on energy homeostasis, its endocrine ability and the adipogenesis, i.e., the potential of pre-adipocytes present in adipose tissue stroma to differentiate into new adipocytes and regenerate the tissue. In addition, we are including some studies on the relationship between the adipose tissue and the pineal gland, a new and poorly known, although, as will be seen, very promising aspect of adipocyte physiology together with its possible favorable repercussions to the therapy of the obesity related diseases.

  16. Brown adipose tissue: physiological function and evolutionary significance.

    PubMed

    Oelkrug, R; Polymeropoulos, E T; Jastroch, M

    2015-08-01

    In modern eutherian (placental) mammals, brown adipose tissue (BAT) evolved as a specialized thermogenic organ that is responsible for adaptive non-shivering thermogenesis (NST). For NST, energy metabolism of BAT mitochondria is increased by activation of uncoupling protein 1 (UCP1), which dissipates the proton motive force as heat. Despite the presence of UCP1 orthologues prior to the divergence of teleost fish and mammalian lineages, UCP1's significance for thermogenic adipose tissue emerged at later evolutionary stages. Recent studies on the presence of BAT in metatherians (marsupials) and eutherians of the afrotherian clade provide novel insights into the evolution of adaptive NST in mammals. In particular studies on the 'protoendothermic' lesser hedgehog tenrec (Afrotheria) suggest an evolutionary scenario linking BAT to the onset of eutherian endothermy. Here, we review the physiological function and distribution of BAT in an evolutionary context by focusing on the latest research on phylogenetically distinct species.

  17. Prolactin (PRL) in adipose tissue: regulation and functions.

    PubMed

    Ben-Jonathan, Nira; Hugo, Eric

    2015-01-01

    New information concerning the effects of prolactin (PRL) on metabolic processes warrants reevaluation of its overall metabolic actions. PRL affects metabolic homeostasis by regulating key enzymes and transporters associated with glucose and lipid metabolism in several target organs. In the lactating mammary gland, PRL increases the production of milk proteins, lactose, and lipids. In adipose tissue, PRL generally suppresses lipid storage and adipokine release and affect adipogenesis. A specific case is made for PRL in the human breast and adipose tissues, where it acts as a circulating hormone and an autocrine/paracrine factor. Although its overall effects on body composition are both modest and species-specific, PRL may be involved in the manifestation of insulin resistance.

  18. Adipose-derived stem cells for periodontal tissue regeneration.

    PubMed

    Tobita, Morikuni; Mizuno, Hiroshi

    2011-01-01

    Mesenchymal stem cells can effectively regenerate destroyed periodontal tissue. Because periodontal tissues are complex, mesenchymal stem cells that can differentiate into many tissue types would aid periodontal tissue regeneration. Indeed, periodontal tissue regeneration using mesenchymal stem cells derived from adipose tissue or bone marrow has been performed in experimental animal models, such as rat, canine, swine, and monkey. We have shown that rat periodontal tissue can be regenerated with adipose-derived stem cells. Adipose tissue contains a large number of stromal cells and is relatively easy to obtain in large quantities, and thus constitutes a very convenient stromal cell source. In this chapter, we introduce a rat periodontal tissue regeneration model using adipose-derived stem cells.

  19. Albumin induced cytokine expression in porcine adipose tissue explants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Albumin has historically been included in medium designed for use with adipose tissue when evaluating metabolism, gene expression or protein secretion. However, recent studies with mouse adipocytes (Ruan et al., J. Biol. Chem. 278:47585-47593, 2003) and human adipose tissue (Schlesinger et al., Ame...

  20. Altered autophagy in human adipose tissues in obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Context: Autophagy is a housekeeping mechanism, involved in metabolic regulation and stress response, shown recently to regulate lipid droplets biogenesis/breakdown and adipose tissue phenotype. Objective: We hypothesized that in human obesity autophagy may be altered in adipose tissue in a fat d...

  1. Cell supermarket: Adipose tissue as a source of stem cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  2. FEEDING INFLUENCES ADIPOSE TISSUE RESPONSES TO EXERCISE IN OVERWEIGHT MEN.

    PubMed

    Chen, Yung-Chih; Travers, Rebecca L; Walhin, Jean-Philippe; Gonzalez, Javier T; Koumanov, Francoise; Betts, James A; Thompson, Dylan

    2017-03-14

    Feeding profoundly affects metabolic responses to exercise in various tissues but the effect of feeding status on human adipose tissue responses to exercise has never been studied. Ten healthy overweight men aged 26 ± 5 years (mean ± SD) with a waist circumference of 105 ± 10 cm walked at 60% of maximum oxygen uptake under either FASTED or FED conditions in a randomised, counterbalanced design. Feeding comprised 648 ± 115 kcal 2 h before exercise. Blood samples were collected at regular intervals to examine changes in metabolic parameters and adipokine concentrations. Adipose tissue samples were obtained at baseline and one hour post-exercise to examine changes in adipose tissue mRNA expression and secretion of selected adipokines ex-vivo. Adipose tissue mRNA expression of PDK4, ATGL, HSL, FAT/CD36, GLUT4 and IRS2 in response to exercise were lower in FED compared to FASTED conditions (all p ≤ 0.05). Post-exercise adipose IRS2 protein was affected by feeding (p ≤ 0.05), but Akt2, AMPK, IRS1, GLUT4, PDK4 and HSL protein levels were not different. Feeding status did not impact serum and ex-vivo adipose secretion of IL-6, leptin or adiponectin in response to exercise. This is the first study to show that feeding prior to acute exercise affects post-exercise adipose tissue gene expression and we propose that feeding is likely to blunt long-term adipose tissue adaptation to regular exercise.

  3. Loss of Oncostatin M Signaling in Adipocytes Induces Insulin Resistance and Adipose Tissue Inflammation in Vivo.

    PubMed

    Elks, Carrie M; Zhao, Peng; Grant, Ryan W; Hang, Hardy; Bailey, Jennifer L; Burk, David H; McNulty, Margaret A; Mynatt, Randall L; Stephens, Jacqueline M

    2016-08-12

    Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor β (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMR(FKO) mice). The effects of OSM on gene expression were also assessed in vitro and in vivo OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMR(FKO) mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMR(FKO) mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMR(FKO) mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation.

  4. Acute exercise regulates adipogenic gene expression in white adipose tissue.

    PubMed

    Shen, Y; Zhou, H; Jin, W; Lee, H J

    2016-12-01

    White adipose tissue expansion is associated with both hypertrophy and hyperplasia of adipocytes. Exercise training results in adipocyte hypotrophy by activating lipolysis, but it is poorly understood whether exercise regulates adipogenesis by altering adipogenic gene expression. The purpose of this study was to evaluate the effect of a single bout of swimming exercise on adipogenic gene expression in white adipose tissue (WAT). Male C57BL/6J mice were divided into two groups: a sedentary control group and a 120-minute swimming exercise group. Immediately after acute exercise, adipogenic gene expression in WAT was analysed by RT-PCR, and tdTomato positive cells in WAT from UCP1-cre-tdTomato mice were observed under a confocal microscope. In epididymal white adipose tissue (eWAT), PPARγ2 and C/EBPα expression at the mRNA level was significantly decreased with high induction of Wnt10b and KLFs (KLF2, KLF3, KLF7, KLF6, KLF9 and KLF15), whereas PPARγ2, not C/EBPα, was decreased with high induction of Wnt6 and KLFs (KLF2, KLF3, KLF7, KLF6 and KLF9) in inguinal white adipose tissue (iWAT) after acute exercise. The expression of C/EBPβ and C/EBPδ was upregulated in both WATs with a high level of PGC-1α expression. Expression level of UCP1 was increased only in adipocytes of eWAT, while beige cell specific gene expression was comparable between groups and tdTomato positive cells were not found in WAT of UCP1-cre-tdTomato reporter mouse immediately after acute exercise. These results suggest that acute exercise suppresses adipogenic gene expression and may regulate thermogenesis by activating C/EBPβ, PGC-1α and UCP1 in WAT.

  5. The Ontogeny of Brown Adipose Tissue.

    PubMed

    Symonds, Michael E; Pope, Mark; Budge, Helen

    2015-01-01

    There are three different types of adipose tissue (AT)-brown, white, and beige-that differ with stage of development, species, and anatomical location. Of these, brown AT (BAT) is the least abundant but has the greatest potential impact on energy balance. BAT is capable of rapidly producing large amounts of heat through activation of the unique uncoupling protein 1 (UCP1) located within the inner mitochondrial membrane. White AT is an endocrine organ and site of lipid storage, whereas beige AT is primarily white but contains some cells that possess UCP1. BAT first appears in the fetus around mid-gestation and is then gradually lost through childhood, adolescence, and adulthood. We focus on the interrelationships between adipocyte classification, anatomical location, and impact of diet in early life together with the extent to which fat development differs between the major species examined. Ultimately, novel dietary interventions designed to reactivate BAT could be possible.

  6. An alternative splicing program promotes adipose tissue thermogenesis

    PubMed Central

    Vernia, Santiago; Edwards, Yvonne JK; Han, Myoung Sook; Cavanagh-Kyros, Julie; Barrett, Tamera; Kim, Jason K; Davis, Roger J

    2016-01-01

    Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia. DOI: http://dx.doi.org/10.7554/eLife.17672.001 PMID:27635635

  7. Macrophage and adipocyte IGF1 maintain adipose tissue homeostasis during metabolic stresses

    PubMed Central

    Chang, Hye Rim; Kim, Hae Jin; Xu, Xiaoyuan; Ferrante, Anthony W.

    2015-01-01

    Objective IGF1 regulates differentiation and growth of tissues and reduces stress and injury. IGF1 also in a tissue specific manner modulates the differentiation and lipid storage capacity of adipocytes in vitro, but its roles in adipose tissue development and response to stress are not known. Methods To study IGF1 in vivo, we identified the cellular sources of adipose tissue Igf1 expression and generated mice with targeted deletion in adipocytes and macrophages. We studied the effects of adipocyte and macrophage deficiency of IGF1 on adipose tissue development, and the response to a chronic (high fat feeding) and acute (cold challenge) stress. Results The expression of Igf1 by adipose tissue is derived from multiple cell types including adipocytes and macrophages. In lean animals, adipocytes are the primary source of IGF1 but in obesity expression by adipocytes is reduced and by macrophages increased, so as to maintain overall adipose tissue Igf1 expression. Genetic deletion studies reveal that adipocyte-derived IGF1 regulates perigonadal but not subcutaneous adipose tissue mass during high fat feeding and the development of obesity. Conversely, macrophage-derived IGF1 acutely modulates PGAT (PGAT) mass during thermogenic challenges. Conclusions Local IGF1 is not required in lean adipose tissue development but required to maintain homeostasis during both chronic and acute metabolic stresses. PMID:26663512

  8. Berberine activates thermogenesis in white and brown adipose tissue.

    PubMed

    Zhang, Zhiguo; Zhang, Huizhi; Li, Bo; Meng, Xiangjian; Wang, Jiqiu; Zhang, Yifei; Yao, Shuangshuang; Ma, Qinyun; Jin, Lina; Yang, Jian; Wang, Weiqing; Ning, Guang

    2014-11-25

    Obesity develops when energy intake exceeds energy expenditure. Promoting brown adipose tissue formation and function increases energy expenditure and hence may counteract obesity. Berberine (BBR) is a compound derived from the Chinese medicinal plant Coptis chinensis. Here we show that BBR increases energy expenditure, limits weight gain, improves cold tolerance and enhances brown adipose tissue (BAT) activity in obese db/db mice. BBR markedly induces the development of brown-like adipocytes in inguinal, but not epididymal adipose depots. BBR also increases expression of UCP1 and other thermogenic genes in white and BAT and primary adipocytes via a mechanism involving AMPK and PGC-1α. BBR treatment also inhibits AMPK activity in the hypothalamus, but genetic activation of AMPK in the ventromedial nucleus of the hypothalamus does not prevent BBR-induced weight loss and activation of the thermogenic programme. Our findings establish a role for BBR in regulating organismal energy balance, which may have potential therapeutic implications for the treatment of obesity.

  9. Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue.

    PubMed

    Šram, Miroslav; Vrselja, Zvonimir; Lekšan, Igor; Ćurić, Goran; Selthofer-Relatić, Kristina; Radić, Radivoje

    2015-01-01

    Introduction. Adipose tissue is the largest endocrine organ, composed of subcutaneous (SAT) and visceral adipose tissue (VAT), the latter being highly associated with coronary artery disease (CAD). Expansion of epicardial adipose tissue (EAT) is linked to CAD. One way of assessing the CAD risk is with low-cost anthropometric measures, although they are inaccurate and cannot discriminate between VAT and SAT. The aim of this study is to evaluate (1) the relationship between EAT thickness, SAT thickness and anthropometric measures in a cohort of patients assessed at the cardiology unit and (2) determine predictive power of anthropometric measures and EAT and SAT thickness in establishment of CAD. Methods. Anthropometric measures were obtained from 53 CAD and 42 non-CAD patients. Vascular and structural statuses were obtained with coronarography and echocardiography, as well as measurements of the EAT and SAT thickness. Results. Anthropometric measures showed moderate positive correlation with EAT and SAT thickness. Anthropometric measures and SAT follow nonlinear S curve relationship with EAT. Strong nonlinear power curve relationship was observed between EAT and SAT thinner than 10 mm. Anthropometric measures and EAT and SAT were poor predictors of CAD. Conclusion. Anthropometric measures and SAT have nonlinear relationship with EAT. EAT thickness and anthropometric measures have similar CAD predictive value.

  10. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue

    PubMed Central

    2012-01-01

    Background Periprostatic (PP) adipose tissue surrounds the prostate, an organ with a high predisposition to become malignant. Frequently, growing prostatic tumor cells extend beyond the prostatic organ towards this fat depot. This study aimed to determine the genome-wide expression of genes in PP adipose tissue in obesity/overweight (OB/OW) and prostate cancer patients. Methods Differentially expressed genes in human PP adipose tissue were identified using microarrays. Analyses were conducted according to the donors' body mass index characteristics (OB/OW versus lean) and prostate disease (extra prostatic cancer versus organ confined prostate cancer versus benign prostatic hyperplasia). Selected genes with altered expression were validated by real-time PCR. Ingenuity Pathway Analysis (IPA) was used to investigate gene ontology, canonical pathways and functional networks. Results In the PP adipose tissue of OB/OW subjects, we found altered expression of genes encoding molecules involved in adipogenic/anti-lipolytic, proliferative/anti-apoptotic, and mild immunoinflammatory processes (for example, FADS1, down-regulated, and LEP and ANGPT1, both up-regulated). Conversely, in the PP adipose tissue of subjects with prostate cancer, altered genes were related to adipose tissue cellular activity (increased cell proliferation/differentiation, cell cycle activation and anti-apoptosis), whereas a downward impact on immunity and inflammation was also observed, mostly related to the complement (down-regulation of CFH). Interestingly, we found that the microRNA MIRLET7A2 was overexpressed in the PP adipose tissue of prostate cancer patients. Conclusions Obesity and excess adiposity modified the expression of PP adipose tissue genes to ultimately foster fat mass growth. In patients with prostate cancer the expression profile of PP adipose tissue accounted for hypercellularity and reduced immunosurveillance. Both findings may be liable to promote a favorable environment for

  11. High intensity interval training improves liver and adipose tissue insulin sensitivity

    PubMed Central

    Marcinko, Katarina; Sikkema, Sarah R.; Samaan, M. Constantine; Kemp, Bruce E.; Fullerton, Morgan D.; Steinberg, Gregory R.

    2015-01-01

    Objective Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. Methods In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine–alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. Results HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. Conclusions These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC. PMID:26909307

  12. Estradiol effects on subcutaneous adipose tissue lipolysis in premenopausal women are adipose tissue depot specific and treatment dependent.

    PubMed

    Gavin, Kathleen M; Cooper, Elizabeth E; Raymer, Dustin K; Hickner, Robert C

    2013-06-01

    Estrogen has direct effects within adipose tissue and has been implicated in regional adiposity; however, the influence of estrogen on in vivo lipolysis is unclear. The purpose of this study was to investigate the effect of local 17β-estradiol (E(2)) on subcutaneous adipose tissue (SAT) lipolysis in premenopausal women. In vivo lipolysis (dialysate glycerol) was measured in 17 women (age 27.4 ± 2.0 yr, BMI 29.7 ± 0.5 kg/m(2)) via microdialysis of abdominal (AB) and gluteal (GL) SAT. Glycerol was measured at baseline and during acute interventions to increase lipolysis including local perfusion of isoproterenol (ISO, β-adrenergic agonist, 1.0 μmol/l), phentolamine (PHEN, α-adrenergic antagonist, 0.1 mmol/l), and submaximal exercise (60% Vo(2peak), 30 min); all with and without coperfusion of E(2) (500 nmol/l). E(2) coperfusion blunted the lipolytic response to ISO in AB (E(2) 196 ± 31%, control 258 ± 26%, P = 0.003) but not in GL (E(2) 113 ± 14%, control 111 ± 12%, P = 0.43) adipose tissue. At rest, perfusion of PHEN with ISO did not change dialysate glycerol. Submaximal exercise during ISO + PHEN increased dialysate glycerol in the AB (56 ± 9%) and GL (62 ± 12%) regions. Probes perfused with E(2) during exercise and ISO + PHEN had an increased lipolytic response in AB (90 ± 9%, P = 0.007) but a lower response in GL (35 ± 7%, P = 0.05) SAT compared with no-E(2) conditions. E(2) effects on lipolysis are region specific and may work through both adrenergic and adrenergic-independent mechanisms to potentiate and/or blunt SAT lipolysis in premenopausal women.

  13. Adaptive Changes of the Insig1/SREBP1/SCD1 Set Point Help Adipose Tissue to Cope With Increased Storage Demands of Obesity

    PubMed Central

    Carobbio, Stefania; Hagen, Rachel M.; Lelliott, Christopher J.; Slawik, Marc; Medina-Gomez, Gema; Tan, Chong-Yew; Sicard, Audrey; Atherton, Helen J.; Barbarroja, Nuria; Bjursell, Mikael; Bohlooly-Y, Mohammad; Virtue, Sam; Tuthill, Antoinette; Lefai, Etienne; Laville, Martine; Wu, Tingting; Considine, Robert V.; Vidal, Hubert; Langin, Dominique; Oresic, Matej; Tinahones, Francisco J.; Fernandez-Real, Jose Manuel; Griffin, Julian L.; Sethi, Jaswinder K.; López, Miguel; Vidal-Puig, Antonio

    2013-01-01

    The epidemic of obesity imposes unprecedented challenges on human adipose tissue (WAT) storage capacity that may benefit from adaptive mechanisms to maintain adipocyte functionality. Here, we demonstrate that changes in the regulatory feedback set point control of Insig1/SREBP1 represent an adaptive response that preserves WAT lipid homeostasis in obese and insulin-resistant states. In our experiments, we show that Insig1 mRNA expression decreases in WAT from mice with obesity-associated insulin resistance and from morbidly obese humans and in in vitro models of adipocyte insulin resistance. Insig1 downregulation is part of an adaptive response that promotes the maintenance of SREBP1 maturation and facilitates lipogenesis and availability of appropriate levels of fatty acid unsaturation, partially compensating the antilipogenic effect associated with insulin resistance. We describe for the first time the existence of this adaptive mechanism in WAT, which involves Insig1/SREBP1 and preserves the degree of lipid unsaturation under conditions of obesity-induced insulin resistance. These adaptive mechanisms contribute to maintain lipid desaturation through preferential SCD1 regulation and facilitate fat storage in WAT, despite on-going metabolic stress. PMID:23919961

  14. Ginsenoside Rg5 Inhibits Succinate-Associated Lipolysis in Adipose Tissue and Prevents Muscle Insulin Resistance

    PubMed Central

    Xiao, Na; Yang, Le-Le; Yang, Yi-Lin; Liu, Li-Wei; Li, Jia; Liu, Baolin; Liu, Kang; Qi, Lian-Wen; Li, Ping

    2017-01-01

    Endoplasmic reticulum (ER) stress, inflammation, and lipolysis occur simultaneously in adipose dysfunction and contribute to insulin resistance. This study was designed to investigate whether ginsenoside Rg5 could ameliorate adipose dysfunction and prevent muscle insulin resistance. Short-term high-fat diet (HFD) feeding induced hypoxia with ER stress in adipose tissue, leading to succinate accumulation due to the reversal of succinate dehydrogenase (SDH) activity. Rg5 treatment reduced cellular energy charge, suppressed ER stress and then prevented succinate accumulation in adipose tissue. Succinate promoted IL-1β production through NLRP3 inflammasome activation and then increased cAMP accumulation by impairing PDE3B expression, leading to increased lipolysis. Ginsenoside Rg5 treatment suppressed NLRP3 inflammasome activation, preserved PDE3B expression and then reduced cAMP accumulation, contributing to inhibition of lipolysis. Adipose lipolysis increased FFAs trafficking from adipose tissue to muscle. Rg5 reduced diacylglycerol (DAG) and ceramides accumulation, inhibited protein kinase Cθ translocation, and prevented insulin resistance in muscle. In conclusion, succinate accumulation in hypoxic adipose tissue acts as a metabolic signaling to link ER stress, inflammation and cAMP/PKA activation, contributing to lipolysis and insulin resistance. These findings establish a previously unrecognized role of ginsenosides in the regulation of lipid and glucose homeostasis and suggest that adipose succinate-associated NLRP3 inflammasome activation might be targeted therapeutically to prevent lipolysis and insulin resistance. PMID:28261091

  15. Macrophages Undergo M1-to-M2 Transition in Adipose Tissue Regeneration in a Rat Tissue Engineering Model.

    PubMed

    Li, Zhijin; Xu, Fangfang; Wang, Zhifa; Dai, Taiqiang; Ma, Chao; Liu, Bin; Liu, Yanpu

    2016-10-01

    Macrophages are involved in the full processes of tissue healing or regeneration and play an important role in the regeneration of a variety of tissues. Although recent evidence suggests the role of different macrophage phenotypes in adipose tissue expansion, metabolism, and remodeling, the spectrum of macrophage phenotype in the adipose tissue engineering field remains unknown. The present study established a rat model of adipose tissue regeneration using a tissue engineering chamber. Macrophage phenotypes were assessed during the regenerative process in the model. Neo-adipose tissue was generated 6 weeks after implantation. Macrophages were obvious in the chamber constructs 3 days after implantation, peaked at day 7, and significantly decreased thereafter. At day 3, macrophages were predominantly M1 macrophages (CCR7+), and there were few M2 macrophages (CD206+). At day 7, the percentage of M2 macrophages significantly increased and remained stable at day 14. M2 macrophages became the predominant macrophage population at 42 days. Enzyme-linked immunosorbent assay demonstrated transition of cytokines from pro-inflammatory to anti-inflammatory, which was consistent with the transition of macrophage phenotype from M1 to M2. These results showed distinct transition of macrophage phenotypes from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 in adipose tissue regeneration in our tissue engineering model. This study provides new insight into macrophage phenotype transition in the regeneration of adipose tissue.

  16. Rorα deficiency and decreased adiposity are associated with induction of thermogenic gene expression in subcutaneous white adipose and brown adipose tissue.

    PubMed

    Lau, Patrick; Tuong, Zewen K; Wang, Shu-Ching; Fitzsimmons, Rebecca L; Goode, Joel M; Thomas, Gethin P; Cowin, Gary J; Pearen, Michael A; Mardon, Karine; Stow, Jennifer L; Muscat, George E O

    2015-01-15

    The Rar-related orphan receptor-α (Rorα) is a nuclear receptor that regulates adiposity and is a potential regulator of energy homeostasis. We have demonstrated that the Rorα-deficient staggerer (sg/sg) mice display a lean and obesity-resistant phenotype. Adaptive Ucp1-dependent thermogenesis in beige/brite and brown adipose tissue serves as a mechanism to increase energy expenditure and resist obesity. DEXA and MRI analysis demonstrated significantly decreased total fat mass and fat/lean mass tissue ratio in male chow-fed sg/sg mice relative to wt mice. In addition, we observed increased Ucp1 expression in brown adipose and subcutaneous white adipose tissue but not in visceral adipose tissue from Rorα-deficient mice. Moreover, this was associated with significant increases in the expression of the mRNAs encoding the thermogenic genes (i.e., markers of brown and beige adipose) Pparα, Errα, Dio2, Acot11/Bfit, Cpt1β, and Cidea in the subcutaneous adipose in the sg/sg relative to WT mice. These changes in thermogenic gene expression involved the significantly increased expression of the (cell-fate controlling) histone-lysine N-methyltransferase 1 (Ehmt1), which stabilizes the Prdm16 transcriptional complex. Moreover, primary brown adipocytes from sg/sg mice displayed a higher metabolic rate, and further analysis was consistent with increased uncoupling. Finally, core body temperature analysis and infrared thermography demonstrated that the sg/sg mice maintained greater thermal control and cold tolerance relative to the WT littermates. We suggest that enhanced Ucp1 and thermogenic gene expression/activity may be an important contributor to the lean, obesity-resistant phenotype in Rorα-deficient mice.

  17. Central Nervous System Regulation of Brown Adipose Tissue

    PubMed Central

    Morrison, Shaun F.; Madden, Christopher J.

    2015-01-01

    Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior. PMID:25428857

  18. Brown adipose tissue as a secretory organ.

    PubMed

    Villarroya, Francesc; Cereijo, Rubén; Villarroya, Joan; Giralt, Marta

    2017-01-01

    Brown adipose tissue (BAT) is the main site of adaptive thermogenesis and experimental studies have associated BAT activity with protection against obesity and metabolic diseases, such as type 2 diabetes mellitus and dyslipidaemia. Active BAT is present in adult humans and its activity is impaired in patients with obesity. The ability of BAT to protect against chronic metabolic disease has traditionally been attributed to its capacity to utilize glucose and lipids for thermogenesis. However, BAT might also have a secretory role, which could contribute to the systemic consequences of BAT activity. Several BAT-derived molecules that act in a paracrine or autocrine manner have been identified. Most of these factors promote hypertrophy and hyperplasia of BAT, vascularization, innervation and blood flow, processes that are all associated with BAT recruitment when thermogenic activity is enhanced. Additionally, BAT can release regulatory molecules that act on other tissues and organs. This secretory capacity of BAT is thought to be involved in the beneficial effects of BAT transplantation in rodents. Fibroblast growth factor 21, IL-6 and neuregulin 4 are among the first BAT-derived endocrine factors to be identified. In this Review, we discuss the current understanding of the regulatory molecules (the so-called brown adipokines or batokines) that are released by BAT that influence systemic metabolism and convey the beneficial metabolic effects of BAT activation. The identification of such adipokines might also direct drug discovery approaches for managing obesity and its associated chronic metabolic diseases.

  19. A worm of one's own: how helminths modulate host adipose tissue function and metabolism.

    PubMed

    Guigas, Bruno; Molofsky, Ari B

    2015-09-01

    Parasitic helminths have coexisted with human beings throughout time. Success in eradicating helminths has limited helminth-induced morbidity and mortality but is also correlated with increasing rates of 'western' diseases, including metabolic syndrome and type 2 diabetes. Recent studies in mice describe how type 2 immune cells, traditionally associated with helminth infection, maintain adipose tissue homeostasis and promote adipose tissue beiging, protecting against obesity and metabolic dysfunction. Here, we review these studies and discuss how helminths and helminth-derived molecules may modulate these physiologic pathways to improve metabolic functions in specific tissues, such as adipose and liver, as well as at the whole-organism level.

  20. Cell Supermarket: Adipose Tissue as a Source of Stem Cells

    PubMed Central

    Dodson, M.V.; Wei, S.; Duarte, M.; Du, M.; Jiang, Z.; Hausman, G.J.; Bergen, W.G.

    2013-01-01

    Adipose tissue is derived from numerous sources, and in recent years this tissue has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical and scientific applications. The focus of this paper is to reflect on this area of research and to provide a list of potential (future) research areas. PMID:25031654

  1. Influence of age and position on the CT number of adipose tissues in pigs.

    PubMed

    McEvoy, Fintan J; Madsen, Mads T; Svalastoga, Eiliv L

    2008-10-01

    The location of adipose tissue depots is important in determining their significance. Research into the physical and chemical differences between these depots is therefore of interest. Using image analysis, this paper examines the influence of location on the linear attenuation coefficient of adipose tissue for X-rays, in computed tomography (as indicated by CT number) at three time points. Nine pigs were CT scanned on three separate occasions approximately 1 month apart. The mean CT number was -78, -100, and -104 for visceral adipose tissue (VAT) from the first to the final scan, respectively. The corresponding CT numbers for subcutaneous adipose tissue (SAT) were -80, -101, and -106. There was a significant difference between the CT numbers at each location at each scan (P values from 0.025 to <0.001) and between the CT numbers for each location at different times (P < 0.05). In a separate analysis of the final scan session, the mean CT number of adipose tissue at increasing distances from a mathematically defined center of the animal was determined. Regression analysis showed that the CT number of adipose tissue decreases with increasing distance from the animal's center (y = -102.7 - 0.04 x, P < 0.001, where y is the predicted CT number for adipose tissue, from the animal center (x = 0) to the skin (x = 100)). It can thus be expected that the overall mean CT number for adipose tissue can be used as an indicator of the relative quantities of adipose tissue at each location if the mean for each is known.

  2. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism.

    PubMed

    Herman, Mark A; Peroni, Odile D; Villoria, Jorge; Schön, Michael R; Abumrad, Nada A; Blüher, Matthias; Klein, Samuel; Kahn, Barbara B

    2012-04-19

    The prevalence of obesity and type 2 diabetes is increasing worldwide and threatens to shorten lifespan. Impaired insulin action in peripheral tissues is a major pathogenic factor. Insulin stimulates glucose uptake in adipose tissue through the GLUT4 (also known as SLC2A4) glucose transporter, and alterations in adipose tissue GLUT4 expression or function regulate systemic insulin sensitivity. Downregulation of human and mouse adipose tissue GLUT4 occurs early in diabetes development. Here we report that adipose tissue GLUT4 regulates the expression of carbohydrate-responsive-element-binding protein (ChREBP; also known as MLXIPL), a transcriptional regulator of lipogenic and glycolytic genes. Furthermore, adipose ChREBP is a major determinant of adipose tissue fatty acid synthesis and systemic insulin sensitivity. We find a new mechanism for glucose regulation of ChREBP: glucose-mediated activation of the canonical ChREBP isoform (ChREBP-α) induces expression of a novel, potent isoform (ChREBP-β) that is transcribed from an alternative promoter. ChREBP-β expression in human adipose tissue predicts insulin sensitivity, indicating that it may be an effective target for treating diabetes.

  3. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice.

    PubMed

    Kliewer, Kara L; Ke, Jia-Yu; Tian, Min; Cole, Rachel M; Andridge, Rebecca R; Belury, Martha A

    2015-01-01

    Cancer cachexia is a progressive metabolic disorder that results in depletion of adipose tissue and skeletal muscle. A growing body of literature suggests that maintaining adipose tissue mass in cachexia may improve quality-of-life and survival outcomes. Studies of lipid metabolism in cachexia, however, have generally focused on later stages of the disorder when severe loss of adipose tissue has already occurred. Here, we investigated lipid metabolism in adipose, liver and muscle tissues during early stage cachexia - before severe fat loss - in the colon-26 murine model of cachexia. White adipose tissue mass in cachectic mice was moderately reduced (34-42%) and weight loss was less than 10% of initial body weight in this study of early cachexia. In white adipose depots of cachectic mice, we found evidence of enhanced protein kinase A - activated lipolysis which coincided with elevated total energy expenditure and increased expression of markers of brown (but not white) adipose tissue thermogenesis and the acute phase response. Total lipids in liver and muscle were unchanged in early cachexia while markers of fatty oxidation were increased. Many of these initial metabolic responses contrast with reports of lipid metabolism in later stages of cachexia. Our observations suggest intervention studies to preserve fat mass in cachexia should be tailored to the stage of cachexia. Our observations also highlight a need for studies that delineate the contribution of cachexia stage and animal model to altered lipid metabolism in cancer cachexia and identify those that most closely mimic the human condition.

  4. Adipose Tissue: Sanctuary for HIV/SIV Persistence and Replication.

    PubMed

    Pallikkuth, Suresh; Mohan, Mahesh

    2015-12-01

    This commentary highlights new findings from a recent study identifying adipose tissue as a potential HIV reservoir and a major site of inflammation during chronic human/simian immunodeficiency virus (HIV/SIV) infection. A concise discussion about upcoming challenges and new research avenues for reducing chronic adipose inflammation during HIV/SIV infection is presented.

  5. Total DDT and dieldrin content of human adipose tissue

    SciTech Connect

    Ahmad, N.; Harsas, W.; Marolt, R.S.; Morton, M.; Pollack, J.K.

    1988-12-01

    As far as the authors could ascertain only 4 well-documented analytical studies have been carried out in Australia determining the total DDT and dieldrin content of human adipose tissue. The latest of these studies was published over 16 years ago. Therefore it is timely and important to re-examine the total DDT and dieldrin concentration within the adipose tissue of the Australian population. The present investigation has analyzed 290 samples of human adipose tissue obtained from Westmead Hospital situated in an outer suburb of Sydney, New South Wales for their content of total DDT and dieldrin.

  6. Extensive Characterization and Comparison of Endothelial Cells Derived from Dermis and Adipose Tissue: Potential Use in Tissue Engineering

    PubMed Central

    Monsuur, Hanneke N.; Weijers, Ester M.; Niessen, Frank B.; Gefen, Amit; Koolwijk, Pieter; Gibbs, Susan; van den Broek, Lenie J.

    2016-01-01

    Tissue-engineered constructs need to become quickly vascularized in order to ensure graft take. One way of achieving this is to incorporate endothelial cells (EC) into the construct. The adipose tissue stromal vascular fraction (adipose-SVF) might provide an alternative source for endothelial cells as adipose tissue can easily be obtained by liposuction. Since adipose-EC are now gaining more interest in tissue engineering, we aimed to extensively characterize endothelial cells from adipose tissue (adipose-EC) and compare them with endothelial cells from dermis (dermal-EC). The amount of endothelial cells before purification varied between 4–16% of the total stromal population. After MACS selection for CD31 positive cells, a >99% pure population of endothelial cells was obtained within two weeks of culture. Adipose- and dermal-EC expressed the typical endothelial markers PECAM-1, ICAM-1, Endoglin, VE-cadherin and VEGFR2 to a similar extent, with 80–99% of the cell population staining positive. With the exception of CXCR4, which was expressed on 29% of endothelial cells, all other chemokine receptors (CXCR1, 2, 3, and CCR2) were expressed on less than 5% of the endothelial cell populations. Adipose-EC proliferated similar to dermal-EC, but responded less to the mitogens bFGF and VEGF. A similar migration rate was found for both adipose-EC and dermal-EC in response to bFGF. Sprouting of adipose-EC and dermal-EC was induced by bFGF and VEGF in a 3D fibrin matrix. After stimulation of adipose-EC and dermal-EC with TNF-α an increased secretion was seen for PDGF-BB, but not uPA, PAI-1 or Angiopoietin-2. Furthermore, secretion of cytokines and chemokines (IL-6, CCL2, CCL5, CCL20, CXCL1, CXCL8 and CXCL10) was also upregulated by both adipose- and dermal-EC. The similar characteristics of adipose-EC compared to their dermal-derived counterpart make them particularly interesting for skin tissue engineering. In conclusion, we show here that adipose tissue provides for an

  7. Isoliquiritigenin Attenuates Adipose Tissue Inflammation in vitro and Adipose Tissue Fibrosis through Inhibition of Innate Immune Responses in Mice

    PubMed Central

    Watanabe, Yasuharu; Nagai, Yoshinori; Honda, Hiroe; Okamoto, Naoki; Yamamoto, Seiji; Hamashima, Takeru; Ishii, Yoko; Tanaka, Miyako; Suganami, Takayoshi; Sasahara, Masakiyo; Miyake, Kensuke; Takatsu, Kiyoshi

    2016-01-01

    Isoliquiritigenin (ILG) is a flavonoid derived from Glycyrrhiza uralensis and potently suppresses NLRP3 inflammasome activation resulting in the improvement of diet-induced adipose tissue inflammation. However, whether ILG affects other pathways besides the inflammasome in adipose tissue inflammation is unknown. We here show that ILG suppresses adipose tissue inflammation by affecting the paracrine loop containing saturated fatty acids and TNF-α by using a co-culture composed of adipocytes and macrophages. ILG suppressed inflammatory changes induced by the co-culture through inhibition of NF-κB activation. This effect was independent of either inhibition of inflammasome activation or activation of peroxisome proliferator-activated receptor-γ. Moreover, ILG suppressed TNF-α-induced activation of adipocytes, coincident with inhibition of IκBα phosphorylation. Additionally, TNF-α-mediated inhibition of Akt phosphorylation under insulin signaling was alleviated by ILG in adipocytes. ILG suppressed palmitic acid-induced activation of macrophages, with decreasing the level of phosphorylated Jnk expression. Intriguingly, ILG improved high fat diet-induced fibrosis in adipose tissue in vivo. Finally, ILG inhibited TLR4- or Mincle-stimulated expression of fibrosis-related genes in stromal vascular fraction from obese adipose tissue and macrophages in vitro. Thus, ILG can suppress adipose tissue inflammation by both inflammasome-dependent and -independent manners and attenuate adipose tissue fibrosis by targeting innate immune sensors. PMID:26975571

  8. From the Cover: Adipose tissue mass can be regulated through the vasculature

    NASA Astrophysics Data System (ADS)

    Rupnick, Maria A.; Panigrahy, Dipak; Zhang, Chen-Yu; Dallabrida, Susan M.; Lowell, Bradford B.; Langer, Robert; Judah Folkman, M.

    2002-08-01

    Tumor growth is angiogenesis dependent. We hypothesized that nonneoplastic tissue growth also depends on neovascularization. We chose adipose tissue as an experimental system because of its remodeling capacity. Mice from different obesity models received anti-angiogenic agents. Treatment resulted in dose-dependent, reversible weight reduction and adipose tissue loss. Marked vascular remodeling was evident in adipose tissue sections, which revealed decreased endothelial proliferation and increased apoptosis in treated mice compared with controls. Continuous treatment maintained mice near normal body weights for age without adverse effects. Metabolic adaptations in food intake, metabolic rate, and energy substrate utilization were associated with anti-angiogenic weight loss. We conclude that adipose tissue mass is sensitive to angiogenesis inhibitors and can be regulated by its vasculature.

  9. Direct effects of leptin on brown and white adipose tissue.

    PubMed Central

    Siegrist-Kaiser, C A; Pauli, V; Juge-Aubry, C E; Boss, O; Pernin, A; Chin, W W; Cusin, I; Rohner-Jeanrenaud, F; Burger, A G; Zapf, J; Meier, C A

    1997-01-01

    Leptin is thought to exert its actions on energy homeostasis through the long form of the leptin receptor (OB-Rb), which is present in the hypothalamus and in certain peripheral organs, including adipose tissue. In this study, we examined whether leptin has direct effects on the function of brown and white adipose tissue (BAT and WAT, respectively) at the metabolic and molecular levels. The chronic peripheral intravenous administration of leptin in vivo for 4 d resulted in a 1.6-fold increase in the in vivo glucose utilization index of BAT, whereas no significant change was found after intracerebroventricular administration compared with pair-fed control rats, compatible with a direct effect of leptin on BAT. The effect of leptin on WAT fat pads from lean Zucker Fa/ fa rats was assessed ex vivo, where a 9- and 16-fold increase in the rate of lipolysis was observed after 2 h of exposure to 0.1 and 10 nM leptin, respectively. In contrast, no increase in lipolysis was observed in the fat pads from obese fa/fa rats, which harbor an inactivating mutation in the OB-Rb. At the level of gene expression, leptin treatment for 24 h increased malic enzyme and lipoprotein lipase RNA 1.8+/-0.17 and 1.9+/-0.14-fold, respectively, while aP2 mRNA levels were unaltered in primary cultures of brown adipocytes from lean Fa/fa rats. Importantly, however, no significant effect of leptin was observed on these genes in brown adipocytes from obese fa/fa animals. The presence of OB-Rb receptors in adipose tissue was substantiated by the detection of its transcripts by RT-PCR, and leptin treatment in vivo and in vitro activated the specific STATs implicated in the signaling pathway of the OB-Rb. Taken together, our data strongly suggest that leptin has direct effects on BAT and WAT, resulting in the activation of the Jak/STAT pathway and the increased expression of certain target genes, which may partially account for the observed increase in glucose utilization and lipolysis in leptin

  10. Disruption of inducible 6-phosphofructo-2-kinase ameliorates diet-induced adiposity but exacerbates systemic insulin resistance and adipose tissue inflammatory response.

    PubMed

    Huo, Yuqing; Guo, Xin; Li, Honggui; Wang, Huan; Zhang, Weiyu; Wang, Ying; Zhou, Huaijun; Gao, Zhanguo; Telang, Sucheta; Chesney, Jason; Chen, Y Eugene; Ye, Jianping; Chapkin, Robert S; Wu, Chaodong

    2010-02-05

    Adiposity is commonly associated with adipose tissue dysfunction and many overnutrition-related metabolic diseases including type 2 diabetes. Much attention has been paid to reducing adiposity as a way to improve adipose tissue function and systemic insulin sensitivity. PFKFB3/iPFK2 is a master regulator of adipocyte nutrient metabolism. Using PFKFB3(+/-) mice, the present study investigated the role of PFKFB3/iPFK2 in regulating diet-induced adiposity and systemic insulin resistance. On a high-fat diet (HFD), PFKFB3(+/-) mice gained much less body weight than did wild-type littermates. This was attributed to a smaller increase in adiposity in PFKFB3(+/-) mice than in wild-type controls. However, HFD-induced systemic insulin resistance was more severe in PFKFB3(+/-) mice than in wild-type littermates. Compared with wild-type littermates, PFKFB3(+/-) mice exhibited increased severity of HFD-induced adipose tissue dysfunction, as evidenced by increased adipose tissue lipolysis, inappropriate adipokine expression, and decreased insulin signaling, as well as increased levels of proinflammatory cytokines in both isolated adipose tissue macrophages and adipocytes. In an in vitro system, knockdown of PFKFB3/iPFK2 in 3T3-L1 adipocytes caused a decrease in the rate of glucose incorporation into lipid but an increase in the production of reactive oxygen species. Furthermore, knockdown of PFKFB3/iPFK2 in 3T3-L1 adipocytes inappropriately altered the expression of adipokines, decreased insulin signaling, increased the phosphorylation states of JNK and NFkappaB p65, and enhanced the production of proinflammatory cytokines. Together, these data suggest that PFKFB3/iPFK2, although contributing to adiposity, protects against diet-induced insulin resistance and adipose tissue inflammatory response.

  11. Iron homeostasis: a new job for macrophages in adipose tissue?

    PubMed Central

    Hubler, Merla J.; Peterson, Kristin R.; Hasty, Alyssa H.

    2015-01-01

    Elevated serum ferritin and increased cellular iron concentrations are risk factors for diabetes; however, the etiology of this association is unclear. Metabolic tissues such as pancreas, liver, and adipose tissue (AT), as well as the immune cells resident in these tissues, may be involved. Recent studies demonstrate that the polarization status of macrophages has important relevance to their iron handling capabilities. Furthermore, a subset of macrophages in AT have elevated iron concentrations and a gene expression profile indicative of iron handling, a capacity diminished in obesity. Because iron overload in adipocytes increases systemic insulin resistance, iron handling by AT macrophages may have relevance not only to adipocyte iron stores but also to local and systemic insulin sensitivity. PMID:25600948

  12. Effect of dietary vitamin E supplements on cholesteryl ester transfer activity in hamster adipose tissue.

    PubMed

    Shen, G X; Novak, C; Angel, A

    1996-08-02

    Increased concentration of cholesteryl ester transfer protein (CETP) in plasma favours a lipoprotein profile characterized by a reduced high density lipoprotein (HDL) cholesterol. Previous studies have demonstrated that a diet high in cholesterol and saturated fat (HCSF) is associated with elevated plasma CETP and increased release of cholesterol ester transfer activity (CETA) from hamster adipose tissue incubated in vitro. The present study investigated the effects of vitamin E (Vit.E) ingestion on plasma CETP activity and adipose tissue CETA in Syrian Golden hamsters. A regular diet supplemented by the addition of 1% cholesterol and 10% coconut oil (w/w) was associated with a time-dependent increase in plasma CETP activity and increased release of adipose CETA following incubation of fragments of perirenal adipose tissue. Vit.E ingestion (100 mg/kg body weight per day for 8 weeks) suppressed 85% of the increase of CETA released from cultured hamster adipose tissue and 70% of the increase of plasma CETP activity induced by the HCSF diet. Significant decreases in plasma total and LDL cholesterol and an increase in HDL cholesterol were found in hamsters receiving the HCSF diet plus Vit.E compared to the animals on the HCSF diet alone. In the hamsters on regular chow, Vit.E ingestion alone did not significantly alter adipose tissue CETA, plasma CETP activity or plasma lipoproteins. The results indicate that Vit.E prevents the HCSF diet-induced increase in plasma CETP activity, probably via a reduction of CETA secretion from hamster adipose tissue. This suggests that Vit.E supplementation may help to ameliorate the dyslipidemia caused by a HCSF diet through its inhibitory influence on CETP production in adipose tissue.

  13. Organochlorine pesticide levels in female adipose tissue from Puebla, Mexico.

    PubMed

    Waliszewski, Stefan M; Sanchez, K; Caba, M; Saldariaga-Noreña, H; Meza, E; Zepeda, R; Valencia Quintana, R; Infanzon, R

    2012-02-01

    The objective of this study was to determine the levels of organochlorine pesticides HCB, α-β-γ-HCH, pp'DDE, op'DDT and pp'DDT in adipose tissue of females living in Puebla, Mexico. Organochlorine pesticides were analyzed in 75 abdominal adipose tissue samples taken during 2010 by autopsy at the Forensic Services of Puebla. The results were expressed as mg/kg on fat basis. In analyzed samples the following pesticides were detected: p,p'-DDE in 100% of samples at mean 1.464 mg/kg; p,p'-DDT in 96.0.% of samples at mean 0.105 mg/kg; op'DDT in 89.3% of monitored samples at mean 0.025 mg/kg and β-HCH in 94.7% of the samples at mean 0.108 mg/kg. To show if organochlorine pesticide levels in monitored female's adipose tissues are age dependant, the group was divided in three ages ranges (13-26, 26-57 and 57-96 years). The mean and median levels of all organochlorine pesticides increase significantly (p < 0.05) from the first to second and from the first to third group. At the same time, the increase of mean and medians levels from the second to third group were not statistically significant (p > 0.05). The present results compared to previous ones from 2008 indicates an increase in the concentrations during the 2010 study, but only the differences for pp'DDE and op'DDT were statistically significant. The 2010 group of females was older compared to the 2008 group. The presence of organochlorine pesticide residues is still observed, indicating uniform and permanent exposure to the pesticides by Puebla inhabitants.

  14. Hypothalamic control of brown adipose tissue thermogenesis

    PubMed Central

    Labbé, Sebastien M.; Caron, Alexandre; Lanfray, Damien; Monge-Rofarello, Boris; Bartness, Timothy J.; Richard, Denis

    2015-01-01

    It has long been known, in large part from animal studies, that the control of brown adipose tissue (BAT) thermogenesis is insured by the central nervous system (CNS), which integrates several stimuli in order to control BAT activation through the sympathetic nervous system (SNS). SNS-mediated BAT activity is governed by diverse neurons found in brain structures involved in homeostatic regulations and whose activity is modulated by various factors including oscillations of energy fluxes. The characterization of these neurons has always represented a challenging issue. The available literature suggests that the neuronal circuits controlling BAT thermogenesis are largely part of an autonomic circuitry involving the hypothalamus, brainstem and the SNS efferent neurons. In the present review, we recapitulate the latest progresses in regards to the hypothalamic regulation of BAT metabolism. We briefly addressed the role of the thermoregulatory pathway and its interactions with the energy balance systems in the control of thermogenesis. We also reviewed the involvement of the brain melanocortin and endocannabinoid systems as well as the emerging role of steroidogenic factor 1 (SF1) neurons in BAT thermogenesis. Finally, we examined the link existing between these systems and the homeostatic factors that modulate their activities. PMID:26578907

  15. TRPV1 agonist monoacylglycerol increases UCP1 content in brown adipose tissue and suppresses accumulation of visceral fat in mice fed a high-fat and high-sucrose diet.

    PubMed

    Iwasaki, Yusaku; Tamura, Yasuko; Inayoshi, Kimiko; Narukawa, Masataka; Kobata, Kenji; Chiba, Hiroshige; Muraki, Etsuko; Tsunoda, Nobuyo; Watanabe, Tatsuo

    2011-01-01

    The administration of such a transient receptor potential vanilloid 1 (TRPV1) agonist as capsaicin, which is a pungent ingredient of red pepper, promotes energy metabolism and suppresses visceral fat accumulation. We have recently identified monoacylglycerols (MGs) having an unsaturated long-chain fatty acid as the novel TRPV1 agonist in foods. We investigated in this present study the effects of dietary MGs on uncoupling protein 1 (UCP1) expression in interscapular brown adipose tissue (IBAT) and on fat accumulation in mice fed with a high-fat, high-sucrose diet. The MG30 diet that substituted 30% of all lipids for MGs (a mixture of 1-oleoylglycerol, 1-linoleoylglycerol and 1-linolenoylglycerol) significantly increased the UCP1 content of IBAT and decreased the weight of epididymal white adipose tissue, and the serum glucose, total cholesterol and free fatty acid levels. The diet containing only 1-oleoylglycerol as MG also increased UCP1 expression in IBAT. MGs that activated TRPV1 also therefore induced the expression of UCP 1 and prevented visceral fat accumulation as well as capsaicin.

  16. The role of dietary fat in adipose tissue metabolism.

    PubMed

    Fernández-Quintela, Alfredo; Churruca, Itziar; Portillo, Maria Puy

    2007-10-01

    Energy intake and expenditure tend on average to remain adjusted to each other in order to maintain a stable body weight, which is only likely to be sustained if the fuel mix oxidised is equivalent to the nutrient content of the diet. Whereas protein and carbohydrate degradation and oxidation are closely adjusted to their intakes, fat balance regulation is less precise and that fat is more likely to be stored than oxidised. It has been demonstrated that dietary fatty acids have an influence not only on the fatty acid composition of membrane phospholipids, thus modulating several metabolic processes that take place in the adipocyte, but also on the composition and the quantity of different fatty acids in adipose tissue. Moreover, dietary fatty acids also modulate eicosanoid presence, which have hormone-like activities in lipid metabolism regulation in adipose tissue. Until recently, the adipocyte has been considered to be no more than a passive tissue for storage of excess energy. However, there is now compelling evidence that adipocytes have a role as endocrine secretory cells. Some of the adipokines produced by adipose tissue, such as leptin and adiponectin, act on adipose tissue in an autocrine/paracrine manner to regulate adipocyte metabolism. Furthermore, dietary fatty acids may influence the expression of adipokines. The nutrients are among the most influential of the environmental factors that determine the way adipose tissue genes are expressed by functioning as regulators of gene transcription. Therefore, not only dietary fat amount but also dietary fat composition influence adipose tissue metabolism.

  17. Metabolic syndrome pathophysiology: the role of adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several physiopathological explanations for the metabolic syndrome have been proposed involving insulin resistance, chronic inflammation and ectopic fat accumulation following adipose tissue saturation. However, current concepts create several paradoxes, including limited cardiovascular risk reducti...

  18. Fat as a fuel: emerging understanding of the adipose tissue-skeletal muscle axis.

    PubMed

    Frayn, K N

    2010-08-01

    The early pioneers in the field of metabolism during exercise such as Lindhard and Krogh understood the importance of fat as a fuel for muscle contraction. But they could not have understood the details of the pathways involved, as neither the metabolic role of adipose tissue nor the transport role of non-esterified fatty acids (NEFA) in the plasma was clearly understood at the time. We now recognize that the onset of muscular contraction coincides with an increase in the delivery of NEFA from adipose tissue, probably coordinated by the sympatho-adrenal system. During light exercise, adipose tissue-derived NEFA make up the majority of the oxidative fuel used by muscle. As exercise is prolonged, the importance of NEFA increases. The onset of exercise is marked by an increased proportion of NEFAs entering beta-oxidation rather than re-esterification and recycling. At moderate intensities of exercise, other sources of fat, potentially plasma- and intramyocellular-triacylglycerol, supplement the supply of plasma NEFA. The delivery of NEFA is augmented by increased adipose tissue blood flow and by other stimuli such as atrial natriuretic peptide. Only during high-intensity exercise is there a failure of adipose tissue to deliver sufficient fatty acids for muscle (which is coupled with an inability of muscle to use them, even when fatty acids are supplied artificially). This limitation of adipose tissue NEFA delivery may reflect some feedback inhibition of lipolysis, perhaps via lactate, or possibly alpha-adrenergic inhibition of lipolysis at very high catecholamine concentrations.

  19. Gene Expression and Histological Analysis of Activated Brown Adipocytes in Adipose Tissue.

    PubMed

    Lee, Yun-Hee

    2017-01-01

    With the rediscovery of brown adipose tissue in adult humans, identification and characterization of brown adipocytes have been topics of great interest in the field of adipose tissue research. In particular, identification of the molecular mechanisms that activate thermogenic adipocytes suggests promising targets for increasing energy expenditure and ultimately combatting obesity and obesity-related metabolic disease. Thus, the methodology for identifying brown adipocytes in vivo is important for the precise determination of the metabolic activity of brown adipose tissue and de novo brown adipogenesis in white adipose tissue. In addition, in vivo analysis of brown adipocytes in combination with lineage tracing is essential to investigate the cellular origins of brown adipocytes. This chapter first provides a brief overview of lineage tracing studies performed in the search for the cellular origins of brown adipocytes. The chapter then describes the immunohistochemistry methodology for identifying brown adipocytes in adipose tissue, including analyses in histologic tissue sections and whole mount tissue. Lastly, it discusses flow cytometric analysis of dissociated cells from adipose tissue, and isolation of live adipocytes for subsequent gene expression profiling using fluorescence-activated cell sorting.

  20. Dietary Fructose Activates Insulin Signaling and Inflammation in Adipose Tissue: Modulatory Role of Resveratrol

    PubMed Central

    Pektas, Mehmet Bilgehan; Koca, Halit Bugra; Sadi, Gokhan; Akar, Fatma

    2016-01-01

    The effects of high-fructose diet on adipose tissue insulin signaling and inflammatory process have been poorly documented. In this study, we examined the influences of long-term fructose intake and resveratrol supplementation on the expression of genes involved in insulin signaling and the levels of inflammatory cytokines and sex hormones in the white adipose tissues of male and female rats. Consumption of high-fructose diet for 24 weeks increased the expression of genes involved in insulin signaling including IR, IRS-1, IRS-2, Akt, PI3K, eNOS, mTOR, and PPARγ, despite induction of proinflammatory markers, iNOS, TNFα, IL-1β, IL-18, MDA, and ALT, as well as anti-inflammatory factors, IL-10 and Nrf2 in adipose tissues from males and females. Total and free testosterone concentrations of adipose tissues were impaired in males but increased in females, although there were no changes in their blood levels. Resveratrol supplementation markedly restored the levels of MDA, IL6, IL-10, and IL-18, as well as iNOS, Nrf2, and PI3K mRNA, in adipose tissues of both genders. Dietary fructose activates both insulin signaling and inflammatory pathway in the adipose tissues of male and female rats proposing no correlation between the tissue insulin signaling and inflammation. Resveratrol has partly modulatory effects on fructose-induced changes. PMID:27066503

  1. Visceral adipose tissue is an independent correlate of glucose disposal in older obese postmenopausal women.

    PubMed

    Brochu, M; Starling, R D; Tchernof, A; Matthews, D E; Garcia-Rubi, E; Poehlman, E T

    2000-07-01

    Older obese postmenopausal women have an increased risk for type 2 diabetes and cardiovascular disease. Increased abdominal obesity may contribute to these comorbidities. There is considerable controversy, however, regarding the effects of visceral adipose tissue as a singular predictor of insulin resistance compared to the other constituents of adiposity. To address this issue, we examined the independent association of regional adiposity and total fat mass with glucose disposal in obese older postmenopausal women. A secondary objective examined the association between glucose disposal with markers of skeletal muscle fat content (muscle attenuation) and physical activity levels. We studied 44 healthy obese postmenopausal women between 50 and 71 yr of age (mean +/- SD, 56.5 +/- 5.3 yr). The rate of glucose disposal was measured using the euglycemic/hyperinsulinemic clamp technique. Visceral and sc adipose tissue areas and midthigh muscle attenuation were measured from computed tomography. Fat mass and lean body mass were estimated from dual energy x-ray absorptiometry. Peak VO2 was measured from a treadmill test to volitional fatigue. Physical activity energy expenditure was measured from indirect calorimetry and doubly labeled water. Pearson correlations indicated that glucose disposal was inversely related to visceral adipose tissue area (r = -0.40; P < 0.01), but not to sc adipose tissue area (r = 0.17), total fat mass (r = 0.05), midthigh muscle attenuation (r = 0.01), peak VO2 (r = -0.22), or physical activity energy expenditure (r = -0.01). The significant association persisted after adjusting visceral adipose tissue for fat mass and abdominal sc adipose tissue levels (r = -0.45; P < 0.005; in both cases). Additional analyses matched two groups of women for fat mass, but with different visceral adipose tissue levels. Results showed that obese women with high visceral adipose tissue levels (283 +/- 59 vs. 137 +/- 24 cm2; P < 0.0001) had a lower glucose

  2. Nutritional manipulations in the perinatal period program adipose tissue in offspring.

    PubMed

    Lukaszewski, Marie-Amélie; Eberlé, Delphine; Vieau, Didier; Breton, Christophe

    2013-11-15

    Epidemiological studies demonstrated initially that maternal undernutrition results in low birth weight with increased risk for long-lasting energy balance disorders. Maternal obesity and diabetes associated with high birth weight, excessive nutrition in neonates, and rapid catchup growth also increase the risk of adult-onset obesity. As stated by the Developmental Origin of Health and Disease concept, nutrient supply perturbations in the fetus or neonate result in long-term programming of individual body weight set point. Adipose tissue is a key fuel storage unit involved mainly in the maintenance of energy homeostasis. Studies in numerous animal models have demonstrated that the adipose tissue is the focus of developmental programming events in a sex- and depot-specific manner. In rodents, adipose tissue development is particularly active during the perinatal period, especially during the last week of gestation and during early postnatal life. In contrast to rodents, this process essentially takes place before birth in bigger mammals. Despite these different developmental time windows, altricial and precocial species share several mechanisms of adipose tissue programming. Offspring from malnourished dams present adipose tissue with a series of alterations: impaired glucose uptake, insulin and leptin resistance, low-grade inflammation, modified sympathetic activity with reduced noradrenergic innervations, and thermogenesis. These modifications reprogram adipose tissue metabolism by changing fat distribution and composition and by enhancing adipogenesis, predisposing the offspring to fat accumulation. Subtle adipose tissue circadian rhythm changes are also observed. Inappropriate hormone levels, modified tissue sensitivity (especially glucocorticoid system), and epigenetic mechanisms are key factors for adipose tissue programming during the perinatal period.

  3. Adipose tissue stearoyl-CoA desaturase 1 index is increased and linoleic acid is decreased in obesity-prone rats fed a high-fat diet

    PubMed Central

    2013-01-01

    Background Fatty acid (FA) composition and desaturase indices are associated with obesity and related metabolic conditions. However, it is unclear to what extent desaturase activity in different lipid fractions contribute to obesity susceptibility. Our aim was to test whether desaturase activity and FA composition are linked to an obese phenotype in rats that are either obesity prone (OP) or resistant (OR) on a high-fat diet (HFD). Methods Two groups of Sprague–Dawley rats were given ad libitum (AL-HFD) or calorically restricted (HFD-paired; pair fed to calories consumed by chow-fed rats) access to a HFD. The AL-HFD group was categorized into OP and OR sub-groups based on weight gain over 5 weeks. Five different lipid fractions were examined in OP and OR rats with regard to proportions of essential and very long-chain polyunsaturated FAs: linoleic acid (LA), alpha-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid and the stearoyl-CoA desaturase 1 (SCD-1) product 16:1n-7. FA ratios were used to estimate activities of the delta-5-desaturase (20:4n-6/20:3n-6), delta-6-desaturase (18:3n-6/18:2n-6), stearoyl-CoA desaturase 1 (SCD-1; 16:1n-7/16:0, SCD-16 and 18:1n-9/18:0, SCD-18), de novo lipogenesis (16:0/18:2n-6) and FA elongation (18:0/16:0). Fasting insulin, glucose, adiponectin and leptin concentrations were measured in plasma. Results After AL-HFD access, OP rats had a significantly higher SCD-16 index and 16:1n-7 proportion, but a significantly lower LA proportion, in subcutaneous adipose tissue (SAT) triacylglycerols, as well as significantly higher insulin and leptin concentrations, compared with OR rats. No differences were found between the two phenotypes in liver (phospholipids; triacylglycerols) or plasma (cholesterol esters; phospholipids) lipid fractions or for plasma glucose or adiponectin concentrations. For the desaturase indices of the HFD-paired rats, the only significant differences compared with the OP or OR rats were higher SCD-16 and

  4. THE POTENTIAL ROLES FOR ADIPOSE TISSUE IN PERIPHERAL NERVE REGENERATION

    PubMed Central

    Walocko, Frances M.; Khouri, Roger K.; Urbanchek, Melanie G.; Levi, Benjamin; Cederna, Paul S.

    2016-01-01

    Introduction This review summarizes current understanding about the role of adipose-derived tissues in peripheral nerve regeneration and discusses potential advances that would translate this approach into the clinic. Methods We searched PubMed for in vivo, experimental studies on the regenerative effects of adipose-derived tissues on peripheral nerve injuries. We summarized the methods and results for the 42 experiments. Results Adipose-derived tissues enhanced peripheral nerve regeneration in 86% of the experiments. Ninety-five percent evaluated purified, cultured, or differentiated adipose tissue. These approaches have regulatory and scaling burdens, restricting clinical usage. Only one experiment tested the ability of adipose tissue to enhance nerve regeneration in conjunction with nerve autografts, the clinical gold standard. Conclusion Scientific studies illustrate that adipose-derived tissues enhance regeneration of peripheral nerves. Before this approach achieves clinical acceptance, fat processing must become automated and regulatory approval achieved. Animal studies using whole fat grafts are greatly needed for clinical translation. PMID:26773850

  5. Gene Expression Signature in Adipose Tissue of Acromegaly Patients

    PubMed Central

    Hochberg, Irit; Tran, Quynh T.; Barkan, Ariel L.; Saltiel, Alan R.; Chandler, William F.; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly. PMID:26087292

  6. Gene Expression Signature in Adipose Tissue of Acromegaly Patients.

    PubMed

    Hochberg, Irit; Tran, Quynh T; Barkan, Ariel L; Saltiel, Alan R; Chandler, William F; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly.

  7. Adipose tissue and adrenal glands: novel pathophysiological mechanisms and clinical applications.

    PubMed

    Kargi, Atil Y; Iacobellis, Gianluca

    2014-01-01

    Hormones produced by the adrenal glands and adipose tissues have important roles in normal physiology and are altered in many disease states. Obesity is associated with changes in adrenal function, including increase in adrenal medullary catecholamine output, alterations of the hypothalamic-pituitary-adrenal (HPA) axis, elevations in circulating aldosterone together with changes in adipose tissue glucocorticoid metabolism, and enhanced adipocyte mineralocorticoid receptor activity. It is unknown whether these changes in adrenal endocrine function are in part responsible for the pathogenesis of obesity and related comorbidities or represent an adaptive response. In turn, adipose tissue hormones or "adipokines" have direct effects on the adrenal glands and interact with adrenal hormones at several levels. Here we review the emerging evidence supporting the existence of "cross talk" between the adrenal gland and adipose tissue, focusing on the relevance and roles of their respective hormones in health and disease states including obesity, metabolic syndrome, and primary disorders of the adrenals.

  8. Brown adipose tissue and novel therapeutic approaches to treat metabolic disorders.

    PubMed

    Roman, Sabiniano; Agil, Ahmad; Peran, Macarena; Alvaro-Galue, Eduardo; Ruiz-Ojeda, Francisco J; Fernández-Vázquez, Gumersindo; Marchal, Juan A

    2015-04-01

    In humans, 2 functionally different types of adipose tissue coexist: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is involved in energy storage, whereas BAT is involved in energy expenditure. Increased amounts of WAT may contribute to the development of metabolic disorders, such as obesity-associated type 2 diabetes mellitus and cardiovascular diseases. In contrast, the thermogenic function of BAT allows high consumption of fatty acids because of the activity of uncoupling protein 1 in the internal mitochondrial membrane. Interestingly, obesity reduction and insulin sensitization have been achieved by BAT activation-regeneration in animal models. This review describes the origin, function, and differentiation mechanisms of BAT to identify new therapeutic strategies for the treatment of metabolic disorders related to obesity. On the basis of the animal studies, novel approaches for BAT regeneration combining stem cells from the adipose tissue with active components, such as melatonin, may have potential for the treatment of metabolic disorders in humans.

  9. Visceral adipose tissue but not subcutaneous adipose tissue is associated with urine and serum metabolites.

    PubMed

    Schlecht, Inga; Gronwald, Wolfram; Behrens, Gundula; Baumeister, Sebastian E; Hertel, Johannes; Hochrein, Jochen; Zacharias, Helena U; Fischer, Beate; Oefner, Peter J; Leitzmann, Michael F

    2017-01-01

    Obesity is a complex multifactorial phenotype that influences several metabolic pathways. Yet, few studies have examined the relations of different body fat compartments to urinary and serum metabolites. Anthropometric phenotypes (visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), the ratio between VAT and SAT (VSR), body mass index (BMI), waist circumference (WC)) and urinary and serum metabolite concentrations measured by nuclear magnetic resonance spectroscopy were measured in a population-based sample of 228 healthy adults. Multivariable linear and logistic regression models, corrected for multiple testing using the false discovery rate, were used to associate anthropometric phenotypes with metabolites. We adjusted for potential confounding variables: age, sex, smoking, physical activity, menopausal status, estimated glomerular filtration rate (eGFR), urinary glucose, and fasting status. In a fully adjusted logistic regression model dichotomized for the absence or presence of quantifiable metabolite amounts, VAT, BMI and WC were inversely related to urinary choline (ß = -0.18, p = 2.73*10-3), glycolic acid (ß = -0.20, 0.02), and guanidinoacetic acid (ß = -0.12, p = 0.04), and positively related to ethanolamine (ß = 0.18, p = 0.02) and dimethylamine (ß = 0.32, p = 0.02). BMI and WC were additionally inversely related to urinary glutamine and lactic acid. Moreover, WC was inversely associated with the detection of serine. VAT, but none of the other anthropometric parameters, was related to serum essential amino acids, such as valine, isoleucine, and phenylalanine among men. Compared to other adiposity measures, VAT demonstrated the strongest and most significant relations to urinary and serum metabolites. The distinct relations of VAT, SAT, VSR, BMI, and WC to metabolites emphasize the importance of accurately differentiating between body fat compartments when evaluating the potential role of metabolic regulation in the development of obesity

  10. Adipose Tissue Deficiency and Chronic Inflammation in Diabetic Goto-Kakizaki Rats

    PubMed Central

    Xue, Bai; Sukumaran, Siddharth; Nie, Jing; Jusko, William J.; DuBois, Debra C.; Almon, Richard R.

    2011-01-01

    Type 2 diabetes (T2DM) is a heterogeneous group of diseases that is progressive and involves multiple tissues. Goto-Kakizaki (GK) rats are a polygenic model with elevated blood glucose, peripheral insulin resistance, a non-obese phenotype, and exhibit many degenerative changes observed in human T2DM. As part of a systems analysis of disease progression in this animal model, this study characterized the contribution of adipose tissue to pathophysiology of the disease. We sacrificed subgroups of GK rats and appropriate controls at 4, 8, 12, 16 and 20 weeks of age and carried out a gene array analysis of white adipose tissue. We expanded our physiological analysis of the animals that accompanied our initial gene array study on the livers from these animals. The expanded analysis included adipose tissue weights, HbA1c, additional hormonal profiles, lipid profiles, differential blood cell counts, and food consumption. HbA1c progressively increased in the GK animals. Altered corticosterone, leptin, and adiponectin profiles were also documented in GK animals. Gene array analysis identified 412 genes that were differentially expressed in adipose tissue of GKs relative to controls. The GK animals exhibited an age-specific failure to accumulate body fat despite their relatively higher calorie consumption which was well supported by the altered expression of genes involved in adipogenesis and lipogenesis in the white adipose tissue of these animals, including Fasn, Acly, Kklf9, and Stat3. Systemic inflammation was reflected by chronically elevated white blood cell counts. Furthermore, chronic inflammation in adipose tissue was evident from the differential expression of genes involved in inflammatory responses and activation of natural immunity, including two interferon regulated genes, Ifit and Iipg, as well as MHC class II genes. This study demonstrates an age specific failure to accumulate adipose tissue in the GK rat and the presence of chronic inflammation in adipose

  11. Impaired mitochondrial function in human placenta with increased maternal adiposity.

    PubMed

    Mele, James; Muralimanoharan, Sribalasubashini; Maloyan, Alina; Myatt, Leslie

    2014-09-01

    The placenta plays a key role in regulation of fetal growth and development and in mediating in utero developmental programming. Obesity, which is associated with chronic inflammation and mitochondrial dysfunction in many tissues, exerts a programming effect in pregnancy. We determined the effect of increasing maternal adiposity and of fetal sex on placental ATP generation, mitochondrial biogenesis, expression of electron transport chain subunits, and mitochondrial function in isolated trophoblasts. Placental tissue was collected from women with prepregnancy BMI ranging from 18.5 to 45 following C-section at term with no labor. Increasing maternal adiposity was associated with excessive production of reactive oxygen species and a significant reduction in placental ATP levels in placentae with male and female fetuses. To explore the potential mechanism of placental mitochondrial dysfunction, levels of transcription factors regulating the expression of genes involved in electron transport and mitochondrial biogenesis were measured. Our in vitro studies showed significant reduction in mitochondrial respiration in cultured primary trophoblasts with increasing maternal obesity along with an abnormal metabolic flexibility of these cells. This reduction in placental mitochondrial respiration in pregnancies complicated by maternal obesity could compromise placental function and potentially underlie the increased susceptibility of these pregnancies to fetal demise in late gestation and to developmental programming.

  12. Nicotine withdrawal increases body weight, neuropeptide Y and Agouti-related protein expression in the hypothalamus and decreases uncoupling protein-3 expression in the brown adipose tissue in high-fat fed mice.

    PubMed

    Fornari, Alice; Pedrazzi, Patrizia; Lippi, Giordano; Picciotto, Marina R; Zoli, Michele; Zini, Isabella

    2007-01-03

    Nicotine is known to decrease body weight in normal rodents and human smokers, whereas nicotine withdrawal or smoking cessation can increase body weight. We have found that mice fed a high fat diet do not show the anorectic effect of chronic nicotine treatment, but do increase their body weight following nicotine withdrawal. Nicotine withdrawal is accompanied by increased expression of the orexigenic peptides neuropeptide Y and Agouti-related protein in the hypothalamus, and decreased expression of the metabolic protein uncoupling protein-3 in brown adipose tissue. These data suggest that diet can influence the ability of nicotine to modulate body weight regulation and demonstrate that chronic nicotine exposure results in adaptive changes in central and peripheral molecules which regulate feeding behavior and energy metabolism.

  13. [Interests and potentials of adipose tissue in scleroderma].

    PubMed

    Daumas, A; Eraud, J; Hautier, A; Sabatier, F; Magalon, G; Granel, B

    2013-12-01

    Systemic sclerosis is a disorder involving the connective tissue, arterioles and microvessels. It is characterized by skin and visceral fibrosis and ischemic phenomena. Currently, therapy is limited and no antifibrotic treatment has proven its efficacy. Beyond some severe organ lesions (pulmonary arterial hypertension, pulmonary fibrosis, scleroderma renal crisis), which only concern a minority of patients, the skin sclerosis of hands and face and the vasculopathy lead to physical and psychological disability in most patients. Thus, functional improvement of hand motion and face represents a priority for patient therapy. Due to its easy obtention by fat lipopaspirate and adipocytes survival, re injection of adipose tissue is a common therapy used in plastic surgery for its voluming effect. Identification and characterization of the adipose tissue-derived stroma vascular fraction, mainly including mesenchymal stem cells, have revolutionized the science showing that adipose tissue is a valuable source of multipotent stem cells, able to migrate to site of injury and to differentiate according to the receiver tissue's needs. Due to easy harvest by liposuction, its abundance in mesenchymal cells far higher that the bone marrow, and stroma vascular fraction's ability to differentiate and secrete growth angiogenic and antiapoptotic factors, the use of adipose tissue is becoming more attractive in regenerative medicine. We here present the interest of adipose tissue use in the treatment of the hands and face in scleroderma.

  14. Vagal afferent activation decreases brown adipose tissue (BAT) sympathetic nerve activity and BAT thermogenesis

    PubMed Central

    Madden, Christopher J.; Santos da Conceicao, Ellen Paula; Morrison, Shaun F.

    2017-01-01

    ABSTRACT In urethane/α-chloralose anesthetized rats, electrical stimulation of cervical vagal afferent fibers inhibited the increases in brown adipose tissue sympathetic nerve activity and brown adipose tissue thermogenesis evoked by cold exposure, by nanoinjection of the GABAA receptor antagonist, bicuculline, in the dorsomedial hypothalamus, and by nanoinjection of N-methyl-D-aspartate in the rostral raphe pallidus. Vagus nerve stimulation-evoked inhibition of brown adipose tissue sympathetic nerve activity was prevented by blockade of ionotropic glutamate receptors in the termination site of vagal afferents in the nucleus of the solitary tract, and by nanoinjection of GABAA receptor antagonists in the rostral raphe pallidus. In conclusion, the brown adipose tissue sympathoinhibitory effect of cervical afferent vagal nerve stimulation is mediated by glutamatergic activation of second-order sensory neurons in the nucleus of the solitary tract and by a GABAergic inhibition of brown adipose tissue sympathetic premotor neurons in the rostral raphe pallidus, but does not require GABAergic inhibition of the brown adipose tissue sympathoexcitatory neurons in the dorsomedial hypothalamus. PMID:28349097

  15. The Ubiquitin Ligase Siah2 Regulates Obesity-induced Adipose Tissue Inflammation

    PubMed Central

    Kilroy, Gail; Carter, Lauren E.; Newman, Susan; Burk, David H.; Manuel, Justin; Möller, Andreas; Bowtell, David D.; Mynatt, Randall L.; Ghosh, Sujoy; Floyd, Z. Elizabeth

    2015-01-01

    Objective Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, we examined the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation. Methods Wild-type and Siah2KO mice were fed a low or high fat diet for 16 weeks. Indirect calorimetry, body composition, glucose and insulin tolerance were assayed along with glucose and insulin levels. Gene and protein expression, immunohistochemistry, adipocyte size distribution and lipolysis were also analyzed. Results Enlarged adipocytes in obese Siah2KO mice are not associated with obesity-induced insulin resistance. Proinflammatory gene expression, stress kinase signaling, fibrosis and crown-like structures are reduced in the Siah2KO adipose tissue and Siah2KO adipocytes are more responsive to insulin-dependent inhibition of lipolysis. Loss of Siah2 increases expression of PPARγ target genes involved in lipid metabolism and decreases expression of proinflammatory adipokines regulated by PPARγ. Conclusions Siah2 links adipocyte hypertrophy with adipocyte dysfunction and recruitment of proinflammatory immune cells to adipose tissue. Selective regulation of PPARγ activity is a Siah2-mediated mechanism contributing to obesity-induced adipose tissue inflammation. PMID:26380945

  16. Dwarfism and increased adiposity in the gh1 mutant zebrafish vizzini.

    PubMed

    McMenamin, Sarah K; Minchin, James E N; Gordon, Tiffany N; Rawls, John F; Parichy, David M

    2013-04-01

    Somatic growth and adipogenesis are closely associated with the development of obesity in humans. In this study, we identify a zebrafish mutant, vizzini, that exhibits both a severe defect in somatic growth and increased accumulation of adipose tissue. Positional cloning of vizzini revealed a premature stop codon in gh1. Although the effects of GH are largely through igfs in mammals, we found no decrease in the expression of igf transcripts in gh1 mutants during larval development. As development progressed, however, we found overall growth to be progressively retarded and the attainment of specific developmental stages to occur at abnormally small body sizes relative to wild type. Moreover, both subcutaneous (sc) and visceral adipose tissues underwent precocious development in vizzini mutants, and at maturity, the sizes of different fat deposits were greatly expanded relative to wild type. In vivo confocal imaging of sc adipose tissue (SAT) expansion revealed that vizzini mutants exhibit extreme enlargement of adipocyte lipid droplets without a corresponding increase in lipid droplet number. These findings suggest that GH1 signaling restricts SAT hypertrophy in zebrafish. Finally, nutrient deprivation of vizzini mutants revealed that SAT mobilization was greatly diminished during caloric restriction, further implicating GH1 signaling in adipose tissue homeostasis. Overall, the zebrafish gh1 mutant, vizzini, exhibits decreased somatic growth, increased adipose tissue accumulation, and disrupted adipose plasticity after nutrient deprivation and represents a novel model to investigate the in vivo dynamics of vertebrate obesity.

  17. Enzymatic intracrine regulation of white adipose tissue

    PubMed Central

    DiSilvestro, David; Petrosino, Jennifer; Aldoori, Ayat; Melgar-Bermudez, Emiliano; Wells, Alexandra; Ziouzenkova, Ouliana

    2015-01-01

    Abdominal fat formation has become a permanent risk factor for metabolic syndrome and various cancers in one-third of the world's population of obese and even lean patients. Formation of abdominal fat involves additional mechanisms beyond an imbalance in energy intake and expenditure, which explains systemic obesity. In this review, we briefly summarized autonomous regulatory circuits that locally produce hormones from inactive precursors or nutrients for intra-/auto-/paracrine signaling in white adipose depots. Enzymatic pathways activating steroid and thyroid hormones in adipose depots were compared with enzymatic production of retinoic acid from vitamin A. We discussed the role of intracrine circuits in fat-depot functions and strategies to reduce abdominal adiposity through thermogenic adipocytes with interrupted generation of retinoic acid. PMID:25390015

  18. Brown adipose tissue as an anti-obesity tissue in humans.

    PubMed

    Chechi, K; Nedergaard, J; Richard, D

    2014-02-01

    During the 11th Stock Conference held in Montreal, Quebec, Canada, world-leading experts came together to present and discuss recent developments made in the field of brown adipose tissue biology. Owing to the vast capacity of brown adipose tissue for burning food energy in the process of thermogenesis, and due to demonstrations of its presence in adult humans, there is tremendous interest in targeting brown adipose tissue as an anti-obesity tissue in humans. However, the future of such therapeutic approaches relies on our understanding of the origin, development, recruitment, activation and regulation of brown adipose tissue in humans. As reviewed here, the 11th Stock Conference was organized around these themes to discuss the recent progress made in each aspect, to identify gaps in our current understanding and to further provide a common groundwork that could support collaborative efforts aimed at a future therapy for obesity, based on brown adipose tissue thermogenesis.

  19. Impaired Adipose Tissue Expandability and Lipogenic Capacities as Ones of the Main Causes of Metabolic Disorders

    PubMed Central

    Tinahones, Francisco José

    2015-01-01

    Obesity is considered a major health problem. However, mechanisms involved and its comorbidities are not elucidated. Recent theories concerning the causes of obesity have focused on a limit to the functional capacity of adipose tissue, comparing it with other vital organs. This assumption has been the central point of interest in our laboratory. We proposed that the failure of adipose tissue is initiated by the difficulty of this tissue to increase its cellularity due to excess in fat contribution, owing to genetic or environmental factors. Nevertheless, why the adipose tissue reduces its capacity to make new adipocytes via mesenchymal cells of the stroma has not yet been elucidated. Thus, we suggest that this tissue ceases fulfilling its main function, the storage of excess fat, thereby affecting some of the key factors involved in lipogenesis, some of which are reviewed in this paper (PPARγ, ROR1, FASN, SCD1, Rab18, BrCa1, ZAG, and FABP4). On the other hand, mechanisms involved in adipose tissue expandability are also impaired, predominating hypertrophy via an increase in apoptosis and a decrease in adipogenesis and angiogenesis. However, adipose tissue failure is only part of this great orchestra, only a chapter of this nightmare. PMID:25922847

  20. 11-Beta hydroxysteroid dehydrogenase type 2 expression in white adipose tissue is strongly correlated with adiposity.

    PubMed

    Milagro, Fermin I; Campión, Javier; Martínez, J Alfredo

    2007-04-01

    Glucocorticoid action within the cells is regulated by the levels of glucocorticoid receptor (GR) expression and two enzymes, 11-beta hydroxysteroid dehydrogenase type 1 (11betaHSD1), which converts inactive to active glucocorticoids, and 11-beta hydroxysteroid dehydrogenase type 2 (11betaHSD2), which regulates the access of active glucocorticoids to the receptor by converting cortisol/corticosterone to the glucocorticoid-inactive form cortisone/dehydrocorticosterone. Male Wistar rats developed obesity by being fed a high-fat diet for 56 days, and GR, 11betaHSD1 and 11betaHSD2 gene expression were compared with control-diet fed animals. Gene expression analysis of 11betaHSD1, 11betaHSD2 and GR were performed by RT-PCR in subcutaneous and retroperitoneal adipose tissue. High-fat fed animals overexpressed 11betaHSD2 in subcutaneous but not in retroperitoneal fat. Interestingly, mRNA levels strongly correlated in both tissues with different parameters related to obesity, such as body weight, adiposity and insulin resistance, suggesting that this gene is a reliable marker of adiposity in this rat model of obesity. Thus, 11betaHSD2 is expressed in adipose tissue by both adipocytes and stromal-vascular cells, which suggests that this enzyme may play an important role in preventing fat accumulation in adipose tissue.

  1. Liver but not adipose tissue is responsive to the pattern of enteral feeding

    PubMed Central

    Otero, Yolanda F.; Lundblad, Tammy M.; Ford, Eric A.; House, Lawrence M.; McGuinness, Owen P.

    2014-01-01

    Abstract Nutritional support is an important aspect of medical care, providing calories to patients with compromised nutrient intake. Metabolism has a diurnal pattern, responding to the light cycle and food intake, which in turn can drive changes in liver and adipose tissue metabolism. In this study, we assessed the response of liver and white adipose tissue (WAT) to different feeding patterns under nutritional support (total enteral nutrition or TEN). Mice received continuous isocaloric TEN for 10 days or equal calories of chow once a day (Ch). TEN was given either at a constant (CN, same infusion rate during 24 h) or variable rate (VN, 80% of calories fed at night, 20% at day). Hepatic lipogenesis and carbohydrate‐responsive element‐binding protein (ChREBP) expression increased in parallel with the diurnal feeding pattern. Relative to Ch, both patterns of enteral feeding increased adiposity. This increase was not associated with enhanced lipogenic gene expression in WAT; moreover, lipogenesis was unaffected by the feeding pattern. Surprisingly, leptin and adiponectin expression increased. Moreover, nutritional support markedly increased hepatic and adipose FGF21 expression in CN and VN, despite being considered a fasting hormone. In summary, liver but not WAT, respond to the pattern of feeding. While hepatic lipid metabolism adapts to the pattern of nutrient availability, WAT does not. Moreover, sustained delivery of nutrients in an isocaloric diet can cause adiposity without the proinflammatory state observed in hypercaloric feeding. Thus, the liver but not adipose tissue is responsive to the pattern of feeding behavior. PMID:24744913

  2. A stringent validation of mouse adipose tissue identity markers.

    PubMed

    de Jong, Jasper M A; Larsson, Ola; Cannon, Barbara; Nedergaard, Jan

    2015-06-15

    The nature of brown adipose tissue in humans is presently debated: whether it is classical brown or of brite/beige nature. The dissimilar developmental origins and proposed distinct functions of the brown and brite/beige tissues make it essential to ascertain the identity of human depots with the perspective of recruiting and activating them for the treatment of obesity and type 2 diabetes. For identification of the tissues, a number of marker genes have been proposed, but the validity of the markers has not been well documented. We used established brown (interscapular), brite (inguinal), and white (epididymal) mouse adipose tissues and corresponding primary cell cultures as validators and examined the informative value of a series of suggested markers earlier used in the discussion considering the nature of human brown adipose tissue. Most of these markers unexpectedly turned out to be noninformative concerning tissue classification (Car4, Cited1, Ebf3, Eva1, Fbxo31, Fgf21, Lhx8, Hoxc8, and Hoxc9). Only Zic1 (brown), Cd137, Epsti1, Tbx1, Tmem26 (brite), and Tcf21 (white) proved to be informative in these three tissues. However, the expression of the brite markers was not maintained in cell culture. In a more extensive set of adipose depots, these validated markers provide new information about depot identity. Principal component analysis supported our single-gene conclusions. Furthermore, Zic1, Hoxc8, Hoxc9, and Tcf21 displayed anteroposterior expression patterns, indicating a relationship between anatomic localization and adipose tissue identity (and possibly function). Together, the observed expression patterns of these validated marker genes necessitates reconsideration of adipose depot identity in mice and humans.

  3. Pomegranate vinegar attenuates adiposity in obese rats through coordinated control of AMPK signaling in the liver and adipose tissue

    PubMed Central

    2013-01-01

    Background The effect of pomegranate vinegar (PV) on adiposity was investigated in high-fat diet (HF)-induced obese rats. Methods The rats were divided into 5 groups and treated with HF with PV or acetic acid (0, 6.5 or 13% w/w) for 16 weeks. Statistical analyses were performed by the Statistical Analysis Systems package, version 9.2. Results Compared to control, PV supplementation increased phosphorylation of AMP-activated protein kinase (AMPK), leading to changes in mRNA expressions: increases for hormone sensitive lipase and mitochondrial uncoupling protein 2 and decreases for sterol regulatory element binding protein-1c (SREBP-1c) and peroxisome proliferator-activated receptorγ (PPARγ) in adipose tissue; increases for PPARα and carnitinepalmitoyltransferase-1a (CPT-1a) and decrease for SREBP-1c in the liver. Concomitantly, PV reduced increases of body weight (p = 0.048), fat mass (p = 0.033), hepatic triglycerides (p = 0.005), and plasma triglycerides (p = 0.001). Conclusions These results suggest that PV attenuates adiposity through the coordinated control of AMPK, which leads to promotion of lipolysis in adipose tissue and stimulation of fatty acid oxidation in the liver. PMID:24180378

  4. Effects of local alpha2-adrenergic receptor blockade on adipose tissue lipolysis during prolonged systemic adrenaline infusion in normal man.

    PubMed

    Simonsen, Lene; Enevoldsen, Lotte H; Stallknecht, Bente; Bülow, Jens

    2008-03-01

    During prolonged adrenaline infusion, lipolysis peaks within 30 min and thereafter tends to decline, and we hypothesized that the stimulation of local adipose tissue alpha2-adrenergic receptors accounts for this decline. The lipolytic effect of a prolonged intravenous adrenaline infusion combined with local infusion of the alpha2-blocker phentolamine in superficial and deep abdominal subcutaneous adipose tissue and in preperitoneal adipose tissue was studied in seven healthy subjects. The interstitial glycerol concentration in the three adipose tissue depots was measured by the microdialysis method. Regional adipose tissue blood flow was measured by the (133)Xe clearance technique. Regional glycerol output (lipolytic rate) was calculated from these measurements and simultaneous measurements of arterial glycerol concentrations. Adrenaline infusion increased lipolysis in all three depots (data previously published). Phentolamine infusion did not augment lipolysis in the subcutaneous depots while it increased the lipolytic rate in the preperitoneal depot. It is concluded that alpha2-adrenergic receptors do not have a significant effect on subcutaneous adipose tissue lipolysis during high circulating adrenaline concentrations, and the decrease in lipolysis in subcutaneous adipose tissue under prolonged adrenaline stimulation is thus not attributed to alpha2-adrenergic receptor inhibition of lipolysis. However, in the preperitoneal adipose tissue depot, alpha2-adrenergic receptor tone plays a role for the lipolytic rate obtained during prolonged adrenaline stimulation.

  5. Brown adipose tissue as a therapeutic target for human obesity.

    PubMed

    Saito, Masayuki

    2013-12-01

    Brown adipose tissue (BAT) is the major site of sympathetically activated adaptive thermogenesis during cold exposure and after spontaneous hyperphagia, thereby controlling whole-body energy expenditure and body fat. Recent radionuclide studies have demonstrated the existence of metabolically active BAT in healthy adult humans. Human BAT is activated by acute cold exposure, being positively correlated to cold-induced increases in energy expenditure. The metabolic activity of BAT is lower in older and obese individuals. The inverse relationship between the BAT activity and body fatness suggests that BAT, because of its energy dissipating activity, is protective against body fat accumulation. In fact, either repeated cold exposure or daily ingestion of some food ingredients acting on transient receptor potential channels recruited BAT in association with increased energy expenditure and decreased body fat even in individuals with low BAT activities before the treatment. Thus, BAT is a promising therapeutic target for combating human obesity and related metabolic disorders.

  6. [Brown adipose tissue: the body's own weapon against obesity?].

    PubMed

    Boon, Mariëtte R; Bakker, Leontine E H; Meinders, A Edo; van Marken Lichtenbelt, Wouter; Rensen, Patrick C N; Jazet, Ingrid M

    2013-01-01

    Brown adipose tissue (BAT) dissipates energy stored in triglycerides as heat via the uncoupling protein UCP1. It has recently been discovered that BAT is present and active in adults. BAT is situated predominantly around the aorta and in the supraclavicular area. BAT volume and activity are lower in individuals who are obese. This suggests that BAT significantly contributes to total energy expenditure. Several pathological conditions that are accompanied by activation of BAT, such as hyperthyroidism and phaeochromocytoma, result in the increased expenditure of energy and in weight loss. Various ways in which BAT can be manipulated to increase the expenditure of energy have been identified, e.g. exposure to cold, the use of so-called uncoupling agents or the administration of the hormone irisin. The activation of BAT could potentially be used to induce weight loss.

  7. Adipose tissue glycogen accumulation is associated with obesity-linked inflammation in humans

    PubMed Central

    Ceperuelo-Mallafré, Victòria; Ejarque, Miriam; Serena, Carolina; Duran, Xavier; Montori-Grau, Marta; Rodríguez, Miguel Angel; Yanes, Oscar; Núñez-Roa, Catalina; Roche, Kelly; Puthanveetil, Prasanth; Garrido-Sánchez, Lourdes; Saez, Enrique; Tinahones, Francisco J.; Garcia-Roves, Pablo M.; Gómez-Foix, Anna Ma; Saltiel, Alan R.; Vendrell, Joan; Fernández-Veledo, Sonia

    2015-01-01

    Objective Glycogen metabolism has emerged as a mediator in the control of energy homeostasis and studies in murine models reveal that adipose tissue might contain glycogen stores. Here we investigated the physio(patho)logical role of glycogen in human adipose tissue in the context of obesity and insulin resistance. Methods We studied glucose metabolic flux of hypoxic human adipoctyes by nuclear magnetic resonance and mass spectrometry-based metabolic approaches. Glycogen synthesis and glycogen content in response to hypoxia was analyzed in human adipocytes and macrophages. To explore the metabolic effects of enforced glycogen deposition in adipocytes and macrophages, we overexpressed PTG, the only glycogen-associated regulatory subunit (PP1-GTS) reported in murine adipocytes. Adipose tissue gene expression analysis was performed on wild type and homozygous PTG KO male mice. Finally, glycogen metabolism gene expression and glycogen accumulation was analyzed in adipose tissue, mature adipocytes and resident macrophages from lean and obese subjects with different degrees of insulin resistance in 2 independent cohorts. Results We show that hypoxia modulates glucose metabolic flux in human adipocytes and macrophages and promotes glycogenesis. Enforced glycogen deposition by overexpression of PTG re-orients adipocyte secretion to a pro-inflammatory response linked to insulin resistance and monocyte/lymphocyte migration. Furthermore, glycogen accumulation is associated with inhibition of mTORC1 signaling and increased basal autophagy flux, correlating with greater leptin release in glycogen-loaded adipocytes. PTG-KO mice have reduced expression of key inflammatory genes in adipose tissue and PTG overexpression in M0 macrophages induces a pro-inflammatory and glycolytic M1 phenotype. Increased glycogen synthase expression correlates with glycogen deposition in subcutaneous adipose tissue of obese patients. Glycogen content in subcutaneous mature adipocytes is associated

  8. The role of sex steroids in white adipose tissue adipocyte function.

    PubMed

    Newell-Fugate, A E

    2017-04-01

    With the increasing knowledge that gender influences normal physiology, much biomedical research has begun to focus on the differential effects of sex on tissue function. Sexual dimorphism in mammals is due to the combined effects of both genetic and hormonal factors. Hormonal factors are mutable particularly in females in whom the estrous cycle dominates the hormonal milieu. Given the severity of the obesity epidemic and the fact that there are differences in the obesity rates in men and women, the role of sex in white adipose tissue function is being recognized as increasingly important. Although sex differences in white adipose tissue distribution are well established, the mechanisms affecting differential function of adipocytes within white adipose tissue in males and females remain largely understudied and poorly understood. One of the largest differences in the endocrine environment in males and females is the concentration of circulating androgens and estrogens. This review examines the effects of androgens and estrogens on lipolysis/lipogenesis, adipocyte differentiation, insulin sensitivity and adipokine production in adipocytes from white adipose tissue with a specific emphasis on the sexual dimorphism of adipocyte function in white adipose tissue during both health and disease.

  9. Adrenal gland volume, intra-abdominal and pericardial adipose tissue in major depressive disorder.

    PubMed

    Kahl, Kai G; Schweiger, Ulrich; Pars, Kaweh; Kunikowska, Alicja; Deuschle, Michael; Gutberlet, Marcel; Lichtinghagen, Ralf; Bleich, Stefan; Hüper, Katja; Hartung, Dagmar

    2015-08-01

    Major depressive disorder (MDD) is associated with an increased risk for the development of cardio-metabolic diseases. Increased intra-abdominal (IAT) and pericardial adipose tissue (PAT) have been found in depression, and are discussed as potential mediating factors. IAT and PAT are thought to be the result of a dysregulation of the hypothalamus-pituitary-adrenal axis (HPAA) with subsequent hypercortisolism. Therefore we examined adrenal gland volume as proxy marker for HPAA activation, and IAT and PAT in depressed patients. Twenty-seven depressed patients and 19 comparison subjects were included in this case-control study. Adrenal gland volume, pericardial, intraabdominal and subcutaneous adipose tissue were measured by magnetic resonance imaging. Further parameters included factors of the metabolic syndrome, fasting cortisol, fasting insulin, and proinflammatory cytokines. Adrenal gland and pericardial adipose tissue volumes, serum concentrations of cortisol and insulin, and serum concentrations tumor-necrosis factor-α were increased in depressed patients. Adrenal gland volume was positively correlated with intra-abdominal and pericardial adipose tissue, but not with subcutaneous adipose tissue. Our findings point to the role of HPAA dysregulation and hypercortisolism as potential mediators of IAT and PAT enlargement. Further studies are warranted to examine whether certain subtypes of depression are more prone to cardio-metabolic diseases.

  10. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis

    PubMed Central

    Messina, Antonietta; Monda, Vincenzo; Viggiano, Emanuela; Valenzano, Anna; Esposito, Teresa; Cibelli, Giuseppe

    2017-01-01

    Osteopontin (OPN) is a multifunctional protein mainly associated with bone metabolism and remodeling. Besides its physiological functions, OPN is implicated in the pathogenesis of a variety of disease states, such as obesity and osteoporosis. Importantly, during the last decades obesity and osteoporosis have become among the main threats to health worldwide. Because OPN is a protein principally expressed in cells with multifaceted effects on bone morphogenesis and remodeling and because it seems to be one of the most overexpressed genes in the adipose tissue of the obese contributing to osteoporosis, this mini review will highlight recent insights about relation between adipose tissue and bone homeostasis. PMID:28194185

  11. Differential Role of Adipose Tissues in Obesity and Related Metabolic and Vascular Complications

    PubMed Central

    Beneit, Nuria; Díaz-Castroverde, Sabela

    2016-01-01

    This review focuses on the contribution of white, brown, and perivascular adipose tissues to the pathophysiology of obesity and its associated metabolic and vascular complications. Weight gain in obesity generates excess of fat, usually visceral fat, and activates the inflammatory response in the adipocytes and then in other tissues such as liver. Therefore, low systemic inflammation responsible for insulin resistance contributes to atherosclerotic process. Furthermore, an inverse relationship between body mass index and brown adipose tissue activity has been described. For these reasons, in recent years, in order to combat obesity and its related complications, as a complement to conventional treatments, a new insight is focusing on the role of the thermogenic function of brown and perivascular adipose tissues as a promising therapy in humans. These lines of knowledge are focused on the design of new drugs, or other approaches, in order to increase the mass and/or activity of brown adipose tissue or the browning process of beige cells from white adipose tissue. These new treatments may contribute not only to reduce obesity but also to prevent highly prevalent complications such as type 2 diabetes and other vascular alterations, such as hypertension or atherosclerosis. PMID:27766104

  12. Human brown adipose tissue: regulation and anti-obesity potential.

    PubMed

    Saito, Masayuki

    2014-01-01

    Brown adipose tissue (BAT) is the site of sympathetically activated adaptive thermognenesis during cold exposure and after hyperphagia, thereby controlling whole-body energy expenditure (EE) and body fat. Radionuclide imaging studies have demonstrated that adult humans have metabolically active BAT composed of mainly beige/brite adipocytes, recently identified brown-like adipocytes. The inverse relationship between the BAT activity and body fatness suggests that BAT is, because of its energy dissipating activity, protective against body fat accumulation in humans as it is in small rodents. In fact, either repeated cold exposure or daily ingestion of some food ingredients acting on transient receptor potential channels recruits BAT in parallel with increased EE and decreased body fat. In addition to the sympathetic nervous system, several endocrine factors are also shown to recruit BAT. Thus, BAT is a promising therapeutic target for combating human obesity and related metabolic disorders.

  13. Estradiol Regulates Brown Adipose Tissue Thermogenesis via Hypothalamic AMPK

    PubMed Central

    Martínez de Morentin, Pablo B.; González-García, Ismael; Martins, Luís; Lage, Ricardo; Fernández-Mallo, Diana; Martínez-Sánchez, Noelia; Ruíz-Pino, Francisco; Liu, Ji; Morgan, Donald A.; Pinilla, Leonor; Gallego, Rosalía; Saha, Asish K.; Kalsbeek, Andries; Fliers, Eric; Bisschop, Peter H.; Diéguez, Carlos; Nogueiras, Rubén; Rahmouni, Kamal; Tena-Sempere, Manuel; López, Miguel

    2014-01-01

    Summary Estrogens play a major role in the modulation of energy balance through central and peripheral actions. Here, we demonstrate that central action of estradiol (E2) inhibits AMP-activated protein kinase (AMPK) through estrogen receptor alpha (ERα) selectively in the ventromedial nucleus of the hypothalamus (VMH), leading to activation of thermogenesis in brown adipose tissue (BAT) through the sympathetic nervous system (SNS) in a feeding-independent manner. Genetic activation of AMPK in the VMH prevented E2-induced increase in BAT-mediated thermogenesis and weight loss. Notably, fluctuations in E2 levels during estrous cycle also modulate this integrated physiological network. Together, these findings demonstrate that E2 regulation of the VMH AMPK-SNS-BAT axis is an important determinant of energy balance and suggest that dysregulation in this axis may account for the common changes in energy homeostasis and obesity linked to dysfunction of the female gonadal axis. PMID:24856932

  14. HMGA2 expression in white adipose tissue linking cellular senescence with diabetes.

    PubMed

    Markowski, Dominique Nadine; Thies, Helge Wilhelm; Gottlieb, Andrea; Wenk, Heiner; Wischnewsky, Manfred; Bullerdiek, Jörn

    2013-09-01

    There is a clear link between overweight, gain of white adipose tissue, and diabetes type 2 (T2D). The molecular mechanism of the gain of adipose tissue is linked with the expression of high mobility group protein AT-hook 2 (HMGA2), and recent studies revealed an association with a SNP near HMGA2. In this study, we investigated the gene expression of HMGA2, p14 (Arf) , CDKN1A, and BAX in human abdominal subcutaneous white adipose tissue from 157 patients. We found a significant higher HMGA2 expression in obese individuals than in non-obese patients. Furthermore, the HMGA2 expression in white adipose tissue in patient with type 2 diabetes was significantly higher than in nondiabetic patients. There is an association between the DNA-binding nonhistone protein HMGA2 and the risk of developing T2D that remains mechanistically unexplained so far. Likewise, p14(Arf), an inducer of cellular senescence, has been associated with the occurrence of T2D. The data of the present study provide evidence that both proteins act within the same network to drive proliferation of adipose tissue stem and precursor cells, senescence, and increased risk of T2D, respectively.

  15. Persistent organic pollutants meet adipose tissue hypoxia: does cross-talk contribute to inflammation during obesity?

    PubMed

    Myre, M; Imbeault, P

    2014-01-01

    Lipophilic persistent organic pollutants (POPs) accumulate in lipid-rich tissues such as human adipose tissue. This is particularly problematic in individuals with excess adiposity, a physiological state that may be additionally characterized by local adipose tissue hypoxia. Hypoxic patches occur when oxygen diffusion is insufficient to reach all hypertrophic adipocytes. POPs and hypoxia independently contribute to the development of adipose tissue-specific and systemic inflammation often associated with obesity. Inflammation is induced by increased proinflammatory mediators such as tumour necrosis factor-alpha, interleukin-6, and monocyte chemotactic protein-1, as well as reduced adiponectin release, an anti-inflammatory and insulin-sensitizing adipokine. The aryl hydrocarbon receptor (AhR) mediates the cellular response to some pollutants, while hypoxia responses occur through the oxygen-sensitive transcription factor hypoxia-inducible factor (HIF)-1. There is some overlap between the two signalling pathways since both require a common subunit called the AhR nuclear translocator. As such, it is unclear how adipocytes respond to simultaneous POP and hypoxia exposure. This brief review explores the independent contribution of POPs and adipose tissue hypoxia as factors underlying the inflammatory response from adipocytes during obesity. It also highlights that the combined effect of POPs and hypoxia through the AhR and HIF-1 signalling pathways remains to be tested.

  16. The Effect of Marine Derived n-3 Fatty Acids on Adipose Tissue Metabolism and Function

    PubMed Central

    Todorčević, Marijana; Hodson, Leanne

    2015-01-01

    Adipose tissue function is key determinant of metabolic health, with specific nutrients being suggested to play a role in tissue metabolism. One such group of nutrients are the n-3 fatty acids, specifically eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3). Results from studies where human, animal and cellular models have been utilised to investigate the effects of EPA and/or DHA on white adipose tissue/adipocytes suggest anti-obesity and anti-inflammatory effects. We review here evidence for these effects, specifically focusing on studies that provide some insight into metabolic pathways or processes. Of note, limited work has been undertaken investigating the effects of EPA and DHA on white adipose tissue in humans whilst more work has been undertaken using animal and cellular models. Taken together it would appear that EPA and DHA have a positive effect on lowering lipogenesis, increasing lipolysis and decreasing inflammation, all of which would be beneficial for adipose tissue biology. What remains to be elucidated is the duration and dose required to see a favourable effect of EPA and DHA in vivo in humans, across a range of adiposity. PMID:26729182

  17. Estrogen deficiency in ovariectomized rats: can resistance training re-establish angiogenesis in visceral adipose tissue?

    PubMed Central

    do Valle Gomes-Gatto, Camila; Duarte, Fernanda Oliveira; Stotzer, Uliana Sbeguen; Rodrigues, Maria Fernanda Cury; de Andrade Perez, Sérgio Eduardo; Selistre-de-Araujo, Heloisa Sobreiro

    2016-01-01

    OBJECTIVE: The purpose of this study was to investigate the effects of resistance training on angiogenesis markers of visceral adipose tissue in ovariectomized rats. METHOD: Adult Sprague-Dawley female rats were divided into four groups (n=6 per group): sham-sedentary, ovariectomized sedentary, sham-resistance training and ovariectomized resistance training. The rats were allowed to climb a 1.1-m vertical ladder with weights attached to their tails and the weights were progressively increased. Sessions were performed three times per week for 10 weeks. Visceral adipose tissue angiogenesis and morphology were analyzed by histology. VEGF-A mRNA and protein levels were analyzed by real-time PCR and ELISA, respectively. RESULTS: Ovariectomy resulted in higher body mass (p=0.0003), adipocyte hypertrophy (p=0.0003), decreased VEGF-A mRNA (p=0.0004) and protein levels (p=0.0009), and decreased micro-vascular density (p=0.0181) in the visceral adipose tissue of the rats. Resistance training for 10 weeks was not able to attenuate the reduced angiogenesis in the visceral adipose tissue of the ovariectomized rats. CONCLUSION: Our findings indicate that the resistance training program used in this study could not ameliorate low angiogenesis in the visceral adipose tissue of ovariectomized rats. PMID:27652835

  18. Alteration of local adipose tissue trace element homeostasis as a possible mechanism of obesity-related insulin resistance.

    PubMed

    Tinkov, Alexey A; Sinitskii, Anton I; Popova, Elizaveta V; Nemereshina, Olga N; Gatiatulina, Evgenia R; Skalnaya, Margarita G; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-09-01

    The mechanisms of association between obesity and the related metabolic disturbances in general and insulin resistance in particular are extensively studied. Taking into account a key role of adipose tissue insulin resistance in the development of systemic obesity-related insulin resistance, the estimation of mechanisms linking increased adiposity and impaired insulin signaling in adipocytes will allow to develop novel prophylactic and therapeutic approaches to treatment of these states. A number of trace elements like chromium, zinc, and vanadium have been shown to take part in insulin signaling via various mechanisms. Taking into account a key role of adipocyte in systemic carbohydrate homeostasis it can be asked if trace element homeostasis in adipose tissue may influence regulatory mechanisms of glucose metabolism. We hypothesize that caloric excess through currently unknown mechanisms results in decreased chromium, vanadium, and zinc content in adipocytes. Decreased content of trace elements in the adipose tissue causes impairment of intra-adipocyte insulin signaling subsequently leading to adipose tissue insulin resistance. The latter significantly contributes to systemic insulin resistance and further metabolic disruption in obesity. It is also possible that decreased adipose tissue trace element content is associated with dysregulation of insulin-sensitizing and proinflammatory adipokines also leading to insulin resistance. We hypothesize that insulin resistance and adipokine dysbalance increase the severity of obesity subsequently aggravating alteration of adipose tissue trace element balance. Single indications of high relative adipose tissue trace element content, decreased Cr, V, and Zn content in obese adipose tissue, and tight association between fat tissue chromium, vanadium, and zinc levels and metabolic parameters in obesity may be useful for hypothesis validation. If our hypothesis will be confirmed by later studies, adipose tissue chromium

  19. Adipose HIF-1α causes obesity by suppressing brown adipose tissue thermogenesis.

    PubMed

    Jun, Jonathan C; Devera, Ronald; Unnikrishnan, Dileep; Shin, Mi-Kyung; Bevans-Fonti, Shannon; Yao, Qiaoling; Rathore, Aman; Younas, Haris; Halberg, Nils; Scherer, Philipp E; Polotsky, Vsevolod Y

    2017-03-01

    Hypoxia-inducible factor-1α (HIF-1α) in adipose tissue is known to promote obesity. We hypothesized that HIF-1α interferes with brown fat thermogenesis, thus decreasing energy expenditure. To test this hypothesis, we compared transgenic mice constitutively expressing HIF-1α in adipose tissues (HIF-1α++) at usual temperature (22 °C), where brown fat is somewhat active, or at thermoneutrality (30 °C), where brown fat is minimally active. HIF-1α++ mice or control litter mates were separated into room temperature (22 °C) or thermoneutrality (30 °C) groups. We assessed weight gain, food intake, calorimetry, activity, and oxygen consumption and transcriptional changes in isolated white and brown adipocytes. At 22 °C, HIF-1α++ mice exhibited accelerated weight gain, cold and glucose intolerance, hyperglycemia, and decreased energy expenditure without changes in food intake or activity. These changes were absent or minimal at thermoneutrality. In brown adipocytes of HIF-1α++ mice, oxygen consumption decreased ~50 % in association with reduced mitochondrial content, uncoupling protein 2, and peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1α). In conclusion, adipose HIF-1α overexpression inhibits thermogenesis and cellular respiration in brown adipose tissue, promoting obesity in the setting of reduced ambient temperature.

  20. IL-15 concentrations in skeletal muscle and subcutaneous adipose tissue in lean and obese humans: local effects of IL-15 on adipose tissue lipolysis.

    PubMed

    Pierce, Joseph R; Maples, Jill M; Hickner, Robert C

    2015-06-15

    Animal/cell investigations indicate that there is a decreased adipose tissue mass resulting from skeletal muscle (SkM) IL-15 secretion (e.g., SkM-blood-adipose tissue axis). IL-15 could regulate fat mass accumulation in obesity via lipolysis, although this has not been investigated in humans. Therefore, the purpose was to examine whether SkM and/or subcutaneous adipose tissue (SCAT) IL-15 concentrations were correlated with SCAT lipolysis in lean and obese humans and determine whether IL-15 perfusion could induce lipolysis in human SCAT. Local SkM and abdominal SCAT IL-15 (microdialysis) and circulating IL-15 (blood) were sampled in lean (BMI: 23.1 ± 1.9 kg/m(2); n = 10) and obese (BMI: 34.7 ± 3.5 kg/m(2); n = 10) subjects at rest/during 1-h cycling exercise. Lipolysis (SCAT interstitial glycerol concentration) was compared against local/systemic IL-15. An additional probe in SCAT was perfused with IL-15 to assess direct lipolytic responses. SkM IL-15 was not different between lean and obese subjects (P = 0.45), whereas SCAT IL-15 was higher in obese vs. lean subjects (P = 0.02) and was correlated with SCAT lipolysis (r = 0.45, P = 0.05). Exercise increased SCAT lipolysis in lean and obese (P < 0.01), but exercise-induced SCAT lipolysis changes were not correlated with exercise-induced SCAT IL-15 changes. Microdialysis perfusion resulting in physiological IL-15 concentrations in the adipose tissue interstitium increased lipolysis in lean (P = 0.04) but suppressed lipolysis in obese (P < 0.01). Although we found no support for a human IL-15 SkM-blood-adipose tissue axis, IL-15 may be produced in/act on the abdominal SCAT depot. The extent to which this autocrine/paracrine IL-15 action regulates human body composition remains unknown.

  1. Ablation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues.

    PubMed

    Lin, Ligen; Saha, Pradip K; Ma, Xiaojun; Henshaw, Iyabo O; Shao, Longjiang; Chang, Benny H J; Buras, Eric D; Tong, Qiang; Chan, Lawrence; McGuinness, Owen P; Sun, Yuxiang

    2011-12-01

    Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show that ablation of the ghrelin receptor (growth hormone secretagogue receptor, GHS-R) improves insulin sensitivity during aging. Compared to wild-type (WT) mice, old Ghsr(-/-) mice have reduced fat and preserve a healthier lipid profile. Old Ghsr(-/-) mice also exhibit elevated energy expenditure and resting metabolic rate, yet have similar food intake and locomotor activity. While GHS-R expression in white and brown adipose tissues was below the detectable level in the young mice, GHS-R expression was readily detectable in visceral white fat and interscapular brown fat of the old mice. Gene expression profiles reveal that Ghsr ablation reduced glucose/lipid uptake and lipogenesis in white adipose tissues but increased thermogenic capacity in brown adipose tissues. Ghsr ablation prevents age-associated decline in thermogenic gene expression of uncoupling protein 1 (UCP1). Cell culture studies in brown adipocytes further demonstrate that ghrelin suppresses the expression of adipogenic and thermogenic genes, while GHS-R antagonist abolishes ghrelin's effects and increases UCP1 expression. Hence, GHS-R plays an important role in thermogenic impairment during aging. Ghsr ablation improves aging-associated obesity and insulin resistance by reducing adiposity and increasing thermogenesis. Growth hormone secretagogue receptor antagonists may be a new means of combating obesity by shifting the energy balance from obesogenesis to thermogenesis.

  2. Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype

    PubMed Central

    2013-01-01

    Background The adipose tissue is an endocrine regulator and a risk factor for atherosclerosis and cardiovascular disease when by excessive accumulation induces obesity. Although the adipose tissue is also a reservoir for stem cells (ASC) their function and “stemcellness” has been questioned. Our aim was to investigate the mechanisms by which obesity affects subcutaneous white adipose tissue (WAT) stem cells. Results Transcriptomics, in silico analysis, real-time polymerase chain reaction (PCR) and western blots were performed on isolated stem cells from subcutaneous abdominal WAT of morbidly obese patients (ASCmo) and of non-obese individuals (ASCn). ASCmo and ASCn gene expression clustered separately from each other. ASCmo showed downregulation of “stemness” genes and upregulation of adipogenic and inflammatory genes with respect to ASCn. Moreover, the application of bioinformatics and Ingenuity Pathway Analysis (IPA) showed that the transcription factor Smad3 was tentatively affected in obese ASCmo. Validation of this target confirmed a significantly reduced Smad3 nuclear translocation in the isolated ASCmo. Conclusions The transcriptomic profile of the stem cells reservoir in obese subcutaneous WAT is highly modified with significant changes in genes regulating stemcellness, lineage commitment and inflammation. In addition to body mass index, cardiovascular risk factor clustering further affect the ASC transcriptomic profile inducing loss of multipotency and, hence, capacity for tissue repair. In summary, the stem cells in the subcutaneous WAT niche of obese patients are already committed to adipocyte differentiation and show an upregulated inflammatory gene expression associated to their loss of stemcellness. PMID:24040759

  3. Metabolic factors, adipose tissue, and plasminogen activator inhibitor-1 levels in Type 2 diabetes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasminogen activator inhibitor-1 (PAI-1) production by adipose tissue is increased in obesity, and its circulating levels are high in type 2 diabetes. PAI-1 increases cardiovascular risk by favoring clot stability, interfering with vascular remodeling, or both. We investigated in obese diabetic per...

  4. Association between subcutaneous white adipose tissue and serum 25-hydroxyvitamin D in overweight and obese adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Cholecalciferol is known to be deposited in human adipose tissue, but the distribution of 25-hydroxyvitamin D (25(OH)D) in adipose tissue is not known. Objectives: To determine whether 25(OH)D is detectable in subcutaneous white adipose tissue (SWAT) in overweight and obese persons an...

  5. Visceral adipose tissue as a source of inflammation and promoter of atherosclerosis.

    PubMed

    Alexopoulos, Nikolaos; Katritsis, Demosthenes; Raggi, Paolo

    2014-03-01

    The current epidemic of obesity with the associated increasing incidence of insulin resistance, diabetes mellitus and atherosclerosis affecting a large proportion of the North American and Western populations, has generated a strong interest in the potential role of visceral adipose tissue in the development of atherosclerosis and its complications. The intra-abdominal and epicardial space are two compartments that contain visceral adipose tissue with a similar embryological origin. These visceral fats are highly inflamed in obese patients, patients with the metabolic syndrome and in those with established coronary artery disease; additionally they are capable of secreting large quantities of pro-inflammatory cytokines and free fatty acids. There is accumulating evidence to support a direct involvement of these regional adipose tissue deposits in the development of atherosclerosis and its complicating events, as will be reviewed in this article.

  6. Fatty acid metabolism and the basis of brown adipose tissue function

    PubMed Central

    Calderon-Dominguez, María; Mir, Joan F.; Fucho, Raquel; Weber, Minéia; Serra, Dolors; Herrero, Laura

    2016-01-01

    ABSTRACT Obesity has reached epidemic proportions, leading to severe associated pathologies such as insulin resistance, cardiovascular disease, cancer and type 2 diabetes. Adipose tissue has become crucial due to its involvement in the pathogenesis of obesity-induced insulin resistance, and traditionally white adipose tissue has captured the most attention. However in the last decade the presence and activity of heat-generating brown adipose tissue (BAT) in adult humans has been rediscovered. BAT decreases with age and in obese and diabetic patients. It has thus attracted strong scientific interest, and any strategy to increase its mass or activity might lead to new therapeutic approaches to obesity and associated metabolic diseases. In this review we highlight the mechanisms of fatty acid uptake, trafficking and oxidation in brown fat thermogenesis. We focus on BAT's morphological and functional characteristics and fatty acid synthesis, storage, oxidation and use as a source of energy. PMID:27386151

  7. Nutrition, insulin resistance and dysfunctional adipose tissue determine the different components of metabolic syndrome

    PubMed Central

    Paniagua, Juan Antonio

    2016-01-01

    Obesity is an excessive accumulation of body fat that may be harmful to health. Today, obesity is a major public health problem, affecting in greater or lesser proportion all demographic groups. Obesity is estimated by body mass index (BMI) in a clinical setting, but BMI reports neither body composition nor the location of excess body fat. Deaths from cardiovascular diseases, cancer and diabetes accounted for approximately 65% of all deaths, and adiposity and mainly abdominal adiposity are associated with all these disorders. Adipose tissue could expand to inflexibility levels. Then, adiposity is associated with a state of low-grade chronic inflammation, with increased tumor necrosis factor-α and interleukin-6 release, which interfere with adipose cell differentiation, and the action pattern of adiponectin and leptin until the adipose tissue begins to be dysfunctional. In this state the subject presents insulin resistance and hyperinsulinemia, probably the first step of a dysfunctional metabolic system. Subsequent to central obesity, insulin resistance, hyperglycemia, hypertriglyceridemia, hypoalphalipoproteinemia, hypertension and fatty liver are grouped in the so-called metabolic syndrome (MetS). In subjects with MetS an energy balance is critical to maintain a healthy body weight, mainly limiting the intake of high energy density foods (fat). However, high-carbohydrate rich (CHO) diets increase postprandial peaks of insulin and glucose. Triglyceride-rich lipoproteins are also increased, which interferes with reverse cholesterol transport lowering high-density lipoprotein cholesterol. In addition, CHO-rich diets could move fat from peripheral to central deposits and reduce adiponectin activity in peripheral adipose tissue. All these are improved with monounsaturated fatty acid-rich diets. Lastly, increased portions of ω-3 and ω-6 fatty acids also decrease triglyceride levels, and complement the healthy diet that is recommended in patients with MetS. PMID

  8. Regional fat metabolism in human splanchnic and adipose tissues; the effect of exercise.

    PubMed

    Van Hall, Gerrit; Bülow, Jens; Sacchetti, Massimo; Al Mulla, Nariman; Lyngso, Dorthe; Simonsen, Lene

    2002-09-15

    This study was conducted to investigate the role of splanchnic and adipose tissue in the regulation of fatty acid (FA) metabolism at rest, during 1 h of semi-recumbent cycle exercise at 60 % of maximal power output and 3 h of recovery. In six post-absorptive healthy volunteers catheters were placed in a radial artery, hepatic vein and a subcutaneous vein on the anterior abdominal wall. Whole body, and regional splanchnic and adipose tissue FA metabolism were measured by a constant infusion of the stable isotopes [U-(13)C]palmitate and [(2)H(5)]glycerol and according to Fick's principle. The whole body rate of extracellular FA reesterification was similar at rest and during exercise (approximately 290 micromol min(-1)) and increased during recovery to a plateau of 390 micromol min(-1). FA and triacylglycerol (TAG) uptake by adipose tissue was undetectable, but a constant but small glycerol uptake of approximately 25 nmol (100 g)(-1) min(-1) was observed. From the FA taken up by the splanchnic area, 13 % was oxidized, 5-11 % converted to ketone bodies, and approximately 35 % incorporated in TAG released both at rest and at the third hour of recovery from exercise. Splanchnic FA reesterification could account for 51 % and 58 % of whole body extracellular FA reesterification, of which half was accounted for by TAG released from the splanchnic area, at rest and in recovery, respectively. In conclusion, in the post-absorptive state, adipose tissue contributes very little to extracellular FA reesterification and splanchnic reesterification can account for 50-60 %, implying that FA reesterification in other tissues is important. The extracellular FA reesterification rate does not change with exercise but is higher during recovery. Furthermore, the uptake of glycerol by adipose tissue indicates that adipose tissue can metabolize glycerol.

  9. Adipocyte SIRT1 controls systemic insulin sensitivity by modulating macrophages in adipose tissue.

    PubMed

    Hui, Xiaoyan; Zhang, Mingliang; Gu, Ping; Li, Kuai; Gao, Yuan; Wu, Donghai; Wang, Yu; Xu, Aimin

    2017-03-07

    Adipose tissue inflammation, characterized by augmented infiltration and altered polarization of macrophages, contributes to insulin resistance and its associated metabolic diseases. The NAD(+)-dependent deacetylase SIRT1 serves as a guardian against metabolic disorders in multiple tissues. To dissect the roles of SIRT1 in adipose tissues, metabolic phenotypes of mice with selective ablation of SIRT1 in adipocytes and myeloid cells were monitored. Compared to myeloid-specific SIRT1 depletion, mice with adipocyte-selective deletion of SIRT1 are more susceptible to diet-induced insulin resistance. The phenotypic changes in adipocyte-selective SIRT1 knockout mice are associated with an increased number of adipose-resident macrophages and their polarization toward the pro-inflammatory M1 subtype. Mechanistically, SIRT1 in adipocytes modulates expression and secretion of several adipokines, including adiponectin, MCP-1, and interleukin 4, which in turn alters recruitment and polarization of the macrophages in adipose tissues. In adipocytes, SIRT1 deacetylates the transcription factor NFATc1 and thereby enhances the binding of NFATc1 to the Il4 gene promoter. These findings suggest that adipocyte SIRT1 controls systemic glucose homeostasis and insulin sensitivity via the cross talk with adipose-resident macrophages.

  10. Disconnect Between Adipose Tissue Inflammation and Cardiometabolic Dysfunction in Ossabaw Pigs

    PubMed Central

    Vieira-Potter, Victoria J.; Lee, Sewon; Bayless, David S.; Scroggins, Rebecca J.; Welly, Rebecca J.; Fleming, Nicholas J.; Smith, Thomas N.; Meers, Grace M.; Hill, Michael A.; Rector, R. Scott; Padilla, Jaume

    2015-01-01

    Objective The Ossabaw pig is emerging as an attractive model of human cardiometabolic disease due to its size and susceptibility to atherosclerosis, among other characteristics. Here we investigated the relationship between adipose tissue inflammation and metabolic dysfunction in this model. Methods Young female Ossabaw pigs were fed a western-style high-fat diet (HFD) (n=4) or control low-fat diet (LFD) (n=4) for a period of 9 months and compared for cardiometabolic outcomes and adipose tissue inflammation. Results The HFD-fed “OBESE” pigs were 2.5 times heavier (p<0.001) than LFD-fed “LEAN” pigs and developed severe obesity. HFD-feeding caused pronounced dyslipidemia, hypertension, insulin resistance (systemic and adipose) as well as induction of inflammatory genes, impairments in vasomotor reactivity to insulin and atherosclerosis in the coronary arteries. Remarkably, visceral, subcutaneous and perivascular adipose tissue inflammation (via FACS analysis and RT-PCR) was not increased in OBESE pigs, nor were circulating inflammatory cytokines. Conclusions These findings reveal a disconnect between adipose tissue inflammation and cardiometabolic dysfunction induced by western diet feeding in the Ossabaw pig model. PMID:26524201

  11. Organochlorine pesticide gradient levels among maternal adipose tissue, maternal blood serum and umbilical blood serum.

    PubMed

    Herrero-Mercado, Margarita; Waliszewski, S M; Caba, M; Martínez-Valenzuela, C; Gómez Arroyo, S; Villalobos Pietrini, R; Cantú Martínez, P C; Hernández-Chalate, F

    2011-03-01

    The objective of the present study was to determine levels and calculate ratios of copartition coefficients among organochlorine pesticides β-HCH, pp'DDE, op'DDT and pp'DDT in maternal adipose tissue, maternal blood serum and umbilical blood serum of mother-infant pairs from Veracruz, Mexico. Organochlorine pesticides were analyzed in 70 binomials: maternal adipose tissue, maternal serum and umbilical cord serum samples, using gas chromatography with electron capture detection (GC-ECD). The results were expressed as mg/kg on fat basis. p,p'-DDE was the major organochlorine component, detected in every maternal adipose tissue (0.770 mg/kg), maternal serum sample (5.8 mg/kg on fat basis) and umbilical cord blood sample (6.9 mg/kg on fat basis). p,p'-DDT was detected at 0.101 mg/kg, 2.2 mg/kg and 5.9 mg/kg respectively, according to the order given above. β-HCH was detected at 0.027 mg/kg, 4.2 mg/kg and 28.0 mg/kg respectively. op'DDT was detected only in maternal adipose tissue at 0.011 mg/kg. The copartition coefficients among samples identify significant increases in concentrations from adipose tissue to maternal blood serum and to umbilical blood serum. The increase indicated that maternal adipose tissue released organochlorine pesticides to blood serum and that they are carried over to umbilical cord blood.

  12. Adipose tissue hyperplasia with enhanced adipocyte-derived stem cell activity in Tc1(C8orf4)-deleted mice.

    PubMed

    Jang, Hayoung; Kim, Minsung; Lee, Soyoung; Kim, Jungtae; Woo, Dong-Cheol; Kim, Kyung Won; Song, Kyuyoung; Lee, Inchul

    2016-10-24

    Adipose tissue hyperplasia with increased number of adipocytes is implicated in a protective rather than deleterious effect on obesity-associated metabolic disorder. It is poorly understood how the adipose tissue cellularity is regulated. Tc1 is a gene of vertebrates that regulates diverse downstream genes. Young Tc1-deleted mice fed on standard chow diet show expanded adipose tissue with smaller adipocytes in size compared to wild type controls, representing adipose tissue hyperplasia. Tc1(-/-) mice show enhanced glucose tolerance and reduced serum lipids. Adipocyte-derived stem cells (ADSCs) from Tc1(-/-) mice show enhanced proliferative and adipogenic capacity compared to wild type controls, suggesting that the adipose hyperplasia is regulated at the stem cell level. PPARγ and CEBPα are up-regulated robustly in Tc1(-/-) ADSCs upon induction for adipogenesis. Wisp2 and Dlk1, inhibitors of adipogenesis, are down-regulated in Tc1(-/-) ADSCs compared to controls. Tc1-transfected NIH3T3 cells show higher β-catenin reporter signals than vector transfected controls, suggesting a role of canonical Wnt signaling in the Tc1-dependent adipose regulation. Our data support that Tc1 is a novel regulator for adipose stem cells. Adipose tissue hyperplasia may be implicated in the metabolic regulation of Tc1(-/-) mice.

  13. Adipose tissue hyperplasia with enhanced adipocyte-derived stem cell activity in Tc1(C8orf4)-deleted mice

    PubMed Central

    Jang, Hayoung; Kim, Minsung; Lee, Soyoung; Kim, Jungtae; Woo, Dong-Cheol; Kim, Kyung Won; Song, Kyuyoung; Lee, Inchul

    2016-01-01

    Adipose tissue hyperplasia with increased number of adipocytes is implicated in a protective rather than deleterious effect on obesity-associated metabolic disorder. It is poorly understood how the adipose tissue cellularity is regulated. Tc1 is a gene of vertebrates that regulates diverse downstream genes. Young Tc1-deleted mice fed on standard chow diet show expanded adipose tissue with smaller adipocytes in size compared to wild type controls, representing adipose tissue hyperplasia. Tc1−/− mice show enhanced glucose tolerance and reduced serum lipids. Adipocyte-derived stem cells (ADSCs) from Tc1−/− mice show enhanced proliferative and adipogenic capacity compared to wild type controls, suggesting that the adipose hyperplasia is regulated at the stem cell level. PPARγ and CEBPα are up-regulated robustly in Tc1−/− ADSCs upon induction for adipogenesis. Wisp2 and Dlk1, inhibitors of adipogenesis, are down-regulated in Tc1−/− ADSCs compared to controls. Tc1-transfected NIH3T3 cells show higher β-catenin reporter signals than vector transfected controls, suggesting a role of canonical Wnt signaling in the Tc1-dependent adipose regulation. Our data support that Tc1 is a novel regulator for adipose stem cells. Adipose tissue hyperplasia may be implicated in the metabolic regulation of Tc1−/− mice. PMID:27775060

  14. Skin Tissue Engineering: Application of Adipose-Derived Stem Cells

    PubMed Central

    Zimoch, Jakub; Biedermann, Thomas

    2017-01-01

    Perception of the adipose tissue has changed dramatically over the last few decades. Identification of adipose-derived stem cells (ASCs) ultimately transformed paradigm of this tissue from a passive energy depot into a promising stem cell source with properties of self-renewal and multipotential differentiation. As compared to bone marrow-derived stem cells (BMSCs), ASCs are more easily accessible and their isolation yields higher amount of stem cells. Therefore, the ASCs are of high interest for stem cell-based therapies and skin tissue engineering. Currently, freshly isolated stromal vascular fraction (SVF), which may be used directly without any expansion, was also assessed to be highly effective in treating skin radiation injuries, burns, or nonhealing wounds such as diabetic ulcers. In this paper, we review the characteristics of SVF and ASCs and the efficacy of their treatment for skin injuries and disorders. PMID:28337463

  15. Fatty acid binding protein expression in different human adipose tissue depots in relation to rates of lipolysis and insulin concentration in obese individuals.

    PubMed

    Fisher, R M; Thörne, A; Hamsten, A; Arner, P

    2002-10-01

    Two fatty acid binding proteins (FABPs) are expressed in adipose tissue, adipocyte lipid binding protein (ALBP) and keratinocyte lipid binding protein (KLBP). This study investigated FABP expression in visceral and subcutaneous human adipose tissue depots and associations with lipolytic differences between the depots and circulating insulin concentrations. ALBP and KLBP (protein and RNA) were quantified in subcutaneous and omental adipose tissue from obese individuals and expressed relative to actin. ALBP RNA and protein expression was significantly higher in subcutaneous compared to omental adipose tissue (both p < 0.05), whereas KLBP RNA and protein expression was no different between the two sites. There were significant inverse correlations between serum insulin concentrations and the ALBP/KLBP RNA ratio in both subcutaneous and omental adipose tissue (both p < 0.02). Basal rates of glycerol and fatty acid release measured in adipocytes isolated from subcutaneous and omental adipose tissue were significantly higher in the former (p < or = 0.02). Therefore the relative ALBP/KLBP content of human adipose tissue is different in different adipose tissue depots and at the RNA level is related to the circulating insulin concentration, at least in obese subjects. The higher rates of basal lipolysis in adipocytes isolated from subcutaneous compared to omental adipose tissue might be related to the increased ALBP content of the former. Therefore adipose tissue FABPs are interesting candidates for investigation to further our understanding of the insulin resistance syndrome and regulation of lipolysis.

  16. Dietary bitter melon seed increases peroxisome proliferator-activated receptor-γ gene expression in adipose tissue, down-regulates the nuclear factor-κB expression, and alleviates the symptoms associated with metabolic syndrome.

    PubMed

    Gadang, Vidya; Gilbert, William; Hettiararchchy, Navam; Horax, Ronny; Katwa, Laxmansa; Devareddy, Latha

    2011-01-01

    The objective of this study was to examine the extent to which bitter melon seed (BMS) alleviates the symptoms associated with metabolic syndrome and elucidate the mechanism by which BMS exerts beneficial effects. Three-month-old female Zucker rats were assigned to following groups: lean control (L-Ctrl), obese control (O-Ctrl), and obese + BMS (O-BMS). The control groups were fed AIN-93M purified rodent diet, and the O-BMS group was fed AIN-93M diet modified to contain 3.0% (wt/wt) ground BMS for 100 days. After 100 days of treatment, BMS supplementation in the obese rats lowered the total serum cholesterol by 38% and low-density lipoprotein-cholesterol levels by about 52% and increased the ratio of serum high-density lipoprotein-cholesterol to total cholesterol compared to the O-Ctrl group. The percentage of total liver lipids was about 32% lower and serum triglyceride levels were 71% higher in the O-BMS group compared to the O-Ctrl group. Serum glucose levels were significantly lowered partly because of the increase in the serum insulin levels in the BMS-based diet groups. BMS supplementation increased the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ) in the white adipose tissue of the obese rats significantly (P < .05) and down-regulated the expression of PPAR-γ, nuclear factor-κB (NF-κB), and interferon-γ mRNA in heart tissue of the obese rats. The findings of this study suggest that BMS improves the serum and liver lipid profiles and serum glucose levels by modulating PPAR-γ gene expression. To our knowledge, this study for the first time shows that BMS exerts cardioprotective effects by down-regulating the NF-κB inflammatory pathway.

  17. Insulin resistance is associated with altered amino acid metabolism and adipose tissue dysfunction in normoglycemic women

    PubMed Central

    Wiklund, Petri; Zhang, Xiaobo; Pekkala, Satu; Autio, Reija; Kong, Lingjia; Yang, Yifan; Keinänen-Kiukaanniemi, Sirkka; Alen, Markku; Cheng, Sulin

    2016-01-01

    Insulin resistance is associated adiposity, but the mechanisms are not fully understood. In this study, we aimed to identify early metabolic alterations associated with insulin resistance in normoglycemic women with varying degree of adiposity. One-hundred and ten young and middle-aged women were divided into low and high IR groups based on their median HOMA-IR (0.9 ± 0.4 vs. 2.8 ± 1.2). Body composition was assessed using DXA, skeletal muscle and liver fat by proton magnetic resonance spectroscopy, serum metabolites by nuclear magnetic resonance spectroscopy and adipose tissue and skeletal muscle gene expression by microarrays. High HOMA-IR subjects had higher serum branched-chain amino acid concentrations (BCAA) (p < 0.05 for both). Gene expression analysis of subcutaneous adipose tissue revealed significant down-regulation of genes related to BCAA catabolism and mitochondrial energy metabolism and up-regulation of several inflammation-related pathways in high HOMA-IR subjects (p < 0.05 for all), but no differentially expressed genes in skeletal muscle were found. In conclusion, in normoglycemic women insulin resistance was associated with increased serum BCAA concentrations, down-regulation of mitochondrial energy metabolism and increased expression of inflammation-related genes in the adipose tissue. PMID:27080554

  18. Subcutaneous Construction of Engineered Adipose Tissue with Fat Lobule-Like Structure Using Injectable Poly-Benzyl-L-Glutamate Microspheres Loaded with Adipose-Derived Stem Cells.

    PubMed

    Sun, Wentao; Fang, Jianjun; Yong, Qi; Li, Sufang; Xie, Qingping; Yin, Jingbo; Cui, Lei

    2015-01-01

    Porous microcarriers were fabricated from synthesized poly(γ-benzyl-L-glutamate) (PBLG) polymer to engineer adipose tissue with lobule-like structure via the injectable approach. The adipogenic differentiation of human adipose-derived stem cells (hASCs) seeded on porous PBLG microcarriers was determined by adipogenic gene expression and glycerol-3-phosphate dehydrogenase enzyme activity. In vitro adipogenic cultivation was performed for 7 days, and induced hASC/PBLG complex (Adi-ASC/PBLG group) was subcutaneously injected into nude mice. Injections of PBLG microcarriers alone (PBLG group) and non-induced hASC/PBLG complex (ASC/PBLG group) served as controls. Newly formed tissues were harvested after 4 and 8 weeks. Generation of subcutaneous adipose tissue with typical lobule-like structure separated by fibrous septa was observed upon injection of adipogenic-induced hASC/microsphere complex. Adipogenesis significantly increased in the Adi-ASC/PBLG group compared with the control groups. The angiogenesis in the engineered adipose tissue was comparable to that in normal tissue as determined by capillary density and luminal diameter. Cell tracking assay demonstrated that labeled hASCs remained detectable in the neo-generated tissues 8 weeks post-injection using green fluorescence protein-labeled hASCs. These results indicate that adipose tissue with typical lobule-like structure could be engineered using injectable porous PBLG microspheres loaded with adipogenic-induced hASCs.

  19. Reference genes for quantitative PCR in the adipose tissue of mice with metabolic disease.

    PubMed

    Almeida-Oliveira, Fernanda; Leandro, João G B; Ausina, Priscila; Sola-Penna, Mauro; Majerowicz, David

    2017-04-01

    Obesity and diabetes are metabolic diseases and they are increasing in prevalence. The dynamics of gene expression associated with these diseases is fundamental to identifying genes involved in related biological processes. qPCR is a sensitive technique for mRNA quantification and the most commonly used method in gene-expression studies. However, the reliability of these results is directly influenced by data normalization. As reference genes are the major normalization method used, this work aims to identify reference genes for qPCR in adipose tissues of mice with type-I diabetes or obesity. We selected 12 genes that are commonly used as reference genes. The expression of these genes in the adipose tissues of mice was analyzed in the context of three different experimental protocols: 1) untreated animals; 2) high-fat-diet animals; and 3) streptozotocin-treated animals. Gene-expression stability was analyzed using four different algorithms. Our data indicate that TATA-binding protein is stably expressed across adipose tissues in control animals. This gene was also a useful reference when the brown adipose tissues of control and obese mice were analyzed. The mitochondrial ATP synthase F1 complex gene exhibits stable expression in subcutaneous and perigonadal adipose tissue from control and obese mice. Moreover, this gene is the best reference for qPCR normalization in adipose tissue from streptozotocin-treated animals. These results show that there is no perfect stable gene suited for use under all experimental conditions. In conclusion, the selection of appropriate genes is a prerequisite to ensure qPCR reliability and must be performed separately for different experimental protocols.

  20. Quantitative diffusion imaging of adipose tissue in the human lower leg at 1.5 T.

    PubMed

    Steidle, G; Eibofner, F; Schick, F

    2011-04-01

    Diffusion-weighted spin-echo echo-planar imaging was developed and applied for assessment of diffusion coefficients of adipose tissue in human lower leg on a 1.5-T whole-body MR scanner. Because of the higher molecular weight of triglycerides, apparent diffusion coefficients (ADCs) of adipose tissue are approximately two orders of magnitude smaller compared with water, leading to the necessity of using high b-values up to 50,000 sec/mm(2) and an echo time of 240 msec for sufficient diffusion-related signal attenuation. ADC maps of adipose tissue in the human lower leg were derived for diffusion encoding along orthogonal spatial directions in six healthy volunteers. Mean diffusion coefficients in the tibial bone marrow amounted to (1.81 ± 0.10) × 10(-5) mm(2) /sec (left-right), (1.96 ± 0.10) × 10(-5) mm(2) /sec (anterior-posterior), and (1.96 ± 0.20) × 10(-5) mm(2) /sec (head-feet), respectively. Pixel-wise calculated ADC values of subcutaneous adipose tissue showed a distinctly higher variation with the smallest ADC values similar to those measured for tibial bone marrow. Some subcutaneous adipose tissue regions showed increased signal attenuation at higher b-values resulting in ADC coefficients up to 4.2 × 10(-5) mm(2) /sec. It must be noted that diffusion measurements with extremely high b-values in vivo are extremely sensitive to incoherent motion effects in tissue. Nonetheless, it could be shown that in vivo diffusion imaging of adipose tissue in human lower leg is possible at 1.5 T in acceptable measurement time of a few minutes. Potential future applications of fat diffusion imaging are seen in temperature measurements in adipose tissue, detection of free fatty acids in white or brown adipose tissue in case of high lipolysis, differentiation of macro- and microvesicular steatosis, or assessment of the mobility of intramyocellular lipids.

  1. Toxicological Function of Adipose Tissue: Focus on Persistent Organic Pollutants

    PubMed Central

    La Merrill, Michele; Emond, Claude; Kim, Min Ji; Antignac, Jean-Philippe; Le Bizec, Bruno; Clément, Karine; Birnbaum, Linda S.

    2012-01-01

    Background: Adipose tissue (AT) is involved in several physiological functions, including metabolic regulation, energy storage, and endocrine functions. Objectives: In this review we examined the evidence that an additional function of AT is to modulate persistent organic pollutant (POP) toxicity through several mechanisms. Methods: We reviewed the literature on the interaction of AT with POPs to provide a comprehensive model for this additional function of AT. Discussion: As a storage compartment for lipophilic POPs, AT plays a critical role in the toxicokinetics of a variety of drugs and pollutants, in particular, POPs. By sequestering POPs, AT can protect other organs and tissues from POPs overload. However, this protective function could prove to be a threat in the long run. The accumulation of lipophilic POPs will increase total body burden. These accumulated POPs are slowly released into the bloodstream, and more so during weight loss. Thus, AT constitutes a continual source of internal exposure to POPs. In addition to its buffering function, AT is also a target of POPs and may mediate part of their metabolic effects. This is particularly relevant because many POPs induce obesogenic effects that may lead to quantitative and qualitative alterations of AT. Some POPs also induce a proinflammatory state in AT, which may lead to detrimental metabolic effects. Conclusion: AT appears to play diverse functions both as a modulator and as a target of POPs toxicity. PMID:23221922

  2. Role of Autonomic Nervous System and Orexinergic System on Adipose Tissue

    PubMed Central

    Messina, Giovanni; Valenzano, Anna; Moscatelli, Fiorenzo; Salerno, Monica; Lonigro, Antonio; Esposito, Teresa; Monda, Vincenzo; Corso, Gaetano; Messina, Antonietta; Viggiano, Andrea; Triggiani, Antonio I.; Chieffi, Sergio; Guglielmi, Giuseppe; Monda, Marcellino; Cibelli, Giuseppe

    2017-01-01

    Adipose tissue, defined as white adipose tissue (WAT) and brown adipose tissue (BAT), is a biological caloric reservoir; in response to over-nutrition it expands and, in response to energy deficit, it releases lipids. The WAT primarily stores energy as triglycerides, whereas BAT dissipates chemical energy as heat. In mammals, the BAT is a key site for heat production and an attractive target to promote weight loss. The autonomic nervous system (ANS) exerts a direct control at the cellular and molecular levels in adiposity. The sympathetic nervous system (SNS) provides a complex homeostatic control to specifically coordinate function and crosstalk of both fat pads, as indicated by the increase of the sympathetic outflow to BAT, in response to cold and high-fat diet, but also by the increase or decrease of the sympathetic outflow to selected WAT depots, in response to different lipolytic requirements of these two conditions. More recently, a role has been attributed to the parasympathetic nervous system (PNS) in modulating both adipose tissue insulin-mediated glucose uptake and fatty free acid (FFA) metabolism in an anabolic way and its endocrine function. The regulation of adipose tissue is unlikely to be limited to the autonomic control, since a number of signaling cytokines and neuropeptides play an important role, as well. In this review, we report some experimental evidences about the role played by both the ANS and orexins into different fat pads, related to food intake and energy expenditure, with a special emphasis on body weight status and fat mass (FM) content. PMID:28344558

  3. High-fat diet decreases energy expenditure and expression of genes controlling lipid metabolism, mitochondrial function and skeletal system development in the adipose tissue, along with increased expression of extracellular matrix remodelling- and inflammation-related genes.

    PubMed

    Choi, Myung-Sook; Kim, Young-Je; Kwon, Eun-Young; Ryoo, Jae Young; Kim, Sang Ryong; Jung, Un Ju

    2015-03-28

    The aim of the present study was to identify the genes differentially expressed in the visceral adipose tissue in a well-characterised mouse model of high-fat diet (HFD)-induced obesity. Male C57BL/6J mice (n 20) were fed either HFD (189 % of energy from fat) or low-fat diet (LFD, 42 % of energy from fat) for 16 weeks. HFD-fed mice exhibited obesity, insulin resistance, dyslipidaemia and adipose collagen accumulation, along with higher levels of plasma leptin, resistin and plasminogen activator inhibitor type 1, although there were no significant differences in plasma cytokine levels. Energy intake was similar in the two diet groups owing to lower food intake in the HFD group; however, energy expenditure was also lower in the HFD group than in the LFD group. Microarray analysis revealed that genes related to lipolysis, fatty acid metabolism, mitochondrial energy transduction, oxidation-reduction, insulin sensitivity and skeletal system development were down-regulated in HFD-fed mice, and genes associated with extracellular matrix (ECM) components, ECM remodelling and inflammation were up-regulated. The top ten up- or down-regulated genes include Acsm3, mt-Nd6, Fam13a, Cyp2e1, Rgs1 and Gpnmb, whose roles in the deterioration of obesity-associated adipose tissue are poorly understood. In conclusion, the genes identified here provide new therapeutic opportunities for prevention and treatment of diet-induced obesity.

  4. Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue.

    PubMed

    Gao, Hui; Mejhert, Niklas; Fretz, Jackie A; Arner, Erik; Lorente-Cebrián, Silvia; Ehrlund, Anna; Dahlman-Wright, Karin; Gong, Xiaowei; Strömblad, Staffan; Douagi, Iyadh; Laurencikiene, Jurga; Dahlman, Ingrid; Daub, Carsten O; Rydén, Mikael; Horowitz, Mark C; Arner, Peter

    2014-06-03

    White adipose tissue (WAT) morphology characterized by hypertrophy (i.e., fewer but larger adipocytes) associates with increased adipose inflammation, lipolysis, insulin resistance, and risk of diabetes. However, the causal relationships and the mechanisms controlling WAT morphology are unclear. Herein, we identified EBF1 as an adipocyte-expressed transcription factor with decreased expression/activity in WAT hypertrophy. In human adipocytes, the regulatory targets of EBF1 were enriched for genes controlling lipolysis and adipocyte morphology/differentiation, and in both humans and murine models, reduced EBF1 levels associated with increased lipolysis and adipose hypertrophy. Although EBF1 did not affect adipose inflammation, TNFα reduced EBF1 gene expression. High-fat diet intervention in Ebf1(+/-) mice resulted in more pronounced WAT hypertrophy and attenuated insulin sensitivity compared with wild-type littermate controls. We conclude that EBF1 is an important regulator of adipose morphology and fat cell lipolysis and may constitute a link between WAT inflammation, altered lipid metabolism, adipose hypertrophy, and insulin resistance.

  5. Early B-cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue

    PubMed Central

    Gao, Hui; Mejhert, Niklas; Fretz, Jackie A.; Arner, Erik; Lorente-Cebrián, Silvia; Ehrlund, Anna; Dahlman-Wright, Karin; Gong, Xiaowei; Strömblad, Staffan; Douagi, Iyadh; Laurencikiene, Jurga; Dahlman, Ingrid; Daub, Carsten O.; Rydén, Mikael; Horowitz, Mark C.; Arner, Peter

    2014-01-01

    Summary White adipose tissue (WAT) morphology characterized by hypertrophy (i.e. fewer but larger adipocytes) associates with increased adipose inflammation, lipolysis, insulin resistance and risk of diabetes. However, the causal relationships and the mechanisms controlling WAT morphology are unclear. Herein, we identified EBF1 as an adipocyte-expressed transcription factor with decreased expression/activity in WAT hypertrophy. In human adipocytes, the regulatory targets of EBF1 were enriched for genes controlling lipolysis and adipocyte morphology/differentiation and in both humans and murine models, reduced EBF1 levels associated with increased lipolysis and adipose hypertrophy. Although EBF1 did not affect adipose inflammation, TNFα reduced EBF1 gene expression. High fat diet-intervention in Ebf1+/− mice resulted in more pronounced WAT hypertrophy and attenuated insulin sensitivity compared with wild-type littermate controls. We conclude that EBF1 is an important regulator of adipose morphology and fat cell lipolysis and may constitute a link between WAT inflammation, altered lipid metabolism, adipose hypertrophy and insulin resistance. PMID:24856929

  6. Bovine dedifferentiated adipose tissue (DFAT) cells

    PubMed Central

    Wei, Shengjuan; Du, Min; Jiang, Zhihua; Duarte, Marcio S; Fernyhough-Culver, Melinda; Albrecht, Elke; Will, Katja; Zan, Linsen; Hausman, Gary J; Elabd, Elham M Youssef; Bergen, Werner G; Basu, Urmila; Dodson, Michael V

    2013-01-01

    Dedifferentiated fat cells (DFAT cells) are derived from lipid-containing (mature) adipocytes, which possess the ability to symmetrically or asymmetrically proliferate, replicate, and redifferentiate/transdifferentiate. Robust cell isolation and downstream culture methods are needed to isolate large numbers of DFAT cells from any (one) adipose depot in order to establish population dynamics and regulation of the cells within and across laboratories. In order to establish more consistent/repeatable methodology here we report on two different methods to establish viable DFAT cell cultures: both traditional cell culture flasks and non-traditional (flat) cell culture plates were used for ceiling culture establishment. Adipocytes (maternal cells of the DFAT cells) were easier to remove from flat culture plates than flasks and the flat plates also allowed cloning rings to be utilized for cell/cell population isolation. While additional aspects of usage of flat-bottomed cell culture plates may yet need to be optimized by definition of optimum bio-coating to enhance cell attachment, utilization of flat plate approaches will allow more efficient study of the dedifferentiation process or the DFAT progeny cells. To extend our preliminary observations, dedifferentiation of Wagyu intramuscular fat (IMF)-derived mature adipocytes and redifferentiation ability of DFAT cells utilizing the aforementioned isolation protocols were examined in traditional basal media/differentiation induction media (DMI) containing adipogenic inducement reagents. In the absence of treatment approximately 10% isolated Wagyu IMF-mature adipocytes dedifferentiated spontaneously and 70% DFAT cells displayed protracted adipogenesis 12 d after confluence in vitro. Lipid-free intracellular vesicles in the cytoplasm (vesicles possessing an intact membrane but with no any observable or stainable lipid inside) were observed during redifferentiation. One to 30% DFAT cells redifferentiated into lipid

  7. A diet containing soybean oil heated for three hours increases adipose tissue weight but decreases body weight in C57BL/6 J mice

    PubMed Central

    2013-01-01

    Background Our previous work showed that dietary oxidized linoleic acid given, as a single fatty acid, to LDL receptor knockout mice decreased weight gain as compared to control mice. Other studies have also reported that animals fed oils heated for 24 h or greater showed reduced weight gain. These observations, while important, have limited significance since fried foods in the typical human diet do not contain the extreme levels of oxidized lipids used in these studies. The main goal of this study was to investigate the effects of a diet containing soybean oil heated for 3 h on weight gain and fat pad mass in mice. Additionally, because PPARγ and UCP-1 mediate adipocyte differentiation and thermogenesis, respectively, the effect of this diet on these proteins was also examined. Findings Four to six week old male C57BL/6 J mice were randomly divided into three groups and given either a low fat diet with heated soybean oil (HSO) or unheated soybean oil (USO) or pair fed for 16 weeks. Weight and food intake were monitored and fat pads were harvested upon the study’s termination. Mice consuming the HSO diet had significantly increased fat pad mass but gained less weight as compared to mice in the USO group despite a similar caloric intake and similar levels of PPARγ and UCP1. Conclusion This is the first study to show that a diet containing soybean oil heated for a short time increases fat mass despite a decreased weight gain in C57BL/6 J mice. The subsequent metabolic consequences of this increased fat mass merits further investigation. PMID:23510583

  8. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages

    PubMed Central

    Molofsky, Ari B.; Nussbaum, Jesse C.; Liang, Hong-Erh; Van Dyken, Steven J.; Cheng, Laurence E.; Mohapatra, Alexander; Chawla, Ajay

    2013-01-01

    Eosinophils in visceral adipose tissue (VAT) have been implicated in metabolic homeostasis and the maintenance of alternatively activated macrophages (AAMs). The absence of eosinophils can lead to adiposity and systemic insulin resistance in experimental animals, but what maintains eosinophils in adipose tissue is unknown. We show that interleukin-5 (IL-5) deficiency profoundly impairs VAT eosinophil accumulation and results in increased adiposity and insulin resistance when animals are placed on a high-fat diet. Innate lymphoid type 2 cells (ILC2s) are resident in VAT and are the major source of IL-5 and IL-13, which promote the accumulation of eosinophils and AAM. Deletion of ILC2s causes significant reductions in VAT eosinophils and AAMs, and also impairs the expansion of VAT eosinophils after infection with Nippostrongylus brasiliensis, an intestinal parasite associated with increased adipose ILC2 cytokine production and enhanced insulin sensitivity. Further, IL-33, a cytokine previously shown to promote cytokine production by ILC2s, leads to rapid ILC2-dependent increases in VAT eosinophils and AAMs. Thus, ILC2s are resident in VAT and promote eosinophils and AAM implicated in metabolic homeostasis, and this axis is enhanced during Th2-associated immune stimulation. PMID:23420878

  9. Cholinoceptor-mediated effects on glycerol output from human adipose tissue using in situ microdialysis.

    PubMed Central

    Andersson, K.; Arner, P.

    1995-01-01

    1. Possible cholinoceptor-mediated effects on lipolysis were investigated in vivo in human subcutaneous adipose tissue of non-obese, non-smoking, healthy subjects, by use of microdialysis. Cholinomimetic and sympathomimetic agents were added to the ingoing dialysate solvent. 2. Addition of nicotine to the perfusion solvent caused a concentration-dependent reversible increase in the levels of glycerol in the dialysate (lipolysis index). The opposite effect (also concentration-dependent and reversible) was caused by the addition of carbachol. The maximum effects were 100% stimulation and 50% inhibition, respectively, by nicotine and carbachol. Neither nicotine nor carbachol stimulated nutritive blood flow in adipose tissue (as measured with an ethanol escape technique). 3. The nicotine effect in situ was concentration-dependently counteracted by the nicotinic cholinoceptor antagonist, mecamylamine. Likewise, the carbachol effect was concentration-dependently counteracted by the muscarinic cholinoceptor antagonist, atropine. 4. When adipose tissue was pretreated with phentolamine plus propranolol in order to obtain a complete alpha and beta-adrenoceptor blockade, the subsequent addition of nicotine or carbachol still induced an increase and decrease in dialysate glycerol levels (lipolytic or antilipolytic effects), respectively. When adipose tissue was pretreated with mecamylamine or atropine, the subsequent addition of acetylcholine caused a reversible decrease and increase, respectively, of the dialysate glycerol levels. 5. Nicotine and carbachol had no effects on glycerol release from human isolated subcutaneous fat cells that were incubated in vivo.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7582538

  10. The formation of brown adipose tissue induced by transgenic over-expression of PPARγ2.

    PubMed

    Zhou, Ying; Yang, Jinzeng; Huang, Jinliang; Li, Ting; Xu, Dequan; Zuo, Bo; Hou, Liming; Wu, Wangjun; Zhang, Lin; Xia, Xiaoliang; Ma, Zhiyuan; Ren, Zhuqing; Xiong, Yuanzhu

    2014-04-18

    Brown adipose tissue (BAT) is specialized to dissipate energy as heat, therefore reducing fat deposition and counteracting obesity. Brown adipocytes arise from myoblastic progenitors during embryonic development by the action of transcription regulator PRDM16 binding to PPARγ, which promotes BAT-like phenotype in white adipose tissue. To investigate the capability of converting white adipose tissue to BAT or browning by PPARγ in vivo, we generated transgenic mice with over-expressed PPARγ2. The transgenic mice showed strong brown fat features in subcutaneous fat in morphology and histology. To provide molecular evidences on browning characteristics of the adipose tissue, we employed quantitative real-time PCR to determine BAT-specific gene expressions. The transgenic mice had remarkably elevated mRNA level of UCP1, Elovl3, PGC1α and Cebpα in subcutaneous fat. Compared with wild-type mice, UCP1 protein levels were increased significantly in transgenic mice. ATP concentration was slightly decreased in the subcutaneous fat of transgenic mice. Western blotting analysis also confirmed that phosphorylated AMPK and ACC proteins were significantly (P<0.01) increased in the transgenic mice. Therefore, this study demonstrated that over-expression of PPARγ2 in skeletal muscle can promote conversion of subcutaneous fat to brown fat formation, which can have beneficial effects on increasing energy metabolisms and combating obesity.

  11. Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion

    PubMed Central

    Senol-Cosar, Ozlem; Flach, Rachel J. Roth; DiStefano, Marina; Chawla, Anil; Nicoloro, Sarah; Straubhaar, Juerg; Hardy, Olga T.; Noh, Hye Lim; Kim, Jason K.; Wabitsch, Martin; Scherer, Philipp E.; Czech, Michael P.

    2016-01-01

    Proper regulation of energy storage in adipose tissue is crucial for maintaining insulin sensitivity and molecules contributing to this process have not been fully revealed. Here we show that type II transmembrane protein tenomodulin (TNMD) is upregulated in adipose tissue of insulin-resistant versus insulin-sensitive individuals, who were matched for body mass index (BMI). TNMD expression increases in human preadipocytes during differentiation, whereas silencing TNMD blocks adipogenesis. Upon high-fat diet feeding, transgenic mice overexpressing Tnmd develop increased epididymal white adipose tissue (eWAT) mass, and preadipocytes derived from Tnmd transgenic mice display greater proliferation, consistent with elevated adipogenesis. In Tnmd transgenic mice, lipogenic genes are upregulated in eWAT, as is Ucp1 in brown fat, while liver triglyceride accumulation is attenuated. Despite expanded eWAT, transgenic animals display improved systemic insulin sensitivity, decreased collagen deposition and inflammation in eWAT, and increased insulin stimulation of Akt phosphorylation. Our data suggest that TNMD acts as a protective factor in visceral adipose tissue to alleviate insulin resistance in obesity. PMID:26880110

  12. The Circulatory and Metabolic Responses to Hypoxia in Humans – With Special Reference to Adipose Tissue Physiology and Obesity

    PubMed Central

    Heinonen, Ilkka H. A.; Boushel, Robert; Kalliokoski, Kari K.

    2016-01-01

    Adipose tissue metabolism and circulation play an important role in human health. It is well-known that adipose tissue mass is increased in response to excess caloric intake leading to obesity and further to local hypoxia and inflammatory signaling. Acute exercise increases blood supply to adipose tissue and mobilization of fat stores for energy. However, acute exercise during systemic hypoxia reduces subcutaneous blood flow in healthy young subjects, but the response in overweight or obese subjects remains to be investigated. Emerging evidence also indicates that exercise training during hypoxic exposure may provide additive benefits with respect to many traditional cardiovascular risk factors as compared to exercise performed in normoxia, but unfavorable effects of hypoxia have also been documented. These topics will be covered in this brief review dealing with hypoxia and adipose tissue physiology. PMID:27621722

  13. A role of active brown adipose tissue in cancer cachexia?

    PubMed

    Beijer, Emiel; Schoenmakers, Janna; Vijgen, Guy; Kessels, Fons; Dingemans, Anne-Marie; Schrauwen, Patrick; Wouters, Miel; van Marken Lichtenbelt, Wouter; Teule, Jaap; Brans, Boudewijn

    2012-03-05

    Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT). Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and so-called brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activation, but its quantitative impact on energy expenditure and weight loss is controversial. Prospective clinical studies can address the potential role of BAT in cancer cachexia using (18)F-fluoro- deoxyglucose positron emission tomography-computed tomography scanning, with careful consideration of co-factors such as diet, exposure to the cold, physical activity and body mass index, that all seem to act on BAT recruitment and activity.

  14. The Interplay Between Sex, Ethnicity, and Adipose Tissue Characteristics.

    PubMed

    Karastergiou, Kalypso

    2015-06-01

    The obesity epidemic in the USA affects disproportionately women and the ethnic minorities. On the other hand, female sex is traditionally associated with a favorable fat distribution preferentially in the subcutaneous depots of the lower body and with improved endocrine and metabolic function of the adipose tissue. However, these data are derived from predominantly non-Hispanic white populations. This review discusses fat distribution patterns in women of diverse ethnic backgrounds, together with data on the release of adipokines from adipose tissue in these populations. Very little information is available on how the metabolic function of the adipocyte differs depending on ethnicity. Thus, it becomes clear that future clinical and translational research should explicitly discuss and take into account the sex and ethnic background of the populations studied.

  15. A role of active brown adipose tissue in cancer cachexia?

    PubMed Central

    Beijer, Emiel; Schoenmakers, Janna; Vijgen, Guy; Kessels, Fons; Dingemans, Anne-Marie; Schrauwen, Patrick; Wouters, Miel; van Marken Lichtenbelt, Wouter; Teule, Jaap; Brans, Boudewijn

    2012-01-01

    Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT). Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and so-called brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activation, but its quantitative impact on energy expenditure and weight loss is controversial. Prospective clinical studies can address the potential role of BAT in cancer cachexia using 18F-fluoro- deoxyglucose positron emission tomography-computed tomography scanning, with careful consideration of co-factors such as diet, exposure to the cold, physical activity and body mass index, that all seem to act on BAT recruitment and activity. PMID:25992201

  16. Fully automated adipose tissue measurement on abdominal CT

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Sussman, Daniel L.; Summers, Ronald M.

    2011-03-01

    Obesity has become widespread in America and has been associated as a risk factor for many illnesses. Adipose tissue (AT) content, especially visceral AT (VAT), is an important indicator for risks of many disorders, including heart disease and diabetes. Measuring adipose tissue (AT) with traditional means is often unreliable and inaccurate. CT provides a means to measure AT accurately and consistently. We present a fully automated method to segment and measure abdominal AT in CT. Our method integrates image preprocessing which attempts to correct for image artifacts and inhomogeneities. We use fuzzy cmeans to cluster AT regions and active contour models to separate subcutaneous and visceral AT. We tested our method on 50 abdominal CT scans and evaluated the correlations between several measurements.

  17. Gene delivery to adipose tissue using transcriptionally targeted rAAV8 vectors.

    PubMed

    Uhrig-Schmidt, Silke; Geiger, Matthias; Luippold, Gerd; Birk, Gerald; Mennerich, Detlev; Neubauer, Heike; Grimm, Dirk; Wolfrum, Christian; Kreuz, Sebastian

    2014-01-01

    In recent years, the increasing prevalence of obesity and obesity-related co-morbidities fostered intensive research in the field of adipose tissue biology. To further unravel molecular mechanisms of adipose tissue function, genetic tools enabling functional studies in vitro and in vivo are essential. While the use of transgenic animals is well established, attempts using viral and non-viral vectors to genetically modify adipocytes in vivo are rare. Therefore, we here characterized recombinant Adeno-associated virus (rAAV) vectors regarding their potency as gene transfer vehicles for adipose tissue. Our results demonstrate that a single dose of systemically applied rAAV8-CMV-eGFP can give rise to remarkable transgene expression in murine adipose tissues. Upon transcriptional targeting of the rAAV8 vector to adipocytes using a 2.2 kb fragment of the murine adiponectin (mAP2.2) promoter, eGFP expression was significantly decreased in off-target tissues while efficient transduction was maintained in subcutaneous and visceral fat depots. Moreover, rAAV8-mAP2.2-mediated expression of perilipin A - a lipid-droplet-associated protein - resulted in significant changes in metabolic parameters only three weeks post vector administration. Taken together, our findings indicate that rAAV vector technology is applicable as a flexible tool to genetically modify adipocytes for functional proof-of-concept studies and the assessment of putative therapeutic targets in vivo.

  18. ELOVL3 is an important component for early onset of lipid recruitment in brown adipose tissue.

    PubMed

    Westerberg, Rolf; Månsson, Jan-Erik; Golozoubova, Valeria; Shabalina, Irina G; Backlund, Emma C; Tvrdik, Petr; Retterstøl, Kjetil; Capecchi, Mario R; Jacobsson, Anders

    2006-02-24

    During the recruitment process of brown adipose tissue, the mRNA level of the fatty acyl chain elongase Elovl3 is elevated more than 200-fold in cold-stressed mice. We have obtained Elovl3-ablated mice and report here that, although cold-acclimated Elovl3-ablated mice experienced an increased heat loss due to impaired skin barrier, they were unable to hyperrecruit their brown adipose tissue. Instead, they used muscle shivering in order to maintain body temperature. Lack of Elovl3 resulted in a transient decrease in the capacity to elongate saturated fatty acyl-CoAs into very long chain fatty acids, concomitantly with the occurrence of reduced levels of arachidic acid (C20:0) and behenic acid (C22:0) in brown adipose tissue during the initial cold stress. This effect on very long chain fatty acid synthesis could be illustrated as a decrease in the condensation activity of the elongation enzyme. In addition, warm-acclimated Elovl3-ablated mice showed diminished ability to accumulate fat and reduced metabolic capacity within the brown fat cells. This points to ELOVL3 as an important regulator of endogenous synthesis of saturated very long chain fatty acids and triglyceride formation in brown adipose tissue during the early phase of the tissue recruitment.

  19. Exercise and the Regulation of Adipose Tissue Metabolism.

    PubMed

    Tsiloulis, Thomas; Watt, Matthew J

    2015-01-01

    Adipose tissue is a major regulator of metabolism in health and disease. The prominent roles of adipose tissue are to sequester fatty acids in times of energy excess and to release fatty acids via the process of lipolysis during times of high-energy demand, such as exercise. The fatty acids released during lipolysis are utilized by skeletal muscle to produce adenosine triphosphate to prevent fatigue during prolonged exercise. Lipolysis is controlled by a complex interplay between neuro-humoral regulators, intracellular signaling networks, phosphorylation events involving protein kinase A, translocation of proteins within the cell, and protein-protein interactions. Herein, we describe in detail the cellular and molecular regulation of lipolysis and how these processes are altered by acute exercise. We also explore the processes that underpin adipocyte adaptation to endurance exercise training, with particular focus on epigenetic modifications, control by microRNAs and mitochondrial adaptations. Finally, we examine recent literature describing how exercise might influence the conversion of traditional white adipose tissue to high energy-consuming "brown-like" adipocytes and the implications that this has on whole-body energy balance.

  20. Nitro-fatty acid pharmacokinetics in the adipose tissue compartment.

    PubMed

    Fazzari, Marco; Khoo, Nicholas K H; Woodcock, Steven R; Jorkasky, Diane K; Li, Lihua; Schopfer, Francisco J; Freeman, Bruce A

    2017-02-01

    Electrophilic nitro-FAs (NO2-FAs) promote adaptive and anti-inflammatory cell signaling responses as a result of an electrophilic character that supports posttranslational protein modifications. A unique pharmacokinetic profile is expected for NO2-FAs because of an ability to undergo reversible reactions including Michael addition with cysteine-containing proteins and esterification into complex lipids. Herein, we report via quantitative whole-body autoradiography analysis of rats gavaged with radiolabeled 10-nitro-[(14)C]oleic acid, preferential accumulation in adipose tissue over 2 weeks. To better define the metabolism and incorporation of NO2-FAs and their metabolites in adipose tissue lipids, adipocyte cultures were supplemented with 10-nitro-oleic acid (10-NO2-OA), nitro-stearic acid, nitro-conjugated linoleic acid, and nitro-linolenic acid. Then, quantitative HPLC-MS/MS analysis was performed on adipocyte neutral and polar lipid fractions, both before and after acid hydrolysis of esterified FAs. NO2-FAs preferentially incorporated in monoacyl- and diacylglycerides, while reduced metabolites were highly enriched in triacylglycerides. This differential distribution profile was confirmed in vivo in the adipose tissue of NO2-OA-treated mice. This pattern of NO2-FA deposition lends new insight into the unique pharmacokinetics and pharmacologic actions that could be expected for this chemically-reactive class of endogenous signaling mediators and synthetic drug candidates.

  1. Characterization of peripheral circadian clocks in adipose tissues.

    PubMed

    Zvonic, Sanjin; Ptitsyn, Andrey A; Conrad, Steven A; Scott, L Keith; Floyd, Z Elizabeth; Kilroy, Gail; Wu, Xiying; Goh, Brian C; Mynatt, Randall L; Gimble, Jeffrey M

    2006-04-01

    First described in the suprachiasmatic nucleus, circadian clocks have since been found in several peripheral tissues. Although obesity has been associated with dysregulated circadian expression profiles of leptin, adiponectin, and other fat-derived cytokines, there have been no comprehensive analyses of the circadian clock machinery in adipose depots. In this study, we show robust and coordinated expression of circadian oscillator genes (Npas2, Bmal1, Per1-3, and Cry1-2) and clock-controlled downstream genes (Rev-erb alpha, Rev-erb beta, Dbp, E4bp4, Stra13, and Id2) in murine brown, inguinal, and epididymal (BAT, iWAT, and eWAT) adipose tissues. These results correlated with respective gene expression in liver and the serum markers of circadian function. Through Affymetrix microarray analysis, we identified 650 genes that shared circadian expression profiles in BAT, iWAT, and liver. Furthermore, we have demonstrated that temporally restricted feeding causes a coordinated phase-shift in circadian expression of the major oscillator genes and their downstream targets in adipose tissues. The presence of circadian oscillator genes in fat has significant metabolic implications, and their characterization may have potential therapeutic relevance with respect to the pathogenesis and treatment of diseases such as obesity, type 2 diabetes, and the metabolic syndrome.

  2. Magnetic resonance properties of brown and white adipose tissues

    PubMed Central

    Hamilton, Gavin; Smith, Daniel L.; Bydder, Mark; Nayak, Krishna S.; Hu, Houchun H.

    2011-01-01

    Purpose To explore the MR (magnetic resonance) signatures of brown adipose tissue (BAT) compared to white adipose tissue (WAT) using single-voxel MR spectroscopy. Materials and Methods 1H MR STEAM spectra were acquired from a 3 Tesla clinical whole body scanner from seven excised murine adipose tissue samples of BAT (n = 4) and WAT (n = 3). Spectra were acquired at multiple TEs and TIs to measure the T1, T2, and T2-corrected peak areas. A theoretical triglyceride model characterized the fat in terms of number of double bonds (ndb) and number of methylene-interrupted double bonds (nmidb). Results Negligible differences between WAT and BAT were seen in the T1 and T2 of fat and the T2 of water. However, the water fraction in BAT was higher (48.5%) compared to WAT (7.1%) and the T1 of water was lower in BAT (618 ms) compared to WAT (1053 ms). The fat spectrum also differed, indicating lower levels of unsaturated triglycerides in BAT (ndb = 2.7, nmidb = 0.7) compared to WAT (ndb = 3.3, nmidb = 1.0). Conclusions We have demonstrated that there are several key MR-based signatures of BAT and WAT that may allow differentiation on MR imaging. PMID:21780237

  3. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche1

    PubMed Central

    Templeton, Zach S.; Lie, Wen-Rong; Wang, Weiqi; Rosenberg-Hasson, Yael; Alluri, Rajiv V.; Tamaresis, John S.; Bachmann, Michael H.; Lee, Kitty; Maloney, William J.; Contag, Christopher H.; King, Bonnie L.

    2015-01-01

    BACKGROUND/OBJECTIVES: Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. METHODS: Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. RESULTS: Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. CONCLUSIONS: Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche. PMID:26696367

  4. Impaired autophagy activity is linked to elevated ER-stress and inflammation in aging adipose tissue

    PubMed Central

    Ghosh, Amiya Kumar; Mau, Theresa; O'Brien, Martin; Garg, Sanjay; Yung, Raymond

    2016-01-01

    Adipose tissue dysfunction in aging is associated with inflammation, metabolic syndrome and other diseases. We propose that impaired protein homeostasis due to compromised lysosomal degradation (micro-autophagy) might promote aberrant ER stress response and inflammation in aging adipose tissue. Using C57BL/6 mouse model, we demonstrate that adipose tissue-derived stromal vascular fraction (SVF) cells from old (18-20 months) mice have reduced expression of autophagy markers as compared to the younger (4-6 months) cohort. Elevated expressions of ER-stress marker CHOP and autophagy substrate SQSTM1/p62 are observed in old SVFs compared to young, when treated with either vehicle or with thapsigargin (Tg), an ER stress inducer. Treatment with bafilomycin A1 (Baf), a vacuolar-type H (+)-ATPase, or Tg elevated expressions of CHOP, and SQSTM1/p62 and LC-3-II, in 3T3-L1-preadipocytes. We also demonstrate impaired autophagy activity in old SVFs by analyzing increased accumulation of autophagy substrates LC3-II and p62. Compromised autophagy activity in old SVFs is correlated with enhanced release of pro-inflammatory cytokines IL-6 and MCP-1. Finally, SVFs from calorie restricted old mice (CR-O) have shown enhanced autophagy activity compared to ad libitum fed old mice (AL-O). Our results support the notion that diminished autophagy activity with aging contributes to increased adipose tissue ER stress and inflammation. PMID:27777379

  5. The regulation of acyl-CoA dehydrogenases in adipose tissue by rosiglitazone.

    PubMed

    Goetzman, Eric S

    2009-01-01

    The acyl-CoA dehydrogenases (ACADs), which catalyze the rate-limiting step in the mitochondrial beta-oxidation spiral, were investigated in white adipose tissue (WAT) of C57Bl/6 mice treated with 10 mg/kg/day rosiglitazone. Rosiglitazone was also administered to PPAR-alpha knockout mice. ACAD abundance and activity were determined using western blotting and an ACAD enzyme activity assay. Rosiglitazone increased ACAD activity in both epididymal and inguinal WAT but not in brown adipose tissue, liver, or muscle. Given the known function of PPAR-alpha in regulating the expression of ACAD genes in liver, it was hypothesized that PPAR-alpha may be involved in upregulating the ACADs during rosiglitazone-mediated adipose tissue remodeling. However, the effect of rosiglitazone on adipose tissue ACAD activity was the same in wild-type and PPAR-alpha knockout mice. In conclusion, rosiglitazone increases expression and activity of ACAD enzymes in WAT independently of PPAR-alpha.

  6. Regulation of body temperature and brown adipose tissue thermogenesis by bombesin receptor subtype-3.

    PubMed

    Lateef, Dalya M; Abreu-Vieira, Gustavo; Xiao, Cuiying; Reitman, Marc L

    2014-03-01

    Bombesin receptor subtype-3 (BRS-3) regulates energy homeostasis, with Brs3 knockout (Brs3(-/y)) mice being hypometabolic, hypothermic, and hyperphagic and developing obesity. We now report that the reduced body temperature is more readily detected if body temperature is analyzed as a function of physical activity level and light/dark phase. Physical activity level correlated best with body temperature 4 min later. The Brs3(-/y) metabolic phenotype is not due to intrinsically impaired brown adipose tissue function or in the communication of sympathetic signals from the brain to brown adipose tissue, since Brs3(-/y) mice have intact thermogenic responses to stress, acute cold exposure, and β3-adrenergic activation, and Brs3(-/y) mice prefer a cooler environment. Treatment with the BRS-3 agonist MK-5046 increased brown adipose tissue temperature and body temperature in wild-type but not Brs3(-/y) mice. Intrahypothalamic infusion of MK-5046 increased body temperature. These data indicate that the BRS-3 regulation of body temperature is via a central mechanism, upstream of sympathetic efferents. The reduced body temperature in Brs3(-/y) mice is due to altered regulation of energy homeostasis affecting higher center regulation of body temperature, rather than an intrinsic defect in brown adipose tissue.

  7. Erythropoietin administration partially prevents adipose tissue loss in experimental cancer cachexia models

    PubMed Central

    Penna, Fabio; Busquets, Silvia; Toledo, Miriam; Pin, Fabrizio; Massa, David; López-Soriano, Francisco J.; Costelli, Paola; Argilés, Josep M.

    2013-01-01

    Cancer-associated cachexia is characterized, among other symptoms, by a dramatic loss of both muscle and fat. In addition, the cachectic syndrome is often associated with anemia. The object of the present investigation was to assess the effects of erythropoietin (EPO) treatment on experimental cancer cachexia models. The results clearly show that, in addition to the improvement of the hematocrit, EPO treatment promoted a partial preservation of adipose tissue while exerting negligible effects on muscle loss. Administration of EPO to tumor-bearing animals resulted in a significant increase of lipoprotein lipase (LPL) activity in adipose tissue, suggesting that the treatment favored triacylglycerol (TAG) accumulation in the adipose tissue. In vitro experiments using both adipose tissue slices and 3T3-L1 adipocytes suggests that EPO is able to increase the lipogenic rate through the activation of its specific receptor (EPOR). This metabolic pathway, in addition to TAG uptake by LPL, may contribute to the beneficial effects of EPO on fat preservation in cancer cachexia. PMID:23966665

  8. Weight-dependent changes of immune system in adipose tissue: Importance of leptin

    SciTech Connect

    Caspar-Bauguil, S.; Cousin, B.; Andre, M.; Nibbelink, M.; Galinier, A.; Periquet, B.; Casteilla, L.; Penicaud, L. . E-mail: penicaud@toulouse.inserm.fr

    2006-07-15

    Ancestral lymphoid cells reside in adipose tissues, and their numbers are highly altered in obesity. Leptin, production of which is correlated to fat mass, is strongly involved in the relationships between adipose tissues and immune system. We investigated in epididymal (EPI) and inguinal (ING) fat pads to determine whether 1) lymphocyte phenotypes were correlated to the tissue weight and 2) leptin was involved in such relationships. Immunohistological analyses revealed a tight relationship between the T and NK lymphocytes of the stromal vascular fraction and adipocytes. We identified a significant negative and positive correlation between EPI weight and the percentage of NK and total T cells respectively by cytofluorometric analyses. The NK and ancestral {gamma}{delta} T cell contents were directly dependent of leptin since they increased significantly in high-fat (HF) diet mice but not in leptin-deficient (ob/ob) mice as compared to control. By contrast, the {alpha}{beta} T cell content seemed independent of leptin because their percentages increased significantly with the EPI weight whatever the type of mice (control, HF, ob/ob). The present study suggests that adipose tissues present, according to their localization, different immunological mechanisms that might be involved in the regulation of adipose cells functions and proliferations.

  9. Adipose Tissue and Energy Expenditure: Central and Peripheral Neural Activation Pathways.

    PubMed

    Blaszkiewicz, Magdalena; Townsend, Kristy L

    2016-06-01

    Increasing energy expenditure is an appealing therapeutic target for the prevention and reversal of metabolic conditions such as obesity or type 2 diabetes. However, not enough research has investigated how to exploit pre-existing neural pathways, both in the central nervous system (CNS) and peripheral nervous system (PNS), in order to meet these needs. Here, we review several research areas in this field, including centrally acting pathways known to drive the activation of sympathetic nerves that can increase lipolysis and browning in white adipose tissue (WAT) or increase thermogenesis in brown adipose tissue (BAT), as well as other central and peripheral pathways able to increase energy expenditure of these tissues. In addition, we describe new work investigating the family of transient receptor potential (TRP) channels on metabolically important sensory nerves, as well as the role of the vagus nerve in regulating energy balance.

  10. Laser light propagation in adipose tissue and laser effects on adipose cell membranes

    NASA Astrophysics Data System (ADS)

    Solarte, Efraín; Rebolledo, Aldo; Gutierrez, Oscar; Criollo, William; Neira, Rodrigo; Arroyave, José; Ramírez, Hugo

    2006-01-01

    Recently Neira et al. have presented a new liposuction technique that demonstrated the movement of fat from inside to outside of the cell, using a low-level laser device during a liposuction procedure with Ultrawet solution. The clinical observations, allowed this new surgical development, started a set of physical, histological and pharmacological studies aimed to determine the mechanisms involved in the observed fat mobilization concomitant to external laser application in liposuction procedures. Scanning and Transmission Electron Microscopy, studies show that the cellular arrangement of normal adipose tissue changes when laser light from a diode laser: 10 mW, 635 nm is applied. Laser exposures longer than 6 minutes cause the total destruction of the adipocyte panicles. Detailed observation of the adipose cells show that by short irradiation times (less than four minutes) the cell membrane exhibits dark zones, that collapse by longer laser exposures. Optical measurements show that effective penetration length depends on the laser intensity. Moreover, the light scattering is enhanced by diffraction and subsequent interference effects, and the tumescent solution produces a clearing of the tissue optical medium. Finally, isolate adipose cell observation show that fat release from adipocytes is a concomitant effect between the tumescent solution (adrenaline) and laser light, revealing a synergism which conduces to the aperture, and maybe the disruption, of the cell membrane. All these studies were consistent with a laser induced cellular process, which causes fat release from inside the adipocytes into the intercellular space, besides a strong modification of the cellular membranes.

  11. Molecular pathways linking non-shivering thermogenesis and obesity: focusing on brown adipose tissue development.

    PubMed

    Valente, Angelica; Jamurtas, Athanasios Z; Koutedakis, Yiannis; Flouris, Andreas D

    2015-02-01

    An increase in energy intake and/or a decrease in energy expenditure lead to fat storage, causing overweight and obesity phenotypes. The objective of this review was to analyse, for the first time using a systematic approach, all published evidence from the past 8 years regarding the molecular pathways linking non-shivering thermogenesis and obesity in mammals, focusing on mechanisms involved in brown adipose tissue development. Two major databases were scanned from 2006 to 2013 using 'brown adipose tissue' AND 'uncoupling protein-1' AND 'mammalian thermoregulation' AND 'obesity' as key words. A total of 61 articles were retrieved using the search criteria. The available research used knockout methodologies, various substances, molecules and agonist treatments, or different temperature and diet conditions, to assess the molecular pathways linking non-shivering thermogenesis and obesity. By integrating the results of the evaluated animal and human studies, our analysis identified specific molecules that enhance non-shivering thermogenesis and metabolism by: (i) stimulating 'brite' (brown-like) cell development in white adipose tissue; (ii) increasing uncoupling protein-1 expression in brite adipocytes; and (iii) augmenting brown and/or brite adipose tissue mass. The latter can be also increased through low temperature, hibernation and/or molecules involved in brown adipocyte differentiation. Cold stimuli and/or certain molecules activate uncoupling protein-1 in the existing brown adipocytes, thus increasing total energy expenditure by a magnitude proportional to the number of available brown adipocytes. Future research should address the interplay between body mass, brown adipose tissue mass, as well as the main molecules involved in brite cell development.

  12. Electrospinning adipose tissue-derived extracellular matrix for adipose stem cell culture.

    PubMed

    Francis, Michael P; Sachs, Patrick C; Madurantakam, Parthasarathy A; Sell, Scott A; Elmore, Lynne W; Bowlin, Gary L; Holt, Shawn E

    2012-07-01

    Basement membrane-rich extracellular matrices, particularly murine sarcoma-derived Matrigel, play important roles in regenerative medicine research, exhibiting marked cellular responses in vitro and in vivo, although with limited clinical applications. We find that a human-derived matrix from lipoaspirate fat, a tissue rich in basement membrane components, can be fabricated by electrospinning and used to support cell culture. We describe practical applications and purification of extracellular matrix (ECM) from adipose tissue (At-ECM) and its use in electrospinning scaffolds and adipose stem cell (ASC) culture. The matrix composition of this purified and electrospun At-ECM was assessed histochemically for basement membrane, connective tissue, collagen, elastic fibers/elastin, glycoprotein, and proteoglycans. Each histochemical stain was positive in fat tissue, purified At-ECM, and electrospun At-ECM, and to some extent positive in a 10:90 blend with polydioxanone (PDO). We also show that electrospun At-ECM, alone and blended with PDO, supports ASC attachment and growth, suggesting that electrospun At-ECM scaffolds support ASC cultivation. These studies show that At-ECM can be isolated and electrospun as a basement membrane-rich tissue engineering matrix capable of supporting stem cells, providing the groundwork for an array of future regenerative medicine advances.

  13. Regulation of visceral adipose tissue-derived serine protease inhibitor by nutritional status, metformin, gender and pituitary factors in rat white adipose tissue.

    PubMed

    González, C R; Caminos, J E; Vázquez, M J; Garcés, M F; Cepeda, L A; Angel, A; González, A C; García-Rendueles, M E; Sangiao-Alvarellos, S; López, M; Bravo, S B; Nogueiras, R; Diéguez, C

    2009-07-15

    Visceral adipose tissue-derived serine protease inhibitor (vaspin) is a recently discovered adipocytokine mainly secreted from visceral adipose tissue, which plays a main role in insulin sensitivity. In this study, we have investigated the regulation of vaspin gene expression in rat white adipose tissue (WAT) in different physiological (nutritional status, pregnancy, age and gender) and pathophysiological (gonadectomy, thyroid status and growth hormone deficiency) settings known to be associated with energy homeostasis and alterations in insulin sensitivity. We have determined vaspin gene expression by real-time PCR. Vaspin was decreased after fasting and its levels were partially recovered after leptin treatment. Chronic treatment with metformin increased vaspin gene expression. Vaspin mRNA expression reached the highest peak at 45 days in both sexes after birth and its expression was higher in females than males, but its levels did not change throughout pregnancy. Finally, decreased levels of growth hormone and thyroid hormones suppressed vaspin expression. These findings suggest that WAT vaspin mRNA expression is regulated by nutritional status, and leptin seems to be the nutrient signal responsible for those changes. Vaspin is influenced by age and gender, and its expression is increased after treatment with insulin sensitizers. Finally, alterations in pituitary functions modify vaspin levels. Understanding the molecular mechanisms regulating vaspin will provide new insights into the pathogenesis of the metabolic syndrome.

  14. ABCD2 identifies a subclass of peroxisomes in mouse adipose tissue

    SciTech Connect

    Liu, Xiaoxi Liu, Jingjing Lester, Joshua D. Pijut, Sonja S. Graf, Gregory A.

    2015-01-02

    Highlights: • We examined the D2 localization and the proteome of D2-containing compartment in mouse adipose tissue. • We confirmed the presence of D2 on a subcellular compartment that has typical structure as a microperoxisome. • We demonstrated the scarcity of peroxisome markers on D2-containing compartment. • The D2-containing compartment may be a subpopulation of peroxisome in mouse adipose tissue. • Proteomic data suggests potential association between D2-containing compartment and mitochondria and ER. - Abstract: ATP-binding cassette transporter D2 (D2) is an ABC half transporter that is thought to promote the transport of very long-chain fatty acyl-CoAs into peroxisomes. Both D2 and peroxisomes increase during adipogenesis. Although peroxisomes are essential to both catabolic and anabolic lipid metabolism, their function, and that of D2, in adipose tissues remain largely unknown. Here, we investigated the D2 localization and the proteome of D2-containing organelles, in adipose tissue. Centrifugation of mouse adipose homogenates generated a fraction enriched with D2, but deficient in peroxisome markers including catalase, PEX19, and ABCD3 (D3). Electron microscopic imaging of this fraction confirmed the presence of D2 protein on an organelle with a dense matrix and a diameter of ∼200 nm, the typical structure and size of a microperoxisome. D2 and PEX19 antibodies recognized distinct structures in mouse adipose. Immunoisolation of the D2-containing compartment confirmed the scarcity of PEX19 and proteomic profiling revealed the presence of proteins associated with peroxisome, endoplasmic reticulum (ER), and mitochondria. D2 is localized to a distinct class of peroxisomes that lack many peroxisome proteins, and may associate physically with mitochondria and the ER.

  15. Ghrelin receptor regulates adipose tissue inflammation in aging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth ho...

  16. Regulation of glucose homoeostasis by brown adipose tissue.

    PubMed

    Peirce, Vivian; Vidal-Puig, Antonio

    2013-12-01

    Brown adipose tissue (BAT) has emerged as a therapeutic target for the treatment of obesity. Activation of BAT in human beings could also have beneficial metabolic effects that might resolve common complications of obesity, such as type 2 diabetes, by ameliorating the glucolipotoxic pathological changes that underlie the development of peripheral insulin resistance and impaired insulin secretion due to pancreatic β-cell failure. Evidence from rodent models suggests that BAT activation improves glucose homoeostasis through several mechanisms, which could point to new strategies to optimise stimulation of BAT in human beings and reverse insulin resistance in peripheral tissues.

  17. Polychlorinated biphenyl (PCB) partitioning between adipose tissue and serum

    SciTech Connect

    Brown, J.F. Jr.; Lawton, R.W.

    1984-09-01

    It has been recently suggested that variabilities in the partitioning of chronically retained lipophilic xenobiotics between adipose tissue and serum may be relatable to variations in the lipid content of the serum. Here, the authors present theoretical considerations and experimental data showing that this is indeed the case for polychlorinated biphenyls (PCBs) in humans. At equilibrium, in the absence of active transport, any lipophilic substance must distribute itself among body tissues in such a way that its chemical activity and also its chemical potential are the same at all points. In order to verify the theoretical relationships, three sorts of data relating to serum PCB levels in a human population were examined.

  18. Brown adipose tissue transplantation ameliorates polycystic ovary syndrome

    PubMed Central

    Yuan, Xiaoxue; Hu, Tao; Zhao, Han; Huang, Yuanyuan; Ye, Rongcai; Lin, Jun; Zhang, Chuanhai; Zhang, Hanlin; Wei, Gang; Zhou, Huiqiao; Dong, Meng; Zhao, Jun; Wang, Haibin; Liu, Qingsong; Lee, Hyuek Jong; Jin, Wanzhu; Chen, Zi-Jiang

    2016-01-01

    Polycystic ovary syndrome (PCOS), which is characterized by anovulation, hyperandrogenism, and polycystic ovaries, is a complex endocrinopathy. Because the cause of PCOS at the molecular level is largely unknown, there is no cure or specific treatment for PCOS. Here, we show that transplantation of brown adipose tissue (BAT) reversed anovulation, hyperandrogenism, and polycystic ovaries in a dehydroepiandrosterone (DHEA)-induced PCOS rat. BAT transplantation into a PCOS rat significantly stabilized menstrual irregularity and improved systemic insulin sensitivity up to a normal level, which was not shown in a sham-operated or muscle-transplanted PCOS rat. Moreover, BAT transplantation, not sham operation or muscle transplantation, surprisingly improved fertility in PCOS rats. Interestingly, BAT transplantation activated endogenous BAT and thereby increased the circulating level of adiponectin, which plays a prominent role in whole-body energy metabolism and ovarian physiology. Consistent with BAT transplantation, administration of adiponectin protein dramatically rescued DHEA-induced PCOS phenotypes. These results highlight that endogenous BAT activity is closely related to the development of PCOS phenotypes and that BAT activation might be a promising therapeutic option for the treatment of PCOS. PMID:26903641

  19. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity.

    PubMed

    Guo, Tingqing; Jou, William; Chanturiya, Tatyana; Portas, Jennifer; Gavrilova, Oksana; McPherron, Alexandra C

    2009-01-01

    Myostatin (Mstn) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Mstn(-/-) mice have a dramatic increase in muscle mass, reduction in fat mass, and resistance to diet-induced and genetic obesity. To determine how Mstn deletion causes reduced adiposity and resistance to obesity, we analyzed substrate utilization and insulin sensitivity in Mstn(-/-) mice fed a standard chow. Despite reduced lipid oxidation in skeletal muscle, Mstn(-/-) mice had no change in the rate of whole body lipid oxidation. In contrast, Mstn(-/-) mice had increased glucose utilization and insulin sensitivity as measured by indirect calorimetry, glucose and insulin tolerance tests, and hyperinsulinemic-euglycemic clamp. To determine whether these metabolic effects were due primarily to the loss of myostatin signaling in muscle or adipose tissue, we compared two transgenic mouse lines carrying a dominant negative activin IIB receptor expressed specifically in adipocytes or skeletal muscle. We found that inhibition of myostatin signaling in adipose tissue had no effect on body composition, weight gain, or glucose and insulin tolerance in mice fed a standard diet or a high-fat diet. In contrast, inhibition of myostatin signaling in skeletal muscle, like Mstn deletion, resulted in increased lean mass, decreased fat mass, improved glucose metabolism on standard and high-fat diets, and resistance to diet-induced obesity. Our results demonstrate that Mstn(-/-) mice have an increase in insulin sensitivity and glucose uptake, and that the reduction in adipose tissue mass in Mstn(-/-) mice is an indirect result of metabolic changes in skeletal muscle. These data suggest that increasing muscle mass by administration of myostatin antagonists may be a promising therapeutic target for treating patients with obesity or diabetes.

  20. Rapid Alterations in Perirenal Adipose Tissue Transcriptomic Networks with Cessation of Voluntary Running

    PubMed Central

    Toedebusch, Ryan G.; Roberts, Christian K.; Roberts, Michael D.; Booth, Frank W.

    2015-01-01

    In maturing rats, the growth of abdominal fat is attenuated by voluntary wheel running. After the cessation of running by wheel locking, a rapid increase in adipose tissue growth to a size that is similar to rats that have never run (i.e. catch-up growth) has been previously reported by our lab. In contrast, diet-induced increases in adiposity have a slower onset with relatively delayed transcriptomic responses. The purpose of the present study was to identify molecular pathways associated with the rapid increase in adipose tissue after ending 6 wks of voluntary running at the time of puberty. Age-matched, male Wistar rats were given access to running wheels from 4 to 10 weeks of age. From the 10th to 11th week of age, one group of rats had continued wheel access, while the other group had one week of wheel locking. Perirenal adipose tissue was extracted, RNA sequencing was performed, and bioinformatics analyses were executed using Ingenuity Pathway Analysis (IPA). IPA was chosen to assist in the understanding of complex ‘omics data by integrating data into networks and pathways. Wheel locked rats gained significantly more fat mass and significantly increased body fat percentage between weeks 10–11 despite having decreased food intake, as compared to rats with continued wheel access. IPA identified 646 known transcripts differentially expressed (p < 0.05) between continued wheel access and wheel locking. In wheel locked rats, IPA revealed enrichment of transcripts for the following functions: extracellular matrix, macrophage infiltration, immunity, and pro-inflammatory. These findings suggest that increases in visceral adipose tissue that accompanies the cessation of pubertal physical activity are associated with the alteration of multiple pathways, some of which may potentiate the development of pubertal obesity and obesity-associated systemic low-grade inflammation that occurs later in life. PMID:26678390

  1. Intermittent cold exposure improves glucose homeostasis associated with brown and white adipose tissues in mice

    PubMed Central

    Wang, Tse-Yao; Liu, Cuiqing; Wang, Aixia; Sun, Qinghua

    2015-01-01

    Aims The discovery of different shades of fat has been implicated in the pathogenesis of obesity-related metabolic disorders. However, the effects of early and intermittent exposure to cold temperature on systemic metabolic changes in adult life remain unclear. Main methods To elucidate the impact of cold temperature exposure on metabolic function of adipose tissues, we investigated the glucose homeostasis, activation of brown adipose tissue (BAT) and “browning” of white adipose tissue (WAT) in mice in response to intermittent cold exposure. Mice were exposed to 4 °C, 2 hours per day and 5 days per week, for 14 weeks. Glucose homeostasis was tested via intraperitoneal glucose tolerance test and insulin tolerance test; body fat mass was evaluated using in vivo magnetic resonance imaging; BAT activity was detected primarily by positron emission tomography/computed tomography; and WAT “browning” was evaluated using immunohistochemistry. Key findings Our results showed that 14-week cold exposure improved glucose tolerance and enhanced insulin sensitivity, reduced the relative weights of epididymal and retroperitoneal WAT, increased expressions of UCP1 and PGC1α in subcutaneous adipose tissue. Significance Intermittent exposure to cold temperature in early life may improve systemic glucose homeostasis and induce WAT “browning”, suggesting that ambient cold temperature exposure may serve as a promising intervention to metabolic disorders. PMID:26281919

  2. Diffuse Optical Spectroscopy and Imaging to Detect and Quantify Adipose Tissue Browning

    PubMed Central

    Dinish, U. S; Wong, Chi Lok; Sriram, Sandhya; Ong, Wee Kiat; Balasundaram, Ghayathri; Sugii, Shigeki; Olivo, Malini

    2017-01-01

    Adipose (fat) tissue is a complex metabolic organ that is highly active and essential. In contrast to white adipose tissue (WAT), brown adipose tissue (BAT) is deemed metabolically beneficial because of its ability to burn calories through heat production. The conversion of WAT-resident adipocytes to “beige” or “brown-like” adipocytes has recently attracted attention. However, it typically takes a few days to analyze and confirm this browning of WAT through conventional molecular, biochemical, or histological methods. Moreover, accurate quantification of the overall browning process is not possible by any of these methods. In this context, we report the novel application of diffuse reflectance spectroscopy (DRS) and multispectral imaging (MSI) to detect and quantify the browning process in mice. We successfully demonstrated the time-dependent increase in browning of WAT, following its induction through β-adrenergic agonist injections. The results from these optical techniques were confirmed with those of standard molecular and biochemical assays, which measure gene and protein expression levels of UCP1 and PGC-1α, as well as with histological examinations. We envision that the reported optical methods can be developed into a fast, real time, cost effective and easy to implement imaging approach for quantification of the browning process in adipose tissue. PMID:28145475

  3. Osteopontin Deletion Prevents the Development of Obesity and Hepatic Steatosis via Impaired Adipose Tissue Matrix Remodeling and Reduced Inflammation and Fibrosis in Adipose Tissue and Liver in Mice

    PubMed Central

    Lancha, Andoni; Rodríguez, Amaia; Catalán, Victoria; Becerril, Sara; Sáinz, Neira; Ramírez, Beatriz; Burrell, María A.; Salvador, Javier; Frühbeck, Gema; Gómez-Ambrosi, Javier

    2014-01-01

    Osteopontin (OPN) is a multifunctional extracellular matrix (ECM) protein involved in multiple physiological processes. OPN expression is dramatically increased in visceral adipose tissue in obesity and the lack of OPN protects against the development of insulin resistance and inflammation in mice. We sought to unravel the potential mechanisms involved in the beneficial effects of the absence of OPN. We analyzed the effect of the lack of OPN in the development of obesity and hepatic steatosis induced by a high-fat diet (HFD) using OPN-KO mice. OPN expression was upregulated in epididymal white adipose tissue (EWAT) and liver in wild type (WT) mice with HFD. OPN-KO mice had higher insulin sensitivity, lower body weight and fat mass with reduced adipose tissue ECM remodeling and reduced adipocyte size than WT mice under a HFD. Reduced MMP2 and MMP9 activity was involved in the decreased ECM remodeling. Crown-like structure number in EWAT as well as F4/80-positive cells and Emr1 expression in EWAT and liver increased with HFD, while OPN-deficiency blunted the increase. Moreover, our data show for the first time that OPN-KO under a HFD mice display reduced fibrosis in adipose tissue and liver, as well as reduced oxidative stress in adipose tissue. Gene expression of collagens Col1a1, Col6a1 and Col6a3 in EWAT and liver, as well as the profibrotic cytokine Tgfb1 in EWAT were increased with HFD, while OPN-deficiency prevented this increase. OPN deficiency prevented hepatic steatosis via reduction in the expression of molecules involved in the onset of fat accumulation such as Pparg, Srebf1, Fasn, Mogat1, Dgat2 and Cidec. Furthermore, OPN-KO mice exhibited higher body temperature and improved BAT function. The present data reveal novel mechanisms of OPN in the development of obesity, pointing out the inhibition of OPN as a promising target for the treatment of obesity and fatty liver. PMID:24871103

  4. Osteopontin deletion prevents the development of obesity and hepatic steatosis via impaired adipose tissue matrix remodeling and reduced inflammation and fibrosis in adipose tissue and liver in mice.

    PubMed

    Lancha, Andoni; Rodríguez, Amaia; Catalán, Victoria; Becerril, Sara; Sáinz, Neira; Ramírez, Beatriz; Burrell, María A; Salvador, Javier; Frühbeck, Gema; Gómez-Ambrosi, Javier

    2014-01-01

    Osteopontin (OPN) is a multifunctional extracellular matrix (ECM) protein involved in multiple physiological processes. OPN expression is dramatically increased in visceral adipose tissue in obesity and the lack of OPN protects against the development of insulin resistance and inflammation in mice. We sought to unravel the potential mechanisms involved in the beneficial effects of the absence of OPN. We analyzed the effect of the lack of OPN in the development of obesity and hepatic steatosis induced by a high-fat diet (HFD) using OPN-KO mice. OPN expression was upregulated in epididymal white adipose tissue (EWAT) and liver in wild type (WT) mice with HFD. OPN-KO mice had higher insulin sensitivity, lower body weight and fat mass with reduced adipose tissue ECM remodeling and reduced adipocyte size than WT mice under a HFD. Reduced MMP2 and MMP9 activity was involved in the decreased ECM remodeling. Crown-like structure number in EWAT as well as F4/80-positive cells and Emr1 expression in EWAT and liver increased with HFD, while OPN-deficiency blunted the increase. Moreover, our data show for the first time that OPN-KO under a HFD mice display reduced fibrosis in adipose tissue and liver, as well as reduced oxidative stress in adipose tissue. Gene expression of collagens Col1a1, Col6a1 and Col6a3 in EWAT and liver, as well as the profibrotic cytokine Tgfb1 in EWAT were increased with HFD, while OPN-deficiency prevented this increase. OPN deficiency prevented hepatic steatosis via reduction in the expression of molecules involved in the onset of fat accumulation such as Pparg, Srebf1, Fasn, Mogat1, Dgat2 and Cidec. Furthermore, OPN-KO mice exhibited higher body temperature and improved BAT function. The present data reveal novel mechanisms of OPN in the development of obesity, pointing out the inhibition of OPN as a promising target for the treatment of obesity and fatty liver.

  5. Detection of brown adipose tissue and thermogenic activity in mice by hyperpolarized xenon MRI

    PubMed Central

    Branca, Rosa Tamara; He, Ting; Zhang, Le; Floyd, Carlos S.; Freeman, Matthew; White, Christian; Burant, Alex

    2014-01-01

    The study of brown adipose tissue (BAT) in human weight regulation has been constrained by the lack of a noninvasive tool for measuring this tissue and its function in vivo. Existing imaging modalities are nonspecific and intrinsically insensitive to the less active, lipid-rich BAT of obese subjects, the target population for BAT studies. We demonstrate noninvasive imaging of BAT in mice by hyperpolarized xenon gas MRI. We detect a greater than 15-fold increase in xenon uptake by BAT during stimulation of BAT thermogenesis, which enables us to acquire background-free maps of the tissue in both lean and obese mouse phenotypes. We also demonstrate in vivo MR thermometry of BAT by hyperpolarized xenon gas. Finally, we use the linear temperature dependence of the chemical shift of xenon dissolved in adipose tissue to directly measure BAT temperature and to track thermogenic activity in vivo. PMID:25453088

  6. Deficiency of Interleukin-15 Confers Resistance to Obesity by Diminishing Inflammation and Enhancing the Thermogenic Function of Adipose Tissues

    PubMed Central

    Lacraz, Gregory; Rakotoarivelo, Volatiana; Labbé, Sebastien M.; Vernier, Mathieu; Noll, Christophe; Mayhue, Marian; Stankova, Jana; Schwertani, Adel; Grenier, Guillaume; Carpentier, André; Richard, Denis; Ferbeyre, Gerardo; Fradette, Julie; Rola-Pleszczynski, Marek; Menendez, Alfredo; Langlois, Marie-France; Ilangumaran, Subburaj; Ramanathan, Sheela

    2016-01-01

    Objective IL-15 is an inflammatory cytokine secreted by many cell types. IL-15 is also produced during physical exercise by skeletal muscle and has been reported to reduce weight gain in mice. Contrarily, our findings on IL-15 knockout (KO) mice indicate that IL-15 promotes obesity. The aim of this study is to investigate the mechanisms underlying the pro-obesity role of IL-15 in adipose tissues. Methods Control and IL-15 KO mice were maintained on high fat diet (HFD) or normal control diet. After 16 weeks, body weight, adipose tissue and skeletal mass, serum lipid levels and gene/protein expression in the adipose tissues were evaluated. The effect of IL-15 on thermogenesis and oxygen consumption was also studied in primary cultures of adipocytes differentiated from mouse preadipocyte and human stem cells. Results Our results show that IL-15 deficiency prevents diet-induced weight gain and accumulation of lipids in visceral and subcutaneous white and brown adipose tissues. Gene expression analysis also revealed elevated expression of genes associated with adaptive thermogenesis in the brown and subcutaneous adipose tissues of IL-15 KO mice. Accordingly, oxygen consumption was increased in the brown adipocytes from IL-15 KO mice. In addition, IL-15 KO mice showed decreased expression of pro-inflammatory mediators in their adipose tissues. Conclusions Absence of IL-15 results in decreased accumulation of fat in the white adipose tissues and increased lipid utilization via adaptive thermogenesis. IL-15 also promotes inflammation in adipose tissues that could sustain chronic inflammation leading to obesity-associated metabolic syndrome. PMID:27684068

  7. Alternative Mechanism for White Adipose Tissue Lipolysis after Thermal Injury

    PubMed Central

    Diao, Li; Patsouris, David; Sadri, Ali-Reza; Dai, Xiaojing; Amini-Nik, Saeid; Jeschke, Marc G

    2015-01-01

    Extensively burned patients often suffer from sepsis, a complication that enhances postburn hypermetabolism and contributes to increased incidence of multiple organ failure, morbidity and mortality. Despite the clinical importance of burn sepsis, the molecular and cellular mechanisms of such infection-related metabolic derangements and organ dysfunction are still largely unknown. We recently found that upon endoplasmic reticulum (ER) stress, the white adipose tissue (WAT) interacts with the liver via inflammatory and metabolic signals leading to profound hepatic alterations, including hepatocyte apoptosis and hepatic fatty infiltration. We therefore hypothesized that burn plus infection causes an increase in lipolysis of WAT after major burn, partially through induction of ER stress, contributing to hyperlipidemia and profound hepatic lipid infiltration. We used a two-hit rat model of 60% total body surface area scald burn, followed by intraperitoneal (IP) injection of Pseudomonas Aeruginosa-derived lipopolysaccharide (LPS) 3 d postburn. One day later, animals were euthanized and liver and epididymal WAT (EWAT) samples were collected for gene expression, protein analysis and histological study of inflammasome activation, ER stress, apoptosis and lipid metabolism. Our results showed that burn plus LPS profoundly increased lipolysis in WAT associated with significantly increased hepatic lipid infiltration. Burn plus LPS augmented ER stress by upregulating CHOP and activating ATF6, inducing NLRP3 inflammasome activation and leading to increased apoptosis and lipolysis in WAT with a distinct enzymatic mechanism related to inhibition of AMPK signaling. In conclusion, burn sepsis causes profound alterations in WAT and liver that are associated with changes in organ function and structure. PMID:26736177

  8. Secreted proteins and genes in fetal and neonatal pig adipose tissue and stromal-vascular cells.

    PubMed

    Hausman, G J; Poulos, S P; Richardson, R L; Barb, C R; Andacht, T; Kirk, H C; Mynatt, R L

    2006-07-01

    Although microarray and proteomic studies have indicated the expression of unique and unexpected genes and their products in human and rodent adipose tissue, similar studies of meat animal adipose tissue have not been reported. Thus, total RNA was isolated from stromal-vascular (S-V) cell cultures (n = 4; 2 arrays; 2 cultures/array) from 90-d (79% of gestation) fetuses and adipose tissue from 105-d (92% of gestation) fetuses (n = 2) and neonatal (5-d-old) pigs (n = 2). Duplicate adipose tissue microarrays (n = 4) represented RNA samples from a pig and a fetus. Dye-labeled cDNA probes were hybridized to custom microarrays (70-mer oligonucleotides) representing more than 600 pig genes involved in growth and reproduction. Microarray studies showed significant expression of 40 genes encoding for known adipose tissue secreted proteins in fetal S-V cell cultures and adipose tissue. Expression of 10 genes encoding secreted proteins not known to be expressed by adipose tissue was also observed in neonatal adipose tissue and fetal S-V cell cultures. Additionally, the agouti gene was detected by reverse transcription-PCR in pig S-V cultures and adipose tissue. Proteomic analysis of adipose tissue and fetal and young pig S-V cell culture-conditioned media identified multiple secreted proteins including heparin-like epidermal growth factor-like growth factor and several apolipoproteins. Another adipose tissue secreted protein, plasminogen activator inhibitor-1, was identified by ELISA in S-V cell culture media. A group of 20 adipose tissue secreted proteins were detected or identified using the gene microarray and the proteomic and protein assay approaches including apolipoprotein-A1, apolipoprotein-E, relaxin, brain-derived neurotrophic factor, and IGF binding protein-5. These studies demonstrate, for the first time, the expression of several major secreted proteins in pig adipose tissue that may influence local and central metabolism and growth.

  9. Effect of dietary energy source on in vitro substrate utilization and insulin sensitivity of muscle and adipose tissues of Angus and Wagyu steers.

    PubMed

    Rhoades, R D; Sawyer, J E; Chung, K Y; Schell, M L; Lunt, D K; Smith, S B

    2007-07-01

    Angus (n = 8; 210 kg of BW) and 7/8 Wagyu (n = 8; 174 kg of BW) steers were used to evaluate the effects of dietary energy source on muscle and adipose tissue metabolism and insulin sensitivity. Steers were assigned to either a grain-based (corn) or hay-based (hay) diet and fed to similar final BW. At slaughter, LM and s.c. and i.m. adipose tissue samples were collected. Portions of the LM and adipose tissues were placed immediately in liquid N for later measurement of glycolytic intermediates. Fresh LM and s.c. and i.m. adipose tissues were incubated with [U-(14)C]glucose to assess glucose metabolism in vitro. All in vitro measures were in the presence of 0 or 500 ng/mL of insulin. Also, s.c. and i.m. adipose tissues were incubated with [1-(14)C]acetate to quantify lipid synthesis in vitro. Glucose-6-phosphate and fructose-6-phosphate concentrations were 12.6- and 2.4-fold greater in muscle than in s.c. and i.m. adipose tissues, respectively. Diet did not affect acetate incorporation into fatty acids (P = 0.86). Insulin did not increase conversion of glucose to CO(2), lactate, or total lipid in steers fed hay but caused an increase (per cell) of 97 to 110% in glucose conversion to CO(2), 46 to 54% in glucose conversion to lactate, and 65 to 160% in glucose conversion to total lipid content in adipose tissue from steers fed corn. On a per-cell basis, s.c. adipose tissue had 37% greater glucose oxidation than i.m. adipose (P = 0.04) and 290% greater acetate incorporation into fatty acids than i.m. adipose (P = 0.04). Insulin addition to s.c. adipose tissue from corn-fed steers failed to stimulate glucose incorporation into fatty acids, but exposing i.m. adipose tissue from corn-fed steers to insulin resulted in a 165% increase in glucose incorporation into fatty acids. These results suggest that feeding hay limited both glucose supply and tissue capacity to increase glucose utilization in response to insulin without altering acetate conversion to fatty acids

  10. Inflammatory Cytokine Gene Expression in Mesenteric Adipose Tissue during Acute Experimental Colitis

    PubMed Central

    Mustain, W. Conan; Starr, Marlene E.; Valentino, Joseph D.; Cohen, Donald A.; Okamura, Daiki; Wang, Chi; Evers, B. Mark; Saito, Hiroshi

    2013-01-01

    Background Production of inflammatory cytokines by mesenteric adipose tissue (MAT) has been implicated in the pathogenesis of inflammatory bowel disease (IBD). Animal models of colitis have demonstrated inflammatory changes within MAT, but it is unclear if these changes occur in isolation or as part of a systemic adipose tissue response. It is also unknown what cell types are responsible for cytokine production within MAT. The present study was designed to determine whether cytokine production by MAT during experimental colitis is depot-specific, and also to identify the source of cytokine production within MAT. Methods Experimental colitis was induced in 6-month-old C57BL/6 mice by administration of dextran sulfate sodium (2% in drinking water) for up to 5 days. The induction of cytokine mRNA within various adipose tissues, including mesenteric, epididymal, and subcutaneous, was analyzed by qRT-PCR. These adipose tissues were also examined for histological evidence of inflammation. The level of cytokine mRNA during acute colitis was compared between mature mesenteric adipocytes, mesenteric stromal vascular fraction (SVF), and mesenteric lymph nodes. Results During acute colitis, MAT exhibited an increased presence of infiltrating mononuclear cells and fibrotic structures, as well as decreased adipocyte size. The mRNA levels of TNF-α, IL-1β, and IL-6 were significantly increased in MAT but not other adipose tissue depots. Within the MAT, induction of these cytokines was observed mainly in the SVF. Conclusions Acute experimental colitis causes a strong site-specific inflammatory response within MAT, which is mediated by cells of the SVF, rather than mature adipocytes or mesenteric lymph nodes. PMID:24386254

  11. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice.

    PubMed

    Nohara, Kazunari; Waraich, Rizwana S; Liu, Suhuan; Ferron, Mathieu; Waget, Aurélie; Meyers, Matthew S; Karsenty, Gérard; Burcelin, Rémy; Mauvais-Jarvis, Franck

    2013-06-15

    Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension.

  12. Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles.

    PubMed

    Daquinag, Alexes C; Souza, Glauco R; Kolonin, Mikhail G

    2013-05-01

    White adipose tissue (WAT) is becoming widely used in regenerative medicine/cell therapy applications, and its physiological and pathological importance is increasingly appreciated. WAT is a complex organ composed of differentiated adipocytes, stromal mesenchymal progenitors known as adipose stromal cells (ASC), as well as endothelial vascular cells and infiltrating leukocytes. Two-dimensional (2D) culture that has been typically used for studying adipose cells does not adequately recapitulate WAT complexity. Improved methods for reconstruction of functional WAT ex vivo are instrumental for understanding of physiological interactions between the composing cell populations. Here, we used a three-dimensional (3D) levitation tissue culture system based on magnetic nanoparticle assembly to model WAT development and growth in organoids termed adipospheres. We show that 3T3-L1 preadipocytes remain viable in spheroids for a long period of time, while in 2D culture, they lose adherence and die after reaching confluence. Upon adipogenesis induction in 3T3-L1 adipospheres, cells efficiently formed large lipid droplets typical of white adipocytes in vivo, while only smaller lipid droplet formation is achievable in 2D. Adiposphere-based coculture of 3T3-L1 preadipocytes with murine endothelial bEND.3 cells led to a vascular-like network assembly concomitantly with lipogenesis in perivascular cells. Adipocyte-depleted stromal vascular fraction (SVF) of mouse WAT cultured in 3D underwent assembly into organoids with vascular-like structures containing luminal endothelial and perivascular stromal cell layers. Adipospheres made from primary WAT cells displayed robust proliferation and complex hierarchical organization reflected by a matricellular gradient incorporating ASC, endothelial cells, and leukocytes, while ASC quickly outgrew other cell types in adherent culture. Upon adipogenesis induction, adipospheres derived from the SVF displayed more efficient lipid droplet

  13. Glucagon-like peptide-1 elicits vasodilation in adipose tissue and skeletal muscle in healthy men.

    PubMed

    Asmar, Ali; Asmar, Meena; Simonsen, Lene; Madsbad, Sten; Holst, Jens J; Hartmann, Bolette; Sorensen, Charlotte M; Bülow, Jens

    2017-02-01

    In healthy subjects, we recently demonstrated that during acute administration of GLP-1, cardiac output increased significantly, whereas renal blood flow remained constant. We therefore hypothesize that GLP-1 induces vasodilation in other organs, for example, adipose tissue, skeletal muscle, and/or splanchnic tissues. Nine healthy men were examined twice in random order during a 2-hour infusion of either GLP-1 (1.5 pmol kg(-1) min(-1)) or saline. Cardiac output was continuously estimated noninvasively concomitantly with measurement of intra-arterial blood pressure. Subcutaneous, abdominal adipose tissue blood flow (ATBF) was measured by the (133)Xenon clearance technique. Leg and splanchnic blood flow were measured by Fick's Principle, using indocyanine green as indicator. In the GLP-1 study, cardiac output increased significantly together with a significant increase in arterial pulse pressure and heart rate compared with the saline study. Subcutaneous, abdominal ATBF and leg blood flow increased significantly during the GLP-1 infusion compared with saline, whereas splanchnic blood flow response did not differ between the studies. We conclude that in healthy subjects, GLP-1 increases cardiac output acutely due to a GLP-1-induced vasodilation in adipose tissue and skeletal muscle together with an increase in cardiac work.

  14. Adipose Tissue CLK2 Promotes Energy Expenditure during High-Fat Diet Intermittent Fasting.

    PubMed

    Hatting, Maximilian; Rines, Amy K; Luo, Chi; Tabata, Mitsuhisa; Sharabi, Kfir; Hall, Jessica A; Verdeguer, Francisco; Trautwein, Christian; Puigserver, Pere

    2017-02-07

    A promising approach to treating obesity is to increase diet-induced thermogenesis in brown adipose tissue (BAT), but the regulation of this process remains unclear. Here we find that CDC-like kinase 2 (CLK2) is expressed in BAT and upregulated upon refeeding. Mice lacking CLK2 in adipose tissue exhibit exacerbated obesity and decreased energy expenditure during high-fat diet intermittent fasting. Additionally, tissue oxygen consumption and protein levels of UCP1 are reduced in CLK2-deficient BAT. Phosphorylation of CREB, a transcriptional activator of UCP1, is markedly decreased in BAT cells lacking CLK2 due to enhanced CREB dephosphorylation. Mechanistically, CREB dephosphorylation is rescued by the inhibition of PP2A, a phosphatase that targets CREB. Our results suggest that CLK2 is a regulatory component of diet-induced thermogenesis in BAT through increased CREB-dependent expression of UCP1.

  15. DNA synthesis in mouse brown adipose tissue is under. beta. -adrenergic control

    SciTech Connect

    Rehnmark, S.; Nedergaard, J. )

    1989-02-01

    The rate of DNA synthesis in mouse brown adipose tissue was followed with injections of ({sup 3}H)thymidine. Cold exposure led to a large increase in the rate of ({sup 3}H)thymidine incorporation, reaching a maximum after 8 days, after which the activity abruptly ceased. A series of norepinephrine injections was in itself able to increase ({sup 3}H)thymidine incorporation. When norepinephrine was injected in combination with the {alpha}-adrenergic antagonist phentolamine or with the {beta}-adrenergic antagonist propranolol, the stimulation was fully blocked by propranolol. It is suggested that stimulation of DNA synthesis in brown adipose tissue is a {beta}-adrenergically mediated process and that the tissue is an interesting model for studies of physiological control of DNA synthesis.

  16. Developmental regulation of adipose tissue growth through hyperplasia and hypertrophy in the embryonic Leghorn and broiler.

    PubMed

    Chen, Paula; Suh, Yeunsu; Choi, Young Min; Shin, Sangsu; Lee, Kichoon

    2014-07-01

    The United States is a world leader in poultry production, which is the reason why achieving better performance and muscle growth each year is a necessity. Reducing accretion of adipose tissue is another important factor for poultry producers because this allows more nutrients to be directed toward muscle growth, but the effect of embryonic adipose growth on posthatch development has not been fully understood. The purpose of this study was to investigate the total DNA mass, morphological characteristics, differentiation markers, and triglyceride breakdown factors of embryonic adipose tissue, and their relation to hyperplastic and hypertrophic growth within layers (Leghorn) and meat-type chickens (broilers). After embryonic day (E) 12, broiler weight was significantly higher than Leghorn, and this trend continued throughout the rest of incubation and posthatch (P < 0.05). Neck and leg fat pad weights between the 2 breeds did not differ at most of the time points. A remarkable increase in total DNA mass was observed between E12 and E14 in both Leghorn and broilers (P < 0.05), indicating a high potential for hyperplastic growth during this time. Histological analysis revealed clusters of preadipocytes at E12; however, the majority of these cells differentiated by E14 and continued to grow until the time of hatch. The adipocyte sizes between both breeds did not generally differ, even though broilers are known to have larger adipocytes posthatch. Fatty acid-binding protein 4 expression levels in Leghorn and broilers continued to rise with each time point, which paralleled the expansion of mature adipocytes. Adipose triglyceride lipase was highly expressed at E20 and d 1 posthatch to mobilize triglyceride degradation for energy during hatching. Thus, embryonic chicken adipose tissue was found to develop by hyperplastic mechanisms followed by hypertrophy. At embryonic stages and early posthatch, layer- and meat-type chicken adipose growth does not differ, which suggests

  17. Investigations of the endocannabinoid system in adipose tissue: effects of obesity/ weight loss and treatment options.

    PubMed

    Bennetzen, Marianne Faurholt

    2011-04-01

    Obesity is a world wide epidemic; it is becoming more usual to be overweight or obese than to be normal weight. Obesity increases the risk of an extensive range of diseases such as cardiovascular disease, diabetes mellitus type 2, hypertension, depression and some types of cancer. Adipose tissue is more than a storage organ for surplus energy - it is also a setting for complex metabolic processes and adipose tissue releases substances that interact with other parts of the body to influence several systems including food intake and energy metabolism. The endocannabinoid system (ECS) is one of the signalling systems that control feeding behaviour. The ECS is implicated in many functions, such as pain, memory, addiction, inflammation, and feeding, and could be considered a stress recovery system. It also seems to integrate nutrient intake, metabolism and storage maintaining homeostatic balance. The ECS is a recently discovered system, and research indicates hyperactivity in obesity. The aim of this thesis is to elaborate on the relationships of this widespread system and its elements in adipose tissue in obesity. Study I is a 4 weeks rat intervention study to investigate whether weight independent effect of Rimonabant treatment exists. We found that food intake-tolerance development could be circumvented by cyclic administration of Rimonabant and implications of weight independent effects of treatment. Study II is a cross-sectional study to establish the expression of cannabinoid receptor 1 from various adipose tissue depots of lean and obese persons. In this study we conclude, that the subcutaneous adipose tissue express more CBR1 than the visceral depot in lean, but comparable levels in obese. Study III is a 10 weeks human intervention study to asses the effects on the ECS of 10% weight loss. We found reduction in the ECS in obesity that normalised with weight loss. Our results clearly show the presence of all the components of the ECS in human adipose tissue, and

  18. Two types of brown adipose tissue in humans

    PubMed Central

    Lidell, Martin E; Betz, Matthias J; Enerbäck, Sven

    2014-01-01

    During the last years the existence of metabolically active brown adipose tissue in adult humans has been widely accepted by the research community. Its unique ability to dissipate chemical energy stored in triglycerides as heat makes it an attractive target for new drugs against obesity and its related diseases. Hence the tissue is now subject to intense research, the hypothesis being that an expansion and/or activation of the tissue is associated with a healthy metabolic phenotype. Animal studies provide evidence for the existence of at least two types of brown adipocytes. Apart from the classical brown adipocyte that is found primarily in the interscapular region where it constitutes a thermogenic organ, a second type of brown adipocyte, the so-called beige adipocyte, can appear within white adipose tissue depots. The fact that the two cell types develop from different precursors suggests that they might be recruited and stimulated by different cues and therefore represent two distinct targets for therapeutic intervention. The aim of this commentary is to discuss recent work addressing the question whether also humans possess two types of brown adipocytes and to highlight some issues when looking for molecular markers for such cells. PMID:24575372

  19. The effect of diabetes on the wound healing potential of adipose-tissue derived stem cells.

    PubMed

    Kim, Sue Min; Kim, Yun Ho; Jun, Young Joon; Yoo, Gyeol; Rhie, Jong Won

    2016-03-01

    To investigate whether diabetes mellitus affects the wound-healing-promoting potential of adipose tissue-derived stem cells, we designed a wound-healing model using diabetic mice. We compared the degree of wound healing between wounds treated with normal adipose tissue-derived stem cells and wounds treated with diabetic adipose tissue-derived stem cells. We evaluated the wound-healing rate, the epithelial tongue distance, the area of granulation tissue, the number of capillary and the number of Ki-67-stained cells. The wound-healing rate was significantly higher in the normal adipose tissue-derived stem cells group than in the diabetic adipose tissue-derived stem cells group; it was also significantly higher in the normal adipose tissue-derived stem cells group than in the control group. Although the diabetic adipose tissue-derived stem cells group showed a better wound-healing rate than the control group, the difference was not statistically significant. Similar trends were observed for the other parameters examined: re-epithelisation and keratinocyte proliferation; granulation tissue formation; and dermal regeneration. However, with regard to the number of capillary, diabetic adipose tissue-derived stem cells retained their ability to promote neovasculisation and angiogenesis. These results reflect the general impairment of the therapeutic potential of diabetic adipose tissue-derived stem cells in vivo.

  20. Functional changes in adipose tissue in a randomised controlled trial of physical activity

    PubMed Central

    2012-01-01

    Background A sedentary lifestyle predisposes to cardiometabolic diseases. Lifestyle changes such as increased physical activity improve a range of cardiometabolic risk factors. The objective of this study was to examine whether functional changes in adipose tissue were related to these improvements. Methods Seventy-three sedentary, overweight (mean BMI 29.9 ± 3.2 kg/m2) and abdominally obese, but otherwise healthy men and women (67.6 ± 0.5 years) from a randomised controlled trial of physical activity on prescription over a 6-month period were included (control n = 43, intervention n = 30). Detailed examinations were carried out at baseline and at follow-up, including fasting blood samples, a comprehensive questionnaire and subcutaneous adipose tissue biopsies for fatty acid composition analysis (n = 73) and quantification of mRNA expression levels of 13 candidate genes (n = 51), including adiponectin, leptin and inflammatory cytokines. Results At follow-up, the intervention group had a greater increase in exercise time (+137 min/week) and a greater decrease in body fat mass (−1.5 kg) compared to the control subjects (changes of 0 min/week and −0.5 kg respectively). Circulating concentrations of adiponectin were unchanged, but those of leptin decreased significantly more in the intervention group (−1.8 vs −1.1 ng/mL for intervention vs control, P < 0.05). The w6-polyunsaturated fatty acid content, in particular linoleic acid (18:2w6), of adipose tissue increased significantly more in the intervention group, but the magnitude of the change was small (+0.17 vs +0.02 percentage points for intervention vs control, P < 0.05). Surprisingly leptin mRNA levels in adipose tissue increased in the intervention group (+107% intervention vs −20% control, P < 0.05), but changes in expression of the remaining genes did not differ between the groups. Conclusions After a 6-month period of increased physical activity in

  1. Effects of prenatal low protein and postnatal high fat diets on visceral adipose tissue macrophage phenotypes and IL-6 expression in Sprague Dawley rat offspring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue macrophages (ATM) are implicated in adipose tissue inflammation and obesity-related insulin resistance. Maternal low protein models result in fetal programming of obesity. However, it is not known whether maternal undernutrition increases ATM phenotypic expression in F1 offspring. Us...

  2. Depot- and sex-specific effects of maternal obesity in offspring's adipose tissue.

    PubMed

    Lecoutre, Simon; Deracinois, Barbara; Laborie, Christine; Eberlé, Delphine; Guinez, Céline; Panchenko, Polina E; Lesage, Jean; Vieau, Didier; Junien, Claudine; Gabory, Anne; Breton, Christophe

    2016-07-01

    According to the Developmental Origin of Health and Disease (DOHaD) concept, alterations of nutrient supply in the fetus or neonate result in long-term programming of individual body weight (BW) setpoint. In particular, maternal obesity, excessive nutrition, and accelerated growth in neonates have been shown to sensitize offspring to obesity. The white adipose tissue may represent a prime target of metabolic programming induced by maternal obesity. In order to unravel the underlying mechanisms, we have developed a rat model of maternal obesity using a high-fat (HF) diet (containing 60% lipids) before and during gestation and lactation. At birth, newborns from obese dams (called HF) were normotrophs. However, HF neonates exhibited a rapid weight gain during lactation, a key period of adipose tissue development in rodents. In males, increased BW at weaning (+30%) persists until 3months of age. Nine-month-old HF male offspring was normoglycemic but showed mild glucose intolerance, hyperinsulinemia, and hypercorticosteronemia. Despite no difference in BW and energy intake, HF adult male offspring was predisposed to fat accumulation showing increased visceral (gonadal and perirenal) depots weights and hyperleptinemia. However, only perirenal adipose tissue depot exhibited marked adipocyte hypertrophy and hyperplasia with elevated lipogenic (i.e. sterol-regulated element binding protein 1 (Srebp1), fatty acid synthase (Fas), and leptin) and diminished adipogenic (i.e. peroxisome proliferator-activated receptor gamma (Pparγ), 11β-hydroxysteroid dehydrogenase type 1 (11β-Hds1)) mRNA levels. By contrast, very few metabolic variations were observed in HF female offspring. Thus, maternal obesity and accelerated growth during lactation program offspring for higher adiposity via transcriptional alterations of visceral adipose tissue in a depot- and sex-specific manner.

  3. Altered pattern of cannabinoid type 1 receptor expression in adipose tissue of dysmetabolic and overweight patients.

    PubMed

    Sarzani, Riccardo; Bordicchia, Marica; Marcucci, Pierfrancesco; Bedetta, Samuele; Santini, Silvia; Giovagnoli, Andrea; Scappini, Lorena; Minardi, Daniele; Muzzonigro, Giovanni; Dessì-Fulgheri, Paolo; Rappelli, Alessandro

    2009-03-01

    In overweight patients (OW), the increased peripheral activity of the endocannabinoid system in visceral adipose tissue (VAT) may be mediated by cannabinoid type 1 (CB1) receptor expression. We determined whether CB1 receptor splice variants and messenger RNA (mRNA) levels in perirenal and subcutaneous adipose tissues are associated with obesity and metabolic syndrome (MetS). Gene expression with multiple-primers real-time polymerase chain reaction (TaqMan; Applied Biosystem, Weiterstadt, Germany) was performed to study VAT and paired subcutaneous adipose tissue (SAT) mRNA from 36 consecutive patients undergoing nephrectomy. Cannabinoid type 1A and CB1E mRNAs variants with the longer version of exon 4 were expressed. The CB1 expression in perirenal VAT significantly correlated with body mass index (BMI). Paired subcutaneous/perirenal samples from normal-weight patients (BMI < 25 kg/m(2)) showed higher CB1 expression in SAT (P = .002), whereas in OW (BMI > or = 25 kg/m(2)), the higher CB1 expression was in VAT (P = .038). In unpaired samples, SAT of normal-weight patients had significantly higher CB1 mRNA levels compared with SAT of OW, whereas higher CB1 expression (P = .009) was found in VAT of OW (n = 25). Overweight patients with increased visceral CB1 expression had higher waist circumference (P < .01), insulin (P < .01), and homeostasis model assessment index (P < .01). In addition, patients with the MetS (n = 22) showed higher CB1 expression in perirenal adipose tissues (P = .007). Visceral adipose CB1 expression correlated with BMI. Overweight patients and those with MetS showed a CB1 expression pattern supporting a CB1-mediated overactivity of the endocannabinoid system in human VAT.

  4. Advantages of Sheep Infrapatellar Fat Pad Adipose Tissue Derived Stem Cells in Tissue Engineering

    PubMed Central

    Vahedi, Parviz; Soleimanirad, Jafar; Roshangar, Leila; Shafaei, Hajar; Jarolmasjed, Seyedhosein; Nozad Charoudeh, Hojjatollah

    2016-01-01

    Purpose: The goal of this study has been to evaluate adipose tissue derived stem cells (ADSCs) from infrapatellar fat pad and characterize their cell surface markers using anti-human antibodies, as adipose tissue derived stem cells (ADSCs) have great potential for cellular therapies to restore injured tissues. Methods: Adipose tissue was obtained from infrapatellar fat pad of sheep. Surface markers evaluated by flow cytometry. In order to evaluate cell adhesion, the Polycaprolactone (PCL) was sterilized under Ultraviolet (UV) light and about 1×105 cells were seeded on PCL. Then, ASCs- PCL construct were evaluated by Scanning Electron Microscopy (Mira3 Te Scan, Czech Republic). Results: We showed that adipose tissue derived stem cells (ADSCs) maintain their fibroblastic-like morphology during different subcultures and cell adhesion. They were positive for CD44 and CD90 markers and negative for CD31 and Cd45 markers by human antibodies. Conclusion: Our results suggest that ASCs surface markers can be characterized by anti-human antibodies in sheep. As stem cells, they can be used in tissue engineering. PMID:27123425

  5. Prdm4 induction by the small molecule butein promotes white adipose tissue browning

    PubMed Central

    Song, No-Joon; Choi, Seri; Rajbhandari, Prashant; Chang, Seo-Hyuk; Kim, Suji; Vergnes, Laurent; Kwon, So-Mi; Yoon, Jung-Hoon; Lee, Suk-Chan; Ku, Jin-Mo; Lee, Jeong-Soo; Reue, Karen; Koo, Seung-Hoi; Tontonoz, Peter; Park, Kye Won

    2016-01-01

    Increasing the thermogenic activity of adipocytes holds promise as an approach to combating human obesity and its related metabolic diseases. We identified PR domain containing 4 (Prdm4) induction by the small molecule butein as a means to induce uncoupling protein 1 expression, increase energy expenditure, and stimulate the generation of thermogenic adipocytes. This study highlights a Prdm4-dependent pathway, modulated by small molecules, that stimulates white adipose tissue browning. PMID:27159578

  6. Divergent phenotype of rat thoracic and abdominal perivascular adipose tissues

    PubMed Central

    Jenkins, Nathan T.; Vieira-Potter, Victoria J.; Laughlin, M. Harold

    2013-01-01

    Perivascular adipose tissue (PVAT) is implicated as a source of proatherogenic cytokines. Phenotypic differences in local PVAT depots may contribute to differences in disease susceptibility among arteries and even regions within an artery. It has been proposed that PVAT around the abdominal and thoracic aorta shares characteristics of white and brown adipose tissue (BAT), respectively; however, a detailed comparison of the phenotype of these PVAT depots has not been performed. Using young and older adult rats, we compared the phenotype of PVATs surrounding the abdominal and thoracic aorta to each other and also to epididymal white and subscapular BAT. Compared with young rats, older rats exhibited greater percent body fat (34.5 ± 3.1 vs. 10.4 ± 0.9%), total cholesterol (112.2 ± 7.5 vs. 58.7 ± 6.3 mg/dl), HOMA-insulin resistance (1.7 ± 0.1 vs. 0.9 ± 0.1 a.u.), as well as reduced ACh-induced relaxation of the aorta (maximal relaxation: 54 ± 10 vs. 77 ± 6%) (all P < 0.05). Expression of inflammatory genes and markers of immune cell infiltration were greater in abdominal PVAT than in thoracic PVAT, and overall, abdominal and thoracic PVATs resembled the phenotype of white adipose tissue (WAT) and BAT, respectively. Histology and electron microscopy indicated structural similarity between visceral WAT and abdominal PVAT and between BAT and thoracic PVAT. Our data provide evidence that abdominal PVAT is more inflamed than thoracic PVAT, a difference that was by and large independent of sedentary aging. Phenotypic differences in PVAT between regions of the aorta may be relevant in light of the evidence in large animals and humans that the abdominal aorta is more vulnerable to atherosclerosis than the thoracic aorta. PMID:23389108

  7. Physiological functions of Vitamin D in adipose tissue.

    PubMed

    Abbas, Manal A

    2017-01-01

    Adipose tissue has long been identified as the major site of vitamin D storage. Recent studies have demonstrated that VDR and vitamin D metabolizing enzymes are expressed in adipocytes. Furthermore, it has been shown that vitamin D regulates adipogenic gene expression as well as adipocyte apoptosis. Vitamin D is active in adipocytes at all levels. It interacts with membrane receptors, adaptor molecules, and nuclear coregulator proteins. Several functions of unliganded nVDR were discovered by studying human samples from patients having hereditary vitamin D resistant rickets, transgenic mice overexpressing the VDR and VDR knockout mice. Through its genomic action, vitamin D participates in the regulation of energy metabolism by controlling the expression of uncoupling proteins. In vitro, vitamin D stimulates lipogenesis and inhibits lipolysis by interacting with mVDR. mVDR is present in caveolae of the plasma membrane and is the same as the classic nVDR. In addition, vitamin D affects directly the expression of the appetite regulating hormone, leptin. Some researchers reported also that vitamin D regulates the expression of the insulin sensitizing hormone, adiponectin. Vitamin D reduced cytokine release and adipose tissue inflammation through the inhibition of NF-κB signaling. Scientific research investigating the role of adipose tissue resident immune cells in the pathogenesis of obesity-associated inflammation is scarce. Obesity is associated with vitamin D deficiency. However there is no scientific evidence to prove that vitamin D deficiency predispose to obesity. Vitamin D supplementation may prevent obesity but it does not lead to weight loss in obese subjects.

  8. Gene expression changes in subcutaneous adipose tissue due to Cushing's disease

    PubMed Central

    Hochberg, Irit; Harvey, Innocence; Tran, Quynh T; Stephenson, Erin J; Barkan, Ariel L; Saltiel, Alan R; Chandler, William F; Bridges, Dave

    2015-01-01

    Glucocorticoids have major effects on adipose tissue metabolism. To study tissue mRNA expression changes induced by chronic elevated endogenous glucocorticoids, we performed RNA sequencing on the subcutaneous adipose tissue from patients with Cushing's disease (n=5) compared to patients with nonfunctioning pituitary adenomas (n=11). We found a higher expression of transcripts involved in several metabolic pathways, including lipogenesis, proteolysis and glucose oxidation as well as a decreased expression of transcripts involved in inflammation and protein synthesis. To further study this in a model system, we subjected mice to dexamethasone treatment for 12 weeks and analyzed their inguinal (subcutaneous) fat pads, which led to similar findings. Additionally, mice treated with dexamethasone showed drastic decreases in lean body mass as well as increased fat mass, further supporting the human transcriptomic data. These data provide insight to transcriptional changes that may be responsible for the comorbidities associated with chronic elevations of glucocorticoids. PMID:26150553

  9. Brown Adipose Tissue Improves Whole-Body Glucose Homeostasis and Insulin Sensitivity in Humans

    PubMed Central

    Chondronikola, Maria; Volpi, Elena; Børsheim, Elisabet; Porter, Craig; Annamalai, Palam; Enerbäck, Sven; Lidell, Martin E.; Saraf, Manish K.; Labbe, Sebastien M.; Hurren, Nicholas M.; Yfanti, Christina; Chao, Tony; Andersen, Clark R.; Cesani, Fernando; Hawkins, Hal

    2014-01-01

    Brown adipose tissue (BAT) has attracted scientific interest as an antidiabetic tissue owing to its ability to dissipate energy as heat. Despite a plethora of data concerning the role of BAT in glucose metabolism in rodents, the role of BAT (if any) in glucose metabolism in humans remains unclear. To investigate whether BAT activation alters whole-body glucose homeostasis and insulin sensitivity in humans, we studied seven BAT-positive (BAT+) men and five BAT-negative (BAT−) men under thermoneutral conditions and after prolonged (5–8 h) cold exposure (CE). The two groups were similar in age, BMI, and adiposity. CE significantly increased resting energy expenditure, whole-body glucose disposal, plasma glucose oxidation, and insulin sensitivity in the BAT+ group only. These results demonstrate a physiologically significant role of BAT in whole-body energy expenditure, glucose homeostasis, and insulin sensitivity in humans, and support the notion that BAT may function as an antidiabetic tissue in humans. PMID:25056438

  10. Adipose Tissue Overexpression of Vascular Endothelial Growth Factor Protects Against Diet-Induced Obesity and Insulin Resistance

    PubMed Central

    Elias, Ivet; Franckhauser, Sylvie; Ferré, Tura; Vilà, Laia; Tafuro, Sabrina; Muñoz, Sergio; Roca, Carles; Ramos, David; Pujol, Anna; Riu, Efren; Ruberte, Jesús; Bosch, Fatima

    2012-01-01

    During the expansion of fat mass in obesity, vascularization of adipose tissue is insufficient to maintain tissue normoxia. Local hypoxia develops and may result in altered adipokine expression, proinflammatory macrophage recruitment, and insulin resistance. We investigated whether an increase in adipose tissue angiogenesis could protect against obesity-induced hypoxia and, consequently, insulin resistance. Transgenic mice overexpressing vascular endothelial growth factor (VEGF) in brown adipose tissue (BAT) and white adipose tissue (WAT) were generated. Vessel formation, metabolism, and inflammation were studied in VEGF transgenic mice and wild-type littermates fed chow or a high-fat diet. Overexpression of VEGF resulted in increased blood vessel number and size in both WAT and BAT and protection against high-fat diet–induced hypoxia and obesity, with no differences in food intake. This was associated with increased thermogenesis and energy expenditure. Moreover, whole-body insulin sensitivity and glucose tolerance were improved. Transgenic mice presented increased macrophage infiltration, with a higher number of M2 anti-inflammatory and fewer M1 proinflammatory macrophages than wild-type littermates, thus maintaining an anti-inflammatory milieu that could avoid insulin resistance. These studies suggest that overexpression of VEGF in adipose tissue is a potential therapeutic strategy for the prevention of obesity and insulin resistance. PMID:22522611

  11. The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil

    PubMed Central

    Choi, Seong Ho; Park, Sung Kwon; Choi, Chang Weon; Li, Xiang Zi; Kim, Kyoung Hoon; Kim, Won Young; Jeong, Joon; Johnson, Bradley J.; Zan, Linsen; Smith, Stephen B.

    2016-01-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression and stearoyl-CoA desaturase (SCD) gene expression in subcutaneous (s.c.) and intramuscular (i.m.) adipose tissues of feedlot steers. Eighteen Angus and Angus crossbred steers were assigned to three groups of 6 steers and fed a basal diet (control), with 3% palm oil, or with 3% soybean oil, for 70 d, top-dressed daily. Tailhead s.c. adipose tissue was obtained by biopsy at 14 d before the initiation of dietary treatments and at 35 d of dietary treatments. At slaughter, after 70 d of dietary treatment, tailhead s.c. adipose tissue and i.m. adipose tissue were obtained from the longissimus thoracis muscle. Palm oil increased plasma palmitic acid and soybean oil increased plasma linoleic acid and α-linolenic acid relative to the initial sampling time. Expression of AMP-activated protein kinase alpha (AMPKα) and peroxisome proliferator-activated receptor gamma (PPARγ) increased between the initial and intermediate biopsies and declined thereafter (p<0.03). SCD gene expression did not change between the initial and intermediate biopsies but declined by over 75% by the final period (p = 0.04), and G-coupled protein receptor 43 (GPR43) gene expression was unaffected by diet or time on trial. Soybean oil decreased (p = 0.01) PPARγ gene expression at the intermediate sample time. At the terminal sample time, PPARγ and SCD gene expression was less in i.m. adipose tissue than in s.c. adipose tissue (p<0.05). AMPKα gene expression was less in s.c. adipose tissue of palm oil-fed steers than in control steers (p = 0.04) and CCAAT enhancer binding protein-beta (CEBPβ) gene expression was less in s.c. and i.m. adipose tissues of palm oil-fed steers than in soybean oil-fed steers (p<0.03). Soybean oil decreased SCD gene expression in s.c. adipose tissue (p = 0.05); SCD gene expression in palm oil-fed steers was intermediate between control and soybean oil-fed steers

  12. The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil.

    PubMed

    Choi, Seong Ho; Park, Sung Kwon; Choi, Chang Weon; Li, Xiang Zi; Kim, Kyoung Hoon; Kim, Won Young; Jeong, Joon; Johnson, Bradley J; Zan, Linsen; Smith, Stephen B

    2016-03-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression and stearoyl-CoA desaturase (SCD) gene expression in subcutaneous (s.c.) and intramuscular (i.m.) adipose tissues of feedlot steers. Eighteen Angus and Angus crossbred steers were assigned to three groups of 6 steers and fed a basal diet (control), with 3% palm oil, or with 3% soybean oil, for 70 d, top-dressed daily. Tailhead s.c. adipose tissue was obtained by biopsy at 14 d before the initiation of dietary treatments and at 35 d of dietary treatments. At slaughter, after 70 d of dietary treatment, tailhead s.c. adipose tissue and i.m. adipose tissue were obtained from the longissimus thoracis muscle. Palm oil increased plasma palmitic acid and soybean oil increased plasma linoleic acid and α-linolenic acid relative to the initial sampling time. Expression of AMP-activated protein kinase alpha (AMPKα) and peroxisome proliferator-activated receptor gamma (PPARγ) increased between the initial and intermediate biopsies and declined thereafter (p<0.03). SCD gene expression did not change between the initial and intermediate biopsies but declined by over 75% by the final period (p = 0.04), and G-coupled protein receptor 43 (GPR43) gene expression was unaffected by diet or time on trial. Soybean oil decreased (p = 0.01) PPARγ gene expression at the intermediate sample time. At the terminal sample time, PPARγ and SCD gene expression was less in i.m. adipose tissue than in s.c. adipose tissue (p<0.05). AMPKα gene expression was less in s.c. adipose tissue of palm oil-fed steers than in control steers (p = 0.04) and CCAAT enhancer binding protein-beta (CEBPβ) gene expression was less in s.c. and i.m. adipose tissues of palm oil-fed steers than in soybean oil-fed steers (p<0.03). Soybean oil decreased SCD gene expression in s.c. adipose tissue (p = 0.05); SCD gene expression in palm oil-fed steers was intermediate between control and soybean oil-fed steers

  13. Serially Transplanted Nonpericytic CD146(-) Adipose Stromal/Stem Cells in Silk Bioscaffolds Regenerate Adipose Tissue In Vivo.

    PubMed

    Frazier, Trivia P; Bowles, Annie; Lee, Stephen; Abbott, Rosalyn; Tucker, Hugh A; Kaplan, David; Wang, Mei; Strong, Amy; Brown, Quincy; He, Jibao; Bunnell, Bruce A; Gimble, Jeffrey M

    2016-04-01

    Progenitors derived from the stromal vascular fraction (SVF) of white adipose tissue (WAT) possess the ability to form clonal populations and differentiate along multiple lineage pathways. However, the literature continues to vacillate between defining adipocyte progenitors as "stromal" or "stem" cells. Recent studies have demonstrated that a nonpericytic subpopulation of adipose stromal cells, which possess the phenotype, CD45(-) /CD31(-) /CD146(-) /CD34(+) , are mesenchymal, and suggest this may be an endogenous progenitor subpopulation within adipose tissue. We hypothesized that an adipose progenitor could be sorted based on the expression of CD146, CD34, and/or CD29 and when implanted in vivo these cells can persist, proliferate, and regenerate a functional fat pad over serial transplants. SVF cells and culture expanded adipose stromal/stem cells (ASC) ubiquitously expressing the green fluorescent protein transgene (GFP-Tg) were fractionated by flow cytometry. Both freshly isolated SVF and culture expanded ASC were seeded in three-dimensional silk scaffolds, implanted subcutaneously in wild-type hosts, and serially transplanted. Six-week WAT constructs were removed and evaluated for the presence of GFP-Tg adipocytes and stem cells. Flow cytometry, quantitative polymerase chain reaction, and confocal microscopy demonstrated GFP-Tg cell persistence, proliferation, and expansion, respectively. Glycerol secretion and glucose uptake assays revealed GFP-Tg adipose was metabolically functional. Constructs seeded with GFP-Tg SVF cells or GFP-Tg ASC exhibited higher SVF yields from digested tissue, and higher construct weights, compared to nonseeded controls. Constructs derived from CD146(-) CD34(+) -enriched GFP-Tg ASC populations exhibited higher hemoglobin saturation, and higher frequency of GFP-Tg cells than unsorted or CD29(+) GFP-Tg ASC counterparts. These data demonstrated successful serial transplantation of nonpericytic adipose-derived progenitors that can

  14. Amelioration of insulin resistance by rosiglitazone is associated with increased adipose cell size in obese type 2 diabetic patients

    PubMed Central

    Eliasson, Bjorn; Smith, Ulf; Mullen, Shawn; Cushman, Samuel W; Sherman, Arthur S; Yang, Jian

    2014-01-01

    Early studies reported that the size of adipose cells positively correlates with insulin resistance, but recent evidence suggests that the relationship between adipose cell size and insulin resistance is more complex. We previously reported that among BMI-matched moderately obese subjects who were either insulin sensitive or resistant insulin resistance correlated with the proportion of small adipose cells, rather than the size of the large adipose cells, whereas the size of large adipose cells was found to be a predictor of insulin resistance in the first-degree relatives of type 2 diabetic (T2D) patients. The relationship between adipose cellularity and insulin resistance thus appears to depend on the metabolic state of the individual. We did a longitudinal study with T2D patients treated with the insulin-sensitizer rosiglitazone to test the hypothesis that improved insulin sensitivity is associated with increased adipocyte size. Eleven T2D patients were recruited and treated with rosiglitazone for 90 days. Blood samples and needle biopsies of abdominal subcutaneous fat were taken at six time points and analyzed for cell size distributions. Rosiglitazone treatment ameliorated insulin resistance as evidenced by significantly decreased fasting plasma glucose and increased index of insulin sensitivity, QUICKI. In association with this, we found significantly increased size of the large adipose cells and, with a weaker effect, increased proportion of small adipose cells. We conclude rosiglitazone treatment both enlarges existing large adipose cells and recruits new small adipose cells in T2D patients, improving fat storage capacity in adipose tissue and thus systemic insulin sensitivity. PMID:26317056

  15. Adipose tissue chromium and vanadium disbalance in high-fat fed Wistar rats.

    PubMed

    Tinkov, Alexey A; Popova, Elizaveta V; Polyakova, Valentina S; Kwan, Olga V; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-01-01

    The primary objective of the current study is to investigate the relationship between adipose tissue chromium and vanadium content and adipose tissue dysfunction in a model of diet-induced obesity. A total of 26 female Wistar rats were fed either standard or high-fat diet (31.6% of fat from total caloric content) for 3 months. High-fat-feeding resulted in 21 and 33% decrease in adipose tissue chromium and vanadium content, respectively. No change was seen in hair chromium or vanadium levels. Statistical analysis revealed a significant inverse correlation of adipose tissue Cr and V with animal morphometric parameters and adipocyte size. Significant inverse dependence was observed between adipose tissue Cr and V and serum leptin and proinflammatory cytokines' levels. At the same time, adipose tissue Cr and V levels were characterized by positive correlation between serum adiponectin and adiponectin/leptin ratio. Adipose tissue Cr and V were inversely correlated (p<0.05) with insulin and homeostatic model assessment insulin resistance index (HOMA-IR) levels. Cr and V concentrations were not correlated with serum glucose in either high-fat fed or control rats; however, both serum glucose and HOMA-IR levels were significantly higher in high-fat fed, compared to control, rats. The results allow to hypothesize that impairment of adipose tissue Cr and V content plays a certain role in the development of adipose tissue endocrine dysfunction in obesity.

  16. Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues.

    PubMed

    Ramseyer, Vanesa D; Granneman, James G

    2016-01-01

    The discovery of brown adipose tissue in adult humans along with the recognition of adipocyte heterogeneity and plasticity of white fat depots has renewed the interest in targeting adipose tissue for therapeutic benefit. Adrenergic activation is a well-established means of recruiting catabolic adipocyte phenotypes in brown and white adipose tissues. In this article, we review mechanisms of brown adipocyte recruitment by the sympathetic nervous system and by direct β-adrenergic receptor activation. We highlight the distinct modes of brown adipocyte recruitment in brown, beige/brite, and white adipose tissues, UCP1-independent thermogenesis, and potential non-thermogenic, metabolically beneficial effects of brown adipocytes.

  17. Adrenergically stimulated blood flow in brown adipose tissue is not dependent on thermogenesis.

    PubMed

    Abreu-Vieira, Gustavo; Hagberg, Carolina E; Spalding, Kirsty L; Cannon, Barbara; Nedergaard, Jan

    2015-05-01

    Brown adipose tissue (BAT) thermogenesis relies on blood flow to be supplied with nutrients and oxygen and for the distribution of the generated heat to the rest of the body. Therefore, it is fundamental to understand the mechanisms by which blood flow is regulated and its relation to thermogenesis. Here, we present high-resolution laser-Doppler imaging (HR-LDR) as a novel method for noninvasive in vivo measurement of BAT blood flow in mice. Using HR-LDR, we found that norepinephrine stimulation increases BAT blood flow in a dose-dependent manner and that this response is profoundly modulated by environmental temperature acclimation. Surprisingly, we found that mice lacking uncoupling protein 1 (UCP1) have fully preserved BAT blood flow response to norepinephrine despite failing to perform thermogenesis. BAT blood flow was not directly correlated to systemic glycemia, but glucose injections could transiently increase tissue perfusion. Inguinal white adipose tissue, also known as a brite/beige adipose tissue, was also sensitive to cold acclimation and similarly increased blood flow in response to norepinephrine. In conclusion, using a novel noninvasive method to detect BAT perfusion, we demonstrate that adrenergically stimulated BAT blood flow is qualitatively and quantitatively fully independent of thermogenesis, and therefore, it is not a reliable parameter for the estimation of BAT activation and heat generation.

  18. Human Adipose Tissue Derived Extracellular Matrix and Methylcellulose Hydrogels Augments and Regenerates the Paralyzed Vocal Fold

    PubMed Central

    Kim, Eun Na; Sung, Myung Whun; Kwon, Tack-Kyun; Cho, Yong Woo; Kwon, Seong Keun

    2016-01-01

    Vocal fold paralysis results from various etiologies and can induce voice changes, swallowing complications, and issues with aspiration. Vocal fold paralysis is typically managed using injection laryngoplasty with fat or synthetic polymers. Injection with autologous fat has shown excellent biocompatibility. However, it has several disadvantages such as unpredictable resorption rate, morbidities associated with liposuction procedure which has to be done in operating room under general anesthesia. Human adipose-derived extracellular matrix (ECM) grafts have been reported to form new adipose tissue and have greater biostability than autologous fat graft. Here, we present an injectable hydrogel that is constructed from adipose tissue derived soluble extracellular matrix (sECM) and methylcellulose (MC) for use in vocal fold augmentation. Human sECM derived from adipose tissue was extracted using two major steps—ECM was isolated from human adipose tissue and was subsequently solubilized. Injectable sECM/MC hydrogels were prepared by blending of sECM and MC. Sustained vocal fold augmentation and symmetric vocal fold vibration were accomplished by the sECM/MC hydrogel in paralyzed vocal fold which were confirmed by laryngoscope, histology and a high-speed imaging system. There were increased number of collagen fibers and fatty granules at the injection site without significant inflammation or fibrosis. Overall, these results indicate that the sECM/MC hydrogel can enhance vocal function in paralyzed vocal folds without early resorption and has potential as a promising material for injection laryngoplasty for stable vocal fold augmentation which can overcome the shortcomings of autologous fat such as unpredictable duration and morbidity associated with the fat harvest. PMID:27768757

  19. An Adipoinductive Role of Inflammation in Adipose Tissue Engineering: Key Factors in the Early Development of Engineered Soft Tissues

    PubMed Central

    Lilja, Heidi E.; Morrison, Wayne A.; Han, Xiao-Lian; Palmer, Jason; Taylor, Caroline; Tee, Richard; Möller, Andreas; Thompson, Erik W.

    2013-01-01

    Tissue engineering and cell implantation therapies are gaining popularity because of their potential to repair and regenerate tissues and organs. To investigate the role of inflammatory cytokines in new tissue development in engineered tissues, we have characterized the nature and timing of cell populations forming new adipose tissue in a mouse tissue engineering chamber (TEC) and characterized the gene and protein expression of cytokines in the newly developing tissues. EGFP-labeled bone marrow transplant mice and MacGreen mice were implanted with TEC for periods ranging from 0.5 days to 6 weeks. Tissues were collected at various time points and assessed for cytokine expression through ELISA and mRNA analysis or labeled for specific cell populations in the TEC. Macrophage-derived factors, such as monocyte chemotactic protein-1 (MCP-1), appear to induce adipogenesis by recruiting macrophages and bone marrow-derived precursor cells to the TEC at early time points, with a second wave of nonbone marrow-derived progenitors. Gene expression analysis suggests that TNFα, LCN-2, and Interleukin 1β are important in early stages of neo-adipogenesis. Increasing platelet-derived growth factor and vascular endothelial cell growth factor expression at early time points correlates with preadipocyte proliferation and induction of angiogenesis. This study provides new information about key elements that are involved in early development of new adipose tissue. PMID:23231040

  20. An adipoinductive role of inflammation in adipose tissue engineering: key factors in the early development of engineered soft tissues.

    PubMed

    Lilja, Heidi E; Morrison, Wayne A; Han, Xiao-Lian; Palmer, Jason; Taylor, Caroline; Tee, Richard; Möller, Andreas; Thompson, Erik W; Abberton, Keren M

    2013-05-15

    Tissue engineering and cell implantation therapies are gaining popularity because of their potential to repair and regenerate tissues and organs. To investigate the role of inflammatory cytokines in new tissue development in engineered tissues, we have characterized the nature and timing of cell populations forming new adipose tissue in a mouse tissue engineering chamber (TEC) and characterized the gene and protein expression of cytokines in the newly developing tissues. EGFP-labeled bone marrow transplant mice and MacGreen mice were implanted with TEC for periods ranging from 0.5 days to 6 weeks. Tissues were collected at various time points and assessed for cytokine expression through ELISA and mRNA analysis or labeled for specific cell populations in the TEC. Macrophage-derived factors, such as monocyte chemotactic protein-1 (MCP-1), appear to induce adipogenesis by recruiting macrophages and bone marrow-derived precursor cells to the TEC at early time points, with a second wave of nonbone marrow-derived progenitors. Gene expression analysis suggests that TNFα, LCN-2, and Interleukin 1β are important in early stages of neo-adipogenesis. Increasing platelet-derived growth factor and vascular endothelial cell growth factor expression at early time points correlates with preadipocyte proliferation and induction of angiogenesis. This study provides new information about key elements that are involved in early development of new adipose tissue.

  1. Tumor-induced inflammation in mammary adipose tissue stimulates a vicious cycle of autotaxin expression and breast cancer progression.

    PubMed

    Benesch, Matthew G K; Tang, Xiaoyun; Dewald, Jay; Dong, Wei-Feng; Mackey, John R; Hemmings, Denise G; McMullen, Todd P W; Brindley, David N

    2015-09-01

    Compared to normal tissues, many cancer cells overexpress autotaxin (ATX). This secreted enzyme produces extracellular lysophosphatidate, which signals through 6 GPCRs to drive cancer progression. Our previous work showed that ATX inhibition decreases 4T1 breast tumor growth in BALB/c mice by 60% for about 11 d. However, 4T1 cells do not produce significant ATX. Instead, the ATX is produced by adjacent mammary adipose tissue. We investigated the molecular basis of this interaction in human and mouse breast tumors. Inflammatory mediators secreted by breast cancer cells increased ATX production in adipose tissue. The increased lysophosphatidate signaling further increased inflammatory mediator production in adipose tissue and tumors. Blocking ATX activity in mice bearing 4T1 tumors with 10 mg/kg/d ONO-8430506 (a competitive ATX inhibitor, IC90 = 100 nM; Ono Pharma Co., Ltd., Osaka, Japan) broke this vicious inflammatory cycle by decreasing 20 inflammatory mediators by 1.5-8-fold in cancer-inflamed adipose tissue. There was no significant decrease in inflammatory mediator levels in fat pads that did not bear tumors. ONO-8430506 also decreased plasma TNF-α and G-CSF cytokine levels by >70% and leukocyte infiltration in breast tumors and adjacent adipose tissue by >50%. Hence, blocking tumor-driven inflammation by ATX inhibition is effective in decreasing tumor growth in breast cancers where the cancer cells express negligible ATX.

  2. Fully automatic and nonparametric quantification of adipose tissue in fat-water separation MR imaging.

    PubMed

    Wang, Defeng; Shi, Lin; Chu, Winnie C W; Hu, Miao; Tomlinson, Brian; Huang, Wen-Hua; Wang, Tianfu; Heng, Pheng Ann; Yeung, David K W; Ahuja, Anil T

    2015-11-01

    Despite increasing demand and research efforts, currently there is no consensus on the protocol for automated and reliable quantification of adipose tissue (AT) and visceral adipose tissue (VAT) using MRI. The purpose of this study was to propose a novel computational method with enhanced objectiveness for the quantification of AT and VAT in fat-water separation MRI. 3T data from IDEAL were acquired for the fat-water separation. Fat tissues were separated from nonfat regions (background air, bone, water, and other nonfat tissues) using K-means clustering (K = 2). From the binary fat mask, arm regions were separated from body based on the relative size of connected component. AT was obtained from the binary body fat mask. With the initial contour as the outer boundary of body fat, the subcutaneous adipose tissue (SAT) and VAT were separated using deformable model driven by a specifically generated deformation field pointing to the inner boundary of SAT. The proposed method was tested on 16 patients with dyslipidemia and evaluated by comparing the correlation with semi-automatic segmentation results. Good robustness was also observed in the proposed method from the Bland-Altman plots. Compared to other established fat segmentation methods, the proposed method is highly objective for fat-water separation MRI with minimal variability induced by subjective parameter settings.

  3. Reversal of type 1 diabetes in mice by brown adipose tissue transplant.

    PubMed

    Gunawardana, Subhadra C; Piston, David W

    2012-03-01

    Current therapies for type 1 diabetes (T1D) involve insulin replacement or transplantation of insulin-secreting tissue, both of which suffer from numerous limitations and complications. Here, we show that subcutaneous transplants of embryonic brown adipose tissue (BAT) can correct T1D in streptozotocin-treated mice (both immune competent and immune deficient) with severely impaired glucose tolerance and significant loss of adipose tissue. BAT transplants result in euglycemia, normalized glucose tolerance, reduced tissue inflammation, and reversal of clinical diabetes markers such as polyuria, polydipsia, and polyphagia. These effects are independent of insulin but correlate with recovery of the animals' white adipose tissue. BAT transplants lead to significant increases in adiponectin and leptin, but with levels that are static and not responsive to glucose. Pharmacological blockade of the insulin receptor in BAT transplant mice leads to impaired glucose tolerance, similar to what is seen in nondiabetic animals, indicating that insulin receptor activity plays a role in the reversal of diabetes. One possible candidate for activating the insulin receptor is IGF-1, whose levels are also significantly elevated in BAT transplant mice. Thus, we propose that the combined action of multiple adipokines establishes a new equilibrium in the animal that allows for chronic glycemic control without insulin.

  4. Gene expression of adipose tissue, endothelial cells and platelets in subjects with metabolic syndrome (Review).

    PubMed

    Pérez, Pablo M; Moore-Carrasco, Rodrigo; González, Daniel R; Fuentes, Eduardo Q; Palomo, Iván G

    2012-05-01

    Metabolic syndrome is a combination of medical disorders including hypertension, dyslipidemia, hyperglycemia, insulin resistance and increased waist circumference, and is associated with a higher risk of cardiovascular disease. An increase in adipose tissue mass is associated with the augmented secretion of certain adipokines, such as interleukin-6, tumor necrosis factor-α and resistin, which cause endothelial dysfunction (an increase in vasoconstrictor molecules and in the expression of adhesion molecules as well as a decrease of vasodilator molecules, amongst other features) and hemostasis alterations that also favor a prothrombotic state (increased fibrinogen and plasminogen activator inhibitor-1 concentrations and platelet activation/aggregation). This interaction between adipose tissue, endothelial cells and platelets is associated with an increase or decrease in the expression of several transcription factors (peroxisome proliferator-activated receptors, CCAAT-enhancer-binding proteins, carbohydrate responsive element-binding proteins and sterol regulatory element-binding proteins) that play a crucial role in the regulation of distinct metabolic pathways related to the metabolic syndrome. In the present review, we present the primary changes in adipose tissue, endothelial cells and platelets in subjects with metabolic syndrome and their possible target sites at the gene expression level.

  5. In vivo adeno-associated viral vector-mediated genetic engineering of white and brown adipose tissue in adult mice.

    PubMed

    Jimenez, Veronica; Muñoz, Sergio; Casana, Estefania; Mallol, Cristina; Elias, Ivet; Jambrina, Claudia; Ribera, Albert; Ferre, Tura; Franckhauser, Sylvie; Bosch, Fatima

    2013-12-01

    Adipose tissue is pivotal in the regulation of energy homeostasis through the balance of energy storage and expenditure and as an endocrine organ. An inadequate mass and/or alterations in the metabolic and endocrine functions of adipose tissue underlie the development of obesity, insulin resistance, and type 2 diabetes. To fully understand the metabolic and molecular mechanism(s) involved in adipose dysfunction, in vivo genetic modification of adipocytes holds great potential. Here, we demonstrate that adeno-associated viral (AAV) vectors, especially serotypes 8 and 9, mediated efficient transduction of white (WAT) and brown adipose tissue (BAT) in adult lean and obese diabetic mice. The use of short versions of the adipocyte protein 2 or uncoupling protein-1 promoters or micro-RNA target sequences enabled highly specific, long-term AAV-mediated transgene expression in white or brown adipocytes. As proof of concept, delivery of AAV vectors encoding for hexokinase or vascular endothelial growth factor to WAT or BAT resulted in increased glucose uptake or increased vessel density in targeted depots. This method of gene transfer also enabled the secretion of stable high levels of the alkaline phosphatase marker protein into the bloodstream by transduced WAT. Therefore, AAV-mediated genetic engineering of adipose tissue represents a useful tool for the study of adipose pathophysiology and, likely, for the future development of new therapeutic strategies for obesity and diabetes.

  6. AMPK Phosphorylates Desnutrin/ATGL and Hormone-Sensitive Lipase To Regulate Lipolysis and Fatty Acid Oxidation within Adipose Tissue

    PubMed Central

    Kim, Sun-Joong; Tang, Tianyi; Abbott, Marcia; Viscarra, Jose A.; Wang, Yuhui

    2016-01-01

    The role of AMP-activated protein kinase (AMPK) in promoting fatty acid (FA) oxidation in various tissues, such as liver and muscle, has been well understood. However, the role of AMPK in lipolysis and FA metabolism in adipose tissue has been controversial. To investigate the role of AMPK in the regulation of adipose lipolysis in vivo, we generated mice with adipose-tissue-specific knockout of both the α1 and α2 catalytic subunits of AMPK (AMPK-ASKO mice) by using aP2-Cre and adiponectin-Cre. Both models of AMPK-ASKO ablation show no changes in desnutrin/ATGL levels but have defective phosphorylation of desnutrin/ATGL at S406 to decrease its triacylglycerol (TAG) hydrolase activity, lowering basal lipolysis in adipose tissue. These mice also show defective phosphorylation of hormone-sensitive lipase (HSL) at S565, with higher phosphorylation at protein kinase A sites S563 and S660, increasing its hydrolase activity and isoproterenol-stimulated lipolysis. With higher overall adipose lipolysis, both models of AMPK-ASKO mice are lean, having smaller adipocytes with lower TAG and higher intracellular free-FA levels. Moreover, FAs from higher lipolysis activate peroxisome proliferator-activated receptor delta to induce FA oxidative genes and increase FA oxidation and energy expenditure. Overall, for the first time, we provide in vivo evidence of the role of AMPK in the phosphorylation and regulation of desnutrin/ATGL and HSL and thus adipose lipolysis. PMID:27185873

  7. Characterization of stromal vascular fraction and adipose stem cells from subcutaneous, preperitoneal and visceral morbidly obese human adipose tissue depots

    PubMed Central

    Silva, Karina Ribeiro; Côrtes, Isis; Liechocki, Sally; Carneiro, João Regis Ivar; Souza, Antônio Augusto Peixoto; Borojevic, Radovan; Maya-Monteiro, Clarissa Menezes

    2017-01-01

    Background/Objectives The pathological condition of obesity is accompanied by a dysfunctional adipose tissue. We postulate that subcutaneous, preperitoneal and visceral obese abdominal white adipose tissue depots could have stromal vascular fractions (SVF) with distinct composition and adipose stem cells (ASC) that would differentially account for the pathogenesis of obesity. Methods In order to evaluate the distribution of SVF subpopulations, samples of subcutaneous, preperitoneal and visceral adipose tissues from morbidly obese women (n = 12, BMI: 46.2±5.1 kg/m2) were collected during bariatric surgery, enzymatically digested and analyzed by flow cytometry (n = 12). ASC from all depots were evaluated for morphology, surface expression, ability to accumulate lipid after induction and cytokine secretion (n = 3). Results A high content of preadipocytes was found in the SVF of subcutaneous depot (p = 0.0178). ASC from the three depots had similar fibroblastoid morphology with a homogeneous expression of CD34, CD146, CD105, CD73 and CD90. ASC from the visceral depot secreted the highest levels of IL-6, MCP-1 and G-CSF (p = 0.0278). Interestingly, preperitoneal ASC under lipid accumulation stimulus showed the lowest levels of all the secreted cytokines, except for adiponectin that was enhanced (p = 0.0278). Conclusions ASC from preperitoneal adipose tissue revealed the less pro-inflammatory properties, although it is an internal adipose depot. Conversely, ASC from visceral adipose tissue are the most pro-inflammatory. Therefore, ASC from subcutaneous, visceral and preperitoneal adipose depots could differentially contribute to the chronic inflammatory scenario of obesity. PMID:28323901

  8. Inside out: Bone marrow adipose tissue as a source of circulating adiponectin

    PubMed Central

    Scheller, Erica L.; Burr, Aaron A.; MacDougald, Ormond A.; Cawthorn, William P.

    2016-01-01

    ABSTRACT The adipocyte-derived hormone adiponectin mediates beneficial cardiometabolic effects, and hypoadiponectinemia is a biomarker for increased metabolic and cardiovascular risk. Indeed, circulating adiponectin decreases in obesity and insulin-resistance, likely because of impaired production from white adipose tissue (WAT). Conversely, lean states such as caloric restriction (CR) are characterized by hyperadiponectinemia, even without increased adiponectin production from WAT. The reasons underlying this paradox have remained elusive, but our recent research suggests that CR-associated hyperadiponectinemia derives from an unexpected source: bone marrow adipose tissue (MAT). Herein, we elaborate on this surprising discovery, including further discussion of potential mechanisms influencing adiponectin production from MAT; additional evidence both for and against our conclusions; and observations suggesting that the relationship between MAT and adiponectin might extend beyond CR. While many questions remain, the burgeoning study of MAT promises to reveal further key insights into MAT biology, both as a source of adiponectin and beyond. PMID:27617171

  9. New Adipose Tissue Formation by Human Adipose-Derived Stem Cells with Hyaluronic Acid Gel in Immunodeficient Mice

    PubMed Central

    Huang, Shu-Hung; Lin, Yun-Nan; Lee, Su-Shin; Chai, Chee-Yin; Chang, Hsueh-Wei; Lin, Tsai-Ming; Lai, Chung-Sheng; Lin, Sin-Daw

    2015-01-01

    Background: Currently available injectable fillers have demonstrated limited durability. This report proposes the in vitro culture of human adipose-derived stem cells (hASCs) on hyaluronic acid (HA) gel for in vivo growth of de novo adipose tissue. Methods: For in vitro studies, hASCs were isolated from human adipose tissue and were confirmed by multi-lineage differentiation and flow cytometry. hASCs were cultured on HA gel. The effectiveness of cell attachment and proliferation on HA gel was surveyed by inverted light microscopy. For in vivo studies, HA gel containing hASCs, hASCs without HA gel, HA gel alone were allocated and subcutaneously injected into the subcutaneous pocket in the back of nude mice (n=6) in each group. At eight weeks post-injection, the implants were harvested for histological examination by hematoxylin and eosin (H&E) stain, Oil-Red O stain and immunohistochemical staining. The human-specific Alu gene was examined. Results: hASCs were well attachment and proliferation on the HA gel. In vivo grafts showed well-organized new adipose tissue on the HA gel by histologic examination and Oil-Red O stain. Analysis of neo-adipose tissues by PCR revealed the presence of the Alu gene. This study demonstrated not only the successful culture of hASCs on HA gel, but also their full proliferation and differentiation into adipose tissue. Conclusions: The efficacy of injected filler could be permanent since the reduction of the volume of the HA gel after bioabsorption could be replaced by new adipose tissue generated by hASCs. This is a promising approach for developing long lasting soft tissue filler. PMID:25589892

  10. Increased Adipogenesis of Human Adipose-Derived Stem Cells on Polycaprolactone Fiber Matrices

    PubMed Central

    Brännmark, Cecilia; Paul, Alexandra; Ribeiro, Diana; Magnusson, Björn; Brolén, Gabriella; Enejder, Annika; Forslöw, Anna

    2014-01-01

    With accelerating rates of obesity and type 2 diabetes world-wide, interest in studying the adipocyte and adipose tissue is increasing. Human adipose derived stem cells - differentiated to adipocytes in vitro - are frequently used as a model system for white adipocytes, as most of their pathways and functions resemble mature adipocytes in vivo. However, these cells are not completely like in vivo mature adipocytes. Hosting the cells in a more physiologically relevant environment compared to conventional two-dimensional cell culturing on plastic surfaces, can produce spatial cues that drive the cells towards a more mature state. We investigated the adipogenesis of adipose derived stem cells on electro spun polycaprolactone matrices and compared functionality to conventional two-dimensional cultures as well as to human primary mature adipocytes. To assess the degree of adipogenesis we measured cellular glucose-uptake and lipolysis and used a range of different methods to evaluate lipid accumulation. We compared the averaged results from a whole population with the single cell characteristics – studied by coherent anti-Stokes Raman scattering microscopy - to gain a comprehensive picture of the cell phenotypes. In adipose derived stem cells differentiated on a polycaprolactone-fiber matrix; an increased sensitivity in insulin-stimulated glucose uptake was detected when cells were grown on either aligned or random matrices. Furthermore, comparing differentiation of adipose derived stem cells on aligned polycaprolactone-fiber matrixes, to those differentiated in two-dimensional cultures showed, an increase in the cellular lipid accumulation, and hormone sensitive lipase content. In conclusion, we propose an adipocyte cell model created by differentiation of adipose derived stem cells on aligned polycaprolactone-fiber matrices which demonstrates increased maturity, compared to 2D cultured cells. PMID:25419971

  11. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation.

    PubMed

    Spencer, Michael; Yao-Borengasser, Aiwei; Unal, Resat; Rasouli, Neda; Gurley, Catherine M; Zhu, Beibei; Peterson, Charlotte A; Kern, Philip A

    2010-12-01

    Adipose tissue macrophages are associated with insulin resistance and are linked to changes in the extracellular matrix. To better characterize adipose macrophages, the extracellular matrix, and adipocyte-macrophage interactions, gene expression from adipose tissue and the stromal vascular fraction was assessed for markers of inflammation and fibrosis, and macrophages from obese and lean subjects were counted and characterized immunohistochemically. Coculture experiments examined the effects of adipocyte-macrophage interaction. Collagen VI gene expression was associated with insulin sensitivity and CD68 (r = -0.56 and 0.60, P < 0.0001) and with other markers of inflammation and fibrosis. Compared with adipose tissue from lean subjects, adipose tissue from obese subjects contained increased areas of fibrosis, which correlated inversely with insulin sensitivity (r = -0.58, P < 0.02) and positively with macrophage number (r = 0.70, P < 0.01). Although macrophages in crownlike structures (CLS) were more abundant in obese adipose tissue, the majority of macrophages were associated with fibrosis and were not organized in CLS. Macrophages in CLS were predominantly M1, but most other macrophages, particularly those in fibrotic areas, were M2 and also expressed CD150, a marker of M2c macrophages. Coculture of THP-1 macrophages with adipocytes promoted the M2 phenotype, with a lower level of IL-1 expression and a higher ratio of IL-10 to IL-12. Transforming growth factor-β (TGF-β) was more abundant in M2 macrophages and was further increased by coculture with adipocytes. Downstream effectors of TGF-β, such as plasminogen activator inhibitor-1, collagen VI, and phosphorylated Smad, were increased in macrophages and adipocytes. Thus adipose tissue of insulin-resistant humans demonstrated increased fibrosis, M2 macrophage abundance, and TGF-β activity.

  12. Adipose Tissue-Derived Stem Cells in Regenerative Medicine

    PubMed Central

    Frese, Laura; Dijkman, Petra E.; Hoerstrup, Simon P.

    2016-01-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted. PMID:27721702

  13. The Gq signalling pathway inhibits brown and beige adipose tissue.

    PubMed

    Klepac, Katarina; Kilić, Ana; Gnad, Thorsten; Brown, Loren M; Herrmann, Beate; Wilderman, Andrea; Balkow, Aileen; Glöde, Anja; Simon, Katharina; Lidell, Martin E; Betz, Matthias J; Enerbäck, Sven; Wess, Jürgen; Freichel, Marc; Blüher, Matthias; König, Gabi; Kostenis, Evi; Insel, Paul A; Pfeifer, Alexander

    2016-03-09

    Brown adipose tissue (BAT) dissipates nutritional energy as heat via the uncoupling protein-1 (UCP1) and BAT activity correlates with leanness in human adults. Here we profile G protein-coupled receptors (GPCRs) in brown adipocytes to identify druggable regulators of BAT. Twenty-one per cent of the GPCRs link to the Gq family, and inhibition of Gq signalling enhances differentiation of human and murine brown adipocytes. In contrast, activation of Gq signalling abrogates brown adipogenesis. We further identify the endothelin/Ednra pathway as an autocrine activator of Gq signalling in brown adipocytes. Expression of a constitutively active Gq protein in mice reduces UCP1 expression in BAT, whole-body energy expenditure and the number of brown-like/beige cells in white adipose tissue (WAT). Furthermore, expression of Gq in human WAT inversely correlates with UCP1 expression. Thus, our data indicate that Gq signalling regulates brown/beige adipocytes and inhibition of Gq signalling may be a novel therapeutic approach to combat obesity.

  14. The Gq signalling pathway inhibits brown and beige adipose tissue

    PubMed Central

    Klepac, Katarina; Kilić, Ana; Gnad, Thorsten; Brown, Loren M.; Herrmann, Beate; Wilderman, Andrea; Balkow, Aileen; Glöde, Anja; Simon, Katharina; Lidell, Martin E.; Betz, Matthias J.; Enerbäck, Sven; Wess, Jürgen; Freichel, Marc; Blüher, Matthias; König, Gabi; Kostenis, Evi; Insel, Paul A.; Pfeifer, Alexander

    2016-01-01

    Brown adipose tissue (BAT) dissipates nutritional energy as heat via the uncoupling protein-1 (UCP1) and BAT activity correlates with leanness in human adults. Here we profile G protein-coupled receptors (GPCRs) in brown adipocytes to identify druggable regulators of BAT. Twenty-one per cent of the GPCRs link to the Gq family, and inhibition of Gq signalling enhances differentiation of human and murine brown adipocytes. In contrast, activation of Gq signalling abrogates brown adipogenesis. We further identify the endothelin/Ednra pathway as an autocrine activator of Gq signalling in brown adipocytes. Expression of a constitutively active Gq protein in mice reduces UCP1 expression in BAT, whole-body energy expenditure and the number of brown-like/beige cells in white adipose tissue (WAT). Furthermore, expression of Gq in human WAT inversely correlates with UCP1 expression. Thus, our data indicate that Gq signalling regulates brown/beige adipocytes and inhibition of Gq signalling may be a novel therapeutic approach to combat obesity. PMID:26955961

  15. Adipose Tissue-Derived Stem Cells in Regenerative Medicine.

    PubMed

    Frese, Laura; Dijkman, Petra E; Hoerstrup, Simon P

    2016-07-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.

  16. Ceruloplasmin is a novel adipokine which is overexpressed in adipose tissue of obese subjects and in obesity-associated cancer cells.

    PubMed

    Arner, Erik; Forrest, Alistair R R; Ehrlund, Anna; Mejhert, Niklas; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Laurencikiene, Jurga; Rydén, Mikael; Arner, Peter

    2014-01-01

    Obesity confers an increased risk of developing specific cancer forms. Although the mechanisms are unclear, increased fat cell secretion of specific proteins (adipokines) may promote/facilitate development of malignant tumors in obesity via cross-talk between adipose tissue(s) and the tissues prone to develop cancer among obese. We searched for novel adipokines that were overexpressed in adipose tissue of obese subjects as well as in tumor cells derived from cancers commonly associated with obesity. For this purpose expression data from human adipose tissue of obese and non-obese as well as from a large panel of human cancer cell lines and corresponding primary cells and tissues were explored. We found expression of ceruloplasmin to be the most enriched in obesity-associated cancer cells. This gene was also significantly up-regulated in adipose tissue of obese subjects. Ceruloplasmin is the body's main copper carrier and is involved in angiogenesis. We demonstrate that ceruloplasmin is a novel adipokine, which is produced and secreted at increased rates in obesity. In the obese state, adipose tissue contributed markedly (up to 22%) to the total circulating protein level. In summary, we have through bioinformatic screening identified ceruloplasmin as a novel adipokine with increased expression in adipose tissue of obese subjects as well as in cells from obesity-associated cancers. Whether there is a causal relationship between adipose overexpression of ceruloplasmin and cancer development in obesity cannot be answered by these cross-sectional comparisons.

  17. Retention of sedentary obese visceral white adipose tissue phenotype with intermittent physical activity despite reduced adiposity.

    PubMed

    Wainright, Katherine S; Fleming, Nicholas J; Rowles, Joe L; Welly, Rebecca J; Zidon, Terese M; Park, Young-Min; Gaines, T'Keaya L; Scroggins, Rebecca J; Anderson-Baucum, Emily K; Hasty, Alyssa H; Vieira-Potter, Victoria J; Padilla, Jaume

    2015-09-01

    Regular physical activity is effective in reducing visceral white adipose tissue (AT) inflammation and oxidative stress, and these changes are commonly associated with reduced adiposity. However, the impact of multiple periods of physical activity, intercalated by periods of inactivity, i.e., intermittent physical activity, on markers of AT inflammation and oxidative stress is unknown. In the present study, 5-wk-old male C57BL/6 mice were randomized into three groups (n = 10/group): sedentary, regular physical activity, and intermittent physical activity, for 24 wk. All animals were singly housed and fed a diet containing 45% kcal from fat. Regularly active mice had access to voluntary running wheels throughout the study period, whereas intermittently active mice had access to running wheels for 3-wk intervals (i.e., 3 wk on/3 wk off) throughout the study. At death, regular and intermittent physical activity was associated with similar reductions in visceral AT mass (approximately -24%, P < 0.05) relative to sedentary. However, regularly, but not intermittently, active mice exhibited decreased expression of visceral AT genes related to inflammation (e.g., monocyte chemoattractant protein 1), immune cell infiltration (e.g., CD68, CD11c, F4/80, CD11b/CD18), oxidative stress (e.g., p47 phagocyte oxidase), and endoplasmic reticulum stress (e.g., CCAAT enhancer-binding protein homologous protein; all P < 0.05). Furthermore, regular, but not intermittent, physical activity was associated with a trend toward improvement in glucose tolerance (P = 0.059). Collectively, these findings suggest that intermittent physical activity over a prolonged period of time may lead to a reduction in adiposity but with retention of a sedentary obese white AT and metabolic phenotype.

  18. Modulation of age-related insulin sensitivity by VEGF-dependent vascular plasticity in adipose tissues

    PubMed Central

    Honek, Jennifer; Seki, Takahiro; Iwamoto, Hideki; Fischer, Carina; Li, Jingrong; Lim, Sharon; Samani, Nilesh J.; Zang, Jingwu; Cao, Yihai

    2014-01-01

    Mechanisms underlying age-related obesity and insulin resistance are generally unknown. Here, we report age-related adipose vascular changes markedly modulated fat mass, adipocyte functions, blood lipid composition, and insulin sensitivity. Notably, VEGF expression levels in various white adipose tissues (WATs) underwent changes uninterruptedly in different age populations. Anti-VEGF and anti- VEGF receptor 2 treatment in different age populations showed marked variations of vascular regression, with midaged mice exhibiting modest sensitivity. Interestingly, anti-VEGF treatment produced opposing effects on WAT adipocyte sizes in different age populations and affected vascular density and adipocyte sizes in brown adipose tissue. Consistent with changes of vasculatures and adipocyte sizes, anti-VEGF treatment increased insulin sensitivity in young and old mice but had no effects in the midaged group. Surprisingly, anti-VEGF treatment significantly improved insulin sensitivity in midaged obese mice fed a high-fat diet. Our findings demonstrate that adipose vasculatures show differential responses to anti-VEGF treatment in various age populations and have therapeutic implications for treatment of obesity and diabetes with anti-VEGF-based antiangiogenic drugs. PMID:25271320

  19. Sustained regeneration of high-volume adipose tissue for breast reconstruction using computer aided design and biomanufacturing.

    PubMed

    Chhaya, Mohit Prashant; Melchels, Ferry Petrus Wilhelmus; Holzapfel, Boris Michael; Baldwin, Jeremy Grant; Hutmacher, Dietmar Werner

    2015-06-01

    Adipose tissue engineering offers a promising alternative to the current breast reconstruction options. Here we investigated patient-specific breast scaffolds fabricated from poly(d,l)-lactide polymer with pore sizes>1 mm for their potential in long-term sustained regeneration of high volume adipose tissue. An optimised scaffold geometry was modelled in silico via a laser scanning data set from a patient who underwent breast reconstruction surgery. After the design process scaffolds were fabricated using an additive manufacturing technology termed fused deposition modelling. Breast-shaped scaffolds were seeded with human umbilical cord perivascular cells and cultured under static conditions for 4 weeks and subsequently 2 weeks in a biaxial rotating bioreactor. These in vitro engineered constructs were then seeded with human umbilical vein endothelial cells and implanted subcutaneously into athymic nude rats for 24 weeks. Angiogenesis and adipose tissue formation were observed throughout all constructs at all timepoints. The percentage of adipose tissue compared to overall tissue area increased from 37.17% to 62.30% between week 5 and week 15 (p<0.01), and increased to 81.2% at week 24 (p<0.01), while the seeded endothelial cells self-organised to form a functional capillary network. The presented approach of fabricating customised scaffolds using 3D scans represents a facile approach towards engineering clinically relevant volumes of adipose tissue for breast reconstruction.

  20. Encapsulation Thermogenic Preadipocytes for Transplantation into Adipose Tissue Depots

    PubMed Central

    Xu, Lu; Shen, Qiwen; Mao, Zhongqi; Lee, L. James; Ziouzenkova, Ouliana

    2015-01-01

    Cell encapsulation was developed to entrap viable cells within semi-permeable membranes. The engrafted encapsulated cells can exchange low molecular weight metabolites in tissues of the treated host to achieve long-term survival. The semipermeable membrane allows engrafted encapsulated cells to avoid rejection by the immune system. The encapsulation procedure was designed to enable a controlled release of bioactive compounds, such as insulin, other hormones, and cytokines. Here we describe a method for encapsulation of catabolic cells, which consume lipids for heat production and energy dissipation (thermogenesis) in the intra-abdominal adipose tissue of obese mice. Encapsulation of thermogenic catabolic cells may be potentially applicable to the prevention and treatment of obesity and type 2 diabetes. Another potential application of catabolic cells may include detoxification from alcohols or other toxic metabolites and environmental pollutants. PMID:26066392

  1. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  2. Visceral adipose tissue: emerging role of gluco- and mineralocorticoid hormones in the setting of cardiometabolic alterations

    PubMed Central

    Boscaro, Marco; Giacchetti, Gilberta; Ronconi, Vanessa

    2012-01-01

    Several clinical and experimental lines of evidence have highlighted the detrimental effects of visceral adipose tissue excess on cardiometabolic parameters. Besides, recent findings have shown the effects of gluco-and mineralocorticoid hormones on adipose tissue and have also underscored the interplay existing between such adrenal steroids and their respective receptors in the modulation of adipose tissue biology. While the fundamental role played by glucocorticoids on adipocyte differentiation and storage was already well known, the relevance of the mineralocorticoids in the physiology of the adipose organ is of recent acquisition. The local and systemic renin–angiotensin–aldosterone system (RAAS) acting on adipose tissue seems to contribute to the development of the cardiometabolic phenotype so that its modulation can have deep impact on human health. A better understanding of the pathophysiology of the adipose organ is of crucial importance in order to identify possible therapeutic approaches that can avoid the development of such cardiovascular and metabolic sequelae. PMID:22804097

  3. Psoriasis strikes back! Epicardial adipose tissue: another contributor to the higher cardiovascular risk in psoriasis.

    PubMed

    Raposo, Inês; Torres, Tiago

    2015-10-01

    For many years psoriasis was considered an inflammatory condition restricted to the skin. However, nowadays it is considered an immune-mediated, systemic inflammatory condition associated with numerous medical comorbidities, particularly cardiometabolic diseases, and overall cardiovascular mortality. Several studies have suggested that psoriasis may be an independent risk factor for atherosclerosis, indicating that psoriasis itself poses an intrinsic risk for cardiovascular disease, probably due to the disease's inflammatory burden. However, other causes beyond systemic inflammation and traditional cardiovascular risk factors may be implicated in cardiovascular disease in psoriasis. Recently, epicardial adipose tissue, an emerging cardiovascular risk factor, has been shown to be increased in psoriasis patients and to be associated with subclinical atherosclerosis, providing another possible link between psoriasis and atherosclerosis. The reason for the increase in epicardial adipose tissue in patients with psoriasis is unknown, but it is probably multifactorial, with genetic, immune-mediated and behavioral factors having a role. Thus, along with the increased prevalence of cardiometabolic risk factors and systemic inflammation in psoriasis, epicardial adipose tissue is probably another important contributor to the higher cardiovascular risk observed in psoriasis.

  4. Bezafibrate induces acyl-CoA oxidase mRNA levels and fatty acid peroxisomal beta-oxidation in rat white adipose tissue.

    PubMed

    Vázquez, M; Roglans, N; Cabrero, A; Rodríguez, C; Adzet, T; Alegret, M; Sánchez, R M; Laguna, J C

    2001-01-01

    Rats treated with bezafibrate, a PPAR activator, gain less body weight and increase daily food intake. Previously, we have related these changes to a shift of thermogenesis from brown adipose tissue to white adipose tissue attributable to bezafibrate, which induces uncoupling proteins (UCP), UCP-1 and UCP-3, in rat white adipocytes. Nevertheless, UCP induction was weak, implying additional mechanisms in the change of energy homeostasis produced by bezafibrate. Here we show that bezafibrate, in addition to inducing UCPs, modifies energy homeostasis by directly inducing aco gene expression and peroxisomal fatty acid beta-oxidation in white adipose tissue. Further, bezafibrate significantly reduced plasma triglyceride and leptin concentrations, without modifying the levels of PPARgamma or ob gene in white adipose tissue. These results indicate that bezafibrate reduces the amount of fatty acids available for triglyceride synthesis in white adipose tissue.

  5. Effects of ethyl acetate extract of Kaempferia parviflora on brown adipose tissue.

    PubMed

    Kobayashi, Hiroko; Horiguchi-Babamoto, Emi; Suzuki, Mio; Makihara, Hiroko; Tomozawa, Hiroshi; Tsubata, Masahito; Shimada, Tsutomu; Sugiyama, Kiyoshi; Aburada, Masaki

    2016-01-01

    We have previously reported the effects of Kaempferia parviflora (KP), including anti-obesity, preventing various metabolic diseases, and regulating differentiation of white adipose cells. In this study we used Tsumura, Suzuki, Obese Diabetes (TSOD) mice--an animal model of spontaneous obese type II diabetes--and primary brown preadipocytes to examine the effects of the ethyl acetate extract of KP (KPE) on brown adipose tissue, which is one of the energy expenditure organs. TSOD mice were fed with MF mixed with either KPE 0.3 or 1% for 8 weeks. Computed tomography images showed that whitening of brown adipocytes was suppressed in the interscapular tissue of the KPE group. We also examined mRNA expression of uncoupling protein 1 (UCP-1) and β3-adrenalin receptor (β3AR) in brown adipose tissue. As a result, mRNA expression of UCP-1 significantly increased in the KPE 1% treatment group, indicating that KPE activated brown adipose tissue. We then evaluated the direct effects of KPE on brown adipocytes using primary brown preadipocytes isolated from interscapular brown adipocytes in ICR mice. Triacylglycerol (TG) accumulation in primary brown preadipocytes was increased by KPE in a dose-dependent manner. Each mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), UCP-1, and β3AR exhibited an upward trend compared with the control group. Moreover, some polymethoxyflavonoids (PMFs), the main compound in KP, also increased TG accumulation. This study therefore showed that KPE enhanced the thermogenesis effect of brown adipocytes as well as promoted the differentiation of brown adipocyte cells.

  6. Transamination of branched chain amino acids (BCAA) in rat adipose tissue

    SciTech Connect

    Frick, G.P.; Goodman, H.M.

    1986-03-05

    Like most extrahepatic tissues, adipose tissue can transaminate the BCAA faster than they are oxidized. Catabolism of the BCAA by adipose tissue appears to be limited by the activity of branched chain ..cap alpha..-keto acid dehydrogenase (BCDH). Conditions which stimulate the activity of this intramitochondrial enzyme in tissue extracts also increase the rate at which (1-/sup 14/C)leucine (L) and (1-/sup 14/C)valine (V) are oxidized by tissue segments. However, when maximum rates of oxidation were measured, 10 mM L was oxidized to /sup 14/CO/sub 2/ 5 times faster than 10 mM V (30 +/- 2 vs. 6 +/- 1 nmol min/sup -1/ g tis/sup -1/). In contrast, the ..cap alpha..-keto analogs of L and V were oxidized by tissue segments at nearly equal rates which slightly exceeded the rate of L oxidation. These results suggested that transamination might limit the catabolism of V, perhaps due to its inaccessibility to transaminase. The distribution of transaminase activity in tissue extracts was determined after centrifugation to obtain mitochondrial and cytosolic fractions. L and V were transaminated at similar rates by enzymes in both fractions. Transaminase activity in the mitochondrial fraction was greater than that of the cytosol and exceeded the capacity of the tissue to oxidize L. Catabolism of BCAA may depend upon intramitochondrial transamination and oxidation of V may be slower than that of L because uptake of V by mitochondria may be slower than that of L.

  7. PPARγ Antagonist Gleevec Improves Insulin Sensitivity and Promotes the Browning of White Adipose Tissue

    PubMed Central

    Choi, Sun-Sil; Kim, Eun-Sun; Jung, Ji-Eun; Marciano, David P.; Jo, Ala; Koo, Ja Young; Choi, Soo Youn; Yang, Yong Ryoul; Jang, Hyun-Jun; Kim, Eung-Kyun; Park, Jiyoung; Kwon, Hyug Moo; Lee, In Hee; Park, Seung Bum; Myung, Kyung-Jae; Suh, Pann-Ghill; Griffin, Patrick R.

    2016-01-01

    Blocking phosphorylation of peroxisome proliferator–activated receptor (PPAR)γ at Ser273 is one of the key mechanisms for antidiabetes drugs to target PPARγ. Using high-throughput phosphorylation screening, we here describe that Gleevec blocks cyclin-dependent kinase 5–mediated PPARγ phosphorylation devoid of classical agonism as a PPARγ antagonist ligand. In high fat–fed mice, Gleevec improved insulin sensitivity without causing severe side effects associated with other PPARγ-targeting drugs. Furthermore, Gleevec reduces lipogenic and gluconeogenic gene expression in liver and ameliorates inflammation in adipose tissues. Interestingly, Gleevec increases browning of white adipose tissue and energy expenditure. Taken together, the results indicate that Gleevec exhibits greater beneficial effects on both glucose/lipid metabolism and energy homeostasis by blocking PPARγ phosphorylation. These data illustrate that Gleevec could be a novel therapeutic agent for use in insulin resistance and type 2 diabetes. PMID:26740599

  8. UCP1 inhibition in Cidea-overexpressing mice is physiologically counteracted by brown adipose tissue hyperrecruitment.

    PubMed

    Fischer, Alexander W; Shabalina, Irina G; Mattsson, Charlotte L; Abreu-Vieira, Gustavo; Cannon, Barbara; Nedergaard, Jan; Petrovic, Natasa

    2017-01-01

    Cidea is a gene highly expressed in thermogenesis-competent (UCP1-containing) adipose cells, both brown and brite/beige. Here, we initially demonstrate a remarkable adipose-depot specific regulation of Cidea expression. In classical brown fat, Cidea mRNA is expressed continuously and invariably, irrespective of tissue recruitment. However, Cidea protein levels are regulated posttranscriptionally, being conspicuously induced in the thermogenically recruited state. In contrast, in brite fat, Cidea protein levels are regulated at the transcriptional level, and Cidea mRNA and protein levels are proportional to tissue "briteness." Although routinely followed as a thermogenic molecular marker, Cidea function is not clarified. Here, we employed a gain-of-function approach to examine a possible role of Cidea in the regulation of thermogenesis. We utilized transgenic aP2-hCidea mice that overexpress human Cidea in all adipose tissues. We demonstrate that UCP1 activity is markedly suppressed in brown-fat mitochondria isolated from aP2-hCidea mice. However, mitochondrial UCP1 protein levels were identical in wild-type and transgenic mice. This implies a regulatory effect of Cidea on UCP1 activity, but as we demonstrate that Cidea itself is not localized to mitochondria, we propose an indirect inhibitory effect. The Cidea-induced inhibition of UCP1 activity (observed in isolated mitochondria) is physiologically relevant since the mice, through an appropriate homeostatic compensatory mechanism, increased the total amount of UCP1 in the tissue to exactly match the diminished thermogenic capacity of the UCP1 protein and retain unaltered nonshivering thermogenic capacity. Thus, we verified Cidea as being a marker of thermogenesis-competent adipose tissues, but we conclude that Cidea, unexpectedly, functions molecularly as an indirect inhibitor of thermogenesis.

  9. Tofogliflozin Improves Insulin Resistance in Skeletal Muscle and Accelerates Lipolysis in Adipose Tissue in Male Mice.

    PubMed

    Obata, Atsushi; Kubota, Naoto; Kubota, Tetsuya; Iwamoto, Masahiko; Sato, Hiroyuki; Sakurai, Yoshitaka; Takamoto, Iseki; Katsuyama, Hisayuki; Suzuki, Yoshiyuki; Fukazawa, Masanori; Ikeda, Sachiya; Iwayama, Kaito; Tokuyama, Kumpei; Ueki, Kohjiro; Kadowaki, Takashi

    2016-03-01

    Sodium glucose cotransporter 2 inhibitors have attracted attention as they exert antidiabetic and antiobesity effects. In this study, we investigated the effects of tofogliflozin on glucose homeostasis and its metabolic consequences and clarified the underlying molecular mechanisms. C57BL/6 mice were fed normal chow containing tofogliflozin (0.005%) for 20 weeks or a high-fat diet containing tofogliflozin (0.005%) for 8 weeks ad libitum. In addition, the animals were pair-fed in relation to controls to exclude the influence of increased food intake. Tofogliflozin reduced the body weight gain, mainly because of fat mass reduction associated with a diminished adipocyte size. Glucose tolerance and insulin sensitivity were ameliorated. The serum levels of nonesterified fatty acid and ketone bodies were increased and the respiratory quotient was decreased in the tofogliflozin-treated mice, suggesting the acceleration of lipolysis in the white adipose tissue and hepatic β-oxidation. In fact, the phosphorylation of hormone-sensitive lipase and the adipose triglyceride lipase protein levels in the white adipose tissue as well as the gene expressions related to β-oxidation, such as Cpt1α in the liver, were significantly increased. The hepatic triglyceride contents and the expression levels of lipogenic genes were decreased. Pair-fed mice exhibited almost the same results as mice fed an high-fat diet ad libitum. Moreover, a hyperinsulinemic-euglycemic clamp revealed that tofogliflozin improved insulin resistance by increasing glucose uptake, especially in the skeletal muscle, in pair-fed mice. Taken together, these results suggest tofogliflozin ameliorates insulin resistance and obesity by increasing glucose uptake in skeletal muscle and lipolysis in adipose tissue.

  10. A Methionine Deficient Diet Enhances Adipose Tissue Lipid Metabolism and Alters Anti-Oxidant Pathways in Young Growing Pigs

    PubMed Central

    Castellano, Rosa; Perruchot, Marie-Hélène; Conde-Aguilera, José Alberto; van Milgen, Jaap; Collin, Anne; Tesseraud, Sophie; Mercier, Yves; Gondret, Florence

    2015-01-01

    Methionine is a rate-limiting amino-acid for protein synthesis but non-proteinogenic roles on lipid metabolism and oxidative stress have been demonstrated. Contrary to rodents where a dietary methionine deficiency led to a lower adiposity, an increased lipid accretion rate has been reported in growing pigs fed a methionine deficient diet. This study aimed to clarify the effects of a dietary methionine deficiency on different aspects of tissue lipid metabolism and anti-oxidant pathways in young pigs. Post-weaned pigs (9.8 kg initial body weight) were restrictively-fed diets providing either an adequate (CTRL) or a deficient methionine supply (MD) during 10 days (n=6 per group). At the end of the feeding trial, pigs fed the MD diet had higher lipid content in subcutaneous adipose tissue. Expression levels of genes involved in glucose uptake, lipogenesis but also lipolysis, and activities of NADPH enzyme suppliers were generally higher in subcutaneous and perirenal adipose tissues of MD pigs, suggesting an increased lipid turnover in those pigs. Activities of the anti-oxidant enzymes superoxide dismutase, catalase and glutathione reductase were increased in adipose tissues and muscle of MD pigs. Expression level and activity of the glutathione peroxidase were also higher in liver of MD pigs, but hepatic contents in the reduced and oxidized forms of glutathione and glutathione reductase activity were lower compared with control pigs. In plasma, superoxide dismutase activity was higher but total anti-oxidant power was lower in MD pigs. These results show that a dietary methionine deficiency resulted in increased levels of lipogenesis and lipolytic indicators in porcine adipose tissues. Decreased glutathione content in the liver and coordinated increase of enzymatic antioxidant activities in adipose tissues altered the cellular redox status of young pigs fed a methionine-deficient diet. These findings illustrate that a rapidly growing animal differently adapts tissue

  11. Adipose tissue hormones and appetite and body weight regulators in insulin resistance.

    PubMed

    Koleva, Daniela Iv; Orbetzova, Maria M; Atanassova, Pepa K

    2013-01-01

    Impaired sensitivity to insulin (the so called insulin resistance, IR) occurs in a number of genetic and acquired conditions, including obesity, non-insulin dependent diabetes mellitus, polycystic ovary syndrome (PCOS) and metabolic syndrome (MS). In this review we discuss the correlation between IR, the adipose tissue hormones and appetite and body weight regulators. Leptin acts as a major adipostat: it suppresses food intake and activates catabolic pathways associated with increased energy production. It improves the peripheral insulin sensitivity and affects beta-cell function. Adiponectin is the only adipocytokine discovered so far that has anti-atherogenic properties. There is a reverse correlation between the serum adiponectin levels and the degree of obesity, IR, impaired glucose tolerance, dyslipidemia and atherosclerosis. Ghrelin stimulates food intake; of all circulating orexigenic hormones ghrelin is the most thoroughly studied. Ghrelin levels are decreased in MS and PCOS patients as this hormone is negatively correlated with body mass. Resistin is a hormone secreted by adipose tissues; a growing body of evidence suggests that it might be implicated in the link between obesity and diabetes. It has been found that the hormone's levels are significantly higher in obese people than those in normal body mass people. The recently discovered adipose tissue hormones, vaspin, visfatin, omentin-1 and their effect on IR development, have been increasingly researched.

  12. Dietary fatty acid metabolism of brown adipose tissue in cold-acclimated men

    PubMed Central

    Blondin, Denis P.; Tingelstad, Hans C.; Noll, Christophe; Frisch, Frédérique; Phoenix, Serge; Guérin, Brigitte; Turcotte, Éric E; Richard, Denis; Haman, François; Carpentier, André C.

    2017-01-01

    In rodents, brown adipose tissue (BAT) plays an important role in producing heat to defend against the cold and can metabolize large amounts of dietary fatty acids (DFA). The role of BAT in DFA metabolism in humans is unknown. Here we show that mild cold stimulation (18 °C) results in a significantly greater fractional DFA extraction by BAT relative to skeletal muscle and white adipose tissue in non-cold-acclimated men given a standard liquid meal containing the long-chain fatty acid PET tracer, 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid (18FTHA). However, the net contribution of BAT to systemic DFA clearance is comparatively small. Despite a 4-week cold acclimation increasing BAT oxidative metabolism 2.6-fold, BAT DFA uptake does not increase further. These findings show that cold-stimulated BAT can contribute to the clearance of DFA from circulation but its contribution is not as significant as the heart, liver, skeletal muscles or white adipose tissues. PMID:28134339

  13. PAI-1 and TNF-α profiles of adipose tissue in obese cardiovascular disease patients

    PubMed Central

    Bilgic Gazioglu, Sema; Akan, Gokce; Atalar, Fatma; Erten, Gaye

    2015-01-01

    Obesity as a leading preventable cause of death worldwide is closely linked to cardiovascular disease (CVD). Plasma plasminogen activator inhibitor (PAI)-1, a potent inhibitor of plasminogen activation and fibrinolysis, is increased in many clinical situations associated with high incidence of CVD. In the obesity-linked elevation of PAI-1, evidence points to TNF-α as an important regulator of PAI-1 expression in adipose tissue. Background: This study aims to evaluate mediastinal PAI-1 and TNF-α mRNA levels in adipose tissues (AT) and compare serum levels in obesity with and without coronary artery disease (CAD). Patients and methods: Obese patients with (n=37) and without CAD (n=20) were included in the study. Results: The serum levels of PAI-1 and TNF-α were significantly higher in obese patients with CAD compared to obese patients without CAD. PAI-1 mRNA expression was significantly increased in mediastinal adipose tissue (MAT) of obese patients with CAD compared to those without CAD, TNF-α mRNA expressions were found to be higher in EAT (epicardial AT), MAT and SAT (subcutaneous AT) of obese patients with CAD. Conclusions: The study demonstrated a close direct relationship between TNF-α and PAI-1. PAI-1 mRNA expression strongly correlated positively with serum TNF-α in MAT, and TNF-α expressions with PAI-1 serum levels. PMID:26884864

  14. Decellularized Extracellular Matrix Derived from Porcine Adipose Tissue as a Xenogeneic Biomaterial for Tissue Engineering

    PubMed Central

    Choi, Young Chan; Choi, Ji Suk; Kim, Beob Soo; Kim, Jae Dong; Yoon, Hwa In

    2012-01-01

    Cells in tissues are surrounded by the extracellular matrix (ECM), a gel-like material of proteins and polysaccharides that are synthesized and secreted by cells. Here we propose that the ECM can be isolated from porcine adipose tissue and holds great promise as a xenogeneic biomaterial for tissue engineering and regenerative medicine. Porcine adipose tissue is easily obtained in large quantities from commonly discarded food waste. Decellularization protocols have been developed for extracting an intact ECM while effectively eliminating xenogeneic epitopes and minimally disrupting the ECM composition. Porcine adipose tissue was defatted by homogenization and centrifugation. It was then decellularized via chemical (1.5 M sodium chloride and 0.5% sodium dodecyl sulfate) and enzymatic treatments (DNase and RNase) with temperature control. After decellularization, immunogenic components such as nucleic acids and α-Gal were significantly reduced. However, abundant ECM components, such as collagen (332.9±12.1 μg/mg ECM dry weight), sulfated glycosaminoglycan (GAG, 85±0.7 μg/mg ECM dry weight), and elastin (152.6±4.5 μg/mg ECM dry weight), were well preserved in the decellularized material. The biochemical and mechanical features of a decellularized ECM supported the adhesion and growth of human cells in vitro. Moreover, the decellularized ECM exhibited biocompatibility, long-term stability, and bioinductivity in vivo. The overall results suggest that the decellularized ECM derived from porcine adipose tissue could be useful as an alternative biomaterial for xenograft tissue engineering. PMID:22559904

  15. Inorganic nitrate promotes the browning of white adipose tissue through the nitrate-nitrite-nitric oxide pathway.

    PubMed

    Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Murray, Andrew J; Griffin, Julian L

    2015-02-01

    Inorganic nitrate was once considered an oxidation end product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach, we mechanistically defined that nitrate not only increases the expression of thermogenic genes in brown adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious comorbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Because resulting beige/brite cells exhibit antiobesity and antidiabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome.

  16. Long-term effects of evodiamine on expressions of lipogenesis and lipolysis genes in mouse adipose and liver tissues.

    PubMed

    Jiang, D F; Li, W T; Yang, H L; Zhang, Z Z; Chen, D; Sun, C

    2014-02-20

    Evodiamine, the major alkaloid component isolated from the fruit of dried, unripened Evodia rutaecarpa Bentham, affects the plasma levels of cholecystokinin and various biological events such as gastric emptying and gastrointestinal transit; these effects of evodiamine were previously investigated in male rats. In this study, we aimed to investigate the effects of evodiamine on average daily weight gain, rectal temperature, and expressions of genes involved in lipid metabolism in liver and adipose tissues. Evodiamine was added as a supplement, comprising 0.02, 0.04, and 0.06% of the diet fed to mice for 1, 2, 3, and 4 weeks. Results showed that average daily weight gain and rectal temperature decreased significantly over time in a dose-dependent manner. Evodiamine changed expressions of the peroxisome proliferator-activated receptor-g (PPARg) in mouse adipose and liver tissues in time- and dose-dependent manners. We found that evodiamine decreased mRNA expression of the sterol-regulatory element binding protein (SREBP-1c) and fatty acid synthase in adipose tissue. In addition, evodiamine increased expressions of hormone-sensitive lipase in both liver and adipose tissues. Interestingly, evodiamine increased the expression of triglyceride hydrolase only in adipose tissue. In conclusion, evodiamine could influence lipid metabolism through regulation of the expressions of its key genes, as well as reduce body heat and body weight.

  17. Inorganic Nitrate Promotes the Browning of White Adipose Tissue through the Nitrate-Nitrite-Nitric Oxide Pathway

    PubMed Central

    Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Griffin, Julian L

    2015-01-01

    Inorganic nitrate was once considered an oxidation end-product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach we mechanistically define that nitrate not only increases the expression of thermogenic genes in brown-adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious co-morbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Since resulting beige/brite cells exhibit anti-obesity and anti-diabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome. PMID:25249574

  18. Methyl-ß-cyclodextrin alters adipokine gene expression and glucose metabolism in swine adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine if metabolic stress as induced by methyl-ß-cyclodextrin (MCD) can alter cytokine expression in neonatal swine adipose tissue explants. Subcutaneous adipose tissue explants (100 ± 10 mg) were prepared from 21 day old pigs. Explants were incubated in medium 199 s...

  19. Calcium Sensing Receptor as a Novel Mediator of Adipose Tissue Dysfunction: Mechanisms and Potential Clinical Implications

    PubMed Central

    Bravo-Sagua, Roberto; Mattar, Pamela; Díaz, Ximena; Lavandero, Sergio; Cifuentes, Mariana

    2016-01-01

    Obesity is currently a serious worldwide public health problem, reaching pandemic levels. For decades, dietary and behavioral approaches have failed to prevent this disease from expanding, and health authorities are challenged by the elevated prevalence of co-morbid conditions. Understanding how obesity-associated diseases develop from a basic science approach is recognized as an urgent task to face this growing problem. White adipose tissue (WAT) is an active endocrine organ, with a crucial influence on whole-body homeostasis. WAT dysfunction plays a key role linking obesity with its associated diseases such as type 2 diabetes mellitus, cardiovascular disease, and some cancers. Among the regulators of WAT physiology, the calcium-sensing receptor (CaSR) has arisen as a potential mediator of WAT dysfunction. Expression of the receptor has been described in human preadipocytes, adipocytes, and the human adipose cell lines LS14 and SW872. The evidence suggests that CaSR activation in the visceral (i.e., unhealthy) WAT is associated with an increased proliferation of adipose progenitor cells and elevated adipocyte differentiation. In addition, exposure of adipose cells to CaSR activators in vitro elevates proinflammatory cytokine expression and secretion. An increased proinflammatory environment in WAT plays a key role in the development of WAT dysfunction that leads to peripheral organ fat deposition and insulin resistance, among other consequences. We propose that CaSR may be one relevant therapeutic target in the struggle to confront the health consequences of the current worldwide obesity pandemic. PMID:27660614

  20. Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues.

    PubMed

    Shan, Tizhong; Liu, Weiyi; Kuang, Shihuan

    2013-01-01

    Adipose tissues regulate metabolism, reproduction, and life span. The development and growth of adipose tissue are due to increases of both adipocyte cell size and cell number; the latter is mediated by adipocyte progenitors. Various markers have been used to identify either adipocyte progenitors or mature adipocytes. The fatty acid binding protein 4 (FABP4), commonly known as adipocyte protein 2 (aP2), has been extensively used as a marker for differentiated adipocytes. However, whether aP2 is expressed in adipogenic progenitors is controversial. Using Cre/LoxP-based cell lineage tracing in mice, we have identified a population of aP2-expressing progenitors in the stromal vascular fraction (SVF) of both white and brown adipose tissues. The aP2-lineage progenitors reside in the adipose stem cell niche and express adipocyte progenitor markers, including CD34, Sca1, Dlk1, and PDGFRα. When isolated and grown in culture, the aP2-expressing SVF cells proliferate and differentiate into adipocytes upon induction. Conversely, ablation of the aP2 lineage greatly reduces the adipogenic potential of SVF cells. When grafted into wild-type mice, the aP2-lineage progenitors give rise to adipose depots in recipient mice. Therefore, the expression of aP2 is not limited to mature adipocytes, but also marks a pool of undifferentiated progenitors associated with the vasculature of adipose tissues. Our finding adds to the repertoire of adipose progenitor markers and points to a new regulator of adipose plasticity.

  1. Calcium Sensing Receptor (CaSR) activation elevates proinflammatory factor expression in human adipose cells and adipose tissue

    PubMed Central

    Cifuentes, Mariana; Fuentes, Cecilia; Acevedo, Ingrid; Villalobos, Elisa; Hugo, Eric; Ben Jonathan, Nira; Reyes, Marcela

    2013-01-01

    We have previously established that human adipose cells and the human adipose cell line LS14 express the calcium sensing receptor (CaSR) and that its expression is elevated upon exposure to inflammatory cytokines that are typically elevated in obese humans. Research in recent years has established that an important part of the adverse metabolic and cardiovascular consequences of obesity derive from a dysfunction of the tissue, one of the mechanisms being a disordered secretion pattern leading to an excess of proinflammatory cytokines and chemokines. Given the reported association of the CaSR to inflammatory processes in other tissues, we sought to evaluate its role elevating the adipose expression of inflammatory factors. We exposed adipose tissue and in-vitro cultured LS14 preadipocytes and differentiated adipocytes to the calcimimetic cinacalcet and evaluated the expression or production of the proinflammatory cytokines IL6, IL1β and TNFα as well as the chemoattractant factor CCL2. CaSR activation elicited an elevation in the expression of the inflammatory factors, which was in part reverted by SN50, an inhibitor of the inflammatory mediator NFκB. Our observations suggest that CaSR activation elevates cytokine and chemokine production through a signaling pathway involving activation of NFκB nuclear translocation. These findings confirm the relevance of the CaSR in the pathophysiology of obesity-induced adipose tissue dysfunction, with an interesting potential for pharmacological manipulation in the fight against obesity- associated diseases. PMID:22449852

  2. Low Birth Weight Male Guinea Pig Offspring Display Increased Visceral Adiposity in Early Adulthood

    PubMed Central

    Sarr, Ousseynou; Thompson, Jennifer A.; Zhao, Lin; Lee, Ting-Yim; Regnault, Timothy R. H.

    2014-01-01

    Uteroplacental insufficiency (UPI)-induced intrauterine growth restriction (IUGR) predisposes individuals to adult visceral obesity. We postulated that low birth weight (LBW) offspring, from UPI-induced IUGR pregnancies, would display a visceral adipose lipogenic molecular signature involving altered gene expression, phosphorylation status of proteins of the lipid synthesis pathway and microRNA (miR) expression profile, occurring in association with increased visceral adiposity. Normal birth weight (NBW) and LBW (obtained by uterine artery ablation) male guinea pig pups were fed a control diet from weaning to 145 days and sacrificed. Despite being lighter at birth, LBW pups displayed body weights similar to NBW offspring at 145 days. At this age, which represents young adulthood, the relative weights of LBW epididymal white adipose tissue (EWAT) and lipid content were increased; which was consistent with adipocyte hypertrophy in the LBW offspring. Additionally, the mRNA expression of lipid synthesis-related genes including acetyl-CoA carboxylase 1 (ACC1), diglyceride acyltransferase 2 (DGAT2) and peroxisome proliferator-activated receptor gamma 1 (PPARγ1), was increased in LBW EWAT. Further, LBW EWAT displayed decreased phospho-ACC (Ser79) and phospho-PPARγ (Ser273) proteins. Moreover, the mRNA expression of hormone-sensitive lipase (HSL) and fatty acid binding protein 4 (FABP4), both involved in promoting adipose lipid storage, was increased in LBW EWAT. Finally, miR-24 and miR-103-2, miRs related to adipocyte development, were both increased in LBW EWAT. These findings indicate that, following an adverse in utero environment, lipid synthesis-related genes and miR expression, along with phosphorylation status of key regulators of lipid synthesis, appear to be chronically altered and occur in association with increased visceral adiposity in young adult IUGR male offspring. PMID:24926663

  3. Factors involved in white-to-brown adipose tissue conversion and in thermogenesis: a review.

    PubMed

    Montanari, T; Pošćić, N; Colitti, M

    2017-02-10

    Obesity is the result of energy intake chronically exceeding energy expenditure. Classical treatments against obesity do not provide a satisfactory long-term outcome for the majority of patients. After the demonstration of functional brown adipose tissue in human adults, great effort is being devoted to develop therapies based on the adipose tissue itself, through the conversion of fat-accumulating white adipose tissue into energy-dissipating brown adipose tissue. Anti-obesity treatments that exploit endogenous, pharmacological and nutritional factors to drive such conversion are especially in demand. In the present review, we summarize the current knowledge about the various molecules that can be applied in promoting white-to-brown adipose tissue conversion and energy expenditure and the cellular mechanisms involved.

  4. Adipose tissue proteomes of intrauterine growth-restricted piglets artificially reared on a high-protein neonatal formula.

    PubMed

    Sarr, Ousseynou; Louveau, Isabelle; Le Huërou-Luron, Isabelle; Gondret, Florence

    2012-11-01

    The eventuality that adipose tissues adapt to neonatal nutrition in a way that may program later adiposity or obesity in adulthood is receiving increasing attention in neonatology. This study assessed the immediate effects of a high-protein neonatal formula on proteome profiles of adipose tissues in newborn piglets with intrauterine growth restriction. Piglets (10th percentile) were fed milk replacers formulated to provide an adequate (AP) or a high (HP) protein supply from day 2 to the day prior weaning (day 28, n=5 per group). Adipocytes with small diameters were present in greater proportions in subcutaneous and perirenal adipose tissues from HP piglets compared with AP ones at this age. Two-dimensional gel electrophoresis analysis of adipose tissue depots revealed a total of 32 protein spots being up- or down-regulated (P<.10) for HP piglets compared with AP piglets; 18 of them were unambiguously identified by mass spectrometry. These proteins were notably related to signal transduction (annexin 2), redox status (peroxiredoxin 6, glutathione S-transferase omega 1, cyclophilin-A), carbohydrate metabolism (ribose-5-phosphate dehydrogenase, lactate dehydrogenase), amino acid metabolism (glutamate dehydrogenase 1) and cell cytoskeleton dynamics (dynactin and cofilin-1). Proteomic changes occurred mainly in dorsal subcutaneous adipose tissue, with the notable exception of annexin 1 involved in lipid metabolic process having a lower abundance in HP piglets for perirenal adipose tissue only. Together, modulation in those proteins could represent a novel starting point for elucidating catch-up fat growth observed in later life in growing animals having been fed HP formula.

  5. The role of brown adipose tissue in temperature regulation. [of hibernating and hypothermic mammals

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1973-01-01

    The thermogenetic capacities of brown adipose tissue were studied on marmots, rats and monkeys in response to cold exposure. All experiments indicated that the brown fat produced heat and slowed the cooling of tissues.

  6. Insulin Mediated 14C-Glucose Incorporation Into Adipose Tissue: An Undergraduate Biochemistry Experiment

    ERIC Educational Resources Information Center

    Landman, A. D.; Eskin, N. A. M.

    1975-01-01

    Describes an experiment in which rat adipose tissue samples are exposed to labeled glucose; insulin is added to one sample. Subsequent scintillation counting demonstrates the ability of insulin to facilitate the entry of glucose into the tissue. (MLH)

  7. The Roles of Adipokines, Proinflammatory Cytokines, and Adipose Tissue Macrophages in Obesity-Associated Insulin Resistance in Modest Obesity and Early Metabolic Dysfunction

    PubMed Central

    Kim, Ji Min; Joung, Kyong Hye; Lee, Ju Hee; You, Bo Ram; Choi, Min Jeong; Ryu, Min Jeong; Ko, Young Bok; Lee, Min A.; Lee, Junguee; Ku, Bon Jeong; Shong, Minho; Lee, Ki Hwan; Kim, Hyun Jin

    2016-01-01

    The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance have been explored in both animal and human studies. However, our current understanding of obesity-associated insulin resistance relies on studies of artificial metabolic extremes. The purpose of this study was to explore the roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in human patients with modest obesity and early metabolic dysfunction. We obtained omental adipose tissue and fasting blood samples from 51 females undergoing gynecologic surgery. We investigated serum concentrations of proinflammatory cytokines and adipokines as well as the mRNA expression of proinflammatory and macrophage phenotype markers in visceral adipose tissue using ELISA and quantitative RT-PCR. We measured adipose tissue inflammation and macrophage infiltration using immunohistochemical analysis. Serum levels of adiponectin and leptin were significantly correlated with HOMA-IR and body mass index. The levels of expression of MCP-1 and TNF-α in visceral adipose tissue were also higher in the obese group (body mass index ≥ 25). The expression of mRNA MCP-1 in visceral adipose tissue was positively correlated with body mass index (r = 0.428, p = 0.037) but not with HOMA-IR, whereas TNF-α in visceral adipose tissue was correlated with HOMA-IR (r = 0.462, p = 0.035) but not with body mass index. There was no obvious change in macrophage phenotype or macrophage infiltration in patients with modest obesity or early metabolic dysfunction. Expression of mRNA CD163/CD68 was significantly related to mitochondrial-associated genes and serum inflammatory cytokine levels of resistin and leptin. These results suggest that changes in the production of inflammatory biomolecules precede increased immune cell infiltration and induction of a macrophage phenotype switch in visceral adipose tissue. Furthermore, serum resistin and leptin have specific

  8. Bofutsushosan ameliorates obesity in mice through modulating PGC-1α expression in brown adipose tissues and inhibiting inflammation in white adipose tissues.

    PubMed

    Chen, Ying-Ying; Yan, Yan; Zhao, Zheng; Shi, Mei-Jing; Zhang, Yu-Bin

    2016-06-01

    The inducible co-activator PGC-1α plays a crucial role in adaptive thermogenesis and increases energy expenditure in brown adipose tissue (BAT). Meanwhile, chronic inflammation caused by infiltrated-macrophage in the white adipose tissue (WAT) is a target for the treatment of obesity. Bofutsushosan (BF), a traditional Chinese medicine composed of 17 crude drugs, has been widely used to treat obesity in China, Japan, and other Asia countries. However, the mechanism underlying anti-obesity remains to be elucidated. In the present study, we demonstrated that BF oral administration reduced the body weight of obese mice induced by high-fat diet (HFD) and alleviated the level of biochemical markers (P < 0.05), including blood glucose (Glu), total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL-C) and insulin. Our further results also indicated that oral BF administration increased the expression of PGC-1α and UCP1 in BAT. Moreover, BF also reduced the expression of inflammatory cytokines in WAT, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). These findings suggested that the mechanism of BF against obesity was at least partially through increasing gene expression of PGC-1α and UCP1 for energy consumption in BAT and inhibiting inflammation in WAT.

  9. Decellularized extracellular matrix derived from human adipose tissue as a potential scaffold for allograft tissue engineering.

    PubMed

    Choi, Ji Suk; Kim, Beob Soo; Kim, Jun Young; Kim, Jae Dong; Choi, Young Chan; Yang, Hyun-Jin; Park, Kinam; Lee, Hee Young; Cho, Yong Woo

    2011-06-01

    Decellularized tissues composed of extracellular matrix (ECM) have been clinically used to support the regeneration of various human tissues and organs. Most decellularized tissues so far have been derived from animals or cadavers. Therefore, despite the many advantages of decellularized tissue, there are concerns about the potential for immunogenicity and the possible presence of infectious agents. Herein, we present a biomaterial composed of ECM derived from human adipose tissue, the most prevalent, expendable, and safely harvested tissue in the human body. The ECM was extracted by successive physical, chemical, and enzymatic treatments of human adipose tissue isolated by liposuction. Cellular components including nucleic acids were effectively removed without significant disruption of the morphology or structure of the ECM. Major ECM components were quantified, including acid/pepsin-soluble collagen, sulfated glycosaminoglycan (GAG), and soluble elastin. In an in vivo experiment using mice, the decellularized ECM graft exhibited good compatibility to surrounding tissues. Overall results suggest that the decellularized ECM containing biological and chemical cues of native human ECM could be an ideal scaffold material not only for autologous but also for allograft tissue engineering.

  10. Adipose Tissue-Derived Stem Cells for Myocardial Regeneration

    PubMed Central

    Joo, Hyung Joon; Kim, Jong-Ho

    2017-01-01

    Over the past decade, stem cell therapy has been extensively studied for clinical application for heart diseases. Among various stem cells, adipose tissue-derived stem cell (ADSC) is still an attractive stem cell resource due to its abundance and easy accessibility. In vitro studies showed the multipotent differentiation potentials of ADSC, even differentiation into cardiomyocytes. Many pre-clinical animal studies have also demonstrated promising therapeutic results of ADSC. Furthermore, there were several clinical trials showing the positive results in acute myocardial infarction using ADSC. The present article covers the brief introduction, the suggested therapeutic mechanisms, application methods including cell dose and delivery, and human clinical trials of ADSC for myocardial regeneration. PMID:28382066

  11. Brown adipose tissue in humans: therapeutic potential to combat obesity.

    PubMed

    Carey, Andrew L; Kingwell, Bronwyn A

    2013-10-01

    Harnessing the considerable capacity of brown adipose tissue (BAT) to consume energy was first proposed as a potential target to control obesity nearly 40years ago. The plausibility of this approach was, however, questioned due to the prevailing view that BAT was either not present or not functional in adult humans. Recent definitive identification of functional BAT in adult humans as well as a number of important advances in the understanding of BAT biology has reignited interest in BAT as an anti-obesity target. Proof-of-concept evidence demonstrating drug-induced BAT activation provides an important foundation for development of targeted pharmacological approaches with clinical application. This review considers evidence from both human and relevant animal studies to determine whether harnessing BAT for the treatment of obesity via pharmacological intervention is a realistic goal.

  12. Activation of brown adipose tissue mitochondrial GDP binding sites

    SciTech Connect

    Swick, A.G.

    1987-01-01

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of (/sup 3/H)-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time.

  13. Protein turnover in adipose tissue from fasted or diabetic rats

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Ost, Alan H.; Coffman, Julia

    1986-01-01

    Protein synthesis and degradation in vitro were compared in epididymal fat pads from animals deprived of food for 48 h or treated 6 or 12 days prior with streptozotocin to induce diabetes. Although both fasting and diabetes led to depressed (-24 to -57 percent) protein synthesis, the diminution in protein degradation (-63 to -72 percent) was even greater, so that net in vitro protein balance improved dramatically. Insulin failed to inhibit protein degradation in fat pads of these rats as it does for fed animals. Although insulin stimulated protein synthesis in fat pads of fasted and 12 day diabetic rats, the absolute change was much smaller than that seen in the fed state. The inhibition of protein degradation by leucine also seems to be less in fasted animals, probably because leucine catabolism is slower in fasting. These results show that fasting and diabetes may improve protein balance in adipose tissue but diminish the regulatory effects of insulin.

  14. PAFR in adipose tissue macrophages is associated with anti-inflammatory phenotype and metabolic homoeostasis.

    PubMed

    Filgueiras, Luciano Ribeiro; Koga, Marianna Mainardi; Quaresma, Paula G; Ishizuka, Edson Kiyotaka; Montes, Marlise B A; Prada, Patricia O; Saad, Mario J; Jancar, Sonia; Rios, Francisco J

    2016-04-01

    Metabolic dysfunction is associated with adipose tissue inflammation and macrophage infiltration. PAFR (platelet-activating factor receptor) is expressed in several cell types and binds to PAF (platelet-activating factor) and oxidized phospholipids. Engagement of PAFR in macrophages drives them towards the anti-inflammatory phenotype. In the present study, we investigated whether genetic deficiency of PAFR affects the phenotype of ATMs (adipose tissue macrophages) and its effect on glucose and insulin metabolism. PARFKO (PAFR-knockout) and WT (wild-type) mice were fed on an SD (standard diet) or an HFD (high-fat diet). Glucose and insulin tolerance tests were performed by blood monitoring. ATMs were evaluated by FACS for phenotypic markers. Gene and protein expression was investigated by real-time reverse transcription-quantitative PCR and Western blotting respectively. Results showed that the epididymal adipose tissue of PAFRKO mice had increased gene expression of Ccr7, Nos2, Il6 and Il12, associated with pro-inflammatory mediators, and reduced expression of the anti-inflammatory Il10. Moreover, the adipose tissue of PAFRKO mice presented more pro-inflammatory macrophages, characterized by an increased frequency of F4/80(+)CD11c(+) cells. Blood monocytes of PAFRKO mice also exhibited a pro-inflammatory phenotype (increased frequency of Ly6C(+) cells) and PAFR ligands were detected in the serum of both PAFRKO and WT mice. Regarding metabolic parameters, compared with WT, PAFRKO mice had: (i) higher weight gain and serum glucose concentration levels; (ii) decreased insulin-stimulated glucose disappearance; (iii) insulin resistance in the liver; (iv) increased expression of Ldlr in the liver. In mice fed on an HFD, some of these changes were potentiated, particularly in the liver. Thus it seems that endogenous ligands of PAFR are responsible for maintaining the anti-inflammatory profile of blood monocytes and ATMs under physiological conditions. In the absence of

  15. Metabolic heterogeneity of activated beige/brite adipocytes in inguinal adipose tissue

    PubMed Central

    Lee, Yun-Hee; Kim, Sang-Nam; Kwon, Hyun-Jung; Granneman, James G.

    2017-01-01

    Sustained β3 adrenergic receptor (ADRB3) activation simultaneously upregulates fatty acid synthesis and oxidation in mouse brown, beige, and white adipose tissues; however, the cellular basis of this dual regulation is not known. Treatment of mice with the ADRB3 agonist CL316,243 (CL) increased expression of fatty acid synthase (FASN) and medium chain acyl-CoA dehydrogenase (MCAD) protein within the same cells in classic brown and white adipose tissues. Surprisingly, in inguinal adipose tissue, CL-upregulated FASN and MCAD in distinct cell populations: high MCAD expression occurred in multilocular adipocytes that co-expressed UCP1+, whereas high FASN expression occurred in paucilocular adipocytes lacking detectable UCP1. Genetic tracing with UCP1-cre, however, indicated nearly half of adipocytes with a history of UCP1 expression expressed high levels of FASN without current expression of UCP1. Global transcriptomic analysis of FACS-isolated adipocytes confirmed the presence of distinct anabolic and catabolic phenotypes, and identified differential expression of transcriptional pathways known to regulate lipid synthesis and oxidation. Surprisingly, paternally-expressed genes of the non-classical gene imprinted network were strikingly enriched in anabolic phenotypes, suggesting possible involvement in maintaining the balance of metabolic phenotypes. The results indicate that metabolic heterogeneity is a distinct property of activated beige/brite adipocytes that might be under epigenetic control. PMID:28045125