Science.gov

Sample records for adipose tissue muscle

  1. Adipose tissue and skeletal muscle plasticity modulates metabolic health.

    PubMed

    Ukropec, Jozef; Ukropcova, Barbara; Kurdiova, Timea; Gasperikova, Daniela; Klimes, Iwar

    2008-12-01

    Obesity, accumulation of adipose tissue, develops when energy intake exceeds energy expenditure. Adipose tissue is essential for buffering the differences between energy intake and expenditure by accumulating lipids while skeletal muscle is the energy burning machine. Here we adopted the concept that (i) adipose tissue ability to regulate the storage capacity for lipids as well as (ii) dynamic regulation of muscle and adipose tissue secretory and metabolic activity is important for maintaining the metabolic health. This might be at least in part related to tissue plasticity, a phenomenon enabling dynamic modulation of the tissue phenotype in different physiological and pathophysiological situations. Recent advances in our understanding of the complex endocrine function of adipose tissue in regulating lipid metabolism, adipogenesis, angiogenesis, extracellular matrix remodelling, inflammation and oxidative stress prompted us to review the role of tissue plasticity--dynamic changes in adipose tissue and skeletal muscle metabolic and endocrine phenotype--in determining the difference between metabolic health and disease.

  2. Adipose tissue and skeletal muscle blood flow during mental stress

    SciTech Connect

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  3. Irisin and Myonectin Regulation in the Insulin Resistant Muscle: Implications to Adipose Tissue: Muscle Crosstalk

    PubMed Central

    Gamas, Luis; Seiça, Raquel

    2015-01-01

    Myokines are peptides produced and secreted by the skeletal muscle, with autocrine, paracrine, and endocrine actions. Many of them are overexpressed during physical exercise and appear to contribute to the benefits of exercise to metabolic homeostasis. Irisin, resulting from the cleavage of the membrane protein FNDC5, was shown to induce adipocyte browning, with increased lipid oxidation and thermogenesis. Myonectin was only recently discovered and initial studies revealed a role in fatty acid uptake and oxidation in adipose tissue and liver. However, the mechanisms of their regulation by exercise are not entirely established. Impaired secretion and action of myokines, such as irisin and myonectin, may have a role in the establishment of insulin resistance. On the other hand, several studies have shown that insulin resistance in the skeletal muscle may change myokines expression and secretion. This may have consequences on lipid and glucose metabolism in adipose tissue and lead to a vicious cycle between impaired myokines production and insulin resistance. This review summarizes the current knowledge about the influence of skeletal muscle insulin resistance on the secretion of irisin and myonectin, as well as its impact on adipose tissue metabolism. PMID:26075283

  4. Ginsenoside Rg5 Inhibits Succinate-Associated Lipolysis in Adipose Tissue and Prevents Muscle Insulin Resistance

    PubMed Central

    Xiao, Na; Yang, Le-Le; Yang, Yi-Lin; Liu, Li-Wei; Li, Jia; Liu, Baolin; Liu, Kang; Qi, Lian-Wen; Li, Ping

    2017-01-01

    Endoplasmic reticulum (ER) stress, inflammation, and lipolysis occur simultaneously in adipose dysfunction and contribute to insulin resistance. This study was designed to investigate whether ginsenoside Rg5 could ameliorate adipose dysfunction and prevent muscle insulin resistance. Short-term high-fat diet (HFD) feeding induced hypoxia with ER stress in adipose tissue, leading to succinate accumulation due to the reversal of succinate dehydrogenase (SDH) activity. Rg5 treatment reduced cellular energy charge, suppressed ER stress and then prevented succinate accumulation in adipose tissue. Succinate promoted IL-1β production through NLRP3 inflammasome activation and then increased cAMP accumulation by impairing PDE3B expression, leading to increased lipolysis. Ginsenoside Rg5 treatment suppressed NLRP3 inflammasome activation, preserved PDE3B expression and then reduced cAMP accumulation, contributing to inhibition of lipolysis. Adipose lipolysis increased FFAs trafficking from adipose tissue to muscle. Rg5 reduced diacylglycerol (DAG) and ceramides accumulation, inhibited protein kinase Cθ translocation, and prevented insulin resistance in muscle. In conclusion, succinate accumulation in hypoxic adipose tissue acts as a metabolic signaling to link ER stress, inflammation and cAMP/PKA activation, contributing to lipolysis and insulin resistance. These findings establish a previously unrecognized role of ginsenosides in the regulation of lipid and glucose homeostasis and suggest that adipose succinate-associated NLRP3 inflammasome activation might be targeted therapeutically to prevent lipolysis and insulin resistance. PMID:28261091

  5. Quantifying the effect of adipose tissue in muscle oximetry by near infrared spectroscopy

    PubMed Central

    Nasseri, Nassim; Kleiser, Stefan; Ostojic, Daniel; Karen, Tanja; Wolf, Martin

    2016-01-01

    Change of muscle tissue oxygen saturation (StO2), due to exercise, measured by near infrared spectroscopy (NIRS) is known to be lower for subjects with higher adipose tissue thickness. This is most likely not physiological but caused by the superficial fat and adipose tissue. In this paper we assessed, in vitro, the influence of adipose tissue thickness on muscle StO2, measured by NIRS oximeters. We measured StO2 of a liquid phantom by 3 continuous wave (CW) oximeters (Sensmart Model X-100 Universal Oximetry System, INVOS 5100C, and OxyPrem v1.3), as well as a frequency-domain oximeter, OxiplexTS, through superficial layers with 4 different thicknesses. Later, we employed the results to calibrate OxyPrem v1.3 for adipose tissue thickness in-vivo. PMID:27895999

  6. Fat as a fuel: emerging understanding of the adipose tissue-skeletal muscle axis.

    PubMed

    Frayn, K N

    2010-08-01

    The early pioneers in the field of metabolism during exercise such as Lindhard and Krogh understood the importance of fat as a fuel for muscle contraction. But they could not have understood the details of the pathways involved, as neither the metabolic role of adipose tissue nor the transport role of non-esterified fatty acids (NEFA) in the plasma was clearly understood at the time. We now recognize that the onset of muscular contraction coincides with an increase in the delivery of NEFA from adipose tissue, probably coordinated by the sympatho-adrenal system. During light exercise, adipose tissue-derived NEFA make up the majority of the oxidative fuel used by muscle. As exercise is prolonged, the importance of NEFA increases. The onset of exercise is marked by an increased proportion of NEFAs entering beta-oxidation rather than re-esterification and recycling. At moderate intensities of exercise, other sources of fat, potentially plasma- and intramyocellular-triacylglycerol, supplement the supply of plasma NEFA. The delivery of NEFA is augmented by increased adipose tissue blood flow and by other stimuli such as atrial natriuretic peptide. Only during high-intensity exercise is there a failure of adipose tissue to deliver sufficient fatty acids for muscle (which is coupled with an inability of muscle to use them, even when fatty acids are supplied artificially). This limitation of adipose tissue NEFA delivery may reflect some feedback inhibition of lipolysis, perhaps via lactate, or possibly alpha-adrenergic inhibition of lipolysis at very high catecholamine concentrations.

  7. Myokines and adipokines: Involvement in the crosstalk between skeletal muscle and adipose tissue.

    PubMed

    Li, Fengna; Li, Yinghui; Duan, Yehui; Hu, Chien-An A; Tang, Yulong; Yin, Yulong

    2017-02-01

    Skeletal muscle and adipose tissue are the two largest organs in the body. Skeletal muscle is an effector organ, and adipose tissue is an organ that stores energy; in addition, they are endocrine organs that secrete cytokines, namely myokines and adipokines, respectively. Myokines consist of myostatin, interleukin (IL)-8, IL-15, irisin, fibroblast growth factor 21, and myonectin; adipokines include leptin, adiponectin, resistin, chemerin, and visfatin. Furthermore, certain cytokines, such as IL-6 and tumor necrosis factor-α, are released by both skeletal muscle and adipose tissue and exhibit a bioactive effect; thus, they are called adipo-myokines. Recently, novel myokines or adipokines were identified through the secretomic technique, which has expanded our knowledge on the previously unknown functions of skeletal muscle and adipose tissue and provide a new avenue of investigation for obesity treatment or animal production. This review focuses on the roles of and crosstalk between myokines and adipokines in skeletal muscle and adipose tissue that modulate the molecular events in the metabolic homeostasis of the whole body.

  8. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity.

    PubMed

    Guo, Tingqing; Jou, William; Chanturiya, Tatyana; Portas, Jennifer; Gavrilova, Oksana; McPherron, Alexandra C

    2009-01-01

    Myostatin (Mstn) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Mstn(-/-) mice have a dramatic increase in muscle mass, reduction in fat mass, and resistance to diet-induced and genetic obesity. To determine how Mstn deletion causes reduced adiposity and resistance to obesity, we analyzed substrate utilization and insulin sensitivity in Mstn(-/-) mice fed a standard chow. Despite reduced lipid oxidation in skeletal muscle, Mstn(-/-) mice had no change in the rate of whole body lipid oxidation. In contrast, Mstn(-/-) mice had increased glucose utilization and insulin sensitivity as measured by indirect calorimetry, glucose and insulin tolerance tests, and hyperinsulinemic-euglycemic clamp. To determine whether these metabolic effects were due primarily to the loss of myostatin signaling in muscle or adipose tissue, we compared two transgenic mouse lines carrying a dominant negative activin IIB receptor expressed specifically in adipocytes or skeletal muscle. We found that inhibition of myostatin signaling in adipose tissue had no effect on body composition, weight gain, or glucose and insulin tolerance in mice fed a standard diet or a high-fat diet. In contrast, inhibition of myostatin signaling in skeletal muscle, like Mstn deletion, resulted in increased lean mass, decreased fat mass, improved glucose metabolism on standard and high-fat diets, and resistance to diet-induced obesity. Our results demonstrate that Mstn(-/-) mice have an increase in insulin sensitivity and glucose uptake, and that the reduction in adipose tissue mass in Mstn(-/-) mice is an indirect result of metabolic changes in skeletal muscle. These data suggest that increasing muscle mass by administration of myostatin antagonists may be a promising therapeutic target for treating patients with obesity or diabetes.

  9. Muscle regeneration by adipose tissue-derived adult stem cells attached to injectable PLGA spheres.

    PubMed

    Kim, MiJung; Choi, Yu Suk; Yang, Seung Hye; Hong, Hea-Nam; Cho, Sung-Woo; Cha, Sang Myun; Pak, Jhang Ho; Kim, Chan Wha; Kwon, Seog Woon; Park, Chan Jeoung

    2006-09-22

    The [corrected] use of adult stem cells for cell-based tissue engineering and regeneration strategies represents a promising approach for skeletal muscle repair. We have evaluated the combination of adipose tissue-derived adult stem cells (ADSCs) obtained from autologous liposuction and injectable poly(lactic-co-glycolic acid) (PLGA) spheres for muscle regeneration. ADSCs attached to PLGA spheres and PLGA spheres alone were cultured in myogenic medium for 21 days and injected subcutaneously into the necks of nude mice. After 30 and 60 days, the mice were sacrificed, and newly formed tissues were analyzed by immunostaining, H and E staining, and RT-PCR. We found that ADSCs attached to PLGA spheres, but not PLGA spheres alone, were able to generate muscle tissue. These findings suggest that ADSCs and PLGA spheres are useful materials for muscle tissue engineering and that their combination can be used in clinical settings for muscle regeneration.

  10. Automated quantification of adipose and skeletal muscle tissue in whole-body MRI data for epidemiological studies

    NASA Astrophysics Data System (ADS)

    Wald, Diana; Teucher, Birgit; Dinkel, Julien; Kaaks, Rudolf; Delorme, Stefan; Meinzer, Hans-Peter; Heimann, Tobias

    2012-03-01

    The ratio between the amount of adipose and skeletal muscle tissue is an important determinant of metabolic health. Recent developments in MRI technology allow whole body scans to be performed for accurate assessment of body composition. In the present study, a total of 194 participants underwent a 2-point Dixon MRI sequence of the whole body. A fully automated image segmentation method quantifies the amount of adipose and skeletal muscle tissue by applying standard image processing techniques including thresholding, region growing and morphological operators. The adipose tissue is further divided into subcutaneous and visceral adipose tissue by using statistical shape models. All images were visually inspected. The quantitative analysis was performed on 44 whole-body MRI data using manual segmentations as ground truth data. We achieved 3.3% and 6.3% of relative volume difference between the manual and automated segmentation of subcutaneous and visceral adipose tissue, respectively. The validation of skeletal muscle tissue segmentation resulted in a relative volume difference of 7.8 +/- 4.2% and a volumetric overlap error of 6.4 +/- 2.3 %. To our knowledge, we are first to present a fully automated method which quantifies adipose and skeletal muscle tissue in whole-body MRI data. Due to the fully automated approach, results are deterministic and free of user bias. Hence, the software can be used in large epidemiological studies for assessing body fat distribution and the ratio of adipose to skeletal muscle tissue in relation to metabolic disease risk.

  11. Simulation of muscle and adipose tissue deformation in the passive human pharynx.

    PubMed

    Carrigy, Nicholas B; Carey, Jason P; Martin, Andrew R; Remmers, John E; Zareian, Ali; Topor, Zbigniew; Grosse, Joshua; Noga, Michelle; Finlay, Warren H

    2016-01-01

    Quantifying the contribution of passive mechanical deformation in the human pharynx to upper airway collapse is fundamental to understanding the competing biomechanical processes that maintain airway patency. This study uses finite element analysis to examine deformation in the passive human pharynx using an intricate 3D anatomical model based on computed tomography scan images. Linear elastic properties are assigned to bone, cartilage, ligament, tendon, and membrane structures based on a survey of values reported in the literature. Velopharyngeal and oropharyngeal cross-sectional area versus airway pressure slopes are determined as functions of Young's moduli of muscle and adipose tissue. In vivo pharyngeal mechanics for small deformations near atmospheric pressure are matched by altering Young's moduli of muscle and adipose tissue. The results indicate that Young's moduli ranging from 0.33 to 14 kPa for muscle and adipose tissue matched the in vivo range of area versus pressure slopes. The developed anatomical model and determined Young's moduli range are expected to be useful as a starting point for more complex simulations of human upper airway collapse and obstructive sleep apnea therapy.

  12. Metabolic and hemodynamic responses to exercise in subcutaneous adipose tissue and skeletal muscle.

    PubMed

    Boschmann, M; Rosenbaum, M; Leibel, R L; Segal, K R

    2002-11-01

    This study evaluated the effect of standardized bicycle exercise on metabolism and blood flow in abdominal ( aSAT) and femoral subcutaneous adipose tissue ( fSAT) and skeletal muscle in eleven women and nine men. Using microdialysis, the respective tissues were perfused with Ringer's solution (+ 50 mM ethanol) and dialysate [ethanol], [glycerol], [lactate] and [pyruvate] were measured in order to estimate blood flow (ethanol dilution technique), lipolysis and glycolysis, respectively. At rest, blood flow tended to be higher in the respective tissues of women when compared to men. During exercise, blood flow was increased significantly in fSAT and muscle, but not in aSAT. Dialysate [glycerol] was increased two- to three-fold in aSAT and fSAT, similarly in men and women. However, in muscle, dialysate [glycerol] was increased five-fold in women and four-fold in men without reaching a steady state in women. Corrected for blood flow, the increase in lipolysis was greater in muscle than in fSAT, and greater in fSAT than in aSAT, and in muscle the increase was greater for women compared with men. Dialysate [lactate] and [lactate]/[pyruvate] ratio were much more increased in muscle compared with aSAT and fSAT. It is concluded that lipids stored in muscle are rather used than lipids stored in adipose tissue for fueling the energy metabolism of muscle during exercise. During exercise, lipid mobilization is much greater in women than in men.

  13. Glucagon-like peptide-1 elicits vasodilation in adipose tissue and skeletal muscle in healthy men.

    PubMed

    Asmar, Ali; Asmar, Meena; Simonsen, Lene; Madsbad, Sten; Holst, Jens J; Hartmann, Bolette; Sorensen, Charlotte M; Bülow, Jens

    2017-02-01

    In healthy subjects, we recently demonstrated that during acute administration of GLP-1, cardiac output increased significantly, whereas renal blood flow remained constant. We therefore hypothesize that GLP-1 induces vasodilation in other organs, for example, adipose tissue, skeletal muscle, and/or splanchnic tissues. Nine healthy men were examined twice in random order during a 2-hour infusion of either GLP-1 (1.5 pmol kg(-1) min(-1)) or saline. Cardiac output was continuously estimated noninvasively concomitantly with measurement of intra-arterial blood pressure. Subcutaneous, abdominal adipose tissue blood flow (ATBF) was measured by the (133)Xenon clearance technique. Leg and splanchnic blood flow were measured by Fick's Principle, using indocyanine green as indicator. In the GLP-1 study, cardiac output increased significantly together with a significant increase in arterial pulse pressure and heart rate compared with the saline study. Subcutaneous, abdominal ATBF and leg blood flow increased significantly during the GLP-1 infusion compared with saline, whereas splanchnic blood flow response did not differ between the studies. We conclude that in healthy subjects, GLP-1 increases cardiac output acutely due to a GLP-1-induced vasodilation in adipose tissue and skeletal muscle together with an increase in cardiac work.

  14. Tofogliflozin Improves Insulin Resistance in Skeletal Muscle and Accelerates Lipolysis in Adipose Tissue in Male Mice.

    PubMed

    Obata, Atsushi; Kubota, Naoto; Kubota, Tetsuya; Iwamoto, Masahiko; Sato, Hiroyuki; Sakurai, Yoshitaka; Takamoto, Iseki; Katsuyama, Hisayuki; Suzuki, Yoshiyuki; Fukazawa, Masanori; Ikeda, Sachiya; Iwayama, Kaito; Tokuyama, Kumpei; Ueki, Kohjiro; Kadowaki, Takashi

    2016-03-01

    Sodium glucose cotransporter 2 inhibitors have attracted attention as they exert antidiabetic and antiobesity effects. In this study, we investigated the effects of tofogliflozin on glucose homeostasis and its metabolic consequences and clarified the underlying molecular mechanisms. C57BL/6 mice were fed normal chow containing tofogliflozin (0.005%) for 20 weeks or a high-fat diet containing tofogliflozin (0.005%) for 8 weeks ad libitum. In addition, the animals were pair-fed in relation to controls to exclude the influence of increased food intake. Tofogliflozin reduced the body weight gain, mainly because of fat mass reduction associated with a diminished adipocyte size. Glucose tolerance and insulin sensitivity were ameliorated. The serum levels of nonesterified fatty acid and ketone bodies were increased and the respiratory quotient was decreased in the tofogliflozin-treated mice, suggesting the acceleration of lipolysis in the white adipose tissue and hepatic β-oxidation. In fact, the phosphorylation of hormone-sensitive lipase and the adipose triglyceride lipase protein levels in the white adipose tissue as well as the gene expressions related to β-oxidation, such as Cpt1α in the liver, were significantly increased. The hepatic triglyceride contents and the expression levels of lipogenic genes were decreased. Pair-fed mice exhibited almost the same results as mice fed an high-fat diet ad libitum. Moreover, a hyperinsulinemic-euglycemic clamp revealed that tofogliflozin improved insulin resistance by increasing glucose uptake, especially in the skeletal muscle, in pair-fed mice. Taken together, these results suggest tofogliflozin ameliorates insulin resistance and obesity by increasing glucose uptake in skeletal muscle and lipolysis in adipose tissue.

  15. [Aspects of prenatal development of muscle and adipose tissue: principles, regulation, and influence of maternal nutrition].

    PubMed

    Kalbe, Claudia; Rehfeldt, Charlotte

    2005-01-01

    During pregnancy the developing embryo/foetus is completely dependent on the supply with nutrients and the removal of metabolic by-products through the maternal organism. Therefore, each lasting inadequate nutrient supply may have serious consequences for foetal development. As a kind of "nutritional programming" resulting adaptive changes may be maintained until or manifested at adult age. Intrauterine growth retardation (IUGR) may cause problems in animal health and result in poor animal performance. The relationships between prenatal development and the postnatal phenotypic appearance of muscle and fat are insufficiently investigated. The present paper provides selected aspects of the prenatal development of skeletal muscle (myogenesis) and adipose tissue (adipogenesis), refers to the importance of interactions between both tissues and is focussed on the influence of maternal nutrition on these processes.

  16. IL-15 concentrations in skeletal muscle and subcutaneous adipose tissue in lean and obese humans: local effects of IL-15 on adipose tissue lipolysis.

    PubMed

    Pierce, Joseph R; Maples, Jill M; Hickner, Robert C

    2015-06-15

    Animal/cell investigations indicate that there is a decreased adipose tissue mass resulting from skeletal muscle (SkM) IL-15 secretion (e.g., SkM-blood-adipose tissue axis). IL-15 could regulate fat mass accumulation in obesity via lipolysis, although this has not been investigated in humans. Therefore, the purpose was to examine whether SkM and/or subcutaneous adipose tissue (SCAT) IL-15 concentrations were correlated with SCAT lipolysis in lean and obese humans and determine whether IL-15 perfusion could induce lipolysis in human SCAT. Local SkM and abdominal SCAT IL-15 (microdialysis) and circulating IL-15 (blood) were sampled in lean (BMI: 23.1 ± 1.9 kg/m(2); n = 10) and obese (BMI: 34.7 ± 3.5 kg/m(2); n = 10) subjects at rest/during 1-h cycling exercise. Lipolysis (SCAT interstitial glycerol concentration) was compared against local/systemic IL-15. An additional probe in SCAT was perfused with IL-15 to assess direct lipolytic responses. SkM IL-15 was not different between lean and obese subjects (P = 0.45), whereas SCAT IL-15 was higher in obese vs. lean subjects (P = 0.02) and was correlated with SCAT lipolysis (r = 0.45, P = 0.05). Exercise increased SCAT lipolysis in lean and obese (P < 0.01), but exercise-induced SCAT lipolysis changes were not correlated with exercise-induced SCAT IL-15 changes. Microdialysis perfusion resulting in physiological IL-15 concentrations in the adipose tissue interstitium increased lipolysis in lean (P = 0.04) but suppressed lipolysis in obese (P < 0.01). Although we found no support for a human IL-15 SkM-blood-adipose tissue axis, IL-15 may be produced in/act on the abdominal SCAT depot. The extent to which this autocrine/paracrine IL-15 action regulates human body composition remains unknown.

  17. Dietary L-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle.

    PubMed

    Tan, Bie; Yin, Yulong; Liu, Zhiqiang; Tang, Wenjie; Xu, Haijun; Kong, Xiangfeng; Li, Xinguo; Yao, Kang; Gu, Wanting; Smith, Stephen B; Wu, Guoyao

    2011-05-01

    Obesity is a major health crisis worldwide and new treatments are needed to fight this epidemic. Using the swine model, we recently reported that dietary L-arginine (Arg) supplementation promotes muscle gain and reduces body-fat accretion. The present study tested the hypothesis that Arg regulates expression of key genes involved in lipid metabolism in skeletal muscle and white adipose tissue. Sixteen 110-day-old barrows were fed for 60 days a corn- and soybean-meal-based diet supplemented with 1.0% Arg or 2.05% L-alanine (isonitrogenous control). Blood samples, longissimus dorsi muscle and overlying subcutaneous adipose tissue were obtained from 170-day-old pigs for biochemical studies. Serum concentrations of leptin, alanine and glutamine were lower, but those for Arg and proline were higher in Arg-supplemented pigs than in control pigs. The percentage of oleic acid was higher but that of stearic acid and linoleic acid was lower in muscle of Arg-supplemented pigs, compared with control pigs. Dietary Arg supplementation increased mRNA levels for fatty acid synthase in muscle, while decreasing those for lipoprotein lipase, glucose transporter-4, and acetyl-coenzyme A carboxylase-α in adipose tissue. Additionally, mRNA levels for hormone sensitive lipase were higher in adipose tissue of Arg-supplemented pigs compared with control pigs. These results indicate that Arg differentially regulates expression of fat-metabolic genes in skeletal muscle and white adipose tissue, therefore favoring lipogenesis in muscle but lipolysis in adipose tissue. Our novel findings provide a biochemical basis for explaining the beneficial effect of Arg in improving the metabolic profile in mammals (including obese humans).

  18. Regulation Role of CRTC3 in Skeletal Muscle and Adipose Tissue.

    PubMed

    Liu, Jiaqi; Xu, Ziye; Wu, Weiche; Wang, Yizhen; Shan, Tizhong

    2017-03-21

    The cyclic adenosine monophosphate (cAMP) - protein kinase A (PKA) signaling pathway plays important role in regulating energy homeostasis. Many of the effects of the cAMP-PKA signaling is mediated through the cAMP responsive element binding protein (CREB) and its coactivator CREB-regulated transcription coactivators (CRTCs). CRTC3 is a member of CRTCs family proteins and plays important roles in glucose and energy metabolism. Previous studies shown that global knockout of CRTC3 enhances oxygen consumption and energy expenditure and subsequently protects the knockout animal against obesity. In skeletal muscle, CRTC3 affects lipid and glycogen metabolism and mitochondrial biogenesis. In white adipocytes, CRTC3 regulates GLUT4 expression and glucose uptake. More recently, the localization and function of CRTC3 in brown fat have been reported. In this review, we mainly discuss the regulatory role of CRTC3 in skeletal muscle and adipose tissues. This article is protected by copyright. All rights reserved.

  19. Fatty Acid Composition of Muscle, Adipose Tissue and Liver from Muskoxen (Ovibos moschatus) Living in West Greenland

    PubMed Central

    Alves, Susana P.; Raundrup, Katrine; Cabo, Ângelo; Bessa, Rui J. B.; Almeida, André M.

    2015-01-01

    Information about lipid content and fatty acid (FA) composition of muskoxen (Ovibos moschatos) edible tissues is very limited in comparison to other meat sources. Thus, this work aims to present the first in-depth characterization of the FA profile of meat, subcutaneous adipose tissue and liver of muskoxen living in West Greenland. Furthermore, we aim to evaluate the effect of sex in the FA composition of these edible tissues. Samples from muscle (Longissimus dorsi), subcutaneous adipose tissue and liver were collected from female and male muskoxen, which were delivered at the butchery in Kangerlussuaq (West Greenland) during the winter hunting season. The lipid content of muscle, adipose tissue and liver averaged 284, 846 and 173 mg/g of dry tissue, respectively. This large lipid contents confirms that in late winter, when forage availability is scarce, muskoxen from West Greenland still have high fat reserves, demonstrating that they are well adapted to seasonal feed restriction. A detailed characterization of FA and dimethylacetal composition of muskoxen muscle, subcutaneous adipose tissue and liver showed that there are little differences on FA composition between sexes. Nevertheless, the 18:1cis-9 was the most abundant FA in muscle and adipose tissue, reaching 43% of total FA in muscle. The high content of 18:1cis-9 suggests that it can be selectively stored in muskoxen tissues. Regarding the nutritional composition of muskoxen edible tissues, they are not a good source of polyunsaturated FA; however, they may contribute to a higher fat intake. Information about the FA composition of muskoxen meat and liver is scarce, so this work can contribute to the characterization of the nutritional fat properties of muskoxen edible tissues and can be also useful to update food composition databases. PMID:26678792

  20. Electrically Stimulated Adipose Stem Cells on Polypyrrole-Coated Scaffolds for Smooth Muscle Tissue Engineering.

    PubMed

    Björninen, Miina; Gilmore, Kerry; Pelto, Jani; Seppänen-Kaijansinkko, Riitta; Kellomäki, Minna; Miettinen, Susanna; Wallace, Gordon; Grijpma, Dirk; Haimi, Suvi

    2017-04-01

    We investigated the use of polypyrrole (PPy)-coated polymer scaffolds and electrical stimulation (ES) to differentiate adipose stem cells (ASCs) towards smooth muscle cells (SMCs). Since tissue engineering lacks robust and reusable 3D ES devices we developed a device that can deliver ES in a reliable, repeatable, and cost-efficient way in a 3D environment. Long pulse (1 ms) or short pulse (0.25 ms) biphasic electric current at a frequency of 10 Hz was applied to ASCs to study the effects of ES on ASC viability and differentiation towards SMCs on the PPy-coated scaffolds. PPy-coated scaffolds promoted proliferation and induced stronger calponin, myosin heavy chain (MHC) and smooth muscle actin (SMA) expression in ASCs compared to uncoated scaffolds. ES with 1 ms pulse width increased the number of viable cells by day 7 compared to controls and remained at similar levels to controls by day 14, whereas shorter pulses significantly decreased viability compared to the other groups. Both ES protocols supported smooth muscle expression markers. Our results indicate that electrical stimulation on PPy-coated scaffolds applied through the novel 3D ES device is a valid approach for vascular smooth muscle tissue engineering.

  1. Crucial yet divergent roles of mitochondrial redox state in skeletal muscle vs. brown adipose tissue energetics.

    PubMed

    Mailloux, Ryan J; Adjeitey, Cyril Nii-Klu; Xuan, Jian Ying; Harper, Mary-Ellen

    2012-01-01

    Reduced glutathione (GSH) is the major determinant of redox balance in mitochondria and as such is fundamental in the control of cellular bioenergetics. GSH is also the most important nonprotein antioxidant molecule in cells. Surprisingly, the effect of redox environment has never been examined in skeletal muscle and brown adipose tissue (BAT), two tissues that have exceptional dynamic range and that are relevant to the development of obesity and related diseases. Here, we show that the redox environment plays crucial, yet divergent, roles in modulating mitochondrial bioenergetics in skeletal muscle and BAT. Skeletal muscle mitochondria were found to naturally have a highly reduced environment (GSH/GSSG≈46), and this was associated with fairly high (∼40%) rates of state 4 (nonphosphorylating) respiration and decreased reactive oxygen species (ROS) emission. The deglutathionylation of uncoupling protein 3 (UCP3) following an increase in the reductive potential of mitochondria results in a further increase in nonphosphorylating respiration (∼20% in situ). BAT mitochondria were found to have a much more oxidized status (GSH/GSSG≈13) and had basal reactive oxygen species emission that was higher (∼250% increase in ROS generation) than that in skeletal muscle mitochondria. When redox status was subsequently increased (i.e., more reduced), UCP1-mediated uncoupling was more sensitive to GDP inhibition. Surprisingly, BAT was found to be devoid of glutaredoxin-2 (Grx2) expression, while there was abundant expression in skeletal muscle. Taken together, these findings reveal the importance of redox environment in controlling bioenergetic functions in both tissues, and the highly unique characteristics of BAT in this regard.

  2. Insulin-resistant subjects have normal angiogenic response to aerobic exercise training in skeletal muscle, but not in adipose tissue.

    PubMed

    Walton, R Grace; Finlin, Brian S; Mula, Jyothi; Long, Douglas E; Zhu, Beibei; Fry, Christopher S; Westgate, Philip M; Lee, Jonah D; Bennett, Tamara; Kern, Philip A; Peterson, Charlotte A

    2015-06-01

    Reduced vessel density in adipose tissue and skeletal muscle is associated with obesity and may result in decreased perfusion, decreased oxygen consumption, and insulin resistance. In the presence of VEGFA, Angiopoietin-2 (Angpt2) and Angiopoietin-1 (Angpt1) are central determinants of angiogenesis, with greater Angpt2:Angpt1 ratios promoting angiogenesis. In skeletal muscle, exercise training stimulates angiogenesis and modulates transcription of VEGFA, Angpt1, and Angpt2. However, it remains unknown whether exercise training stimulates vessel growth in human adipose tissue, and it remains unknown whether adipose angiogenesis is mediated by angiopoietin signaling. We sought to determine whether insulin-resistant subjects would display an impaired angiogenic response to aerobic exercise training. Insulin-sensitive (IS, N = 12) and insulin-resistant (IR, N = 14) subjects had subcutaneous adipose and muscle (vastus lateralis) biopsies before and after 12 weeks of cycle ergometer training. In both tissues, we measured vessels and expression of pro-angiogenic genes. Exercise training did not increase insulin sensitivity in IR Subjects. In skeletal muscle, training resulted in increased vessels/muscle fiber and increased Angpt2:Angpt1 ratio in both IR and IS subjects. However, in adipose, exercise training only induced angiogenesis in IS subjects, likely due to chronic suppression of VEGFA expression in IR subjects. These results indicate that skeletal muscle of IR subjects exhibits a normal angiogenic response to exercise training. However, the same training regimen is insufficient to induce angiogenesis in adipose tissue of IR subjects, which may help to explain why we did not observe improved insulin sensitivity following aerobic training.

  3. Effect of resistance exercise training on expression of Hsp70 and inflammatory cytokines in skeletal muscle and adipose tissue of STZ-induced diabetic rats.

    PubMed

    Molanouri Shamsi, M; Mahdavi, M; Quinn, L S; Gharakhanlou, R; Isanegad, A

    2016-09-01

    Impairment of adipose tissue and skeletal muscles accrued following type 1 diabetes is associated with protein misfolding and loss of adipose mass and skeletal muscle atrophy. Resistance training can maintain muscle mass by changing both inflammatory cytokines and stress factors in adipose tissue and skeletal muscle. The purpose of this study was to determine the effects of a 5-week ladder climbing resistance training program on the expression of Hsp70 and inflammatory cytokines in adipose tissue and fast-twitch flexor hallucis longus (FHL) and slow-twitch soleus muscles in healthy and streptozotocin-induced diabetic rats. Induction of diabetes reduced body mass, while resistance training preserved FHL muscle weight in diabetic rats without any changes in body mass. Diabetes increased Hsp70 protein content in skeletal muscles, adipose tissue, and serum. Hsp70 protein levels were decreased in normal and diabetic rats by resistance training in the FHL, but not soleus muscle. Furthermore, resistance training decreased inflammatory cytokines in FHL skeletal muscle. On the other hand, Hsp70 and inflammatory cytokine protein levels were increased by training in adipose tissue. Also, significant positive correlations between inflammatory cytokines in adipose tissue and skeletal muscles with Hsp70 protein levels were observed. In conclusion, we found that in diabetic rats, resistance training decreased inflammatory cytokines and Hsp70 protein levels in fast skeletal muscle, increased adipose tissue inflammatory cytokines and Hsp70, and preserved FHL muscle mass. These results suggest that resistance training can maintain skeletal muscle mass in diabetes by changing inflammatory cytokines and stress factors such as Hsp70 in skeletal muscle and adipose tissue.

  4. Peripheral effects of the endocannabinoid system in energy homeostasis: adipose tissue, liver and skeletal muscle.

    PubMed

    Silvestri, Cristoforo; Ligresti, Alessia; Di Marzo, Vincenzo

    2011-09-01

    The endocannabinoid system (ECS) is composed of lipid signalling ligands, their G-protein coupled receptors and the enzymes involved in ligand generation and metabolism. Increasingly, the ECS is emerging as a critical agent of energy metabolism regulation through its ability to modulate caloric intake centrally as well as nutrient transport, cellular metabolism and energy storage peripherally. Visceral obesity has been associated with an upregulation of ECS activity in several systems and inhibition of the ECS, either pharmacologically or genetically, results in decreased energy intake and increased metabolic output. This review aims to summarize the recent advances that have been made regarding our understanding of the role the ECS plays in crucial peripheral systems pertaining to energy homeostasis: adipose tissues, the liver and skeletal muscle.

  5. The role of matrix metalloproteinases in muscle and adipose tissue development and meat quality: A review.

    PubMed

    Christensen, Sara; Purslow, Peter P

    2016-09-01

    Matrix metalloproteinases (MMPs) are a group of enzymes that degrade extracellular matrix components but are also important signaling molecules that regulate many biological processes including muscle, adipose and connective tissue development. Most recently it has been discovered that MMPs act as intracellular signaling molecules inducing gene expression and altering related proteins in the nucleus. Several single nucleotide polymorphisms of MMPs and their inhibitors are known to exist and most of the research on MMPs to date has focused on their activity in relation to human health and disease. Nevertheless there is a growing body of evidence identifying important roles of MMPs as regulators of myogenesis, fibrogenesis and adipogenesis. The aim of this review is to highlight the currently known functions of the MMPs that have a direct bearing on the deposition of meat components and their relationship with meat quality. Some central pathways by which these enzymes can affect the tenderness, the amount and type of fatty acids are highlighted.

  6. Attenuated adipose tissue and skeletal muscle inflammation in obese mice with combined CD4+ and CD8+ T cell deficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-fat diet feeding in mice is characterized by accumulation of alpha Beta Y+T cells in adipose tissue. However, the contribution of ab T cells to obesity-induced inflammation of skeletal muscle, a major organ of glucose uptake, is unknown. This study was undertaken to evaluate the effect of alpha...

  7. Longitudinal bone, muscle and adipose tissue changes in physically active subjects – sex differences during adolescence and maturity

    PubMed Central

    Culvenor, A.G.; Boeth, H.; Diederichs, G.; Wirth, W.; Duda, G.; Eckstein, F.

    2016-01-01

    Objectives: To explore changes in bone, muscle and adipose tissue composition in athletes with high physical activity levels at different stages of life. Methods: Thigh MRIs were acquired at baseline and 2-year follow-up for 20 young (16±1 years) and 20 mature (46±5 years) athletes (10 males, 10 females, respectively). Longitudinal changes in cross-sectional areas (CSAs) of femoral bone, quadriceps muscle, and thigh subcutaneous (SCF) and intermuscular (IMF) adipose tissue were evaluated. Results: Adolescent males displayed significant muscle (+5.0%, 95%CI: 0.8, 9.2) and bone growth (+2.9%, 95%CI: 1.3, 4.5), whereas adolescent females did not (muscle: +0.8%, 95%CI: -2.2, 3.8; bone: +1.9%, 95%CI: -2.1, 5.6). Adolescent and mature females showed significant SCF increases (+11.0%, 95%CI: 0.9, 21.1 and +6.0%, 95%CI: 0.6, 11.4, respectively), whereas adolescent and mature males did not (+7.2%, 95%CI: -8.0, 22.5 and +1.5%, 95%CI: -9.7, 11.8, respectively). Muscle and bone changes were highly correlated in adolescent males (r=0.66), mature males (r=0.75) and mature females (r=0.68) but not in adolescent females (r=-0.11). Conclusions: The results suggest sex-specific patterns of age-related change in bone, muscle and adipose tissue, and tight coupling of bone and muscle growth. Sex-specific bone-muscle-adipose tissue relationships may have implications for understanding sex differences in fracture risk. PMID:27609038

  8. CONTRAST-ENHANCED ULTRASOUND ASSESSMENT OF IMPAIRED ADIPOSE TISSUE AND MUSCLE PERFUSION IN INSULIN-RESISTANT MICE

    PubMed Central

    Belcik, J. Todd; Davidson, Brian P.; Foster, Ted; Qi, Yue; Zhao, Yan; Peters, Dawn; Lindner, Jonathan R.

    2015-01-01

    Background In diabetes mellitus reduced perfusion and capillary surface area in skeletal muscle, which is a major glucose storage site, contributes to abnormal glucose homeostasis. Using contrast-enhanced ultrasound (CEU) we investigated whether abdominal adipose tissue perfusion is abnormal in insulin resistance (IR) and correlates with glycemic control. Methods and Results Abdominal adipose tissue and skeletal muscle CEU perfusion imaging was performed in obese IR (db/db) mice at 11-12 or 14-16 weeks of age, and in control lean mice. Time-intensity data were analyzed to quantify microvascular blood flow (MBF) and capillary blood volume (CBV). Blood glucose response over one hour was measured after insulin challenge (1 u/Kg, I.P.). Compared to control mice, db/db mice at 11-12 and 14-16 weeks had a higher glucose concentration area-under-the-curve after insulin (11.8±2.8, 20.6±4.3, and 28.4±5.9 mg·min/dL [×1000], respectively, p=0.0002), and also had lower adipose MBF (0.094±0.038, 0.035±0.010, and 0.023±0.01 mL/min/g, p=0.0002) and CBV (1.6±0.6, 1.0±0.3, and 0.5±0.1 mL/100 g, p=0.0017). The glucose area-under-the-curve correlated in a non-linear fashion with both adipose and skeletal muscle MBF and CBV. There were significant linear correlations between adipose and muscle MBF (r=0.81) and CBV (r=0.66). Adipocyte cell volume on histology was 25-fold higher in 14-16 week db/db versus control mice. Conclusions Abnormal adipose MBF and CBV in IR can be detected by CEU and correlates with the degree of impairment in glucose storage. Abnormalities in adipose tissue and muscle appear to be coupled. Impaired adipose tissue perfusion is in part explained by an increase in adipocyte size without proportional vascular response. PMID:25855669

  9. Thigh fat and muscle each contribute to excess cardiometabolic risk in South Asians, independent of visceral adipose tissue

    PubMed Central

    Eastwood, Sophie V; Tillin, Therese; Wright, Andrew; Mayet, Jamil; Godsland, Ian; Forouhi, Nita G; Whincup, Peter; Hughes, Alun D; Chaturvedi, Nishi

    2014-01-01

    Objective To compare fat distribution and associations between fat depots and cardiometabolic traits in South Asians and Europeans. Methods Five hundred and fourteen South Asians and 669 Europeans, aged 56-86. Questionnaires, record review, blood testing, and coronary artery calcification scores provided diabetes and clinical plus subclinical coronary heart disease (CHD) diagnoses. Abdominal visceral (VAT) and subcutaneous adipose tissue, thigh subcutaneous adipose tissue (TSAT), intermuscular and intramuscular thigh fat and thigh muscle were measured by CT. Results Accounting for body size, South Asians had greater VAT and TSAT than Europeans, but less thigh muscle. Associations between depots and disease were stronger in South Asians than Europeans. In multivariable analyses in South Asians, VAT was positively associated with diabetes and CHD, while TSAT and thigh muscle were protective for diabetes, and thigh muscle for CHD. Differences in VAT and thigh muscle only partially explained the excess diabetes and CHD in South Asians versus Europeans. Insulin resistance did not account for the effects of TSAT or thigh muscle. Conclusions Greater VAT and TSAT and lesser thigh muscle in South Asians contributed to ethnic differences in cardiometabolic disease. Effects of TSAT and thigh muscle were independent of insulin resistance. PMID:24862429

  10. Mass dynamics of wintering Pacific Black Brant: Body, adipose tissue, organ, and muscle masses vary with location

    USGS Publications Warehouse

    Mason, D.D.; Barboza, P.S.; Ward, D.H.

    2007-01-01

    We compared body size and mass of the whole body, organs, adipose tissue, and muscles of adult Pacific Black Brant (Branta bernicla nigricans (Lawrence, 1846)) collected concurrently in Alaska and Baja California during the fall, winter, and spring of 2002–2003. Head and tarsal lengths of males were similar between sites and slightly larger for females in Alaska than in Baja California. Brant appear to operate under similar physiological bounds, but patterns of nutrient allocation differ between sites. Birds wintering in Alaska lost similar amounts of adipose tissue during early winter as birds in Baja California gained during late winter before migration. Masses of the body, adipose tissue, and flight muscles during mid-winter were similar between sites. Seasonal adipose tissue deposition may, therefore, equally favor winter residency or long-distance migration. Gonad and liver masses increased in late winter for birds in Alaska but not for those in Baja California, suggesting birds wintering in Baja may delay reproductive development in favor of allocating reserves needed for migration. Phenotypic flexibility allows Brant to use widely divergent wintering sites. The wintering location of Brant likely depends more upon changes in environmental conditions and food availability, than upon physiological differences between the two wintering populations.

  11. FNDC5 expression and circulating irisin levels are modified by diet and hormonal conditions in hypothalamus, adipose tissue and muscle.

    PubMed

    Varela-Rodríguez, B M; Pena-Bello, L; Juiz-Valiña, P; Vidal-Bretal, B; Cordido, F; Sangiao-Alvarellos, S

    2016-07-19

    Irisin is processed from fibronectin type III domain-containing protein 5 (FNDC5). However, a controversy exists concerning irisin origin, regulation and function. To elucidate the relationship between serum irisin and FNDC5 mRNA expression levels, we evaluated plasma irisin levels and FNDC5 gene expression in the hypothalamus, gastrocnemius muscle and different depots of adipose tissue in models of altered metabolism. In normal rats, blood irisin levels diminished after 48-h fast and with leptin, insulin and alloxan treatments, and serum irisin concentrations increased in diabetic rats after insulin treatment and acute treatments of irisin increased blood insulin levels. No changes were observed during long-term experiments with different diets. We suggested that levels of circulating irisin are the result of the sum of the irisin produced by different depots of adipose tissue and skeletal muscle. This study shows for the first time that there are differences in FNDC5 expression depending on white adipose tissue depots. Moreover, a considerable decrease in visceral and epididymal adipose tissue depots correlated with increased FNDC5 mRNA expression levels, probably in an attempt to compensate the decrease that occurs in their mass. Hypothalamic FNDC5 expression did not change for any of the tested diets but increased with leptin, insulin and metformin treatments suggesting that the regulation of central and peripheral FNDC5/irisin expression and functions are different.

  12. FNDC5 expression and circulating irisin levels are modified by diet and hormonal conditions in hypothalamus, adipose tissue and muscle

    PubMed Central

    Varela-Rodríguez, B. M.; Pena-Bello, L.; Juiz-Valiña, P.; Vidal-Bretal, B.; Cordido, F.; Sangiao-Alvarellos, S.

    2016-01-01

    Irisin is processed from fibronectin type III domain-containing protein 5 (FNDC5). However, a controversy exists concerning irisin origin, regulation and function. To elucidate the relationship between serum irisin and FNDC5 mRNA expression levels, we evaluated plasma irisin levels and FNDC5 gene expression in the hypothalamus, gastrocnemius muscle and different depots of adipose tissue in models of altered metabolism. In normal rats, blood irisin levels diminished after 48-h fast and with leptin, insulin and alloxan treatments, and serum irisin concentrations increased in diabetic rats after insulin treatment and acute treatments of irisin increased blood insulin levels. No changes were observed during long-term experiments with different diets. We suggested that levels of circulating irisin are the result of the sum of the irisin produced by different depots of adipose tissue and skeletal muscle. This study shows for the first time that there are differences in FNDC5 expression depending on white adipose tissue depots. Moreover, a considerable decrease in visceral and epididymal adipose tissue depots correlated with increased FNDC5 mRNA expression levels, probably in an attempt to compensate the decrease that occurs in their mass. Hypothalamic FNDC5 expression did not change for any of the tested diets but increased with leptin, insulin and metformin treatments suggesting that the regulation of central and peripheral FNDC5/irisin expression and functions are different. PMID:27432282

  13. Defining dermal adipose tissue.

    PubMed

    Driskell, Ryan R; Jahoda, Colin A B; Chuong, Cheng-Ming; Watt, Fiona M; Horsley, Valerie

    2014-09-01

    Here, we explore the evolution and development of skin-associated adipose tissue with the goal of establishing nomenclature for this tissue. Underlying the reticular dermis, a thick layer of adipocytes exists that encases mature hair follicles in rodents and humans. The association of lipid-filled cells with the skin is found in many invertebrate and vertebrate species. Historically, this layer of adipocytes has been termed subcutaneous adipose, hypodermis and subcutis. Recent data have revealed a common precursor for dermal fibroblasts and intradermal adipocytes during development. Furthermore, the development of adipocytes in the skin is independent from that of subcutaneous adipose tissue development. Finally, the role of adipocytes has been shown to be relevant for epidermal homoeostasis during hair follicle regeneration and wound healing. Thus, we propose a refined nomenclature for the cells and adipose tissue underlying the reticular dermis as intradermal adipocytes and dermal white adipose tissue, respectively.

  14. Effect of 2,4-Thiazolidinedione on Limousin Cattle Growth and on Muscle and Adipose Tissue Metabolism

    PubMed Central

    Arévalo-Turrubiarte, M.; González-Dávalos, L.; Yabuta, A.; Garza, J. D.; Dávalos, J. L.; Mora, O.; Shimada, A.

    2012-01-01

    The main adipogenic transcription factor PPARγ possesses high affinity to 2,4-TZD, a member of the Thiazolidinedione family of insulin-sensitizing compounds used as adipogenic agents. We evaluated 2,4-TZD's effect on bovine growth and PPAR tissue expression. Seventeen Limousin bulls (18 month-old; 350 kg body weight (BW)) were assigned into 2 treatments: control and 2,4-TZD (8 mg/70 kg BW) and were fed until bulls reached 500 kg BW. They were weighed and their blood was sampled. DNA, RNA, and protein were determined in liver; skeletal muscle; subcutaneous (SC), omental, perirenal adipose tissues (AT) to determine protein synthesis rate and cellular size. Expression of PPAR mRNA was measured in liver and muscle (PPARα, -δ, and -γ) and SC adipose tissue (γ) by real-time PCR. No significant differences were found (P > 0.1) in weight gain, days on feed, and carcass quality. Muscle synthesis was greater in controls (P < 0.05); cell size was larger with 2,4-TZD (P < 0.05). PPARα, -δ, and -γ expressions with 2,4-TZD in liver were lower (P < 0.01) than in muscle. No differences were found for PPARγ mRNA expression in SCAT. The results suggest the potential use of 2,4-TZD in beef cattle diets, because it improves AT differentiation, liver, and muscle fatty acid oxidation that, therefore, might improve energy efficiency. PMID:23304114

  15. Effect of dietary energy source on in vitro substrate utilization and insulin sensitivity of muscle and adipose tissues of Angus and Wagyu steers.

    PubMed

    Rhoades, R D; Sawyer, J E; Chung, K Y; Schell, M L; Lunt, D K; Smith, S B

    2007-07-01

    Angus (n = 8; 210 kg of BW) and 7/8 Wagyu (n = 8; 174 kg of BW) steers were used to evaluate the effects of dietary energy source on muscle and adipose tissue metabolism and insulin sensitivity. Steers were assigned to either a grain-based (corn) or hay-based (hay) diet and fed to similar final BW. At slaughter, LM and s.c. and i.m. adipose tissue samples were collected. Portions of the LM and adipose tissues were placed immediately in liquid N for later measurement of glycolytic intermediates. Fresh LM and s.c. and i.m. adipose tissues were incubated with [U-(14)C]glucose to assess glucose metabolism in vitro. All in vitro measures were in the presence of 0 or 500 ng/mL of insulin. Also, s.c. and i.m. adipose tissues were incubated with [1-(14)C]acetate to quantify lipid synthesis in vitro. Glucose-6-phosphate and fructose-6-phosphate concentrations were 12.6- and 2.4-fold greater in muscle than in s.c. and i.m. adipose tissues, respectively. Diet did not affect acetate incorporation into fatty acids (P = 0.86). Insulin did not increase conversion of glucose to CO(2), lactate, or total lipid in steers fed hay but caused an increase (per cell) of 97 to 110% in glucose conversion to CO(2), 46 to 54% in glucose conversion to lactate, and 65 to 160% in glucose conversion to total lipid content in adipose tissue from steers fed corn. On a per-cell basis, s.c. adipose tissue had 37% greater glucose oxidation than i.m. adipose (P = 0.04) and 290% greater acetate incorporation into fatty acids than i.m. adipose (P = 0.04). Insulin addition to s.c. adipose tissue from corn-fed steers failed to stimulate glucose incorporation into fatty acids, but exposing i.m. adipose tissue from corn-fed steers to insulin resulted in a 165% increase in glucose incorporation into fatty acids. These results suggest that feeding hay limited both glucose supply and tissue capacity to increase glucose utilization in response to insulin without altering acetate conversion to fatty acids

  16. [Human brown adipose tissue].

    PubMed

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  17. Ursolic acid and mechanisms of actions on adipose and muscle tissue: a systematic review.

    PubMed

    Katashima, Carlos K; Silva, Vagner R; Gomes, Tatyanne L; Pichard, Claude; Pimentel, Gustavo D

    2017-03-23

    This systematic review aimed at addressing the ursolic acid actions as an adjunctive treatment of the obesity-mediated metabolic abnormalities. To explore our aims, we used the literature search including clinical and animal studies using the Medline and Google Scholar (up to December 2015). Out of 63 screened studies, 17 presented eligibility criteria, such as the use of ursolic acid on adiposity, energy expenditure and skeletal muscle mass in mice and humans. In the literature, we found that several physiological and molecular mechanisms are implicated in the effects of ursolic acid on obesity, energy expenditure, hepatic steatosis, skeletal muscle mass loss and physical fitness, such as (1) increase of thermogenesis by modulation adipocyte transcription factors, activation of 5' adenosine monophosphate-activated protein kinase and overexpression of the uncoupling protein 1 thermogenic marker; (2) enhancement of skeletal muscle mass by activation in bloodstream growth hormone and insulin-like growth factor-1 concentrations secretion, as well as in the activation of mammalian target of rapamycin and inhibition of ring-finger protein-1; and (3) improvement of physical fitness by skeletal muscle proliferator-activated receptor gamma co-activator alpha and sirtuin 1 expression. Therefore, supplementation with ursolic acid may be an adjunctive therapy for prevention and treatment of obesity-mediated and muscle mass-mediated metabolic consequences.

  18. Activation of AMPK improves inflammation and insulin resistance in adipose tissue and skeletal muscle from pregnant women.

    PubMed

    Liong, Stella; Lappas, Martha

    2015-12-01

    Gestational diabetes mellitus (GDM) is characterised by maternal peripheral insulin resistance and inflammation. Sterile inflammation and bacterial infection are key mediators of this enhanced inflammatory response. Adenosine monophosphate (AMP)-activated kinase (AMPK), which is decreased in insulin resistant states, possesses potent pro-inflammatory actions. There are, however, no studies on the role of AMPK in pregnancies complicated by GDM. Thus, the aims of this study were (i) to compare the expression of AMPK in adipose tissue and skeletal muscle from women with GDM and normal glucose-tolerant (NGT) pregnant women; and (ii) to investigate the effect of AMPK activation on inflammation and insulin resistance induced by the bacterial endotoxin lipopolysaccharide (LPS) and the pro-inflammatory cytokine IL-1β. When compared to NGT pregnant women, AMPKα activity was significantly lower in women with GDM as evidenced by a decrease in threonine phosphorylation of AMPKα. Activation of AMPK, using two pharmacologically distinct compounds, AICAR or phenformin, significantly suppressed LPS- or IL-1β-induced gene expression and secretion of pro-inflammatory cytokine IL-6, the chemokines IL-8 and MCP-1, and COX-2 and subsequent prostaglandin release from adipose tissue and skeletal muscle. In addition, activators of AMPK decreased skeletal muscle insulin resistance induced by LPS or IL-1β as evidenced by increased insulin-stimulated phosphorylation of IRS-1, GLUT-4 expression and glucose uptake. These findings suggest that AMPK may play an important role in inflammation and insulin resistance.

  19. Signalling pathways of an insulin-mimetic phosphoinositolglycan-peptide in muscle and adipose tissue.

    PubMed Central

    Kessler, A; Müller, G; Wied, S; Crecelius, A; Eckel, J

    1998-01-01

    A novel phosphoinositolglycan-peptide (PIG-P) from the yeast Saccharomyces cerevisiae potently mimicks insulin action on glucose transport and metabolism in rat muscle and adipose tissue. The aim of the present study was to elucidate the cellular signalling pathways of this insulin-mimetic compound. Rapid onset and reversibility of PIG-P action on glucose transport were observed in isolated adipocytes with a half-time of transport stimulation of 6-8 min (insulin less than 5 min). Combined treatment with PIG-P and insulin indicated additive stimulation of glucose transport at submaximal concentrations and non-additive action of both agents at maximal doses. The tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) was markedly increased in response to PIG-P in rat cardiomyocytes without any effect on the tyrosine phosphorylation of the insulin receptor beta-subunit. PIG-P action in these cells was accompanied by phosphorylation/dephosphorylation of several proteins with molecular masses of 15-30 kDa, a response not detected with insulin. Downstream signalling of IRS-1 was then analysed by monitoring IRS-1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity in cardiomyocytes. A stable (2 and 15 min incubation with PIG-P) 7-fold stimulation corresponding to about 50% of insulin action could be detected. Increased tyrosine phosphorylation of IRS-1 and enhanced PI 3-kinase activity in response to PIG-P independent of the insulin receptor was also observed in isolated adipocytes. Involvement of PI 3-kinase in PIG-P action was subsequently confirmed by the dose-dependent inhibition of PIG-P-activated glucose transport in rat diaphragm and adipocytes by the PI 3-kinase inhibitors wortmannin and LY294002. These data suggest divergent upstream signalling by insulin and PIG-P involving phosphoproteins not affected by insulin. However, PIG-P and insulin action converge at the level of IRS-1 inducing insulin-independent PI 3-kinase-mediated signalling to

  20. Differential effects of leucine on translation initiation factor activation and protein synthesis in skeletal muscle, renal and adipose tissues of neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In adult rats, protein synthesis in skeletal muscle and adipose tissue increases in response to pharmacological doses of leucine (Leu) administered orally. In neonatal pigs, a physiological increase in plasma leucine stimulates protein synthesis in skeletal muscle without increasing hepatic protein...

  1. Human Adipose Tissue Derived Stem Cells as a Source of Smooth Muscle Cells in the Regeneration of Muscular Layer of Urinary Bladder Wall

    PubMed Central

    SALEM, Salah Abood; HWIE, Angela Ng Min; SAIM, Aminuddin; CHEE KONG, Christopher Ho; SAGAP, Ismail; SINGH, Rajesh; YUSOF, Mohd Reusmaazran; MD ZAINUDDIN, Zulkifili; HJ IDRUS, Ruszymah

    2013-01-01

    Background: Adipose tissue provides an abundant source of multipotent cells, which represent a source of cell-based regeneration strategies for urinary bladder smooth muscle repair. Our objective was to confirm that adipose-derived stem cells (ADSCs) can be differentiated into smooth muscle cells. Methods: In this study, adipose tissue samples were digested with 0.075% collagenase, and the resulting ADSCs were cultured and expanded in vitro. ADSCs at passage two were differentiated by incubation in smooth muscle inductive media (SMIM) consisting of MCDB I31 medium, 1% FBS, and 100 U/mL heparin for three and six weeks. ADSCs in non-inductive media were used as controls. Characterisation was performed by cell morphology and gene and protein expression. Result: The differentiated cells became elongated and spindle shaped, and towards the end of six weeks, sporadic cell aggregation appeared that is typical of smooth muscle cell culture. Smooth muscle markers (i.e. alpha smooth muscle actin (ASMA), calponin, and myosin heavy chain (MHC)) were used to study gene expression. Expression of these genes was detected by PCR after three and six weeks of differentiation. At the protein expression level, ASMA, MHC, and smoothelin were expressed after six weeks of differentiation. However, only ASMA and smoothelin were expressed after three weeks of differentiation. Conclusion: Adipose tissue provides a possible source of smooth muscle precursor cells that possess the potential capability of smooth muscle differentiation. This represents a promising alternative for urinary bladder smooth muscle repair. PMID:24044001

  2. Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue.

    PubMed

    Galmozzi, Andrea; Mitro, Nico; Ferrari, Alessandra; Gers, Elise; Gilardi, Federica; Godio, Cristina; Cermenati, Gaia; Gualerzi, Alice; Donetti, Elena; Rotili, Dante; Valente, Sergio; Guerrini, Uliano; Caruso, Donatella; Mai, Antonello; Saez, Enrique; De Fabiani, Emma; Crestani, Maurizio

    2013-03-01

    Chromatin modifications are sensitive to environmental and nutritional stimuli. Abnormalities in epigenetic regulation are associated with metabolic disorders such as obesity and diabetes that are often linked with defects in oxidative metabolism. Here, we evaluated the potential of class-specific synthetic inhibitors of histone deacetylases (HDACs), central chromatin-remodeling enzymes, to ameliorate metabolic dysfunction. Cultured myotubes and primary brown adipocytes treated with a class I-specific HDAC inhibitor showed higher expression of Pgc-1α, increased mitochondrial biogenesis, and augmented oxygen consumption. Treatment of obese diabetic mice with a class I- but not a class II-selective HDAC inhibitor enhanced oxidative metabolism in skeletal muscle and adipose tissue and promoted energy expenditure, thus reducing body weight and glucose and insulin levels. These effects can be ascribed to increased Pgc-1α action in skeletal muscle and enhanced PPARγ/PGC-1α signaling in adipose tissue. In vivo ChIP experiments indicated that inhibition of HDAC3 may account for the beneficial effect of the class I-selective HDAC inhibitor. These results suggest that class I HDAC inhibitors may provide a pharmacologic approach to treating type 2 diabetes.

  3. Transcript profiles in longissimus dorsi muscle and subcutaneous adipose tissue: a comparison of pigs with different postweaning growth rates.

    PubMed

    Pilcher, C M; Jones, C K; Schroyen, M; Severin, A J; Patience, J F; Tuggle, C K; Koltes, J E

    2015-05-01

    Although most pigs recover rapidly from stresses associated with the transition of weaning, a portion of the population lags behind their contemporaries in growth performance. The underlying biological and molecular mechanisms involved in postweaning differences in growth performance are poorly understood. The objective of this experiment was to use transcriptional profiling of skeletal muscle and adipose tissue to develop a better understanding of the metabolic basis for poor weaned-pig transition. A total of 1,054 pigs was reared in commercial conditions and weighed at birth, weaning, and 3 wk postweaning. Transition ADG (tADG) was calculated as the ADG for the 3-wk period postweaning. Nine pigs from both the lowest 10th percentile (low tADG) and the 60th to 70th percentile (high tADG) were harvested at 3 wk postweaning. Differential expression analysis was conducted in longissimus dorsi muscle (LM) and subcutaneous adipose tissue using RNA-Seq methodology. In LM, 768 transcripts were differentially expressed (DE), 327 with higher expression in low tADG and 441 with higher expression in high tADG pigs (q < 0.10). Expression patterns measured in LM by RNA-Seq were verified in 30 of 32 transcripts using quantitative PCR. No DE transcripts were identified in adipose tissue. To identify biological functions potentially underlying the effects of tADG on skeletal muscle metabolism and physiology, functional annotation analysis of the DE transcripts was conducted using DAVID and Pathway Studio analytic tools. The group of DE genes with lower expression in LM of low tADG pigs was enriched in genes with functions related to muscle contraction, glucose metabolism, cytoskeleton organization, muscle development, and response to hormone stimulus (enrichment score > 1.3). The list of DE genes with higher expression in low tADG LM was enriched in genes with functions related to protein catabolism (enrichment score > 1.3). Analysis of known gene-gene interactions identified

  4. Activation of the hexosamine signaling pathway in adipose tissue results in decreased serum adiponectin and skeletal muscle insulin resistance.

    PubMed

    Hazel, Mark; Cooksey, Robert C; Jones, Deborah; Parker, Glendon; Neidigh, John L; Witherbee, Bryan; Gulve, Eric A; McClain, Donald A

    2004-05-01

    Overexpression of the rate-limiting enzyme for hexosamine synthesis (glutamine:fructose-6-phosphate amidotransferase) in muscle and adipose tissue of transgenic mice was previously shown to result in insulin resistance and hyperleptinemia. Explanted muscle from transgenic mice was not insulin resistant in vitro, suggesting that muscle insulin resistance could be mediated by soluble factors from fat tissue. To dissect the relative contributions of muscle and fat to hexosamine-induced insulin resistance, we overexpressed glutamine:fructose-6-phosphate amidotransferase 2.5-fold, specifically in fat under control of the aP2 promoter. Fasting glucose, insulin, and triglycerides were unchanged in the transgenic mice; leptin and beta-hydroxybutyrate levels were 91% and 29% higher, respectively. Fasted transgenic mice have mild glucose intolerance and skeletal muscle insulin resistance in vivo. In fasting transgenic mice, glucose disposal rates with hyperinsulinemia were decreased 27% in females and 10% in males. Uptake of 2-deoxy-D-glucose into muscle was diminished by 45% in female and 21% in male transgenics. Serum adiponectin was also lower in the fasted transgenics, by 37% in females and 22% in males. TNF alpha and resistin mRNA levels in adipose tissue were not altered in the fasted transgenics; levels of mRNA for leptin were increased and peroxisome proliferator-activated receptor gamma decreased. To further explore the relationship between adiponectin and insulin sensitivity, we examined mice that have been refed for 6 h after a 24-h fast. Refeeding wild-type mice resulted in decreased serum adiponectin and increased leptin. In transgenic mice, however, the regulation of these hormones by refeeding was lost for adiponectin and diminished for leptin. Refed transgenic female and male mice no longer exhibited decreased serum adiponectin in the refed state, and they were no longer insulin resistant as by lower or unchanged insulin and glucose levels. We conclude that

  5. Adipose and Muscle Tissue Gene Expression of Two Genes (NCAPG and LCORL) Located in a Chromosomal Region Associated with Cattle Feed Intake and Gain

    PubMed Central

    Lindholm-Perry, Amanda K.; Kuehn, Larry A.; Oliver, William T.; Sexten, Andrea K.; Miles, Jeremy R.; Rempel, Lea A.; Cushman, Robert A.; Freetly, Harvey C.

    2013-01-01

    A region on bovine chromosome 6 has been implicated in cattle birth weight, growth, and length. Non-SMC conodensin I complex subunit G (NCAPG) and ligand dependent nuclear receptor corepressor-like protein (LCORL) are positional candidate genes within this region. Previously identified genetic markers in both genes were associated with average daily gain (ADG) and average daily feed intake (ADFI) in a crossbred population of beef steers. These markers were also associated with hot carcass weight, ribeye area and adjusted fat thickness suggesting that they may have a role in lean muscle growth and/or fat deposition. The purpose of this study was to determine whether the transcript abundance of either of these genes in cattle adipose and muscle tissue was associated with variation in feed intake and average daily gain phenotypes. Transcript abundance for NCAPG and LCORL in adipose and muscle tissue was measured in heifers (adipose only), cows and steers using real-time polymerase chain reaction. In the adipose tissue from cows and heifers, a negative correlation between LCORL transcript abundance and ADFI were detected (P = 0.05). In the muscle tissue from cows, transcript abundance of NCAPG was associated with ADG (r = 0.26; P = 0.009). A positive correlation between LCORL transcript abundance from muscle tissue of steers and ADFI was detected (P = 0.04). LCORL protein levels in the muscle of steers were investigated and were associated with ADFI (P = 0.01). These data support our earlier genetic associations with ADFI and ADG within this region and represent the potential for biological activity of these genes in the muscle and adipose tissues of beef cattle; however, they also suggest that sex, age and/or nutrition-specific interactions may affect the expression of NCAPG and LCORL in these tissues. PMID:24278337

  6. Resveratrol ameliorates the chemical and microbial induction of inflammation and insulin resistance in human placenta, adipose tissue and skeletal muscle

    PubMed Central

    Tran, Ha T.; Liong, Stella; Lim, Ratana; Barker, Gillian

    2017-01-01

    Gestational diabetes mellitus (GDM), which complicates up to 20% of all pregnancies, is associated with low-grade maternal inflammation and peripheral insulin resistance. Sterile inflammation and infection are key mediators of this inflammation and peripheral insulin resistance. Resveratrol, a stilbene-type phytophenol, has been implicated to exert beneficial properties including potent anti-inflammatory and antidiabetic effects in non-pregnant humans and experimental animal models of GDM. However, studies showing the effects of resveratrol on inflammation and insulin resistance associated with GDM in human tissues have been limited. In this study, human placenta, adipose (omental and subcutaneous) tissue and skeletal muscle were stimulated with pro-inflammatory cytokines TNF-α and IL-1β, the bacterial product lipopolysaccharide (LPS) and the synthetic viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) to induce a GDM-like model. Treatment with resveratrol significantly reduced the expression and secretion of pro-inflammatory cytokines IL-6, IL-1α, IL-1β and pro-inflammatory chemokines IL-8 and MCP-1 in human placenta and omental and subcutaneous adipose tissue. Resveratrol also significantly restored the defects in the insulin signalling pathway and glucose uptake induced by TNF-α, LPS and poly(I:C). Collectively, these findings suggest that resveratrol reduces inflammation and insulin resistance induced by chemical and microbial products. Resveratrol may be a useful preventative therapeutic for pregnancies complicated by inflammation and insulin resistance, like GDM. PMID:28278187

  7. Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies

    PubMed Central

    Kurdiova, Timea; Balaz, Miroslav; Vician, Marek; Maderova, Denisa; Vlcek, Miroslav; Valkovic, Ladislav; Srbecky, Miroslav; Imrich, Richard; Kyselovicova, Olga; Belan, Vitazoslav; Jelok, Ivan; Wolfrum, Christian; Klimes, Iwar; Krssak, Martin; Zemkova, Erika; Gasperikova, Daniela; Ukropec, Jozef; Ukropcova, Barbara

    2014-01-01

    Irisin was identified as a myokine secreted by contracting skeletal muscle, possibly mediating some exercise health benefits via ‘browning’ of white adipose tissue. However, a controversy exists concerning irisin origin, regulation and function in humans. Thus, we have explored Fndc5 gene and irisin protein in two clinical studies: (i) a cross-sectional study (effects of type 2 diabetes (T2D) in drug-naive men) and (ii) an intervention study (exercise effects in sedentary, overweight/obese individuals). Glucose tolerance and insulin sensitivity were assessed. Maximal aerobic capacity and muscle strength were measured before and after training. Body composition (magnetic resonance imaging), muscle and liver fat content (1H-magnetic resonance spectroscopy (MRS)) and in vivo muscle metabolism (32P-MRS) were determined. Skeletal muscle and subcutaneous abdominal adipose tissue samples were taken in the fasted state and during euglycaemic hyperinsulinaemia (adipose tissue) and before/after exercise training (muscle). We found that muscle Fndc5 mRNA was increased in prediabetes but not T2D. Fndc5 in adipose tissue and irisin in plasma were reduced in T2D by 40% and 50%, respectively. In contrast, T2D-derived myotubes expressed/secreted the highest levels of Fndc5/irisin. Neither hyperinsulinaemia (adipose tissue/plasma) nor exercise (muscle/plasma) affected Fndc5/irisin in vivo. Circulating irisin was positively associated with muscle mass, strength and metabolism and negatively with fasting glycaemia. Glucose and palmitate decreased Fndc5 mRNA in myotubes in vitro. We conclude that distinct patterns of Fndc5/irisin in muscle, adipose tissue and circulation, and concordant in vivo down-regulation in T2D, indicate that irisin might distinguish metabolic health and disease. Moreover, Fndc5/irisin was discordantly regulated in diabetic muscle and myotubes in vitro, suggesting that whole body factors, such as glucose and fatty acids, might be important for irisin

  8. Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies.

    PubMed

    Kurdiova, Timea; Balaz, Miroslav; Vician, Marek; Maderova, Denisa; Vlcek, Miroslav; Valkovic, Ladislav; Srbecky, Miroslav; Imrich, Richard; Kyselovicova, Olga; Belan, Vitazoslav; Jelok, Ivan; Wolfrum, Christian; Klimes, Iwar; Krssak, Martin; Zemkova, Erika; Gasperikova, Daniela; Ukropec, Jozef; Ukropcova, Barbara

    2014-03-01

    Irisin was identified as a myokine secreted by contracting skeletal muscle, possibly mediating some exercise health benefits via 'browning' of white adipose tissue. However, a controversy exists concerning irisin origin, regulation and function in humans. Thus, we have explored Fndc5 gene and irisin protein in two clinical studies: (i) a cross-sectional study (effects of type 2 diabetes (T2D) in drug-naive men) and (ii) an intervention study (exercise effects in sedentary, overweight/obese individuals). Glucose tolerance and insulin sensitivity were assessed. Maximal aerobic capacity and muscle strength were measured before and after training. Body composition (magnetic resonance imaging), muscle and liver fat content (1H-magnetic resonance spectroscopy (MRS)) and in vivo muscle metabolism (32P-MRS) were determined. Skeletal muscle and subcutaneous abdominal adipose tissue samples were taken in the fasted state and during euglycaemic hyperinsulinaemia (adipose tissue) and before/after exercise training (muscle). We found that muscle Fndc5 mRNA was increased in prediabetes but not T2D. Fndc5 in adipose tissue and irisin in plasma were reduced in T2D by 40% and 50%, respectively. In contrast, T2D-derived myotubes expressed/secreted the highest levels of Fndc5/irisin. Neither hyperinsulinaemia (adipose tissue/plasma) nor exercise (muscle/plasma) affected Fndc5/irisin in vivo. Circulating irisin was positively associated with muscle mass, strength and metabolism and negatively with fasting glycaemia. Glucose and palmitate decreased Fndc5 mRNA in myotubes in vitro. We conclude that distinct patterns of Fndc5/irisin in muscle, adipose tissue and circulation, and concordant in vivo down-regulation in T2D, indicate that irisin might distinguish metabolic health and disease. Moreover, Fndc5/irisin was discordantly regulated in diabetic muscle and myotubes in vitro, suggesting that whole body factors, such as glucose and fatty acids, might be important for irisin regulation

  9. Melatonin increases intracellular calcium in the liver, muscle, white adipose tissues and pancreas of diabetic obese rats.

    PubMed

    Agil, A; Elmahallawy, E K; Rodríguez-Ferrer, J M; Adem, A; Bastaki, S M; Al-Abbadi, I; Fino Solano, Y A; Navarro-Alarcón, M

    2015-08-01

    Melatonin, a widespread substance with antioxidant and anti-inflammatory properties, has been found to act as an antidiabetic agent in animal models, regulating the release and action of insulin. However, the molecular bases of this antidiabetic action are unknown, limiting its application in humans. Several studies have recently shown that melatonin can modify calcium (Ca(2+)) in diabetic animals, and Ca(2+) has been reported to be involved in glucose homeostasis. The objective of the present study was to assess whether the antidiabetic effect of chronic melatonin at pharmacological doses is established via Ca(2+) regulation in different tissues in an animal model of obesity-related type 2 diabetes, using Zücker diabetic fatty (ZDF) rats and their lean littermates, Zücker lean (ZL) rats. After the treatments, flame atomic absorption spectrometry was used to determine Ca(2+) levels in the liver, muscle, main types of internal white adipose tissue, subcutaneous lumbar fat, pancreas, brain, and plasma. This study reports for the first time that chronic melatonin administration (10 mg per kg body weight per day for 6 weeks) increases Ca(2+) levels in muscle, liver, different adipose tissues, and pancreas in ZDF rats, although there were no significant changes in their brain or plasma Ca(2+) levels. We propose that this additional peripheral dual action mechanism underlies the improvement in insulin sensitivity and secretion previously documented in samples from the same animals. According to these results, indoleamine may be a potential candidate for the treatment of type 2 diabetes mellitus associated with obesity.

  10. Ageing, adipose tissue, fatty acids and inflammation.

    PubMed

    Pararasa, Chathyan; Bailey, Clifford J; Griffiths, Helen R

    2015-04-01

    A common feature of ageing is the alteration in tissue distribution and composition, with a shift in fat away from lower body and subcutaneous depots to visceral and ectopic sites. Redistribution of adipose tissue towards an ectopic site can have dramatic effects on metabolic function. In skeletal muscle, increased ectopic adiposity is linked to insulin resistance through lipid mediators such as ceramide or DAG, inhibiting the insulin receptor signalling pathway. Additionally, the risk of developing cardiovascular disease is increased with elevated visceral adipose distribution. In ageing, adipose tissue becomes dysfunctional, with the pathway of differentiation of preadipocytes to mature adipocytes becoming impaired; this results in dysfunctional adipocytes less able to store fat and subsequent fat redistribution to ectopic sites. Low grade systemic inflammation is commonly observed in ageing, and may drive the adipose tissue dysfunction, as proinflammatory cytokines are capable of inhibiting adipocyte differentiation. Beyond increased ectopic adiposity, the effect of impaired adipose tissue function is an elevation in systemic free fatty acids (FFA), a common feature of many metabolic disorders. Saturated fatty acids can be regarded as the most detrimental of FFA, being capable of inducing insulin resistance and inflammation through lipid mediators such as ceramide, which can increase risk of developing atherosclerosis. Elevated FFA, in particular saturated fatty acids, maybe a driving factor for both the increased insulin resistance, cardiovascular disease risk and inflammation in older adults.

  11. Physical training and weight loss in dogs lead to transcriptional changes in genes involved in the glucose-transport pathway in muscle and adipose tissues.

    PubMed

    Herrera Uribe, Juber; Vitger, Anne D; Ritz, Christian; Fredholm, Merete; Bjørnvad, Charlotte R; Cirera, Susanna

    2016-02-01

    Obesity is a worldwide problem in humans and domestic animals. Interventions, including a combination of dietary management and exercise, have proven to be effective for inducing weight loss in humans. In companion animals, the role of exercise in the management of obesity has received relatively little attention. The aim of the present study was to investigate changes in the transcriptome of key energy metabolism genes in muscle and adipose tissues in response to diet-induced weight loss alone, or combined with exercise in dogs. Overweight pet dogs were enrolled on a weight loss programme, based on calorie restriction and physical training (FD group, n = 5) or calorie restriction alone (DO group, n = 7). mRNA expression of 12 genes and six microRNAs were investigated using quantitative real-time PCR (qPCR). In the FD group, FOXO1 and RAC1 were expressed at lower levels in adipose tissue, whereas ESRRA and AKT2 were more highly expressed in muscle, when compared with the DO group. Comparing expression before and after the intervention, in the DO group, nine genes and three microRNAs showed significant altered expression in adipose tissue (PPARG, ADIPOQ and FOXO1; P < 0.001) and seven genes and two microRNAs were significantly downregulated (NRF2, RAC1, ESRRA, AKT2, PGC1a and mir-23; P < 0.001) in muscle. Thus, calorie restriction causes regulation of several metabolic genes in both tissues. The mild exercise, incorporated into this study design, was sufficient to elicit transcriptional changes in adipose and muscle tissues, suggesting a positive effect on glucose metabolism. The study findings support inclusion of exercise in management of canine obesity.

  12. Effect of vitamin E supplementation on fatty acid composition of muscle and adipose tissues of indoor lambs with special attention on rumen-derived trans monounsaturated fatty acids.

    PubMed

    Berthelot, V; Broudiscou, L; Schmidely, P

    2014-03-01

    Thirty male lambs were assigned to one of 3 concentrate diets supplemented with 45 (E0), 286 (E1) or 551 (E2) mg/kg DM of dl-α-tocopheryl acetate to test the effect of vitamin E supplementation on muscle, caudal and perirenal fatty acid (FA) compositions. Specific attention was paid to C18:1 10t, usually observed in high proportions with high-starch or high-unsaturated FA diets. Vitamin E supplementation increased the α-tocopherol plasma concentrations of lambs. It did not modify lamb growth and slaughter parameters. Vitamin E supplementation did not modify FA composition in most tissues but it increased the C18:2 n-6/C18:3 n-3 ratio in muscle and adipose tissues of the E1 group compared to E0 and E2 groups. Vitamin E supplementation enhanced the C18:1 10t proportion in muscle and adipose tissues and it decreased the C18:2 9c,11t proportion in adipose tissues, especially in the E2 group. These changes may not be favourable for the nutritional value of lamb meat.

  13. Seasonal changes in the expression of energy metabolism-related genes in white adipose tissue and skeletal muscle in female Japanese black bears.

    PubMed

    Shimozuru, Michito; Nagashima, Akiko; Tanaka, Jun; Tsubota, Toshio

    2016-01-01

    Bears undergo annual cycles in body mass: rapid fattening in autumn (i.e., hyperphagia), and mass loss in winter (i.e., hibernation). To investigate how Japanese black bears (Ursus thibetanus japonicus) adapt to such extreme physiological conditions, we analyzed changes in the mRNA expression of energy metabolism-related genes in white adipose tissues and skeletal muscle throughout three physiological stages: normal activity (June), hyperphagia (November), and hibernation (March). During hyperphagia, quantitative real-time polymerase chain reaction analysis revealed the upregulation of de novo lipogenesis-related genes (e.g., fatty acid synthase and diacylglycerol O-acyltransferase 2) in white adipose tissue, although the bears had been maintained with a constant amount of food. In contrast, during the hibernation period, we observed a downregulation of genes involved in glycolysis (e.g., glucose transporter 4) and lipogenesis (e.g., acetyl-CoA carboxylase 1) and an upregulation of genes in fatty acid catabolism (e.g., carnitine palmitoyltransferase 1A) in both tissue types. In white adipose tissues, we observed upregulation of genes involved in glyceroneogenesis, including pyruvate carboxylase and phosphoenolpyruvate carboxykinase 1, suggesting that white adipose tissue plays a role in the recycling of circulating free fatty acids via re-esterification. In addition, the downregulation of genes involved in amino acid catabolism (e.g., alanine aminotransferase) and the TCA cycle (e.g., pyruvate carboxylase) indicated a role of skeletal muscle in muscle protein sparing and pyruvate recycling via the Cori cycle. These examples of coordinated transcriptional regulation would contribute to rapid mass gain during the pre-hibernation period and to energy preservation and efficient energy production during the hibernation period.

  14. Longitudinal (4 year) change of thigh muscle and adipose tissue distribution in chronically painful vs. painless knees – data from the Osteoarthritis Initiative

    PubMed Central

    Ruhdorfer, Anja; Wirth, Wolfgang; Dannhauer, Torben; Eckstein, Felix

    2015-01-01

    Objective To evaluate 4-year longitudinal change in thigh muscle and adipose tissue content in chronically painful versus painless knees. Methods Knees from Osteoarthritis Initiative participants with non-acceptable symptom status (numerical rating scale ≥4) and frequent pain (≥6 months at baseline, year 2 and year 4 follow-up) were studied. These were matched with painless controls (bilateral NRS pain intensity≤1 and ≤infrequent pain at all 3 timepoints). 4-year longitudinal changes in thigh muscle anatomical cross-sectional areas (CSAs), isometric muscle strength, and in subcutaneous (SCF) and intermuscular fat (IMF) CSAs were obtained from magnetic resonance images (MRI) and were compared between groups (paired t-tests). Results 43 participants fulfilled the inclusion criteria of chronic pain, had complete thigh muscle MRI acquisitions and strength measurements, and a matched control. Quadriceps CSAs, but not extensor strength, showed a significant longitudinal decrease in chronically painful knees (-3.9%; 95%confidence interval [95 CI] -6.3%,-1.5%) and in painless controls (-2.4%; 95% CI -4.1%, -0.7%); the difference in change was not statistically significant (p=0.33). There was a significant 4-year gain in SCF in painful knees (8.1%; 95% CI 3.1%, 13%) but not in controls (0.0%; 95%CI -4.4%, +4.4%) with the difference in change being significant (p=0.03). The gain in IMF (∼5.2%) was similar between painful and painless knees. Conclusion This is the first paper to show a significant impact of (chronic) knee pain on longitudinal change in local subcutaneous adipose tissue. The effect of pain on subcutaneous fat appeared stronger than that on intermuscular adipose tissue and on muscle status. PMID:25887367

  15. On the Behaviour of Porcine Adipose and Skeletal Muscle Tissues under Shock Compression

    DTIC Science & Technology

    2012-09-01

    Figure 4.1: Air performance curves for the 50 mm single-stage gas gun this method, velocities could be measured to ±5 m/s. Air and helium performance...relationships. As such, the density of the two tissue types adopted in this work was measured using a Micromeritics AccuPyc 1330 Gas Pycnometer. This...five cycles. A schematic of the AccuPyc 1330 Gas Pycnometer is presented in Figure 5.13. The measured densities for the commercially-available and

  16. Adipose tissues and thyroid hormones

    PubMed Central

    Obregon, Maria-Jesus

    2014-01-01

    The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases). The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT) with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. “Brite” or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs) that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2, and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that lead to activation of UCP1 in WAT

  17. Age-associated differences in triceps surae muscle composition and strength – an MRI-based cross-sectional comparison of contractile, adipose and connective tissue

    PubMed Central

    2014-01-01

    Background In human skeletal muscles, the aging process causes a decrease of contractile and a concomitant increase of intramuscular adipose (IMAT) and connective (IMCT) tissues. The accumulation of non-contractile tissues may contribute to the significant loss of intrinsic muscle strength typically observed at older age but their in vivo quantification is challenging. The purpose of this study was to establish MR imaging-based methods to quantify the relative amounts of IMCT, IMAT and contractile tissues in young and older human cohorts, and investigate their roles in determining age-associated changes in skeletal muscle strength. Methods Five young (31.6 ± 7.0 yrs) and five older (83.4 ± 3.2 yrs) Japanese women were subject to a detailed MR imaging protocol, including Fast Gradient Echo, Quantitative Fat/Water (IDEAL) and Ultra-short Echo Time (UTE) sequences, to determine contractile muscle tissue and IMAT within the entire Triceps Surae complex, and IMCT within both heads of the Gastrocnemius muscle. Specific force was calculated as the ratio of isometric plantarflexor force and the physiological cross-sectional area of the Triceps Surae complex. Results In the older cohort, total Triceps Surae volume was smaller by 17.5%, while the relative amounts of Triceps Surae IMAT and Gastrocnemius IMCT were larger by 55.1% and 48.9%, respectively. Differences of 38.6% and 42.1% in plantarflexor force and specific force were observed. After subtraction of IMAT and IMCT from total muscle volume, differences in intrinsic strength decreased to 29.6%. Conclusions Our data establishes that aging causes significant changes in skeletal muscle composition, with marked increases in non-contractile tissues. Such quantification of the remodeling process is likely to be of functional and clinical importance in elucidating the causes of the disproportionate age-associated decrease of force compared to that of muscle volume. PMID:24939372

  18. Differences in muscle and adipose tissue gene expression and cardio-metabolic risk factors in the members of physical activity discordant twin pairs.

    PubMed

    Leskinen, Tuija; Rinnankoski-Tuikka, Rita; Rintala, Mirva; Seppänen-Laakso, Tuulikki; Pöllänen, Eija; Alen, Markku; Sipilä, Sarianna; Kaprio, Jaakko; Kovanen, Vuokko; Rahkila, Paavo; Oresic, Matej; Kainulainen, Heikki; Kujala, Urho M

    2010-09-16

    High physical activity/aerobic fitness predicts low morbidity and mortality. Our aim was to identify the most up-regulated gene sets related to long-term physical activity vs. inactivity in skeletal muscle and adipose tissues and to obtain further information about their link with cardio-metabolic risk factors. We studied ten same-sex twin pairs (age range 50-74 years) who had been discordant for leisure-time physical activity for 30 years. The examinations included biopsies from m. vastus lateralis and abdominal subcutaneous adipose tissue. RNA was analyzed with the genome-wide Illumina Human WG-6 v3.0 Expression BeadChip. For pathway analysis we used Gene Set Enrichment Analysis utilizing active vs. inactive co-twin gene expression ratios. Our findings showed that among the physically active members of twin pairs, as compared to their inactive co-twins, gene expression in the muscle tissue samples was chronically up-regulated for the central pathways related to energy metabolism, including oxidative phosphorylation, lipid metabolism and supportive metabolic pathways. Up-regulation of these pathways was associated in particular with aerobic fitness and high HDL cholesterol levels. In fat tissue we found physical activity-associated increases in the expression of polyunsaturated fatty acid metabolism and branched-chain amino acid degradation gene sets both of which associated with decreased 'high-risk' ectopic body fat and plasma glucose levels. Consistent with other findings, plasma lipidomics analysis showed up-regulation of the triacylglycerols containing the polyunsaturated fatty acids. Our findings identified skeletal muscle and fat tissue pathways which are associated with the long-term physical activity and reduced cardio-metabolic disease risk, including increased aerobic fitness. In particular, improved skeletal muscle oxidative energy and lipid metabolism as well as changes in adipocyte function and redistribution of body fat are associated with reduced

  19. H2O2 generated from mitochondrial electron transport chain in thoracic perivascular adipose tissue is crucial for modulation of vascular smooth muscle contraction.

    PubMed

    Costa, Rafael M; Filgueira, Fernando P; Tostes, Rita C; Carvalho, Maria Helena C; Akamine, Eliana H; Lobato, Nubia S

    2016-09-01

    The perivascular adipose tissue (PVAT) releases a variety of factors that affect vascular function. PVAT in the thoracic aorta shares characteristics with the brown adipose tissue, including a large amount of mitochondria. PVAT-derived factors influence both endothelial and smooth muscle function via several signaling mechanisms including the release/generation of reactive nitrogen and oxygen species. Considering the importance of reactive oxygen species (ROS) on vascular function and that mitochondria are an important source of ROS, we hypothesized that mitochondria-derived ROS in the PVAT modulates vascular reactivity. Vascular reactivity to norephinephrine (NE) was evaluated in thoracic aortic rings, with or without endothelium and/or PVAT, from male Wistar rats. Mitochondrial uncoupling, as well as hydrogen peroxide (H2O2) removal, increased the contraction in vessels surrounded by PVAT. PVAT stimulated with NE exhibited increased protein expression, determined by Western blot analysis, of manganese superoxide dismutase (Mn-SOD) and decreased protein expression of catalase. Ultimately, NE increased superoxide anion (O2(-)) generation in PVAT via increases in intracellular calcium. These results clearly demonstrate that mitochondrial electron transport chain (mETC) in PVAT contributes to modulation of aortic muscle contraction by generating higher amounts of O2(-) that is, in turn, dismutated to hydrogen peroxide, which then acts as a pivotal signaling molecule regulating vascular smooth muscle contraction.

  20. Effects of nutrient restriction of bovine dams during early gestation on postnatal growth, carcass and organ characteristics, and gene expression in adipose tissue and muscle.

    PubMed

    Long, N M; Prado-Cooper, M J; Krehbiel, C R; DeSilva, U; Wettemann, R P

    2010-10-01

    Angus x Hereford heifers (15 mo and artificially inseminated to a single sire) were used to evaluate the effect of prenatal nutritional restriction on postnatal growth and development. At d 32 of gestation, dams were stratified by BW and BCS and allotted to a low-nutrition [55% of NRC (1996) requirements, n = 10] or moderate-nutrition [100% of NRC (1996) requirements, n = 10] diet. After 83 d of feeding, dams were commingled and received a diet in excess of requirements. Dams were allowed to calve naturally, and birth weights and growth of calves were recorded. Bulls were castrated at birth. Steers (16 mo of age, 5 per treatment) received a high-concentrate diet ad libitum to a constant age (88 ± 1 wk). Steers were slaughtered and weights of the empty body and organs were recorded. Samples of organs, muscle (complexus), and perirenal and subcutaneous adipose tissue were stored at -80 degrees C, and then DNA and protein concentrations were quantified and expression of genes associated with fatty acid metabolism and glucose uptake were measured in adipose and muscle tissue. Dams had similar (P > 0.33) BW and BCS at the beginning of the experiment. At the end of restriction, dams on the low-nutrition diet weighed less (P ≤ 0.01) and had less BCS (P < 0.001) than those on the moderate-nutrition diet. Length of gestation was 274 ± 2 d for dams in the low-nutrition treatment and 278 ± 2 d (P = 0.05) for dams in the moderate-nutrition treatment. Nutrient restriction during gestation did not influence birth weight or postnatal growth of calves. Lungs and trachea of steers whose dams were fed the low-nutrition diet weighed less (P = 0.05) at slaughter than those of steers whose dams were fed the moderate-nutrition diet; weights of other organs were not influenced by treatment. Complexus muscle from steers whose dams were fed the low-nutrition diet had a greater (P = 0.04) concentration of DNA and larger muscle fiber area compared with steers whose dams were fed the

  1. Differential Expression of PPARγ, FASN, and ACADM Genes in Various Adipose Tissues and Longissimus dorsi Muscle from Yanbian Yellow Cattle and Yan Yellow Cattle

    PubMed Central

    Ji, Shuang; Yang, Runjun; Lu, Chunyan; Qiu, Zhengyan; Yan, Changguo; Zhao, Zhihui

    2014-01-01

    The objective of this study was to investigate the correlation between cattle breeds and deposit of adipose tissues in different positions and the gene expressions of peroxisome proliferator-activated receptor gamma (PPARγ), fatty acid synthase (FASN), and Acyl-CoA dehydrogenase (ACADM), which are associated with lipid metabolism and are valuable for understanding the physiology in fat depot and meat quality. Yanbian yellow cattle and Yan yellow cattle reared under the same conditions display different fat proportions in the carcass. To understand this difference, the expression of PPARγ, FASN, and ACADM in different adipose tissues and longissimus dorsi muscle (LD) in these two breeds were analyzed using the Real-time quantitative polymerase chain reaction method (qRT-PCR). The result showed that PPARγ gene expression was significantly higher in adipose tissue than in LD in both breeds. PPARγ expression was also higher in abdominal fat, in perirenal fat than in the subcutaneous fat (p<0.05) in Yanbian yellow cattle, and was significantly higher in subcutaneous fat in Yan yellow cattle than that in Yanbian yellow cattle. On the other hand, FASN mRNA expression levels in subcutaneous fat and abdominal fat in Yan yellow cattle were significantly higher than that in Yanbian yellow cattle. Interestingly, ACADM gene shows greater fold changes in LD than in adipose tissues in Yan yellow cattle. Furthermore, the expressions of these three genes in lung, colon, kidney, liver and heart of Yanbian yellow cattle and Yan yellow cattle were also investigated. The results showed that the highest expression levels of PPARγ and FASN genes were detected in the lung in both breeds. The expression of ACADM gene in kidney and liver were higher than that in other organs in Yanbian yellow cattle, the comparison was not statistically significant in Yan yellow cattle. PMID:25049920

  2. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues

    PubMed Central

    Hausman, Gary J; Basu, Urmila; Du, Min; Fernyhough-Culver, Melinda; Dodson, Michael V

    2014-01-01

    Human studies of the influence of aging and other factors on intermuscular fat (INTMF) were reviewed. Intermuscular fat increased with weight loss, weight gain, or with no weight change with age in humans. An increase in INTMF represents a similar threat to type 2 diabetes and insulin resistance as does visceral adipose tissue (VAT). Studies of INTMF in animals covered topics such as quantitative deposition and genetic relationships with other fat depots. The relationship between leanness and higher proportions of INTMF fat in pigs was not observed in human studies and was not corroborated by other pig studies. In humans, changes in muscle mass, strength and quality are associated with INTMF accretion with aging. Gene expression profiling and intrinsic methylation differences in pigs demonstrated that INTMF and VAT are primarily associated with inflammatory and immune processes. It seems that in the pig and humans, INTMF and VAT share a similar pattern of distribution and a similar association of components dictating insulin sensitivity. Studies on intramuscular (IM) adipocyte development in meat animals were reviewed. Gene expression analysis and genetic analysis have identified candidate genes involved in IM adipocyte development. Intramuscular (IM) adipocyte development in human muscle is only seen during aging and some pathological circumstance. Several genetic links between human and meat animal adipogenesis have been identified. In pigs, the Lipin1 and Lipin 2 gene have strong genetic effects on IM accumulation. Lipin1 deficiency results in immature adipocyte development in human lipodystrophy. In humans, overexpression of Perilipin 2 (PLIN2) facilitates intramyocellular lipid accretion whereas in pigs PLIN2 gene expression is associated with IM deposition. Lipins and perilipins may influence intramuscular lipid regardless of species. PMID:26317048

  3. Development of thermogenic adipose tissue.

    PubMed

    Loncar, D

    1991-09-01

    Besides having a metabolic and insulatory-supporting function, adipose tissue in endotherms also performs a thermogenic function. Thermogenic adipocytes contain specific UC-mitochondria with uncoupling protein (UCP) and produce heat. Thermogenic adipose tissue has two forms: brown adipose tissue (BAT) and convertible adipose tissue (CAT). Brown adipocytes have UC-mitochondria and express UCP throughout the entire life of small rodents, chiropterans, and insectivores. However, in other endotherms and in humans CAT participates as thermogenic tissue only during early postnatal period. Both BAT and CAT start to develop in utero, although in some animals (hamsters, marsupials) or in some particular areas (thoraco-periaortal and medio-perirenal areas in rats) development of thermogenic adipose tissue starts after birth. Postnatal development of BAT in small endotherms is characterized by quantitative changes (the amount of UC-mitochondria, UCP, and lipids). Postnatal development of CAT causes qualitative changes during which UC-mitochondria in convertible adipocytes are replaced by common, nonthermogenic C-mitochondria; vascularization of adipocytes drops to a low level and, with lipid accumulation, convertible adipocytes appear as lipid-store cells. Postnatal development of CAT can be modulated or reversed by the environmental temperature. The duration of postnatal changes varies between species; i.e., cats, rabbits and sheep, change their thermogenic form of CAT into the lipid-store form within the first postnatal month, while in humans the same process takes up to 15-20 years. In maturity all these large endotherms have CAT in lipid-store form. In light of these results, the question of participation of thermogenic adipose tissue in the regulation of human obesity needs to be answered.

  4. Myostatin, activin receptor IIb, and follistatin-like-3 gene expression are altered in adipose tissue and skeletal muscle of obese mice.

    PubMed

    Allen, David L; Cleary, Allison S; Speaker, Kristin J; Lindsay, Sarah F; Uyenishi, Jill; Reed, Jason M; Madden, Molly C; Mehan, Ryan S

    2008-05-01

    Myostatin (MSTN) is a secreted growth inhibitor expressed in muscle and adipose. We sought to determine whether expression of MSTN, its receptor activin RIIb (ActRIIb), or its binding protein follistatin-like-3 (FSTL3) are altered in subcutaneous or visceral adipose or in skeletal muscle in response to obesity. MSTN and ActRIIb mRNA levels were low in subcutaneous (SQF) and visceral fat (VF) from wild-type mice but were 50- to 100-fold higher in both SQF and VF from ob/ob compared with wild-type mice. FSTL3 mRNA levels were increased in SQF but decreased in VF in ob/ob compared with wild-type mice. Moreover, MSTN mRNA levels were twofold greater in tibialis anterior (TA) from ob/ob mice, whereas ActRIIb and FSTL3 mRNA levels were unchanged. MSTN mRNA levels were also increased in TA and SQF from mice on a high-fat diet. Injection of ob/ob mice with recombinant leptin caused FSTL3 mRNA levels to decrease in both VF and SQF in ob/ob mice; MSTN and ActRIIb mRNA levels tended to decrease only in VF. Finally, MSTN mRNA levels and promoter activity were low in adipogenic 3T3-L1 cells, but an MSTN promoter-reporter construct was activated in 3T3-L1 cells by cotransfection with the adipogenic transcription factors SREBP-1c, C/EBPalpha, and PPARgamma. These results demonstrate that expression of MSTN and its associated binding proteins can be modulated in adipose tissue and skeletal muscle by chronic obesity and suggest that alterations in their expression may contribute to the changes in growth and metabolism of lean and fat tissues occurring during obesity.

  5. Fatty acid profile of plasma, muscle and adipose tissues in Chilota lambs grazing on two different low quality pasture types in Chiloé Archipelago (Chile).

    PubMed

    Gallardo, Maria A; Dannenberger, Dirk; Rivero, Jordana; Pulido, Ruben; Nuernberg, Karin

    2014-11-01

    There is no information about the effect of different pasture types on tissue fatty acid profiles of a native rustic lamb breed of the Chiloe Archipelago, the Chilota. Eight Chilota lambs were grazed on a 'Calafatal' pasture (CP), a typical secondary succession of Chiloé Archipelago (Chile) and eight Chilota lambs were located to graze on naturalized pasture (NP) of Chiloé. Botanical, chemical and lipid composition of the two types of pastures and of different lamb tissues (muscle, subcutaneous - and tail adipose tissues) and plasma were performed. Both pasture types induced high n-3 polyunsaturated fatty acids (PUFA) and CLAcis-9,trans-11 proportions in Chilota meat. Thus, in muscle, Chilota lambs grazing CP showed higher sum PUFA, sum n-6 PUFA proportion and n-6/n-3 PUFA ratio compared with Chilota lambs grazing NP. In tail fats of Chilota lambs grazing CP significantly higher proportions of 18:3n-3, sum saturated fatty acids, sum PUFA, n-3 and n-6 PUFA were detected compared with Chilota lambs grazing NP. Feeding of different pasture types (CP vs. NP) caused significant differences in fatty acid composition of muscle and the two fat depots in Chilota lambs, but also point to tissue-specific responses of de novo synthesized fatty acid deposition in the tissues.

  6. Nutritional status induces divergent variations of GLUT4 protein content, but not lipoprotein lipase activity, between adipose tissues and muscles in adult cattle.

    PubMed

    Bonnet, Muriel; Faulconnier, Yannick; Hocquette, Jean-François; Bocquier, François; Leroux, Christine; Martin, Patrice; Chilliard, Yves

    2004-10-01

    Metabolic adaptations to variations in food supply are incompletely understood in ruminant animal adipose tissue (AT) and muscle. To explore this, we studied lipid metabolism and glucose transport potential in one internal and one external AT, as well as in one oxidative and one glycolytic muscle from control, 7 d underfed and 21 d refed adult cows. Refeeding increased (+79 to +307 %) the activities of enzymes involved in de novo lipogenesis (fatty acid synthase, malic enzyme, glucose-6-phosphate dehydrogenase) in perirenal and subcutaneous AT; underfeeding did not modify these variables. Underfeeding decreased the activities of lipoprotein lipase (LPL) in perirenal AT (-70 %) and cardiac muscle (-67 %), but did not modify the activities in subcutaneous AT and longissimus thoracis. Refeeding increased LPL activities in all tissues (+40 to +553 %) to levels comparable with (cardiac muscle) or greater than (AT, longissimus thoracis) those observed in control cows. Such variations in perirenal and cardiac muscle LPL activities did not result from variations in LPL mRNA levels, but suggest a post-transcriptional regulation of LPL in these nutritional conditions. Underfeeding did not modify GLUT4 contents in perirenal AT and muscles, while refeeding increased it only in perirenal AT (+250 %). Our present results contrast with previous results in rats, where LPL is regulated in opposite directions in AT and muscles, and GLUT4 is generally increased by fasting and decreased by refeeding in skeletal muscles. The present results highlight the bovine specificity of the response, which probably arises in part from peculiarities of ruminant animals for nutrient digestion and absorption.

  7. Uncoupling protein-3 mRNA levels are increased in white adipose tissue and skeletal muscle of bezafibrate-treated rats.

    PubMed

    Cabrero, A; Llaverías, G; Roglans, N; Alegret, M; Sánchez, R; Adzet, T; Laguna, J C; Vázquez, M

    1999-07-05

    Fibrates are hypolipidemic drugs that are also able to improve glucose tolerance in animals and diabetic patients through an unknown mechanism. Since uncoupling proteins (UCP) seem to play an important role in the pathogenesis of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether treatment of rats with bezafibrate for 3, 7, or 15 days modified UCP mRNA levels. Using RT-PCR, we observed a weak ectopic expression of UCP-1 and a 2-fold increase in UCP-3 mRNA levels in white adipose tissue after 7 and 15 days of treatment. Moreover, bezafibrate administration caused a 1. 7-fold induction in UCP-3 mRNA levels in skeletal muscle on day 7. Since UCP-3 mRNA levels are reduced in skeletal muscle of diabetic patients, this effect may be involved in the improvement of insulin sensitivity caused by bezafibrate in NIDDM.

  8. Differentiate into urothelium and smooth muscle cells from adipose tissue-derived stem cells for ureter reconstruction in a rabbit model

    PubMed Central

    Zhao, Zhankui; Yu, Honglian; Fan, Chengjuan; Kong, Qingsheng; Liu, Deqian; Meng, Lin

    2016-01-01

    Ureter reconstruction is still a tough task for urologist. Cell-based tissue engineering serves a better technique for patients with long segments of ureter defect who need ureter reconstruction. In this study, we sought to evaluate the differentiation potential of adipose derived stem cells (ADSCs) into urothelial lineage and smooth muscle lineage and to assess the possibility of ureter reconstruction using differentiated cells seeded vessel extracellular matrix (VECM) in a rabbit model. ADSCs were isolated from adipose tissue and identified in vitro. Subsequently, they were cultured with induction medium for urothelium and smooth muscle phenotypes differentiation. After 14 days inducing, differentiation was evaluated by Quantitative PCR and western blot studies. After fluorescent protein labeling, the differentiated cells were seeded onto VECM and cultured under dynamic conditions in vitro. After 7 days culturing, the cell-seeded graft was tubularized and wrapped by two layers of the omentum in a rabbit. Three weeks later, the maturated graft was used for ureter reconstruction in vivo. The ADSCs were isolated and cultured in vitro. Flow cytometry demonstrated that the ADSCs expressed CD29 and CD90, but did not express CD34. After induction, urothelium phenotypes gene (cytokeratin 7) and smooth muscle expression gene (a-SMA and SM-MHC) was confirmed in mRNA and protein level. After cells seeding onto VECM, the induced urothelium cells formed a single epithelial layer, and the induced smooth muscle cells formed a few cell layers during dynamic culture. After 3 weeks of omental maturation, tubular graft was vascularized and comprised epithelial layer positively with cytokeratin 7, cytokeratin 20 on the luminal aspect. At 8 weeks post ureter reconstruction, histological evaluation showed a clearly layered structure of ureter with terminally differentiated multilayered urothelium positively with cytokeratin 20 and uroplakin III over connective smooth muscle tissue

  9. Perfluoroalkyl sulfonates and carboxylic acids in liver, muscle and adipose tissues of black-footed albatross (Phoebastria nigripes) from Midway Island, North Pacific Ocean.

    PubMed

    Chu, Shaogang; Wang, Jun; Leong, Gladys; Woodward, Lee Ann; Letcher, Robert J; Li, Qing X

    2015-11-01

    The Great Pacific Garbage Patch (GPGP) is a gyre of marine plastic debris in the North Pacific Ocean, and nearby is Midway Atoll which is a focal point for ecological damage. This study investigated 13 C4-C16 perfluorinated carboxylic acids (PFCAs), four (C4, C6, C8 and C10) perfluorinated sulfonates and perfluoro-4-ethylcyclohexane sulfonate [collectively perfluoroalkyl acids (PFAAs)] in black-footed albatross tissues (collected in 2011) from Midway Atoll. Of the 18 PFCAs and PFSAs monitored, most were detectable in the liver, muscle and adipose tissues. The concentrations of PFCAs and PFSAs were higher than those in most seabirds from the arctic environment, but lower than those in most of fish-eating water birds collected in the U.S. mainland. The concentrations of the PFAAs in the albatross livers were 7-fold higher than those in Laysan albatross liver samples from the same location reported in 1994. The concentration ranges of PFOS were 22.91-70.48, 3.01-6.59 and 0.53-8.35 ng g(-1) wet weight (ww), respectively, in the liver, muscle and adipose. In the liver samples PFOS was dominant, followed by longer chain PFUdA (8.04-18.70 ng g(-1) ww), PFTrDA, and then PFNA, PFDA and PFDoA. Short chain PFBA, PFPeA, PFBS and PFODA were below limit of quantification. C8-C13 PFCAs showed much higher composition compared to those found in other wildlife where PFOS typically predominated. The concentrations of PFUdA in all 8 individual albatross muscle samples were even higher than those of PFOS. This phenomenon may be attributable to GPGP as a pollution source as well as PFAA physicochemical properties.

  10. Perfluoroalkyl Sulfonates and Carboxylic Acids in Liver, Muscle and Adipose Tissues of Black-Footed Albatross (Phoebastria nigripes) from Midway Island, North Pacific Ocean

    PubMed Central

    Chu, Shaogang; Wang, Jun; Leong, Gladys; Woodward, Lee Ann; Letcher, Robert J.; Li, Qing X.

    2015-01-01

    The Great Pacific Garbage Patch (GPGP) is a gyre of marine plastic debris in the North Pacific Ocean, and nearby is Midway Atoll which is a focal point for ecological damage. This study investigated 13 C4-C16 perfluorinated carboxylic acids (PFCAs), four (C4, C6, C8 and C10) perfluorinated sulfonates and perfluoro-4-ethylcyclohexane sulfonate [collectively perfluoroalkyl acids (PFAAs)] in black-footed albatross tissues (collected in 2011) from Midway Atoll. Of the 18 PFCAs and PFSAs monitored, most were detectable in the liver, muscle and adipose tissues. The concentrations of PFCAs and PFSAs were higher than those in most seabirds from the arctic environment, but lower than those in most of fish-eating water birds collected in the U.S. mainland. The concentrations of the PFAAs in the albatross livers were 7-fold higher than those in Laysan albatross liver samples from the same location reported in 1994. The concentration ranges of PFOS were 22.91-70.48, 3.01-6.59 and 0.53-8.35 ng g-1 wet weight (ww), respectively, in the liver, muscle and adipose. In the liver samples PFOS was dominant, followed by longer chain PFUdA (8.04-18.70 ng g-1 ww), PFTrDA, and then PFNA, PFDA and PFDoA. Short chain PFBA, PFPeA, PFBS and C16 PFODA were below limit of quantification. C8-C13 PFCAs showed much higher composition compared to those found in other wildlife where PFOS typically predominated. The concentrations of PFUdA in all 8 individual albatross muscle samples were even higher than those of PFOS. This phenomenon may be attributable to GPGP as a pollution source as well as PFAA physicochemical properties. PMID:26037817

  11. The effects of treadmill exercise on expression of UCP-2 of brown adipose tissue and TNF-α of soleus muscle in obese Zucker rats

    PubMed Central

    Kim, Dong-Hee; Kim, Seok-Hwan; Kim, Won-Hee; Moon, Chae-Ryen

    2013-01-01

    Sorts of abnormal state, obesity and inflammation are involved in a number of serious disease occurring and both of them became important research topics among molecular biologists. UCP-2 and TNF-α respectively reflecting obese and inflammatory status have often been used to evaluate the effects of independent variable, such as exercise, on them. Because exercise has shown its potent control on obesity and inflammation, it is necessary to determine if exercise is working via same bioindices. The purpose of this study was to determine the effects of different treadmill exercise intensities on UCP-2 of brown adipose tissue and TNF-α of soleus muscle during 8 weeks in Zucker rat. Zucker rats were divided into four groups (n = 7 in each group): control group, low intensity exercise group, moderate intensity exercise group and high intensity exercise group. Zucker rats of the exercise groups were made to run on a motorized treadmill for 30 minutes once a day during 8 weeks. Rats were sacrificed 24 hours after the last bout of exercise. Blood glucose in Zucker rats were measured by Gluco-Card Ⅱ. Brown adipose tissue were extracted to analyze the level of UCP-2 and TNF-α, respectively. UCP-2 and TNF-α were analyzed using the Western Blotting technique. Statistical techniques for data analysis were repeated measure ANOVA and one way ANOVA to determine the difference between groups, and for post hoc test was Duncan' test. The 5% level of significance was utilized as the critical level for acceptance of hypotheses for the study. The following results were obtained from this study; UCP-2 protein expression of brown adipose tissue in Zucker rats were increased significantly following exercise of the low and moderate intensities compared to those of control group after 8 weeks. It was shown that TNF-α protein expression of soleus muscle in Zucker rats were decreased significantly following exercise of the low and moderate intensities compared to those of control group

  12. Assessment of brown adipose tissue function.

    PubMed

    Virtue, Sam; Vidal-Puig, Antonio

    2013-01-01

    In this review we discuss practical considerations for the assessment of brown adipose tissue in rodent models, focusing on mice. The central aim of the review is to provide a critical appraisal of the utility of specialized techniques for assessing brown adipose tissue function in vivo. We cover several of the most common specialized methods for analysing brown adipose tissue function in vivo, including assessment of maximal thermogenic capacity by indirect calorimetry and the measurement of sympathetic tone to brown adipose tissue. While these techniques are powerful, they are not readily available to all laboratories; therefore we also cover several simple measurements that, particularly in combination, can be used to determine if a mouse model is likely to have alterations in brown adipose tissue function. Such techniques include: pair feeding, analysis of brown adipose tissue lipid content and mRNA and protein markers of brown adipose tissue activation.

  13. Assessment of brown adipose tissue function

    PubMed Central

    Virtue, Sam; Vidal-Puig, Antonio

    2013-01-01

    In this review we discuss practical considerations for the assessment of brown adipose tissue in rodent models, focusing on mice. The central aim of the review is to provide a critical appraisal of the utility of specialized techniques for assessing brown adipose tissue function in vivo. We cover several of the most common specialized methods for analysing brown adipose tissue function in vivo, including assessment of maximal thermogenic capacity by indirect calorimetry and the measurement of sympathetic tone to brown adipose tissue. While these techniques are powerful, they are not readily available to all laboratories; therefore we also cover several simple measurements that, particularly in combination, can be used to determine if a mouse model is likely to have alterations in brown adipose tissue function. Such techniques include: pair feeding, analysis of brown adipose tissue lipid content and mRNA and protein markers of brown adipose tissue activation. PMID:23760815

  14. Adipose tissue immunity and cancer.

    PubMed

    Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Frühbeck, Gema

    2013-10-02

    Inflammation and altered immune response are important components of obesity and contribute greatly to the promotion of obesity-related metabolic complications, especially cancer development. Adipose tissue expansion is associated with increased infiltration of various types of immune cells from both the innate and adaptive immune systems. Thus, adipocytes and infiltrating immune cells secrete pro-inflammatory adipokines and cytokines providing a microenvironment favorable for tumor growth. Accumulation of B and T cells in adipose tissue precedes macrophage infiltration causing a chronic low-grade inflammation. Phenotypic switching toward M1 macrophages and Th1 T cells constitutes an important mechanism described in the obese state correlating with increased tumor growth risk. Other possible synergic mechanisms causing a dysfunctional adipose tissue include fatty acid-induced inflammation, oxidative stress, endoplasmic reticulum stress, and hypoxia. Recent investigations have started to unravel the intricacy of the cross-talk between tumor cell/immune cell/adipocyte. In this sense, future therapies should take into account the combination of anti-inflammatory approaches that target the tumor microenvironment with more sophisticated and selective anti-tumoral drugs.

  15. Brown adipose tissue and thermogenesis.

    PubMed

    Fenzl, Anna; Kiefer, Florian W

    2014-07-01

    The growing understanding of adipose tissue as an important endocrine organ with multiple metabolic functions has directed the attention to the (patho)physiology of distinct fat depots. Brown adipose tissue (BAT), in contrast to bona fide white fat, can dissipate significant amounts of chemical energy through uncoupled respiration and heat production (thermogenesis). This process is mediated by the major thermogenic factor uncoupling protein-1 and can be activated by certain stimuli, such as cold exposure, adrenergic compounds or genetic alterations. White adipose tissue (WAT) depots, however, also possess the capacity to acquire brown fat characteristics in response to thermogenic stimuli. The induction of a BAT-like cellular and molecular program in WAT has recently been termed "browning" or "beiging". Promotion of BAT activity or the browning of WAT is associated with in vivo cold tolerance, increased energy expenditure, and protection against obesity and type 2 diabetes. These preclinical observations have gained additional significance with the recent discovery that active BAT is present in adult humans and can be detected by 18fluor-deoxy-glucose positron emission tomography coupled with computed tomography. As in rodents, human BAT can be activated by cold exposure and is associated with increased energy turnover and lower body fat mass. Despite the tremendous progress in brown fat research in recent years, pharmacological concepts to harness BAT function therapeutically are currently still lacking.

  16. Blueberry intake alters skeletal muscle and adipose tissue peroxisome proliferator-activated receptor activity and reduces insulin resistance in obese rats.

    PubMed

    Seymour, E Mitchell; Tanone, Ignasia I; Urcuyo-Llanes, Daniel E; Lewis, Sarah K; Kirakosyan, Ara; Kondoleon, Michael G; Kaufman, Peter B; Bolling, Steven F

    2011-12-01

    Metabolic syndrome can precede the development of type 2 diabetes and cardiovascular disease and includes phenotypes such as obesity, systemic inflammation, insulin resistance, and hyperlipidemia. A recent epidemiological study indicated that blueberry intake reduced cardiovascular mortality in humans, but the possible genetic mechanisms of this effect are unknown. Blueberries are a rich source of anthocyanins, and anthocyanins can alter the activity of peroxisome proliferator-activated receptors (PPARs), which affect energy substrate metabolism. The effect of blueberry intake was assessed in obesity-prone rats. Zucker Fatty and Zucker Lean rats were fed a higher-fat diet (45% of kcal) or a lower-fat diet (10% of kcal) containing 2% (wt/wt) freeze-dried whole highbush blueberry powder or added sugars to match macronutrient and calorie content. In Zucker Fatty rats fed a high-fat diet, the addition of blueberry reduced triglycerides, fasting insulin, homeostasis model index of insulin resistance, and glucose area under the curve. Blueberry intake also reduced abdominal fat mass, increased adipose and skeletal muscle PPAR activity, and affected PPAR transcripts involved in fat oxidation and glucose uptake/oxidation. In Zucker Fatty rats fed a low-fat diet, the addition of blueberry also significantly reduced liver weight, body weight, and total fat mass. Finally, Zucker Lean rats fed blueberry had higher body weight and reduced triglycerides, but all other measures were unaffected. In conclusion, whole blueberry intake reduced phenotypes of metabolic syndrome in obesity-prone rats and affected PPAR gene transcripts in adipose and muscle tissue involved in fat and glucose metabolism.

  17. Sex differences in adipose tissue

    PubMed Central

    Fuente-Martín, Esther; Argente-Arizón, Pilar; Ros, Purificación; Argente, Jesús; Chowen, Julie A

    2013-01-01

    Obesity and its associated secondary complications are active areas of investigation in search of effective treatments. As a result of this intensified research numerous differences between males and females at all levels of metabolic control have come to the forefront. These differences include not only the amount and distribution of adipose tissue, but also differences in its metabolic capacity and functions between the sexes. Here, we review some of the recent advances in our understanding of these dimorphisms and emphasize the fact that these differences between males and females must be taken into consideration in hopes of obtaining successful treatments for both sexes. PMID:23991358

  18. Diet enriched with korean pine nut oil improves mitochondrial oxidative metabolism in skeletal muscle and brown adipose tissue in diet-induced obesity.

    PubMed

    Le, Ngoc Hoan; Shin, Sunhye; Tu, Thai Hien; Kim, Chu-Sook; Kang, Ji-Hye; Tsuyoshi, Goto; Teruo, Kawada; Han, Sung Nim; Yu, Rina

    2012-12-05

    In this study, we investigated effects of pine nut oil (PNO) on high-fat-diet (HFD)-induced obesity and metabolic dysfunction in skeletal muscle and brown adipose tissue (BAT). Male C57BL/6 mice were fed a HFD with 15% energy from lard and 30% energy from either soybean oil (SBO-HFD) or PNO (PNO-HFD) for 12 weeks. The PNO-HFD resulted in less weight gain and intramuscular lipid accumulation than the SBO-HFD and was accompanied by upregulation of transcripts and proteins related to oxidative metabolism and phosphorylation of AMP-activated protein kinase (AMPK), as well as molecules selectively expressed in type I and type IIa muscle fibers. In addition, uncoupling protein-1 was upregulated in BAT. These beneficial metabolic effects were partly associated with the dual ligand activity of pinolenic acid, which is abundant in PNO, for peroxisome proliferator-activated receptors α and δ. Our findings suggest that PNO may have potential as a dietary supplement for counteracting obesity and metabolic dysregulation.

  19. Targeting adipose tissue via systemic gene therapy.

    PubMed

    O'Neill, S M; Hinkle, C; Chen, S-J; Sandhu, A; Hovhannisyan, R; Stephan, S; Lagor, W R; Ahima, R S; Johnston, J C; Reilly, M P

    2014-07-01

    Adipose tissue has a critical role in energy and metabolic homeostasis, but it is challenging to adapt techniques to modulate adipose function in vivo. Here we develop an in vivo, systemic method of gene transfer specifically targeting adipose tissue using adeno-associated virus (AAV) vectors. We constructed AAV vectors containing cytomegalovirus promoter-regulated reporter genes, intravenously injected adult mice with vectors using multiple AAV serotypes, and determined that AAV2/8 best targeted adipose tissue. Altering vectors to contain adiponectin promoter/enhancer elements and liver-specific microRNA-122 target sites restricted reporter gene expression to adipose tissue. As proof of efficacy, the leptin gene was incorporated into the adipose-targeted expression vector, package into AAV2/8 and administered intravenously to 9- to 10-week-old ob/ob mice. Phenotypic changes were measured over an 8-week period. Leptin mRNA and protein were expressed in adipose and leptin protein was secreted into plasma. Mice responded with reversal of weight gain, decreased hyperinsulinemia and improved glucose tolerance. AAV2/8-mediated systemic delivery of an adipose-targeted expression vector can replace a gene lacking in adipose tissue and correct a mouse model of human disease, demonstrating experimental application and therapeutic potential in disorders of adipose.

  20. Brown adipose tissue and bone

    PubMed Central

    Lidell, M E; Enerbäck, S

    2015-01-01

    Brown adipose tissue (BAT) is capable of transforming chemically stored energy, in the form of triglycerides, into heat. Recent studies have shown that metabolically active BAT is present in a large proportion of adult humans, where its activity correlates with a favorable metabolic status. Hence, the tissue is now regarded as an interesting target for therapies against obesity and associated diseases such as type 2 diabetes, the hypothesis being that an induction of BAT would be beneficial for these disease states. Apart from the association between BAT activity and a healthier metabolic status, later studies have also shown a positive correlation between BAT volume and both bone cross-sectional area and bone mineral density, suggesting that BAT might stimulate bone anabolism. The aim of this review is to give the reader a brief overview of the BAT research field and to summarize and discuss recent findings regarding BAT being a potential player in bone metabolism. PMID:27152171

  1. Adipose tissue: cell heterogeneity and functional diversity.

    PubMed

    Esteve Ràfols, Montserrat

    2014-02-01

    There are two types of adipose tissue in the body whose function appears to be clearly differentiated. White adipose tissue stores energy reserves as fat, whereas the metabolic function of brown adipose tissue is lipid oxidation to produce heat. A good balance between them is important to maintain energy homeostasis. The concept of white adipose tissue has radically changed in the past decades, and is now considered as an endocrine organ that secretes many factors with autocrine, paracrine, and endocrine functions. In addition, we can no longer consider white adipose tissue as a single tissue, because it shows different metabolic profiles in its different locations, with also different implications. Although the characteristic cell of adipose tissue is the adipocyte, this is not the only cell type present in adipose tissue, neither the most abundant. Other cell types in adipose tissue described include stem cells, preadipocytes, macrophages, neutrophils, lymphocytes, and endothelial cells. The balance between these different cell types and their expression profile is closely related to maintenance of energy homeostasis. Increases in adipocyte size, number and type of lymphocytes, and infiltrated macrophages are closely related to the metabolic syndrome diseases. The study of regulation of proliferation and differentiation of preadipocytes and stem cells, and understanding of the interrelationship between the different cell types will provide new targets for action against these diseases.

  2. Mitochondria and endocrine function of adipose tissue.

    PubMed

    Medina-Gómez, Gema

    2012-12-01

    Excess of adipose tissue is accompanied by an increase in the risk of developing insulin resistance, type 2 diabetes (T2D) and other complications. Nevertheless, total or partial absence of fat or its accumulation in other tissues (lipotoxicity) is also associated to these complications. White adipose tissue (WAT) was traditionally considered a metabolically active storage tissue for lipids while brown adipose tissue (BAT) was considered as a thermogenic adipose tissue with higher oxidative capacity. Nowadays, WAT is also considered an endocrine organ that contributes to energy homeostasis. Experimental evidence tends to link the malfunction of adipose mitochondria with the development of obesity and T2D. This review discusses the importance of mitochondrial function in adipocyte biology and the increased evidences of mitochondria dysfunction in these epidemics. New strategies targeting adipocyte mitochondria from WAT and BAT are also discussed as therapies against obesity and its complications in the near future.

  3. Molecular Heterogeneities of Adipose Depots - Potential Effects on Adipose-Muscle Cross-Talk in Humans, Mice and Farm Animals

    PubMed Central

    Komolka, Katrin; Albrecht, Elke; Wimmers, Klaus; Michal, Jennifer J.; Maak, Steffen

    2014-01-01

    Adipose tissue is considered as a major endocrine organ that secretes numerous proteins called adipokines. The heterogeneous nature of adipose tissue in different parts of the body suggests respective heterogeneity of proteomes and secretomes. This review consolidates knowledge from recent studies targeting the diversity of different adipose depots affecting the pattern of secreted adipokines and discusses potential consequences for the cross-talk between adipose and skeletal muscle in humans, rodent models and farm animals. Special attention is paid to muscle-associated fat depots like inter- and intramuscular fat that become focus of attention in the context of the rather new notion of skeletal muscle as a major endocrine organ. Understanding the complexity of communication between adipocytes and skeletal muscle cells will allow developing strategies for improvement of human health and for sustainable production of high quality meat. PMID:25057322

  4. Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering.

    PubMed

    Parvizi, Mojtaba; Bolhuis-Versteeg, Lydia A M; Poot, André A; Harmsen, Martin C

    2016-07-01

    Occluding artery disease causes a high demand for bioartificial replacement vessels. We investigated the combined use of biodegradable and creep-free poly (1,3-trimethylene carbonate) (PTMC) with smooth muscle cells (SMC) derived by biochemical or mechanical stimulation of adipose tissue-derived stromal cells (ASC) to engineer bioartificial arteries. Biochemical induction of cultured ASC to SMC was done with TGF-β1 for 7d. Phenotype and function were assessed by qRT-PCR, immunodetection and collagen contraction assays. The influence of mechanical stimulation on non-differentiated and pre-differentiated ASC, loaded in porous tubular PTMC scaffolds, was assessed after culturing under pulsatile flow for 14d. Assays included qRT-PCR, production of extracellular matrix and scanning electron microscopy. ASC adhesion and TGF-β1-driven differentiation to contractile SMC on PTMC did not differ from tissue culture polystyrene controls. Mesenchymal and SMC markers were increased compared to controls. Interestingly, pre-differentiated ASC had only marginal higher contractility than controls. Moreover, in 3D PTMC scaffolds, mechanical stimulation yielded well-aligned ASC-derived SMC which deposited ECM. Under the same conditions, pre-differentiated ASC-derived SMC maintained their SMC phenotype. Our results show that mechanical stimulation can replace TGF-β1 pre-stimulation to generate SMC from ASC and that pre-differentiated ASC keep their SMC phenotype with increased expression of SMC markers.

  5. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels.

    PubMed

    Herman, Mark A; She, Pengxiang; Peroni, Odile D; Lynch, Christopher J; Kahn, Barbara B

    2010-04-09

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels.

  6. Effect of rate of weight gain of steers during the stocker phase. III. Gene expression of adipose tissues and skeletal muscle in growing-finishing beef cattle.

    PubMed

    Lancaster, P A; Sharman, E D; Horn, G W; Krehbiel, C R; Starkey, J D

    2014-04-01

    The objective of this study was to determine the impact of stocker production systems differing in growth rate on differential adipogenic and lipogenic gene expression of intramuscular (IM), subcutaneous (SC), and perirenal (PR) adipose tissues. Angus steers were assigned to 4 stocker cattle production systems in 2 consecutive years: 1) cottonseed meal-based supplement while grazing dormant native range (CON), 2) ground corn/soybean meal-based supplement while grazing dormant native range (CORN), 3) grazing wheat pasture at a high stocking rate for a low rate of BW gain (LGWP), and 4) grazing wheat pasture at a low stocking rate for a high rate of BW gain (HGWP). Steers were harvested during the stocker phase at similar age (different carcass weight) in Exp. 1 (3 steers/treatment) or at similar carcass weight in Exp. 2 (4 steers/treatment). Adipose tissues were analyzed for mRNA expression of adipogenic (peroxisome proliferator activated receptor γ [PPARγ], sterol regulatory element binding factor 1 [SREBF1], CAATT/enhancer binding protein β, and delta-like homolog 1) and lipogenic (glycerol-3-phosphate dehydrogenase [GPDH], fatty acid synthase [FASN], and diacylglycerol acyltransferase 2 [DGAT2]) genes. Multivariate analysis was used to evaluate the expression of adipogenic or lipogenic genes collectively. There was not a treatment × adipose tissue interaction (F-test, P > 0.15) when steers were harvested at similar age, but a treatment × adipose tissue interaction (F-test, P < 0.05) was evident when steers were harvested at similar carcass weight. At similar carcass weight, treatment had no effect (P > 0.10) on the canonical variate of adipogenic or lipogenic mRNA expression in IM adipose tissue, but faster rates of gain of LGWP and HGWP steers increased (P < 0.10) the canonical variate of adipogenic and lipogenic mRNA expression in SC and PR adipose tissue compared with CON and CORN steers. Strong positive correlations (P < 0.05) of PPARγ, SREBF1, GPDH

  7. Renin dynamics in adipose tissue: adipose tissue control of local renin concentrations.

    PubMed

    Fowler, Jason D; Krueth, Stacy B; Bernlohr, David A; Katz, Stephen A

    2009-02-01

    The renin-angiotensin system (RAS) has been implicated in a variety of adipose tissue functions, including tissue growth, differentiation, metabolism, and inflammation. Although expression of all components necessary for a locally derived adipose tissue RAS has been demonstrated within adipose tissue, independence of local adipose RAS component concentrations from corresponding plasma RAS fluctuations has not been addressed. To analyze this, we varied in vivo rat plasma concentrations of two RAS components, renin and angiotensinogen (AGT), to determine the influence of their plasma concentrations on adipose and cardiac tissue levels in both perfused (plasma removed) and nonperfused samples. Variation of plasma RAS components was accomplished by four treatment groups: normal, DOCA salt, bilateral nephrectomy, and losartan. Adipose and cardiac tissue AGT concentrations correlated positively with plasma values. Perfusion of adipose tissue decreased AGT concentrations by 11.1%, indicating that adipose tissue AGT was in equilibrium with plasma. Cardiac tissue renin levels positively correlated with plasma renin concentration for all treatments. In contrast, adipose tissue renin levels did not correlate with plasma renin, with the exception of extremely high plasma renin concentrations achieved in the losartan-treated group. These results suggest that adipose tissue may control its own local renin concentration independently of plasma renin as a potential mechanism for maintaining a functional local adipose RAS.

  8. Cellularity of adipose tissue in fetal pig.

    PubMed

    Desnoyers, F; Pascal, G; Etienne, M; Vodovar, N

    1980-03-01

    Adipose tissue cellularity was studied in the 85-day-old Large-White pig fetus. The aim of this work was to count the adipose cells of forming tissue in an animal species which could be a possible model for studying adipose tissue in humans. Using a morphometric method with electron microscopy, mean triglyceride volume per cell was determined independently of mean cell volume. This method is suitable for counting adipose cells in the early stage of differentiation whatever their size and lipid inclusion volume. Site-by-site dissection of adipose tissue was not feasible in the 85-day old fetus and adipose cell number was computed by dividing total carcass triglyceride volume by mean triglyceride volume per cell. The carcass triglyceride seemed to originate only from adipose cells. The mean total carcass triglyceride volume per fetus (1.84 g) was low but, owing to the low mean triglyceride volume per cell (180.28 microns3), the adipose cell number (11.15 X 10(9)) was relatively important, as it represented about 27% of the extramuscular adipose cell number in the Large-White adult pig (41 X 10(9)).

  9. Negative Energy Balance Induced by Paradoxical Sleep Deprivation Causes Multicompartmental Changes in Adipose Tissue and Skeletal Muscle

    PubMed Central

    Mônico-Neto, Marcos; Giampá, Sara Quaglia de Campos; Lee, Kil Sun; de Melo, Camila Maria; Dáttilo, Murilo; Minali, Paulo Alexandre; Santos Prado, Pedro Henrique; Tufik, Sergio; de Mello, Marco Túlio; Antunes, Hanna Karen Moreira

    2015-01-01

    Objective. Describe multicompartmental changes in the fat and various muscle fiber types, as well as the hormonal profile and metabolic rate induced by SD in rats. Methods. Twenty adult male Wistar rats were equally distributed into two groups: experimental group (EG) and control group (CG). The EG was submitted to SD for 96 h. Blood levels of corticosterone (CORT), total testosterone (TESTO), insulin like growth factor-1 (IGF-1), and thyroid hormones (T3 and T4) were used to assess the catabolic environment. Muscle trophism was measured using a cross-sectional area of various muscles (glycolytic, mixed, and oxidative), and lipolysis was inferred by the weight of fat depots from various locations, such as subcutaneous, retroperitoneal, and epididymal. The metabolic rate was measured using oxygen consumption (V˙O2) measurement. Results. SD increased CORT levels and decreased TESTO, IGF-1, and T4. All fat depots were reduced in weight after SD. Glycolytic and mixed muscles showed atrophy, whereas atrophy was not observed in oxidative muscle. Conclusion. Our data suggest that glycolytic muscle fibers are more sensitive to atrophy than oxidative fibers during SD and that fat depots are reduced regardless of their location. PMID:25821467

  10. Biochemistry of adipose tissue: an endocrine organ.

    PubMed

    Coelho, Marisa; Oliveira, Teresa; Fernandes, Ruben

    2013-04-20

    Adipose tissue is no longer considered to be an inert tissue that stores fat. This tissue is capable of expanding to accommodate increased lipids through hypertrophy of existing adipocytes and by initiating differentiation of pre-adipocytes. Adipose tissue metabolism exerts an impact on whole-body metabolism. As an endocrine organ, adipose tissue is responsible for the synthesis and secretion of several hormones. These are active in a range of processes, such as control of nutritional intake (leptin, angiotensin), control of sensitivity to insulin and inflammatory process mediators (tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), resistin, visfatin, adiponectin, among others) and pathways (plasminogen activator inhibitor 1 (PAI-1) and acylation stimulating protein (ASP) for example). This paper reviews some of the biochemical and metabolic aspects of adipose tissue and its relationship to inflammatory disease and insulin resistance.

  11. Biochemistry of adipose tissue: an endocrine organ

    PubMed Central

    Coelho, Marisa; Oliveira, Teresa

    2013-01-01

    Adipose tissue is no longer considered to be an inert tissue that stores fat. This tissue is capable of expanding to accommodate increased lipids through hypertrophy of existing adipocytes and by initiating differentiation of pre-adipocytes. Adipose tissue metabolism exerts an impact on whole-body metabolism. As an endocrine organ, adipose tissue is responsible for the synthesis and secretion of several hormones. These are active in a range of processes, such as control of nutritional intake (leptin, angiotensin), control of sensitivity to insulin and inflammatory process mediators (tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), resistin, visfatin, adiponectin, among others) and pathways (plasminogen activator inhibitor 1 (PAI-1) and acylation stimulating protein (ASP) for example). This paper reviews some of the biochemical and metabolic aspects of adipose tissue and its relationship to inflammatory disease and insulin resistance. PMID:23671428

  12. Cardiac adipose tissue and atrial fibrillation: the perils of adiposity.

    PubMed

    Hatem, Stéphane N; Redheuil, Alban; Gandjbakhch, Estelle

    2016-04-01

    The amount of adipose tissue that accumulates around the atria is associated with the risk, persistence, and severity of atrial fibrillation (AF). A strong body of clinical and experimental evidence indicates that this relationship is not an epiphenomenon but is the result of complex crosstalk between the adipose tissue and the neighbouring atrial myocardium. For instance, epicardial adipose tissue is a major source of adipokines, inflammatory cytokines, or reactive oxidative species, which can contribute to the fibrotic remodelling of the atrial myocardium. Fibro-fatty infiltrations of the subepicardium could also contribute to the functional disorganization of the atrial myocardium. The observation that obesity is associated with distinct structural and functional remodelling of the atria has opened new perspectives of treating AF substrate with aggressive risk factor management. Advances in cardiac imaging should lead to an improved ability to visualize myocardial fat depositions and to localize AF substrates.

  13. Brown adipose tissue, thermogenesis, angiogenesis: pathophysiological aspects.

    PubMed

    Honek, Jennifer; Lim, Sharon; Fischer, Carina; Iwamoto, Hideki; Seki, Takahiro; Cao, Yihai

    2014-07-01

    The number of obese and overweight individuals is globally rising, and obesity-associated disorders such as type 2 diabetes, cardiovascular disease and certain types of cancer are among the most common causes of death. While white adipose tissue is the key player in the storage of energy, active brown adipose tissue expends energy due to its thermogenic capacity. Expanding and activating brown adipose tissue using pharmacological approaches therefore might offer an attractive possibility for therapeutic intervention to counteract obesity and its consequences for metabolic health.

  14. New Physiological Aspects of Brown Adipose Tissue.

    PubMed

    Trayhurn, Paul; Arch, Jonathan R S

    2014-12-01

    Brown adipose tissue is specialised for the generation of heat by non-shivering mechanisms. In rodents, the tissue plays a role in energy balance and the development of obesity, as well as in thermoregulation. Studies using fluorodeoxyglucose positron emission tomography (FDG-PET), together with the identification of uncoupling protein-1, have provided definitive evidence that brown adipose tissue is present in adult humans. Brown fat activity is stimulated by cold exposure, declines with age and is inversely proportional to BMI. This has led to renewed interest in the tissue as a therapeutic target for the treatment of obesity. Brown adipose tissue also plays a role in glucose disposal and triglyceride clearance, implicating it in the metabolic syndrome. A potential mechanism for increasing thermogenesis is by the 'browning' of white adipose depots through the recruitment of the recently identified third type of adipocyte - the brite (or beige) fat cell.

  15. Brown adipose tissue and its therapeutic potential.

    PubMed

    Lidell, M E; Betz, M J; Enerbäck, S

    2014-10-01

    Obesity and related diseases are a major cause of human morbidity and mortality and constitute a substantial economic burden for society. Effective treatment regimens are scarce, and new therapeutic targets are needed. Brown adipose tissue, an energy-expending tissue that produces heat, represents a potential therapeutic target. Its presence is associated with low body mass index, low total adipose tissue content and a lower risk of type 2 diabetes mellitus. Knowledge about the development and function of thermogenic adipocytes in brown adipose tissue has increased substantially in the last decade. Important transcriptional regulators have been identified, and hormones able to modulate the thermogenic capacity of the tissue have been recognized. Intriguingly, it is now clear that humans, like rodents, possess two types of thermogenic adipocytes: the classical brown adipocytes found in the interscapular brown adipose organ and the so-called beige adipocytes primarily found in subcutaneous white adipose tissue after adrenergic stimulation. The presence of two distinct types of energy-expending adipocytes in humans is conceptually important because these cells might be stimulated and recruited by different signals, raising the possibility that they might be separate potential targets for therapeutic intervention. In this review, we will discuss important features of the energy-expending brown adipose tissue and highlight those that may serve as potential targets for pharmacological intervention aimed at expanding the tissue and/or enhancing its function to counteract obesity.

  16. The Transcriptional Effects of PCB118 and PCB153 on the Liver, Adipose Tissue, Muscle and Colon of Mice: Highlighting of Glut4 and Lipin1 as Main Target Genes for PCB Induced Metabolic Disorders

    PubMed Central

    Mesnier, Aurélia; Champion, Serge; Louis, Laurence; Sauzet, Christophe; May, Phealay; Portugal, Henri; Benbrahim, Karim; Abraldes, Joelle; Alessi, Marie-Christine; Amiot-Carlin, Marie-Josephe; Peiretti, Franck; Piccerelle, Philippe; Nalbone, Gilles; Villard, Pierre-Henri

    2015-01-01

    Epidemiological studies have associated environmental exposure to polychlorinated biphenyls (PCBs) with an increased risk of type 2 diabetes; however, little is known about the underlying mechanisms involved in the metabolic side-effects of PCB. Our study evaluated the transcriptional effects of a subchronic exposure (gavage at Day 0 and Day 15 with 10 or 100 μmol/Kg bw) to PCB118 (dioxin-like PCB), PCB153 (non-dioxin-like PCB), or an equimolar mixture of PCB118 and PCB153 on various tissues (liver, visceral adipose tissue, muscle, and colon) in mice. Our results showed that a short-term exposure to PCB118 and/or PCB153 enhanced circulating triglyceride levels but did not affect glycemia. Among the studied tissues, we did not observe any modification of the expression of inflammation-related genes, such as cytokines or chemokines. The main transcriptional effects were observed in visceral adipose and liver tissues. We found a downregulation of lipin1 and glut4 expression in these two target organs. In adipose tissue, we also showed a downregulation of Agpat2, Slc25a1, and Fasn. All of these genes are involved in lipid metabolism and insulin resistance. In muscles, we observed an induction of CnR1 and Foxo3 expression, which may be partly involved in PCB metabolic effects. In summary, our results suggest that lipin1 and glut4, notably in adipose tissue, are the main targeted genes in PCB-induced metabolic disorders, however, further studies are required to fully elucidate the mechanisms involved. PMID:26086818

  17. Flow Cytometry Analyses of Adipose Tissue Macrophages

    PubMed Central

    Cho, Kae Won; Morris, David L.; Lumeng, Carey N.

    2014-01-01

    Within adipose tissue, multiple leukocyte interactions contribute to metabolic homeostasis in health as well as to the pathogenesis of insulin resistance with obesity. Adipose tissue macrophages (ATMs) are the predominant leukocyte population in fat and contribute to obesity-induced inflammation. Characterization of ATMs and other leukocytes in the stromal vascular fraction from fat has benefited from the use of flow cytometry and flow-assisted cell sorting techniques. These methods permit the immunophenotyping, quantification, and purification of these unique cell populations from multiple adipose tissue depots in rodents and humans. Proper isolation, quantification, and characterization of ATM phenotypes are critical for understanding their role in adipose tissue function and obesity-induced metabolic diseases. Here, we present the flow cytometry protocols for phenotyping ATMs in lean and obese mice employed by our laboratory. PMID:24480353

  18. ProteINSIDE to Easily Investigate Proteomics Data from Ruminants: Application to Mine Proteome of Adipose and Muscle Tissues in Bovine Foetuses

    PubMed Central

    Kaspric, Nicolas; Picard, Brigitte; Reichstadt, Matthieu; Tournayre, Jérémy; Bonnet, Muriel

    2015-01-01

    Genomics experiments are widely acknowledged to produce a huge amount of data to be analysed. The challenge is to extract meaningful biological context for proteins or genes which is currently difficult because of the lack of an integrative workflow that hinders the efficiency and the robustness of data mining performed by biologists working on ruminants. Thus, we designed ProteINSIDE, a free web service (www.proteinside.org) that (I) provides an overview of the biological information stored in public databases or provided by annotations according to the Gene Ontology, (II) predicts proteins that are secreted to search for proteins that mediate signalisation between cells or tissues, and (III) analyses protein-protein interactions to identify proteins contributing to a process or to visualize functional pathways. Using lists of proteins or genes as a unique input, ProteINSIDE is an original all-in-one tool that merges data from these searches to present a fast overview and integrative analysis of genomic and proteomic data from Bovine, Ovine, Caprine, Human, Rat, and Murine species. ProteINSIDE was bench tested with 1000 proteins identifiers from each species by comparison with DAVID, BioMyn, AgBase, PrediSi, and Phobius. Compared to DAVID or BioMyn, identifications and annotations provided by ProteINSIDE were similar from monogastric proteins but more numerous and relevant for ruminants proteins. ProteINSIDE, thanks to SignalP, listed less proteins potentially secreted with a signal peptide than PrediSi and Phobius, in agreement with the low false positive rate of SignalP. In addition ProteINSIDE is the only resource that predicts proteins secreted by cellular processes that do not involve a signal peptide. Lastly, we reported the usefulness of ProteINSIDE to bring new biological hypotheses of research from proteomics data: the biological meaning of the uptake of adiponectin by the foetal muscle and a role for autophagy during ontogenesis of adipose and muscle

  19. Influencing Factors of Thermogenic Adipose Tissue Activity

    PubMed Central

    Zhang, Guoqing; Sun, Qinghua; Liu, Cuiqing

    2016-01-01

    Obesity is an escalating public health challenge and contributes tremendously to the disease burden globally. New therapeutic strategies are required to alleviate the health impact of obesity-related metabolic dysfunction. Brown adipose tissue (BAT) is specialized for dissipating chemical energy for thermogenesis as a defense against cold environment. Intriguingly, the brown-fat like adipocytes that dispersed throughout white adipose tissue (WAT) in rodents and humans, called “brite” or “beige” adipocytes, share similar thermogenic characteristics to brown adipocytes. Recently, researchers have focused on cognition of these thermogenic adipose tissues. Some factors have been identified to regulate the development and function of thermogenic adipose tissues. Cold exposure, pharmacological conditions, and lifestyle can enhance non-shivering thermogenesis and metabolism via some mechanisms. However, environmental pollutants, such as ambient fine particulates and ozone, may impair the function of these thermogenic adipose tissues and thereby induce metabolic dysfunction. In this review, the origin, function and influencing factors of thermogenic adipose tissues were summarized and it will provide insights into identifying new therapeutic strategies for the treatment of obesity and obesity-related diseases. PMID:26903879

  20. A peptide probe for targeted brown adipose tissue imaging.

    PubMed

    Azhdarinia, Ali; Daquinag, Alexes C; Tseng, Chieh; Ghosh, Sukhen C; Ghosh, Pradip; Amaya-Manzanares, Felipe; Sevick-Muraca, Eva; Kolonin, Mikhail G

    2013-01-01

    The presence of brown adipose tissue responsible for thermogenic energy dissipation has been revealed in adult humans and has high clinical importance. Owing to limitations of current methods for brown adipose tissue detection, analysing the abundance and localization of brown adipose tissue in the body has remained challenging. Here we screen a combinatorial peptide library in mice and characterize a peptide (with the sequence CPATAERPC) that selectively binds to the vascular endothelium of brown adipose tissue, but not of intraperitoneal white adipose tissue. We show that in addition to brown adipose tissue, this peptide probe also recognizes the vasculature of brown adipose tissue-like depots of subcutaneous white adipose tissue. Our results indicate that the CPATAERPC peptide localizes to brown adipose tissue even in the absence of sympathetic nervous system stimulation. Finally, we demonstrate that this probe can be used to identify brown adipose tissue depots in mice by whole-body near-infrared fluorescence imaging.

  1. Effects of substituting a concentrated diet for chestnuts on the lipid traits of muscle and adipose tissues in corsican and corsican × large white pigs reared in a sylvo-pastoral system in corsica.

    PubMed

    Coutron-Gambotti, C; Gandemer, G; Casabianca, F

    1998-10-01

    In the sylvo-pastoral extensive system in Corsica, pigs are fattened with chestnuts. The decrease in chestnut resource forces the farmers to use more and more concentrated diets for feeding the pigs but so far they have disregarded the consequences of this on meat quality. The aim of the present study was to evaluate the effects of substituting a concentrated diet for chestnuts during the fattening period on the lipid composition of adipose and muscle tissues of ham in Corsican and Corsican × Large-White pigs. The results showed that the Corsican × Large-White pigs had heavier carcasses (125kg versus 106kg) and hams (12·5kg versus 10·2kg) but the genotype affected neither the carcass fatness nor the lipid composition of the adipose and muscle tissues. In addition, compared to chestnuts, the concentrated diet used did not affect live-weight, carcass and ham weights, or the carcass fatness of the pigs at slaughter. However, pigs fattened with a concentrated diet had adipose tissue lipids, intramuscular triglycerides and phospholipids with a lower proportion of polyunsaturated fatty acids (8·1% versus 6·2%, 5·8% versus 4·5%, and 47·7% versus 37·1%, respectively).

  2. Insulin Sensitivity in Adipose and Skeletal Muscle Tissue of Dairy Cows in Response to Dietary Energy Level and 2,4-Thiazolidinedione (TZD)

    PubMed Central

    Hosseini, Afshin; Tariq, Muhammad Rizwan; Trindade da Rosa, Fernanda; Kesser, Julia; Iqbal, Zeeshan; Mora, Ofelia; Sauerwein, Helga; Drackley, James K.; Trevisi, Erminio; Loor, Juan J.

    2015-01-01

    The effects of dietary energy level and 2,4-thiazolidinedione (TZD) injection on feed intake, body fatness, blood biomarkers and TZD concentrations, genes related to insulin sensitivity in adipose tissue (AT) and skeletal muscle, and peroxisome proliferator-activated receptor gamma (PPARG) protein in subcutaneous AT (SAT) were evaluated in Holstein cows. Fourteen nonpregnant nonlactating cows were fed a control low-energy (CON, 1.30 Mcal/kg) diet to meet 100% of estimated nutrient requirements for 3 weeks, after which half of the cows were assigned to a higher-energy diet (OVE, 1.60 Mcal/kg) and half of the cows continued on CON for 6 weeks. All cows received an intravenous injection of TZD starting 2 weeks after initiation of dietary treatments and for an additional 2 weeks, which served as the washout period. Cows fed OVE had greater energy intake and body mass than CON, and TZD had no effect during the administration period. The OVE cows had greater TZD clearance rate than CON cows. The lower concentration of nonesterified fatty acids (NEFA) and greater concentration of insulin in blood of OVE cows before TZD injection indicated positive energy balance and higher insulin sensitivity. Administration of TZD increased blood concentrations of glucose, insulin, and beta-hydroxybutyrate (BHBA) at 2 to 4 weeks after diet initiation, while the concentration of NEFA and adiponectin (ADIPOQ) remained unchanged during TZD. The TZD upregulated the mRNA expression of PPARG and its targets FASN and SREBF1 in SAT, but also SUMO1 and UBC9 which encode sumoylation proteins known to down-regulate PPARG expression and curtail adipogenesis. Therefore, a post-translational response to control PPARG gene expression in SAT could be a counteregulatory mechanism to restrain adipogenesis. The OVE cows had greater expression of the insulin sensitivity-related genes IRS1, SLC2A4, INSR, SCD, INSIG1, DGAT2, and ADIPOQ in SAT. In skeletal muscle, where PPARA and its targets orchestrate

  3. [New anatomo clinic approach of adipose tissue].

    PubMed

    Dardour, J-C

    2012-10-01

    For a long time, adipose tissue was supposed to be inert with only a function of long-term energetic reserve. The obesity, abnormal accumulation of fat, for its part has always been considered the sole result of hyperphagia, itself secondary to a lack of willingness of the subject. This article focuses on the multiple aspects and functions of the different fatty tissues. One must distinguish brown adipose tissue (AT) and the white AT. This includes visceral fat and subcutaneous AT, which itself is divided into two sectors, a genetic fat and grease that we called ecological. The brown adipose tissue has essentially a function of thermogenesis. Visceral adipose tissue (VAT), from a certain volume, behaves as true endocrine gland acting on glycemic and lipid function. In addition to its role of energy reserve, the sub cutaneous AT has a mechanical role of shock absorber and fabric slip. We will emphasize finally the genetic aspect still too misunderstood and underestimated that regulates the different functions of the adipose tissue.

  4. Brown adipose tissue growth and development.

    PubMed

    Symonds, Michael E

    2013-01-01

    Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP) 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle.

  5. Adipose Tissue Dysfunction: Clinical Relevance and Diagnostic Possibilities.

    PubMed

    Schrover, I M; Spiering, W; Leiner, T; Visseren, F L J

    2016-04-01

    Adipose tissue dysfunction is defined as an imbalance between pro- and anti-inflammatory adipokines, causing insulin resistance, systemic low-grade inflammation, hypercoagulability, and elevated blood pressure. These can lead to cardiovascular disease and diabetes mellitus type 2. Although quantity of adipose tissue is an important determinant of adipose tissue dysfunction, it can be diagnosed in both obese and lean individuals. This implies that not only quantity of adipose tissue should be used as a measure for adipose tissue dysfunction. Instead, focus should be on measuring quality of adipose tissue, which can be done with diagnostic modalities ranging from anthropometric measurements to tissue biopsies and advanced imaging techniques. In daily clinical practice, high quantity of visceral adipose tissue (reflected in high waist circumference or adipose tissue imaging), insulin resistance, or presence of the metabolic syndrome are easy and low-cost diagnostic modalities to evaluate presence or absence of adipose tissue dysfunction.

  6. Integrated control of brown adipose tissue.

    PubMed

    Marzetti, Emanuele; D'Angelo, Emanuela; Savera, Giulia; Leeuwenburgh, Christiaan; Calvani, Riccardo

    2016-03-01

    Brown adipose tissue (BAT) has evolved as a unique thermogenic organ that allows placental mammals to withstand cold environmental temperatures through the dissipation of metabolic energy in the form of heat. Although traditionally believed to be lost shortly after birth, metabolically active BAT depots have recently been identified in a large percentage of human adults. Besides classical brown cells, a distinct type of thermogenic adipocytes named beige or brite (brown in white) cells are recruited in white adipose tissue depots under specific stimuli. Given the well-known energy-dissipating properties of thermogenic adipose tissue and its function of metabolic sink for glucose and lipids, this tissue has attracted considerable research interest as a possible target for treating obesity and metabolic disease. The complex network of interorgan connections that regulate BAT and brite tissue mass and function is a major hurdle for the development of therapeutic strategies against metabolic disorders. This review provides an overview of the current knowledge on the regulation of BAT and brite adipose tissue function. The possibility of targeting these tissues to treat obesity and other metabolic disorders is also discussed.

  7. Adipose Tissue - Adequate, Accessible Regenerative Material

    PubMed Central

    Kolaparthy, Lakshmi Kanth.; Sanivarapu, Sahitya; Moogla, Srinivas; Kutcham, Rupa Sruthi

    2015-01-01

    The potential use of stem cell based therapies for the repair and regeneration of various tissues offers a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. The use of either embryonic stem cells (ESCs) or induced pluripotent stem cells in clinical situations is limited due to cell regulations and to technical and ethical considerations involved in genetic manipulation of human ESCs, even though these cells are highly beneficial. Mesenchymal stem cells seen to be an ideal population of stem cells in particular, Adipose derived stem cells (ASCs) which can be obtained in large number and easily harvested from adipose tissue. It is ubiquitously available and has several advantages compared to other sources as easily accessible in large quantities with minimal invasive harvesting procedure, and isolation of adipose derived mesenchymal stem cells yield a high amount of stem cells which is essential for stem cell based therapies and tissue engineering. Recently, periodontal tissue regeneration using ASCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because various secreted growth factors from ASCs might not only promote the regeneration of periodontal tissues but also encourage neovascularization of the damaged tissues. This review summarizes the sources, isolation and characteristics of adipose derived stem cells and its potential role in periodontal regeneration is discussed. PMID:26634060

  8. Integrated control of brown adipose tissue

    PubMed Central

    Marzetti, Emanuele; D’Angelo, Emanuela; Savera, Giulia; Leeuwenburgh, Christiaan; Calvani, Riccardo

    2016-01-01

    Brown adipose tissue (BAT) has evolved as a unique thermogenic organ that allows placental mammals to withstand cold environmental temperatures through the dissipation of metabolic energy in the form of heat. Although traditionally believed to be lost shortly after birth, metabolically active BAT depots have recently been identified in a large percentage of human adults. Besides classical brown cells, a distinct type of thermogenic adipocytes named beige or brite (brown in white) cells are recruited in white adipose tissue depots under specific stimuli. Given the well-known energy-dissipating properties of thermogenic adipose tissue and its function of metabolic sink for glucose and lipids, this tissue has attracted considerable research interest as a possible target for treating obesity and metabolic disease. The complex network of interorgan connections that regulate BAT and brite tissue mass and function is a major hurdle for the development of therapeutic strategies against metabolic disorders. This review provides an overview of the current knowledge on the regulation of BAT and brite adipose tissue function. The possibility of targeting these tissues to treat obesity and other metabolic disorders is also discussed. PMID:27524955

  9. Circadian Rhythms in Adipose Tissue Physiology.

    PubMed

    Kiehn, Jana-Thabea; Tsang, Anthony H; Heyde, Isabel; Leinweber, Brinja; Kolbe, Isa; Leliavski, Alexei; Oster, Henrik

    2017-03-16

    The different types of adipose tissues fulfill a wide range of biological functions-from energy storage to hormone secretion and thermogenesis-many of which show pronounced variations over the course of the day. Such 24-h rhythms in physiology and behavior are coordinated by endogenous circadian clocks found in all tissues and cells, including adipocytes. At the molecular level, these clocks are based on interlocked transcriptional-translational feedback loops comprised of a set of clock genes/proteins. Tissue-specific clock-controlled transcriptional programs translate time-of-day information into physiologically relevant signals. In adipose tissues, clock gene control has been documented for adipocyte proliferation and differentiation, lipid metabolism as well as endocrine function and other adipose oscillations are under control of systemic signals tied to endocrine, neuronal, or behavioral rhythms. Circadian rhythm disruption, for example, by night shift work or through genetic alterations, is associated with changes in adipocyte metabolism and hormone secretion. At the same time, adipose metabolic state feeds back to central and peripheral clocks, adjusting behavioral and physiological rhythms. In this overview article, we summarize our current knowledge about the crosstalk between circadian clocks and energy metabolism with a focus on adipose physiology. © 2017 American Physiological Society. Compr Physiol 7:383-427, 2017.

  10. [White adipose tissue dysfunction observed in obesity].

    PubMed

    Lewandowska, Ewa; Zieliński, Andrzej

    2016-05-01

    Obesity is a disease with continuingly increasing prevalence. It occurs worldwide independently of age group, material status or country of origin. At these times the most common reasons for obesity are bad eating habits and dramatic reduction of physical activity, which cause the energy imbalance of organism. Fundamental alteration observed in obese subjects is white adipose tissue overgrowth, which is linked to increased incidence of obesity-related comorbidities, such as: cardiovascular diseases, type 2 diabetes or digestive tract diseases. What is more, obesity is also a risk factor for some cancers. Special risk for diseases linked to excessive weight is associated with overgrowth of visceral type of adipose tissue. Adipose tissue, which is the main energy storehouse in body and acts also as an endocrine organ, undergoes both the morphological and the functional changes in obesity, having a negative impact on whole body function. In this article we summarize the most important alterations in morphology and function of white adipose tissue, observed in obese subjects.

  11. Does bariatric surgery improve adipose tissue function?

    PubMed Central

    Frikke-Schmidt, H.; O’Rourke, R. W.; Lumeng, C. N.; Sandoval, D. A.; Seeley, R. J.

    2017-01-01

    Summary Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. PMID:27272117

  12. Examination of carnitine palmitoyl transferase 1 abundance in white adipose tissue: implications in obesity research.

    PubMed

    Warfel, Jaycob D; Vandanmagsar, Bolormaa; Dubuisson, Olga S; Hodgeson, Sydney M; Elks, Carrie M; Ravussin, Eric; Mynatt, Randall L

    2017-03-22

    Carnitine Palmitoyltransferase 1 (CPT1) is essential for the transport of long chain fatty acids into the mitochondria for oxidation. Recently, it was reported that decreased CPT1b mRNA in adipose tissue was a contributing factor for obesity in rats. We therefore closely examined the expression level of Cpt1 in adipose tissue from mice, rats, and humans. Cpt1a is the predominate isoform in adipose tissue from all three species. Rat white adipose tissue has a moderate amount of Cpt1b mRNA, but it is very minor compared to Cpt1b expression in muscle. Total CPT1 activity in adipose tissue is also minor relative to other tissues. Both Cpt1a and Cpt1b mRNA were increased in gonadal fat but not inguinal fat by diet-induced obesity in mice. We also measured CPT1a and CPT1b expression in subcutaneous adipose tissue from human subjects with a wide range of BMI. Interestingly, CPT1a expression positively correlated with BMI (R=0.46), but there was no correlation with CPT1b (R=0.04). Our findings indicate that white adipose tissue fatty acid oxidation capacity is minor compared to metabolically active tissues. Further, given the already low abundance of Cpt1b in white adipose tissue, it is unlikely that decreases in its expression can quantitatively decrease whole body energy expenditure enough to contribute to an obese phenotype.

  13. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations.

    PubMed

    Stanford, Kristin I; Middelbeek, Roeland J W; Goodyear, Laurie J

    2015-07-01

    Regular physical activity and exercise training have long been known to cause adaptations to white adipose tissue (WAT), including decreases in cell size and lipid content and increases in mitochondrial proteins. In this article, we discuss recent studies that have investigated the effects of exercise training on mitochondrial function, the "beiging" of WAT, regulation of adipokines, metabolic effects of trained adipose tissue on systemic metabolism, and depot-specific responses to exercise training. The major WAT depots in the body are found in the visceral cavity (vWAT) and subcutaneously (scWAT). In rodent models, exercise training increases mitochondrial biogenesis and activity in both these adipose tissue depots. Exercise training also increases expression of the brown adipocyte marker uncoupling protein 1 (UCP1) in both adipose tissue depots, although these effects are much more pronounced in scWAT. Consistent with the increase in UCP1, exercise training increases the presence of brown-like adipocytes in scWAT, also known as browning or beiging. Training results in changes in the gene expression of thousands of scWAT genes and an altered adipokine profile in both scWAT and vWAT. Transplantation of trained scWAT in sedentary recipient mice results in striking improvements in skeletal muscle glucose uptake and whole-body metabolic homeostasis. Human and rodent exercise studies have indicated that exercise training can alter circulating adipokine concentration as well as adipokine expression in adipose tissue. Thus, the profound changes to WAT in response to exercise training may be part of the mechanism by which exercise improves whole-body metabolic health.

  14. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations

    PubMed Central

    Stanford, Kristin I.; Middelbeek, Roeland J.W.

    2015-01-01

    Regular physical activity and exercise training have long been known to cause adaptations to white adipose tissue (WAT), including decreases in cell size and lipid content and increases in mitochondrial proteins. In this article, we discuss recent studies that have investigated the effects of exercise training on mitochondrial function, the “beiging” of WAT, regulation of adipokines, metabolic effects of trained adipose tissue on systemic metabolism, and depot-specific responses to exercise training. The major WAT depots in the body are found in the visceral cavity (vWAT) and subcutaneously (scWAT). In rodent models, exercise training increases mitochondrial biogenesis and activity in both these adipose tissue depots. Exercise training also increases expression of the brown adipocyte marker uncoupling protein 1 (UCP1) in both adipose tissue depots, although these effects are much more pronounced in scWAT. Consistent with the increase in UCP1, exercise training increases the presence of brown-like adipocytes in scWAT, also known as browning or beiging. Training results in changes in the gene expression of thousands of scWAT genes and an altered adipokine profile in both scWAT and vWAT. Transplantation of trained scWAT in sedentary recipient mice results in striking improvements in skeletal muscle glucose uptake and whole-body metabolic homeostasis. Human and rodent exercise studies have indicated that exercise training can alter circulating adipokine concentration as well as adipokine expression in adipose tissue. Thus, the profound changes to WAT in response to exercise training may be part of the mechanism by which exercise improves whole-body metabolic health. PMID:26050668

  15. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice.

    PubMed

    Kliewer, Kara L; Ke, Jia-Yu; Tian, Min; Cole, Rachel M; Andridge, Rebecca R; Belury, Martha A

    2015-01-01

    Cancer cachexia is a progressive metabolic disorder that results in depletion of adipose tissue and skeletal muscle. A growing body of literature suggests that maintaining adipose tissue mass in cachexia may improve quality-of-life and survival outcomes. Studies of lipid metabolism in cachexia, however, have generally focused on later stages of the disorder when severe loss of adipose tissue has already occurred. Here, we investigated lipid metabolism in adipose, liver and muscle tissues during early stage cachexia - before severe fat loss - in the colon-26 murine model of cachexia. White adipose tissue mass in cachectic mice was moderately reduced (34-42%) and weight loss was less than 10% of initial body weight in this study of early cachexia. In white adipose depots of cachectic mice, we found evidence of enhanced protein kinase A - activated lipolysis which coincided with elevated total energy expenditure and increased expression of markers of brown (but not white) adipose tissue thermogenesis and the acute phase response. Total lipids in liver and muscle were unchanged in early cachexia while markers of fatty oxidation were increased. Many of these initial metabolic responses contrast with reports of lipid metabolism in later stages of cachexia. Our observations suggest intervention studies to preserve fat mass in cachexia should be tailored to the stage of cachexia. Our observations also highlight a need for studies that delineate the contribution of cachexia stage and animal model to altered lipid metabolism in cancer cachexia and identify those that most closely mimic the human condition.

  16. Dietary Salba (Salvia hispanica L) seed rich in α-linolenic acid improves adipose tissue dysfunction and the altered skeletal muscle glucose and lipid metabolism in dyslipidemic insulin-resistant rats.

    PubMed

    Oliva, M E; Ferreira, M R; Chicco, A; Lombardo, Y B

    2013-10-01

    This work reports the effect of dietary Salba (chia) seed rich in n-3 α-linolenic acid on the morphological and metabolic aspects involved in adipose tissue dysfunction and the mechanisms underlying the impaired glucose and lipid metabolism in the skeletal muscle of rats fed a sucrose-rich diet (SRD). Rats were fed a SRD for 3 months. Thereafter, half the rats continued with SRD while in the other half, corn oil (CO) was replaced by chia seed for 3 months (SRD+chia). In control group, corn starch replaced sucrose. The replacement of CO by chia seed in the SRD reduced adipocyte hypertrophy, cell volume and size distribution, improved lipogenic enzyme activities, lipolysis and the anti-lipolytic action of insulin. In the skeletal muscle lipid storage, glucose phosphorylation and oxidation were normalized. Chia seed reversed the impaired insulin stimulated glycogen synthase activity, glycogen, glucose-6-phosphate and GLUT-4 protein levels as well as insulin resistance and dyslipidemia.

  17. Visceral adipose tissue is an independent correlate of glucose disposal in older obese postmenopausal women.

    PubMed

    Brochu, M; Starling, R D; Tchernof, A; Matthews, D E; Garcia-Rubi, E; Poehlman, E T

    2000-07-01

    Older obese postmenopausal women have an increased risk for type 2 diabetes and cardiovascular disease. Increased abdominal obesity may contribute to these comorbidities. There is considerable controversy, however, regarding the effects of visceral adipose tissue as a singular predictor of insulin resistance compared to the other constituents of adiposity. To address this issue, we examined the independent association of regional adiposity and total fat mass with glucose disposal in obese older postmenopausal women. A secondary objective examined the association between glucose disposal with markers of skeletal muscle fat content (muscle attenuation) and physical activity levels. We studied 44 healthy obese postmenopausal women between 50 and 71 yr of age (mean +/- SD, 56.5 +/- 5.3 yr). The rate of glucose disposal was measured using the euglycemic/hyperinsulinemic clamp technique. Visceral and sc adipose tissue areas and midthigh muscle attenuation were measured from computed tomography. Fat mass and lean body mass were estimated from dual energy x-ray absorptiometry. Peak VO2 was measured from a treadmill test to volitional fatigue. Physical activity energy expenditure was measured from indirect calorimetry and doubly labeled water. Pearson correlations indicated that glucose disposal was inversely related to visceral adipose tissue area (r = -0.40; P < 0.01), but not to sc adipose tissue area (r = 0.17), total fat mass (r = 0.05), midthigh muscle attenuation (r = 0.01), peak VO2 (r = -0.22), or physical activity energy expenditure (r = -0.01). The significant association persisted after adjusting visceral adipose tissue for fat mass and abdominal sc adipose tissue levels (r = -0.45; P < 0.005; in both cases). Additional analyses matched two groups of women for fat mass, but with different visceral adipose tissue levels. Results showed that obese women with high visceral adipose tissue levels (283 +/- 59 vs. 137 +/- 24 cm2; P < 0.0001) had a lower glucose

  18. Nutritional regulation of lipid metabolism in human adipose tissue.

    PubMed

    Coppack, S W; Patel, J N; Lawrence, V J

    2001-01-01

    Pfeiffer and colleagues years ago pointed out that different distributions and amounts of adipose tissue are associated with abnormalities of lipolysis and lipoprotein metabolism. Adipose tissue has several crucial roles including (i) mobilization from stores of fatty acids as an energy source, (ii) catabolism of lipoproteins such as very-low-density lipoprotein and (iii) synthesis and release of hormonal signals such as leptin and interleukin-6. These adipose tissue actions are crucially regulated by nutrition. The review considers the existence of metabolic pathways and modes of regulation within adipose tissue, and how such metabolic activity can be quantitated in humans. Nutrition can influence adipose tissue at several 'levels'. Firstly the level of obesity or malnutrition has important effects on many aspects of adipose tissue metabolism. Secondly short-term overfeeding, underfeeding and exercise have major impacts on adipose tissue behaviour. Lastly, specific nutrients are capable of regulating adipose tissue metabolism. Recently there have been considerable advances in understanding adipose tissue metabolism and in particular its regulation. This review discusses the behaviour of adipose tissue under various nutritional conditions. There is then a review of recent work examining the ways in which nutritional influences act via intra-cellular mechanisms, insulin and the sympathetic innervation of adipose tissue.

  19. Oestrone sulphate, adipose tissue, and breast cancer.

    PubMed

    Hawkins, R A; Thomson, M L; Killen, E

    1985-01-01

    Oestrone sulphate, the oestrogen in highest concentration in the plasma, may play a role in the induction and growth of breast cancers. By enzymolysis and radioimmunoassay, oestrone sulphate concentrations were measured in 3 biological fluids. High concentrations of the conjugate (up to 775 nmol/l) were detected in breast cyst fluids from some premenopausal women, the concentrations in blood plasma (0.91-4.45 nmol/l) being much lower. Concentrations in the plasmas from postmenopausal women with (0.23-4.63 nmol/l) or without (0.18-1.27 nmol/l) breast cancer were still lower. Oestrone sulphate concentration in cow's milk or cream (0.49-0.67 nmol/l) was also low: dietary intake in these fluids is probably of little consequence. The capacity of breast tissues for hydrolysis of oestrone sulphate was examined in two ways: In tissue slices incubated with 85 pM (3H) oestrone sulphate solution at 37 degrees C, cancers (131-412 fmol/g tissue/hr) and adipose tissues (23-132 fmol/g tissue/hr) hydrolysed significantly more sulphate than did benign tissues (1-36 fmol/g tissue/hr). In tissue homogenates incubated with 5-25 microM [3H] oestrone sulphate at 37 degrees much higher capacities for hydrolysis (nmol/g tissue/hr) were demonstrated with a Km of 2-16.5 microM: cancers (34-394) and benign tissues (9-485) had significantly higher sulphatase activities than adipose tissues (9-39). On a protein basis, however, the sulphatase activities in the 3 tissues were comparable. It is concluded that oestrone sulphate is present in breast cysts and blood plasma and that in vitro, the conjugated hormone can be hydrolysed by breast tissues. The biological significance of these findings in vivo remains to be established.

  20. Exercise and the Regulation of Adipose Tissue Metabolism.

    PubMed

    Tsiloulis, Thomas; Watt, Matthew J

    2015-01-01

    Adipose tissue is a major regulator of metabolism in health and disease. The prominent roles of adipose tissue are to sequester fatty acids in times of energy excess and to release fatty acids via the process of lipolysis during times of high-energy demand, such as exercise. The fatty acids released during lipolysis are utilized by skeletal muscle to produce adenosine triphosphate to prevent fatigue during prolonged exercise. Lipolysis is controlled by a complex interplay between neuro-humoral regulators, intracellular signaling networks, phosphorylation events involving protein kinase A, translocation of proteins within the cell, and protein-protein interactions. Herein, we describe in detail the cellular and molecular regulation of lipolysis and how these processes are altered by acute exercise. We also explore the processes that underpin adipocyte adaptation to endurance exercise training, with particular focus on epigenetic modifications, control by microRNAs and mitochondrial adaptations. Finally, we examine recent literature describing how exercise might influence the conversion of traditional white adipose tissue to high energy-consuming "brown-like" adipocytes and the implications that this has on whole-body energy balance.

  1. The development and endocrine functions of adipose tissue.

    PubMed

    Poulos, Sylvia P; Hausman, Dorothy B; Hausman, Gary J

    2010-07-08

    White adipose tissue is a mesenchymal tissue that begins developing in the fetus. Classically known for storing the body's fuel reserves, adipose tissue is now recognized as an endocrine organ. As such, the secretions from adipose tissue are known to affect several systems such as the vascular and immune systems and play major roles in metabolism. Numerous studies have shown nutrient or hormonal manipulations can greatly influence adipose tissue development. In addition, the associations between various disease states, such as insulin resistance and cardiovascular disease, and disregulation of adipose tissue seen in epidemiological and intervention studies are great. Evaluation of known adipokines suggests these factors secreted from adipose tissue play roles in several pathologies. As the identification of more adipokines and determination of their role in biological systems, and the interactions between adipocytes and other cells types continues, there is little doubt that we will gain a greater appreciation for a tissue once thought to simply store excess energy.

  2. Androgenic Regulation of White Adipose Tissue-Prostate Cancer Interactions

    DTIC Science & Technology

    2015-08-01

    rights reserved.1. Introduction White adipose tissue (WAT) is a loose connective tissue that is crucial in the regulation of whole-body fatty-acid...AWARD NUMBER: W81XWH-10-1-0275 TITLE: Androgenic Regulation of White Adipose Tissue -Prostate Cancer Interactions PRINCIPAL INVESTIGATOR...2010-05/31/2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-10-1-0275 Androgenic Regulation of White Adipose Tissue -Prostate Cancer

  3. High intensity interval training improves liver and adipose tissue insulin sensitivity

    PubMed Central

    Marcinko, Katarina; Sikkema, Sarah R.; Samaan, M. Constantine; Kemp, Bruce E.; Fullerton, Morgan D.; Steinberg, Gregory R.

    2015-01-01

    Objective Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. Methods In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine–alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. Results HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. Conclusions These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC. PMID:26909307

  4. Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite.

    PubMed

    Jack, Gregory S; Zhang, Rong; Lee, Min; Xu, Yuhan; Wu, Ben M; Rodríguez, Larissa V

    2009-07-01

    Human adipose stem cells were cultured in smooth muscle inductive media and seeded into synthetic bladder composites to tissue engineer bladder smooth muscle. 85:15 Poly-lactic-glycolic acid bladder dome composites were cast using an electropulled microfiber luminal surface combined with an outer porous sponge. Cell-seeded bladders expressed smooth muscle actin, myosin heavy chain, calponinin, and caldesmon via RT-PCR and immunoflourescence. Nude rats (n=45) underwent removal of half their bladder and repair using: (i) augmentation with the adipose stem cell-seeded composites, (ii) augmentation with a matched acellular composite, or (iii) suture closure. Animals were followed for 12 weeks post-implantation and bladders were explanted serially. Results showed that bladder capacity and compliance were maintained in the cell-seeded group throughout the 12 weeks, but deteriorated in the acellular scaffold group sequentially with time. Control animals repaired with sutures regained their baseline bladder capacities by week 12, demonstrating a long-term limitation of this model. Histological analysis of explanted materials demonstrated viable adipose stem cells and increasing smooth muscle mass in the cell-seeded scaffolds with time. Tissue bath stimulation demonstrated smooth muscle contraction of the seeded implants but not the acellular implants after 12 weeks in vivo. Our study demonstrates the feasibility and short term physical properties of bladder tissue engineered from adipose stem cells.

  5. 17β-Hydroxyestra-4,9,11-trien-3-one (trenbolone) exhibits tissue selective anabolic activity: effects on muscle, bone, adiposity, hemoglobin, and prostate.

    PubMed

    Yarrow, Joshua F; Conover, Christine F; McCoy, Sean C; Lipinska, Judyta A; Santillana, Cesar A; Hance, John M; Cannady, Darryl F; VanPelt, Tisha D; Sanchez, Joshua; Conrad, Bryan P; Pingel, Jennifer E; Wronski, Thomas J; Borst, Stephen E

    2011-04-01

    Selective androgen receptor modulators (SARMs) now under development can protect against muscle and bone loss without causing prostate growth or polycythemia. 17β-Hydroxyestra-4,9,11-trien-3-one (trenbolone), a potent testosterone analog, may have SARM-like actions because, unlike testosterone, trenbolone does not undergo tissue-specific 5α-reduction to form more potent androgens. We tested the hypothesis that trenbolone-enanthate (TREN) might prevent orchiectomy-induced losses in muscle and bone and visceral fat accumulation without increasing prostate mass or resulting in adverse hemoglobin elevations. Male F344 rats aged 3 mo underwent orchiectomy or remained intact and were administered graded doses of TREN, supraphysiological testosterone-enanthate, or vehicle for 29 days. In both intact and orchiectomized animals, all TREN doses and supraphysiological testosterone-enanthate augmented androgen-sensitive levator ani/bulbocavernosus muscle mass by 35-40% above shams (P ≤ 0.001) and produced a dose-dependent partial protection against orchiectomy-induced total and trabecular bone mineral density losses (P < 0.05) and visceral fat accumulation (P < 0.05). The lowest doses of TREN successfully maintained prostate mass and hemoglobin concentrations at sham levels in both intact and orchiectomized animals, whereas supraphysiological testosterone-enanthate and high-dose TREN elevated prostate mass by 84 and 68%, respectively (P < 0.01). In summary, low-dose administration of the non-5α-reducible androgen TREN maintains prostate mass and hemoglobin concentrations near the level of shams while producing potent myotrophic actions in skeletal muscle and partial protection against orchiectomy-induced bone loss and visceral fat accumulation. Our findings indicate that TREN has advantages over supraphysiological testosterone and supports the need for future preclinical studies examining the viability of TREN as an option for androgen replacement therapy.

  6. Influence of betaine and arginine supplementation of reduced protein diets on fatty acid composition and gene expression in the muscle and subcutaneous adipose tissue of cross-bred pigs.

    PubMed

    Madeira, Marta S; Rolo, Eva S; Alfaia, Cristina M; Pires, Virgínia R; Luxton, Richard; Doran, Olena; Bessa, Rui J B; Prates, José A M

    2016-03-28

    The isolated or combined effects of betaine and arginine supplementation of reduced protein diets (RPD) on fat content, fatty acid composition and mRNA levels of genes controlling lipid metabolism in pig m. longissimus lumborum and subcutaneous adipose tissue (SAT) were assessed. The experiment was performed on forty intact male pigs (Duroc×Large White×Landrace cross-breed) with initial and final live weights of 60 and 93 kg, respectively. Pigs were randomly assigned to one of the following five diets (n 8): 16·0 % of crude protein (control), 13·0 % of crude protein (RPD), RPD supplemented with 0·33 % of betaine, RPD supplemented with 1·5 % of arginine and RPD supplemented with 0·33 % of betaine and 1·5 % of arginine. Data confirmed that RPD increase intramuscular fat (IMF) content and total fat content in SAT. The increased total fat content in SAT was accompanied by higher GLUT type 4, lipoprotein lipase and stearoyl-CoA desaturase mRNA expression levels. In addition, the supplementation of RPD with betaine and/or arginine did not affect either IMF or total fat in SAT. However, dietary betaine supplementation slightly affected fatty acid composition in both muscle and SAT. This effect was associated with an increase of carnitine O-acetyltransferase mRNA levels in SAT but not in muscle, which suggests that betaine might be involved in the differential regulation of some key genes of lipid metabolism in pig muscle and SAT. Although the arginine-supplemented diet decreased the mRNA expression level of PPARG in muscle and SAT, it did not influence fat content or fatty acid composition in any of these pig tissues.

  7. Characterization of adipose tissue macrophages and adipose-derived stem cells in critical wounds

    PubMed Central

    Tilstam, Pathricia V.; Springenberg-Jung, Katrin; Boecker, Arne Hendrick; Schmitz, Corinna; Heinrichs, Daniel; Hwang, Soo Seok; Stromps, Jan Philipp; Ganse, Bergita; Kopp, Ruedger; Knobe, Matthias; Bernhagen, Juergen

    2017-01-01

    Background Subcutaneous adipose tissue is a rich source of adipose tissue macrophages and adipose-derived stem cells which both play a key role in wound repair. While macrophages can be divided into the classically-activated M1 and the alternatively-activated M2 phenotype, ASCs are characterized by the expression of specific stem cell markers. Methods In the present study, we have investigated the expression of common macrophage polarization and stem cell markers in acutely inflamed adipose tissue. Subcutaneous adipose tissue adjacent to acutely inflamed wounds of 20 patients and 20 healthy subjects were harvested and underwent qPCR and flow cytometry analysis. Results Expression levels of the M1-specific markers CD80, iNOS, and IL-1b were significantly elevated in inflammatory adipose tissue when compared to healthy adipose tissue, whereas the M2-specific markers CD163 and TGF-β were decreased. By flow cytometry, a significant shift of adipose tissue macrophage populations towards the M1 phenotype was confirmed. Furthermore, a decrease in the mesenchymal stem cell markers CD29, CD34, and CD105 was observed whereas CD73 and CD90 remained unchanged. Discussion This is the first report describing the predominance of M1 adipose tissue macrophages and the reduction of stem cell marker expression in acutely inflamed, non-healing wounds. PMID:28070458

  8. Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice

    PubMed Central

    Weiner, Juliane; Kranz, Mathias; Klöting, Nora; Kunath, Anne; Steinhoff, Karen; Rijntjes, Eddy; Köhrle, Josef; Zeisig, Vilia; Hankir, Mohammed; Gebhardt, Claudia; Deuther-Conrad, Winnie; Heiker, John T.; Kralisch, Susan; Stumvoll, Michael; Blüher, Matthias; Sabri, Osama; Hesse, Swen; Brust, Peter; Tönjes, Anke; Krause, Kerstin

    2016-01-01

    The present study aimed to determine the effect of thyroid hormone dysfunction on brown adipose tissue activity and white adipose tissue browning in mice. Twenty randomized female C57BL/6NTac mice per treatment group housed at room temperature were rendered hypothyroid or hyperthyroid. In-vivo small animal 18F-FDG PET/MRI was performed to determine the effects of hypo- and hyperthyroidism on BAT mass and BAT activity. Ex-vivo14C-acetate loading assay and assessment of thermogenic gene and protein expression permitted analysis of oxidative and thermogenic capacities of WAT and BAT of eu-, hyper and hypothyroid mice. 18F-FDG PET/MRI revealed a lack of brown adipose tissue activity in hypothyroid mice, whereas hyperthyroid mice displayed increased BAT mass alongside enhanced 18F-FDG uptake. In white adipose tissue of both, hyper- and hypothyroid mice, we found a significant induction of thermogenic genes together with multilocular adipocytes expressing UCP1. Taken together, these results suggest that both the hyperthyroid and hypothyroid state stimulate WAT thermogenesis most likely as a consequence of enhanced adrenergic signaling or compensation for impaired BAT function, respectively. PMID:27941950

  9. Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice.

    PubMed

    Weiner, Juliane; Kranz, Mathias; Klöting, Nora; Kunath, Anne; Steinhoff, Karen; Rijntjes, Eddy; Köhrle, Josef; Zeisig, Vilia; Hankir, Mohammed; Gebhardt, Claudia; Deuther-Conrad, Winnie; Heiker, John T; Kralisch, Susan; Stumvoll, Michael; Blüher, Matthias; Sabri, Osama; Hesse, Swen; Brust, Peter; Tönjes, Anke; Krause, Kerstin

    2016-12-12

    The present study aimed to determine the effect of thyroid hormone dysfunction on brown adipose tissue activity and white adipose tissue browning in mice. Twenty randomized female C57BL/6NTac mice per treatment group housed at room temperature were rendered hypothyroid or hyperthyroid. In-vivo small animal (18)F-FDG PET/MRI was performed to determine the effects of hypo- and hyperthyroidism on BAT mass and BAT activity. Ex-vivo(14)C-acetate loading assay and assessment of thermogenic gene and protein expression permitted analysis of oxidative and thermogenic capacities of WAT and BAT of eu-, hyper and hypothyroid mice. (18)F-FDG PET/MRI revealed a lack of brown adipose tissue activity in hypothyroid mice, whereas hyperthyroid mice displayed increased BAT mass alongside enhanced (18)F-FDG uptake. In white adipose tissue of both, hyper- and hypothyroid mice, we found a significant induction of thermogenic genes together with multilocular adipocytes expressing UCP1. Taken together, these results suggest that both the hyperthyroid and hypothyroid state stimulate WAT thermogenesis most likely as a consequence of enhanced adrenergic signaling or compensation for impaired BAT function, respectively.

  10. Adipose tissue-organotypic culture system as a promising model for studying adipose tissue biology and regeneration

    PubMed Central

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Sonoda, Emiko; Yamasaki, Fumio; Piao, Meihua; Ootani, Akifumi; Yonemitsu, Nobuhisa; Sugihara, Hajime

    2009-01-01

    Adipose tissue consists of mature adipocytes, preadipocytes and mesenchymal stem cells (MSCs), but a culture system for analyzing their cell types within the tissue has not been established. We have recently developed “adipose tissue-organotypic culture system” that maintains unilocular structure, proliferative ability and functions of mature adipocytes for a long term, using three-dimensional collagen gel culture of the tissue fragments. In this system, both preadipocytes and MSCs regenerate actively at the peripheral zone of the fragments. Our method will open up a new way for studying both multiple cell types within adipose tissue and the cell-based mechanisms of obesity and metabolic syndrome. Thus, it seems to be a promising model for investigating adipose tissue biology and regeneration. In this article, we introduce adipose tissue-organotypic culture, and propose two theories regarding the mechanism of tissue regeneration that occurs specifically at peripheral zone of tissue fragments in vitro. PMID:19794899

  11. Brown adipose tissue in cetacean blubber.

    PubMed

    Hashimoto, Osamu; Ohtsuki, Hirofumi; Kakizaki, Takehiko; Amou, Kento; Sato, Ryo; Doi, Satoru; Kobayashi, Sara; Matsuda, Ayaka; Sugiyama, Makoto; Funaba, Masayuki; Matsuishi, Takashi; Terasawa, Fumio; Shindo, Junji; Endo, Hideki

    2015-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall's and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during

  12. Brown Adipose Tissue in Cetacean Blubber

    PubMed Central

    Hashimoto, Osamu; Ohtsuki, Hirofumi; Kakizaki, Takehiko; Amou, Kento; Sato, Ryo; Doi, Satoru; Kobayashi, Sara; Matsuda, Ayaka; Sugiyama, Makoto; Funaba, Masayuki; Matsuishi, Takashi; Terasawa, Fumio; Shindo, Junji; Endo, Hideki

    2015-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall’s and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during

  13. cGMP and Brown Adipose Tissue.

    PubMed

    Hoffmann, Linda S; Larson, Christopher J; Pfeifer, Alexander

    2016-01-01

    The second messenger cyclic guanosine monophosphate (cGMP) is a key mediator in physiological processes such as vascular tone, and its essential involvement in pathways regulating metabolism has been recognized in recent years. Here, we focus on the fundamental role of cGMP in brown adipose tissue (BAT) differentiation and function. In contrast to white adipose tissue (WAT), which stores energy in the form of lipids, BAT consumes energy stored in lipids to generate heat. This so-called non-shivering thermogenesis takes place in BAT mitochondria, which express the specific uncoupling protein 1 (UCP1). The energy combusting properties of BAT render it a promising target in antiobesity strategies in which BAT could burn the surplus energy that has accumulated in obese and overweight individuals. cGMP is generated by guanylyl cyclases upon activation by nitric oxide or natriuretic peptides. It affects several downstream molecules including cGMP-receptor proteins such as cGMP-dependent protein kinase and is degraded by phosphodiesterases. The cGMP pathway contains several signaling molecules that can increase cGMP signaling, resulting in activation and recruitment of brown adipocytes, and hence can enhance the energy combusting features of BAT. In this review we highlight recent results showing the physiological significance of cGMP signaling in BAT, as well as pharmacological options targeting cGMP signaling that bear a high potential to become BAT-centered therapies for the treatment of obesity.

  14. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    SciTech Connect

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo; Horiuchi, Masatsugu

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  15. A muscle-liver-fat signalling axis is essential for central control of adaptive adipose remodelling

    PubMed Central

    Shimizu, Noriaki; Maruyama, Takako; Yoshikawa, Noritada; Matsumiya, Ryo; Ma, Yanxia; Ito, Naoki; Tasaka, Yuki; Kuribara-Souta, Akiko; Miyata, Keishi; Oike, Yuichi; Berger, Stefan; Schütz, Günther; Takeda, Shin’ichi; Tanaka, Hirotoshi

    2015-01-01

    Skeletal muscle has a pleiotropic role in organismal energy metabolism, for example, by storing protein as an energy source, or by excreting endocrine hormones. Muscle proteolysis is tightly controlled by the hypothalamus-pituitary-adrenal signalling axis via a glucocorticoid-driven transcriptional programme. Here we unravel the physiological significance of this catabolic process using skeletal muscle-specific glucocorticoid receptor (GR) knockout (GRmKO) mice. These mice have increased muscle mass but smaller adipose tissues. Metabolically, GRmKO mice show a drastic shift of energy utilization and storage in muscle, liver and adipose tissues. We demonstrate that the resulting depletion of plasma alanine serves as a cue to increase plasma levels of fibroblast growth factor 21 (FGF21) and activates liver-fat communication, leading to the activation of lipolytic genes in adipose tissues. We propose that this skeletal muscle-liver-fat signalling axis may serve as a target for the development of therapies against various metabolic diseases, including obesity. PMID:25827749

  16. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  17. Adipose-derived stem cells for periodontal tissue regeneration.

    PubMed

    Tobita, Morikuni; Mizuno, Hiroshi

    2011-01-01

    Mesenchymal stem cells can effectively regenerate destroyed periodontal tissue. Because periodontal tissues are complex, mesenchymal stem cells that can differentiate into many tissue types would aid periodontal tissue regeneration. Indeed, periodontal tissue regeneration using mesenchymal stem cells derived from adipose tissue or bone marrow has been performed in experimental animal models, such as rat, canine, swine, and monkey. We have shown that rat periodontal tissue can be regenerated with adipose-derived stem cells. Adipose tissue contains a large number of stromal cells and is relatively easy to obtain in large quantities, and thus constitutes a very convenient stromal cell source. In this chapter, we introduce a rat periodontal tissue regeneration model using adipose-derived stem cells.

  18. Albumin induced cytokine expression in porcine adipose tissue explants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Albumin has historically been included in medium designed for use with adipose tissue when evaluating metabolism, gene expression or protein secretion. However, recent studies with mouse adipocytes (Ruan et al., J. Biol. Chem. 278:47585-47593, 2003) and human adipose tissue (Schlesinger et al., Ame...

  19. Altered autophagy in human adipose tissues in obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Context: Autophagy is a housekeeping mechanism, involved in metabolic regulation and stress response, shown recently to regulate lipid droplets biogenesis/breakdown and adipose tissue phenotype. Objective: We hypothesized that in human obesity autophagy may be altered in adipose tissue in a fat d...

  20. Cell supermarket: Adipose tissue as a source of stem cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  1. Regulation of systemic energy homeostasis by serotonin in adipose tissues

    PubMed Central

    Oh, Chang-Myung; Namkung, Jun; Go, Younghoon; Shong, Ko Eun; Kim, Kyuho; Kim, Hyeongseok; Park, Bo-Yoon; Lee, Ho Won; Jeon, Yong Hyun; Song, Junghan; Shong, Minho; Yadav, Vijay K.; Karsenty, Gerard; Kajimura, Shingo; Lee, In-Kyu; Park, Sangkyu; Kim, Hail

    2015-01-01

    Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis. PMID:25864946

  2. Non-invasive assessments of adipose tissue metabolism in vitro

    PubMed Central

    Abbott, Rosalyn D.; Borowsky, Francis E.; Quinn, Kyle P.; Bernstein, David L.; Georgakoudi, Irene; Kaplan, David L.

    2015-01-01

    Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with noninvasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored. PMID:26399988

  3. FEEDING INFLUENCES ADIPOSE TISSUE RESPONSES TO EXERCISE IN OVERWEIGHT MEN.

    PubMed

    Chen, Yung-Chih; Travers, Rebecca L; Walhin, Jean-Philippe; Gonzalez, Javier T; Koumanov, Francoise; Betts, James A; Thompson, Dylan

    2017-03-14

    Feeding profoundly affects metabolic responses to exercise in various tissues but the effect of feeding status on human adipose tissue responses to exercise has never been studied. Ten healthy overweight men aged 26 ± 5 years (mean ± SD) with a waist circumference of 105 ± 10 cm walked at 60% of maximum oxygen uptake under either FASTED or FED conditions in a randomised, counterbalanced design. Feeding comprised 648 ± 115 kcal 2 h before exercise. Blood samples were collected at regular intervals to examine changes in metabolic parameters and adipokine concentrations. Adipose tissue samples were obtained at baseline and one hour post-exercise to examine changes in adipose tissue mRNA expression and secretion of selected adipokines ex-vivo. Adipose tissue mRNA expression of PDK4, ATGL, HSL, FAT/CD36, GLUT4 and IRS2 in response to exercise were lower in FED compared to FASTED conditions (all p ≤ 0.05). Post-exercise adipose IRS2 protein was affected by feeding (p ≤ 0.05), but Akt2, AMPK, IRS1, GLUT4, PDK4 and HSL protein levels were not different. Feeding status did not impact serum and ex-vivo adipose secretion of IL-6, leptin or adiponectin in response to exercise. This is the first study to show that feeding prior to acute exercise affects post-exercise adipose tissue gene expression and we propose that feeding is likely to blunt long-term adipose tissue adaptation to regular exercise.

  4. The Ontogeny of Brown Adipose Tissue.

    PubMed

    Symonds, Michael E; Pope, Mark; Budge, Helen

    2015-01-01

    There are three different types of adipose tissue (AT)-brown, white, and beige-that differ with stage of development, species, and anatomical location. Of these, brown AT (BAT) is the least abundant but has the greatest potential impact on energy balance. BAT is capable of rapidly producing large amounts of heat through activation of the unique uncoupling protein 1 (UCP1) located within the inner mitochondrial membrane. White AT is an endocrine organ and site of lipid storage, whereas beige AT is primarily white but contains some cells that possess UCP1. BAT first appears in the fetus around mid-gestation and is then gradually lost through childhood, adolescence, and adulthood. We focus on the interrelationships between adipocyte classification, anatomical location, and impact of diet in early life together with the extent to which fat development differs between the major species examined. Ultimately, novel dietary interventions designed to reactivate BAT could be possible.

  5. Cell-autonomous activation of Hedgehog signaling inhibits brown adipose tissue development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although recent studies have shown that brown adipose tissue (BAT) arises from progenitor cells that also give rise to skeletal muscle, the developmental signals that control the formation of BAT remain largely unknown. Here, we show that brown preadipocytes possess primary cilia and can respond to ...

  6. Physical activity and exercise in the regulation of human adipose tissue physiology.

    PubMed

    Thompson, Dylan; Karpe, Fredrik; Lafontan, Max; Frayn, Keith

    2012-01-01

    Physical activity and exercise are key components of energy expenditure and therefore of energy balance. Changes in energy balance alter fat mass. It is therefore reasonable to ask: What are the links between physical activity and adipose tissue function? There are many complexities. Physical activity is a multifaceted behavior of which exercise is just one component. Physical activity influences adipose tissue both acutely and in the longer term. A single bout of exercise stimulates adipose tissue blood flow and fat mobilization, resulting in delivery of fatty acids to skeletal muscles at a rate well-matched to metabolic requirements, except perhaps in vigorous intensity exercise. The stimuli include adrenergic and other circulating factors. There is a period following an exercise bout when fatty acids are directed away from adipose tissue to other tissues such as skeletal muscle, reducing dietary fat storage in adipose. With chronic exercise (training), there are changes in adipose tissue physiology, particularly an enhanced fat mobilization during acute exercise. It is difficult, however, to distinguish chronic "structural" changes from those associated with the last exercise bout. In addition, it is difficult to distinguish between the effects of training per se and negative energy balance. Epidemiological observations support the idea that physically active people have relatively low fat mass, and intervention studies tend to show that exercise training reduces fat mass. A much-discussed effect of exercise versus calorie restriction in preferentially reducing visceral fat is not borne out by meta-analyses. We conclude that, in addition to the regulation of fat mass, physical activity may contribute to metabolic health through beneficial dynamic changes within adipose tissue in response to each activity bout.

  7. Porous decellularized adipose tissue foams for soft tissue regeneration.

    PubMed

    Yu, Claire; Bianco, Juares; Brown, Cody; Fuetterer, Lydia; Watkins, John F; Samani, Abbas; Flynn, Lauren E

    2013-04-01

    To design tissue-specific bioscaffolds with well-defined properties and 3-D architecture, methods were developed for preparing porous foams from enzyme-solubilized human decellularized adipose tissue (DAT). Additionally, a technique was established for fabricating "bead foams" comprised of interconnected networks of porous DAT beads fused through a controlled freeze-thawing and lyophilization procedure. In characterization studies, the foams were stable without the need for chemical crosslinking, with properties that could be tuned by controlling the protein concentration and freezing rate during synthesis. Adipogenic differentiation studies with human adipose-derived stem cells (ASCs) suggested that stiffness influenced ASC adipogenesis on the foams. In support of our previous work with DAT scaffolds and microcarriers, the DAT foams and bead foams strongly supported adipogenesis and were also adipo-inductive, as demonstrated by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, endpoint RT-PCR analysis of adipogenic gene expression, and intracellular lipid accumulation. Adipogenic differentiation was enhanced on the microporous DAT foams, potentially due to increased cell-cell interactions in this group. In vivo assessment in a subcutaneous Wistar rat model demonstrated that the DAT bioscaffolds were well tolerated and integrated into the host tissues, supporting angiogenesis and adipogenesis. The DAT-based foams induced a strong angiogenic response, promoted inflammatory cell migration and gradually resorbed over the course of 12 weeks, demonstrating potential as scaffolds for wound healing and soft tissue regeneration.

  8. Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue.

    PubMed

    Šram, Miroslav; Vrselja, Zvonimir; Lekšan, Igor; Ćurić, Goran; Selthofer-Relatić, Kristina; Radić, Radivoje

    2015-01-01

    Introduction. Adipose tissue is the largest endocrine organ, composed of subcutaneous (SAT) and visceral adipose tissue (VAT), the latter being highly associated with coronary artery disease (CAD). Expansion of epicardial adipose tissue (EAT) is linked to CAD. One way of assessing the CAD risk is with low-cost anthropometric measures, although they are inaccurate and cannot discriminate between VAT and SAT. The aim of this study is to evaluate (1) the relationship between EAT thickness, SAT thickness and anthropometric measures in a cohort of patients assessed at the cardiology unit and (2) determine predictive power of anthropometric measures and EAT and SAT thickness in establishment of CAD. Methods. Anthropometric measures were obtained from 53 CAD and 42 non-CAD patients. Vascular and structural statuses were obtained with coronarography and echocardiography, as well as measurements of the EAT and SAT thickness. Results. Anthropometric measures showed moderate positive correlation with EAT and SAT thickness. Anthropometric measures and SAT follow nonlinear S curve relationship with EAT. Strong nonlinear power curve relationship was observed between EAT and SAT thinner than 10 mm. Anthropometric measures and EAT and SAT were poor predictors of CAD. Conclusion. Anthropometric measures and SAT have nonlinear relationship with EAT. EAT thickness and anthropometric measures have similar CAD predictive value.

  9. Insulin resistance is associated with altered amino acid metabolism and adipose tissue dysfunction in normoglycemic women

    PubMed Central

    Wiklund, Petri; Zhang, Xiaobo; Pekkala, Satu; Autio, Reija; Kong, Lingjia; Yang, Yifan; Keinänen-Kiukaanniemi, Sirkka; Alen, Markku; Cheng, Sulin

    2016-01-01

    Insulin resistance is associated adiposity, but the mechanisms are not fully understood. In this study, we aimed to identify early metabolic alterations associated with insulin resistance in normoglycemic women with varying degree of adiposity. One-hundred and ten young and middle-aged women were divided into low and high IR groups based on their median HOMA-IR (0.9 ± 0.4 vs. 2.8 ± 1.2). Body composition was assessed using DXA, skeletal muscle and liver fat by proton magnetic resonance spectroscopy, serum metabolites by nuclear magnetic resonance spectroscopy and adipose tissue and skeletal muscle gene expression by microarrays. High HOMA-IR subjects had higher serum branched-chain amino acid concentrations (BCAA) (p < 0.05 for both). Gene expression analysis of subcutaneous adipose tissue revealed significant down-regulation of genes related to BCAA catabolism and mitochondrial energy metabolism and up-regulation of several inflammation-related pathways in high HOMA-IR subjects (p < 0.05 for all), but no differentially expressed genes in skeletal muscle were found. In conclusion, in normoglycemic women insulin resistance was associated with increased serum BCAA concentrations, down-regulation of mitochondrial energy metabolism and increased expression of inflammation-related genes in the adipose tissue. PMID:27080554

  10. Role of adipose tissue in the pathogenesis of cardiac arrhythmias.

    PubMed

    Samanta, Rahul; Pouliopoulos, Jim; Thiagalingam, Aravinda; Kovoor, Pramesh

    2016-01-01

    Epicardial adipose tissue is present in normal healthy individuals. It is a unique fat depot that, under physiologic conditions, plays a cardioprotective role. However, excess epicardial adipose tissue has been shown to be associated with prevalence and severity of atrial fibrillation. In arrhythmogenic right ventricular cardiomyopathy and myotonic dystrophy, fibrofatty infiltration of the myocardium is associated with ventricular arrhythmias. In the ovine model of ischemic cardiomyopathy, the presence of intramyocardial adipose or lipomatous metaplasia has been associated with increased propensity to ventricular tachycardia. These observations suggest a role of adipose tissue in the pathogenesis of cardiac arrhythmias. In this article, we review the role of cardiac adipose tissue in various cardiac arrhythmias and discuss the possible pathophysiologic mechanisms.

  11. Skeletal muscle adiposity is associated with physical activity, exercise capacity and fibre shift in COPD

    PubMed Central

    Maddocks, Matthew; Shrikrishna, Dinesh; Vitoriano, Simone; Natanek, Samantha A.; Tanner, Rebecca J.; Hart, Nicholas; Kemp, Paul R.; Moxham, John; Polkey, Michael I.; Hopkinson, Nicholas S.

    2014-01-01

    Quadriceps muscle phenotype varies widely between patients with chronic obstructive pulmonary disease (COPD) and cannot be determined without muscle biopsy. We hypothesised that measures of skeletal muscle adiposity could provide noninvasive biomarkers of muscle quality in this population. In 101 patients and 10 age-matched healthy controls, mid-thigh cross-sectional area, percentage intramuscular fat and skeletal muscle attenuation were calculated using computed tomography images and standard tissue attenuation ranges: fat -190– -30 HU; skeletal muscle -29–150 HU. Mean±sd percentage intramuscular fat was higher in the patient group (6.7±3.5% versus 4.3±1.2%, p = 0.03). Both percentage intramuscular fat and skeletal muscle attenuation were associated with physical activity level, exercise capacity and type I fibre proportion, independent of age, mid-thigh cross-sectional area and quadriceps strength. Combined with transfer factor of the lung for carbon monoxide, these variables could identify >80% of patients with fibre type shift with >65% specificity (area under the curve 0.83, 95% CI 0.72–0.95). Skeletal muscle adiposity assessed by computed tomography reflects multiple aspects of COPD related muscle dysfunction and may help to identify patients for trials of interventions targeted at specific muscle phenotypes. PMID:24993908

  12. Skeletal muscle adiposity is associated with physical activity, exercise capacity and fibre shift in COPD.

    PubMed

    Maddocks, Matthew; Shrikrishna, Dinesh; Vitoriano, Simone; Natanek, Samantha A; Tanner, Rebecca J; Hart, Nicholas; Kemp, Paul R; Moxham, John; Polkey, Michael I; Hopkinson, Nicholas S

    2014-11-01

    Quadriceps muscle phenotype varies widely between patients with chronic obstructive pulmonary disease (COPD) and cannot be determined without muscle biopsy. We hypothesised that measures of skeletal muscle adiposity could provide noninvasive biomarkers of muscle quality in this population. In 101 patients and 10 age-matched healthy controls, mid-thigh cross-sectional area, percentage intramuscular fat and skeletal muscle attenuation were calculated using computed tomography images and standard tissue attenuation ranges: fat -190- -30 HU; skeletal muscle -29-150 HU. Mean±sd percentage intramuscular fat was higher in the patient group (6.7±3.5% versus 4.3±1.2%, p = 0.03). Both percentage intramuscular fat and skeletal muscle attenuation were associated with physical activity level, exercise capacity and type I fibre proportion, independent of age, mid-thigh cross-sectional area and quadriceps strength. Combined with transfer factor of the lung for carbon monoxide, these variables could identify >80% of patients with fibre type shift with >65% specificity (area under the curve 0.83, 95% CI 0.72-0.95). Skeletal muscle adiposity assessed by computed tomography reflects multiple aspects of COPD related muscle dysfunction and may help to identify patients for trials of interventions targeted at specific muscle phenotypes.

  13. Proline oxidase-adipose triglyceride lipase pathway restrains adipose cell death and tissue inflammation.

    PubMed

    Lettieri Barbato, D; Aquilano, K; Baldelli, S; Cannata, S M; Bernardini, S; Rotilio, G; Ciriolo, M R

    2014-01-01

    The nutrient-sensing lipolytic enzyme adipose triglyceride lipase (ATGL) has a key role in adipose tissue function, and alterations in its activity have been implicated in many age-related metabolic disorders. In adipose tissue reduced blood vessel density is related to hypoxia state, cell death and inflammation. Here we demonstrate that adipocytes of poorly vascularized enlarged visceral adipose tissue (i.e. adipose tissue of old mice) suffer from limited nutrient delivery. In particular, nutrient starvation elicits increased activity of mitochondrial proline oxidase/dehydrogenase (POX/PRODH) that is causal in triggering a ROS-dependent induction of ATGL. We demonstrate that ATGL promotes the expression of genes related to mitochondrial oxidative metabolism (peroxisome proliferator-activated receptor-α, peroxisome proliferator-activated receptor-γ coactivator-1α), thus setting a metabolic switch towards fat utilization that supplies energy to starved adipocytes and prevents cell death, as well as adipose tissue inflammation. Taken together, these results identify ATGL as a stress resistance mediator in adipocytes, restraining visceral adipose tissue dysfunction typical of age-related metabolic disorders.

  14. Brown adipose tissue as a secretory organ.

    PubMed

    Villarroya, Francesc; Cereijo, Rubén; Villarroya, Joan; Giralt, Marta

    2017-01-01

    Brown adipose tissue (BAT) is the main site of adaptive thermogenesis and experimental studies have associated BAT activity with protection against obesity and metabolic diseases, such as type 2 diabetes mellitus and dyslipidaemia. Active BAT is present in adult humans and its activity is impaired in patients with obesity. The ability of BAT to protect against chronic metabolic disease has traditionally been attributed to its capacity to utilize glucose and lipids for thermogenesis. However, BAT might also have a secretory role, which could contribute to the systemic consequences of BAT activity. Several BAT-derived molecules that act in a paracrine or autocrine manner have been identified. Most of these factors promote hypertrophy and hyperplasia of BAT, vascularization, innervation and blood flow, processes that are all associated with BAT recruitment when thermogenic activity is enhanced. Additionally, BAT can release regulatory molecules that act on other tissues and organs. This secretory capacity of BAT is thought to be involved in the beneficial effects of BAT transplantation in rodents. Fibroblast growth factor 21, IL-6 and neuregulin 4 are among the first BAT-derived endocrine factors to be identified. In this Review, we discuss the current understanding of the regulatory molecules (the so-called brown adipokines or batokines) that are released by BAT that influence systemic metabolism and convey the beneficial metabolic effects of BAT activation. The identification of such adipokines might also direct drug discovery approaches for managing obesity and its associated chronic metabolic diseases.

  15. Cell Supermarket: Adipose Tissue as a Source of Stem Cells

    PubMed Central

    Dodson, M.V.; Wei, S.; Duarte, M.; Du, M.; Jiang, Z.; Hausman, G.J.; Bergen, W.G.

    2013-01-01

    Adipose tissue is derived from numerous sources, and in recent years this tissue has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical and scientific applications. The focus of this paper is to reflect on this area of research and to provide a list of potential (future) research areas. PMID:25031654

  16. Adipose Tissue: Sanctuary for HIV/SIV Persistence and Replication.

    PubMed

    Pallikkuth, Suresh; Mohan, Mahesh

    2015-12-01

    This commentary highlights new findings from a recent study identifying adipose tissue as a potential HIV reservoir and a major site of inflammation during chronic human/simian immunodeficiency virus (HIV/SIV) infection. A concise discussion about upcoming challenges and new research avenues for reducing chronic adipose inflammation during HIV/SIV infection is presented.

  17. Total DDT and dieldrin content of human adipose tissue

    SciTech Connect

    Ahmad, N.; Harsas, W.; Marolt, R.S.; Morton, M.; Pollack, J.K.

    1988-12-01

    As far as the authors could ascertain only 4 well-documented analytical studies have been carried out in Australia determining the total DDT and dieldrin content of human adipose tissue. The latest of these studies was published over 16 years ago. Therefore it is timely and important to re-examine the total DDT and dieldrin concentration within the adipose tissue of the Australian population. The present investigation has analyzed 290 samples of human adipose tissue obtained from Westmead Hospital situated in an outer suburb of Sydney, New South Wales for their content of total DDT and dieldrin.

  18. Mouse Maternal High-Fat Intake Dynamically Programmed mRNA m⁶A Modifications in Adipose and Skeletal Muscle Tissues in Offspring.

    PubMed

    Li, Xiao; Yang, Jing; Zhu, Youbo; Liu, Yuan; Shi, Xin'e; Yang, Gongshe

    2016-08-19

    Epigenetic mechanisms have an important role in the pre- and peri-conceptional programming by maternal nutrition. Yet, whether or not RNA m⁶A methylation-an old epigenetic marker receiving increased attention recently-is involved remains an unknown question. In this study, mouse high-fat feeding prior to conception was shown to induce overweight and glucose intolerant dams, which then continued to be exposed to a high-fat diet during gestation and lactation. The dams on a standard diet throughout the whole experiment were used as a control. Results showed that maternal high-fat intake impaired postnatal growth in male offspring, indicated by decreased body weight and Lee's index at 3, 8 and 15 weeks old, but the percentages of visceral fat and tibialis anterior relative to the whole body weights were significantly increased at eight weeks of age. The maternal high-fat exposure significantly increased mRNA N⁶-methyladenosine (m⁶A) levels in visceral fat at three weeks old, combined with downregulated Fat mass and obesity-associated gene (FTO) and upregulated Methyltransferase like 3 (METTL3) transcription, and these changes were reversed at eight weeks of age. In the tibialis anterior muscle, the maternal high-fat diet significantly enhanced m⁶A modifications at three weeks, and lowered m⁶A levels at 15 weeks of age. Accordingly, FTO transcription was significantly inhibited at three weeks and stimulated at 15 weeks of age, and METTL3 transcripts were significantly improved at three weeks. Interestingly, both FTO and METTL3 transcription was significantly elevated at eight weeks of age, and yet the m⁶A modifications remained unchanged. Our study showed that maternal high-fat intake could affect mRNA m⁶A modifications and its related genes in offspring in a tissue-specific and development-dependent way, and provided an interesting indication of the working of the m⁶A system during the transmission from maternal nutrition to subsequent generations.

  19. Mouse Maternal High-Fat Intake Dynamically Programmed mRNA m6A Modifications in Adipose and Skeletal Muscle Tissues in Offspring

    PubMed Central

    Li, Xiao; Yang, Jing; Zhu, Youbo; Liu, Yuan; Shi, Xin’e; Yang, Gongshe

    2016-01-01

    Epigenetic mechanisms have an important role in the pre- and peri-conceptional programming by maternal nutrition. Yet, whether or not RNA m6A methylation—an old epigenetic marker receiving increased attention recently—is involved remains an unknown question. In this study, mouse high-fat feeding prior to conception was shown to induce overweight and glucose intolerant dams, which then continued to be exposed to a high-fat diet during gestation and lactation. The dams on a standard diet throughout the whole experiment were used as a control. Results showed that maternal high-fat intake impaired postnatal growth in male offspring, indicated by decreased body weight and Lee’s index at 3, 8 and 15 weeks old, but the percentages of visceral fat and tibialis anterior relative to the whole body weights were significantly increased at eight weeks of age. The maternal high-fat exposure significantly increased mRNA N6-methyladenosine (m6A) levels in visceral fat at three weeks old, combined with downregulated Fat mass and obesity-associated gene (FTO) and upregulated Methyltransferase like 3 (METTL3) transcription, and these changes were reversed at eight weeks of age. In the tibialis anterior muscle, the maternal high-fat diet significantly enhanced m6A modifications at three weeks, and lowered m6A levels at 15 weeks of age. Accordingly, FTO transcription was significantly inhibited at three weeks and stimulated at 15 weeks of age, and METTL3 transcripts were significantly improved at three weeks. Interestingly, both FTO and METTL3 transcription was significantly elevated at eight weeks of age, and yet the m6A modifications remained unchanged. Our study showed that maternal high-fat intake could affect mRNA m6A modifications and its related genes in offspring in a tissue-specific and development-dependent way, and provided an interesting indication of the working of the m6A system during the transmission from maternal nutrition to subsequent generations. PMID:27548155

  20. Self-synthesized extracellular matrix contributes to mature adipose tissue regeneration in a tissue engineering chamber.

    PubMed

    Zhan, Weiqing; Chang, Qiang; Xiao, Xiaolian; Dong, Ziqing; Zeng, Zhaowei; Gao, Jianhua; Lu, Feng

    2015-01-01

    The development of an engineered adipose tissue substitute capable of supporting reliable, predictable, and complete fat tissue regeneration would be of value in plastic and reconstructive surgery. For adipogenesis, a tissue engineering chamber provides an optimized microenvironment that is both efficacious and reproducible; however, for reasons that remain unclear, tissues regenerated in a tissue engineering chamber consist mostly of connective rather than adipose tissue. Here, we describe a chamber-based system for improving the yield of mature adipose tissue and discuss the potential mechanism of adipogenesis in tissue-chamber models. Adipose tissue flaps with independent vascular pedicles placed in chambers were implanted into rabbits. Adipose volume increased significantly during the observation period (week 1, 2, 3, 4, 16). Histomorphometry revealed mature adipose tissue with signs of adipose tissue remolding. The induced engineered constructs showed high-level expression of adipogenic (peroxisome proliferator-activated receptor γ), chemotactic (stromal cell-derived factor 1a), and inflammatory (interleukin 1 and 6) genes. In our system, the extracellular matrix may have served as a scaffold for cell migration and proliferation, allowing mature adipose tissue to be obtained in a chamber microenvironment without the need for an exogenous scaffold. Our results provide new insights into key elements involved in the early development of adipose tissue regeneration.

  1. Isoliquiritigenin Attenuates Adipose Tissue Inflammation in vitro and Adipose Tissue Fibrosis through Inhibition of Innate Immune Responses in Mice

    PubMed Central

    Watanabe, Yasuharu; Nagai, Yoshinori; Honda, Hiroe; Okamoto, Naoki; Yamamoto, Seiji; Hamashima, Takeru; Ishii, Yoko; Tanaka, Miyako; Suganami, Takayoshi; Sasahara, Masakiyo; Miyake, Kensuke; Takatsu, Kiyoshi

    2016-01-01

    Isoliquiritigenin (ILG) is a flavonoid derived from Glycyrrhiza uralensis and potently suppresses NLRP3 inflammasome activation resulting in the improvement of diet-induced adipose tissue inflammation. However, whether ILG affects other pathways besides the inflammasome in adipose tissue inflammation is unknown. We here show that ILG suppresses adipose tissue inflammation by affecting the paracrine loop containing saturated fatty acids and TNF-α by using a co-culture composed of adipocytes and macrophages. ILG suppressed inflammatory changes induced by the co-culture through inhibition of NF-κB activation. This effect was independent of either inhibition of inflammasome activation or activation of peroxisome proliferator-activated receptor-γ. Moreover, ILG suppressed TNF-α-induced activation of adipocytes, coincident with inhibition of IκBα phosphorylation. Additionally, TNF-α-mediated inhibition of Akt phosphorylation under insulin signaling was alleviated by ILG in adipocytes. ILG suppressed palmitic acid-induced activation of macrophages, with decreasing the level of phosphorylated Jnk expression. Intriguingly, ILG improved high fat diet-induced fibrosis in adipose tissue in vivo. Finally, ILG inhibited TLR4- or Mincle-stimulated expression of fibrosis-related genes in stromal vascular fraction from obese adipose tissue and macrophages in vitro. Thus, ILG can suppress adipose tissue inflammation by both inflammasome-dependent and -independent manners and attenuate adipose tissue fibrosis by targeting innate immune sensors. PMID:26975571

  2. [Muscles and connective tissue: histology].

    PubMed

    Delage, J-P

    2012-10-01

    Here, we give some comments about the DVD movies "Muscle Attitudes" from Endovivo productions, the movies up lighting some loss in the attention given to studies on the connective tissue, and especially them into muscles. The main characteristics of the different components in the intra-muscular connective tissue (perimysium, endomysium, epimysium) are shown here with special references to their ordered architecture and special references to their spatial distributions. This connective tissue is abundant into the muscles and is in continuity with the muscles in vicinity, with their tendons and their sheath, sticking the whole on skin. This connective tissue has also very abundant connections on the muscles fibres. It is then assumed that the connective tissue sticks every organs or cells of the locomotion system. Considering the elastic properties of the collagen fibres which are the most abundant component of connective tissue, it is possible to up light a panel of connective tissue associated functions such as the transmission of muscle contractions or the regulation of protein and energetic muscles metabolism.

  3. Comparative analysis of mesenchymal stem cells from adult mouse adipose, muscle, and fetal muscle.

    PubMed

    Lei, Hulong; Yu, Bing; Huang, Zhiqing; Yang, Xuerong; Liu, Zehui; Mao, Xiangbing; Tian, Gang; He, Jun; Han, Guoquan; Chen, Hong; Mao, Qian; Chen, Daiwen

    2013-02-01

    Recently, increasing evidence supports that adult stem cells are the part of a natural system for tissue growth and repair. This study focused on the differences of mesenchymal stem cells from adult adipose (ADSCs), skeletal muscle (MDSCs) and fetal muscle (FMSCs) in biological characteristics, which is the key to cell therapy success. Stem cell antigen 1 (Sca-1) expression of MDSCs and FMSCs at passage 3 was two times more than that at passage 1 (P < 0.0001). After 28-day myogenic induction, higher expression levels of skeletal muscle-specific genes were observed in MDSCs than FMSCs (P < 0.01), and the lowest expression levels were demonstrated in ADSCs among three cells (P < 0.01). Besides, M-Cad and MyHC expressions in ADSCs were not detected by immunofluorescence or real-time quantitative PCR. Furthermore, after 14 days adipogenic induction, PPARγ2, LPL and aP2 mRNA expressions were higher in ADSCs vs. MDSCs (P < 0.01). Besides, MSCs from adult or fetal muscle expressed higher OCN and OPN than ADSCs after 28 days osteogenic induction (P < 0.01). Taken together, our results suggested that cell source and developmental stage had great impacts on biological properties of mesenchymal stem cells, and proper consideration of all the issues is necessary.

  4. Hypothalamic control of brown adipose tissue thermogenesis

    PubMed Central

    Labbé, Sebastien M.; Caron, Alexandre; Lanfray, Damien; Monge-Rofarello, Boris; Bartness, Timothy J.; Richard, Denis

    2015-01-01

    It has long been known, in large part from animal studies, that the control of brown adipose tissue (BAT) thermogenesis is insured by the central nervous system (CNS), which integrates several stimuli in order to control BAT activation through the sympathetic nervous system (SNS). SNS-mediated BAT activity is governed by diverse neurons found in brain structures involved in homeostatic regulations and whose activity is modulated by various factors including oscillations of energy fluxes. The characterization of these neurons has always represented a challenging issue. The available literature suggests that the neuronal circuits controlling BAT thermogenesis are largely part of an autonomic circuitry involving the hypothalamus, brainstem and the SNS efferent neurons. In the present review, we recapitulate the latest progresses in regards to the hypothalamic regulation of BAT metabolism. We briefly addressed the role of the thermoregulatory pathway and its interactions with the energy balance systems in the control of thermogenesis. We also reviewed the involvement of the brain melanocortin and endocannabinoid systems as well as the emerging role of steroidogenic factor 1 (SF1) neurons in BAT thermogenesis. Finally, we examined the link existing between these systems and the homeostatic factors that modulate their activities. PMID:26578907

  5. Adipose tissue lymphocytes: types and roles.

    PubMed

    Caspar-Bauguil, S; Cousin, B; Bour, S; Casteilla, L; Castiella, L; Penicaud, L; Carpéné, C

    2009-12-01

    Besides adipocytes, specialized in lipid handling and involved in energy balance regulation, white adipose tissue (WAT) is mainly composed of other cell types among which lymphocytes represent a non-negligible proportion. Different types of lymphocytes (B, alphabetaT, gammadeltaT, NK and NKT) have been detected in WAT of rodents or humans, and vary in their relative proportion according to the fat pad anatomical location. The lymphocytes found in intra-abdominal, visceral fat pads seem representative of innate immunity, while those present in subcutaneous fat depots are part of adaptive immunity, at least in mice. Both the number and the activity of the different lymphocyte classes, except B lymphocytes, are modified in obesity. Several of these modifications in the relative proportions of the lymphocyte classes depend on the degree of obesity, or on leptin concentration, or even fat depot anatomical location. Recent studies suggest that alterations of lymphocyte number and composition precede the macrophage increase and the enhanced inflammatory state of WAT found in obesity. Lymphocytes express receptors to adipokines while several proinflammatory chemokines are produced in WAT, rendering intricate crosstalk between fat and immune cells. However, the evidences and controversies available so far are in favour of an involvement of lymphocytes in the control of the number of other cells in WAT, either adipocytes or immune cells and of their secretory and metabolic activities. Therefore, immunotherapy deserves to be considered as a promising approach to treat the endocrino-metabolic disorders associated to excessive fat mass development.

  6. Central Control of Brown Adipose Tissue Thermogenesis

    PubMed Central

    Morrison, Shaun F.; Madden, Christopher J.; Tupone, Domenico

    2011-01-01

    Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. Mitochondrial oxidation in brown adipose tissue (BAT) is a significant source of neurally regulated metabolic heat production in many species from mouse to man. BAT thermogenesis is regulated by neural networks in the central nervous system which responds to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate BAT sympathetic nerve activity. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates BAT thermogenesis and includes the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E2, to increase body temperature during fever. The cold thermal afferent circuit from cutaneous thermal receptors, through second-order thermosensory neurons in the dorsal horn of the spinal cord ascends to activate neurons in the lateral parabrachial nucleus which drive GABAergic interneurons in the preoptic area (POA) to inhibit warm-sensitive, inhibitory output neurons of the POA. The resulting disinhibition of BAT thermogenesis-promoting neurons in the dorsomedial hypothalamus activates BAT sympathetic premotor neurons in the rostral ventromedial medulla, including the rostral raphe pallidus, which provide excitatory, and possibly disinhibitory, inputs to spinal sympathetic circuits to drive BAT thermogenesis. Other recently recognized central sites influencing BAT thermogenesis and energy expenditure are also described. PMID:22389645

  7. The role of dietary fat in adipose tissue metabolism.

    PubMed

    Fernández-Quintela, Alfredo; Churruca, Itziar; Portillo, Maria Puy

    2007-10-01

    Energy intake and expenditure tend on average to remain adjusted to each other in order to maintain a stable body weight, which is only likely to be sustained if the fuel mix oxidised is equivalent to the nutrient content of the diet. Whereas protein and carbohydrate degradation and oxidation are closely adjusted to their intakes, fat balance regulation is less precise and that fat is more likely to be stored than oxidised. It has been demonstrated that dietary fatty acids have an influence not only on the fatty acid composition of membrane phospholipids, thus modulating several metabolic processes that take place in the adipocyte, but also on the composition and the quantity of different fatty acids in adipose tissue. Moreover, dietary fatty acids also modulate eicosanoid presence, which have hormone-like activities in lipid metabolism regulation in adipose tissue. Until recently, the adipocyte has been considered to be no more than a passive tissue for storage of excess energy. However, there is now compelling evidence that adipocytes have a role as endocrine secretory cells. Some of the adipokines produced by adipose tissue, such as leptin and adiponectin, act on adipose tissue in an autocrine/paracrine manner to regulate adipocyte metabolism. Furthermore, dietary fatty acids may influence the expression of adipokines. The nutrients are among the most influential of the environmental factors that determine the way adipose tissue genes are expressed by functioning as regulators of gene transcription. Therefore, not only dietary fat amount but also dietary fat composition influence adipose tissue metabolism.

  8. Adipose tissue inflammation and metabolic dysfunction: a clinical perspective.

    PubMed

    Tam, Charmaine S; Redman, Leanne M

    2013-09-01

    Obesity is characterized by a state of chronic low-grade inflammation due to increased immune cells, specifically infiltrated macrophages into adipose tissue, which in turn secrete a range of proinflammatory mediators. This nonselective low-grade inflammation of adipose tissue is systemic in nature and can impair insulin signaling pathways, thus, increasing the risk of developing insulin resistance and type 2 diabetes. The aim of this review is to provide an update on clinical studies examining the role of adipose tissue in the development of obesity-associated complications in humans. We will discuss adipose tissue inflammation during different scenarios of energy imbalance and metabolic dysfunction including obesity and overfeeding, weight loss by calorie restriction or bariatric surgery, and conditions of insulin resistance (diabetes, polycystic ovarian syndrome).

  9. Metabolic syndrome pathophysiology: the role of adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several physiopathological explanations for the metabolic syndrome have been proposed involving insulin resistance, chronic inflammation and ectopic fat accumulation following adipose tissue saturation. However, current concepts create several paradoxes, including limited cardiovascular risk reducti...

  10. Adipose-derived stem cells and periodontal tissue engineering.

    PubMed

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  11. A cautionary tale for autologous vascular tissue engineering: impact of human demographics on the ability of adipose-derived mesenchymal stem cells to recruit and differentiate into smooth muscle cells.

    PubMed

    Krawiec, Jeffrey T; Weinbaum, Justin S; St Croix, Claudette M; Phillippi, Julie A; Watkins, Simon C; Rubin, J Peter; Vorp, David A

    2015-02-01

    Autologous tissue-engineered blood vessels (TEBVs) generated using adult stem cells have shown promising results, but many preclinical evaluations do not test the efficacy of stem cells from patient populations likely to need therapy (i.e., elderly and diabetic humans). Two critical functions of these cells will be (i) secreting factors that induce the migration of host cells into the graft and (ii) differentiating into functional vascular cells themselves. The purpose of this study was to analyze whether adipose-derived mesenchymal stem cells (AD-MSCs) sourced from diabetic and elderly patients have a reduced ability to promote human smooth muscle cell (SMC) migration and differentiation potential toward SMCs, two important processes in stem cell-based tissue engineering of vascular grafts. SMC monolayers were disrupted in vitro by a scratch wound and were induced to close the wound by exposure to media conditioned by AD-MSCs from healthy, elderly, and diabetic patients. Media conditioned by AD-MSCs from healthy patients promoted the migration of SMCs and did so in a dose-dependent manner; heating the media to 56°C eliminated the media's potency. AD-MSCs from diabetic and elderly patients had a decreased ability to differentiate into SMCs under angiotensin II stimulation; however, only AD-MSCs from elderly donors were unable to promote SMC migration. Gender and body-mass index of the patients showed no effect on either critical function of AD-MSCs. In conclusion, AD-MSCs from elderly patients may not be suitable for autologous TEBVs due to inadequate promotion of SMC migration and differentiation.

  12. Adipose Tissue Oxygenation in Obesity: A Matter of Cardiovascular Risk?

    PubMed

    Landini, Linda; Honka, Miikka-Juhani; Ferrannini, Ele; Nuutila, Pirjo

    2016-01-01

    Obesity, a chronic low-grade inflammation disorder characterized by an expansion in adipose tissue mass, is rapidly expanding worldwide leading to an increase in the incidence of comorbidities such as insulin resistance, type 2 diabetes and cardiovascular diseases. This has led to a renewed interest in the adipose tissue function, historically considered as a passive fat storage. It is now well established that adipose tissue is an organ with an active role in production and release of a variety of molecules called adipocytokines. Dysregulated production of adipocytokines seems to be responsible for the pathogenesis of insulin resistance and type 2 diabetes; however, the mechanisms are still unclear. Hypoxia, that occurs when adipocytes expand in obesity, has been proposed as a possible cause of adipose tissue inflammation. On the other hand, recent studies have shown that adipose tissue oxygen tension was actually higher (hyperoxia) than normal and associated with insulin resistance in obesity, despite a reduction in blood flow. This might be explained by the role of mitochondrial oxygen consumption. Hence, further studies are needed to understand the role of adipose tissue oxygenation and perfusion in obesity to assess pathophysiology and novel opportunities for treating the diseases.

  13. THE POTENTIAL ROLES FOR ADIPOSE TISSUE IN PERIPHERAL NERVE REGENERATION

    PubMed Central

    Walocko, Frances M.; Khouri, Roger K.; Urbanchek, Melanie G.; Levi, Benjamin; Cederna, Paul S.

    2016-01-01

    Introduction This review summarizes current understanding about the role of adipose-derived tissues in peripheral nerve regeneration and discusses potential advances that would translate this approach into the clinic. Methods We searched PubMed for in vivo, experimental studies on the regenerative effects of adipose-derived tissues on peripheral nerve injuries. We summarized the methods and results for the 42 experiments. Results Adipose-derived tissues enhanced peripheral nerve regeneration in 86% of the experiments. Ninety-five percent evaluated purified, cultured, or differentiated adipose tissue. These approaches have regulatory and scaling burdens, restricting clinical usage. Only one experiment tested the ability of adipose tissue to enhance nerve regeneration in conjunction with nerve autografts, the clinical gold standard. Conclusion Scientific studies illustrate that adipose-derived tissues enhance regeneration of peripheral nerves. Before this approach achieves clinical acceptance, fat processing must become automated and regulatory approval achieved. Animal studies using whole fat grafts are greatly needed for clinical translation. PMID:26773850

  14. Gene Expression Signature in Adipose Tissue of Acromegaly Patients

    PubMed Central

    Hochberg, Irit; Tran, Quynh T.; Barkan, Ariel L.; Saltiel, Alan R.; Chandler, William F.; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly. PMID:26087292

  15. HOXC10 suppresses browning of white adipose tissues

    PubMed Central

    Ng, Yvonne; Tan, Shi-Xiong; Chia, Sook Yoong; Tan, Hwee Yim Angeline; Gun, Sin Yee; Sun, Lei; Hong, Wanjin; Han, Weiping

    2017-01-01

    Given that increased thermogenesis in white adipose tissue, also known as browning, promotes energy expenditure, significant efforts have been invested to determine the molecular factors involved in this process. Here we show that HOXC10, a homeobox domain-containing transcription factor expressed in subcutaneous white adipose tissue, is a suppressor of genes involved in browning white adipose tissue. Ectopic expression of HOXC10 in adipocytes suppresses brown fat genes, whereas the depletion of HOXC10 in adipocytes and myoblasts increases the expression of brown fat genes. The protein level of HOXC10 inversely correlates with brown fat genes in subcutaneous white adipose tissue of cold-exposed mice. Expression of HOXC10 in mice suppresses cold-induced browning in subcutaneous white adipose tissue and abolishes the beneficial effect of cold exposure on glucose clearance. HOXC10 exerts its effect, at least in part, by suppressing PRDM16 expression. The results support that HOXC10 is a key negative regulator of the process of browning in white adipose tissue. PMID:28186086

  16. Gene Expression Signature in Adipose Tissue of Acromegaly Patients.

    PubMed

    Hochberg, Irit; Tran, Quynh T; Barkan, Ariel L; Saltiel, Alan R; Chandler, William F; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly.

  17. Visceral adipose tissue but not subcutaneous adipose tissue is associated with urine and serum metabolites.

    PubMed

    Schlecht, Inga; Gronwald, Wolfram; Behrens, Gundula; Baumeister, Sebastian E; Hertel, Johannes; Hochrein, Jochen; Zacharias, Helena U; Fischer, Beate; Oefner, Peter J; Leitzmann, Michael F

    2017-01-01

    Obesity is a complex multifactorial phenotype that influences several metabolic pathways. Yet, few studies have examined the relations of different body fat compartments to urinary and serum metabolites. Anthropometric phenotypes (visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), the ratio between VAT and SAT (VSR), body mass index (BMI), waist circumference (WC)) and urinary and serum metabolite concentrations measured by nuclear magnetic resonance spectroscopy were measured in a population-based sample of 228 healthy adults. Multivariable linear and logistic regression models, corrected for multiple testing using the false discovery rate, were used to associate anthropometric phenotypes with metabolites. We adjusted for potential confounding variables: age, sex, smoking, physical activity, menopausal status, estimated glomerular filtration rate (eGFR), urinary glucose, and fasting status. In a fully adjusted logistic regression model dichotomized for the absence or presence of quantifiable metabolite amounts, VAT, BMI and WC were inversely related to urinary choline (ß = -0.18, p = 2.73*10-3), glycolic acid (ß = -0.20, 0.02), and guanidinoacetic acid (ß = -0.12, p = 0.04), and positively related to ethanolamine (ß = 0.18, p = 0.02) and dimethylamine (ß = 0.32, p = 0.02). BMI and WC were additionally inversely related to urinary glutamine and lactic acid. Moreover, WC was inversely associated with the detection of serine. VAT, but none of the other anthropometric parameters, was related to serum essential amino acids, such as valine, isoleucine, and phenylalanine among men. Compared to other adiposity measures, VAT demonstrated the strongest and most significant relations to urinary and serum metabolites. The distinct relations of VAT, SAT, VSR, BMI, and WC to metabolites emphasize the importance of accurately differentiating between body fat compartments when evaluating the potential role of metabolic regulation in the development of obesity

  18. Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth.

    PubMed

    Jo, Junghyo; Gavrilova, Oksana; Pack, Stephanie; Jou, William; Mullen, Shawn; Sumner, Anne E; Cushman, Samuel W; Periwal, Vipul

    2009-03-01

    Adipose tissue grows by two mechanisms: hyperplasia (cell number increase) and hypertrophy (cell size increase). Genetics and diet affect the relative contributions of these two mechanisms to the growth of adipose tissue in obesity. In this study, the size distributions of epididymal adipose cells from two mouse strains, obesity-resistant FVB/N and obesity-prone C57BL/6, were measured after 2, 4, and 12 weeks under regular and high-fat feeding conditions. The total cell number in the epididymal fat pad was estimated from the fat pad mass and the normalized cell-size distribution. The cell number and volume-weighted mean cell size increase as a function of fat pad mass. To address adipose tissue growth precisely, we developed a mathematical model describing the evolution of the adipose cell-size distributions as a function of the increasing fat pad mass, instead of the increasing chronological time. Our model describes the recruitment of new adipose cells and their subsequent development in different strains, and with different diet regimens, with common mechanisms, but with diet- and genetics-dependent model parameters. Compared to the FVB/N strain, the C57BL/6 strain has greater recruitment of small adipose cells. Hyperplasia is enhanced by high-fat diet in a strain-dependent way, suggesting a synergistic interaction between genetics and diet. Moreover, high-fat feeding increases the rate of adipose cell size growth, independent of strain, reflecting the increase in calories requiring storage. Additionally, high-fat diet leads to a dramatic spreading of the size distribution of adipose cells in both strains; this implies an increase in size fluctuations of adipose cells through lipid turnover.

  19. Brown adipose tissue transplantation ameliorates polycystic ovary syndrome

    PubMed Central

    Yuan, Xiaoxue; Hu, Tao; Zhao, Han; Huang, Yuanyuan; Ye, Rongcai; Lin, Jun; Zhang, Chuanhai; Zhang, Hanlin; Wei, Gang; Zhou, Huiqiao; Dong, Meng; Zhao, Jun; Wang, Haibin; Liu, Qingsong; Lee, Hyuek Jong; Jin, Wanzhu; Chen, Zi-Jiang

    2016-01-01

    Polycystic ovary syndrome (PCOS), which is characterized by anovulation, hyperandrogenism, and polycystic ovaries, is a complex endocrinopathy. Because the cause of PCOS at the molecular level is largely unknown, there is no cure or specific treatment for PCOS. Here, we show that transplantation of brown adipose tissue (BAT) reversed anovulation, hyperandrogenism, and polycystic ovaries in a dehydroepiandrosterone (DHEA)-induced PCOS rat. BAT transplantation into a PCOS rat significantly stabilized menstrual irregularity and improved systemic insulin sensitivity up to a normal level, which was not shown in a sham-operated or muscle-transplanted PCOS rat. Moreover, BAT transplantation, not sham operation or muscle transplantation, surprisingly improved fertility in PCOS rats. Interestingly, BAT transplantation activated endogenous BAT and thereby increased the circulating level of adiponectin, which plays a prominent role in whole-body energy metabolism and ovarian physiology. Consistent with BAT transplantation, administration of adiponectin protein dramatically rescued DHEA-induced PCOS phenotypes. These results highlight that endogenous BAT activity is closely related to the development of PCOS phenotypes and that BAT activation might be a promising therapeutic option for the treatment of PCOS. PMID:26903641

  20. Ghrelin receptor regulates adipose tissue inflammation in aging

    PubMed Central

    Buras, Eric D.; Yu, Kaijiang; Wang, Ruitao; Smith, C. Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr−/− mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsr−/− mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsr−/− mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance. PMID:26837433

  1. Ghrelin receptor regulates adipose tissue inflammation in aging.

    PubMed

    Lin, Ligen; Lee, Jong Han; Buras, Eric D; Yu, Kaijiang; Wang, Ruitao; Smith, C Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr(-/-) mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsrp(-/-) mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsrp(-/-) mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance.

  2. Contrasting effects of cold acclimation versus obesogenic diets on chemerin gene expression in brown and brite adipose tissues.

    PubMed

    Hansen, Ida R; Jansson, Kim M; Cannon, Barbara; Nedergaard, Jan

    2014-12-01

    Based on results from a signal sequence trap, we investigated chemerin gene expression in brown adipose tissue. Male NMRI mice were exposed to 30, 22 or 4 °C for 3 weeks, or were fed control (chow) diet, cafeteria diet or high-fat diet at thermoneutrality for the same time. In brown adipose tissue, cold acclimation strongly diminished chemerin gene expression, whereas obesogenic diets augmented expression. Qualitatively, changes in expression were paralleled in brite/beige adipose tissues (e.g. inguinal), whereas white adipose tissue (epididymal) and muscle did not react to these cues. Changes in tissue expression were not directly paralleled by alterations in plasma levels. Both these intact animal studies and brown adipocyte cell culture studies indicated that the gene expression regulation was not congruent with a sympathetic/adrenergic control. The data are discussed in relation to suggested endocrine, paracrine and autocrine effects of chemerin.

  3. Erythropoietin administration partially prevents adipose tissue loss in experimental cancer cachexia models

    PubMed Central

    Penna, Fabio; Busquets, Silvia; Toledo, Miriam; Pin, Fabrizio; Massa, David; López-Soriano, Francisco J.; Costelli, Paola; Argilés, Josep M.

    2013-01-01

    Cancer-associated cachexia is characterized, among other symptoms, by a dramatic loss of both muscle and fat. In addition, the cachectic syndrome is often associated with anemia. The object of the present investigation was to assess the effects of erythropoietin (EPO) treatment on experimental cancer cachexia models. The results clearly show that, in addition to the improvement of the hematocrit, EPO treatment promoted a partial preservation of adipose tissue while exerting negligible effects on muscle loss. Administration of EPO to tumor-bearing animals resulted in a significant increase of lipoprotein lipase (LPL) activity in adipose tissue, suggesting that the treatment favored triacylglycerol (TAG) accumulation in the adipose tissue. In vitro experiments using both adipose tissue slices and 3T3-L1 adipocytes suggests that EPO is able to increase the lipogenic rate through the activation of its specific receptor (EPOR). This metabolic pathway, in addition to TAG uptake by LPL, may contribute to the beneficial effects of EPO on fat preservation in cancer cachexia. PMID:23966665

  4. UCP1 in adipose tissues: two steps to full browning.

    PubMed

    Kalinovich, Anastasia V; de Jong, Jasper M A; Cannon, Barbara; Nedergaard, Jan

    2017-03-01

    The possibility that brown adipose tissue thermogenesis can be recruited in order to combat the development of obesity has led to a high interest in the identification of "browning agents", i.e. agents that increase the amount and activity of UCP1 in brown and brite/beige adipose tissues. However, functional analysis of the browning process yields confusingly different results when the analysis is performed in one of two alternative steps. Thus, in one of the steps, using cold acclimation as a potent model browning agent, we find that if the browning process is followed in mice initially housed at 21 °C (the most common procedure), there is only weak molecular evidence for increases in UCP1 gene expression or UCP1 protein abundance in classical brown adipose tissue; however, in brite/beige adipose depots, there are large increases, apparently associating functional browning with events only in the brite/beige tissues. Contrastingly, in another step, if the process is followed starting with mice initially housed at 30 °C (thermoneutrality for mice, thus similar to normal human conditions), large increases in UCP1 gene expression and UCP1 protein abundance are observed in the classical brown adipose tissue depots; there is then practically no observable UCP1 gene expression in brite/beige tissues. This apparent conundrum can be resolved when it is realized that the classical brown adipose tissue at 21 °C is already essentially fully differentiated and thus expands extensively through proliferation upon further browning induction, rather than by further enhancing cellular differentiation. When the limiting factor for thermogenesis, i.e. the total amount of UCP1 protein per depot, is analyzed, classical brown adipose tissue is by far the predominant site for the browning process, irrespective of which of the two steps is analyzed. There are to date no published data demonstrating that alternative browning agents would selectively promote brite/beige tissues

  5. Human periprostatic adipose tissue promotes prostate cancer aggressiveness in vitro

    PubMed Central

    2012-01-01

    Background Obesity is associated with prostate cancer aggressiveness and mortality. The contribution of periprostatic adipose tissue, which is often infiltrated by malignant cells, to cancer progression is largely unknown. Thus, this study aimed to determine if periprostatic adipose tissue is linked with aggressive tumor biology in prostate cancer. Methods Supernatants of whole adipose tissue (explants) or stromal vascular fraction (SVF) from paired fat samples of periprostatic (PP) and pre-peritoneal visceral (VIS) anatomic origin from different donors were prepared and analyzed for matrix metalloproteinases (MMPs) 2 and 9 activity. The effects of those conditioned media (CM) on growth and migration of hormone-refractory (PC-3) and hormone-sensitive (LNCaP) prostate cancer cells were measured. Results We show here that PP adipose tissue of overweight men has higher MMP9 activity in comparison with normal subjects. The observed increased activities of both MMP2 and MMP9 in PP whole adipose tissue explants, likely reveal the contribution of adipocytes plus stromal-vascular fraction (SVF) as opposed to SVF alone. MMP2 activity was higher for PP when compared to VIS adipose tissue. When PC-3 cells were stimulated with CM from PP adipose tissue explants, increased proliferative and migratory capacities were observed, but not in the presence of SVF. Conversely, when LNCaP cells were stimulated with PP explants CM, we found enhanced motility despite the inhibition of proliferation, whereas CM derived from SVF increased both cell proliferation and motility. Explants culture and using adipose tissue of PP origin are most effective in promoting proliferation and migration of PC-3 cells, as respectively compared with SVF culture and using adipose tissue of VIS origin. In LNCaP cells, while explants CM cause increased migration compared to SVF, the use of PP adipose tissue to generate CM result in the increase of both cellular proliferation and migration. Conclusions Our

  6. Exercise Regulation of Marrow Adipose Tissue

    PubMed Central

    Pagnotti, Gabriel M.; Styner, Maya

    2016-01-01

    Despite association with low bone density and skeletal fractures, marrow adipose tissue (MAT) remains poorly understood. The marrow adipocyte originates from the mesenchymal stem cell (MSC) pool that also gives rise to osteoblasts, chondrocytes, and myocytes, among other cell types. To date, the presence of MAT has been attributed to preferential biasing of MSC into the adipocyte rather than osteoblast lineage, thus negatively impacting bone formation. Here, we focus on understanding the physiology of MAT in the setting of exercise, dietary interventions, and pharmacologic agents that alter fat metabolism. The beneficial effect of exercise on musculoskeletal strength is known: exercise induces bone formation, encourages growth of skeletally supportive tissues, inhibits bone resorption, and alters skeletal architecture through direct and indirect effects on a multiplicity of cells involved in skeletal adaptation. MAT is less well studied due to the lack of reproducible quantification techniques. In recent work, osmium-based 3D quantification shows a robust response of MAT to both dietary and exercise intervention in that MAT is elevated in response to high-fat diet and can be suppressed following daily exercise. Exercise-induced bone formation correlates with suppression of MAT, such that exercise effects might be due to either calorie expenditure from this depot or from mechanical biasing of MSC lineage away from fat and toward bone, or a combination thereof. Following treatment with the anti-diabetes drug rosiglitazone – a PPARγ-agonist known to increase MAT and fracture risk – mice demonstrate a fivefold higher femur MAT volume compared to the controls. In addition to preventing MAT accumulation in control mice, exercise intervention significantly lowers MAT accumulation in rosiglitazone-treated mice. Importantly, exercise induction of trabecular bone volume is unhindered by rosiglitazone. Thus, despite rosiglitazone augmentation of MAT, exercise

  7. [Interests and potentials of adipose tissue in scleroderma].

    PubMed

    Daumas, A; Eraud, J; Hautier, A; Sabatier, F; Magalon, G; Granel, B

    2013-12-01

    Systemic sclerosis is a disorder involving the connective tissue, arterioles and microvessels. It is characterized by skin and visceral fibrosis and ischemic phenomena. Currently, therapy is limited and no antifibrotic treatment has proven its efficacy. Beyond some severe organ lesions (pulmonary arterial hypertension, pulmonary fibrosis, scleroderma renal crisis), which only concern a minority of patients, the skin sclerosis of hands and face and the vasculopathy lead to physical and psychological disability in most patients. Thus, functional improvement of hand motion and face represents a priority for patient therapy. Due to its easy obtention by fat lipopaspirate and adipocytes survival, re injection of adipose tissue is a common therapy used in plastic surgery for its voluming effect. Identification and characterization of the adipose tissue-derived stroma vascular fraction, mainly including mesenchymal stem cells, have revolutionized the science showing that adipose tissue is a valuable source of multipotent stem cells, able to migrate to site of injury and to differentiate according to the receiver tissue's needs. Due to easy harvest by liposuction, its abundance in mesenchymal cells far higher that the bone marrow, and stroma vascular fraction's ability to differentiate and secrete growth angiogenic and antiapoptotic factors, the use of adipose tissue is becoming more attractive in regenerative medicine. We here present the interest of adipose tissue use in the treatment of the hands and face in scleroderma.

  8. Fatty Infiltration of Skeletal Muscle: Mechanisms and Comparisons with Bone Marrow Adiposity.

    PubMed

    Hamrick, Mark W; McGee-Lawrence, Meghan E; Frechette, Danielle M

    2016-01-01

    Skeletal muscle and bone share common embryological origins from mesodermal cell populations and also display common growth trajectories early in life. Moreover, muscle and bone are both mechanoresponsive tissues, and the mass and strength of both tissues decline with age. The decline in muscle and bone strength that occurs with aging is accompanied in both cases by an accumulation of adipose tissue. In bone, adipocyte (AC) accumulation occurs in the marrow cavities of long bones and is known to increase with estrogen deficiency, mechanical unloading, and exposure to glucocorticoids. The factors leading to accumulation of intra- and intermuscular fat (myosteatosis) are less well understood, but recent evidence indicates that increases in intramuscular fat are associated with disuse, altered leptin signaling, sex steroid deficiency, and glucocorticoid treatment, factors that are also implicated in bone marrow adipogenesis. Importantly, accumulation of ACs in skeletal muscle and accumulation of intramyocellular lipid are linked to loss of muscle strength, reduced insulin sensitivity, and increased mortality among the elderly. Resistance exercise and whole body vibration can prevent fatty infiltration in skeletal muscle and also improve muscle strength. Therapeutic strategies to prevent myosteatosis may improve muscle function and reduce fall risk in the elderly, potentially impacting the incidence of bone fracture.

  9. Growth hormone and adipose tissue: beyond the adipocyte

    PubMed Central

    Berryman, Darlene E.; List, Edward O.; Sackmann-Sala, Lucila; Lubbers, Ellen; Munn, Rachel; Kopchick, John J.

    2011-01-01

    The last two decades have seen resurgence in the interest in, and research on, adipose tissue. In part, the increased interest stems from an alarming increase in obesity rates worldwide. However, an understanding that this once simple tissue is significantly more intricate and interactive than previously realized has fostered additional attention. While few would argue that growth hormone (GH) radically alters adipose tissue, a better appreciation of the newer complexities requires that GH's influence on this tissue be reexamined. Therefore, the objective of this review is to describe the more recent understanding of adipose tissue and how GH may influence and contribute to these newer complexities with special focus on the available data from mice with altered GH action. PMID:21470887

  10. Enzymatic intracrine regulation of white adipose tissue

    PubMed Central

    DiSilvestro, David; Petrosino, Jennifer; Aldoori, Ayat; Melgar-Bermudez, Emiliano; Wells, Alexandra; Ziouzenkova, Ouliana

    2015-01-01

    Abdominal fat formation has become a permanent risk factor for metabolic syndrome and various cancers in one-third of the world's population of obese and even lean patients. Formation of abdominal fat involves additional mechanisms beyond an imbalance in energy intake and expenditure, which explains systemic obesity. In this review, we briefly summarized autonomous regulatory circuits that locally produce hormones from inactive precursors or nutrients for intra-/auto-/paracrine signaling in white adipose depots. Enzymatic pathways activating steroid and thyroid hormones in adipose depots were compared with enzymatic production of retinoic acid from vitamin A. We discussed the role of intracrine circuits in fat-depot functions and strategies to reduce abdominal adiposity through thermogenic adipocytes with interrupted generation of retinoic acid. PMID:25390015

  11. Brown adipose tissue as an anti-obesity tissue in humans.

    PubMed

    Chechi, K; Nedergaard, J; Richard, D

    2014-02-01

    During the 11th Stock Conference held in Montreal, Quebec, Canada, world-leading experts came together to present and discuss recent developments made in the field of brown adipose tissue biology. Owing to the vast capacity of brown adipose tissue for burning food energy in the process of thermogenesis, and due to demonstrations of its presence in adult humans, there is tremendous interest in targeting brown adipose tissue as an anti-obesity tissue in humans. However, the future of such therapeutic approaches relies on our understanding of the origin, development, recruitment, activation and regulation of brown adipose tissue in humans. As reviewed here, the 11th Stock Conference was organized around these themes to discuss the recent progress made in each aspect, to identify gaps in our current understanding and to further provide a common groundwork that could support collaborative efforts aimed at a future therapy for obesity, based on brown adipose tissue thermogenesis.

  12. NPY antagonism reduces adiposity and attenuates age-related imbalance of adipose tissue metabolism.

    PubMed

    Park, Seongjoon; Fujishita, Chika; Komatsu, Toshimitsu; Kim, Sang Eun; Chiba, Takuya; Mori, Ryoichi; Shimokawa, Isao

    2014-12-01

    An orexigenic hormone, neuropeptide Y (NPY), plays a role not only in the hypothalamic regulation of appetite, but also in the peripheral regulation of lipid metabolism. However, the intracellular mechanisms triggered by NPY to regulate lipid metabolism are poorly understood. Here we report that NPY deficiency reduces white adipose tissue (WAT) mass and ameliorates the age-related imbalance of adipose tissue metabolism in mice. Gene expression involved in adipogenesis/lipogenesis was found to decrease, whereas proteins involved in lipolysis increased in gonadal WAT (gWAT) of NPY-knockout mice. These changes were associated with an activated SIRT1- and PPARγ-mediated pathway. Moreover, the age-related decrease of de novo lipogenesis in gWAT and thermogenesis in inguinal WAT was inhibited by NPY deficiency. Further analysis using 3T3-L1 cells showed that NPY inhibited lipolysis through the Y1 receptor and enhanced lipogenesis following a reduction in cAMP response element-binding protein (CREB) and SIRT1 protein expression. Therefore, NPY appears to act as a key regulator of adipose tissue metabolism via the CREB-SIRT1 signaling pathway. Taken together, NPY deficiency reduces adiposity and ameliorates the age-related imbalance of adipose tissue metabolism, suggesting that antagonism of NPY may be a promising target for drug development to prevent age-related metabolic diseases.

  13. 11-Beta hydroxysteroid dehydrogenase type 2 expression in white adipose tissue is strongly correlated with adiposity.

    PubMed

    Milagro, Fermin I; Campión, Javier; Martínez, J Alfredo

    2007-04-01

    Glucocorticoid action within the cells is regulated by the levels of glucocorticoid receptor (GR) expression and two enzymes, 11-beta hydroxysteroid dehydrogenase type 1 (11betaHSD1), which converts inactive to active glucocorticoids, and 11-beta hydroxysteroid dehydrogenase type 2 (11betaHSD2), which regulates the access of active glucocorticoids to the receptor by converting cortisol/corticosterone to the glucocorticoid-inactive form cortisone/dehydrocorticosterone. Male Wistar rats developed obesity by being fed a high-fat diet for 56 days, and GR, 11betaHSD1 and 11betaHSD2 gene expression were compared with control-diet fed animals. Gene expression analysis of 11betaHSD1, 11betaHSD2 and GR were performed by RT-PCR in subcutaneous and retroperitoneal adipose tissue. High-fat fed animals overexpressed 11betaHSD2 in subcutaneous but not in retroperitoneal fat. Interestingly, mRNA levels strongly correlated in both tissues with different parameters related to obesity, such as body weight, adiposity and insulin resistance, suggesting that this gene is a reliable marker of adiposity in this rat model of obesity. Thus, 11betaHSD2 is expressed in adipose tissue by both adipocytes and stromal-vascular cells, which suggests that this enzyme may play an important role in preventing fat accumulation in adipose tissue.

  14. Natural killer T cells in adipose tissue prevent insulin resistance.

    PubMed

    Schipper, Henk S; Rakhshandehroo, Maryam; van de Graaf, Stan F J; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E S; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-09-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell-deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue-resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue-resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance.

  15. A stringent validation of mouse adipose tissue identity markers.

    PubMed

    de Jong, Jasper M A; Larsson, Ola; Cannon, Barbara; Nedergaard, Jan

    2015-06-15

    The nature of brown adipose tissue in humans is presently debated: whether it is classical brown or of brite/beige nature. The dissimilar developmental origins and proposed distinct functions of the brown and brite/beige tissues make it essential to ascertain the identity of human depots with the perspective of recruiting and activating them for the treatment of obesity and type 2 diabetes. For identification of the tissues, a number of marker genes have been proposed, but the validity of the markers has not been well documented. We used established brown (interscapular), brite (inguinal), and white (epididymal) mouse adipose tissues and corresponding primary cell cultures as validators and examined the informative value of a series of suggested markers earlier used in the discussion considering the nature of human brown adipose tissue. Most of these markers unexpectedly turned out to be noninformative concerning tissue classification (Car4, Cited1, Ebf3, Eva1, Fbxo31, Fgf21, Lhx8, Hoxc8, and Hoxc9). Only Zic1 (brown), Cd137, Epsti1, Tbx1, Tmem26 (brite), and Tcf21 (white) proved to be informative in these three tissues. However, the expression of the brite markers was not maintained in cell culture. In a more extensive set of adipose depots, these validated markers provide new information about depot identity. Principal component analysis supported our single-gene conclusions. Furthermore, Zic1, Hoxc8, Hoxc9, and Tcf21 displayed anteroposterior expression patterns, indicating a relationship between anatomic localization and adipose tissue identity (and possibly function). Together, the observed expression patterns of these validated marker genes necessitates reconsideration of adipose depot identity in mice and humans.

  16. INVITED REVIEW: Evolution of meat animal growth research during the past 50 years: Adipose and muscle stem cells.

    PubMed

    Dodson, M V; Allen, R E; Du, M; Bergen, W G; Velleman, S G; Poulos, S P; Fernyhough-Culver, M; Wheeler, M B; Duckett, S K; Young, M R I; Voy, B H; Jiang, Z; Hausman, G J

    2015-02-01

    If one were to compare today's animal growth research to research from a mere 50 yr ago, one would see programs with few similarities. The evolution of this research from whole-animal through cell-based and finally molecular and genomic studies has been enhanced by the identification, isolation, and in vitro evaluation of adipose- and muscle-derived stem cells. This paper will highlight the struggles and the milestones that make this evolving area of research what it is today. The contribution of adipose and muscle stem cell research to development and growth, tissue regeneration, and final carcass composition are reviewed.

  17. Developmental regulation of adipose tissue growth through hyperplasia and hypertrophy in the embryonic Leghorn and broiler.

    PubMed

    Chen, Paula; Suh, Yeunsu; Choi, Young Min; Shin, Sangsu; Lee, Kichoon

    2014-07-01

    The United States is a world leader in poultry production, which is the reason why achieving better performance and muscle growth each year is a necessity. Reducing accretion of adipose tissue is another important factor for poultry producers because this allows more nutrients to be directed toward muscle growth, but the effect of embryonic adipose growth on posthatch development has not been fully understood. The purpose of this study was to investigate the total DNA mass, morphological characteristics, differentiation markers, and triglyceride breakdown factors of embryonic adipose tissue, and their relation to hyperplastic and hypertrophic growth within layers (Leghorn) and meat-type chickens (broilers). After embryonic day (E) 12, broiler weight was significantly higher than Leghorn, and this trend continued throughout the rest of incubation and posthatch (P < 0.05). Neck and leg fat pad weights between the 2 breeds did not differ at most of the time points. A remarkable increase in total DNA mass was observed between E12 and E14 in both Leghorn and broilers (P < 0.05), indicating a high potential for hyperplastic growth during this time. Histological analysis revealed clusters of preadipocytes at E12; however, the majority of these cells differentiated by E14 and continued to grow until the time of hatch. The adipocyte sizes between both breeds did not generally differ, even though broilers are known to have larger adipocytes posthatch. Fatty acid-binding protein 4 expression levels in Leghorn and broilers continued to rise with each time point, which paralleled the expansion of mature adipocytes. Adipose triglyceride lipase was highly expressed at E20 and d 1 posthatch to mobilize triglyceride degradation for energy during hatching. Thus, embryonic chicken adipose tissue was found to develop by hyperplastic mechanisms followed by hypertrophy. At embryonic stages and early posthatch, layer- and meat-type chicken adipose growth does not differ, which suggests

  18. ELOVL3 is an important component for early onset of lipid recruitment in brown adipose tissue.

    PubMed

    Westerberg, Rolf; Månsson, Jan-Erik; Golozoubova, Valeria; Shabalina, Irina G; Backlund, Emma C; Tvrdik, Petr; Retterstøl, Kjetil; Capecchi, Mario R; Jacobsson, Anders

    2006-02-24

    During the recruitment process of brown adipose tissue, the mRNA level of the fatty acyl chain elongase Elovl3 is elevated more than 200-fold in cold-stressed mice. We have obtained Elovl3-ablated mice and report here that, although cold-acclimated Elovl3-ablated mice experienced an increased heat loss due to impaired skin barrier, they were unable to hyperrecruit their brown adipose tissue. Instead, they used muscle shivering in order to maintain body temperature. Lack of Elovl3 resulted in a transient decrease in the capacity to elongate saturated fatty acyl-CoAs into very long chain fatty acids, concomitantly with the occurrence of reduced levels of arachidic acid (C20:0) and behenic acid (C22:0) in brown adipose tissue during the initial cold stress. This effect on very long chain fatty acid synthesis could be illustrated as a decrease in the condensation activity of the elongation enzyme. In addition, warm-acclimated Elovl3-ablated mice showed diminished ability to accumulate fat and reduced metabolic capacity within the brown fat cells. This points to ELOVL3 as an important regulator of endogenous synthesis of saturated very long chain fatty acids and triglyceride formation in brown adipose tissue during the early phase of the tissue recruitment.

  19. Low skeletal muscle radiation attenuation and visceral adiposity are associated with overall survival and surgical site infections in patients with pancreatic cancer

    PubMed Central

    Bakens, Maikel J. A. M.; Coolsen, Mariëlle M. E.; Rensen, Sander S.; van Dam, Ronald M.; Bours, Martijn J. L.; Weijenberg, Matty P.; Dejong, Cornelis H. C.; Olde Damink, Steven W. M.

    2016-01-01

    Abstract Background Cancer cachexia and skeletal muscle wasting are related to poor survival. In this study, quantitative body composition measurements using computed tomography (CT) were investigated in relation to survival, post‐operative complications, and surgical site infections in surgical patients with cancer of the head of the pancreas. Methods A prospective cohort of 199 patients with cancer of the head of the pancreas was analysed by CT imaging at the L3 level to determine (i) muscle radiation attenuation (average Hounsfield units of total L3 skeletal muscle); (ii) visceral adipose tissue area; (iii) subcutaneous adipose tissue area; (iv) intermuscular adipose tissue area; and (v) skeletal muscle area. Sex‐specific cut‐offs were determined at the lower tertile for muscle radiation attenuation and skeletal muscle area and the higher tertile for adipose tissues. These variables of body composition were related to overall survival, severe post‐operative complications (Dindo–Clavien ≥ 3), and surgical site infections (wounds inspected daily by an independent trial nurse) using Cox‐regression analysis and multivariable logistic regression analysis, respectively. Results Low muscle radiation attenuation was associated with shorter survival in comparison with moderate and high muscle radiation attenuation [median survival 10.8 (95% CI: 8.8–12.8) vs. 17.4 (95% CI: 14.7–20.1), and 18.5 (95% CI: 9.2–27.8) months, respectively; P < 0.008]. Patient subgroups with high muscle radiation attenuation combined with either low visceral adipose tissue or age <70 years had longer survival than other subgroups (P = 0.011 and P = 0.001, respectively). Muscle radiation attenuation was inversely correlated with intermuscular adipose tissue (r p = −0.697, P < 0.001). High visceral adipose tissue was associated with an increased surgical site infection rate, OR: 2.4 (95% CI: 1.1–5.3; P = 0.027). Conclusions Low muscle radiation

  20. Different adipose tissue depots: Metabolic implications and effects of surgical removal.

    PubMed

    Marcadenti, Aline; de Abreu-Silva, Erlon Oliveira

    2015-11-01

    Increased adiposity has been associated to worse metabolic profile, cardiovascular disease, and mortality. There are two main adipose tissue depots in the body, subcutaneous and visceral adipose tissue, which differ in anatomical location. A large body of evidence has shown the metabolic activity of adipose tissue; lipectomy and/or liposuction therefore appear to be alternatives for improving metabolic profile through rapid loss of adipose tissue. However, surgical removal of adipose tissue may be detrimental for metabolism, because subcutaneous adipose tissue has not been associated to metabolic disorders such as insulin resistance and type 2 diabetes mellitus. In addition, animal studies have shown a compensatory growth of adipose tissue in response to lipectomy. This review summarizes the implications of obesity-induced metabolic dysfunction, its relationship with the different adipose tissue depots, and the effects of lipectomy on cardiometabolic risk factors.

  1. Recent Advances in Proteomic Studies of Adipose Tissues and Adipocytes

    PubMed Central

    Kim, Eun Young; Kim, Won Kon; Oh, Kyoung-Jin; Han, Baek Soo; Lee, Sang Chul; Bae, Kwang-Hee

    2015-01-01

    Obesity is a chronic disease that is associated with significantly increased levels of risk of a number of metabolic disorders. Despite these enhanced health risks, the worldwide prevalence of obesity has increased dramatically over the past few decades. Obesity is caused by the accumulation of an abnormal amount of body fat in adipose tissue, which is composed mostly of adipocytes. Thus, a deeper understanding of the regulation mechanism of adipose tissue and/or adipocytes can provide a clue for overcoming obesity-related metabolic diseases. In this review, we describe recent advances in the study of adipose tissue and/or adipocytes, focusing on proteomic approaches. In addition, we suggest future research directions for proteomic studies which may lead to novel treatments of obesity and obesity-related diseases. PMID:25734986

  2. The effect of hypokinesia on lipid metabolism in adipose tissue

    NASA Astrophysics Data System (ADS)

    Macho, Ladislav; Kvetn̆anský, Richard; Ficková, Mária

    The increase of nonesterified fatty acid (NEFA) concentration in plasma was observed in rats subjected to hypokinesia for 1-60 days. In the period of recovery (7 and 21 days after 60 days immobilization) the content of NEFA returned to control values. The increase of fatty acid release from adipose tissue was observed in hypokinetic rats, however the stimulation of lipolysis by norepinephrine was lower in rats exposed to hypokinesis. The decrease of the binding capacity and a diminished number of beta-adrenergic receptors were found in animals after hypokinesia. The augmentation of the incorporation of glucose into lipids and the marked increase in the stimulation of lipogenesis by insulin were found in adipose tissue of rats subjected to long-term hypokinesia. These results showed an important effect of hypokinesia on lipid mobilization, on lipogenesis and on the processes of hormone regulation in adipose tissue.

  3. Assessment of feline abdominal adipose tissue using computed tomography.

    PubMed

    Lee, Hyeyeon; Kim, Mieun; Choi, Mihyun; Lee, Namsoon; Chang, Jinhwa; Yoon, Junghee; Choi, Mincheol

    2010-12-01

    Obesity is a common nutritional disorder in cats and it increases the risk factors for various diseases. The aim of this study is to suggest a method for the evaluation of feline obesity using computed tomography. The attenuation range from -156 to -106 was determined as the range of feline abdominal adipose tissue. With this range, total (TAT), visceral (VAT) and subcutaneous (SAT) adipose tissues were measured. The best correlation between the adipose tissue in cross-sectional image and entire abdomen volume was obtained at the L3 and L5 levels. The mean VAT/SAT ratio was 1.18±0.32, which was much higher than in humans. The cats with an overweight body condition had a significantly lower VAT/SAT ratio than cats with an ideal body condition. This technique may contribute to both the clinical diagnosis and the experimental study of feline obesity.

  4. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis

    PubMed Central

    Messina, Antonietta; Monda, Vincenzo; Viggiano, Emanuela; Valenzano, Anna; Esposito, Teresa; Cibelli, Giuseppe

    2017-01-01

    Osteopontin (OPN) is a multifunctional protein mainly associated with bone metabolism and remodeling. Besides its physiological functions, OPN is implicated in the pathogenesis of a variety of disease states, such as obesity and osteoporosis. Importantly, during the last decades obesity and osteoporosis have become among the main threats to health worldwide. Because OPN is a protein principally expressed in cells with multifaceted effects on bone morphogenesis and remodeling and because it seems to be one of the most overexpressed genes in the adipose tissue of the obese contributing to osteoporosis, this mini review will highlight recent insights about relation between adipose tissue and bone homeostasis. PMID:28194185

  5. The regulation of acyl-CoA dehydrogenases in adipose tissue by rosiglitazone.

    PubMed

    Goetzman, Eric S

    2009-01-01

    The acyl-CoA dehydrogenases (ACADs), which catalyze the rate-limiting step in the mitochondrial beta-oxidation spiral, were investigated in white adipose tissue (WAT) of C57Bl/6 mice treated with 10 mg/kg/day rosiglitazone. Rosiglitazone was also administered to PPAR-alpha knockout mice. ACAD abundance and activity were determined using western blotting and an ACAD enzyme activity assay. Rosiglitazone increased ACAD activity in both epididymal and inguinal WAT but not in brown adipose tissue, liver, or muscle. Given the known function of PPAR-alpha in regulating the expression of ACAD genes in liver, it was hypothesized that PPAR-alpha may be involved in upregulating the ACADs during rosiglitazone-mediated adipose tissue remodeling. However, the effect of rosiglitazone on adipose tissue ACAD activity was the same in wild-type and PPAR-alpha knockout mice. In conclusion, rosiglitazone increases expression and activity of ACAD enzymes in WAT independently of PPAR-alpha.

  6. The formation of brown adipose tissue induced by transgenic over-expression of PPARγ2.

    PubMed

    Zhou, Ying; Yang, Jinzeng; Huang, Jinliang; Li, Ting; Xu, Dequan; Zuo, Bo; Hou, Liming; Wu, Wangjun; Zhang, Lin; Xia, Xiaoliang; Ma, Zhiyuan; Ren, Zhuqing; Xiong, Yuanzhu

    2014-04-18

    Brown adipose tissue (BAT) is specialized to dissipate energy as heat, therefore reducing fat deposition and counteracting obesity. Brown adipocytes arise from myoblastic progenitors during embryonic development by the action of transcription regulator PRDM16 binding to PPARγ, which promotes BAT-like phenotype in white adipose tissue. To investigate the capability of converting white adipose tissue to BAT or browning by PPARγ in vivo, we generated transgenic mice with over-expressed PPARγ2. The transgenic mice showed strong brown fat features in subcutaneous fat in morphology and histology. To provide molecular evidences on browning characteristics of the adipose tissue, we employed quantitative real-time PCR to determine BAT-specific gene expressions. The transgenic mice had remarkably elevated mRNA level of UCP1, Elovl3, PGC1α and Cebpα in subcutaneous fat. Compared with wild-type mice, UCP1 protein levels were increased significantly in transgenic mice. ATP concentration was slightly decreased in the subcutaneous fat of transgenic mice. Western blotting analysis also confirmed that phosphorylated AMPK and ACC proteins were significantly (P<0.01) increased in the transgenic mice. Therefore, this study demonstrated that over-expression of PPARγ2 in skeletal muscle can promote conversion of subcutaneous fat to brown fat formation, which can have beneficial effects on increasing energy metabolisms and combating obesity.

  7. Natural killer T cells in adipose tissue prevent insulin resistance

    PubMed Central

    Schipper, Henk S.; Rakhshandehroo, Maryam; van de Graaf, Stan F.J.; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E.S.; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-01-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell–deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue–resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue–resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance. PMID:22863618

  8. Maternal nutritional manipulations program adipose tissue dysfunction in offspring

    PubMed Central

    Lecoutre, Simon; Breton, Christophe

    2015-01-01

    Based on the concept of Developmental Origin of Health and Disease, both human and animal studies have demonstrated a close link between nutrient supply perturbations in the fetus or neonate (i.e., maternal undernutrition, obesity, gestational diabetes and/or rapid catch-up growth) and increased risk of adult-onset obesity. Indeed, the adipose tissue has been recognized as a key target of developmental programming in a sex-and depot-specific manner. Despite different developmental time windows, similar mechanisms of adipose tissue programming have been described in rodents and in bigger mammals (sheep, primates). Maternal nutritional manipulations reprogram offspring's adipose tissue resulting in series of alterations: enhanced adipogenesis and lipogenesis, impaired sympathetic activity with reduced noradrenergic innervations and thermogenesis as well as low-grade inflammation. These changes affect adipose tissue development, distribution and composition predisposing offspring to fat accumulation. Modifications of hormonal tissue sensitivity (i.e., leptin, insulin, glucocorticoids) and/or epigenetic mechanisms leading to persistent changes in gene expression may account for long-lasting programming across generations. PMID:26029119

  9. Hkat, a novel nutritionally regulated transmembrane protein in adipose tissues.

    PubMed

    Zhang, Ren

    2012-01-01

    White adipose tissue is an active endocrine organ regulating many aspects of whole body physiology and pathology. Adipogenesis, a process in which premature cells differentiate into adipocytes, is a complex process that includes orchestrated changes in gene expression and cell morphology in response to various nutritional and hormonal stimuli. To profile transcriptome changes in response to nutritional stimulation, we performed RNA-seq on fat in mice treated with either a high-fat diet or fasting. We identified a novel nutritionally regulated gene, Gm12824, named Hkat (heart, kidney, adipose-enriched transmembrane protein). We show that both fasting and obesity dramatically reduce Hkat in white adipose tissue, and that fasting reduces while obesity increases its expression in brown fat. Hkat is localized to the plasma membrane and induced during adipogenesis. Therefore, Hkat is a novel nutritionally regulated gene that is potentially involved in metabolism.

  10. Myocardial regeneration potential of adipose tissue-derived stem cells

    SciTech Connect

    Bai, Xiaowen; Alt, Eckhard

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  11. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells.

    PubMed

    Zeve, Daniel; Millay, Douglas P; Seo, Jin; Graff, Jonathan M

    2016-01-01

    Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicate that muscle, in a non-autonomous manner, regulates adipose progenitor homeostasis, highlighting a role for muscle-derived secreted factors. These findings support a humoral link between skeletal muscle and adipose progenitors and indicate that manipulation of adipose stem cell function may help address obesity and diabetes.

  12. Molecular pathways regulating the formation of brown-like adipocytes in white adipose tissue.

    PubMed

    Fu, Jianfei; Li, Zhen; Zhang, Huiqin; Mao, Yushan; Wang, Anshi; Wang, Xin; Zou, Zuquan; Zhang, Xiaohong

    2015-07-01

    Adipose tissue is functionally composed of brown adipose tissue and white adipose tissue. The unique thermogenic capacity of brown adipose tissue results from expression of uncoupling protein 1 in the mitochondrial inner membrane. On the basis of recent findings that adult humans have functionally active brown adipose tissue, it is now recognized as playing a much more important role in human metabolism than was previously thought. More importantly, brown-like adipocytes can be recruited in white adipose tissue upon environmental stimulation and pharmacologic treatment, and this change is associated with increased energy expenditure, contributing to a lean and healthy phenotype. Thus, the promotion of brown-like adipocyte development in white adipose tissue offers novel possibilities for the development of therapeutic strategies to combat obesity and related metabolic diseases. In this review, we summarize recent advances in understanding the molecular mechanisms involved in the recruitment of brown-like adipocyte in white adipose tissue.

  13. Human omental and subcutaneous adipose tissue exhibit specific lipidomic signatures.

    PubMed

    Jové, Mariona; Moreno-Navarrete, José María; Pamplona, Reinald; Ricart, Wifredo; Portero-Otín, Manuel; Fernández-Real, José Manuel

    2014-03-01

    Despite their differential effects on human metabolic pathophysiology, the differences in omental and subcutaneous lipidomes are largely unknown. To explore this field, liquid chromatography coupled with mass spectrometry was used for lipidome analyses of adipose tissue samples (visceral and subcutaneous) selected from a group of obese subjects (n=38). Transcriptomics and in vitro studies in adipocytes were used to confirm the pathways affected by location. The analyses revealed the existence of obesity-related specific lipidome signatures in each of these locations, attributed to selective enrichment of specific triglycerides, glycerophospholipids, and sphingolipids, because these were not observed in adipose tissues from nonobese individuals. The changes were compatible with subcutaneous enrichment in pathways involved in adipogenesis, triacylglyceride synthesis, and lipid droplet formation, as well as increased α-oxidation. Marked differences between omental and subcutaneous depots in obese individuals were seen in the association of lipid species with metabolic traits (body mass index and insulin sensitivity). Targeted studies also revealed increased cholesterol (Δ56%) and cholesterol epoxide (Δ34%) concentrations in omental adipose tissue. In view of the effects of cholesterol epoxide, which induced enhanced expression of adipocyte differentiation and α-oxidation genes in human omental adipocytes, a novel role for cholesterol epoxide as a signaling molecule for differentiation is proposed. In summary, in obesity, adipose tissue exhibits a location-specific differential lipid profile that may contribute to explaining part of its distinct pathogenic role.

  14. Obesity induces a phenotypic switch in adipose tissue macrophage polarization.

    PubMed

    Lumeng, Carey N; Bodzin, Jennifer L; Saltiel, Alan R

    2007-01-01

    Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80(+)CD11c(+) population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or "alternatively activated" macrophages, including Ym1, arginase 1, and Il10. Diet-induced obesity decreased expression of these genes in ATMs while increasing expression of genes such as those encoding TNF-alpha and iNOS that are characteristic of M1 or "classically activated" macrophages. Interestingly, ATMs from obese C-C motif chemokine receptor 2-KO (Ccr2-KO) mice express M2 markers at levels similar to those from lean mice. The antiinflammatory cytokine IL-10, which was overexpressed in ATMs from lean mice, protected adipocytes from TNF-alpha-induced insulin resistance. Thus, diet-induced obesity leads to a shift in the activation state of ATMs from an M2-polarized state in lean animals that may protect adipocytes from inflammation to an M1 proinflammatory state that contributes to insulin resistance.

  15. Obesity induces a phenotypic switch in adipose tissue macrophage polarization

    PubMed Central

    Lumeng, Carey N.; Bodzin, Jennifer L.; Saltiel, Alan R.

    2007-01-01

    Adipose tissue macrophages (ATMs) infiltrate adipose tissue during obesity and contribute to insulin resistance. We hypothesized that macrophages migrating to adipose tissue upon high-fat feeding may differ from those that reside there under normal diet conditions. To this end, we found a novel F4/80+CD11c+ population of ATMs in adipose tissue of obese mice that was not seen in lean mice. ATMs from lean mice expressed many genes characteristic of M2 or “alternatively activated” macrophages, including Ym1, arginase 1, and Il10. Diet-induced obesity decreased expression of these genes in ATMs while increasing expression of genes such as those encoding TNF-α and iNOS that are characteristic of M1 or “classically activated” macrophages. Interestingly, ATMs from obese C-C motif chemokine receptor 2–KO (Ccr2-KO) mice express M2 markers at levels similar to those from lean mice. The antiinflammatory cytokine IL-10, which was overexpressed in ATMs from lean mice, protected adipocytes from TNF-α–induced insulin resistance. Thus, diet-induced obesity leads to a shift in the activation state of ATMs from an M2-polarized state in lean animals that may protect adipocytes from inflammation to an M1 proinflammatory state that contributes to insulin resistance. PMID:17200717

  16. Adipose HIF-1α causes obesity by suppressing brown adipose tissue thermogenesis.

    PubMed

    Jun, Jonathan C; Devera, Ronald; Unnikrishnan, Dileep; Shin, Mi-Kyung; Bevans-Fonti, Shannon; Yao, Qiaoling; Rathore, Aman; Younas, Haris; Halberg, Nils; Scherer, Philipp E; Polotsky, Vsevolod Y

    2017-03-01

    Hypoxia-inducible factor-1α (HIF-1α) in adipose tissue is known to promote obesity. We hypothesized that HIF-1α interferes with brown fat thermogenesis, thus decreasing energy expenditure. To test this hypothesis, we compared transgenic mice constitutively expressing HIF-1α in adipose tissues (HIF-1α++) at usual temperature (22 °C), where brown fat is somewhat active, or at thermoneutrality (30 °C), where brown fat is minimally active. HIF-1α++ mice or control litter mates were separated into room temperature (22 °C) or thermoneutrality (30 °C) groups. We assessed weight gain, food intake, calorimetry, activity, and oxygen consumption and transcriptional changes in isolated white and brown adipocytes. At 22 °C, HIF-1α++ mice exhibited accelerated weight gain, cold and glucose intolerance, hyperglycemia, and decreased energy expenditure without changes in food intake or activity. These changes were absent or minimal at thermoneutrality. In brown adipocytes of HIF-1α++ mice, oxygen consumption decreased ~50 % in association with reduced mitochondrial content, uncoupling protein 2, and peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1α). In conclusion, adipose HIF-1α overexpression inhibits thermogenesis and cellular respiration in brown adipose tissue, promoting obesity in the setting of reduced ambient temperature.

  17. Impact of holmium fibre laser radiation (λ = 2.1 μm) on the spinal cord dura mater and adipose tissue

    NASA Astrophysics Data System (ADS)

    Filatova, S. A.; Kamynin, V. A.; Ryabova, A. V.; Loshchenov, V. B.; Zelenkov, P. V.; Zolotovskii, I. O.; Tsvetkov, V. B.; Kurkov, A. S.

    2015-08-01

    The impact of holmium fibre laser radiation on the samples of biologic tissues (dura mater of spinal cord and adipose tissue with interlayers of muscle) is studied. The experimental results are evaluated by the size of carbonisation and coagulation necrosis zones. The experiment shows that in the case of irradiation of the spinal cord dura mater samples the size of carbonisation and coagulation necrosis zones is insignificant. In the adipose tissue the carbonisation zone is also insignificant, but the region of cellular structure disturbance is large. In the muscle tissue the situation is opposite. The cw laser operation provides clinically acceptable degree of destruction in tissue samples with a minimal carbonisation zone.

  18. Deficiency of Interleukin-15 Confers Resistance to Obesity by Diminishing Inflammation and Enhancing the Thermogenic Function of Adipose Tissues

    PubMed Central

    Lacraz, Gregory; Rakotoarivelo, Volatiana; Labbé, Sebastien M.; Vernier, Mathieu; Noll, Christophe; Mayhue, Marian; Stankova, Jana; Schwertani, Adel; Grenier, Guillaume; Carpentier, André; Richard, Denis; Ferbeyre, Gerardo; Fradette, Julie; Rola-Pleszczynski, Marek; Menendez, Alfredo; Langlois, Marie-France; Ilangumaran, Subburaj; Ramanathan, Sheela

    2016-01-01

    Objective IL-15 is an inflammatory cytokine secreted by many cell types. IL-15 is also produced during physical exercise by skeletal muscle and has been reported to reduce weight gain in mice. Contrarily, our findings on IL-15 knockout (KO) mice indicate that IL-15 promotes obesity. The aim of this study is to investigate the mechanisms underlying the pro-obesity role of IL-15 in adipose tissues. Methods Control and IL-15 KO mice were maintained on high fat diet (HFD) or normal control diet. After 16 weeks, body weight, adipose tissue and skeletal mass, serum lipid levels and gene/protein expression in the adipose tissues were evaluated. The effect of IL-15 on thermogenesis and oxygen consumption was also studied in primary cultures of adipocytes differentiated from mouse preadipocyte and human stem cells. Results Our results show that IL-15 deficiency prevents diet-induced weight gain and accumulation of lipids in visceral and subcutaneous white and brown adipose tissues. Gene expression analysis also revealed elevated expression of genes associated with adaptive thermogenesis in the brown and subcutaneous adipose tissues of IL-15 KO mice. Accordingly, oxygen consumption was increased in the brown adipocytes from IL-15 KO mice. In addition, IL-15 KO mice showed decreased expression of pro-inflammatory mediators in their adipose tissues. Conclusions Absence of IL-15 results in decreased accumulation of fat in the white adipose tissues and increased lipid utilization via adaptive thermogenesis. IL-15 also promotes inflammation in adipose tissues that could sustain chronic inflammation leading to obesity-associated metabolic syndrome. PMID:27684068

  19. Dietary fatty acid metabolism of brown adipose tissue in cold-acclimated men

    PubMed Central

    Blondin, Denis P.; Tingelstad, Hans C.; Noll, Christophe; Frisch, Frédérique; Phoenix, Serge; Guérin, Brigitte; Turcotte, Éric E; Richard, Denis; Haman, François; Carpentier, André C.

    2017-01-01

    In rodents, brown adipose tissue (BAT) plays an important role in producing heat to defend against the cold and can metabolize large amounts of dietary fatty acids (DFA). The role of BAT in DFA metabolism in humans is unknown. Here we show that mild cold stimulation (18 °C) results in a significantly greater fractional DFA extraction by BAT relative to skeletal muscle and white adipose tissue in non-cold-acclimated men given a standard liquid meal containing the long-chain fatty acid PET tracer, 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid (18FTHA). However, the net contribution of BAT to systemic DFA clearance is comparatively small. Despite a 4-week cold acclimation increasing BAT oxidative metabolism 2.6-fold, BAT DFA uptake does not increase further. These findings show that cold-stimulated BAT can contribute to the clearance of DFA from circulation but its contribution is not as significant as the heart, liver, skeletal muscles or white adipose tissues. PMID:28134339

  20. Caspase Induction and BCL2 Inhibition in Human Adipose Tissue

    PubMed Central

    Tinahones, Francisco José; Coín Aragüez, Leticia; Murri, Mora; Oliva Olivera, Wilfredo; Mayas Torres, María Dolores; Barbarroja, Nuria; Gomez Huelgas, Ricardo; Malagón, Maria M.; El Bekay, Rajaa

    2013-01-01

    OBJECTIVE Cell death determines the onset of obesity and associated insulin resistance. Here, we analyze the relationship among obesity, adipose tissue apoptosis, and insulin signaling. RESEARCH DESIGN AND METHODS The expression levels of initiator (CASP8/9) and effector (CASP3/7) caspases as well as antiapoptotic B-cell lymphoma (BCL)2 and inflammatory markers were assessed in visceral (VAT) and subcutaneous (SAT) adipose tissue from patients with different degrees of obesity and without insulin resistance or diabetes. Adipose tissue explants from lean subjects were cultured with TNF-α or IL-6, and the expression of apoptotic and insulin signaling components was analyzed and compared with basal expression levels in morbidly obese subjects. RESULTS SAT and VAT exhibited increased CASP3/7 and CASP8/9 expression levels and decreased BCL2 expression with BMI increase. These changes were accompanied by increased inflammatory cytokine mRNA levels and macrophage infiltration markers. In obese subjects, CASP3/7 activation and BCL2 downregulation correlated with the IRS-1/2–expression levels. Expression levels of caspases, BCL2, p21, p53, IRS-1/2, GLUT4, protein tyrosine phosphatase 1B, and leukocyte antigen-related phosphatase in TNF-α– or IL-6–treated explants from lean subjects were comparable with those found in adipose tissue samples from morbidly obese subjects. These insulin component expression levels were reverted with CASP3/7 inhibition in these TNF-α– or IL-6–treated explants. CONCLUSIONS Body fat mass increase is associated with CASP3/7 and BCL2 expression in adipose tissue. Moreover, this proapoptotic state correlated with insulin signaling, suggesting its potential contribution to the development of insulin resistance. PMID:23193206

  1. Association between subcutaneous white adipose tissue and serum 25-hydroxyvitamin D in overweight and obese adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Cholecalciferol is known to be deposited in human adipose tissue, but the distribution of 25-hydroxyvitamin D (25(OH)D) in adipose tissue is not known. Objectives: To determine whether 25(OH)D is detectable in subcutaneous white adipose tissue (SWAT) in overweight and obese persons an...

  2. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our data demonstrate that estrogens, estrogen receptor-alpha (ERalpha), and estrogen receptor-ßeta (ERßeta) regulate adipose tissue distribution, inflammation, fibrosis, and glucose homeostasis, by determining that alphaERKO mice have increased adipose tissue inflammation and fibrosis prior to obesi...

  3. Direct comparison of progenitor cells derived from adipose, muscle, and bone marrow from wild-type or craniosynostotic rabbits

    PubMed Central

    GM, Cooper; EL, Lensie; JJ, Cray; MR, Bykowski; GE, DeCesare; MA, Smalley; MP, Mooney; PG, Campbell; JE, Losee

    2010-01-01

    Background Reports have identified cells capable of osteogenic differentiation in bone marrow, muscle, and adipose tissues, but there are few direct comparisons of these different cell-types. Also, few have investigated the potential connection between a tissue-specific pathology and cells derived from seemingly unrelated tissues. Here, we compare cells isolated from wild-type rabbits or rabbits with nonsyndromic craniosynostosis, defined as the premature fusion of one or more of the cranial sutures. Methods Cells were derived from bone marrow, adipose, and muscle of 10 day-old wild-type rabbits (WT; n=17) or from age-matched rabbits with familial nonsyndromic craniosynostosis (CS; n=18). Cells were stimulated with bone morphogenetic protein 4 (BMP4) and alkaline phosphatase expression and cell proliferation were assessed. Results In WT rabbits, cells derived from muscle had more alkaline phosphatase activity than cells derived from either adipose or bone marrow. The cells derived from CS rabbit bone marrow and muscle were significantly more osteogenic than WT. Adipose-derived cells demonstrated no significant differences. While muscle-derived cells were most osteogenic in WT rabbits, bone marrow-derived cells were most osteogenic in CS rabbits. Conclusions Results suggest that cells from different tissues have different potentials for differentiation. Furthermore, cells derived from rabbits with craniosynostosis were different from wild-type derived cells. Interestingly, cells derived from the craniosynostotic rabbits were not uniformly more responsive compared with wild-type cells, suggesting that specific tissue-derived cells may react differently in individuals with craniosynostosis. PMID:20871482

  4. Metabolic remodeling of white adipose tissue in obesity

    PubMed Central

    Cummins, Timothy D.; Holden, Candice R.; Sansbury, Brian E.; Gibb, Andrew A.; Shah, Jasmit; Zafar, Nagma; Tang, Yunan; Hellmann, Jason; Rai, Shesh N.; Spite, Matthew; Bhatnagar, Aruni

    2014-01-01

    Adipose tissue metabolism is a critical regulator of adiposity and whole body energy expenditure; however, metabolic changes that occur in white adipose tissue (WAT) with obesity remain unclear. The purpose of this study was to understand the metabolic and bioenergetic changes occurring in WAT with obesity. Wild-type (C57BL/6J) mice fed a high-fat diet (HFD) showed significant increases in whole body adiposity, had significantly lower V̇o2, V̇co2, and respiratory exchange ratios, and demonstrated worsened glucose and insulin tolerance compared with low-fat-fed mice. Metabolomic analysis of WAT showed marked changes in lipid, amino acid, carbohydrate, nucleotide, and energy metabolism. Tissue levels of succinate and malate were elevated, and metabolites that could enter the Krebs cycle via anaplerosis were mostly diminished in high-fat-fed mice, suggesting altered mitochondrial metabolism. Despite no change in basal oxygen consumption or mitochondrial DNA abundance, citrate synthase activity was decreased by more than 50%, and responses to FCCP were increased in WAT from mice fed a high-fat diet. Moreover, Pgc1a was downregulated and Cox7a1 upregulated after 6 wk of HFD. After 12 wk of high-fat diet, the abundance of several proteins in the mitochondrial respiratory chain or matrix was diminished. These changes were accompanied by increased Parkin and Pink1, decreased p62 and LC3-I, and ultrastructural changes suggestive of autophagy and mitochondrial remodeling. These studies demonstrate coordinated restructuring of metabolism and autophagy that could contribute to the hypertrophy and whitening of adipose tissue in obesity. PMID:24918202

  5. The influence of thiazolidinediones on adipogenesis in vitro and in vivo: potential modifiers of intramuscular adipose tissue deposition in meat animals.

    PubMed

    Hausman, G J; Poulos, S P; Pringle, T D; Azain, M J

    2008-04-01

    Thiazolidinediones (TZD) are insulin sensitizing agents currently used for the treatment of type 2 diabetes and are widely used as adipogenic agents because they are ligands of peroxisome proliferator-activated receptor gamma (PPARgamma), a key adipogenic transcription factor. In vivo and in vitro studies of TZD as potential modifiers of intramuscular or marbling adipogenesis are reviewed. Thiazolidinedione-induced adipogenesis has been reported in numerous cell culture systems, including rodent, human, bovine, and porcine adipose tissue stromal-vascular (S-V) cell cultures. Studies of porcine S-V cell cultures derived from semitendinosus muscle show that TZD can potentially modify intramuscular or marbling adipogenesis. Preadipocyte recruitment was TZD-dependent in muscle S-V cultures but TZD-independent in adipose S-V cultures. There appear to be differences between adipocytes in muscle and subcutaneous adipose tissue, reminiscent of differences observed in adipocytes from different adipose tissue depots. Troglitazone, a TZD, induces marbling adipogenesis without inhibiting myogenesis when cells are grown on laminin precoated culture dishes. Additionally, troglitazone treatment does not increase lipid content in porcine adipose tissue or muscle S-V cell cultures. Thiazolidinedione treatment increases lipid content of muscle in rodents and humans; however, rosiglitazone treatment for 49 d in pigs did not influence muscle lipid content and meat quality, but several significant changes in muscle fatty acid composition were observed. Although timing of treatment with TZD needs to be optimized, evidence suggests these compounds may enhance marbling deposition in swine.

  6. Skin Tissue Engineering: Application of Adipose-Derived Stem Cells

    PubMed Central

    Zimoch, Jakub; Biedermann, Thomas

    2017-01-01

    Perception of the adipose tissue has changed dramatically over the last few decades. Identification of adipose-derived stem cells (ASCs) ultimately transformed paradigm of this tissue from a passive energy depot into a promising stem cell source with properties of self-renewal and multipotential differentiation. As compared to bone marrow-derived stem cells (BMSCs), ASCs are more easily accessible and their isolation yields higher amount of stem cells. Therefore, the ASCs are of high interest for stem cell-based therapies and skin tissue engineering. Currently, freshly isolated stromal vascular fraction (SVF), which may be used directly without any expansion, was also assessed to be highly effective in treating skin radiation injuries, burns, or nonhealing wounds such as diabetic ulcers. In this paper, we review the characteristics of SVF and ASCs and the efficacy of their treatment for skin injuries and disorders. PMID:28337463

  7. Mouse adipose tissue stromal cells give rise to skeletal and cardiomyogenic cell sub-populations

    PubMed Central

    Dromard, Cécile; Barreau, Corinne; André, Mireille; Berger-Müller, Sandra; Casteilla, Louis; Planat-Benard, Valerie

    2014-01-01

    We previously reported that adipose tissue could generate cardiomyocyte-like cells from crude stromal vascular fraction (SVF) in vitro that improved cardiac function in a myocardial infarction context. However, it is not clear whether these adipose-derived cardiomyogenic cells (AD-CMG) constitute a homogenous population and if AD-CMG progenitors could be isolated as a pure population from the SVF of adipose tissue. This study aims to characterize the different cell types that constitute myogenic clusters and identify the earliest AD-CMG progenitors in vitro for establishing a complete phenotype and use it to sort AD-CMG progenitors from crude SVF. Here, we report cell heterogeneity among adipose-derived clusters during their course of maturation and highlighted sub-populations that exhibit original mixed cardiac/skeletal muscle phenotypes with a progressive loss of cardiac phenotype with time in liquid culture conditions. Moreover, we completed the phenotype of AD-CMG progenitors but we failed to sort them from the SVF. We demonstrated that micro-environment is required for the maturation of myogenic phenotype by co-culture experiments. These findings bring complementary data on AD-CMG and suggest that their emergence results from in vitro events. PMID:25364749

  8. Angiotensin II stimulates sympathetic neurotransmission to adipose tissue

    PubMed Central

    King, Victoria L; English, Victoria L; Bharadwaj, Kalyani; Cassis, Lisa A

    2013-01-01

    Angiotensin II (AngII) facilitates sympathetic neurotransmission by regulating norepinephrine (NE) synthesis, release, and uptake. These effects of AngII contribute to cardiovascular control. Previous studies in our laboratory demonstrated that chronic AngII infusion decreased body weight of rats. We hypothesized that AngII facilitates sympathetic neurotransmission to adipose tissue and may thereby decrease body weight. The effect of chronic AngII infusion on the NE uptake transporter and NE turnover was examined in metabolic (interscapular brown adipose tissue, ISBAT; epididymal fat, EF) and cardiovascular tissues (left ventricle, LV; kidney) of rats. To examine the uptake transporter saturation isotherms were performed using [3H]nisoxetine (NIS). At doses that lowered body weight, AngII significantly increased ISBAT [3H]NIS binding density. To quantify NE turnover, alpha-methyl-para-tyrosine (AMPT) was injected in saline-infused, AngII-infused, or saline-infused rats that were pair-fed to food intake of AngII-infused rats. AngII significantly increased the rate of NE decline in all tissues compared to saline. The rate of NE decline in EF was increased to a similar extent by AngII and by pair feeding. In rats administered AngII and propranolol, reductions in food and water intake and body weight were eliminated. These data support the hypothesis that AngII facilitates sympathetic neurotransmission to adipose tissue. Increased sympathetic neurotransmission to adipose tissue following AngII exposure is suggested to contribute to reductions in body weight. PMID:24224084

  9. AMPK Phosphorylates Desnutrin/ATGL and Hormone-Sensitive Lipase To Regulate Lipolysis and Fatty Acid Oxidation within Adipose Tissue

    PubMed Central

    Kim, Sun-Joong; Tang, Tianyi; Abbott, Marcia; Viscarra, Jose A.; Wang, Yuhui

    2016-01-01

    The role of AMP-activated protein kinase (AMPK) in promoting fatty acid (FA) oxidation in various tissues, such as liver and muscle, has been well understood. However, the role of AMPK in lipolysis and FA metabolism in adipose tissue has been controversial. To investigate the role of AMPK in the regulation of adipose lipolysis in vivo, we generated mice with adipose-tissue-specific knockout of both the α1 and α2 catalytic subunits of AMPK (AMPK-ASKO mice) by using aP2-Cre and adiponectin-Cre. Both models of AMPK-ASKO ablation show no changes in desnutrin/ATGL levels but have defective phosphorylation of desnutrin/ATGL at S406 to decrease its triacylglycerol (TAG) hydrolase activity, lowering basal lipolysis in adipose tissue. These mice also show defective phosphorylation of hormone-sensitive lipase (HSL) at S565, with higher phosphorylation at protein kinase A sites S563 and S660, increasing its hydrolase activity and isoproterenol-stimulated lipolysis. With higher overall adipose lipolysis, both models of AMPK-ASKO mice are lean, having smaller adipocytes with lower TAG and higher intracellular free-FA levels. Moreover, FAs from higher lipolysis activate peroxisome proliferator-activated receptor delta to induce FA oxidative genes and increase FA oxidation and energy expenditure. Overall, for the first time, we provide in vivo evidence of the role of AMPK in the phosphorylation and regulation of desnutrin/ATGL and HSL and thus adipose lipolysis. PMID:27185873

  10. Abalation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show ...

  11. Foraging at wastewater treatment works affects brown adipose tissue fatty acid profiles in banana bats

    PubMed Central

    Hill, Kate; van Aswegen, Sunet; Schoeman, M. Corrie; Claassens, Sarina; Jansen van Rensburg, Peet; Naidoo, Samantha; Vosloo, Dalene

    2016-01-01

    ABSTRACT In this study we tested the hypothesis that the decrease in habitat quality at wastewater treatment works (WWTW), such as limited prey diversity and exposure to the toxic cocktail of pollutants, affect fatty acid profiles of interscapular brown adipose tissue (iBrAT) in bats. Further, the antioxidant capacity of oxidative tissues such as pectoral and cardiac muscle may not be adequate to protect those tissues against reactive molecules resulting from polyunsaturated fatty acid auto-oxidation in the WWTW bats. Bats were sampled at two urban WWTW, and two unpolluted reference sites in KwaZulu-Natal, South Africa. Brown adipose tissue (BrAT) mass was lower in WWTW bats than in reference site bats. We found lower levels of saturated phospholipid fatty acids and higher levels of mono- and polyunsaturated fatty acids in WWTW bats than in reference site bats, while C18 desaturation and n-6 to n-3 ratios were higher in the WWTW bats. This was not associated with high lipid peroxidation levels in pectoral and cardiac muscle. Combined, these results indicate that WWTW bats rely on iBrAT as an energy source, and opportunistic foraging on abundant, pollutant-tolerant prey may change fatty acid profiles in their tissue, with possible effects on mitochondrial functioning, torpor and energy usage. PMID:26740572

  12. Impact of Doxorubicin Treatment on the Physiological Functions of White Adipose Tissue

    PubMed Central

    Cruz, Maysa Mariana; Cunha, Roberta D. C.; Alonso-Vale, Maria Isabel; Oyama, Lila Missae; Nascimento, Claudia M. Oller; Pimentel, Gustavo Duarte; dos Santos, Ronaldo V. T.; Lira, Fabio Santos

    2016-01-01

    White adipose tissue (WAT) plays a fundamental role in maintaining energy balance and important endocrine functions. The loss of WAT modifies adipokine secretion and disrupts homeostasis, potentially leading to severe metabolic effects and a reduced quality of life. Doxorubicin is a chemotherapeutic agent used clinically because of its good effectiveness against various types of cancer. However, doxorubicin has deleterious effects in many healthy tissues, including WAT, liver, and skeletal and cardiac muscles. Our objective was to investigate the effects of doxorubicin on white adipocytes through in vivo and in vitro experiments. Doxorubicin reduced the uptake of glucose by retroperitoneal adipocytes and 3T3-L1 cells via the inhibition of AMP-activated protein kinase Thr172 phosphorylation and glucose transporter 4 content. Doxorubicin also reduced the serum level of adiponectin and, to a greater extent, the expression of genes encoding lipogenic (Fas and Acc) and adipogenic factors (Pparg, C/ebpa, and Srebp1c) in retroperitoneal adipose tissue. In addition, doxorubicin inhibited both lipogenesis and lipolysis and reduced the hormone-sensitive lipase and adipose tissue triacylglycerol lipase protein levels. Therefore, our results demonstrate the impact of doxorubicin on WAT. These results are important to understand some side effects observed in patients receiving chemotherapy and should encourage new adjuvant treatments that aim to inhibit these side effects. PMID:27015538

  13. Impact of Doxorubicin Treatment on the Physiological Functions of White Adipose Tissue.

    PubMed

    Biondo, Luana Amorim; Lima Junior, Edson Alves; Souza, Camila Oliveira; Cruz, Maysa Mariana; Cunha, Roberta D C; Alonso-Vale, Maria Isabel; Oyama, Lila Missae; Nascimento, Claudia M Oller; Pimentel, Gustavo Duarte; Dos Santos, Ronaldo V T; Lira, Fabio Santos; Rosa Neto, José Cesar

    2016-01-01

    White adipose tissue (WAT) plays a fundamental role in maintaining energy balance and important endocrine functions. The loss of WAT modifies adipokine secretion and disrupts homeostasis, potentially leading to severe metabolic effects and a reduced quality of life. Doxorubicin is a chemotherapeutic agent used clinically because of its good effectiveness against various types of cancer. However, doxorubicin has deleterious effects in many healthy tissues, including WAT, liver, and skeletal and cardiac muscles. Our objective was to investigate the effects of doxorubicin on white adipocytes through in vivo and in vitro experiments. Doxorubicin reduced the uptake of glucose by retroperitoneal adipocytes and 3T3-L1 cells via the inhibition of AMP-activated protein kinase Thr172 phosphorylation and glucose transporter 4 content. Doxorubicin also reduced the serum level of adiponectin and, to a greater extent, the expression of genes encoding lipogenic (Fas and Acc) and adipogenic factors (Pparg, C/ebpa, and Srebp1c) in retroperitoneal adipose tissue. In addition, doxorubicin inhibited both lipogenesis and lipolysis and reduced the hormone-sensitive lipase and adipose tissue triacylglycerol lipase protein levels. Therefore, our results demonstrate the impact of doxorubicin on WAT. These results are important to understand some side effects observed in patients receiving chemotherapy and should encourage new adjuvant treatments that aim to inhibit these side effects.

  14. Adipose tissue macrophages impair preadipocyte differentiation in humans

    PubMed Central

    Liu, Li Fen; Craig, Colleen M.; Tolentino, Lorna L.; Choi, Okmi; Morton, John; Rivas, Homero; Cushman, Samuel W.; Engleman, Edgar G.; McLaughlin, Tracey

    2017-01-01

    Aim The physiologic mechanisms underlying the relationship between obesity and insulin resistance are not fully understood. Impaired adipocyte differentiation and localized inflammation characterize adipose tissue from obese, insulin-resistant humans. The directionality of this relationship is not known, however. The aim of the current study was to investigate whether adipose tissue inflammation is causally-related to impaired adipocyte differentiation. Methods Abdominal subcutaneous(SAT) and visceral(VAT) adipose tissue was obtained from 20 human participants undergoing bariatric surgery. Preadipocytes were isolated, and cultured in the presence or absence of CD14+ macrophages obtained from the same adipose tissue sample. Adipocyte differentiation was quantified after 14 days via immunofluorescence, Oil-Red O, and adipogenic gene expression. Cytokine secretion by mature adipocytes cultured with or without CD14+macrophages was quantified. Results Adipocyte differentiation was significantly lower in VAT than SAT by all measures (p<0.001). With macrophage removal, SAT preadipocyte differentiation increased significantly as measured by immunofluorescence and gene expression, whereas VAT preadipocyte differentiation was unchanged. Adipocyte-secreted proinflammatory cytokines were higher and adiponectin lower in media from VAT vs SAT: macrophage removal reduced inflammatory cytokine and increased adiponectin secretion from both SAT and VAT adipocytes. Differentiation of preadipocytes from SAT but not VAT correlated inversely with systemic insulin resistance. Conclusions The current results reveal that proinflammatory immune cells in human SAT are causally-related to impaired preadipocyte differentiation, which in turn is associated with systemic insulin resistance. In VAT, preadipocyte differentiation is poor even in the absence of tissue macrophages, pointing to inherent differences in fat storage potential between the two depots. PMID:28151993

  15. Adipose Tissue in Metabolic Syndrome: Onset and Progression of Atherosclerosis.

    PubMed

    Luna-Luna, María; Medina-Urrutia, Aida; Vargas-Alarcón, Gilberto; Coss-Rovirosa, Fernanda; Vargas-Barrón, Jesús; Pérez-Méndez, Óscar

    2015-07-01

    Metabolic syndrome (MetS) should be considered a clinical entity when its different symptoms share a common etiology: obesity/insulin resistance as a result of a multi-organ dysfunction. The main interest in treating MetS as a clinical entity is that the addition of its components drastically increases the risk of atherosclerosis. In MetS, the adipose tissue plays a central role along with an unbalanced gut microbiome, which has become relevant in recent years. Once visceral adipose tissue (VAT) increases, dyslipidemia and endothelial dysfunction follow as additive risk factors. However, when the nonalcoholic fatty liver is present, risk of a cardiovascular event is highly augmented. Epicardial adipose tissue (EAT) seems to increase simultaneously with the VAT. In this context, the former may play a more important role in the development of the atherosclerotic plaque than the latter. Hence, EAT may act as a paracrine tissue vis-à-vis the coronary arteries favoring the local inflammation and the atheroma calcification.

  16. [The adipose tissue as a regulatory center of the metabolism].

    PubMed

    Fonseca-Alaniz, Miriam H; Takada, Julie; Alonso-Vale, Maria Isabel C; Lima, Fabio Bessa

    2006-04-01

    The recent progress in the research about the metabolic properties of the adipose tissue and the discovery of its ability to produce hormones that are very active in pathophysiologic as well as physiologic processes is rebuilding the concepts about its biology. Its involvement in conditions like obesity, type 2 diabetes mellitus, arterial hypertension, arteriosclerosis, dislipidemias and chronic and acute inflammatory processes indicate that the understanding of its functional capacities may contribute to improve the prognosis of those diseases whose prevalence increased in a preoccupying manner. Here we review some functional aspects of adipocytes, such as the metabolism, its influence on energy homeostasis, its endocrine ability and the adipogenesis, i.e., the potential of pre-adipocytes present in adipose tissue stroma to differentiate into new adipocytes and regenerate the tissue. In addition, we are including some studies on the relationship between the adipose tissue and the pineal gland, a new and poorly known, although, as will be seen, very promising aspect of adipocyte physiology together with its possible favorable repercussions to the therapy of the obesity related diseases.

  17. CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis

    PubMed Central

    Park, Jong-Gil; Xu, Xu; Cho, Sungyun; Hur, Kyu Yeon; Lee, Myung-Shik; Kersten, Sander; Lee, Ann-Hwee

    2016-01-01

    Adipose tissue lipolysis produces glycerol and nonesterified fatty acids (NEFA) that serve as energy sources during nutrient scarcity. Adipose tissue lipolysis is tightly regulated and excessive lipolysis causes hepatic steatosis, as NEFA released from adipose tissue constitutes a major source of TG in the liver of patients with nonalcoholic fatty liver diseases. Here we show that the liver-enriched transcription factor CREBH is activated by TG accumulation and induces FGF21, which suppresses adipose tissue lipolysis, ameliorating hepatic steatosis. CREBH-deficient mice developed severe hepatic steatosis due to increased adipose tissue lipolysis, when fasted or fed a high-fat low-carbohydrate ketogenic diet. FGF21 production was impaired in CREBH-deficient mice, and adenoviral overexpression of FGF21 suppressed adipose tissue lipolysis and improved hepatic steatosis in these mice. Thus, our results uncover a negative feedback loop in which CREBH regulates NEFA flux from adipose tissue to the liver via FGF21. PMID:27301791

  18. Bovine dedifferentiated adipose tissue (DFAT) cells

    PubMed Central

    Wei, Shengjuan; Du, Min; Jiang, Zhihua; Duarte, Marcio S; Fernyhough-Culver, Melinda; Albrecht, Elke; Will, Katja; Zan, Linsen; Hausman, Gary J; Elabd, Elham M Youssef; Bergen, Werner G; Basu, Urmila; Dodson, Michael V

    2013-01-01

    Dedifferentiated fat cells (DFAT cells) are derived from lipid-containing (mature) adipocytes, which possess the ability to symmetrically or asymmetrically proliferate, replicate, and redifferentiate/transdifferentiate. Robust cell isolation and downstream culture methods are needed to isolate large numbers of DFAT cells from any (one) adipose depot in order to establish population dynamics and regulation of the cells within and across laboratories. In order to establish more consistent/repeatable methodology here we report on two different methods to establish viable DFAT cell cultures: both traditional cell culture flasks and non-traditional (flat) cell culture plates were used for ceiling culture establishment. Adipocytes (maternal cells of the DFAT cells) were easier to remove from flat culture plates than flasks and the flat plates also allowed cloning rings to be utilized for cell/cell population isolation. While additional aspects of usage of flat-bottomed cell culture plates may yet need to be optimized by definition of optimum bio-coating to enhance cell attachment, utilization of flat plate approaches will allow more efficient study of the dedifferentiation process or the DFAT progeny cells. To extend our preliminary observations, dedifferentiation of Wagyu intramuscular fat (IMF)-derived mature adipocytes and redifferentiation ability of DFAT cells utilizing the aforementioned isolation protocols were examined in traditional basal media/differentiation induction media (DMI) containing adipogenic inducement reagents. In the absence of treatment approximately 10% isolated Wagyu IMF-mature adipocytes dedifferentiated spontaneously and 70% DFAT cells displayed protracted adipogenesis 12 d after confluence in vitro. Lipid-free intracellular vesicles in the cytoplasm (vesicles possessing an intact membrane but with no any observable or stainable lipid inside) were observed during redifferentiation. One to 30% DFAT cells redifferentiated into lipid

  19. Regulation of cholesteryl ester transfer activity in adipose tissue: comparison between hamster and rat species.

    PubMed

    Shen, G X; Angel, A

    1995-07-01

    The present study demonstrates cholesteryl ester transfer activity (CETA) in cultured hamster and rat adipose tissue. Cultured hamster and rat adipose tissue fragments released CETA into the conditioned medium, and this was associated with a reciprocal decrease in adipose tissue CETA. Regional variations in adipose CETA were observed. The levels of CETA released from cultured hamster and rat adipocytes were higher than those from adipose tissue fragments. In hamsters but not in rats, the secretion of CETA from cultured adipose tissue was increased by insulin and inhibited by EDTA in a dose-dependent fashion. Monoclonal antibodies against human cholesteryl ester transfer protein inhibited the CETA secreted from hamster adipose tissue but not that from rat adipose tissue. Fasting for 24 h and a high-cholesterol saturated fat-rich diet increased adipose CETA in hamsters and rats, and this was associated with an elevation of plasma CETA only in hamsters. This supports the view that, in hamsters, adipose CETA has in situ and intravascular functions, whereas in rats the role of adipose CETA is restricted to tissue-specific functions. Hamster cholesteryl ester transfer protein may differ from rat adipose-associated CETA in the structure of the active site and the regulatory mechanism for its secretion.

  20. A role of active brown adipose tissue in cancer cachexia?

    PubMed

    Beijer, Emiel; Schoenmakers, Janna; Vijgen, Guy; Kessels, Fons; Dingemans, Anne-Marie; Schrauwen, Patrick; Wouters, Miel; van Marken Lichtenbelt, Wouter; Teule, Jaap; Brans, Boudewijn

    2012-03-05

    Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT). Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and so-called brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activation, but its quantitative impact on energy expenditure and weight loss is controversial. Prospective clinical studies can address the potential role of BAT in cancer cachexia using (18)F-fluoro- deoxyglucose positron emission tomography-computed tomography scanning, with careful consideration of co-factors such as diet, exposure to the cold, physical activity and body mass index, that all seem to act on BAT recruitment and activity.

  1. Brown adipose tissue: physiological function and evolutionary significance.

    PubMed

    Oelkrug, R; Polymeropoulos, E T; Jastroch, M

    2015-08-01

    In modern eutherian (placental) mammals, brown adipose tissue (BAT) evolved as a specialized thermogenic organ that is responsible for adaptive non-shivering thermogenesis (NST). For NST, energy metabolism of BAT mitochondria is increased by activation of uncoupling protein 1 (UCP1), which dissipates the proton motive force as heat. Despite the presence of UCP1 orthologues prior to the divergence of teleost fish and mammalian lineages, UCP1's significance for thermogenic adipose tissue emerged at later evolutionary stages. Recent studies on the presence of BAT in metatherians (marsupials) and eutherians of the afrotherian clade provide novel insights into the evolution of adaptive NST in mammals. In particular studies on the 'protoendothermic' lesser hedgehog tenrec (Afrotheria) suggest an evolutionary scenario linking BAT to the onset of eutherian endothermy. Here, we review the physiological function and distribution of BAT in an evolutionary context by focusing on the latest research on phylogenetically distinct species.

  2. The Interplay Between Sex, Ethnicity, and Adipose Tissue Characteristics.

    PubMed

    Karastergiou, Kalypso

    2015-06-01

    The obesity epidemic in the USA affects disproportionately women and the ethnic minorities. On the other hand, female sex is traditionally associated with a favorable fat distribution preferentially in the subcutaneous depots of the lower body and with improved endocrine and metabolic function of the adipose tissue. However, these data are derived from predominantly non-Hispanic white populations. This review discusses fat distribution patterns in women of diverse ethnic backgrounds, together with data on the release of adipokines from adipose tissue in these populations. Very little information is available on how the metabolic function of the adipocyte differs depending on ethnicity. Thus, it becomes clear that future clinical and translational research should explicitly discuss and take into account the sex and ethnic background of the populations studied.

  3. A role of active brown adipose tissue in cancer cachexia?

    PubMed Central

    Beijer, Emiel; Schoenmakers, Janna; Vijgen, Guy; Kessels, Fons; Dingemans, Anne-Marie; Schrauwen, Patrick; Wouters, Miel; van Marken Lichtenbelt, Wouter; Teule, Jaap; Brans, Boudewijn

    2012-01-01

    Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT). Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and so-called brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activation, but its quantitative impact on energy expenditure and weight loss is controversial. Prospective clinical studies can address the potential role of BAT in cancer cachexia using 18F-fluoro- deoxyglucose positron emission tomography-computed tomography scanning, with careful consideration of co-factors such as diet, exposure to the cold, physical activity and body mass index, that all seem to act on BAT recruitment and activity. PMID:25992201

  4. Prolactin (PRL) in adipose tissue: regulation and functions.

    PubMed

    Ben-Jonathan, Nira; Hugo, Eric

    2015-01-01

    New information concerning the effects of prolactin (PRL) on metabolic processes warrants reevaluation of its overall metabolic actions. PRL affects metabolic homeostasis by regulating key enzymes and transporters associated with glucose and lipid metabolism in several target organs. In the lactating mammary gland, PRL increases the production of milk proteins, lactose, and lipids. In adipose tissue, PRL generally suppresses lipid storage and adipokine release and affect adipogenesis. A specific case is made for PRL in the human breast and adipose tissues, where it acts as a circulating hormone and an autocrine/paracrine factor. Although its overall effects on body composition are both modest and species-specific, PRL may be involved in the manifestation of insulin resistance.

  5. Fully automated adipose tissue measurement on abdominal CT

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Sussman, Daniel L.; Summers, Ronald M.

    2011-03-01

    Obesity has become widespread in America and has been associated as a risk factor for many illnesses. Adipose tissue (AT) content, especially visceral AT (VAT), is an important indicator for risks of many disorders, including heart disease and diabetes. Measuring adipose tissue (AT) with traditional means is often unreliable and inaccurate. CT provides a means to measure AT accurately and consistently. We present a fully automated method to segment and measure abdominal AT in CT. Our method integrates image preprocessing which attempts to correct for image artifacts and inhomogeneities. We use fuzzy cmeans to cluster AT regions and active contour models to separate subcutaneous and visceral AT. We tested our method on 50 abdominal CT scans and evaluated the correlations between several measurements.

  6. The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil

    PubMed Central

    Choi, Seong Ho; Park, Sung Kwon; Choi, Chang Weon; Li, Xiang Zi; Kim, Kyoung Hoon; Kim, Won Young; Jeong, Joon; Johnson, Bradley J.; Zan, Linsen; Smith, Stephen B.

    2016-01-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression and stearoyl-CoA desaturase (SCD) gene expression in subcutaneous (s.c.) and intramuscular (i.m.) adipose tissues of feedlot steers. Eighteen Angus and Angus crossbred steers were assigned to three groups of 6 steers and fed a basal diet (control), with 3% palm oil, or with 3% soybean oil, for 70 d, top-dressed daily. Tailhead s.c. adipose tissue was obtained by biopsy at 14 d before the initiation of dietary treatments and at 35 d of dietary treatments. At slaughter, after 70 d of dietary treatment, tailhead s.c. adipose tissue and i.m. adipose tissue were obtained from the longissimus thoracis muscle. Palm oil increased plasma palmitic acid and soybean oil increased plasma linoleic acid and α-linolenic acid relative to the initial sampling time. Expression of AMP-activated protein kinase alpha (AMPKα) and peroxisome proliferator-activated receptor gamma (PPARγ) increased between the initial and intermediate biopsies and declined thereafter (p<0.03). SCD gene expression did not change between the initial and intermediate biopsies but declined by over 75% by the final period (p = 0.04), and G-coupled protein receptor 43 (GPR43) gene expression was unaffected by diet or time on trial. Soybean oil decreased (p = 0.01) PPARγ gene expression at the intermediate sample time. At the terminal sample time, PPARγ and SCD gene expression was less in i.m. adipose tissue than in s.c. adipose tissue (p<0.05). AMPKα gene expression was less in s.c. adipose tissue of palm oil-fed steers than in control steers (p = 0.04) and CCAAT enhancer binding protein-beta (CEBPβ) gene expression was less in s.c. and i.m. adipose tissues of palm oil-fed steers than in soybean oil-fed steers (p<0.03). Soybean oil decreased SCD gene expression in s.c. adipose tissue (p = 0.05); SCD gene expression in palm oil-fed steers was intermediate between control and soybean oil-fed steers

  7. The Expression of Adipogenic Genes in Adipose Tissues of Feedlot Steers Fed Supplementary Palm Oil or Soybean Oil.

    PubMed

    Choi, Seong Ho; Park, Sung Kwon; Choi, Chang Weon; Li, Xiang Zi; Kim, Kyoung Hoon; Kim, Won Young; Jeong, Joon; Johnson, Bradley J; Zan, Linsen; Smith, Stephen B

    2016-03-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression and stearoyl-CoA desaturase (SCD) gene expression in subcutaneous (s.c.) and intramuscular (i.m.) adipose tissues of feedlot steers. Eighteen Angus and Angus crossbred steers were assigned to three groups of 6 steers and fed a basal diet (control), with 3% palm oil, or with 3% soybean oil, for 70 d, top-dressed daily. Tailhead s.c. adipose tissue was obtained by biopsy at 14 d before the initiation of dietary treatments and at 35 d of dietary treatments. At slaughter, after 70 d of dietary treatment, tailhead s.c. adipose tissue and i.m. adipose tissue were obtained from the longissimus thoracis muscle. Palm oil increased plasma palmitic acid and soybean oil increased plasma linoleic acid and α-linolenic acid relative to the initial sampling time. Expression of AMP-activated protein kinase alpha (AMPKα) and peroxisome proliferator-activated receptor gamma (PPARγ) increased between the initial and intermediate biopsies and declined thereafter (p<0.03). SCD gene expression did not change between the initial and intermediate biopsies but declined by over 75% by the final period (p = 0.04), and G-coupled protein receptor 43 (GPR43) gene expression was unaffected by diet or time on trial. Soybean oil decreased (p = 0.01) PPARγ gene expression at the intermediate sample time. At the terminal sample time, PPARγ and SCD gene expression was less in i.m. adipose tissue than in s.c. adipose tissue (p<0.05). AMPKα gene expression was less in s.c. adipose tissue of palm oil-fed steers than in control steers (p = 0.04) and CCAAT enhancer binding protein-beta (CEBPβ) gene expression was less in s.c. and i.m. adipose tissues of palm oil-fed steers than in soybean oil-fed steers (p<0.03). Soybean oil decreased SCD gene expression in s.c. adipose tissue (p = 0.05); SCD gene expression in palm oil-fed steers was intermediate between control and soybean oil-fed steers

  8. Sleep deprivation affects inflammatory marker expression in adipose tissue

    PubMed Central

    2010-01-01

    Sleep deprivation has been shown to increase inflammatory markers in rat sera and peripheral blood mononuclear cells. Inflammation is a condition associated with pathologies such as obesity, cancer, and cardiovascular diseases. We investigated changes in the pro and anti-inflammatory cytokines and adipokines in different depots of white adipose tissue in rats. We also assessed lipid profiles and serum levels of corticosterone, leptin, and adiponectin after 96 hours of sleep deprivation. Methods The study consisted of two groups: a control (C) group and a paradoxical sleep deprivation by 96 h (PSD) group. Ten rats were randomly assigned to either the control group (C) or the PSD. Mesenteric (MEAT) and retroperitoneal (RPAT) adipose tissue, liver and serum were collected following completion of the PSD protocol. Levels of interleukin (IL)-6, interleukin (IL)-10 and tumour necrosis factor (TNF)-α were analysed in MEAT and RPAT, and leptin, adiponectin, glucose, corticosterone and lipid profile levels were analysed in serum. Results IL-6 levels were elevated in RPAT but remained unchanged in MEAT after PSD. IL-10 protein concentration was not altered in either depot, and TNF-α levels decreased in MEAT. Glucose, triglycerides (TG), VLDL and leptin decreased in serum after 96 hours of PSD; adiponectin was not altered and corticosterone was increased. Conclusion PSD decreased fat mass and may modulate the cytokine content in different depots of adipose tissue. The inflammatory response was diminished in both depots of adipose tissue, with increased IL-6 levels in RPAT and decreased TNF-α protein concentrations in MEAT and increased levels of corticosterone in serum. PMID:21034496

  9. Acute exercise regulates adipogenic gene expression in white adipose tissue.

    PubMed

    Shen, Y; Zhou, H; Jin, W; Lee, H J

    2016-12-01

    White adipose tissue expansion is associated with both hypertrophy and hyperplasia of adipocytes. Exercise training results in adipocyte hypotrophy by activating lipolysis, but it is poorly understood whether exercise regulates adipogenesis by altering adipogenic gene expression. The purpose of this study was to evaluate the effect of a single bout of swimming exercise on adipogenic gene expression in white adipose tissue (WAT). Male C57BL/6J mice were divided into two groups: a sedentary control group and a 120-minute swimming exercise group. Immediately after acute exercise, adipogenic gene expression in WAT was analysed by RT-PCR, and tdTomato positive cells in WAT from UCP1-cre-tdTomato mice were observed under a confocal microscope. In epididymal white adipose tissue (eWAT), PPARγ2 and C/EBPα expression at the mRNA level was significantly decreased with high induction of Wnt10b and KLFs (KLF2, KLF3, KLF7, KLF6, KLF9 and KLF15), whereas PPARγ2, not C/EBPα, was decreased with high induction of Wnt6 and KLFs (KLF2, KLF3, KLF7, KLF6 and KLF9) in inguinal white adipose tissue (iWAT) after acute exercise. The expression of C/EBPβ and C/EBPδ was upregulated in both WATs with a high level of PGC-1α expression. Expression level of UCP1 was increased only in adipocytes of eWAT, while beige cell specific gene expression was comparable between groups and tdTomato positive cells were not found in WAT of UCP1-cre-tdTomato reporter mouse immediately after acute exercise. These results suggest that acute exercise suppresses adipogenic gene expression and may regulate thermogenesis by activating C/EBPβ, PGC-1α and UCP1 in WAT.

  10. Nitro-fatty acid pharmacokinetics in the adipose tissue compartment.

    PubMed

    Fazzari, Marco; Khoo, Nicholas K H; Woodcock, Steven R; Jorkasky, Diane K; Li, Lihua; Schopfer, Francisco J; Freeman, Bruce A

    2017-02-01

    Electrophilic nitro-FAs (NO2-FAs) promote adaptive and anti-inflammatory cell signaling responses as a result of an electrophilic character that supports posttranslational protein modifications. A unique pharmacokinetic profile is expected for NO2-FAs because of an ability to undergo reversible reactions including Michael addition with cysteine-containing proteins and esterification into complex lipids. Herein, we report via quantitative whole-body autoradiography analysis of rats gavaged with radiolabeled 10-nitro-[(14)C]oleic acid, preferential accumulation in adipose tissue over 2 weeks. To better define the metabolism and incorporation of NO2-FAs and their metabolites in adipose tissue lipids, adipocyte cultures were supplemented with 10-nitro-oleic acid (10-NO2-OA), nitro-stearic acid, nitro-conjugated linoleic acid, and nitro-linolenic acid. Then, quantitative HPLC-MS/MS analysis was performed on adipocyte neutral and polar lipid fractions, both before and after acid hydrolysis of esterified FAs. NO2-FAs preferentially incorporated in monoacyl- and diacylglycerides, while reduced metabolites were highly enriched in triacylglycerides. This differential distribution profile was confirmed in vivo in the adipose tissue of NO2-OA-treated mice. This pattern of NO2-FA deposition lends new insight into the unique pharmacokinetics and pharmacologic actions that could be expected for this chemically-reactive class of endogenous signaling mediators and synthetic drug candidates.

  11. Characterization of peripheral circadian clocks in adipose tissues.

    PubMed

    Zvonic, Sanjin; Ptitsyn, Andrey A; Conrad, Steven A; Scott, L Keith; Floyd, Z Elizabeth; Kilroy, Gail; Wu, Xiying; Goh, Brian C; Mynatt, Randall L; Gimble, Jeffrey M

    2006-04-01

    First described in the suprachiasmatic nucleus, circadian clocks have since been found in several peripheral tissues. Although obesity has been associated with dysregulated circadian expression profiles of leptin, adiponectin, and other fat-derived cytokines, there have been no comprehensive analyses of the circadian clock machinery in adipose depots. In this study, we show robust and coordinated expression of circadian oscillator genes (Npas2, Bmal1, Per1-3, and Cry1-2) and clock-controlled downstream genes (Rev-erb alpha, Rev-erb beta, Dbp, E4bp4, Stra13, and Id2) in murine brown, inguinal, and epididymal (BAT, iWAT, and eWAT) adipose tissues. These results correlated with respective gene expression in liver and the serum markers of circadian function. Through Affymetrix microarray analysis, we identified 650 genes that shared circadian expression profiles in BAT, iWAT, and liver. Furthermore, we have demonstrated that temporally restricted feeding causes a coordinated phase-shift in circadian expression of the major oscillator genes and their downstream targets in adipose tissues. The presence of circadian oscillator genes in fat has significant metabolic implications, and their characterization may have potential therapeutic relevance with respect to the pathogenesis and treatment of diseases such as obesity, type 2 diabetes, and the metabolic syndrome.

  12. An alternative splicing program promotes adipose tissue thermogenesis

    PubMed Central

    Vernia, Santiago; Edwards, Yvonne JK; Han, Myoung Sook; Cavanagh-Kyros, Julie; Barrett, Tamera; Kim, Jason K; Davis, Roger J

    2016-01-01

    Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia. DOI: http://dx.doi.org/10.7554/eLife.17672.001 PMID:27635635

  13. Magnetic resonance properties of brown and white adipose tissues

    PubMed Central

    Hamilton, Gavin; Smith, Daniel L.; Bydder, Mark; Nayak, Krishna S.; Hu, Houchun H.

    2011-01-01

    Purpose To explore the MR (magnetic resonance) signatures of brown adipose tissue (BAT) compared to white adipose tissue (WAT) using single-voxel MR spectroscopy. Materials and Methods 1H MR STEAM spectra were acquired from a 3 Tesla clinical whole body scanner from seven excised murine adipose tissue samples of BAT (n = 4) and WAT (n = 3). Spectra were acquired at multiple TEs and TIs to measure the T1, T2, and T2-corrected peak areas. A theoretical triglyceride model characterized the fat in terms of number of double bonds (ndb) and number of methylene-interrupted double bonds (nmidb). Results Negligible differences between WAT and BAT were seen in the T1 and T2 of fat and the T2 of water. However, the water fraction in BAT was higher (48.5%) compared to WAT (7.1%) and the T1 of water was lower in BAT (618 ms) compared to WAT (1053 ms). The fat spectrum also differed, indicating lower levels of unsaturated triglycerides in BAT (ndb = 2.7, nmidb = 0.7) compared to WAT (ndb = 3.3, nmidb = 1.0). Conclusions We have demonstrated that there are several key MR-based signatures of BAT and WAT that may allow differentiation on MR imaging. PMID:21780237

  14. Laser light propagation in adipose tissue and laser effects on adipose cell membranes

    NASA Astrophysics Data System (ADS)

    Solarte, Efraín; Rebolledo, Aldo; Gutierrez, Oscar; Criollo, William; Neira, Rodrigo; Arroyave, José; Ramírez, Hugo

    2006-01-01

    Recently Neira et al. have presented a new liposuction technique that demonstrated the movement of fat from inside to outside of the cell, using a low-level laser device during a liposuction procedure with Ultrawet solution. The clinical observations, allowed this new surgical development, started a set of physical, histological and pharmacological studies aimed to determine the mechanisms involved in the observed fat mobilization concomitant to external laser application in liposuction procedures. Scanning and Transmission Electron Microscopy, studies show that the cellular arrangement of normal adipose tissue changes when laser light from a diode laser: 10 mW, 635 nm is applied. Laser exposures longer than 6 minutes cause the total destruction of the adipocyte panicles. Detailed observation of the adipose cells show that by short irradiation times (less than four minutes) the cell membrane exhibits dark zones, that collapse by longer laser exposures. Optical measurements show that effective penetration length depends on the laser intensity. Moreover, the light scattering is enhanced by diffraction and subsequent interference effects, and the tumescent solution produces a clearing of the tissue optical medium. Finally, isolate adipose cell observation show that fat release from adipocytes is a concomitant effect between the tumescent solution (adrenaline) and laser light, revealing a synergism which conduces to the aperture, and maybe the disruption, of the cell membrane. All these studies were consistent with a laser induced cellular process, which causes fat release from inside the adipocytes into the intercellular space, besides a strong modification of the cellular membranes.

  15. Developmental androgen excess programs sympathetic tone and adipose tissue dysfunction and predisposes to a cardiometabolic syndrome in female mice.

    PubMed

    Nohara, Kazunari; Waraich, Rizwana S; Liu, Suhuan; Ferron, Mathieu; Waget, Aurélie; Meyers, Matthew S; Karsenty, Gérard; Burcelin, Rémy; Mauvais-Jarvis, Franck

    2013-06-15

    Among women, the polycystic ovarian syndrome (PCOS) is considered a form of metabolic syndrome with reproductive abnormalities. Women with PCOS show increased sympathetic tone, visceral adiposity with enlarged adipocytes, hypoadiponectinemia, insulin resistance, glucose intolerance, increased inactive osteocalcin, and hypertension. Excess fetal exposure to androgens has been hypothesized to play a role in the pathogenesis of PCOS. Previously, we showed that neonatal exposure to the androgen testosterone (NT) programs leptin resistance in adult female mice. Here, we studied the impact of NT on lean and adipose tissues, sympathetic tone in cardiometabolic tissues, and the development of metabolic dysfunction in mice. Neonatally androgenized adult female mice (NTF) displayed masculinization of lean tissues with increased cardiac and skeletal muscle as well as kidney masses. NTF mice showed increased and dysfunctional white adipose tissue with increased sympathetic tone in both visceral and subcutaneous fat as well as increased number of enlarged and insulin-resistant adipocytes that displayed altered expression of developmental genes and hypoadiponectinemia. NTF exhibited dysfunctional brown adipose tissue with increased mass and decreased energy expenditure. They also displayed decreased undercarboxylated and active osteocalcin and were predisposed to obesity during chronic androgen excess. NTF showed increased renal sympathetic tone associated with increased blood pressure, and they developed glucose intolerance and insulin resistance. Thus, developmental exposure to testosterone in female mice programs features of cardiometabolic dysfunction, as can be observed in women with PCOS, including increased sympathetic tone, visceral adiposity, insulin resistance, prediabetes, and hypertension.

  16. Electrospinning adipose tissue-derived extracellular matrix for adipose stem cell culture.

    PubMed

    Francis, Michael P; Sachs, Patrick C; Madurantakam, Parthasarathy A; Sell, Scott A; Elmore, Lynne W; Bowlin, Gary L; Holt, Shawn E

    2012-07-01

    Basement membrane-rich extracellular matrices, particularly murine sarcoma-derived Matrigel, play important roles in regenerative medicine research, exhibiting marked cellular responses in vitro and in vivo, although with limited clinical applications. We find that a human-derived matrix from lipoaspirate fat, a tissue rich in basement membrane components, can be fabricated by electrospinning and used to support cell culture. We describe practical applications and purification of extracellular matrix (ECM) from adipose tissue (At-ECM) and its use in electrospinning scaffolds and adipose stem cell (ASC) culture. The matrix composition of this purified and electrospun At-ECM was assessed histochemically for basement membrane, connective tissue, collagen, elastic fibers/elastin, glycoprotein, and proteoglycans. Each histochemical stain was positive in fat tissue, purified At-ECM, and electrospun At-ECM, and to some extent positive in a 10:90 blend with polydioxanone (PDO). We also show that electrospun At-ECM, alone and blended with PDO, supports ASC attachment and growth, suggesting that electrospun At-ECM scaffolds support ASC cultivation. These studies show that At-ECM can be isolated and electrospun as a basement membrane-rich tissue engineering matrix capable of supporting stem cells, providing the groundwork for an array of future regenerative medicine advances.

  17. Regulation of glucose homoeostasis by brown adipose tissue.

    PubMed

    Peirce, Vivian; Vidal-Puig, Antonio

    2013-12-01

    Brown adipose tissue (BAT) has emerged as a therapeutic target for the treatment of obesity. Activation of BAT in human beings could also have beneficial metabolic effects that might resolve common complications of obesity, such as type 2 diabetes, by ameliorating the glucolipotoxic pathological changes that underlie the development of peripheral insulin resistance and impaired insulin secretion due to pancreatic β-cell failure. Evidence from rodent models suggests that BAT activation improves glucose homoeostasis through several mechanisms, which could point to new strategies to optimise stimulation of BAT in human beings and reverse insulin resistance in peripheral tissues.

  18. Polychlorinated biphenyl (PCB) partitioning between adipose tissue and serum

    SciTech Connect

    Brown, J.F. Jr.; Lawton, R.W.

    1984-09-01

    It has been recently suggested that variabilities in the partitioning of chronically retained lipophilic xenobiotics between adipose tissue and serum may be relatable to variations in the lipid content of the serum. Here, the authors present theoretical considerations and experimental data showing that this is indeed the case for polychlorinated biphenyls (PCBs) in humans. At equilibrium, in the absence of active transport, any lipophilic substance must distribute itself among body tissues in such a way that its chemical activity and also its chemical potential are the same at all points. In order to verify the theoretical relationships, three sorts of data relating to serum PCB levels in a human population were examined.

  19. Berberine activates thermogenesis in white and brown adipose tissue.

    PubMed

    Zhang, Zhiguo; Zhang, Huizhi; Li, Bo; Meng, Xiangjian; Wang, Jiqiu; Zhang, Yifei; Yao, Shuangshuang; Ma, Qinyun; Jin, Lina; Yang, Jian; Wang, Weiqing; Ning, Guang

    2014-11-25

    Obesity develops when energy intake exceeds energy expenditure. Promoting brown adipose tissue formation and function increases energy expenditure and hence may counteract obesity. Berberine (BBR) is a compound derived from the Chinese medicinal plant Coptis chinensis. Here we show that BBR increases energy expenditure, limits weight gain, improves cold tolerance and enhances brown adipose tissue (BAT) activity in obese db/db mice. BBR markedly induces the development of brown-like adipocytes in inguinal, but not epididymal adipose depots. BBR also increases expression of UCP1 and other thermogenic genes in white and BAT and primary adipocytes via a mechanism involving AMPK and PGC-1α. BBR treatment also inhibits AMPK activity in the hypothalamus, but genetic activation of AMPK in the ventromedial nucleus of the hypothalamus does not prevent BBR-induced weight loss and activation of the thermogenic programme. Our findings establish a role for BBR in regulating organismal energy balance, which may have potential therapeutic implications for the treatment of obesity.

  20. Central Nervous System Regulation of Brown Adipose Tissue

    PubMed Central

    Morrison, Shaun F.; Madden, Christopher J.

    2015-01-01

    Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior. PMID:25428857

  1. Secreted proteins and genes in fetal and neonatal pig adipose tissue and stromal-vascular cells.

    PubMed

    Hausman, G J; Poulos, S P; Richardson, R L; Barb, C R; Andacht, T; Kirk, H C; Mynatt, R L

    2006-07-01

    Although microarray and proteomic studies have indicated the expression of unique and unexpected genes and their products in human and rodent adipose tissue, similar studies of meat animal adipose tissue have not been reported. Thus, total RNA was isolated from stromal-vascular (S-V) cell cultures (n = 4; 2 arrays; 2 cultures/array) from 90-d (79% of gestation) fetuses and adipose tissue from 105-d (92% of gestation) fetuses (n = 2) and neonatal (5-d-old) pigs (n = 2). Duplicate adipose tissue microarrays (n = 4) represented RNA samples from a pig and a fetus. Dye-labeled cDNA probes were hybridized to custom microarrays (70-mer oligonucleotides) representing more than 600 pig genes involved in growth and reproduction. Microarray studies showed significant expression of 40 genes encoding for known adipose tissue secreted proteins in fetal S-V cell cultures and adipose tissue. Expression of 10 genes encoding secreted proteins not known to be expressed by adipose tissue was also observed in neonatal adipose tissue and fetal S-V cell cultures. Additionally, the agouti gene was detected by reverse transcription-PCR in pig S-V cultures and adipose tissue. Proteomic analysis of adipose tissue and fetal and young pig S-V cell culture-conditioned media identified multiple secreted proteins including heparin-like epidermal growth factor-like growth factor and several apolipoproteins. Another adipose tissue secreted protein, plasminogen activator inhibitor-1, was identified by ELISA in S-V cell culture media. A group of 20 adipose tissue secreted proteins were detected or identified using the gene microarray and the proteomic and protein assay approaches including apolipoprotein-A1, apolipoprotein-E, relaxin, brain-derived neurotrophic factor, and IGF binding protein-5. These studies demonstrate, for the first time, the expression of several major secreted proteins in pig adipose tissue that may influence local and central metabolism and growth.

  2. Mechanobiology and Mechanotherapy of Adipose Tissue-Effect of Mechanical Force on Fat Tissue Engineering.

    PubMed

    Yuan, Yi; Gao, Jianhua; Ogawa, Rei

    2015-12-01

    Our bodies are subjected to various mechanical forces, which in turn affect both the structure and function of our bodies. In particular, these mechanical forces play an important role in tissue growth and regeneration. Adipocytes and adipose-derived stem cells are both mechanosensitive and mechanoresponsive. The aim of this review is to summarize the relationship between mechanobiology and adipogenesis. PubMed was used to search for articles using the following keywords: mechanobiology, adipogenesis, adipose-derived stem cells, and cytoskeleton. In vitro and in vivo experiments have shown that adipogenesis is strongly promoted/inhibited by various internal and external mechanical forces, and that these effects are mediated by changes in the cytoskeleton of adipose-derived stem cells and/or various signaling pathways. Thus, adipose tissue engineering could be enhanced by the careful application of mechanical forces. It was shown recently that mature adipose tissue regenerates in an adipose tissue-engineering chamber. This observation has great potential for the reconstruction of soft tissue deficiencies, but the mechanisms behind it remain to be elucidated. On the basis of our understanding of mechanobiology, we hypothesize that the chamber removes mechanical force on the fat that normally impose high cytoskeletal tension. The reduction in tension in adipose stem cells triggers their differentiation into adipocytes. The improvement in our understanding of the relationship between mechanobiology and adipogenesis means that in the near future, we may be able to increase or decrease body fat, as needed in the clinic, by controlling the tension that is loaded onto fat.

  3. Mechanobiology and Mechanotherapy of Adipose Tissue-Effect of Mechanical Force on Fat Tissue Engineering

    PubMed Central

    Yuan, Yi

    2015-01-01

    Summary: Our bodies are subjected to various mechanical forces, which in turn affect both the structure and function of our bodies. In particular, these mechanical forces play an important role in tissue growth and regeneration. Adipocytes and adipose-derived stem cells are both mechanosensitive and mechanoresponsive. The aim of this review is to summarize the relationship between mechanobiology and adipogenesis. PubMed was used to search for articles using the following keywords: mechanobiology, adipogenesis, adipose-derived stem cells, and cytoskeleton. In vitro and in vivo experiments have shown that adipogenesis is strongly promoted/inhibited by various internal and external mechanical forces, and that these effects are mediated by changes in the cytoskeleton of adipose-derived stem cells and/or various signaling pathways. Thus, adipose tissue engineering could be enhanced by the careful application of mechanical forces. It was shown recently that mature adipose tissue regenerates in an adipose tissue-engineering chamber. This observation has great potential for the reconstruction of soft tissue deficiencies, but the mechanisms behind it remain to be elucidated. On the basis of our understanding of mechanobiology, we hypothesize that the chamber removes mechanical force on the fat that normally impose high cytoskeletal tension. The reduction in tension in adipose stem cells triggers their differentiation into adipocytes. The improvement in our understanding of the relationship between mechanobiology and adipogenesis means that in the near future, we may be able to increase or decrease body fat, as needed in the clinic, by controlling the tension that is loaded onto fat. PMID:26894003

  4. Estradiol effects on subcutaneous adipose tissue lipolysis in premenopausal women are adipose tissue depot specific and treatment dependent.

    PubMed

    Gavin, Kathleen M; Cooper, Elizabeth E; Raymer, Dustin K; Hickner, Robert C

    2013-06-01

    Estrogen has direct effects within adipose tissue and has been implicated in regional adiposity; however, the influence of estrogen on in vivo lipolysis is unclear. The purpose of this study was to investigate the effect of local 17β-estradiol (E(2)) on subcutaneous adipose tissue (SAT) lipolysis in premenopausal women. In vivo lipolysis (dialysate glycerol) was measured in 17 women (age 27.4 ± 2.0 yr, BMI 29.7 ± 0.5 kg/m(2)) via microdialysis of abdominal (AB) and gluteal (GL) SAT. Glycerol was measured at baseline and during acute interventions to increase lipolysis including local perfusion of isoproterenol (ISO, β-adrenergic agonist, 1.0 μmol/l), phentolamine (PHEN, α-adrenergic antagonist, 0.1 mmol/l), and submaximal exercise (60% Vo(2peak), 30 min); all with and without coperfusion of E(2) (500 nmol/l). E(2) coperfusion blunted the lipolytic response to ISO in AB (E(2) 196 ± 31%, control 258 ± 26%, P = 0.003) but not in GL (E(2) 113 ± 14%, control 111 ± 12%, P = 0.43) adipose tissue. At rest, perfusion of PHEN with ISO did not change dialysate glycerol. Submaximal exercise during ISO + PHEN increased dialysate glycerol in the AB (56 ± 9%) and GL (62 ± 12%) regions. Probes perfused with E(2) during exercise and ISO + PHEN had an increased lipolytic response in AB (90 ± 9%, P = 0.007) but a lower response in GL (35 ± 7%, P = 0.05) SAT compared with no-E(2) conditions. E(2) effects on lipolysis are region specific and may work through both adrenergic and adrenergic-independent mechanisms to potentiate and/or blunt SAT lipolysis in premenopausal women.

  5. Decreased limb muscle and increased central adiposity are associated with 5-year all-cause mortality in HIV infection

    PubMed Central

    Scherzer, Rebecca; Heymsfield, Steven B.; Lee, Daniel; Powderly, William G.; Tien, Phyllis C.; Bacchetti, Peter; Shlipak, Michael G.; Grunfeld, Carl

    2014-01-01

    Background Unintentional loss of weight and muscle due to aging and disease has been associated with increased mortality. Wasting and weight loss occur in HIV infection even in the modern era of effective antiretroviral therapy. Methods We determined the association of MRI-measured regional and total skeletal muscle and adipose tissue with 5-year, all-cause mortality in 922 HIV-infected persons in the study of Fat Redistribution and Metabolic Change in HIV Infection (FRAM). Results After 5 years of follow-up, HIV-infected participants with arm skeletal muscle in the lowest tertile had a mortality rate of 23%, compared with 11 and 8% for those in the middle and highest tertiles. After multivariable adjustment for demographics, cardiovascular risk factors, HIV-related factors, inflammatory markers, and renal disease, we found that lower arm skeletal muscle, lower leg skeletal muscle and higher visceral adipose tissue (VAT) were each independently associated with increased mortality. Those in the lowest tertile of arm or leg skeletal muscle had higher odds of death [arm: odds ratio (OR)=2.0, 95% confidence interval (CI) 0.96–4.0; leg: OR=2.4, 95% CI 1.2–4.8] compared with the highest respective tertiles. Those in the highest tertile of VAT had 2.1-fold higher odds of death (95% CI 1.1–4.0) compared with the lowest VAT tertile. Conclusion Lower muscle mass and central adiposity appear to be important risk factors for mortality in HIV-infected individuals. A substantial proportion of this risk may be unrecognized because of the current reliance on body mass index in clinical practice. PMID:21572308

  6. Two types of brown adipose tissue in humans

    PubMed Central

    Lidell, Martin E; Betz, Matthias J; Enerbäck, Sven

    2014-01-01

    During the last years the existence of metabolically active brown adipose tissue in adult humans has been widely accepted by the research community. Its unique ability to dissipate chemical energy stored in triglycerides as heat makes it an attractive target for new drugs against obesity and its related diseases. Hence the tissue is now subject to intense research, the hypothesis being that an expansion and/or activation of the tissue is associated with a healthy metabolic phenotype. Animal studies provide evidence for the existence of at least two types of brown adipocytes. Apart from the classical brown adipocyte that is found primarily in the interscapular region where it constitutes a thermogenic organ, a second type of brown adipocyte, the so-called beige adipocyte, can appear within white adipose tissue depots. The fact that the two cell types develop from different precursors suggests that they might be recruited and stimulated by different cues and therefore represent two distinct targets for therapeutic intervention. The aim of this commentary is to discuss recent work addressing the question whether also humans possess two types of brown adipocytes and to highlight some issues when looking for molecular markers for such cells. PMID:24575372

  7. The effect of diabetes on the wound healing potential of adipose-tissue derived stem cells.

    PubMed

    Kim, Sue Min; Kim, Yun Ho; Jun, Young Joon; Yoo, Gyeol; Rhie, Jong Won

    2016-03-01

    To investigate whether diabetes mellitus affects the wound-healing-promoting potential of adipose tissue-derived stem cells, we designed a wound-healing model using diabetic mice. We compared the degree of wound healing between wounds treated with normal adipose tissue-derived stem cells and wounds treated with diabetic adipose tissue-derived stem cells. We evaluated the wound-healing rate, the epithelial tongue distance, the area of granulation tissue, the number of capillary and the number of Ki-67-stained cells. The wound-healing rate was significantly higher in the normal adipose tissue-derived stem cells group than in the diabetic adipose tissue-derived stem cells group; it was also significantly higher in the normal adipose tissue-derived stem cells group than in the control group. Although the diabetic adipose tissue-derived stem cells group showed a better wound-healing rate than the control group, the difference was not statistically significant. Similar trends were observed for the other parameters examined: re-epithelisation and keratinocyte proliferation; granulation tissue formation; and dermal regeneration. However, with regard to the number of capillary, diabetic adipose tissue-derived stem cells retained their ability to promote neovasculisation and angiogenesis. These results reflect the general impairment of the therapeutic potential of diabetic adipose tissue-derived stem cells in vivo.

  8. A Methionine Deficient Diet Enhances Adipose Tissue Lipid Metabolism and Alters Anti-Oxidant Pathways in Young Growing Pigs

    PubMed Central

    Castellano, Rosa; Perruchot, Marie-Hélène; Conde-Aguilera, José Alberto; van Milgen, Jaap; Collin, Anne; Tesseraud, Sophie; Mercier, Yves; Gondret, Florence

    2015-01-01

    Methionine is a rate-limiting amino-acid for protein synthesis but non-proteinogenic roles on lipid metabolism and oxidative stress have been demonstrated. Contrary to rodents where a dietary methionine deficiency led to a lower adiposity, an increased lipid accretion rate has been reported in growing pigs fed a methionine deficient diet. This study aimed to clarify the effects of a dietary methionine deficiency on different aspects of tissue lipid metabolism and anti-oxidant pathways in young pigs. Post-weaned pigs (9.8 kg initial body weight) were restrictively-fed diets providing either an adequate (CTRL) or a deficient methionine supply (MD) during 10 days (n=6 per group). At the end of the feeding trial, pigs fed the MD diet had higher lipid content in subcutaneous adipose tissue. Expression levels of genes involved in glucose uptake, lipogenesis but also lipolysis, and activities of NADPH enzyme suppliers were generally higher in subcutaneous and perirenal adipose tissues of MD pigs, suggesting an increased lipid turnover in those pigs. Activities of the anti-oxidant enzymes superoxide dismutase, catalase and glutathione reductase were increased in adipose tissues and muscle of MD pigs. Expression level and activity of the glutathione peroxidase were also higher in liver of MD pigs, but hepatic contents in the reduced and oxidized forms of glutathione and glutathione reductase activity were lower compared with control pigs. In plasma, superoxide dismutase activity was higher but total anti-oxidant power was lower in MD pigs. These results show that a dietary methionine deficiency resulted in increased levels of lipogenesis and lipolytic indicators in porcine adipose tissues. Decreased glutathione content in the liver and coordinated increase of enzymatic antioxidant activities in adipose tissues altered the cellular redox status of young pigs fed a methionine-deficient diet. These findings illustrate that a rapidly growing animal differently adapts tissue

  9. Breast muscle tissue characteristics in growing broilers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Muscle cell development in broilers influences growth rate, breast meat yield, and meat quality. The objective of this study was to characterize muscle tissue changes in breast muscles from two commercial lines of broilers from 21 to 56 days of age. The experiment was designed as a 2×2×6 factorial...

  10. Advantages of Sheep Infrapatellar Fat Pad Adipose Tissue Derived Stem Cells in Tissue Engineering

    PubMed Central

    Vahedi, Parviz; Soleimanirad, Jafar; Roshangar, Leila; Shafaei, Hajar; Jarolmasjed, Seyedhosein; Nozad Charoudeh, Hojjatollah

    2016-01-01

    Purpose: The goal of this study has been to evaluate adipose tissue derived stem cells (ADSCs) from infrapatellar fat pad and characterize their cell surface markers using anti-human antibodies, as adipose tissue derived stem cells (ADSCs) have great potential for cellular therapies to restore injured tissues. Methods: Adipose tissue was obtained from infrapatellar fat pad of sheep. Surface markers evaluated by flow cytometry. In order to evaluate cell adhesion, the Polycaprolactone (PCL) was sterilized under Ultraviolet (UV) light and about 1×105 cells were seeded on PCL. Then, ASCs- PCL construct were evaluated by Scanning Electron Microscopy (Mira3 Te Scan, Czech Republic). Results: We showed that adipose tissue derived stem cells (ADSCs) maintain their fibroblastic-like morphology during different subcultures and cell adhesion. They were positive for CD44 and CD90 markers and negative for CD31 and Cd45 markers by human antibodies. Conclusion: Our results suggest that ASCs surface markers can be characterized by anti-human antibodies in sheep. As stem cells, they can be used in tissue engineering. PMID:27123425

  11. Laminin α4 Deficient Mice Exhibit Decreased Capacity for Adipose Tissue Expansion and Weight Gain

    PubMed Central

    Movérare-Skrtic, Sofia; Kortesmaa, Jarkko; Soininen, Raija; Bergström, Göran; Ohlsson, Claes; Chong, Li Yen; Rozell, Björn; Emont, Margo; Cohen, Ronald N.; Brey, Eric M.; Tryggvason, Karl

    2014-01-01

    Obesity is a global epidemic that contributes to the increasing medical burdens related to type 2 diabetes, cardiovascular disease and cancer. A better understanding of the mechanisms regulating adipose tissue expansion could lead to therapeutics that eliminate or reduce obesity-associated morbidity and mortality. The extracellular matrix (ECM) has been shown to regulate the development and function of numerous tissues and organs. However, there is little understanding of its function in adipose tissue. In this manuscript we describe the role of laminin α4, a specialized ECM protein surrounding adipocytes, on weight gain and adipose tissue function. Adipose tissue accumulation, lipogenesis, and structure were examined in mice with a null mutation of the laminin α4 gene (Lama4−/−) and compared to wild-type (Lama4+/+) control animals. Lama4−/− mice exhibited reduced weight gain in response to both age and high fat diet. Interestingly, the mice had decreased adipose tissue mass and altered lipogenesis in a depot-specific manner. In particular, epididymal adipose tissue mass was specifically decreased in knock-out mice, and there was also a defect in lipogenesis in this depot as well. In contrast, no such differences were observed in subcutaneous adipose tissue at 14 weeks. The results suggest that laminin α4 influences adipose tissue structure and function in a depot-specific manner. Alterations in laminin composition offers insight into the roll the ECM potentially plays in modulating cellular behavior in adipose tissue expansion. PMID:25310607

  12. Organochlorine pesticide levels in female adipose tissue from Puebla, Mexico.

    PubMed

    Waliszewski, Stefan M; Sanchez, K; Caba, M; Saldariaga-Noreña, H; Meza, E; Zepeda, R; Valencia Quintana, R; Infanzon, R

    2012-02-01

    The objective of this study was to determine the levels of organochlorine pesticides HCB, α-β-γ-HCH, pp'DDE, op'DDT and pp'DDT in adipose tissue of females living in Puebla, Mexico. Organochlorine pesticides were analyzed in 75 abdominal adipose tissue samples taken during 2010 by autopsy at the Forensic Services of Puebla. The results were expressed as mg/kg on fat basis. In analyzed samples the following pesticides were detected: p,p'-DDE in 100% of samples at mean 1.464 mg/kg; p,p'-DDT in 96.0.% of samples at mean 0.105 mg/kg; op'DDT in 89.3% of monitored samples at mean 0.025 mg/kg and β-HCH in 94.7% of the samples at mean 0.108 mg/kg. To show if organochlorine pesticide levels in monitored female's adipose tissues are age dependant, the group was divided in three ages ranges (13-26, 26-57 and 57-96 years). The mean and median levels of all organochlorine pesticides increase significantly (p < 0.05) from the first to second and from the first to third group. At the same time, the increase of mean and medians levels from the second to third group were not statistically significant (p > 0.05). The present results compared to previous ones from 2008 indicates an increase in the concentrations during the 2010 study, but only the differences for pp'DDE and op'DDT were statistically significant. The 2010 group of females was older compared to the 2008 group. The presence of organochlorine pesticide residues is still observed, indicating uniform and permanent exposure to the pesticides by Puebla inhabitants.

  13. Divergent phenotype of rat thoracic and abdominal perivascular adipose tissues

    PubMed Central

    Jenkins, Nathan T.; Vieira-Potter, Victoria J.; Laughlin, M. Harold

    2013-01-01

    Perivascular adipose tissue (PVAT) is implicated as a source of proatherogenic cytokines. Phenotypic differences in local PVAT depots may contribute to differences in disease susceptibility among arteries and even regions within an artery. It has been proposed that PVAT around the abdominal and thoracic aorta shares characteristics of white and brown adipose tissue (BAT), respectively; however, a detailed comparison of the phenotype of these PVAT depots has not been performed. Using young and older adult rats, we compared the phenotype of PVATs surrounding the abdominal and thoracic aorta to each other and also to epididymal white and subscapular BAT. Compared with young rats, older rats exhibited greater percent body fat (34.5 ± 3.1 vs. 10.4 ± 0.9%), total cholesterol (112.2 ± 7.5 vs. 58.7 ± 6.3 mg/dl), HOMA-insulin resistance (1.7 ± 0.1 vs. 0.9 ± 0.1 a.u.), as well as reduced ACh-induced relaxation of the aorta (maximal relaxation: 54 ± 10 vs. 77 ± 6%) (all P < 0.05). Expression of inflammatory genes and markers of immune cell infiltration were greater in abdominal PVAT than in thoracic PVAT, and overall, abdominal and thoracic PVATs resembled the phenotype of white adipose tissue (WAT) and BAT, respectively. Histology and electron microscopy indicated structural similarity between visceral WAT and abdominal PVAT and between BAT and thoracic PVAT. Our data provide evidence that abdominal PVAT is more inflamed than thoracic PVAT, a difference that was by and large independent of sedentary aging. Phenotypic differences in PVAT between regions of the aorta may be relevant in light of the evidence in large animals and humans that the abdominal aorta is more vulnerable to atherosclerosis than the thoracic aorta. PMID:23389108

  14. Physiological functions of Vitamin D in adipose tissue.

    PubMed

    Abbas, Manal A

    2017-01-01

    Adipose tissue has long been identified as the major site of vitamin D storage. Recent studies have demonstrated that VDR and vitamin D metabolizing enzymes are expressed in adipocytes. Furthermore, it has been shown that vitamin D regulates adipogenic gene expression as well as adipocyte apoptosis. Vitamin D is active in adipocytes at all levels. It interacts with membrane receptors, adaptor molecules, and nuclear coregulator proteins. Several functions of unliganded nVDR were discovered by studying human samples from patients having hereditary vitamin D resistant rickets, transgenic mice overexpressing the VDR and VDR knockout mice. Through its genomic action, vitamin D participates in the regulation of energy metabolism by controlling the expression of uncoupling proteins. In vitro, vitamin D stimulates lipogenesis and inhibits lipolysis by interacting with mVDR. mVDR is present in caveolae of the plasma membrane and is the same as the classic nVDR. In addition, vitamin D affects directly the expression of the appetite regulating hormone, leptin. Some researchers reported also that vitamin D regulates the expression of the insulin sensitizing hormone, adiponectin. Vitamin D reduced cytokine release and adipose tissue inflammation through the inhibition of NF-κB signaling. Scientific research investigating the role of adipose tissue resident immune cells in the pathogenesis of obesity-associated inflammation is scarce. Obesity is associated with vitamin D deficiency. However there is no scientific evidence to prove that vitamin D deficiency predispose to obesity. Vitamin D supplementation may prevent obesity but it does not lead to weight loss in obese subjects.

  15. Iron homeostasis: a new job for macrophages in adipose tissue?

    PubMed Central

    Hubler, Merla J.; Peterson, Kristin R.; Hasty, Alyssa H.

    2015-01-01

    Elevated serum ferritin and increased cellular iron concentrations are risk factors for diabetes; however, the etiology of this association is unclear. Metabolic tissues such as pancreas, liver, and adipose tissue (AT), as well as the immune cells resident in these tissues, may be involved. Recent studies demonstrate that the polarization status of macrophages has important relevance to their iron handling capabilities. Furthermore, a subset of macrophages in AT have elevated iron concentrations and a gene expression profile indicative of iron handling, a capacity diminished in obesity. Because iron overload in adipocytes increases systemic insulin resistance, iron handling by AT macrophages may have relevance not only to adipocyte iron stores but also to local and systemic insulin sensitivity. PMID:25600948

  16. Direct effects of leptin on brown and white adipose tissue.

    PubMed Central

    Siegrist-Kaiser, C A; Pauli, V; Juge-Aubry, C E; Boss, O; Pernin, A; Chin, W W; Cusin, I; Rohner-Jeanrenaud, F; Burger, A G; Zapf, J; Meier, C A

    1997-01-01

    Leptin is thought to exert its actions on energy homeostasis through the long form of the leptin receptor (OB-Rb), which is present in the hypothalamus and in certain peripheral organs, including adipose tissue. In this study, we examined whether leptin has direct effects on the function of brown and white adipose tissue (BAT and WAT, respectively) at the metabolic and molecular levels. The chronic peripheral intravenous administration of leptin in vivo for 4 d resulted in a 1.6-fold increase in the in vivo glucose utilization index of BAT, whereas no significant change was found after intracerebroventricular administration compared with pair-fed control rats, compatible with a direct effect of leptin on BAT. The effect of leptin on WAT fat pads from lean Zucker Fa/ fa rats was assessed ex vivo, where a 9- and 16-fold increase in the rate of lipolysis was observed after 2 h of exposure to 0.1 and 10 nM leptin, respectively. In contrast, no increase in lipolysis was observed in the fat pads from obese fa/fa rats, which harbor an inactivating mutation in the OB-Rb. At the level of gene expression, leptin treatment for 24 h increased malic enzyme and lipoprotein lipase RNA 1.8+/-0.17 and 1.9+/-0.14-fold, respectively, while aP2 mRNA levels were unaltered in primary cultures of brown adipocytes from lean Fa/fa rats. Importantly, however, no significant effect of leptin was observed on these genes in brown adipocytes from obese fa/fa animals. The presence of OB-Rb receptors in adipose tissue was substantiated by the detection of its transcripts by RT-PCR, and leptin treatment in vivo and in vitro activated the specific STATs implicated in the signaling pathway of the OB-Rb. Taken together, our data strongly suggest that leptin has direct effects on BAT and WAT, resulting in the activation of the Jak/STAT pathway and the increased expression of certain target genes, which may partially account for the observed increase in glucose utilization and lipolysis in leptin

  17. Serially Transplanted Nonpericytic CD146(-) Adipose Stromal/Stem Cells in Silk Bioscaffolds Regenerate Adipose Tissue In Vivo.

    PubMed

    Frazier, Trivia P; Bowles, Annie; Lee, Stephen; Abbott, Rosalyn; Tucker, Hugh A; Kaplan, David; Wang, Mei; Strong, Amy; Brown, Quincy; He, Jibao; Bunnell, Bruce A; Gimble, Jeffrey M

    2016-04-01

    Progenitors derived from the stromal vascular fraction (SVF) of white adipose tissue (WAT) possess the ability to form clonal populations and differentiate along multiple lineage pathways. However, the literature continues to vacillate between defining adipocyte progenitors as "stromal" or "stem" cells. Recent studies have demonstrated that a nonpericytic subpopulation of adipose stromal cells, which possess the phenotype, CD45(-) /CD31(-) /CD146(-) /CD34(+) , are mesenchymal, and suggest this may be an endogenous progenitor subpopulation within adipose tissue. We hypothesized that an adipose progenitor could be sorted based on the expression of CD146, CD34, and/or CD29 and when implanted in vivo these cells can persist, proliferate, and regenerate a functional fat pad over serial transplants. SVF cells and culture expanded adipose stromal/stem cells (ASC) ubiquitously expressing the green fluorescent protein transgene (GFP-Tg) were fractionated by flow cytometry. Both freshly isolated SVF and culture expanded ASC were seeded in three-dimensional silk scaffolds, implanted subcutaneously in wild-type hosts, and serially transplanted. Six-week WAT constructs were removed and evaluated for the presence of GFP-Tg adipocytes and stem cells. Flow cytometry, quantitative polymerase chain reaction, and confocal microscopy demonstrated GFP-Tg cell persistence, proliferation, and expansion, respectively. Glycerol secretion and glucose uptake assays revealed GFP-Tg adipose was metabolically functional. Constructs seeded with GFP-Tg SVF cells or GFP-Tg ASC exhibited higher SVF yields from digested tissue, and higher construct weights, compared to nonseeded controls. Constructs derived from CD146(-) CD34(+) -enriched GFP-Tg ASC populations exhibited higher hemoglobin saturation, and higher frequency of GFP-Tg cells than unsorted or CD29(+) GFP-Tg ASC counterparts. These data demonstrated successful serial transplantation of nonpericytic adipose-derived progenitors that can

  18. Native and recombinant bovine growth hormone antagonize insulin action in cultured bovine adipose tissue.

    PubMed

    Etherton, T D; Evock, C M; Kensinger, R S

    1987-08-01

    The current study was undertaken to determine if pituitary bovine GH (pbGH) and recombinant bGH (rbGH) antagonized insulin action in bovine adipose tissue after acute (2-h) and chronic (48-h) exposure and whether this was an intrinsic property of bGH. Insulin action (measured as the effect on incorporation of acetate-carbon into long-chain fatty acids) was unaffected by bGH in short term incubations regardless of whether hydrocortisone (HC) was present. After 48 h of culture, however, both pbGH and rbGH similarly antagonized the ability of insulin to maintain lipogenic capacity. This antagonism was dependent upon the presence of HC and was dose dependent, with half-maximal inhibition of insulin action occurring at about 0.5 ng/ml bGH. Bovine PRL did not mimic the effects of bGH on insulin action. These results establish that bGH antagonizes insulin action in bovine adipose tissue and that this effect is dependent upon long term exposure and the inclusion of HC in the culture medium. The fact that both rbGH and pbGH acted similarly indicates that this is an intrinsic property of bGH. The effect of bGH on insulin-dependent maintenance of lipogenic capacity may play an important role in redirecting nutrients away from adipose tissue to other tissues, such as muscle or mammary tissue. It is speculated that this metabolic effect of bGH plays an important role in the adaptive response to chronic bGH treatment, which increases milk yield of dairy cows and growth performance of beef cattle.

  19. Adipose tissue chromium and vanadium disbalance in high-fat fed Wistar rats.

    PubMed

    Tinkov, Alexey A; Popova, Elizaveta V; Polyakova, Valentina S; Kwan, Olga V; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-01-01

    The primary objective of the current study is to investigate the relationship between adipose tissue chromium and vanadium content and adipose tissue dysfunction in a model of diet-induced obesity. A total of 26 female Wistar rats were fed either standard or high-fat diet (31.6% of fat from total caloric content) for 3 months. High-fat-feeding resulted in 21 and 33% decrease in adipose tissue chromium and vanadium content, respectively. No change was seen in hair chromium or vanadium levels. Statistical analysis revealed a significant inverse correlation of adipose tissue Cr and V with animal morphometric parameters and adipocyte size. Significant inverse dependence was observed between adipose tissue Cr and V and serum leptin and proinflammatory cytokines' levels. At the same time, adipose tissue Cr and V levels were characterized by positive correlation between serum adiponectin and adiponectin/leptin ratio. Adipose tissue Cr and V were inversely correlated (p<0.05) with insulin and homeostatic model assessment insulin resistance index (HOMA-IR) levels. Cr and V concentrations were not correlated with serum glucose in either high-fat fed or control rats; however, both serum glucose and HOMA-IR levels were significantly higher in high-fat fed, compared to control, rats. The results allow to hypothesize that impairment of adipose tissue Cr and V content plays a certain role in the development of adipose tissue endocrine dysfunction in obesity.

  20. Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues.

    PubMed

    Ramseyer, Vanesa D; Granneman, James G

    2016-01-01

    The discovery of brown adipose tissue in adult humans along with the recognition of adipocyte heterogeneity and plasticity of white fat depots has renewed the interest in targeting adipose tissue for therapeutic benefit. Adrenergic activation is a well-established means of recruiting catabolic adipocyte phenotypes in brown and white adipose tissues. In this article, we review mechanisms of brown adipocyte recruitment by the sympathetic nervous system and by direct β-adrenergic receptor activation. We highlight the distinct modes of brown adipocyte recruitment in brown, beige/brite, and white adipose tissues, UCP1-independent thermogenesis, and potential non-thermogenic, metabolically beneficial effects of brown adipocytes.

  1. Adipose tissue-derived stem cells as a therapeutic tool for cardiovascular disease

    PubMed Central

    Suzuki, Etsu; Fujita, Daishi; Takahashi, Masao; Oba, Shigeyoshi; Nishimatsu, Hiroaki

    2015-01-01

    Adipose tissue-derived stem cells (ADSCs) are adult stem cells that can be easily harvested from subcutaneous adipose tissue. Many studies have demonstrated that ADSCs differentiate into vascular endothelial cells (VECs), vascular smooth muscle cells (VSMCs), and cardiomyocytes in vitro and in vivo. However, ADSCs may fuse with tissue-resident cells and obtain the corresponding characteristics of those cells. If fusion occurs, ADSCs may express markers of VECs, VSMCs, and cardiomyocytes without direct differentiation into these cell types. ADSCs also produce a variety of paracrine factors such as vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor-1 that have proangiogenic and/or antiapoptotic activities. Thus, ADSCs have the potential to regenerate the cardiovascular system via direct differentiation into VECs, VSMCs, and cardiomyocytes, fusion with tissue-resident cells, and the production of paracrine factors. Numerous animal studies have demonstrated the efficacy of ADSC implantation in the treatment of acute myocardial infarction (AMI), ischemic cardiomyopathy (ICM), dilated cardiomyopathy, hindlimb ischemia, and stroke. Clinical studies regarding the use of autologous ADSCs for treating patients with AMI and ICM have recently been initiated. ADSC implantation has been reported as safe and effective so far. Therefore, ADSCs appear to be useful for the treatment of cardiovascular disease. However, the tumorigenic potential of ADSCs requires careful evaluation before their safe clinical application. PMID:26322185

  2. Cell-autonomous activation of Hedgehog signaling inhibits brown adipose tissue development.

    PubMed

    Nosavanh, LaGina; Yu, Da-Hai; Jaehnig, Eric J; Tong, Qiang; Shen, Lanlan; Chen, Miao-Hsueh

    2015-04-21

    Although recent studies have shown that brown adipose tissue (BAT) arises from progenitor cells that also give rise to skeletal muscle, the developmental signals that control the formation of BAT remain largely unknown. Here, we show that brown preadipocytes possess primary cilia and can respond to Hedgehog (Hh) signaling. Furthermore, cell-autonomous activation of Hh signaling blocks early brown-preadipocyte differentiation, inhibits BAT formation in vivo, and results in replacement of neck BAT with poorly differentiated skeletal muscle. Finally, we show that Hh signaling inhibits BAT formation partially through up-regulation of chicken ovalbumin upstream promoter transcription factor II (COUP-TFII). Taken together, our studies uncover a previously unidentified role for Hh as an inhibitor of BAT development.

  3. Characterization of stromal vascular fraction and adipose stem cells from subcutaneous, preperitoneal and visceral morbidly obese human adipose tissue depots

    PubMed Central

    Silva, Karina Ribeiro; Côrtes, Isis; Liechocki, Sally; Carneiro, João Regis Ivar; Souza, Antônio Augusto Peixoto; Borojevic, Radovan; Maya-Monteiro, Clarissa Menezes

    2017-01-01

    Background/Objectives The pathological condition of obesity is accompanied by a dysfunctional adipose tissue. We postulate that subcutaneous, preperitoneal and visceral obese abdominal white adipose tissue depots could have stromal vascular fractions (SVF) with distinct composition and adipose stem cells (ASC) that would differentially account for the pathogenesis of obesity. Methods In order to evaluate the distribution of SVF subpopulations, samples of subcutaneous, preperitoneal and visceral adipose tissues from morbidly obese women (n = 12, BMI: 46.2±5.1 kg/m2) were collected during bariatric surgery, enzymatically digested and analyzed by flow cytometry (n = 12). ASC from all depots were evaluated for morphology, surface expression, ability to accumulate lipid after induction and cytokine secretion (n = 3). Results A high content of preadipocytes was found in the SVF of subcutaneous depot (p = 0.0178). ASC from the three depots had similar fibroblastoid morphology with a homogeneous expression of CD34, CD146, CD105, CD73 and CD90. ASC from the visceral depot secreted the highest levels of IL-6, MCP-1 and G-CSF (p = 0.0278). Interestingly, preperitoneal ASC under lipid accumulation stimulus showed the lowest levels of all the secreted cytokines, except for adiponectin that was enhanced (p = 0.0278). Conclusions ASC from preperitoneal adipose tissue revealed the less pro-inflammatory properties, although it is an internal adipose depot. Conversely, ASC from visceral adipose tissue are the most pro-inflammatory. Therefore, ASC from subcutaneous, visceral and preperitoneal adipose depots could differentially contribute to the chronic inflammatory scenario of obesity. PMID:28323901

  4. New Adipose Tissue Formation by Human Adipose-Derived Stem Cells with Hyaluronic Acid Gel in Immunodeficient Mice

    PubMed Central

    Huang, Shu-Hung; Lin, Yun-Nan; Lee, Su-Shin; Chai, Chee-Yin; Chang, Hsueh-Wei; Lin, Tsai-Ming; Lai, Chung-Sheng; Lin, Sin-Daw

    2015-01-01

    Background: Currently available injectable fillers have demonstrated limited durability. This report proposes the in vitro culture of human adipose-derived stem cells (hASCs) on hyaluronic acid (HA) gel for in vivo growth of de novo adipose tissue. Methods: For in vitro studies, hASCs were isolated from human adipose tissue and were confirmed by multi-lineage differentiation and flow cytometry. hASCs were cultured on HA gel. The effectiveness of cell attachment and proliferation on HA gel was surveyed by inverted light microscopy. For in vivo studies, HA gel containing hASCs, hASCs without HA gel, HA gel alone were allocated and subcutaneously injected into the subcutaneous pocket in the back of nude mice (n=6) in each group. At eight weeks post-injection, the implants were harvested for histological examination by hematoxylin and eosin (H&E) stain, Oil-Red O stain and immunohistochemical staining. The human-specific Alu gene was examined. Results: hASCs were well attachment and proliferation on the HA gel. In vivo grafts showed well-organized new adipose tissue on the HA gel by histologic examination and Oil-Red O stain. Analysis of neo-adipose tissues by PCR revealed the presence of the Alu gene. This study demonstrated not only the successful culture of hASCs on HA gel, but also their full proliferation and differentiation into adipose tissue. Conclusions: The efficacy of injected filler could be permanent since the reduction of the volume of the HA gel after bioabsorption could be replaced by new adipose tissue generated by hASCs. This is a promising approach for developing long lasting soft tissue filler. PMID:25589892

  5. High-affinity glutamate transporter and glutamine synthetase content in longissimus dorsi and adipose tissues of growing Angus steers differs among suckling, weanling, backgrounding, and finishing production stages.

    PubMed

    Matthews, J C; Huang, J; Rentfrow, G

    2016-03-01

    Skeletal muscle and adipose tissues play important roles in maintaining whole-body Glu and N homeostasis by the uptake of Glu and release of Gln. To test the hypothesis that expression of high-affinity Glu transporters (GLAST1, EAAT4, EAAC1, GLT-1) and glutamine synthetase (GS) would increase in longissimus dorsi and adipose tissue of newborn Angus steers randomly assigned ( = 6) to develop through suckling (S; 32 d) and/or weanling (W; 184 d), backgrounding (B; 248 d), and finishing (F; 423 d) production stages. Carcass quality was determined at slaughter to verify shifts in adipose and lean deposition with development. Expression of mRNA (RT-PCR/Southern) and relative protein abundance (Western analysis) were determined in tissue homogenates isolated from longissimus dorsi, and kidney and subcutaneous adipose. The effect of production stage or tissue type on carcass and protein abundance was assessed by 1-way ANOVA using the GLM procedure of SAS, and Fisher's protected LSD procedure was used to separate data means. Neither GLAST1 nor EAAT4 mRNA or protein was detected. EAAC1, GLT-1, and GS mRNA were identified in all tissues, but GLT-1 and GS protein were not detected in kidney or subcutaneous adipose, and GS protein was not detected in longissimus dorsi. The EAAC1 content of subcutaneous ( = 0.06) and kidney ( = 0.02) adipose was 2 times greater in B and F than W steers, whereas GS was 5 times greater ( < 0.07) in B than F steers (B = W > F). For longissimus dorsi, EAAC1 ( < 0.01) and GLT-1 ( < 0.04) content decreased with development (S > W > B = F, S = W > B = F, respectively). Within F steers, EAAC1 and GLT-1 mRNA was expressed by subcutaneous, kidney, omental, mesenchymal, and intramuscular adipose tissues, whereas GS mRNA was expressed by all except for intramuscular. Only EAAC1 protein was detected in any adipose tissue, with EAAC1 content being 104% and 112% greater ( < 0.01) in intramuscular than in kidney or subcutaneous adipose, respectively, and not

  6. Adipose Tissue-Derived Stem Cells in Regenerative Medicine

    PubMed Central

    Frese, Laura; Dijkman, Petra E.; Hoerstrup, Simon P.

    2016-01-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted. PMID:27721702

  7. The Gq signalling pathway inhibits brown and beige adipose tissue.

    PubMed

    Klepac, Katarina; Kilić, Ana; Gnad, Thorsten; Brown, Loren M; Herrmann, Beate; Wilderman, Andrea; Balkow, Aileen; Glöde, Anja; Simon, Katharina; Lidell, Martin E; Betz, Matthias J; Enerbäck, Sven; Wess, Jürgen; Freichel, Marc; Blüher, Matthias; König, Gabi; Kostenis, Evi; Insel, Paul A; Pfeifer, Alexander

    2016-03-09

    Brown adipose tissue (BAT) dissipates nutritional energy as heat via the uncoupling protein-1 (UCP1) and BAT activity correlates with leanness in human adults. Here we profile G protein-coupled receptors (GPCRs) in brown adipocytes to identify druggable regulators of BAT. Twenty-one per cent of the GPCRs link to the Gq family, and inhibition of Gq signalling enhances differentiation of human and murine brown adipocytes. In contrast, activation of Gq signalling abrogates brown adipogenesis. We further identify the endothelin/Ednra pathway as an autocrine activator of Gq signalling in brown adipocytes. Expression of a constitutively active Gq protein in mice reduces UCP1 expression in BAT, whole-body energy expenditure and the number of brown-like/beige cells in white adipose tissue (WAT). Furthermore, expression of Gq in human WAT inversely correlates with UCP1 expression. Thus, our data indicate that Gq signalling regulates brown/beige adipocytes and inhibition of Gq signalling may be a novel therapeutic approach to combat obesity.

  8. The Gq signalling pathway inhibits brown and beige adipose tissue

    PubMed Central

    Klepac, Katarina; Kilić, Ana; Gnad, Thorsten; Brown, Loren M.; Herrmann, Beate; Wilderman, Andrea; Balkow, Aileen; Glöde, Anja; Simon, Katharina; Lidell, Martin E.; Betz, Matthias J.; Enerbäck, Sven; Wess, Jürgen; Freichel, Marc; Blüher, Matthias; König, Gabi; Kostenis, Evi; Insel, Paul A.; Pfeifer, Alexander

    2016-01-01

    Brown adipose tissue (BAT) dissipates nutritional energy as heat via the uncoupling protein-1 (UCP1) and BAT activity correlates with leanness in human adults. Here we profile G protein-coupled receptors (GPCRs) in brown adipocytes to identify druggable regulators of BAT. Twenty-one per cent of the GPCRs link to the Gq family, and inhibition of Gq signalling enhances differentiation of human and murine brown adipocytes. In contrast, activation of Gq signalling abrogates brown adipogenesis. We further identify the endothelin/Ednra pathway as an autocrine activator of Gq signalling in brown adipocytes. Expression of a constitutively active Gq protein in mice reduces UCP1 expression in BAT, whole-body energy expenditure and the number of brown-like/beige cells in white adipose tissue (WAT). Furthermore, expression of Gq in human WAT inversely correlates with UCP1 expression. Thus, our data indicate that Gq signalling regulates brown/beige adipocytes and inhibition of Gq signalling may be a novel therapeutic approach to combat obesity. PMID:26955961

  9. Adipose Tissue-Derived Stem Cells in Regenerative Medicine.

    PubMed

    Frese, Laura; Dijkman, Petra E; Hoerstrup, Simon P

    2016-07-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.

  10. Retention of sedentary obese visceral white adipose tissue phenotype with intermittent physical activity despite reduced adiposity.

    PubMed

    Wainright, Katherine S; Fleming, Nicholas J; Rowles, Joe L; Welly, Rebecca J; Zidon, Terese M; Park, Young-Min; Gaines, T'Keaya L; Scroggins, Rebecca J; Anderson-Baucum, Emily K; Hasty, Alyssa H; Vieira-Potter, Victoria J; Padilla, Jaume

    2015-09-01

    Regular physical activity is effective in reducing visceral white adipose tissue (AT) inflammation and oxidative stress, and these changes are commonly associated with reduced adiposity. However, the impact of multiple periods of physical activity, intercalated by periods of inactivity, i.e., intermittent physical activity, on markers of AT inflammation and oxidative stress is unknown. In the present study, 5-wk-old male C57BL/6 mice were randomized into three groups (n = 10/group): sedentary, regular physical activity, and intermittent physical activity, for 24 wk. All animals were singly housed and fed a diet containing 45% kcal from fat. Regularly active mice had access to voluntary running wheels throughout the study period, whereas intermittently active mice had access to running wheels for 3-wk intervals (i.e., 3 wk on/3 wk off) throughout the study. At death, regular and intermittent physical activity was associated with similar reductions in visceral AT mass (approximately -24%, P < 0.05) relative to sedentary. However, regularly, but not intermittently, active mice exhibited decreased expression of visceral AT genes related to inflammation (e.g., monocyte chemoattractant protein 1), immune cell infiltration (e.g., CD68, CD11c, F4/80, CD11b/CD18), oxidative stress (e.g., p47 phagocyte oxidase), and endoplasmic reticulum stress (e.g., CCAAT enhancer-binding protein homologous protein; all P < 0.05). Furthermore, regular, but not intermittent, physical activity was associated with a trend toward improvement in glucose tolerance (P = 0.059). Collectively, these findings suggest that intermittent physical activity over a prolonged period of time may lead to a reduction in adiposity but with retention of a sedentary obese white AT and metabolic phenotype.

  11. Encapsulation Thermogenic Preadipocytes for Transplantation into Adipose Tissue Depots

    PubMed Central

    Xu, Lu; Shen, Qiwen; Mao, Zhongqi; Lee, L. James; Ziouzenkova, Ouliana

    2015-01-01

    Cell encapsulation was developed to entrap viable cells within semi-permeable membranes. The engrafted encapsulated cells can exchange low molecular weight metabolites in tissues of the treated host to achieve long-term survival. The semipermeable membrane allows engrafted encapsulated cells to avoid rejection by the immune system. The encapsulation procedure was designed to enable a controlled release of bioactive compounds, such as insulin, other hormones, and cytokines. Here we describe a method for encapsulation of catabolic cells, which consume lipids for heat production and energy dissipation (thermogenesis) in the intra-abdominal adipose tissue of obese mice. Encapsulation of thermogenic catabolic cells may be potentially applicable to the prevention and treatment of obesity and type 2 diabetes. Another potential application of catabolic cells may include detoxification from alcohols or other toxic metabolites and environmental pollutants. PMID:26066392

  12. 'Browning' the cardiac and peri-vascular adipose tissues to modulate cardiovascular risk.

    PubMed

    Aldiss, Peter; Davies, Graeme; Woods, Rachel; Budge, Helen; Sacks, Harold S; Symonds, Michael E

    2017-02-01

    Excess visceral adiposity, in particular that located adjacent to the heart and coronary arteries is associated with increased cardiovascular risk. In the pathophysiological state, dysfunctional adipose tissue secretes an array of factors modulating vascular function and driving atherogenesis. Conversely, brown and beige adipose tissues utilise glucose and lipids to generate heat and are associated with improved cardiometabolic health. The cardiac and thoracic perivascular adipose tissues are now understood to be composed of brown adipose tissue in the healthy state and undergo a brown-to-white transition i.e. during obesity which may be a driving factor of cardiovascular disease. In this review we discuss the risks of excess cardiac and vascular adiposity and potential mechanisms by which restoring the brown phenotype i.e. "re-browning" could potentially be achieved in clinically relevant populations.

  13. Visceral adipose tissue: emerging role of gluco- and mineralocorticoid hormones in the setting of cardiometabolic alterations

    PubMed Central

    Boscaro, Marco; Giacchetti, Gilberta; Ronconi, Vanessa

    2012-01-01

    Several clinical and experimental lines of evidence have highlighted the detrimental effects of visceral adipose tissue excess on cardiometabolic parameters. Besides, recent findings have shown the effects of gluco-and mineralocorticoid hormones on adipose tissue and have also underscored the interplay existing between such adrenal steroids and their respective receptors in the modulation of adipose tissue biology. While the fundamental role played by glucocorticoids on adipocyte differentiation and storage was already well known, the relevance of the mineralocorticoids in the physiology of the adipose organ is of recent acquisition. The local and systemic renin–angiotensin–aldosterone system (RAAS) acting on adipose tissue seems to contribute to the development of the cardiometabolic phenotype so that its modulation can have deep impact on human health. A better understanding of the pathophysiology of the adipose organ is of crucial importance in order to identify possible therapeutic approaches that can avoid the development of such cardiovascular and metabolic sequelae. PMID:22804097

  14. Adiponectin: a biomarker of obesity-induced insulin resistance in adipose tissue and beyond.

    PubMed

    Lu, Jin-Ying; Huang, Kuo-Chin; Chang, Lin-Chau; Huang, Ying-Shing; Chi, Yu-Chiao; Su, Ta-Chan; Chen, Chi-Ling; Yang, Wei-Shiung

    2008-09-01

    Adiponectin is one of the most thoroughly studied adipocytokines. Low plasma levels of adiponectin are found to associate with obesity, metabolic syndrome, diabetes and many other human diseases. From animal experiments and human studies, adiponectin has been shown to be a key regulator of insulin sensitivity. In this article, we review the evidence and propose that hypo-adiponectinemia is not a major cause of obesity. Instead, it is the result of obesity-induced insulin resistance in the adipose tissue. Hypo-adiponectinemia then mediates the metabolic effects of obesity on the other peripheral tissues, such as liver and skeletal muscle and may also exert some direct effects on end-organ damage. We propose that deciphering the molecular details governing the adiponectin gene expression and protein secretion will lead us to more comprehensive understanding of the mechanisms of insulin resistance in the adipose tissue and provide us new avenues for the therapeutic intervention of obesity and insulin resistance-related human disorders.

  15. Enhanced sympathetic activity in mice with brown adipose tissue transplantation (transBATation).

    PubMed

    Zhu, Zheng; Spicer, Elizabeth G; Gavini, Chaitanya K; Goudjo-Ako, Ashley J; Novak, Colleen M; Shi, Haifei

    2014-02-10

    Brown adipose tissue (BAT) burns calories to produce heat, and is thus relevant to energy balance. Interscapular BAT (IBAT) of donor mice was transplanted into recipient mice (transBATation). To test whether transBATation counteracts high-fat diet (HFD)-induced obesity, some sham-operated and recipient mice were fed a HFD (HFD-sham, HFD-trans) while others remained on a standard chow (chow-sham, chow-trans). HFD-trans mice had lower body weight and fat and greater energy expenditure, but similar caloric intake compared with HFD-sham mice. We hypothesized that HFD-trans mice had elevated sympathetic activity compared with HFD-sham mice, contributing to increased energy expenditure and fuel mobilization. This was supported by findings that HFD-trans mice had greater energy expenditure during a norepinephrine challenge test and higher core temperatures after cold exposure than did HFD-sham mice, implicating enhanced whole-body metabolic response and elevated sympathetic activity. Additionally, transBATation selectively increased sympathetic drive to some, but not all, white adipose tissue depots and skeletal muscles, as well as the endogenous IBAT, heart, and liver. Collectively, transBATation confers resistance to HFD-induced obesity via increase in whole-body sympathetic activity, and differential activation of sympathetic drive to some of the tissues involved in energy expenditure and fuel mobilization.

  16. Influence of outdoor rearing and indoor temperature on growth performance, carcass, adipose tissue and muscle traits in pigs, and on the technological and eating quality of dry-cured hams.

    PubMed

    Lebret, B; Massabie, P; Granier, R; Juin, H; Mourot, J; Chevillon, P

    2002-12-01

    The effects of restricted outdoor rearing during winter (W) or summer (S), and the influence of indoor ambient temperature [17 °C (I17) vs. 24 °C (I24), the latter being considered as control] on pig growth performance, carcass, muscular and adipose tissue traits, and technological and eating quality of dry-cured hams were evaluated. I17 pigs exhibited higher, whereas W had similar and S lower growth rates than the controls (P<0.001). Carcass traits were not different between groups, except in lower back fat weights of S and W pigs (P<0.01). Decrease in environmental temperature affected the fatty acid composition of the back fat leading to higher MUFA and lower SFA and PUFA contents (P<0.001) in I17 and W pigs, whereas S pigs exhibited higher PUFA levels (P<0.001) and fat firmness (P<0.01) than the controls. Rearing system did not significantly influence the intramuscular fat content of Semimembranosus (P=0.08), and had no effect on ultimate pH. In the Longissimus lumborum, percentage and relative area of αR fibers increased in W pigs (P<0.05), but citrate synthase activity did not differ between groups. I17 and W hams exhibited higher processing yields of dry-cured hams than controls (P<0.05). Sensory analyses showed that pig rearing conditions influenced the product appearance, the I17 and W hams exhibiting lower homogeneity (P<0.01) and intensity (P<0.05) of colour, and higher marbling scores (P<0.01) than I24 hams, but had no influence on texture or flavour.

  17. Low-frequency electro-acupuncture and physical exercise improve metabolic disturbances and modulate gene expression in adipose tissue in rats with dihydrotestosterone-induced polycystic ovary syndrome.

    PubMed

    Mannerås, Louise; Jonsdottir, Ingibjörg H; Holmäng, Agneta; Lönn, Malin; Stener-Victorin, Elisabet

    2008-07-01

    Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder associated with ovulatory dysfunction, hyperandrogenism, abdominal obesity, and insulin resistance. Pharmacotherapy is often unsatisfactory. This study evaluates the effects of low-frequency electro-acupuncture (EA) and physical exercise on metabolic disturbances and adipose tissue mRNA expression of selected genes in a rat PCOS model characterized by insulin resistance and adiposity. Dihydrotestosterone (inducing PCOS) or vehicle (control) was administrated continuously, beginning before puberty. At age 10 wk, PCOS rats were randomly divided into three groups; PCOS, PCOS EA, and PCOS exercise. PCOS EA rats received 2-Hz EA (evoking muscle twitches) three times/wk during 4-5 wk. PCOS exercise rats had free access to a running wheel for 4-5 wk. EA and exercise improved insulin sensitivity, measured by clamp, in PCOS rats. Exercise also reduced adiposity, visceral adipocyte size, and plasma leptin. EA increased plasma IGF-I. Real-time RT-PCR revealed increased expression of leptin and IL-6 and decreased expression of uncoupling protein 2 in visceral adipose tissue of PCOS rats compared with controls. EA restored the expression of leptin and uncoupling protein 2, whereas exercise normalized adipose tissue leptin and IL-6 expression in PCOS rats. Thus, EA and exercise ameliorate insulin resistance in rats with PCOS. This effect may involve regulation of adipose tissue metabolism and production because EA and exercise each partly restore divergent adipose tissue gene expression associated with insulin resistance, obesity, and inflammation. In contrast to exercise, EA improves insulin sensitivity and modulates adipose tissue gene expression without influencing adipose tissue mass and cellularity.

  18. Muscle tissue changes with aging.

    PubMed

    Pereira, Ana Fátima; Silva, António José; Matos Costa, Aldo; Monteiro, António Miguel; Bastos, Estela Maria; Cardoso Marques, Mário

    2013-01-01

    Sarcopenia is characterized by a progressive generalized decrease of skeletal muscle mass, strength and function with aging. Recently, the genetic determination has been associated with muscle mass and muscle strength in elderly. These two phenotypes of risk are the most commonly recognized and studied for sarcopenia, with heritability ranging from 30 to 85% for muscle strength and 45-90% for muscle mass. It is well known that the development and maintenance of muscle mass in early adulthood reduces the risk of developing sarcopenia and leads to a healthy aging. For that reason it seems important to identify which genetic factors interact with aging and in particular with the musculoskeletal response to exercise in such individuals. This review is designed to summarize the most important and representative studies about the possible association between certain genetic polymorphisms and muscle phenotypes in older populations. Also we will focuses on nutrition and some concerns associated with aging, including the role that exercise can have on reducing the negative effects of this phenomenon. Some results are inconsistent between studies and more replication studies underlying sarcopenia are needed, with larger samples and with different life cycles, particularly in the type and level of physical activity throughout life. In future we believe that further progress in understanding the genetic etiology and the metabolic pathways will provide valuable information on important biological mechanisms underlying the muscle physiology. This will enable better recognition of individuals at higher risk and the ability to more adequately address this debilitating condition.

  19. Decellularized Extracellular Matrix Derived from Porcine Adipose Tissue as a Xenogeneic Biomaterial for Tissue Engineering

    PubMed Central

    Choi, Young Chan; Choi, Ji Suk; Kim, Beob Soo; Kim, Jae Dong; Yoon, Hwa In

    2012-01-01

    Cells in tissues are surrounded by the extracellular matrix (ECM), a gel-like material of proteins and polysaccharides that are synthesized and secreted by cells. Here we propose that the ECM can be isolated from porcine adipose tissue and holds great promise as a xenogeneic biomaterial for tissue engineering and regenerative medicine. Porcine adipose tissue is easily obtained in large quantities from commonly discarded food waste. Decellularization protocols have been developed for extracting an intact ECM while effectively eliminating xenogeneic epitopes and minimally disrupting the ECM composition. Porcine adipose tissue was defatted by homogenization and centrifugation. It was then decellularized via chemical (1.5 M sodium chloride and 0.5% sodium dodecyl sulfate) and enzymatic treatments (DNase and RNase) with temperature control. After decellularization, immunogenic components such as nucleic acids and α-Gal were significantly reduced. However, abundant ECM components, such as collagen (332.9±12.1 μg/mg ECM dry weight), sulfated glycosaminoglycan (GAG, 85±0.7 μg/mg ECM dry weight), and elastin (152.6±4.5 μg/mg ECM dry weight), were well preserved in the decellularized material. The biochemical and mechanical features of a decellularized ECM supported the adhesion and growth of human cells in vitro. Moreover, the decellularized ECM exhibited biocompatibility, long-term stability, and bioinductivity in vivo. The overall results suggest that the decellularized ECM derived from porcine adipose tissue could be useful as an alternative biomaterial for xenograft tissue engineering. PMID:22559904

  20. Metabolic inflammation in inflammatory bowel disease: crosstalk between adipose tissue and bowel.

    PubMed

    Gonçalves, Pedro; Magro, Fernando; Martel, Fátima

    2015-02-01

    Epidemiological studies show that both the incidence of inflammatory bowel disease (IBD) and the proportion of people with obesity and/or obesity-associated metabolic syndrome increased markedly in developed countries during the past half century. Obesity is also associated with the development of more active IBD and requirement for hospitalization and with a decrease in the time span between diagnosis and surgery. Patients with IBD, especially Crohn's disease, present fat-wrapping or "creeping fat," which corresponds to ectopic adipose tissue extending from the mesenteric attachment and covering the majority of the small and large intestinal surface. Mesenteric adipose tissue in patients with IBD presents several morphological and functional alterations, e.g., it is more infiltrated with immune cells such as macrophages and T cells. All these lines of evidence clearly show an association between obesity, adipose tissue, and functional bowel disorders. In this review, we will show that the mesenteric adipose tissue and creeping fat are not innocent by standers but actively contribute to the intestinal and systemic inflammatory responses in patients with IBD. More specifically, we will review evidence showing that adipose tissue in IBD is associated with major alterations in the secretion of cytokines and adipokines involved in inflammatory process, in adipose tissue mesenchymal stem cells and adipogenesis, and in the interaction between adipose tissue and other intestinal components (immune, lymphatic, neuroendocrine, and intestinal epithelial systems). Collectively, these studies underline the importance of adipose tissue for the identification of novel therapeutic approaches for IBD.

  1. Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults.

    PubMed

    Dordevic, Aimee L; Pendergast, Felicity J; Morgan, Han; Villas-Boas, Silas; Caldow, Marissa K; Larsen, Amy E; Sinclair, Andrew J; Cameron-Smith, David

    2015-07-01

    Adipose tissue is a primary site of meta-inflammation. Diet composition influences adipose tissue metabolism and a single meal can drive an inflammatory response in postprandial period. This study aimed to examine the effect lipid and carbohydrate ingestion compared with a non-caloric placebo on adipose tissue response. Thirty-three healthy adults (age 24.5 ± 3.3 year (mean ± standard deviation (SD)); body mass index (BMI) 24.1 ± 3.2 kg/m2, were randomised into one of three parallel beverage groups; placebo (water), carbohydrate (maltodextrin) or lipid (dairy-cream). Subcutaneous, abdominal adipose tissue biopsies and serum samples were collected prior to (0 h), as well as 2 h and 4 h after consumption of the beverage. Adipose tissue gene expression levels of monocyte chemoattractant protein-1 (MCP-1), interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) increased in all three groups, without an increase in circulating TNF-α. Serum leptin (0.6-fold, p = 0.03) and adipose tissue leptin gene expression levels (0.6-fold, p = 0.001) decreased in the hours following the placebo beverage, but not the nutrient beverages. Despite increased inflammatory cytokine gene expression in adipose tissue with all beverages, suggesting a confounding effect of the repeated biopsy method, differences in metabolic responses of adipose tissue and circulating adipokines to ingestion of lipid and carbohydrate beverages were observed.

  2. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis

    PubMed Central

    Park, Byung Young; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Hong, Yeonhee; Lee, Hee Suk; Park, Eun Kyu; Hahm, Jong Cheon; Kim, Jin Woo; Shin, Soon Shik; Kim, Min-Young; Yoon, Michung

    2015-01-01

    It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS) prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP) activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9), whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors. PMID:26599360

  3. Methyl-ß-cyclodextrin alters adipokine gene expression and glucose metabolism in swine adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine if metabolic stress as induced by methyl-ß-cyclodextrin (MCD) can alter cytokine expression in neonatal swine adipose tissue explants. Subcutaneous adipose tissue explants (100 ± 10 mg) were prepared from 21 day old pigs. Explants were incubated in medium 199 s...

  4. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance

    PubMed Central

    Poher, Anne-Laure; Altirriba, Jordi; Veyrat-Durebex, Christelle; Rohner-Jeanrenaud, Françoise

    2015-01-01

    Presence of brown adipose tissue (BAT), characterized by the expression of the thermogenic uncoupling protein 1 (UCP1), has recently been described in adult humans. UCP1 is expressed in classical brown adipocytes, as well as in “beige cells” in white adipose tissue (WAT). The thermogenic activity of BAT is mainly controlled by the sympathetic nervous system. Endocrine factors, such as fibroblast growth factor 21 (FGF21) and bone morphogenic protein factor-9 (BMP-9), predominantly produced in the liver, were shown to lead to activation of BAT thermogenesis, as well as to “browning” of WAT. This was also observed in response to irisin, a hormone secreted by skeletal muscles. Different approaches were used to delineate the impact of UCP1 on insulin sensitivity. When studied under thermoneutral conditions, UCP1 knockout mice exhibited markedly increased metabolic efficiency due to impaired thermogenesis. The impact of UCP1 deletion on insulin sensitivity in these mice was not reported. Conversely, several studies in both rodents and humans have shown that BAT activation (by cold exposure, β3-agonist treatment, transplantation and others) improves glucose tolerance and insulin sensitivity. Interestingly, similar results were obtained by adipose tissue-specific overexpression of PR-domain-containing 16 (PRDM16) or BMP4 in mice. The mediators of such beneficial effects seem to include FGF21, interleukin-6, BMP8B and prostaglandin D2 synthase. Interestingly, some of these molecules can be secreted by BAT itself, indicating the occurrence of autocrine effects. Stimulation of BAT activity and/or recruitment of UCP1-positive cells are therefore relevant targets for the treatment of obesity/type 2 diabetes in humans. PMID:25688211

  5. Effect of resveratrol and orchidectomy on the vasorelaxing influence of perivascular adipose tissue.

    PubMed

    Boydens, Charlotte; Pauwels, Bart; Van de Voorde, Johan

    2016-04-01

    Perivascular adipose tissue (PVAT) releases several adipo(cyto)kines. Some are vasoactive substances that elicit a net beneficial anticontractile effect. Resveratrol and testosterone are known to modulate adipo(cyto)kine release from adipose tissue and could therefore influence the anticontractile effect of PVAT. In vitro tension measurements were performed using thoracic aorta segments with and without adipose tissue from sham-operated or orchidectomized male Swiss mice. Concentration-response curves to norepinephrine (NOR) were constructed in the presence and absence of resveratrol (10 μM, 15 min) or the relaxant effect of resveratrol (10-100 μM) was investigated after inducing tone with NOR (5 μM). Aortas with PVAT displayed significantly attenuated contractions to NOR compared with aortas without PVAT. In aortas without PVAT, resveratrol (10 μM) significantly decreased NOR responses and elicited concentration-dependent (10-100 µM) relaxations. However, in aortas with adherent PVAT, resveratrol (10 μM) neither decreased NOR responses, nor did resveratrol (10-100 µM) induce arterial relaxations. The anticontractile effect of PVAT was less pronounced in the presence of resveratrol and unaltered by orchidectomy. Orchidectomy did not influence contractions induced by NOR. Orchidectomy does not modulate the anticontractile capacity of PVAT, while resveratrol decreases the vasorelaxing influence of PVAT. The positive effects associated with resveratrol addition are neutralized by the presence of PVAT. This is thought to result from a dual effect of resveratrol: (1) inhibition of the influence of vasodilatory adipo(cyto)kines and (2) a direct relaxant effect on the vascular smooth muscle. Overall, the beneficial relaxing effect of resveratrol is lost in mice thoracic aorta surrounded by PVAT.

  6. Calcium Sensing Receptor (CaSR) activation elevates proinflammatory factor expression in human adipose cells and adipose tissue

    PubMed Central

    Cifuentes, Mariana; Fuentes, Cecilia; Acevedo, Ingrid; Villalobos, Elisa; Hugo, Eric; Ben Jonathan, Nira; Reyes, Marcela

    2013-01-01

    We have previously established that human adipose cells and the human adipose cell line LS14 express the calcium sensing receptor (CaSR) and that its expression is elevated upon exposure to inflammatory cytokines that are typically elevated in obese humans. Research in recent years has established that an important part of the adverse metabolic and cardiovascular consequences of obesity derive from a dysfunction of the tissue, one of the mechanisms being a disordered secretion pattern leading to an excess of proinflammatory cytokines and chemokines. Given the reported association of the CaSR to inflammatory processes in other tissues, we sought to evaluate its role elevating the adipose expression of inflammatory factors. We exposed adipose tissue and in-vitro cultured LS14 preadipocytes and differentiated adipocytes to the calcimimetic cinacalcet and evaluated the expression or production of the proinflammatory cytokines IL6, IL1β and TNFα as well as the chemoattractant factor CCL2. CaSR activation elicited an elevation in the expression of the inflammatory factors, which was in part reverted by SN50, an inhibitor of the inflammatory mediator NFκB. Our observations suggest that CaSR activation elevates cytokine and chemokine production through a signaling pathway involving activation of NFκB nuclear translocation. These findings confirm the relevance of the CaSR in the pathophysiology of obesity-induced adipose tissue dysfunction, with an interesting potential for pharmacological manipulation in the fight against obesity- associated diseases. PMID:22449852

  7. Factors involved in white-to-brown adipose tissue conversion and in thermogenesis: a review.

    PubMed

    Montanari, T; Pošćić, N; Colitti, M

    2017-02-10

    Obesity is the result of energy intake chronically exceeding energy expenditure. Classical treatments against obesity do not provide a satisfactory long-term outcome for the majority of patients. After the demonstration of functional brown adipose tissue in human adults, great effort is being devoted to develop therapies based on the adipose tissue itself, through the conversion of fat-accumulating white adipose tissue into energy-dissipating brown adipose tissue. Anti-obesity treatments that exploit endogenous, pharmacological and nutritional factors to drive such conversion are especially in demand. In the present review, we summarize the current knowledge about the various molecules that can be applied in promoting white-to-brown adipose tissue conversion and energy expenditure and the cellular mechanisms involved.

  8. Zika Attacks Nerves, Muscles, Other Tissues

    MedlinePlus

    ... page: https://medlineplus.gov/news/fullstory_164010.html Zika Attacks Nerves, Muscles, Other Tissues Monkey study may ... 2017 (HealthDay News) -- Scientists have learned where the Zika virus attacks the body in monkeys. In their ...

  9. The role of brown adipose tissue in temperature regulation. [of hibernating and hypothermic mammals

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1973-01-01

    The thermogenetic capacities of brown adipose tissue were studied on marmots, rats and monkeys in response to cold exposure. All experiments indicated that the brown fat produced heat and slowed the cooling of tissues.

  10. Insulin Mediated 14C-Glucose Incorporation Into Adipose Tissue: An Undergraduate Biochemistry Experiment

    ERIC Educational Resources Information Center

    Landman, A. D.; Eskin, N. A. M.

    1975-01-01

    Describes an experiment in which rat adipose tissue samples are exposed to labeled glucose; insulin is added to one sample. Subsequent scintillation counting demonstrates the ability of insulin to facilitate the entry of glucose into the tissue. (MLH)

  11. Decellularized extracellular matrix derived from human adipose tissue as a potential scaffold for allograft tissue engineering.

    PubMed

    Choi, Ji Suk; Kim, Beob Soo; Kim, Jun Young; Kim, Jae Dong; Choi, Young Chan; Yang, Hyun-Jin; Park, Kinam; Lee, Hee Young; Cho, Yong Woo

    2011-06-01

    Decellularized tissues composed of extracellular matrix (ECM) have been clinically used to support the regeneration of various human tissues and organs. Most decellularized tissues so far have been derived from animals or cadavers. Therefore, despite the many advantages of decellularized tissue, there are concerns about the potential for immunogenicity and the possible presence of infectious agents. Herein, we present a biomaterial composed of ECM derived from human adipose tissue, the most prevalent, expendable, and safely harvested tissue in the human body. The ECM was extracted by successive physical, chemical, and enzymatic treatments of human adipose tissue isolated by liposuction. Cellular components including nucleic acids were effectively removed without significant disruption of the morphology or structure of the ECM. Major ECM components were quantified, including acid/pepsin-soluble collagen, sulfated glycosaminoglycan (GAG), and soluble elastin. In an in vivo experiment using mice, the decellularized ECM graft exhibited good compatibility to surrounding tissues. Overall results suggest that the decellularized ECM containing biological and chemical cues of native human ECM could be an ideal scaffold material not only for autologous but also for allograft tissue engineering.

  12. Effects of two supplementation levels of linseed combined with CLA or tallow on meat quality traits and fatty acid profile of adipose and different muscle tissues in slaughter pigs.

    PubMed

    Bee, G; Jacot, S; Guex, G; Biolley, C

    2008-05-01

    Dietary linseed supply efficiently elevates the linolenic acid concentration of pork. The main problem of increasing the n-3 fatty acid tissue levels arises from a higher susceptibility to lipid oxidation. Increasing the saturation level of tissue lipids by the dietary inclusion of conjugated linoleic acids (CLA) or tallow might prevent oxidation. Thus, the aim of the study was to evaluate the impact of dietary CLA or tallow supplementation combined with extruded linseed on the growth performance, carcass characteristics and fatty acid profile of muscles (longissimus, semimembranosus, biceps femoris) and subcutaneous fat (SF). The enzyme activity of the de novo lipogenesis and stearoyl-CoA desaturase in the SF was also assessed. From 18 to 104 kg BW, 32 Swiss Large White barrows were fed a diet supplemented with either: (1) 2% linseed (L2); (2) 3% linseed (L3); (3) 2% linseed + 1% CLA (L2-C) or (4) 2% linseed + 1% tallow (L2-T). The linolenic and eicosatrienoic acid concentrations were higher (P < 0.01) and the ∑n-6/∑n-3 ratio was lower (P < 0.01) in all tissues of L3 than L2 and L2-T barrows. Only in the SF the docosapentaenoic acid concentration was increased (P < 0.01) in L3 barrows. Compared with the other three diets, feeding the L2-C diets increased (P < 0.01) the amount of myristic, palmitic, stearic and palmitoleic acid at the expense of the oleic and eicosenoic acid content in the intramuscular and SF lipids. Except for the lower (P < 0.05) eicosadienoic acid concentration in the muscles, feeding the L2-C treatment resulted in similar polyunsaturated fatty acid concentrations and ∑n-6/∑n-3 ratio than feeding L2 or L2-T diets. Both the c9,t11- and t10,c12-CLA isomers found in the CLA-supplemented diet were also detected in the tissues, but the c9,t11-isomer was more abundant than the t10,c12-isomer. De novo lipogenesis was not (P > 0.05) affected by the dietary fats, whereas Δ9-desaturase activity was depressed (P < 0.05) by CLA inclusion (L2-C

  13. Types of muscle tissue (image)

    MedlinePlus

    ... appear striated, and are under involuntary control. Smooth muscle fibers are located in walls of hollow visceral organs, except the heart, appear spindle-shaped, and are also under involuntary control. Skeletal ...

  14. Adipose Tissue-Derived Stem Cells for Myocardial Regeneration

    PubMed Central

    Joo, Hyung Joon; Kim, Jong-Ho

    2017-01-01

    Over the past decade, stem cell therapy has been extensively studied for clinical application for heart diseases. Among various stem cells, adipose tissue-derived stem cell (ADSC) is still an attractive stem cell resource due to its abundance and easy accessibility. In vitro studies showed the multipotent differentiation potentials of ADSC, even differentiation into cardiomyocytes. Many pre-clinical animal studies have also demonstrated promising therapeutic results of ADSC. Furthermore, there were several clinical trials showing the positive results in acute myocardial infarction using ADSC. The present article covers the brief introduction, the suggested therapeutic mechanisms, application methods including cell dose and delivery, and human clinical trials of ADSC for myocardial regeneration. PMID:28382066

  15. Brown adipose tissue in humans: therapeutic potential to combat obesity.

    PubMed

    Carey, Andrew L; Kingwell, Bronwyn A

    2013-10-01

    Harnessing the considerable capacity of brown adipose tissue (BAT) to consume energy was first proposed as a potential target to control obesity nearly 40years ago. The plausibility of this approach was, however, questioned due to the prevailing view that BAT was either not present or not functional in adult humans. Recent definitive identification of functional BAT in adult humans as well as a number of important advances in the understanding of BAT biology has reignited interest in BAT as an anti-obesity target. Proof-of-concept evidence demonstrating drug-induced BAT activation provides an important foundation for development of targeted pharmacological approaches with clinical application. This review considers evidence from both human and relevant animal studies to determine whether harnessing BAT for the treatment of obesity via pharmacological intervention is a realistic goal.

  16. Brown adipose tissue as a therapeutic target for human obesity.

    PubMed

    Saito, Masayuki

    2013-12-01

    Brown adipose tissue (BAT) is the major site of sympathetically activated adaptive thermogenesis during cold exposure and after spontaneous hyperphagia, thereby controlling whole-body energy expenditure and body fat. Recent radionuclide studies have demonstrated the existence of metabolically active BAT in healthy adult humans. Human BAT is activated by acute cold exposure, being positively correlated to cold-induced increases in energy expenditure. The metabolic activity of BAT is lower in older and obese individuals. The inverse relationship between the BAT activity and body fatness suggests that BAT, because of its energy dissipating activity, is protective against body fat accumulation. In fact, either repeated cold exposure or daily ingestion of some food ingredients acting on transient receptor potential channels recruited BAT in association with increased energy expenditure and decreased body fat even in individuals with low BAT activities before the treatment. Thus, BAT is a promising therapeutic target for combating human obesity and related metabolic disorders.

  17. Human brown adipose tissue: regulation and anti-obesity potential.

    PubMed

    Saito, Masayuki

    2014-01-01

    Brown adipose tissue (BAT) is the site of sympathetically activated adaptive thermognenesis during cold exposure and after hyperphagia, thereby controlling whole-body energy expenditure (EE) and body fat. Radionuclide imaging studies have demonstrated that adult humans have metabolically active BAT composed of mainly beige/brite adipocytes, recently identified brown-like adipocytes. The inverse relationship between the BAT activity and body fatness suggests that BAT is, because of its energy dissipating activity, protective against body fat accumulation in humans as it is in small rodents. In fact, either repeated cold exposure or daily ingestion of some food ingredients acting on transient receptor potential channels recruits BAT in parallel with increased EE and decreased body fat. In addition to the sympathetic nervous system, several endocrine factors are also shown to recruit BAT. Thus, BAT is a promising therapeutic target for combating human obesity and related metabolic disorders.

  18. Activation of brown adipose tissue mitochondrial GDP binding sites

    SciTech Connect

    Swick, A.G.

    1987-01-01

    The primary function of brown adipose tissue (BAT) is heat production. This ability is attributed to the existence of a unique inner mitochondrial membrane protein termed the uncoupling protein or thermogenin. This protein is permeable to H+ and thus allows respiration (and therefore thermogenesis) to proceed at a rapid rate, independent of ADP phosphorylation. Proton conductance can be inhibited by the binding of purine nucleotides to the uncoupling protein. The binding of (/sup 3/H)-GDP to BAT mitochondria is frequently used as a measure of BAT thermogenic activity. Rats fed a diet that was low but adequate in protein exhibited a decrease in feed efficiency. In addition, BAT thermogenesis was activated as indicated by an elevation in the level of GDP binding to BAT mitochondria. This phenomena occurred in older rats and persisted over time.

  19. Estradiol Regulates Brown Adipose Tissue Thermogenesis via Hypothalamic AMPK

    PubMed Central

    Martínez de Morentin, Pablo B.; González-García, Ismael; Martins, Luís; Lage, Ricardo; Fernández-Mallo, Diana; Martínez-Sánchez, Noelia; Ruíz-Pino, Francisco; Liu, Ji; Morgan, Donald A.; Pinilla, Leonor; Gallego, Rosalía; Saha, Asish K.; Kalsbeek, Andries; Fliers, Eric; Bisschop, Peter H.; Diéguez, Carlos; Nogueiras, Rubén; Rahmouni, Kamal; Tena-Sempere, Manuel; López, Miguel

    2014-01-01

    Summary Estrogens play a major role in the modulation of energy balance through central and peripheral actions. Here, we demonstrate that central action of estradiol (E2) inhibits AMP-activated protein kinase (AMPK) through estrogen receptor alpha (ERα) selectively in the ventromedial nucleus of the hypothalamus (VMH), leading to activation of thermogenesis in brown adipose tissue (BAT) through the sympathetic nervous system (SNS) in a feeding-independent manner. Genetic activation of AMPK in the VMH prevented E2-induced increase in BAT-mediated thermogenesis and weight loss. Notably, fluctuations in E2 levels during estrous cycle also modulate this integrated physiological network. Together, these findings demonstrate that E2 regulation of the VMH AMPK-SNS-BAT axis is an important determinant of energy balance and suggest that dysregulation in this axis may account for the common changes in energy homeostasis and obesity linked to dysfunction of the female gonadal axis. PMID:24856932

  20. Protein turnover in adipose tissue from fasted or diabetic rats

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Ost, Alan H.; Coffman, Julia

    1986-01-01

    Protein synthesis and degradation in vitro were compared in epididymal fat pads from animals deprived of food for 48 h or treated 6 or 12 days prior with streptozotocin to induce diabetes. Although both fasting and diabetes led to depressed (-24 to -57 percent) protein synthesis, the diminution in protein degradation (-63 to -72 percent) was even greater, so that net in vitro protein balance improved dramatically. Insulin failed to inhibit protein degradation in fat pads of these rats as it does for fed animals. Although insulin stimulated protein synthesis in fat pads of fasted and 12 day diabetic rats, the absolute change was much smaller than that seen in the fed state. The inhibition of protein degradation by leucine also seems to be less in fasted animals, probably because leucine catabolism is slower in fasting. These results show that fasting and diabetes may improve protein balance in adipose tissue but diminish the regulatory effects of insulin.

  1. [Brown adipose tissue: the body's own weapon against obesity?].

    PubMed

    Boon, Mariëtte R; Bakker, Leontine E H; Meinders, A Edo; van Marken Lichtenbelt, Wouter; Rensen, Patrick C N; Jazet, Ingrid M

    2013-01-01

    Brown adipose tissue (BAT) dissipates energy stored in triglycerides as heat via the uncoupling protein UCP1. It has recently been discovered that BAT is present and active in adults. BAT is situated predominantly around the aorta and in the supraclavicular area. BAT volume and activity are lower in individuals who are obese. This suggests that BAT significantly contributes to total energy expenditure. Several pathological conditions that are accompanied by activation of BAT, such as hyperthyroidism and phaeochromocytoma, result in the increased expenditure of energy and in weight loss. Various ways in which BAT can be manipulated to increase the expenditure of energy have been identified, e.g. exposure to cold, the use of so-called uncoupling agents or the administration of the hormone irisin. The activation of BAT could potentially be used to induce weight loss.

  2. Optical measurement of adipose tissue thickness and comparison with ultrasound, magnetic resonance imging, and callipers

    NASA Astrophysics Data System (ADS)

    Geraskin, Dmitri; Boeth, Heide; Kohl-Bareis, Matthias

    2009-07-01

    Near-infrared spectroscopy is used to quantify the subcutaneous adipose tissue thickness (ATT) over five muscle groups (vastus medialis, vastus lateralis, gastrocnemius, ventral forearm and biceps brachii muscle) of healthy volunteers (n=20). The optical lipid signal (OLS) was obtained from the second derivative of broad band attenuation spectra and the lipid absorption peak (λ=930 nm). Ultrasound and MR imaging as well as mechanical calliper readings were taken as reference methods. The data show that the OLS is a good predictor for ATT (<16 mm) with absolute and relative errors of <0.8 mm and <24%, respectively. The optical method compares favourably with calliper reading. The finding of a non-linear relationship of optical signal vs. ultrasound is explained by a theoretical two-layer model based on the diffusion approximation for the transport of photons. The crosstalk between the OLS and tissue hemoglobin concentration changes during an incremental cycling exercise was found to be small, indicating the robustness of OLS. Furthermore, the effect of ATT on spatially-resolved spectroscopy measurements is shown to decrease the calculated muscle hemoglobin concentration and to increase oxygen saturation.

  3. The Use of Silk as a Scaffold for Mature, Sustainable Unilocular Adipose 3D Tissue Engineered Systems.

    PubMed

    Abbott, Rosalyn D; Wang, Rebecca Y; Reagan, Michaela R; Chen, Ying; Borowsky, Francis E; Zieba, Adam; Marra, Kacey G; Rubin, J Peter; Ghobrial, Irene M; Kaplan, David L

    2016-07-01

    There is a critical need for monitoring physiologically relevant, sustainable, human adipose tissues in vitro to gain new insights into metabolic diseases. To support long-term culture, a 3D silk scaffold assisted culture system is developed that maintains mature unilocular adipocytes ex vivo in coculture with preadipocytes, endothelial cells, and smooth muscle cells obtained from small volumes of liquefied adipose samples. Without the silk scaffold, adipose tissue explants cannot be sustained in long-term culture (3 months) due to their fragility. Adjustments to media components are used to tune lipid metabolism and proliferation, in addition to responsiveness to an inflammatory stimulus. Interestingly, patient specific responses to TNFα stimulation are observed, providing a proof-of-concept translational technique for patient specific disease modeling in the future. In summary, this novel 3D scaffold assisted approach is required for establishing physiologically relevant, sustainable, human adipose tissue systems from small volumes of lipoaspirate, making this methodology of great value to studies of metabolism, adipokine-driven diseases, and other diseases where the roles of adipocytes are only now becoming uncovered.

  4. Insulin action in adipose tissue in type 1 diabetes

    PubMed Central

    Arrieta-Blanco, Francisco; Botella-Carretero, Jose Ignacio; Iglesias, Pedro; Balsa, José Antonio; Zamarrón, Isabel; De la Puerta, Cristina; Arrieta, Juan José; Ramos, Francisco; Vázquez, Clotilde; Rovira, Adela

    2011-01-01

    Background: Insulin action has been reported to be normal in type 1 diabetic patients. However, some studies have reported an insulin resistance state in these patients. The aim of this study was to investigate insulin resistance in a group of type 1 diabetic patients. We studied the insulin action in adipose tissue and analyzed the effects of duration of disease, body mass index (BMI), and glycosylated hemoglobin on insulin action at the receptor and postreceptor levels in adipocytes. Methods: Nine female type 1 diabetic patients with different durations of disease and eight nondiabetic female patients of comparable age and BMI were studied. 125I-insulin binding and U-[14C]-D-glucose transport was measured in a sample of subcutaneous gluteus adipose tissue obtained by open surgical biopsy from each subject. Results: The duration of disease was negatively correlated with both 125I-insulin binding capacity (r = −0.70, P < 0.05) and basal and maximum insulin-stimulated glucose transport (r = −0.87, P < 0.01, and r = −0.88, P < 0.01, respectively). Maximum specific 125I-insulin binding to the receptors in adipocytes was higher in the group of patients with a shorter duration of disease (P < 0.01). Basal and maximum insulin-stimulated glucose transport was significantly higher in the group with less than 5 years of disease (P < 0.01). No correlation was found between BMI and insulin action. Conclusion: Female type 1 diabetic patients have normal insulin action. There is a high glucose uptake in the early phase of the disease, although a longer duration of disease appears to be a contributing factor to a decrease in insulin action in these patients, and involving both receptor and postreceptor mechanisms. PMID:21475629

  5. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

    PubMed

    Carrasco-Benso, Maria P; Rivero-Gutierrez, Belen; Lopez-Minguez, Jesus; Anzola, Andrea; Diez-Noguera, Antoni; Madrid, Juan A; Lujan, Juan A; Martínez-Augustin, Olga; Scheer, Frank A J L; Garaulet, Marta

    2016-09-01

    In humans, insulin sensitivity varies according to time of day, with decreased values in the evening and at night. Mechanisms responsible for the diurnal variation in insulin sensitivity are unclear. We investigated whether human adipose tissue (AT) expresses intrinsic circadian rhythms in insulin sensitivity that could contribute to this phenomenon. Subcutaneous and visceral AT biopsies were obtained from extremely obese participants (body mass index, 41.8 ± 6.3 kg/m(2); 46 ± 11 y) during gastric-bypass surgery. To assess the rhythm in insulin signaling, AKT phosphorylation was determined every 4 h over 24 h in vitro in response to different insulin concentrations (0, 1, 10, and 100 nM). Data revealed that subcutaneous AT exhibited robust circadian rhythms in insulin signaling (P < 0.00001). Insulin sensitivity reached its maximum (acrophase) around noon, being 54% higher than during midnight (P = 0.009). The amplitude of the rhythm was positively correlated with in vivo sleep duration (r = 0.53; P = 0.023) and negatively correlated with in vivo bedtime (r = -0.54; P = 0.020). No circadian rhythms were detected in visceral AT (P = 0.643). Here, we demonstrate the relevance of the time of the day for how sensitive AT is to the effects of insulin. Subcutaneous AT shows an endogenous circadian rhythm in insulin sensitivity that could provide an underlying mechanism for the daily rhythm in systemic insulin sensitivity.-Carrasco-Benso, M. P., Rivero-Gutierrez, B., Lopez-Minguez, J., Anzola, A., Diez-Noguera, A., Madrid, J. A., Lujan, J. A., Martínez-Augustin, O., Scheer, F. A. J. L., Garaulet, M. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

  6. Adipose tissue gene expression and metabolic health of obese adults

    PubMed Central

    Das, Swapan Kumar; Ma, Lijun; Sharma, Neeraj

    2014-01-01

    Obese subjects with a similar body mass index (BMI) exhibit substantial heterogeneity in gluco- and cardio-metabolic heath phenotypes. However, defining genes that underlie the heterogeneity of metabolic features among obese individuals and determining metabolically healthy and unhealthy phenotypes remain challenging. We conducted unsupervised hierarchical clustering analysis of subcutaneous adipose tissue transcripts from 30 obese men and women ≥40 years old. Despite similar BMIs in all subjects, we found two distinct subgroups, one metabolically healthy (Group 1) and one metabolically unhealthy (Group 2). Subjects in Group 2 showed significantly higher total cholesterol (p=0.005), LDL cholesterol (p=0.006), 2h-Insulin during OGTT (p=0.015) and lower insulin sensitivity (SI, p=0.029) compared to Group 1. We identified significant up-regulation of 141 genes (e.g. MMP9 and SPP1) and down-regulation of 17 genes (e.g. NDRG4 and GINS3) in group 2 subjects. Intriguingly, these differentially expressed transcripts were enriched for genes involved in cardiovascular disease-related processes (p=2.81×10−11–3.74×10−02) and pathways involved in immune and inflammatory response (p=8.32×10−5–0.04). Two down-regulated genes, NDRG4 and GINS3, have been located in a genomic interval associated with cardiac repolarization in published GWASs and zebra fish knockout models. Our study provides evidence that perturbations in the adipose tissue gene expression network are important in defining metabolic health in obese subjects. PMID:25520251

  7. Rorα deficiency and decreased adiposity are associated with induction of thermogenic gene expression in subcutaneous white adipose and brown adipose tissue.

    PubMed

    Lau, Patrick; Tuong, Zewen K; Wang, Shu-Ching; Fitzsimmons, Rebecca L; Goode, Joel M; Thomas, Gethin P; Cowin, Gary J; Pearen, Michael A; Mardon, Karine; Stow, Jennifer L; Muscat, George E O

    2015-01-15

    The Rar-related orphan receptor-α (Rorα) is a nuclear receptor that regulates adiposity and is a potential regulator of energy homeostasis. We have demonstrated that the Rorα-deficient staggerer (sg/sg) mice display a lean and obesity-resistant phenotype. Adaptive Ucp1-dependent thermogenesis in beige/brite and brown adipose tissue serves as a mechanism to increase energy expenditure and resist obesity. DEXA and MRI analysis demonstrated significantly decreased total fat mass and fat/lean mass tissue ratio in male chow-fed sg/sg mice relative to wt mice. In addition, we observed increased Ucp1 expression in brown adipose and subcutaneous white adipose tissue but not in visceral adipose tissue from Rorα-deficient mice. Moreover, this was associated with significant increases in the expression of the mRNAs encoding the thermogenic genes (i.e., markers of brown and beige adipose) Pparα, Errα, Dio2, Acot11/Bfit, Cpt1β, and Cidea in the subcutaneous adipose in the sg/sg relative to WT mice. These changes in thermogenic gene expression involved the significantly increased expression of the (cell-fate controlling) histone-lysine N-methyltransferase 1 (Ehmt1), which stabilizes the Prdm16 transcriptional complex. Moreover, primary brown adipocytes from sg/sg mice displayed a higher metabolic rate, and further analysis was consistent with increased uncoupling. Finally, core body temperature analysis and infrared thermography demonstrated that the sg/sg mice maintained greater thermal control and cold tolerance relative to the WT littermates. We suggest that enhanced Ucp1 and thermogenic gene expression/activity may be an important contributor to the lean, obesity-resistant phenotype in Rorα-deficient mice.

  8. Macrophage and adipocyte IGF1 maintain adipose tissue homeostasis during metabolic stresses

    PubMed Central

    Chang, Hye Rim; Kim, Hae Jin; Xu, Xiaoyuan; Ferrante, Anthony W.

    2015-01-01

    Objective IGF1 regulates differentiation and growth of tissues and reduces stress and injury. IGF1 also in a tissue specific manner modulates the differentiation and lipid storage capacity of adipocytes in vitro, but its roles in adipose tissue development and response to stress are not known. Methods To study IGF1 in vivo, we identified the cellular sources of adipose tissue Igf1 expression and generated mice with targeted deletion in adipocytes and macrophages. We studied the effects of adipocyte and macrophage deficiency of IGF1 on adipose tissue development, and the response to a chronic (high fat feeding) and acute (cold challenge) stress. Results The expression of Igf1 by adipose tissue is derived from multiple cell types including adipocytes and macrophages. In lean animals, adipocytes are the primary source of IGF1 but in obesity expression by adipocytes is reduced and by macrophages increased, so as to maintain overall adipose tissue Igf1 expression. Genetic deletion studies reveal that adipocyte-derived IGF1 regulates perigonadal but not subcutaneous adipose tissue mass during high fat feeding and the development of obesity. Conversely, macrophage-derived IGF1 acutely modulates PGAT (PGAT) mass during thermogenic challenges. Conclusions Local IGF1 is not required in lean adipose tissue development but required to maintain homeostasis during both chronic and acute metabolic stresses. PMID:26663512

  9. Role of developmental transcription factors in white, brown and beige adipose tissues.

    PubMed

    Hilton, Catriona; Karpe, Fredrik; Pinnick, Katherine E

    2015-05-01

    In this review we discuss the role of developmental transcription factors in adipose tissue biology with a focus on how these developmental genes may contribute to regional variation in adipose tissue distribution and function. Regional, depot-specific, differences in lipid handling and signalling (lipolysis, lipid storage and adipokine/lipokine signalling) are important determinants of metabolic health. At a cellular level, preadipocytes removed from their original depot and cultured in vitro retain depot-specific functional properties, implying that these are intrinsic to the cells and not a function of their environment in situ. High throughput screening has identified a number of developmental transcription factors involved in embryological development, including members of the Homeobox and T-Box gene families, that are strongly differentially expressed between regional white adipose tissue depots and also between brown and white adipose tissue. However, the significance of depot-specific developmental signatures remains unclear. Developmental transcription factors determine body patterning during embryogenesis. The divergent developmental origins of regional adipose tissue depots may explain their differing functional characteristics. There is evidence from human genetics that developmental genes determine adipose tissue distribution: in GWAS studies a number of developmental genes have been identified as being correlated with anthropometric measures of adiposity and fat distribution. Additionally, compelling functional studies have recently implicated developmental genes in both white adipogenesis and the so-called 'browning' of white adipose tissue. Understanding the genetic and developmental pathways in adipose tissue may help uncover novel ways to intervene with the function of adipose tissue in order to promote health.

  10. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue

    PubMed Central

    2012-01-01

    Background Periprostatic (PP) adipose tissue surrounds the prostate, an organ with a high predisposition to become malignant. Frequently, growing prostatic tumor cells extend beyond the prostatic organ towards this fat depot. This study aimed to determine the genome-wide expression of genes in PP adipose tissue in obesity/overweight (OB/OW) and prostate cancer patients. Methods Differentially expressed genes in human PP adipose tissue were identified using microarrays. Analyses were conducted according to the donors' body mass index characteristics (OB/OW versus lean) and prostate disease (extra prostatic cancer versus organ confined prostate cancer versus benign prostatic hyperplasia). Selected genes with altered expression were validated by real-time PCR. Ingenuity Pathway Analysis (IPA) was used to investigate gene ontology, canonical pathways and functional networks. Results In the PP adipose tissue of OB/OW subjects, we found altered expression of genes encoding molecules involved in adipogenic/anti-lipolytic, proliferative/anti-apoptotic, and mild immunoinflammatory processes (for example, FADS1, down-regulated, and LEP and ANGPT1, both up-regulated). Conversely, in the PP adipose tissue of subjects with prostate cancer, altered genes were related to adipose tissue cellular activity (increased cell proliferation/differentiation, cell cycle activation and anti-apoptosis), whereas a downward impact on immunity and inflammation was also observed, mostly related to the complement (down-regulation of CFH). Interestingly, we found that the microRNA MIRLET7A2 was overexpressed in the PP adipose tissue of prostate cancer patients. Conclusions Obesity and excess adiposity modified the expression of PP adipose tissue genes to ultimately foster fat mass growth. In patients with prostate cancer the expression profile of PP adipose tissue accounted for hypercellularity and reduced immunosurveillance. Both findings may be liable to promote a favorable environment for

  11. The Use of Adipose Tissue-Derived Progenitors in Bone Tissue Engineering - a Review

    PubMed Central

    Bhattacharya, Indranil; Ghayor, Chafik; Weber, Franz E.

    2016-01-01

    2500 years ago, Hippocrates realized that bone can heal without scaring. The natural healing potential of bone is, however, restricted to small defects. Extended bone defects caused by trauma or during tumor resections still pose a huge problem in orthopedics and cranio-maxillofacial surgery. Bone tissue engineering strategies using stem cells, growth factors, and scaffolds could overcome the problems with the treatment of extended bone defects. In this review, we give a short overview on bone tissue engineering with emphasis on the use of adipose tissue-derived stem cells and small molecules. PMID:27781021

  12. Automatic Segmentation and Quantification of White and Brown Adipose Tissues from PET/CT Scans.

    PubMed

    Hussein, Sarfaraz; Green, Aileen; Watane, Arjun; Reiter, David; Chen, Xinjian; Papadakis, Georgios Z; Wood, Bradford; Cypess, Aaron; Osman, Medhat; Bagci, Ulas

    2016-12-06

    In this paper, we investigate the automatic detection of white and brown adipose tissues using Positron Emission Tomography/ Computed Tomography (PET/CT) scans, and develop methods for the quantification of these tissues at the whole-body and body-region levels. We propose a patient-specific automatic adiposity analysis system with two modules. In the first module, we detect white adipose tissue (WAT) and its two sub-types from CT scans: Visceral Adipose Tissue (VAT) and Subcutaneous Adipose Tissue (SAT). This process relies conventionally on manual or semi-automated segmentation, leading to inefficient solutions. Our novel framework addresses this challenge by proposing an unsupervised learning method to separate VAT from SAT in the abdominal region for the clinical quantification of central obesity. This step is followed by a context driven label fusion algorithm through sparse 3D Conditional Random Fields (CRF) for volumetric adiposity analysis. In the second module, we automatically detect, segment, and quantify brown adipose tissue (BAT) using PET scans because unlike WAT, BAT is metabolically active. After identifying BAT regions using PET, we perform a co-segmentation procedure utilizing asymmetric complementary information from PET and CT. Finally, we present a new probabilistic distance metric for differentiating BAT from non-BAT regions. Both modules are integrated via an automatic body-region detection unit based on one-shot learning. Experimental evaluations conducted on 151 PET/CT scans achieve state-of-the-art performances in both central obesity as well as brown adiposity quantification.

  13. Adiposity attenuates muscle quality and the adaptive response to resistance exercise in non-obese, healthy adults

    PubMed Central

    Peterson, MD; Liu, D; Gordish-Dressman, H; Hubal, MJ; Pistilli, E; Angelopoulos, TJ; Clarkson, PM; Moyna, NM; Pescatello, LS; Seip, RL; Visich, PS; Zoeller, RF; Thompson, PD; Devaney, JM; Hoffman, EP; Gordon, PM

    2014-01-01

    Background Emerging data have revealed a negative association between adiposity and muscle quality (MQ). There is a lack of research to examine this interaction among young, healthy individuals, and to evaluate the contribution of adiposity to adaptation after resistance exercise (RE). Objective The purpose of this investigation was to examine the influence of subcutaneous adipose tissue (SAT) on muscle function among non-obese individuals before and after RE. Design Analyses included 634 non-obese (body mass index < 30 kg m−2) subjects (253 males, 381 females; age = 23.3±5.2 years). SAT and muscle mass (magnetic resonance imaging-derived SAT and biceps muscle volume), isometric and dynamic biceps strength, and MQ (strength/muscle volume), were analyzed at baseline and after 12 weeks of unilateral RE. Results At baseline, SAT was independently associated with lower MQ for males (β = −0.55; P < 0.01) and females (β = −0.45; P < 0.01), controlling for body mass and age. Adaptation to RE revealed a significant negative association between SAT and changes for strength capacity (β = −0.13; p − 0.03) and MQ (β = −0.14; P < 0.01) among males. No attenuation was identified among females. Post-intervention SAT remained a negative predictor of MQ for males and females (β = − 0.47; P < 0.01). Conclusions The findings reveal that SAT is a negative predictor of MQ among non-obese, healthy adults, and that after 12 weeks of progressive RE this association was not ameliorated. Data suggest that SAT exerts a weak, negative influence on the adaptive response to strength and MQ among males. PMID:21139562

  14. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    PubMed Central

    He, Yunfan; Lu, Feng

    2016-01-01

    Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells. PMID:26977158

  15. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  16. Essential role of CD11a in CD8+ T-cell accumulation and activation in adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    T-cells, particularly CD8+ T-cells, are major participants in obesity-linked adipose tissue inflammation. We examined the mechanisms of CD8+ T-cell accumulation and activation in adipose tissue and the role of CD11a, a beta2 integrin. CD8+ T-cells in adipose tissue of obese mice showed activated phe...

  17. Macrophages Undergo M1-to-M2 Transition in Adipose Tissue Regeneration in a Rat Tissue Engineering Model.

    PubMed

    Li, Zhijin; Xu, Fangfang; Wang, Zhifa; Dai, Taiqiang; Ma, Chao; Liu, Bin; Liu, Yanpu

    2016-10-01

    Macrophages are involved in the full processes of tissue healing or regeneration and play an important role in the regeneration of a variety of tissues. Although recent evidence suggests the role of different macrophage phenotypes in adipose tissue expansion, metabolism, and remodeling, the spectrum of macrophage phenotype in the adipose tissue engineering field remains unknown. The present study established a rat model of adipose tissue regeneration using a tissue engineering chamber. Macrophage phenotypes were assessed during the regenerative process in the model. Neo-adipose tissue was generated 6 weeks after implantation. Macrophages were obvious in the chamber constructs 3 days after implantation, peaked at day 7, and significantly decreased thereafter. At day 3, macrophages were predominantly M1 macrophages (CCR7+), and there were few M2 macrophages (CD206+). At day 7, the percentage of M2 macrophages significantly increased and remained stable at day 14. M2 macrophages became the predominant macrophage population at 42 days. Enzyme-linked immunosorbent assay demonstrated transition of cytokines from pro-inflammatory to anti-inflammatory, which was consistent with the transition of macrophage phenotype from M1 to M2. These results showed distinct transition of macrophage phenotypes from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 in adipose tissue regeneration in our tissue engineering model. This study provides new insight into macrophage phenotype transition in the regeneration of adipose tissue.

  18. Polycaprolactone nanofibrous mesh reduces foreign body reaction and induces adipose flap expansion in tissue engineering chamber

    PubMed Central

    Luo, Lin; He, Yunfan; Chang, Qiang; Xie, Gan; Zhan, Weiqing; Wang, Xuecen; Zhou, Tao; Xing, Malcolm; Lu, Feng

    2016-01-01

    Tissue engineering chamber technique can be used to generate engineered adipose tissue, showing the potential for the reconstruction of soft tissue defects. However, the consequent foreign body reaction induced by the exogenous chamber implantation causes thick capsule formation on the surface of the adipose flap following capsule contracture, which may limit the internal tissue expansion. The nanotopographical property and architecture of nanofibrous scaffold may serve as a promising method for minimizing the foreign body reaction. Accordingly, electrospinning porous polycaprolactone (PCL) nanofibrous mesh, a biocompatible synthetic polymer, was attached to the internal surface of the chamber for the reducing local foreign body reaction. Adipose flap volume, level of inflammation, collagen quantification, capsule thickness, and adipose tissue-specific gene expression in chamber after implantation were evaluated at different time points. The in vivo study revealed that the engineered adipose flaps in the PCL group had a structure similar to that in the controls and normal adipose tissue structure but with a larger flap volume. Interleukin (IL)-1β, IL-6, and transforming growth factor-β expression decreased significantly in the PCL group compared with the control. Moreover, the control group had much more collagen deposition and thicker capsule than that observed in the PCL group. These results indicate that the unique nanotopographical effect of electrospinning PCL nanofiber can reduce foreign body reaction in a tissue engineering chamber, which maybe a promising new method for generating a larger volume of mature, vascularized, and stable adipose tissue. PMID:27980405

  19. Adipose Derived-Mesenchymal Stem Cells Viability and Differentiating Features for Orthopaedic Reparative Applications: Banking of Adipose Tissue

    PubMed Central

    Alotto, Daniela; Belisario, Dimas Carolina; Casarin, Stefania; Fumagalli, Mara; Cambieri, Irene; Piana, Raimondo; Stella, Maurizio; Ferracini, Riccardo; Castagnoli, Carlotta

    2016-01-01

    Osteoarthritis is characterized by loss of articular cartilage also due to reduced chondrogenic activity of mesenchymal stem cells (MSCs) from patients. Adipose tissue is an attractive source of MSCs (ATD-MSCs), representing an effective tool for reparative medicine, particularly for treatment of osteoarthritis, due to their chondrogenic and osteogenic differentiation capability. The treatment of symptomatic knee arthritis with ATD-MSCs proved effective with a single infusion, but multiple infusions could be also more efficacious. Here we studied some crucial aspects of adipose tissue banking procedures, evaluating ATD-MSCs viability, and differentiation capability after cryopreservation, to guarantee the quality of the tissue for multiple infusions. We reported that the presence of local anesthetic during lipoaspiration negatively affects cell viability of cryopreserved adipose tissue and cell growth of ATD-MSCs in culture. We observed that DMSO guarantees a faster growth of ATD-MSCs in culture than trehalose. At last, ATD-MSCs derived from fresh and cryopreserved samples at −80°C and −196°C showed viability and differentiation ability comparable to fresh samples. These data indicate that cryopreservation of adipose tissue at −80°C and −196°C is equivalent and preserves the content of ATD-MSCs in Stromal Vascular Fraction (SVF), guaranteeing the differentiation ability of ATD-MSCs. PMID:28018432

  20. MicroRNA-133 Controls Brown Adipose Determination in Skeletal Muscle Satellite Cells by Targeting Prdm16

    PubMed Central

    Yin, Hang; Pasut, Alessandra; Soleimani, Vahab D.; Bentzinger, C. Florian; Antoun, Ghadi; Thorn, Stephanie; Seale, Patrick; Fernando, Pasan; van IJcken, Wilfred; Grosveld, Frank; Dekemp, Robert A.; Boushel, Robert; Harper, Mary-Ellen; Rudnicki, Michael A.

    2013-01-01

    SUMMARY Brown adipose tissue (BAT) is an energy-dispensing thermogenic tissue that plays an important role in balancing energy metabolism. Lineage-tracing experiments indicate that brown adipocytes are derived from myogenic progenitors during embryonic development. However, adult skeletal muscle stem cells (satellite cells) have long been considered uniformly determined toward the myogenic lineage. Here, we report that adult satellite cells give rise to brown adipocytes and that microRNA-133 regulates the choice between myogenic and brown adipose determination by targeting the 3′UTR of Prdm16. Antagonism of microRNA-133 during muscle regeneration increases uncoupled respiration, glucose uptake, and thermogenesis in local treated muscle and augments whole-body energy expenditure, improves glucose tolerance, and impedes the development of diet-induced obesity. Finally, we demonstrate that miR-133 levels are downregulated in mice exposed to cold, resulting in de novo generation of satellite cell-derived brown adipocytes. Therefore, microRNA-133 represents an important therapeutic target for the treatment of obesity. PMID:23395168

  1. Impact of holmium fibre laser radiation (λ = 2.1 μm) on the spinal cord dura mater and adipose tissue

    SciTech Connect

    Filatova, S A; Kamynin, V A; Ryabova, A V; Loshchenov, V B; Tsvetkov, V B; Kurkov, A S; Zelenkov, P V; Zolotovskii, I O

    2015-08-31

    The impact of holmium fibre laser radiation on the samples of biologic tissues (dura mater of spinal cord and adipose tissue with interlayers of muscle) is studied. The experimental results are evaluated by the size of carbonisation and coagulation necrosis zones. The experiment shows that in the case of irradiation of the spinal cord dura mater samples the size of carbonisation and coagulation necrosis zones is insignificant. In the adipose tissue the carbonisation zone is also insignificant, but the region of cellular structure disturbance is large. In the muscle tissue the situation is opposite. The cw laser operation provides clinically acceptable degree of destruction in tissue samples with a minimal carbonisation zone. (laser applications in medicine)

  2. Extensive Characterization and Comparison of Endothelial Cells Derived from Dermis and Adipose Tissue: Potential Use in Tissue Engineering

    PubMed Central

    Monsuur, Hanneke N.; Weijers, Ester M.; Niessen, Frank B.; Gefen, Amit; Koolwijk, Pieter; Gibbs, Susan; van den Broek, Lenie J.

    2016-01-01

    Tissue-engineered constructs need to become quickly vascularized in order to ensure graft take. One way of achieving this is to incorporate endothelial cells (EC) into the construct. The adipose tissue stromal vascular fraction (adipose-SVF) might provide an alternative source for endothelial cells as adipose tissue can easily be obtained by liposuction. Since adipose-EC are now gaining more interest in tissue engineering, we aimed to extensively characterize endothelial cells from adipose tissue (adipose-EC) and compare them with endothelial cells from dermis (dermal-EC). The amount of endothelial cells before purification varied between 4–16% of the total stromal population. After MACS selection for CD31 positive cells, a >99% pure population of endothelial cells was obtained within two weeks of culture. Adipose- and dermal-EC expressed the typical endothelial markers PECAM-1, ICAM-1, Endoglin, VE-cadherin and VEGFR2 to a similar extent, with 80–99% of the cell population staining positive. With the exception of CXCR4, which was expressed on 29% of endothelial cells, all other chemokine receptors (CXCR1, 2, 3, and CCR2) were expressed on less than 5% of the endothelial cell populations. Adipose-EC proliferated similar to dermal-EC, but responded less to the mitogens bFGF and VEGF. A similar migration rate was found for both adipose-EC and dermal-EC in response to bFGF. Sprouting of adipose-EC and dermal-EC was induced by bFGF and VEGF in a 3D fibrin matrix. After stimulation of adipose-EC and dermal-EC with TNF-α an increased secretion was seen for PDGF-BB, but not uPA, PAI-1 or Angiopoietin-2. Furthermore, secretion of cytokines and chemokines (IL-6, CCL2, CCL5, CCL20, CXCL1, CXCL8 and CXCL10) was also upregulated by both adipose- and dermal-EC. The similar characteristics of adipose-EC compared to their dermal-derived counterpart make them particularly interesting for skin tissue engineering. In conclusion, we show here that adipose tissue provides for an

  3. Spectroscopic measurement of adipose tissue thickness and comparison with ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Geraskin, Dmitri; Boeth, Heide; Kohl-Bareis, Matthias

    2007-07-01

    Near-infrared spectroscopy (NIRS) is widely applied for applications monitoring skeletal muscle oxygenation. However, this method is obstructed by the subcutaneous adipose tissue thickness (ATT) which might vary between < 1 mm to more than 12 mm. Though diffuse optical imaging can be applied to measure ATT, the objective here is to get this measure from spectroscopic data of a single source-detector distance. For the measurement of the optical lipid signal we used a broad band spatially resolved system (SRS), which is based on measurements of the wavelength dependence of the attenuation A for source detector distances ρ between 29 mm and 39 mm. Ultrasound images served as an anatomical reference of the lipid layer. The measurements were taken on 5 different muscle groups of 20 healthy volunteers, each for left and right limbs, e.g. vastus medialis, vastus lateralis and gastrocnemius muscle on the leg and ventral forearm muscles and biceps brachii muscle on the arm. Different analysis strategies were tested for the best calculation of ATT. There is a good non-linear correlation between optical lipid signal and ultrasound data, with an overall error in ATT prediction of about 0.5 mm. This finding is supported experimentally by additional MRI measurements as well as a multi-layer Monte Carlo (MC) model. Based on this data of the ATT thickness, a newly developed algorithm which exploits the wavelength dependence of the slope in attenuation with respect to source-detector distance and MC simulation for these parameters as a function of absorption and scattering coefficients delivers a considerably better fit of reflectance spectra when fitting haemoglobin concentrations. Implications for the monitoring of muscle oxygen saturation are discussed.

  4. Effects of various dietary lipid additives on lamb performance, carcass characteristics, adipose tissue fatty acid composition, and wool characteristics.

    PubMed

    Meale, S J; Chaves, A V; He, M L; Guan, L L; McAllister, T A

    2015-06-01

    Tasco (Ascophyllum nodosum; TA) was compared to canola (CO), flax (FO), and safflower oils (SO) for effects on performance, carcass characteristics, and fatty acid profiles of adipose tissue in skirt muscle (SM), subcutaneous and perirenal adipose tissues, and wool production and quality characteristics of Canadian Arcott lambs. Fifty-six lambs were randomly assigned to dietary treatments (n = 14 per treatment). Diets consisted of a pelleted, barley-based finishing diet containing either TA, CO, FO, or SO (2% of dietary DM). Feed deliveries and orts were recorded daily. Lambs were weighed weekly and slaughtered once they reached ≥ 45 kg BW. Carcass characteristics, rumen pH, and liver weights were determined at slaughter. Wool yield was determined on mid-side patches of 100 cm2 shorn at d 0 and on the day before slaughter (d 105 or 140). Dye-bands were used to determine wool growth, micrometer and staple length. Adipose tissues and SM samples were taken at slaughter and analyzed for FA profiles. No effects were observed on intake, growth, or carcass characteristics. A greater (P = 0.02) staple strength of lambs fed CO was the only effect observed in wool. Flax oil increased total n-3 and decreased the n-6/n-3 ratio in tissue FA profiles (P < 0.001) in comparison to other diets. Tasco increased (P ≤ 0.001) SFA/PUFA in all tissues, whereas concentrations of CLA c-9, t-11 were greatest with SO in all tissues (P ≤ 0.02), compared to other diets. These results suggest Tasco supplementation did not improve the n-3/n-6 or SFA/PUFA ratios of lamb adipose tissues compared to other dietary lipid additives.

  5. Computerized Automated Quantification of Subcutaneous and Visceral Adipose Tissue From Computed Tomography Scans: Development and Validation Study

    PubMed Central

    Kim, Young Jae; Park, Ji Won; Kim, Jong Wan; Park, Chan-Soo; Gonzalez, John Paul S; Lee, Seung Hyun

    2016-01-01

    Background Computed tomography (CT) is often viewed as one of the most accurate methods for measuring visceral adipose tissue (VAT). However, measuring VAT and subcutaneous adipose tissue (SAT) from CT is a time-consuming and tedious process. Thus, evaluating patients’ obesity levels during clinical trials using CT scans is both cumbersome and limiting. Objective To describe an image-processing-based and automated method for measuring adipose tissue in the entire abdominal region. Methods The method detects SAT and VAT levels using a separation mask based on muscles of the human body. The separation mask is the region that minimizes the unnecessary space between a closed path and muscle area. In addition, a correction mask, based on bones, corrects the error in VAT. Results To validate the method, the volume of total adipose tissue (TAT), SAT, and VAT were measured for a total of 100 CTs using the automated method, and the results compared with those from manual measurements obtained by 2 experts. Dice’s similarity coefficients (DSCs) between the first manual measurement and the automated result for TAT, SAT, and VAT are 0.99, 0.98, and 0.97, respectively. The DSCs between the second manual measurement and the automated result for TAT, SAT, and VAT are 0.98, 0.98, and 0.97, respectively. Moreover, intraclass correlation coefficients (ICCs) between the automated method and the results of the manual measurements indicate high reliability as the ICCs for the items are all .99 (P<.001). Conclusions The results described in this paper confirm the accuracy and reliability of the proposed method. The method is expected to be both convenient and useful in the clinical evaluation and study of obesity in patients who require SAT and VAT measurements. PMID:26846251

  6. A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism.

    PubMed

    Herman, Mark A; Peroni, Odile D; Villoria, Jorge; Schön, Michael R; Abumrad, Nada A; Blüher, Matthias; Klein, Samuel; Kahn, Barbara B

    2012-04-19

    The prevalence of obesity and type 2 diabetes is increasing worldwide and threatens to shorten lifespan. Impaired insulin action in peripheral tissues is a major pathogenic factor. Insulin stimulates glucose uptake in adipose tissue through the GLUT4 (also known as SLC2A4) glucose transporter, and alterations in adipose tissue GLUT4 expression or function regulate systemic insulin sensitivity. Downregulation of human and mouse adipose tissue GLUT4 occurs early in diabetes development. Here we report that adipose tissue GLUT4 regulates the expression of carbohydrate-responsive-element-binding protein (ChREBP; also known as MLXIPL), a transcriptional regulator of lipogenic and glycolytic genes. Furthermore, adipose ChREBP is a major determinant of adipose tissue fatty acid synthesis and systemic insulin sensitivity. We find a new mechanism for glucose regulation of ChREBP: glucose-mediated activation of the canonical ChREBP isoform (ChREBP-α) induces expression of a novel, potent isoform (ChREBP-β) that is transcribed from an alternative promoter. ChREBP-β expression in human adipose tissue predicts insulin sensitivity, indicating that it may be an effective target for treating diabetes.

  7. Reproducibility and Repeatability of Computer Tomography-based Measurement of Abdominal Subcutaneous and Visceral Adipose Tissues

    PubMed Central

    Lee, Yuan-Hao; Hsiao, Hsing-Fen; Yang, Hou-Ting; Huang, Shih-Yi; Chan, Wing P.

    2017-01-01

    Excessive accumulation of abdominal adipose tissue is a widely recognized as a major feature of obesity, and it can be quantified by dual-energy x-ray absorptiometry (DXA). However, in a phantom study, the inter- and intra-instrument reliability of DXA remains unpredictable. Thus, we attempted to determine the precision of estimates from computer tomography-based measurements and analysis with AZE Virtual Place software. To determine the inter-rater reproducibility and intra-rater repeatability of adipose tissue area estimates, we used the automatic boundary-tracing function of the AZE Virtual Place to generate cross-sectional areas of subcutaneous and visceral adipose tissues from the abdomen of reconstructed CT images. The variability of inter-rater and intra-rater estimates expressed as the coefficient of variation ranged from 0.47% to 1.43% for subcutaneous adipose tissue and 1.08% to 2.20% for visceral adipose tissue; the optimal coefficient of variation of the fat rate calculation ranged from 0.55% to 1.13%, respectively. There was high and significant correlation between adipose tissue areas as estimated in 40 obese subjects by two raters or repeatedly on 20 obese subjects by either rater. This indicates excellent reproducibility and repeatability via a computer tomography-based measurement of abdominal subcutaneous and visceral adipose tissues. PMID:28071718

  8. The adipose tissue to serum dichlorodiphenyldichloroethane (DDE) ratio: Some methodological considerations

    SciTech Connect

    Lopez-Carrillo, L. . National Inst. of Public Health John D. and Catherine T. MacArthur Foundation ); Torres-Sanchez, L.; Lopez-Cervantes, M. . National Inst. of Public Health); Blair, A. ); Cebrian, M.E.; Uribe, M. . Center for Research and Advanced Studies)

    1999-08-01

    Dichlorodiphenyldichloroethane (DDE) adipose tissue level has been regarded as a preferred indicator of accumulated human exposure to DDT; however, blood sera are more feasible to obtain and analyze than adipose tissue samples. Inconsistent and scarce information exists in relation to the adipose tissue/serum DDE ratio. As a part of a hospital-based case-control study performed in Mexico City from 1994 to 1996, 198 paired serum and adipose tissue samples were obtained from 72 women with histologically confirmed breast cancer and 126 women with benign breast disease. Both adipose tissue and serum DDE levels were determined by gas-liquid chromatography and reported as ppb lipid weight (ng/g) as well as wet basis (ng/ml). Results showed that the adipose tissue/serum DDE ratio (ADSE) varies according to the type of information (lipid vs wet basis, arithmetic vs geometric means) used for its estimation. ADSE gets a value near 1 (1.1) only when the geometric DDE levels in lipid basis are used for its estimation. The correlation between DDE serum and adipose tissue levels was found (r = 0.364, P < 0.001). The ADSE did not vary by disease status, nor was it altered by parity, history of breast-feeding, and other reproductive characteristics. The authors endorse the use of venipuncture instead of biopsy as a way to estimate DDT body burden levels in further research.

  9. The role of adipose tissue in mediating the beneficial effects of dietary fish oil

    PubMed Central

    Puglisi, Michael J.; Hasty, Alyssa H.; Saraswathi, Viswanathan

    2010-01-01

    Fish oil improves several features of metabolic syndrome such as dyslipidemia, insulin resistance and hepatic steatosis. Fish oil may mediate some of its beneficial effects by modulating the storage and/or secretory functions of adipose tissue. The storage of triglycerides in adipose tissue is regulated by the availability of free fatty acids as well as the degree of lipolysis in adipose tissue. Fish oil has been shown to reduce lipolysis in several studies indicating improved triglyceride storage. Importantly, adipose tissue secretes a variety of adipokines and fish oil feeding is associated with remarkable changes in the plasma levels of two key adipokines, adiponectin and leptin. Much attention has been focused on the contribution of adiponectin in fish oil mediated improvements in metabolic syndrome. However, emerging evidence also indicates a role of leptin in modulating the components of the metabolic syndrome upon fish oil feeding. In addition to improving the storage and secretory functions of adipose tissue, fish oil, and the n-3 fatty acids found in fish oil, has been shown to reduce inflammation in adipose tissue. These effects may be in part a result of activation of peroxisome proliferator-activated receptor γ or inhibition of toll-like receptor 4. Thus, there is compelling evidence that fish oil mediates its beneficial effects on metabolic syndrome by improving adipose tissue storage and secretory functions and by reducing inflammation. PMID:21145721

  10. Involvement of lysosomal dysfunction in autophagosome accumulation and early pathologies in adipose tissue of obese mice

    PubMed Central

    Mizunoe, Yuhei; Sudo, Yuka; Okita, Naoyuki; Hiraoka, Hidenori; Mikami, Kentaro; Narahara, Tomohiro; Negishi, Arisa; Yoshida, Miki; Higashibata, Rikako; Watanabe, Shukoh; Kaneko, Hiroki; Natori, Daiki; Furuichi, Takuma; Yasukawa, Hiromine; Kobayashi, Masaki; Higami, Yoshikazu

    2017-01-01

    ABSTRACT Whether obesity accelerates or suppresses autophagy in adipose tissue is still debatable. To clarify dysregulation of autophagy and its role in pathologies of obese adipose tissue, we focused on lysosomal function, protease maturation and activity, both in vivo and in vitro. First, we showed that autophagosome formation was accelerated, but autophagic clearance was impaired in obese adipose tissue. We also found protein and activity levels of CTSL (cathepsin L) were suppressed in obese adipose tissue, while the activity of CTSB (cathepsin B) was significantly enhanced. Moreover, cellular senescence and inflammasomes were activated in obese adipose tissue. In 3T3L1 adipocytes, downregulation of CTSL deteriorated autophagic clearance, upregulated expression of CTSB, promoted cellular senescence and activated inflammasomes. Upregulation of CTSB promoted additional activation of inflammasomes. Therefore, we suggest lysosomal dysfunction observed in obese adipose tissue leads to lower autophagic clearance, resulting in autophagosome accumulation. Simultaneously, lysosomal abnormalities, including deteriorated CTSL function and compensatory activation of CTSB, caused cellular senescence and inflammasome activation. Our findings strongly suggest lysosomal dysfunction is involved in early pathologies of obese adipose tissue. PMID:28121218

  11. Preadipocyte and adipose tissue differentiation in meat animals: influence of species and anatomical location.

    PubMed

    Hausman, G J; Basu, U; Wei, S; Hausman, D B; Dodson, M V

    2014-02-01

    Early in porcine adipose tissue development, the stromal-vascular (SV) elements control and dictate the extent of adipogenesis in a depot-dependent manner. The vasculature and collagen matrix differentiate before overt adipocyte differentiation. In the fetal pig, subcutaneous (SQ) layer development is predictive of adipocyte development, as the outer, middle, and inner layers of dorsal SQ adipose tissue develop and maintain layered morphology throughout postnatal growth of SQ adipose tissue. Bovine and ovine fetuses contain brown adipose tissue but SQ white adipose tissue is poorly developed structurally. Fetal adipose tissue differentiation is associated with the precocious expression of several genes encoding secreted factors and key transcription factors like peroxisome proliferator activated receptor (PPAR)γ and CCAAT/-enhancer-binding protein. Identification of adipocyte-associated genes differentially expressed by age, depot, and species in vivo and in vitro has been achieved using single-gene analysis, microarrays, suppressive subtraction hybridization, and next-generation sequencing applications. Gene polymorphisms in PPARγ, cathepsins, and uncoupling protein 3 have been associated with back fat accumulation. Genome scans have mapped several quantitative trait loci (QTL) predictive of adipose tissue-deposition phenotypes in cattle and pigs.

  12. Beneficial Effects of Evogliptin, a Novel Dipeptidyl Peptidase 4 Inhibitor, on Adiposity with Increased Ppargc1a in White Adipose Tissue in Obese Mice.

    PubMed

    Chae, Yu-Na; Kim, Tae-Hyoung; Kim, Mi-Kyung; Shin, Chang-Yell; Jung, Il-Hoon; Sohn, Yong Sung; Son, Moon-Ho

    2015-01-01

    Although dipeptidyl peptidase 4 (DPP4) is an adipokine known to positively correlate with adiposity, the effects of pharmacological DPP4 inhibition on body composition have not been fully understood. This study was aimed to assess the effects of DPP4 inhibitors on adiposity for the first time in the established obese mice model. The weight loss effects of multiple DPP4 inhibitors were compared after a 4 week treatment in diet-induced obese mice. In addition, a 2 week study was performed to explore and compare the acute effects of evogliptin, a novel DPP4 inhibitor, and exenatide, a glucagon-like peptide-1 (GLP-1) analogue, on whole body composition, energy consumption, various plasma adipokines and gene expression in white adipose tissue (WAT). After the 4 week treatment, weight loss and blood glucose reductions were consistently observed with multiple DPP4 inhibitors. Moreover, after 2-week treatment, evogliptin dose-dependently reduced whole body fat mass while increasing the proportion of smaller adipocytes. However, insulin sensitivity or plasma lipid levels were not significantly altered. In addition to increased active GLP-1 levels by plasma DPP4 inhibition, evogliptin also enhanced basal metabolic rate without reduction in caloric intake, in contrast to exenatide; this finding suggested evogliptin's effects may be mediated by pathways other than via GLP-1. Evogliptin treatment also differentially increased Ppargc1a expression, a key metabolic regulator, in WAT, but not in skeletal muscle and brown adipose tissue. The increased expression of the downstream mitochondrial gene, Cox4i1, was also suggestive of the potential metabolic alteration in WAT by DPP4 inhibitors. We are the first to demonstrate that pharmacological DPP4 inhibition by evogliptin directly causes fat loss in established obese mice. In contradistinction to exenatide, the fat-loss effect of DPP4 inhibitor is partly attributed to enhanced energy expenditure along with metabolic changes in WAT

  13. Toxicological Function of Adipose Tissue: Focus on Persistent Organic Pollutants

    PubMed Central

    La Merrill, Michele; Emond, Claude; Kim, Min Ji; Antignac, Jean-Philippe; Le Bizec, Bruno; Clément, Karine; Birnbaum, Linda S.

    2012-01-01

    Background: Adipose tissue (AT) is involved in several physiological functions, including metabolic regulation, energy storage, and endocrine functions. Objectives: In this review we examined the evidence that an additional function of AT is to modulate persistent organic pollutant (POP) toxicity through several mechanisms. Methods: We reviewed the literature on the interaction of AT with POPs to provide a comprehensive model for this additional function of AT. Discussion: As a storage compartment for lipophilic POPs, AT plays a critical role in the toxicokinetics of a variety of drugs and pollutants, in particular, POPs. By sequestering POPs, AT can protect other organs and tissues from POPs overload. However, this protective function could prove to be a threat in the long run. The accumulation of lipophilic POPs will increase total body burden. These accumulated POPs are slowly released into the bloodstream, and more so during weight loss. Thus, AT constitutes a continual source of internal exposure to POPs. In addition to its buffering function, AT is also a target of POPs and may mediate part of their metabolic effects. This is particularly relevant because many POPs induce obesogenic effects that may lead to quantitative and qualitative alterations of AT. Some POPs also induce a proinflammatory state in AT, which may lead to detrimental metabolic effects. Conclusion: AT appears to play diverse functions both as a modulator and as a target of POPs toxicity. PMID:23221922

  14. Organochlorine pesticides and PCBs in human adipose tissues in Poland

    SciTech Connect

    Ludwicki, J.K.; Goralczyk, K. )

    1994-03-01

    Most of the persistent organochlorine (OC) pesticides, excluding lindane, were banned in Poland in 1975/76. The first restrictions concerning the use and marketing of lindane (gamma-HCH) became effective in 1980 and were gradually extended until it's agricultural use was ultimately banned in 1989. Unfortunately, there are no detailed data on the use and release of PCBs to the environment in Poland. The former studies showed that in the late seventies the concentrations of OC pesticides and their metabolites in men reached considerable high levels. Despite of the restrictions or bans of these pesticides in most of the countries of the temperate climate, they still circulate in various food chains and eventually concentrate in man. Many authors claim an uneven distribution of the OC compounds in the population and report different levels in men and women and also some relations between OC compounds levels in fat tissues and age. Environmental contamination also plays an important role in the magnitude of OC compounds levels in man. The aim of this paper is to present the actual concentrations of HCB, p,p[prime]-DDT, p,p[prime]-DDE, isomers of HCH (alpha, beta, gamma), and PCBs in human adipose tissues particularly regarding age and sex as possible factors influencing the levels of these compounds and to contribute to the general discussion on the distribution patterns of the organochlorine compounds in the population. 12 refs., 3 tabs.

  15. Adipose tissue inflammation and reduced insulin sensitivity in ovariectomized mice occurs in the absence of increased adiposity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Menopause promotes central obesity, adipose tissue (AT) inflammation and insulin resistance (IR). Both obesity and the loss of estrogen can activate innate and adaptive immune cells (macrophages (M's), T-cells). The respective impacts of weight gain and loss of ovarian hormones on AT inflammation an...

  16. Evidence for Trypanosoma cruzi in adipose tissue in human chronic Chagas disease

    PubMed Central

    Ferreira, Adaliene Versiani Matos; Segatto, Marcela; Menezes, Zélia; Macedo, Andréa Mara; Gelape, Cláudio; de Oliveira Andrade, Luciana; Nagajyothi, Fnu; Scherer, Philipp E.; Teixeira, Mauro Martins; Tanowitz, Herbert B.

    2013-01-01

    Trypanosoma cruzi the cause of Chagas disease persists in tissues of infected experimental animals and humans. Here we demonstrate the persistence of the parasite in adipose tissue from of three of 10 elderly seropositive patients with chronic chagasic heart disease. Nine control patients had no parasites in the fat. We also demonstrate that T. cruzi parasitizes primary adipocytes in vitro. Thus, in humans as in mice the parasite may persist in adipose tissue for decades and become a reservoir of infection. PMID:21726660

  17. Evidence for Trypanosoma cruzi in adipose tissue in human chronic Chagas disease.

    PubMed

    Ferreira, Adaliene Versiani Matos; Segatto, Marcela; Menezes, Zélia; Macedo, Andréa Mara; Gelape, Cláudio; de Oliveira Andrade, Luciana; Nagajyothi, Fnu; Scherer, Philipp E; Teixeira, Mauro Martins; Tanowitz, Herbert B

    2011-11-01

    Trypanosoma cruzi the cause of Chagas disease persists in tissues of infected experimental animals and humans. Here we demonstrate the persistence of the parasite in adipose tissue from of three of 10 elderly seropositive patients with chronic chagasic heart disease. Nine control patients had no parasites in the fat. We also demonstrate that T. cruzi parasitizes primary adipocytes in vitro. Thus, in humans as in mice the parasite may persist in adipose tissue for decades and become a reservoir of infection.

  18. Influence of age and position on the CT number of adipose tissues in pigs.

    PubMed

    McEvoy, Fintan J; Madsen, Mads T; Svalastoga, Eiliv L

    2008-10-01

    The location of adipose tissue depots is important in determining their significance. Research into the physical and chemical differences between these depots is therefore of interest. Using image analysis, this paper examines the influence of location on the linear attenuation coefficient of adipose tissue for X-rays, in computed tomography (as indicated by CT number) at three time points. Nine pigs were CT scanned on three separate occasions approximately 1 month apart. The mean CT number was -78, -100, and -104 for visceral adipose tissue (VAT) from the first to the final scan, respectively. The corresponding CT numbers for subcutaneous adipose tissue (SAT) were -80, -101, and -106. There was a significant difference between the CT numbers at each location at each scan (P values from 0.025 to <0.001) and between the CT numbers for each location at different times (P < 0.05). In a separate analysis of the final scan session, the mean CT number of adipose tissue at increasing distances from a mathematically defined center of the animal was determined. Regression analysis showed that the CT number of adipose tissue decreases with increasing distance from the animal's center (y = -102.7 - 0.04 x, P < 0.001, where y is the predicted CT number for adipose tissue, from the animal center (x = 0) to the skin (x = 100)). It can thus be expected that the overall mean CT number for adipose tissue can be used as an indicator of the relative quantities of adipose tissue at each location if the mean for each is known.

  19. Loss of Oncostatin M Signaling in Adipocytes Induces Insulin Resistance and Adipose Tissue Inflammation in Vivo.

    PubMed

    Elks, Carrie M; Zhao, Peng; Grant, Ryan W; Hang, Hardy; Bailey, Jennifer L; Burk, David H; McNulty, Margaret A; Mynatt, Randall L; Stephens, Jacqueline M

    2016-08-12

    Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor β (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMR(FKO) mice). The effects of OSM on gene expression were also assessed in vitro and in vivo OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMR(FKO) mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMR(FKO) mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMR(FKO) mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation.

  20. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    PubMed

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion.

  1. Diet and adipose tissue distributions: The Multi-Ethnic Study of Atherosclerosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary quality affects cardiometabolic risk, yet its pathways of influence on regional adipose tissue depots involved in metabolic and diabetes risk are not well established. We aimed to investigate the relationship between dietary quality and regional adiposity. We investigated 5079 individuals in...

  2. A worm of one's own: how helminths modulate host adipose tissue function and metabolism.

    PubMed

    Guigas, Bruno; Molofsky, Ari B

    2015-09-01

    Parasitic helminths have coexisted with human beings throughout time. Success in eradicating helminths has limited helminth-induced morbidity and mortality but is also correlated with increasing rates of 'western' diseases, including metabolic syndrome and type 2 diabetes. Recent studies in mice describe how type 2 immune cells, traditionally associated with helminth infection, maintain adipose tissue homeostasis and promote adipose tissue beiging, protecting against obesity and metabolic dysfunction. Here, we review these studies and discuss how helminths and helminth-derived molecules may modulate these physiologic pathways to improve metabolic functions in specific tissues, such as adipose and liver, as well as at the whole-organism level.

  3. Mice that are fed a high-fat diet display increased hepcidin expression in adipose tissue.

    PubMed

    Gotardo, Érica Martins Ferreira; dos Santos, Aline Noronha; Miyashiro, Renan Akira; Gambero, Sheley; Rocha, Thalita; Ribeiro, Marcelo Lima; Gambero, Alessandra

    2013-01-01

    Since the discovery that hepcidin is expressed in the adipose tissue of obese subjects, attention has been increasingly focused on alterations in iron homeostasis that are associated with adiposity. We examined the production of hepcidin, the expression of hepcidin-related genes and the iron content of the adipose tissue in obesity using Swiss mice fed a high-fat diet (HFD). The mice were maintained on a control diet or HFD for 12 or 24 wk, and body weight, adiposity and glucose homeostasis were evaluated. The expression of several genes (hepcidin, TfR1, TfR2, DMT1, FT-heavy, ferroportin, IRP-1, IRP-2 and HIF-1) and the protein expression of hepcidin and IL-6 were quantified. The iron level was assessed using a Prussian blue reaction in paraffin-embedded tissue. After 24 wk on the HFD, we observed increases in the levels of hepcidin in the serum and the visceral adipose tissue. The IL-6 levels also increased in the visceral adipose tissue. Adipocytes isolated from the visceral adipose tissues of lean and obese mice expressed hepcidin at comparable levels; however, isolated macrophages from the stromal vascular fraction expressed higher hepcidin levels. Adipose tissues from obese mice displayed increased tfR2 expression and the presence of iron. Our results indicate that IL-6 and iron may affect the signaling pathways governing hepcidin expression. Thus, the mice fed HFD for 24 wk represent a suitable model for the study of obesity-linked hepcidin alterations. In addition, hepcidin may play local roles in controlling iron availability and interfering with inflammation in adipose tissue.

  4. Perivascular adipose tissue in vascular function and disease: a review of current research and animal models.

    PubMed

    Brown, Nicholas K; Zhou, Zhou; Zhang, Jifeng; Zeng, Rong; Wu, Jiarui; Eitzman, Daniel T; Chen, Y Eugene; Chang, Lin

    2014-08-01

    Perivascular adipose tissue (PVAT), long assumed to be nothing more than vessel-supporting connective tissue, is now understood to be an important, active component of the vasculature, with integral roles in vascular health and disease. PVAT is an adipose tissue with similarities to both brown and white adipose tissue, although recent evidence suggests that PVAT develops from its own precursors. Like other adipose tissue depots, PVAT secretes numerous biologically active substances that can act in both autocrine and paracrine fashion. PVAT has also proven to be involved in vascular inflammation. Although PVAT can support inflammation during atherosclerosis via macrophage accumulation, emerging evidence suggests that PVAT also has antiatherosclerotic properties related to its abilities to induce nonshivering thermogenesis and metabolize fatty acids. We here discuss the accumulated knowledge of PVAT biology and related research on models of hypertension and atherosclerosis.

  5. From the Cover: Adipose tissue mass can be regulated through the vasculature

    NASA Astrophysics Data System (ADS)

    Rupnick, Maria A.; Panigrahy, Dipak; Zhang, Chen-Yu; Dallabrida, Susan M.; Lowell, Bradford B.; Langer, Robert; Judah Folkman, M.

    2002-08-01

    Tumor growth is angiogenesis dependent. We hypothesized that nonneoplastic tissue growth also depends on neovascularization. We chose adipose tissue as an experimental system because of its remodeling capacity. Mice from different obesity models received anti-angiogenic agents. Treatment resulted in dose-dependent, reversible weight reduction and adipose tissue loss. Marked vascular remodeling was evident in adipose tissue sections, which revealed decreased endothelial proliferation and increased apoptosis in treated mice compared with controls. Continuous treatment maintained mice near normal body weights for age without adverse effects. Metabolic adaptations in food intake, metabolic rate, and energy substrate utilization were associated with anti-angiogenic weight loss. We conclude that adipose tissue mass is sensitive to angiogenesis inhibitors and can be regulated by its vasculature.

  6. Assessing the effect of a high-fat diet on rodents' adipose tissue using Brillouin and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Troyanova-Wood, Maria; Gobbell, Cassidy; Meng, Zhaokai; Yakovlev, Vladislav V.

    2016-03-01

    The purpose of this study is to evaluate the effect of a high-lipid diet on elasticity of adipose tissue. We employed dual Raman/Brillouin microspectroscopy to analyze brown and white adipose tissues obtained from adult rats. The rats were divided into two groups, one of which received a high-fat feed, while the other served as a control. We hypothesized that the changes in the elasticity of adipose tissues between the two groups can be successfully assessed using Brillouin spectroscopy. We found that the brown adipose tissue possessed a lesser Brillouin shift than the white adipose within each group and that the elastic modulus of both adipose tissues increases in the high-fat diet group. The Raman spectra provided supplementary chemical information and indicated an increase in the lipid-to-protein ratio in the brown adipose, but not in the white adipose.

  7. Gene Expression and Histological Analysis of Activated Brown Adipocytes in Adipose Tissue.

    PubMed

    Lee, Yun-Hee

    2017-01-01

    With the rediscovery of brown adipose tissue in adult humans, identification and characterization of brown adipocytes have been topics of great interest in the field of adipose tissue research. In particular, identification of the molecular mechanisms that activate thermogenic adipocytes suggests promising targets for increasing energy expenditure and ultimately combatting obesity and obesity-related metabolic disease. Thus, the methodology for identifying brown adipocytes in vivo is important for the precise determination of the metabolic activity of brown adipose tissue and de novo brown adipogenesis in white adipose tissue. In addition, in vivo analysis of brown adipocytes in combination with lineage tracing is essential to investigate the cellular origins of brown adipocytes. This chapter first provides a brief overview of lineage tracing studies performed in the search for the cellular origins of brown adipocytes. The chapter then describes the immunohistochemistry methodology for identifying brown adipocytes in adipose tissue, including analyses in histologic tissue sections and whole mount tissue. Lastly, it discusses flow cytometric analysis of dissociated cells from adipose tissue, and isolation of live adipocytes for subsequent gene expression profiling using fluorescence-activated cell sorting.

  8. Fatty acid turnover rates in the adipose tissues of the growing chicken (Gallus domesticus).

    PubMed

    Foglia, T A; Cartwright, A L; Gyurik, R J; Philips, J G

    1994-07-01

    The purpose of this study was to investigate the mobility of fatty acids in adipose tissue of the chicken and to determine whether adipose tissue dynamics are altered by dietary repartitioning agents. To this end, the turnover rates of fatty acids and triglycerides were estimated in adipose tissue of growing chicks by using isopentadecanoic acid (IPDA) and elaidic acid (EA) as marker dietary fatty acids. The half-life of IPDA in abdominal and sartorial adipose tissues of birds over 6 to 10 wk of age were 20 +/- 4 and 23 +/- 6 d, respectively. The half-life for the remaining total carcass lipids was 23 +/- 3 d. The corresponding half-life for EA in abdominal fat tissue of birds over 2 to 7 wk of age was 18 +/- 3 d, a half-life not significantly different from the IPDA half-lives. On the other hand, a thyromimetic repartitioning agent (L-94901) fed to birds at the 2 ppm level from 2 to 7 wk of age significantly decreased the half-life of EA in abdominal fat tissue to 6 +/- 2 d. The data suggest that fatty acids were released from a more labile adipose site and subsequently reincorporated into abdominal and sartorial tissues and that fat mobilization occurred at the same time as did adipose tissue deposition in the growing chicken.

  9. Characterization of adipose-derived stem cells from subcutaneous and visceral adipose tissues and their function in breast cancer cells

    PubMed Central

    Ritter, Andreas; Friemel, Alexandra; Fornoff, Friderike; Adjan, Mouhib; Solbach, Christine

    2015-01-01

    Adipose-derived stem cells are capable of differentiating into multiple cell types and thus considered useful for regenerative medicine. However, this differentiation feature seems to be associated with tumor initiation and metastasis raising safety concerns, which requires further investigation. In this study, we isolated adipose-derived stem cells from subcutaneous as well as from visceral adipose tissues of the same donor and systematically compared their features. Although being characteristic of mesenchymal stem cells, subcutaneous adipose-derived stem cells tend to be spindle form-like and are more able to home to cancer cells, whereas visceral adipose-derived stem cells incline to be “epithelial”-like and more competent to differentiate. Moreover, compared to subcutaneous adipose-derived stem cells, visceral adipose-derived stem cells are more capable of promoting proliferation, inducing the epithelial-to-mesenchymal transition, enhancing migration and invasion of breast cancer cells by cell-cell contact and by secreting interleukins such as IL-6 and IL-8. Importantly, ASCs affect the low malignant breast cancer cells MCF-7 more than the highly metastatic MDA-MB-231 cells. Induction of the epithelial-to-mesenchymal transition is mediated by the activation of multiple pathways especially the PI3K/AKT signaling in breast cancer cells. BCL6, an important player in B-cell lymphoma and breast cancer progression, is crucial for this transition. Finally, this transition fuels malignant properties of breast cancer cells and render them resistant to ATP competitive Polo-like kinase 1 inhibitors BI 2535 and BI 6727. PMID:26439686

  10. Characterization of adipose-derived stem cells from subcutaneous and visceral adipose tissues and their function in breast cancer cells.

    PubMed

    Ritter, Andreas; Friemel, Alexandra; Fornoff, Friderike; Adjan, Mouhib; Solbach, Christine; Yuan, Juping; Louwen, Frank

    2015-10-27

    Adipose-derived stem cells are capable of differentiating into multiple cell types and thus considered useful for regenerative medicine. However, this differentiation feature seems to be associated with tumor initiation and metastasis raising safety concerns, which requires further investigation. In this study, we isolated adipose-derived stem cells from subcutaneous as well as from visceral adipose tissues of the same donor and systematically compared their features. Although being characteristic of mesenchymal stem cells, subcutaneous adipose-derived stem cells tend to be spindle form-like and are more able to home to cancer cells, whereas visceral adipose-derived stem cells incline to be "epithelial"-like and more competent to differentiate. Moreover, compared to subcutaneous adipose-derived stem cells, visceral adipose-derived stem cells are more capable of promoting proliferation, inducing the epithelial-to-mesenchymal transition, enhancing migration and invasion of breast cancer cells by cell-cell contact and by secreting interleukins such as IL-6 and IL-8. Importantly, ASCs affect the low malignant breast cancer cells MCF-7 more than the highly metastatic MDA-MB-231 cells. Induction of the epithelial-to-mesenchymal transition is mediated by the activation of multiple pathways especially the PI3K/AKT signaling in breast cancer cells. BCL6, an important player in B-cell lymphoma and breast cancer progression, is crucial for this transition. Finally, this transition fuels malignant properties of breast cancer cells and render them resistant to ATP competitive Polo-like kinase 1 inhibitors BI 2535 and BI 6727.

  11. Fatty acid biosynthesis and lipogenic enzyme activities in subcutaneous adipose tissue of feedlot steers fed supplementary palm oil or soybean oil.

    PubMed

    Choi, S H; Gang, G O; Sawyer, J E; Johnson, B J; Kim, K H; Choi, C W; Smith, S B

    2013-05-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipocyte differentiation in subcutaneous adipose tissue of feedlot steers, and that soybean oil supplementation would depress adipocyte differentiation. Twenty-eight Angus steers were assigned randomly to 3 groups of 9 or 10 steers and fed a basal diet without additional fat (control), with 3% palm oil (rich in palmitic acid), or with 3% soybean oil (rich in polyunsaturated fatty acids), for 10 wk, top-dressed daily. Palm oil had no effect (P > 0.05) on ADG, food intake, or G:F, whereas soybean oil depressed ADG (P = 0.02), food intake (P = 0.04), and G:F (P = 0.05). Marbling scores tended (P = 0.09) to be greater in palm oil-fed steers (Modest(09)) than in soybean oil-fed steers (Small(55)). Subcutaneous adipocyte mean volume was greater in palm oil-fed steers (515.9 pL) than in soybean-supplemented cattle (395.6 pL; P = 0.01). Similarly, glucose and acetate incorporation into total lipids in vitro was greater in subcutaneous adipose tissue of palm oil-fed steers (119.9 and 242.8 nmol·3h(-1)·10(5) cells, respectively) than adipose tissue of soybean oil-fed steers in (48.9 and 95.8 nmol·3h(-1)·10(5) cells, respectively). Glucose-6-phosphate dehydrogenase and NADP-malate dehydrogenase activities were greater (P ≤ 0.05) in subcutaneous adipose tissue of palm oil-fed steers than in adipose tissue of control steers. Palm oil did not increase palmitic acid or decrease oleic acid in subcutaneous adipose tissue or LM, but decreased (P ≤ 0.05) myristoleic, palmitoleic, and cis-vaccenic acid in adipose tissue, indicating a depression in stearoyl-coenzyme A desaturase activity. Soybean oil increased the proportion of α-linolenic acid in adipose tissue and muscle and increased linoleic acid and 18:1trans-10 in muscle. We conclude that palm oil supplementation promoted lipid synthesis in adipose tissue without depressing feed efficiency or increasing the palmitic acid content of beef.

  12. Measurement of subcutaneous adipose tissue thickness by near-infrared.

    PubMed

    Wang, Yu; Yang, Zeqiang; Hao, Dongmei; Zhang, Song; Yang, Yimin; Zeng, Yanjun

    2013-06-01

    Obesity is strongly associated with the risks of diabetes and cardiovascular disease, and there is a need to measure the subcutaneous adipose tissue (SAT) layer thickness and to understand the distribution of body fat. A device was designed to illuminate the body parts by near-infrared (NIR), measure the backscattered light, and predict the SAT layer thickness. The device was controlled by a single-chip microcontroller (SCM), and the thickness value was presented on a liquid crystal display (LCD). There were 30 subjects in this study, and the measurements were performed on 14 body parts for each subject. The paper investigated the impacts of pressure and skin colour on the measurement. Combining with principal component analysis (PCA) and support vector regression (SVR), the measurement accuracy of SAT layer thickness was 89.1 % with a mechanical caliper as reference. The measuring range was 5-11 mm. The study provides a non-invasive and low-cost technique to detect subcutaneous fat thickness, which is more accessible and affordable compared to other conventional techniques. The designed device can be used at home and in community.

  13. [Thyroid hormones, obesity and brown adipose tissue thermogenesis].

    PubMed

    Zaninovich, A A

    2001-01-01

    Brown adipose tissue (BAT) is the main site for hormone-dependent (non-shivering) thermogenesis in response to cold in lower mammals. The hypothalamus controls the cold-induced BAT activation by stimulating the sympathetic nerves and the secretion of norepinephrine (NE) in BAT. Mediated by beta-3 noradrenergic receptor and in the presence of triiodothyronine (T3), NE promotes the synthesis of the uncoupling protein 1 (UCP1). UCP1 is a 32 kDa protein located in the inner membrane of BAT mitochondria, where it dissipates the proton gradient created by oxidations in the mitochondria. UCP1 functions as a proton translocator, substituting for another translocator, the ATP synthetase. The uncoupling of oxidations and phosphorylations and the inhibition of ATP synthesis lead to dissipation as heat of all energy produced in the respiratory chain. The supply of adequate amounts of T3 is ensured by the cold-induced enhancement of the enzyme 5'-deiodinase type II activity, which deiodinates thyroxine (T4) to T3. The absence of T3 blocks UCP1 synthesis, leading to hypothermia. BAT has a limited significance in humans, except in the newborn, where it serves for a rapid acclimation to ambient temperature. The study of BAT physiology will provide more insight into the mechanisms regulating energy balance and body weight in humans, thus contributing to prevent and treat human obesity.

  14. Molecular clock integration of brown adipose tissue formation and function

    PubMed Central

    Nam, Deokhwa; Yechoor, Vijay K.; Ma, Ke

    2016-01-01

    Abstract The circadian clock is an essential time-keeping mechanism that entrains internal physiology to environmental cues. Despite the well-established link between the molecular clock and metabolic homeostasis, an intimate interplay between the clock machinery and the metabolically active brown adipose tissue (BAT) is only emerging. Recently, we came to appreciate that the formation and metabolic functions of BAT, a key organ for body temperature maintenance, are under an orchestrated circadian clock regulation. Two complementary studies from our group uncover that the cell-intrinsic clock machinery exerts concerted control of brown adipogenesis with consequent impacts on adaptive thermogenesis, which adds a previously unappreciated temporal dimension to the regulatory mechanisms governing BAT development and function. The essential clock transcriptional activator, Bmal1, suppresses adipocyte lineage commitment and differentiation, whereas the clock repressor, Rev-erbα, promotes these processes. This newly discovered temporal mechanism in fine-tuning BAT thermogenic capacity may enable energy utilization and body temperature regulation in accordance with external timing signals during development and functional recruitment. Given the important role of BAT in whole-body metabolic homeostasis, pharmacological interventions targeting the BAT-modulatory activities of the clock circuit may offer new avenues for the prevention and treatment of metabolic disorders, particularly those associated with circadian dysregulation. PMID:27385482

  15. Postnatal changes in fatty acids composition of brown adipose tissue

    NASA Astrophysics Data System (ADS)

    Ohno, T.; Ogawa, K.; Kuroshima, A.

    1992-03-01

    It has been demonstrated that thermogenic activity of brown adipose tissue (BAT) is higher during the early postnatal period, decreasing towards a low adult level. The present study examined postnatal changes in the lipid composition of BAT. BAT from pre-weaning rats at 4 and 14 days old showed the following differences in lipid composition compared to that from adults of 12 weeks old. (i) Relative weight of interscapular BAT to body weight was markedly greater. (ii) BAT-triglyceride (TG) level was lower, while BAT-phospholipid (PL)level was higher. (iii) In TG fatty acids (FA) polyunsaturated fatty acids (PU; mol %), arachidonate index (AI), unsaturation index (UI) and PU/saturated FA (SA) were higher; rare FA such as eicosadienoate, bishomo- γ-linolenic acid and lignoceric acid in mol % were also higher. (iv) In PL-FA monounsaturated FA (MU) in mol % was lower; PU mol %, AI and UI were higher. These features in BAT of pre-weaning rats resembled those in the cold-acclimated adults, suggesting a close relationship of the PL-FA profile to high activity of BAT.

  16. Adipose tissue-derived stem cells in neural regenerative medicine.

    PubMed

    Yeh, Da-Chuan; Chan, Tzu-Min; Harn, Horng-Jyh; Chiou, Tzyy-Wen; Chen, Hsin-Shui; Lin, Zung-Sheng; Lin, Shinn-Zong

    2015-01-01

    Adipose tissue-derived stem cells (ADSCs) have two essential characteristics with regard to regenerative medicine: the convenient and efficient generation of large numbers of multipotent cells and in vitro proliferation without a loss of stemness. The implementation of clinical trials has prompted widespread concern regarding safety issues and has shifted research toward the therapeutic efficacy of stem cells in dealing with neural degeneration in cases such as stroke, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, cavernous nerve injury, and traumatic brain injury. Most existing studies have reported that cell therapies may be able to replenish lost cells and promote neuronal regeneration, protect neuronal survival, and play a role in overcoming permanent paralysis and loss of sensation and the recovery of neurological function. The mechanisms involved in determining therapeutic capacity remain largely unknown; however, this concept can still be classified in a methodical manner by citing current evidence. Possible mechanisms include the following: 1) the promotion of angiogenesis, 2) the induction of neuronal differentiation and neurogenesis, 3) reductions in reactive gliosis, 4) the inhibition of apoptosis, 5) the expression of neurotrophic factors, 6) immunomodulatory function, and 7) facilitating neuronal integration. In this study, several human clinical trials using ADSCs for neuronal disorders were investigated. It is suggested that ADSCs are one of the choices among various stem cells for translating into clinical application in the near future.

  17. Fluorescence Imaging of Interscapular Brown Adipose Tissue in Living Mice†

    PubMed Central

    Rice, Douglas R.; White, Alexander G.; Leevy, W. Matthew

    2015-01-01

    Brown adipose tissue (BAT) plays a key role in energy expenditure and heat generation and is a promising target for diagnosing and treating obesity, diabetes and related metabolism disorders. While several nuclear and magnetic resonance imaging methods are established for detecting human BAT, there are no convenient protocols for high throughput imaging of BAT in small animal models. Here we disclose a simple but effective method for non-invasive optical imaging of interscapular BAT in mice using a micellar formulation of the commercially available deep-red fluorescent probe, SRFluor680. Whole-body fluorescence imaging of living mice shows extensive accumulation of the fluorescent probe in the interscapular BAT and ex vivo analysis shows 3.5-fold selectivity for interscapular BAT over interscapular WAT. Additional imaging studies indicate that SRFluor680 uptake is independent of mouse species and BAT metabolic state. The results are consistent with an unusual pharmacokinetic process that involves irreversible translocation of the lipophilic SRFluor680 from the micelle nanocarrier into the adipocytes within the BAT. Multimodal PET/CT and planar fluorescence/X-ray imaging of the same living animal shows co-localization of BAT mass signal reported by the fluorescent probe and BAT metabolism signal reported by the PET agent, 18F-FDG. The results indicate a path towards a new, dual probe molecular imaging paradigm that allows separate and independent non-invasive visualization of BAT mass and BAT metabolism in a living subject. PMID:26015867

  18. Nutritional manipulations in the perinatal period program adipose tissue in offspring.

    PubMed

    Lukaszewski, Marie-Amélie; Eberlé, Delphine; Vieau, Didier; Breton, Christophe

    2013-11-15

    Epidemiological studies demonstrated initially that maternal undernutrition results in low birth weight with increased risk for long-lasting energy balance disorders. Maternal obesity and diabetes associated with high birth weight, excessive nutrition in neonates, and rapid catchup growth also increase the risk of adult-onset obesity. As stated by the Developmental Origin of Health and Disease concept, nutrient supply perturbations in the fetus or neonate result in long-term programming of individual body weight set point. Adipose tissue is a key fuel storage unit involved mainly in the maintenance of energy homeostasis. Studies in numerous animal models have demonstrated that the adipose tissue is the focus of developmental programming events in a sex- and depot-specific manner. In rodents, adipose tissue development is particularly active during the perinatal period, especially during the last week of gestation and during early postnatal life. In contrast to rodents, this process essentially takes place before birth in bigger mammals. Despite these different developmental time windows, altricial and precocial species share several mechanisms of adipose tissue programming. Offspring from malnourished dams present adipose tissue with a series of alterations: impaired glucose uptake, insulin and leptin resistance, low-grade inflammation, modified sympathetic activity with reduced noradrenergic innervations, and thermogenesis. These modifications reprogram adipose tissue metabolism by changing fat distribution and composition and by enhancing adipogenesis, predisposing the offspring to fat accumulation. Subtle adipose tissue circadian rhythm changes are also observed. Inappropriate hormone levels, modified tissue sensitivity (especially glucocorticoid system), and epigenetic mechanisms are key factors for adipose tissue programming during the perinatal period.

  19. Adipose Tissue Deficiency and Chronic Inflammation in Diabetic Goto-Kakizaki Rats

    PubMed Central

    Xue, Bai; Sukumaran, Siddharth; Nie, Jing; Jusko, William J.; DuBois, Debra C.; Almon, Richard R.

    2011-01-01

    Type 2 diabetes (T2DM) is a heterogeneous group of diseases that is progressive and involves multiple tissues. Goto-Kakizaki (GK) rats are a polygenic model with elevated blood glucose, peripheral insulin resistance, a non-obese phenotype, and exhibit many degenerative changes observed in human T2DM. As part of a systems analysis of disease progression in this animal model, this study characterized the contribution of adipose tissue to pathophysiology of the disease. We sacrificed subgroups of GK rats and appropriate controls at 4, 8, 12, 16 and 20 weeks of age and carried out a gene array analysis of white adipose tissue. We expanded our physiological analysis of the animals that accompanied our initial gene array study on the livers from these animals. The expanded analysis included adipose tissue weights, HbA1c, additional hormonal profiles, lipid profiles, differential blood cell counts, and food consumption. HbA1c progressively increased in the GK animals. Altered corticosterone, leptin, and adiponectin profiles were also documented in GK animals. Gene array analysis identified 412 genes that were differentially expressed in adipose tissue of GKs relative to controls. The GK animals exhibited an age-specific failure to accumulate body fat despite their relatively higher calorie consumption which was well supported by the altered expression of genes involved in adipogenesis and lipogenesis in the white adipose tissue of these animals, including Fasn, Acly, Kklf9, and Stat3. Systemic inflammation was reflected by chronically elevated white blood cell counts. Furthermore, chronic inflammation in adipose tissue was evident from the differential expression of genes involved in inflammatory responses and activation of natural immunity, including two interferon regulated genes, Ifit and Iipg, as well as MHC class II genes. This study demonstrates an age specific failure to accumulate adipose tissue in the GK rat and the presence of chronic inflammation in adipose

  20. Dietary Fructose Activates Insulin Signaling and Inflammation in Adipose Tissue: Modulatory Role of Resveratrol

    PubMed Central

    Pektas, Mehmet Bilgehan; Koca, Halit Bugra; Sadi, Gokhan; Akar, Fatma

    2016-01-01

    The effects of high-fructose diet on adipose tissue insulin signaling and inflammatory process have been poorly documented. In this study, we examined the influences of long-term fructose intake and resveratrol supplementation on the expression of genes involved in insulin signaling and the levels of inflammatory cytokines and sex hormones in the white adipose tissues of male and female rats. Consumption of high-fructose diet for 24 weeks increased the expression of genes involved in insulin signaling including IR, IRS-1, IRS-2, Akt, PI3K, eNOS, mTOR, and PPARγ, despite induction of proinflammatory markers, iNOS, TNFα, IL-1β, IL-18, MDA, and ALT, as well as anti-inflammatory factors, IL-10 and Nrf2 in adipose tissues from males and females. Total and free testosterone concentrations of adipose tissues were impaired in males but increased in females, although there were no changes in their blood levels. Resveratrol supplementation markedly restored the levels of MDA, IL6, IL-10, and IL-18, as well as iNOS, Nrf2, and PI3K mRNA, in adipose tissues of both genders. Dietary fructose activates both insulin signaling and inflammatory pathway in the adipose tissues of male and female rats proposing no correlation between the tissue insulin signaling and inflammation. Resveratrol has partly modulatory effects on fructose-induced changes. PMID:27066503

  1. Adipose tissue and adrenal glands: novel pathophysiological mechanisms and clinical applications.

    PubMed

    Kargi, Atil Y; Iacobellis, Gianluca

    2014-01-01

    Hormones produced by the adrenal glands and adipose tissues have important roles in normal physiology and are altered in many disease states. Obesity is associated with changes in adrenal function, including increase in adrenal medullary catecholamine output, alterations of the hypothalamic-pituitary-adrenal (HPA) axis, elevations in circulating aldosterone together with changes in adipose tissue glucocorticoid metabolism, and enhanced adipocyte mineralocorticoid receptor activity. It is unknown whether these changes in adrenal endocrine function are in part responsible for the pathogenesis of obesity and related comorbidities or represent an adaptive response. In turn, adipose tissue hormones or "adipokines" have direct effects on the adrenal glands and interact with adrenal hormones at several levels. Here we review the emerging evidence supporting the existence of "cross talk" between the adrenal gland and adipose tissue, focusing on the relevance and roles of their respective hormones in health and disease states including obesity, metabolic syndrome, and primary disorders of the adrenals.

  2. Brown adipose tissue and novel therapeutic approaches to treat metabolic disorders.

    PubMed

    Roman, Sabiniano; Agil, Ahmad; Peran, Macarena; Alvaro-Galue, Eduardo; Ruiz-Ojeda, Francisco J; Fernández-Vázquez, Gumersindo; Marchal, Juan A

    2015-04-01

    In humans, 2 functionally different types of adipose tissue coexist: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is involved in energy storage, whereas BAT is involved in energy expenditure. Increased amounts of WAT may contribute to the development of metabolic disorders, such as obesity-associated type 2 diabetes mellitus and cardiovascular diseases. In contrast, the thermogenic function of BAT allows high consumption of fatty acids because of the activity of uncoupling protein 1 in the internal mitochondrial membrane. Interestingly, obesity reduction and insulin sensitization have been achieved by BAT activation-regeneration in animal models. This review describes the origin, function, and differentiation mechanisms of BAT to identify new therapeutic strategies for the treatment of metabolic disorders related to obesity. On the basis of the animal studies, novel approaches for BAT regeneration combining stem cells from the adipose tissue with active components, such as melatonin, may have potential for the treatment of metabolic disorders in humans.

  3. [Cultivation and morphological characteristics of rat adipose tissue-derived vascular endothelial cells in vitro].

    PubMed

    Lin, Yunfeng; Chen, Xizhe; Tian, Weidong; Yan, Zhengbin; Zheng, Xiaohui

    2006-08-01

    The subcutaneous adipose tissue from the inguen of four Sprague-Dawley rats was obtained, then digested with one volume of collagenase type I and cultured with BGJb medium. The obtained adipose stromal cells were induced in human endothelial-SFM for 7 d. The cells were observed under inverted microscope every day and identified by transmission electron microscope and immunocytochemical staining with factor VIII antigen. The results showed the induced cells uniformly had characteristic cobblestone morphology of endothelial cells. Factor VIII antigen staining was positive in cytoplasm. Under transmission electron microscope, the cells displayed many finger like microvilli and numerous lysosomes, mitochondria, a few coarse endoplasmic reticulum and Weibel-Palade bodies. The characteristics of the rat adipose tissue-derived endothelial cells were consistent with those of vascular endothelial cells derived from other tissues. It seems that subcutaneous adipose tissue may represent a new alternative source of endogenous vascular endothelial cells.

  4. Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice

    DOE PAGES

    Trindade, Sandra; Rijo-Ferreira, Filipa; Carvalho, Tania; ...

    2016-05-26

    Trypanosoma brucei is an extracellular parasite that causes sleeping sickness. In mammalian hosts, trypanosomes are thought to exist in two major niches: early in infection, they populate the blood; later, they breach the blood-brain barrier. Working with a well-established mouse model, we discovered that adipose tissue constitutes a third major reservoir for T. brucei. Parasites from adipose tissue, here termed adipose tissue forms (ATFs), can replicate and were capable of infecting a naive animal. ATFs were transcriptionally distinct from bloodstream forms, and the genes upregulated included putative fatty acid β-oxidation enzymes. Consistent with this, ATFs were able to utilize exogenousmore » myristate and form β-oxidation intermediates, suggesting that ATF parasites can use fatty acids as an external carbon source. Lastly, these findings identify the adipose tissue as a niche for T. brucei during its mammalian life cycle and could potentially explain the weight loss associated with sleeping sickness.« less

  5. Long-term allergen exposure induces adipose tissue inflammation and circulatory system injury.

    PubMed

    Jung, Chien-Cheng; Su, Huey-Jen

    2016-05-01

    The purpose of this study was to study whether allergen exposure can induce inflammation and lower the anti-inflammation levels in serum and in adipose tissues, and further develop cardiovascular injury. Our data showed that heart rate was significantly higher in the OVA-challenged mice compared to control mice. Moreover, there were higher expressions of pro-inflammation genes in the OVA-challenged mice in adipose tissues, and the expressions of anti-inflammation genes were lower. The levels of inflammation mediators were associated in serum and adipose tissues. The level of circulatory injury lactate dehydrogenase was significantly associated with the levels of E-selectin, resistin and adiponectin in the serum. The hematoxylin and eosin and immunohistochemistry stains indicated the OVA-challenged mice had higher levels of inflammation. In summary, the current study demonstrated allergen exposure can cause cardiovascular injury, and inflammatory mediators in adipose tissues play an important role in the pathogenesis of cardiovascular injury.

  6. Carcass, sensory, and adipose tissue traits of Brangus steers fed casein-formaldehyde-protected starch and/or canola lipid.

    PubMed

    Gilbert, C D; Lunt, D K; Miller, R K; Smith, S B

    2003-10-01

    We predicted that providing rumen-protected starch to the small intestine would increase adiposity of intramuscular adipose tissue, and hence marbling scores. Eighteen 15-mo-old Brangus steers were assigned randomly to one of three dietary treatment groups: 1) cracked corn (Corn); 2) casein-formaldehyde-protected lipid (Canola Lipid); or 3) casein-formaldehyde-protected starch (Marble Plus). All diets were equally balanced for ME (2.91 Mcal/kg), CP (12.5%), and DM (89%). Ether extract was 3.7, 6.9, and 6.9% for the Corn, Canola Lipid, and Marble Plus diets, respectively, and the Marble Plus also contained 3.7% protected starch. Steers were fed the diets for 126 d before slaughter. Average daily feed intake (as-fed basis), ADG, and feed:gain ratio (P > or = 0.23) did not differ among treatments. Carcasses across treatments did not differ (P = 0.26) in adjusted fat thickness, longissimus muscle area, hot carcass weight, dressing percentage, marbling scores, or USDA quality grade. Percentage of kidney, pelvic, and heart fat was higher (P < 0.01) and USDA yield grade tended (P = 0.08) to be higher, for carcasses from Canola Lipid- and Marble Plus-fed steers than for carcasses from Corn-fed steers. Of the descriptive meat sensory attributes, connective tissue amount (P = 0.06) and painty flavor (P = 0.12) tended to be greater in meat from Marble Plus steers than from Canola Lipid steers. Percentages of 18:2n-6 and 18:3n-3 were higher (P < 0.01), and 15:0, 16:0, and 17:0 were lower (P < or = 0.07) in tissues from Canola Lipid- and Marble Plus-fed steers than in Corn-fed steers. Mean adipocyte volume was greater (P = 0.02) in i.m. adipose tissue and tended (P = 0.11) to be greater in s.c. adipose tissue of Canola Lipid steers (848 pL) vs. Corn steers (536 pL). Glucose incorporation into total lipids, glyceride-glycerol, and fatty acid fractions was highest (P < 0.01) in s.c. adipose tissue from steers fed Marble Plus but was unaffected (P > or = 0.33) by diet in i

  7. Bonghan system as mesenchymal stem cell niches and pathways of macrophages in adipose tissues.

    PubMed

    Lee, Byung-Cheon; Bae, Kyung-Hee; Jhon, Gil-Ja; Soh, Kwang-Sup

    2009-03-01

    A new technique for visualizing Bonghan ducts (BHDs) and Bonghan corpuscles (BHCs) was developed by using a vivi-staining dye, Trypan blue. The dye stains BHDs and BHCs preferentially to adipocytes so that tracking a BHD and a BHC, even inside adipose tissues, is possible. Concerning the functions of the BHD and the BHC in adipose tissues, we propose conjectures: the Bonghan system may be niches for mesenchymal stem cells, which can differentiate into adipocytes, and pathways for macrophages involved in adipogenesis.

  8. HMGA1 overexpression in adipose tissue impairs adipogenesis and prevents diet-induced obesity and insulin resistance.

    PubMed

    Arce-Cerezo, Altamira; García, Miquel; Rodríguez-Nuevo, Aida; Crosa-Bonell, Mireia; Enguix, Natalia; Peró, Albert; Muñoz, Sergio; Roca, Carles; Ramos, David; Franckhauser, Sylvie; Elias, Ivet; Ferre, Tura; Pujol, Anna; Ruberte, Jesús; Villena, Josep A; Bosch, Fàtima; Riu, Efrén

    2015-09-28

    High-Mobility-Group-A1 (HMGA1) proteins are non-histone proteins that regulate chromatin structure and gene expression during embryogenesis, tumourigenesis and immune responses. In vitro studies suggest that HMGA1 proteins may be required to regulate adipogenesis. To examine the role of HMGA1 in vivo, we generated transgenic mice overexpressing HMGA1 in adipose tissues. HMGA1 transgenic mice showed a marked reduction in white and brown adipose tissue mass that was associated with downregulation of genes involved in adipogenesis and concomitant upregulation of preadipocyte markers. Reduced adipogenesis and decreased fat mass were not associated with altered glucose homeostasis since HMGA1 transgenic mice fed a regular-chow diet exhibited normal glucose tolerance and insulin sensitivity. However, when fed a high-fat diet, overexpression of HMGA1 resulted in decreased body-weight gain, reduced fat mass, but improved insulin sensitivity and glucose tolerance. Although HMGA1 transgenic mice exhibited impaired glucose uptake in adipose tissue due to impaired adipogenesis, the increased glucose uptake observed in skeletal muscle may account for the improved glucose homeostasis. Our results indicate that HMGA1 plays an important function in the regulation of white and brown adipogenesis in vivo and suggests that impaired adipocyte differentiation and decreased fat mass is not always associated with impaired whole-body glucose homeostasis.

  9. Pomegranate vinegar attenuates adiposity in obese rats through coordinated control of AMPK signaling in the liver and adipose tissue

    PubMed Central

    2013-01-01

    Background The effect of pomegranate vinegar (PV) on adiposity was investigated in high-fat diet (HF)-induced obese rats. Methods The rats were divided into 5 groups and treated with HF with PV or acetic acid (0, 6.5 or 13% w/w) for 16 weeks. Statistical analyses were performed by the Statistical Analysis Systems package, version 9.2. Results Compared to control, PV supplementation increased phosphorylation of AMP-activated protein kinase (AMPK), leading to changes in mRNA expressions: increases for hormone sensitive lipase and mitochondrial uncoupling protein 2 and decreases for sterol regulatory element binding protein-1c (SREBP-1c) and peroxisome proliferator-activated receptorγ (PPARγ) in adipose tissue; increases for PPARα and carnitinepalmitoyltransferase-1a (CPT-1a) and decrease for SREBP-1c in the liver. Concomitantly, PV reduced increases of body weight (p = 0.048), fat mass (p = 0.033), hepatic triglycerides (p = 0.005), and plasma triglycerides (p = 0.001). Conclusions These results suggest that PV attenuates adiposity through the coordinated control of AMPK, which leads to promotion of lipolysis in adipose tissue and stimulation of fatty acid oxidation in the liver. PMID:24180378

  10. Overexpressing the novel autocrine/endocrine adipokine WISP2 induces hyperplasia of the heart, white and brown adipose tissues and prevents insulin resistance

    PubMed Central

    Grünberg, John R.; Hoffmann, Jenny M.; Hedjazifar, Shahram; Nerstedt, Annika; Jenndahl, Lachmi; Elvin, Johannes; Castellot, John; Wei, Lan; Movérare-Skrtic, Sofia; Ohlsson, Claes; Holm, Louise Mannerås; Bäckhed, Fredrik; Syed, Ismail; Bosch, Fatima; Saghatelian, Alan; Kahn, Barbara B.; Hammarstedt, Ann; Smith, Ulf

    2017-01-01

    WISP2 is a novel adipokine, most highly expressed in the adipose tissue and primarily in undifferentiated mesenchymal cells. As a secreted protein, it is an autocrine/paracrine activator of canonical WNT signaling and, as an intracellular protein, it helps to maintain precursor cells undifferentiated. To examine effects of increased WISP2 in vivo, we generated an aP2-WISP2 transgenic (Tg) mouse. These mice had increased serum levels of WISP2, increased lean body mass and whole body energy expenditure, hyperplastic brown/white adipose tissues and larger hyperplastic hearts. Obese Tg mice remained insulin sensitive, had increased glucose uptake by adipose cells and skeletal muscle in vivo and ex vivo, increased GLUT4, increased ChREBP and markers of adipose tissue lipogenesis. Serum levels of the novel fatty acid esters of hydroxy fatty acids (FAHFAs) were increased and transplantation of Tg adipose tissue improved glucose tolerance in recipient mice supporting a role of secreted FAHFAs. The growth-promoting effect of WISP2 was shown by increased BrdU incorporation in vivo and Tg serum increased mesenchymal precursor cell proliferation in vitro. In contrast to conventional canonical WNT ligands, WISP2 expression was inhibited by BMP4 thereby allowing normal induction of adipogenesis. WISP2 is a novel secreted regulator of mesenchymal tissue cellularity. PMID:28240264

  11. Overexpressing the novel autocrine/endocrine adipokine WISP2 induces hyperplasia of the heart, white and brown adipose tissues and prevents insulin resistance.

    PubMed

    Grünberg, John R; Hoffmann, Jenny M; Hedjazifar, Shahram; Nerstedt, Annika; Jenndahl, Lachmi; Elvin, Johannes; Castellot, John; Wei, Lan; Movérare-Skrtic, Sofia; Ohlsson, Claes; Holm, Louise Mannerås; Bäckhed, Fredrik; Syed, Ismail; Bosch, Fatima; Saghatelian, Alan; Kahn, Barbara B; Hammarstedt, Ann; Smith, Ulf

    2017-02-27

    WISP2 is a novel adipokine, most highly expressed in the adipose tissue and primarily in undifferentiated mesenchymal cells. As a secreted protein, it is an autocrine/paracrine activator of canonical WNT signaling and, as an intracellular protein, it helps to maintain precursor cells undifferentiated. To examine effects of increased WISP2 in vivo, we generated an aP2-WISP2 transgenic (Tg) mouse. These mice had increased serum levels of WISP2, increased lean body mass and whole body energy expenditure, hyperplastic brown/white adipose tissues and larger hyperplastic hearts. Obese Tg mice remained insulin sensitive, had increased glucose uptake by adipose cells and skeletal muscle in vivo and ex vivo, increased GLUT4, increased ChREBP and markers of adipose tissue lipogenesis. Serum levels of the novel fatty acid esters of hydroxy fatty acids (FAHFAs) were increased and transplantation of Tg adipose tissue improved glucose tolerance in recipient mice supporting a role of secreted FAHFAs. The growth-promoting effect of WISP2 was shown by increased BrdU incorporation in vivo and Tg serum increased mesenchymal precursor cell proliferation in vitro. In contrast to conventional canonical WNT ligands, WISP2 expression was inhibited by BMP4 thereby allowing normal induction of adipogenesis. WISP2 is a novel secreted regulator of mesenchymal tissue cellularity.

  12. The "Big Bang" in obese fat: Events initiating obesity-induced adipose tissue inflammation.

    PubMed

    Wensveen, Felix M; Valentić, Sonja; Šestan, Marko; Turk Wensveen, Tamara; Polić, Bojan

    2015-09-01

    Obesity is associated with the accumulation of pro-inflammatory cells in visceral adipose tissue (VAT), which is an important underlying cause of insulin resistance and progression to diabetes mellitus type 2 (DM2). Although the role of pro-inflammatory cytokines in disease development is established, the initiating events leading to immune cell activation remain elusive. Lean adipose tissue is predominantly populated with regulatory cells, such as eosinophils and type 2 innate lymphocytes. These cells maintain tissue homeostasis through the excretion of type 2 cytokines, such as IL-4, IL-5, and IL-13, which keep adipose tissue macrophages (ATMs) in an anti-inflammatory, M2-like state. Diet-induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in VAT, characterized by IFN-γ. A key event is a shift of ATMs toward an M1 phenotype. Recent studies show that obesity-induced adipocyte hypertrophy results in upregulated surface expression of stress markers. Adipose stress is detected by local sentinels, such as NK cells and CD8(+) T cells, which produce IFN-γ, driving M1 ATM polarization. A rapid accumulation of pro-inflammatory cells in VAT follows, leading to inflammation. In this review, we provide an overview of events leading to adipose tissue inflammation, with a special focus on adipose homeostasis and the obesity-induced loss of homeostasis which marks the initiation of VAT inflammation.

  13. Immune-mediated activation of the endocannabinoid system in visceral adipose tissue in obesity.

    PubMed

    Kempf, K; Hector, J; Strate, T; Schwarzloh, B; Rose, B; Herder, C; Martin, S; Algenstaedt, P

    2007-08-01

    The aim of the study was to investigate if the endocannabinoid system (ECS) is activated in visceral adipose tissue and if adipose tissue inflammation affects the ECS activation state. Therefore, expression of fatty acid amide hydrolase (FAAH), cannabinoid receptor 1 (Cb1), adiponectin, and tumor necrosis factor (TNF)-alpha was compared in visceral adipose tissue from 10 normal-weight (BMI 24.4+/-1.1 kg/m2) and 11 obese subjects (BMI 37.6+/-13.6 kg/m2) using quantitative RT-PCR, and gene expression changes were analyzed after in vitro stimulation of visceral adipose tissue with TNF-alpha. The data demonstrate that the ECS is activated in obese visceral adipose tissue as shown by decreased FAAH, Cb1, and adiponectin expression. Obesity-related ECS activation is accompanied by elevated expression of the pro-inflammatory cytokine TNF-alpha, which in turn stimulates ECS activation in vitro. Our data show a strong association between adipose tissue inflammation and ECS activation in obesity, and indicate that a pro-inflammatory state may directly activate the ECS.

  14. In vitro glucose and 2-aminoisobutyric acid uptake by rat interscapular brown adipose tissue.

    PubMed

    Zamora, F; Arola, L; Alemany, M

    1988-03-11

    The dependence upon substrate and insulin concentrations, as well as on sodium and potassium concentrations in the medium of the uptake of glucose and 2-aminoisobutyric acid, was determined for fragments of brown and white adipose tissues incubated in vitro. Brown adipose tissue showed a high capacity for glucose uptake at high glucose concentrations, this uptake being dependent on both glucose and insulin concentration. White adipose tissue showed much more limited uptake capabilities. The presence of Na+ and K+ had little effect on the uptake. The uptake of 2-aminoisobutyric acid was similar in both adipose tissues, being enhanced by physiological levels of insulin and depressed by ouabain. This amino acid transport was dependent on Na+ and K+ concentrations, and the overall transporting capability was two to three orders of magnitude lower than that for glucose. It was concluded that amino acids could not play a significant role as bulk thermogenic substrates for brown adipose tissue, as their transporters lack the plasticity of response to high substrate and insulin concentrations which characterize brown adipose tissue uptake of glucose.

  15. Vagal afferent activation decreases brown adipose tissue (BAT) sympathetic nerve activity and BAT thermogenesis

    PubMed Central

    Madden, Christopher J.; Santos da Conceicao, Ellen Paula; Morrison, Shaun F.

    2017-01-01

    ABSTRACT In urethane/α-chloralose anesthetized rats, electrical stimulation of cervical vagal afferent fibers inhibited the increases in brown adipose tissue sympathetic nerve activity and brown adipose tissue thermogenesis evoked by cold exposure, by nanoinjection of the GABAA receptor antagonist, bicuculline, in the dorsomedial hypothalamus, and by nanoinjection of N-methyl-D-aspartate in the rostral raphe pallidus. Vagus nerve stimulation-evoked inhibition of brown adipose tissue sympathetic nerve activity was prevented by blockade of ionotropic glutamate receptors in the termination site of vagal afferents in the nucleus of the solitary tract, and by nanoinjection of GABAA receptor antagonists in the rostral raphe pallidus. In conclusion, the brown adipose tissue sympathoinhibitory effect of cervical afferent vagal nerve stimulation is mediated by glutamatergic activation of second-order sensory neurons in the nucleus of the solitary tract and by a GABAergic inhibition of brown adipose tissue sympathetic premotor neurons in the rostral raphe pallidus, but does not require GABAergic inhibition of the brown adipose tissue sympathoexcitatory neurons in the dorsomedial hypothalamus. PMID:28349097

  16. Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue

    PubMed Central

    Salas, Anna; Noé, Véronique; Ciudad, Carlos J; Romero, M Mar; Remesar, Xavier; Esteve, Montserrat

    2007-01-01

    Background Short-term OE (oleoyl-estrone) treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Results Gene expression in adipose tissue from female treated rats (48 hours) was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL) were decreased by 52%, those of Fatty Acid Synthase (FAS) by 95%, those of Hormone Sensible Lipase (HSL) by 32%, those of Acetyl CoA Carboxylase (ACC) by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b) by 45%, and those of Fatty Acid Transport Protein 1 (FATP1) and Adipocyte Fatty Acid Binding Protein (FABP4) by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNFα) values showed overexpression (198%). Conclusion Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism. PMID:17725831

  17. Cidea controls lipid droplet fusion and lipid storage in brown and white adipose tissue.

    PubMed

    Wu, Lizhen; Zhou, Linkang; Chen, Cheng; Gong, Jingyi; Xu, Li; Ye, Jing; Li, De; Li, Peng

    2014-01-01

    Excess lipid storage in adipose tissue results in the development of obesity and other metabolic disorders including diabetes, fatty liver and cardiovascular diseases. The lipid droplet (LD) is an important subcellular organelle responsible for lipid storage. We previously observed that Fsp27, a member of the CIDE family proteins, is localized to LD-contact sites and promotes atypical LD fusion and growth. Cidea, a close homolog of Fsp27, is expressed at high levels in brown adipose tissue. However, the exact role of Cidea in promoting LD fusion and lipid storage in adipose tissue remains unknown. Here, we expressed Cidea in Fsp27-knockdown adipocytes and observed that Cidea has similar activity to Fsp27 in promoting lipid storage and LD fusion and growth. Next, we generated Cidea and Fsp27 double-deficient mice and observed that these animals had drastically reduced adipose tissue mass and a strong lean phenotype. In addition, Cidea/Fsp27 double-deficient mice had improved insulin sensitivity and were intolerant to cold. Furthermore, we observed that the brown and white adipose tissues of Cidea/Fsp27 double-deficient mice had significantly reduced lipid storage and contained smaller LDs compared to those of Cidea or Fsp27 single deficient mice. Overall, these data reveal an important role of Cidea in controlling lipid droplet fusion, lipid storage in brown and white adipose tissue, and the development of obesity.

  18. The Ubiquitin Ligase Siah2 Regulates Obesity-induced Adipose Tissue Inflammation

    PubMed Central

    Kilroy, Gail; Carter, Lauren E.; Newman, Susan; Burk, David H.; Manuel, Justin; Möller, Andreas; Bowtell, David D.; Mynatt, Randall L.; Ghosh, Sujoy; Floyd, Z. Elizabeth

    2015-01-01

    Objective Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, we examined the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation. Methods Wild-type and Siah2KO mice were fed a low or high fat diet for 16 weeks. Indirect calorimetry, body composition, glucose and insulin tolerance were assayed along with glucose and insulin levels. Gene and protein expression, immunohistochemistry, adipocyte size distribution and lipolysis were also analyzed. Results Enlarged adipocytes in obese Siah2KO mice are not associated with obesity-induced insulin resistance. Proinflammatory gene expression, stress kinase signaling, fibrosis and crown-like structures are reduced in the Siah2KO adipose tissue and Siah2KO adipocytes are more responsive to insulin-dependent inhibition of lipolysis. Loss of Siah2 increases expression of PPARγ target genes involved in lipid metabolism and decreases expression of proinflammatory adipokines regulated by PPARγ. Conclusions Siah2 links adipocyte hypertrophy with adipocyte dysfunction and recruitment of proinflammatory immune cells to adipose tissue. Selective regulation of PPARγ activity is a Siah2-mediated mechanism contributing to obesity-induced adipose tissue inflammation. PMID:26380945

  19. Prolactin suppresses malonyl-CoA concentration in human adipose tissue.

    PubMed

    Nilsson, L A; Roepstorff, C; Kiens, B; Billig, H; Ling, C

    2009-10-01

    Prolactin is best known for its involvement in lactation, where it regulates mechanisms that supply nutrients for milk production. In individuals with pathological hyperprolactinemia, glucose and fat homeostasis have been reported to be negatively influenced. It is not previously known, however, whether prolactin regulates lipogenesis in human adipose tissue. The aim of this study was to investigate the effect of prolactin on lipogenesis in human adipose tissue in vitro. Prolactin decreased the concentration of malonyl-CoA, the product of the first committed step in lipogenesis, to 77+/-6% compared to control 100+/-5% (p=0.022) in cultured human adipose tissue. In addition, prolactin was found to decrease glucose transporter 4 ( GLUT4) mRNA expression, which may cause decreased glucose uptake. In conclusion, we propose that prolactin decreases lipogenesis in human adipose tissue as a consequence of suppressed malonyl-CoA concentration in parallel with decreased GLUT-4 expression. In the lactating woman, this regulation in adipose tissue may enhance the provision of nutrients for the infant instead of nutrients being stored in adipose tissue. In hyperprolactinemic individuals, a suppressed lipogenesis could contribute to an insulin resistant state with consequences for the health.

  20. Hypoxia-inducible factor 3A gene expression and methylation in adipose tissue is related to adipose tissue dysfunction

    PubMed Central

    Pfeiffer, Susanne; Krüger, Jacqueline; Maierhofer, Anna; Böttcher, Yvonne; Klöting, Nora; El Hajj, Nady; Schleinitz, Dorit; Schön, Michael R.; Dietrich, Arne; Fasshauer, Mathias; Lohmann, Tobias; Dreßler, Miriam; Stumvoll, Michael; Haaf, Thomas; Blüher, Matthias; Kovacs, Peter

    2016-01-01

    Recently, a genome-wide analysis identified DNA methylation of the HIF3A (hypoxia-inducible factor 3A) as strongest correlate of BMI. Here we tested the hypothesis that HIF3A mRNA expression and CpG-sites methylation in adipose tissue (AT) and genetic variants in HIF3A are related to parameters of AT distribution and function. In paired samples of subcutaneous AT (SAT) and visceral AT (VAT) from 603 individuals, we measured HIF3A mRNA expression and analyzed its correlation with obesity and related traits. In subgroups of individuals, we investigated the effects on HIF3A genetic variants on its AT expression (N = 603) and methylation of CpG-sites (N = 87). HIF3A expression was significantly higher in SAT compared to VAT and correlated with obesity and parameters of AT dysfunction (including CRP and leucocytes count). HIF3A methylation at cg22891070 was significantly higher in VAT compared to SAT and correlated with BMI, abdominal SAT and VAT area. Rs8102595 showed a nominal significant association with AT HIF3A methylation levels as well as with obesity and fat distribution. HIF3A expression and methylation in AT are fat depot specific, related to obesity and AT dysfunction. Our data support the hypothesis that HIF pathways may play an important role in the development of AT dysfunction in obesity. PMID:27346320

  1. Selective fatty acid mobilization from adipose tissues of the pheasant (Phasianus colchicus mongolicus) during food deprivation.

    PubMed

    Mustonen, Anne-Mari; Käkelä, Reijo; Asikainen, Juha; Nieminen, Petteri

    2009-01-01

    Avian response to fasting has been examined intensively in penguins (Aptenodytes spp.) adapted to long-term food deprivation but less in species experiencing shorter fasts. Thus, the selectivity in (i) incorporating different fatty acids (FA) from diet into total lipids of white adipose tissue (WAT) and liver and (ii) mobilizing FA from these tissues was examined in pheasants Phasianus colchicus mongolicus fed or fasted for 4 d. Dietary FA were selectively incorporated into intra-abdominal and subcutaneous WAT having a similar composition. The WAT lipids contained higher proportions of saturated and monounsaturated FA and less polyunsaturated FA (PUFA) than the dietary profile. However, the isomers of 20:1 and 22:1 were incorporated inefficiently into the WAT lipids. The essential C18 PUFA precursors having smaller percentages in the pheasant tissues than in the diet were likely converted into longer-chain derivatives probably utilized to a great extent for structural lipids of muscles and organs. During food deprivation, the pheasants preferentially utilized 16:1n-7, 18:3n-3, 18:1n-9, and 16:0 but preserved long-chain saturated and unsaturated FA. Mobilization was more efficient for shorter-chain FA and increased with Delta9-desaturation. The hepatic FA profile was resistant to the 4-d period of food deprivation. The results demonstrate that the incorporation of FA into WAT and their mobilization from lipid stores are selective not only in mammals but also in birds.

  2. Effect of dietary vitamin E supplements on cholesteryl ester transfer activity in hamster adipose tissue.

    PubMed

    Shen, G X; Novak, C; Angel, A

    1996-08-02

    Increased concentration of cholesteryl ester transfer protein (CETP) in plasma favours a lipoprotein profile characterized by a reduced high density lipoprotein (HDL) cholesterol. Previous studies have demonstrated that a diet high in cholesterol and saturated fat (HCSF) is associated with elevated plasma CETP and increased release of cholesterol ester transfer activity (CETA) from hamster adipose tissue incubated in vitro. The present study investigated the effects of vitamin E (Vit.E) ingestion on plasma CETP activity and adipose tissue CETA in Syrian Golden hamsters. A regular diet supplemented by the addition of 1% cholesterol and 10% coconut oil (w/w) was associated with a time-dependent increase in plasma CETP activity and increased release of adipose CETA following incubation of fragments of perirenal adipose tissue. Vit.E ingestion (100 mg/kg body weight per day for 8 weeks) suppressed 85% of the increase of CETA released from cultured hamster adipose tissue and 70% of the increase of plasma CETP activity induced by the HCSF diet. Significant decreases in plasma total and LDL cholesterol and an increase in HDL cholesterol were found in hamsters receiving the HCSF diet plus Vit.E compared to the animals on the HCSF diet alone. In the hamsters on regular chow, Vit.E ingestion alone did not significantly alter adipose tissue CETA, plasma CETP activity or plasma lipoproteins. The results indicate that Vit.E prevents the HCSF diet-induced increase in plasma CETP activity, probably via a reduction of CETA secretion from hamster adipose tissue. This suggests that Vit.E supplementation may help to ameliorate the dyslipidemia caused by a HCSF diet through its inhibitory influence on CETP production in adipose tissue.

  3. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles

    PubMed Central

    Xue, Yuan; Xu, Xiaoyang; Zhang, Xue-Qing; Farokhzad, Omid C.; Langer, Robert

    2016-01-01

    The incidence of obesity, which is recognized by the American Medical Association as a disease, has nearly doubled since 1980, and obesity-related comorbidities have become a major threat to human health. Given that adipose tissue expansion and transformation require active growth of new blood vasculature, angiogenesis offers a potential target for the treatment of obesity-associated disorders. Here we construct two peptide-functionalized nanoparticle (NP) platforms to deliver either Peroxisome Proliferator-Activated Receptor gamma (PPARgamma) activator rosiglitazone (Rosi) or prostaglandin E2 analog (16,16-dimethyl PGE2) to adipose tissue vasculature. These NPs were engineered through self-assembly of a biodegradable triblock polymer composed of end-to-end linkages between poly(lactic-coglycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) and an endothelial-targeted peptide. In this system, released Rosi promotes both transformation of white adipose tissue (WAT) into brown-like adipose tissue and angiogenesis, which facilitates the homing of targeted NPs to adipose angiogenic vessels, thereby amplifying their delivery. We show that i.v. administration of these NPs can target WAT vasculature, stimulate the angiogenesis that is required for the transformation of adipose tissue, and transform WAT into brown-like adipose tissue, by the up-regulation of angiogenesis and brown adipose tissue markers. In a diet-induced obese mouse model, these angiogenesis-targeted NPs have inhibited body weight gain and modulated several serological markers including cholesterol, triglyceride, and insulin, compared with the control group. These findings suggest that angiogenesis-targeting moieties with angiogenic stimulator-loaded NPs could be incorporated into effective therapeutic regimens for clinical treatment of obesity and other metabolic diseases. PMID:27140638

  4. The contribution of visceral adiposity and mid-thigh fat-rich muscle to the metabolic profile in postmenopausal women.

    PubMed

    Dubé, Marie-Christine; Lemieux, Simone; Piché, Marie-Eve; Corneau, Louise; Bergeron, Jean; Riou, Marie-Eve; Weisnagel, Stanley J

    2011-05-01

    This study explored the relationship between muscle fat infiltration derived from mid-thigh computed tomography (CT) scan, central fat distribution and insulin sensitivity in postmenopausal women. Mid-thigh CT scans were used to measure low attenuation muscle surface (LAMS) (0-34 Hounsfield units (HU)), which represented a specific component of fat-rich muscle. Whole-body insulin sensitivity (M/I) was evaluated by an euglycemic-hyperinsulinemic clamp. A group of 103 women aged 57.0 ± 4.4 years was studied. Women with higher levels of LAMS presented higher metabolic risk features, particularly elevated fasting, 2-h plasma glucose (2hPG) concentrations and diminished M/I (P < 0.05). To further study the contribution of muscle fat infiltration and central adiposity on metabolic parameters, we divided the whole group based on the median of LAMS and visceral adipose tissue (VAT). As expected, the best metabolic profile was found in the Low-LAMS/Low-VAT group and the worst in the High-LAMS/High-VAT group. Women with Low-LAMS/High-VAT presented similar metabolic risks to those with High-LAMS/High-VAT. There was no difference between High-LAMS/Low-VAT and Low-LAMS/Low-VAT, which presents the most healthy metabolic and glycemic profiles as reflected by the lowest levels of cardiovascular disease risk variables. This suggests that High-LAMS/Low-VAT is also at low risk of metabolic deteriorations and that High-LAMS, only in the presence of High-VAT seems associated with deteriorated risks. Although increased mid-thigh fat-rich muscle was related to a deteriorated metabolic profile, VAT appears as a more important contributor to alterations in the metabolic profile in postmenopausal women.

  5. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues

    SciTech Connect

    Yamada, Tomoya Higuchi, Mikito; Nakanishi, Naoto

    2015-08-07

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere length of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner. - Highlights: • Visceral adipose tissue express higher pref-1 mRNA than other anatomical sites. • Telomere length in visceral adipose tissue is longer than other anatomical sites. • Telomere length of adipose tissue is not associated with adipocyte size. • Pref-1 mRNA is negatively correlated with intramuscular and visceral adipocyte size.

  6. Uncoupling protein-1 (UCP1) contributes to the basal proton conductance of brown adipose tissue mitochondria.

    PubMed

    Parker, Nadeene; Crichton, Paul G; Vidal-Puig, Antonio J; Brand, Martin D

    2009-08-01

    Proton leak pathways uncouple substrate oxidation from ATP synthesis in mitochondria. These pathways are classified as basal (not regulated) or inducible (activated and inhibited). Previously it was found that over half of the basal proton conductance of muscle mitochondria was catalyzed by the adenine nucleotide translocase (ANT), an abundant mitochondrial anion carrier protein. To determine whether ANT is the unique protein catalyst, or one of many proteins that catalyze basal proton conductance, we measured proton leak kinetics in mitochondria isolated from brown adipose tissue (BAT). BAT can express another mitochondrial anion carrier, UCP1, at concentrations similar to ANT. Basal proton conductance was measured under conditions where UCP1 and ANT were catalytically inactive and was found to be lower in mitochondria from UCP1 knockout mice compared to wild-type. Ablation of another abundant inner membrane protein, nicotinamide nucleotide transhydrogenase, had no effect on proton leak kinetics in mitochondria from liver, kidney or muscle, showing that basal proton conductance is not catalyzed by all membrane proteins. We identify UCP1 as a second protein propagating basal proton leak, lending support to the hypothesis that basal leak pathways are perpetrated by members of the mitochondrial anion carrier family but not by other mitochondrial inner membrane proteins.

  7. Human adipose tissue derived pericytes increase life span in Utrn (tm1Ked) Dmd (mdx) /J mice.

    PubMed

    Valadares, M C; Gomes, J P; Castello, G; Assoni, A; Pellati, M; Bueno, C; Corselli, M; Silva, H; Bartolini, P; Vainzof, M; Margarido, P F; Baracat, E; Péault, B; Zatz, M

    2014-12-01

    Duchenne muscular dystrophy (DMD) is still an untreatable lethal X-linked disorder, which affects 1 in 3500 male births. It is caused by the absence of muscle dystrophin due to mutations in the dystrophin gene. The potential regenerative capacity as well as immune privileged properties of mesenchymal Stem Cells (MSC) has been under investigation for many years in an attempt to treat DMD. One of the questions to be addressed is whether stem cells from distinct sources have comparable clinical effects when injected in murine or canine muscular dystrophy animal models. Many studies comparing different stem cells from various sources were reported but these cells were obtained from different donors and thus with different genetic backgrounds. Here we investigated whether human pericytes obtained from 4 different tissues (muscle, adipose tissue, fallopian tube and endometrium) from the same donor have a similar clinical impact when injected in double mutant Utrn (tm1Ked) Dmd (mdx) /J mice, a clinically relevant model for DMD. After a weekly regimen of intraperitoneal injections of 10(6) cells per 8 weeks we evaluated the motor ability as well as the life span of the treated mice as compared to controls. Our experiment showed that only adipose tissue derived pericytes are able to increase significantly (39 days on average) the life span of affected mice. Microarray analysis showed an inhibition of the interferon pathway by adipose derived pericytes. Our results suggest that the clinical benefit associated with intraperitoneal injections of these adult stem cells is related to immune modulation rather than tissue regeneration.

  8. Alternative Mechanism for White Adipose Tissue Lipolysis after Thermal Injury

    PubMed Central

    Diao, Li; Patsouris, David; Sadri, Ali-Reza; Dai, Xiaojing; Amini-Nik, Saeid; Jeschke, Marc G

    2015-01-01

    Extensively burned patients often suffer from sepsis, a complication that enhances postburn hypermetabolism and contributes to increased incidence of multiple organ failure, morbidity and mortality. Despite the clinical importance of burn sepsis, the molecular and cellular mechanisms of such infection-related metabolic derangements and organ dysfunction are still largely unknown. We recently found that upon endoplasmic reticulum (ER) stress, the white adipose tissue (WAT) interacts with the liver via inflammatory and metabolic signals leading to profound hepatic alterations, including hepatocyte apoptosis and hepatic fatty infiltration. We therefore hypothesized that burn plus infection causes an increase in lipolysis of WAT after major burn, partially through induction of ER stress, contributing to hyperlipidemia and profound hepatic lipid infiltration. We used a two-hit rat model of 60% total body surface area scald burn, followed by intraperitoneal (IP) injection of Pseudomonas Aeruginosa-derived lipopolysaccharide (LPS) 3 d postburn. One day later, animals were euthanized and liver and epididymal WAT (EWAT) samples were collected for gene expression, protein analysis and histological study of inflammasome activation, ER stress, apoptosis and lipid metabolism. Our results showed that burn plus LPS profoundly increased lipolysis in WAT associated with significantly increased hepatic lipid infiltration. Burn plus LPS augmented ER stress by upregulating CHOP and activating ATF6, inducing NLRP3 inflammasome activation and leading to increased apoptosis and lipolysis in WAT with a distinct enzymatic mechanism related to inhibition of AMPK signaling. In conclusion, burn sepsis causes profound alterations in WAT and liver that are associated with changes in organ function and structure. PMID:26736177

  9. Brown Adipose Tissue and Seasonal Variation in Humans

    PubMed Central

    Au-Yong, Iain T.H.; Thorn, Natasha; Ganatra, Rakesh; Perkins, Alan C.; Symonds, Michael E.

    2009-01-01

    OBJECTIVE Brown adipose tissue (BAT) is present in adult humans where it may be important in the prevention of obesity, although the main factors regulating its abundance are not well established. BAT demonstrates seasonal variation relating to ambient temperature and photoperiod in mammals. The objective of our study was therefore to determine whether seasonal variation in BAT activity in humans was more closely related to the prevailing photoperiod or temperature. RESEARCH DESIGN AND METHODS We studied 3,614 consecutive patients who underwent positron emission tomography followed by computed tomography scans. The presence and location of BAT depots were documented and correlated with monthly changes in photoperiod and ambient temperature. RESULTS BAT activity was demonstrated in 167 (4.6%) scans. BAT was demonstrated in 52/724 scans (7.2%) in winter compared with 27/1,067 (2.5%) in summer months (P < 0.00001, χ2 test). Monthly changes in the occurrence of BAT were more closely related to differences in photoperiod (r2 = 0.876) rather than ambient temperature (r2 = 0.696). Individuals with serial scans also demonstrated strong seasonal variation in BAT activity (average standardized uptake value [SUVmax] 1.5 in July and 9.4 in January). BAT was also more common in female patients (female: n = 107, 7.2%; male: n = 60, 2.8%; P < 0.00001, χ2 test). CONCLUSIONS Our study demonstrates a very strong seasonal variation in the presence of BAT. This effect is more closely associated with photoperiod than ambient temperature, suggesting a previously undescribed mechanism for mediating BAT function in humans that could now potentially be recruited for the prevention or reversal of obesity. PMID:19696186

  10. Adipose tissue-derived stem cells show considerable promise for regenerative medicine applications.

    PubMed

    Harasymiak-Krzyżanowska, Izabela; Niedojadło, Alicja; Karwat, Jolanta; Kotuła, Lidia; Gil-Kulik, Paulina; Sawiuk, Magdalena; Kocki, Janusz

    2013-12-01

    The stromal-vascular cell fraction (SVF) of adipose tissue can be an abundant source of both multipotent and pluripotent stem cells, known as adipose-derived stem cells or adipose tissue-derived stromal cells (ADSCs). The SVF also contains vascular cells, targeted progenitor cells, and preadipocytes. Stromal cells isolated from adipose tissue express common surface antigens, show the ability to adhere to plastic, and produce forms that resemble fibroblasts. They are characterized by a high proliferation potential and the ability to differentiate into cells of meso-, ecto- and endodermal origin. Although stem cells obtained from an adult organism have smaller capabilities for differentiation in comparison to embryonic and induced pluripotent stem cells (iPSs), the cost of obtaining them is significantly lower. The 40 years of research that mainly focused on the potential of bone marrow stem cells (BMSCs) revealed a number of negative factors: the painful sampling procedure, frequent complications, and small cell yield. The number of stem cells in adipose tissue is relatively large, and obtaining them is less invasive. Sampling through simple procedures such as liposuction performed under local anesthesia is less painful, ensuring patient comfort. The isolated cells are easily grown in culture, and they retain their properties over many passages. That is why adipose tissue has recently been treated as an attractive alternative source of stem cells. Essential aspects of ADSC biology and their use in regenerative medicine will be analyzed in this article.

  11. Does inorganic nitrate say NO to obesity by browning white adipose tissue?

    PubMed Central

    Roberts, Lee D

    2015-01-01

    The dietary constituent inorganic nitrate, found in large concentrations in green leafy vegetables, has beneficial effects on cardiometabolic health. Contemporary studies employing nitrate have demonstrated that the anion has anti-obesity and anti-diabetic properties; however the nitrate-mediated mechanisms for improving metabolic health remain unclear. Recently, we employed a combined histological, metabolomics, and transcriptional and protein analysis approach to establish that nitrate promoted the “browning” of white adipose tissue via the xanthine oxidoreductase catalyzed reductive nitrate-nitrite-nitric oxide pathway. Interestingly, it was observed that nitrate-stimulated brown adipose-associated gene expression in white adipose tissue was augmented in hypoxia. These findings not only suggest that protection from metabolic disease offered by vegetable consumption may, in part, be mediated through the effects of nitrate on white adipose tissue, but also, since hypoxia is a serious co-morbidity affecting adipose tissue in obese individuals, that nitrate may be effective in promoting the browning of adipose tissue to improve metabolic fitness. PMID:26451288

  12. Correlation of X-ray computed tomography with quantitative nuclear magnetic resonance methods for pre-clinical measurement of adipose and lean tissues in living mice.

    PubMed

    Metzinger, Matthew N; Miramontes, Bernadette; Zhou, Peng; Liu, Yueying; Chapman, Sarah; Sun, Lucy; Sasser, Todd A; Duffield, Giles E; Stack, M Sharon; Leevy, W Matthew

    2014-10-08

    Numerous obesity studies have coupled murine models with non-invasive methods to quantify body composition in longitudinal experiments, including X-ray computed tomography (CT) or quantitative nuclear magnetic resonance (QMR). Both microCT and QMR have been separately validated with invasive techniques of adipose tissue quantification, like post-mortem fat extraction and measurement. Here we report a head-to-head study of both protocols using oil phantoms and mouse populations to determine the parameters that best align CT data with that from QMR. First, an in vitro analysis of oil/water mixtures was used to calibrate and assess the overall accuracy of microCT vs. QMR data. Next, experiments were conducted with two cohorts of living mice (either homogenous or heterogeneous by sex, age and genetic backgrounds) to assess the microCT imaging technique for adipose tissue segmentation and quantification relative to QMR. Adipose mass values were obtained from microCT data with three different resolutions, after which the data were analyzed with different filter and segmentation settings. Strong linearity was noted between the adipose mass values obtained with microCT and QMR, with optimal parameters and scan conditions reported herein. Lean tissue (muscle, internal organs) was also segmented and quantified using the microCT method relative to the analogous QMR values. Overall, the rigorous calibration and validation of the microCT method for murine body composition, relative to QMR, ensures its validity for segmentation, quantification and visualization of both adipose and lean tissues.

  13. Co-option of pre-existing vascular beds in adipose tissue controls tumor growth rates and angiogenesis

    PubMed Central

    Lim, Sharon; Hosaka, Kayoko; Nakamura, Masaki; Cao, Yihai

    2016-01-01

    Many types of cancer develop in close association with highly vascularized adipose tissues. However, the role of adipose pre-existing vascular beds on tumor growth and angiogenesis is unknown. Here we report that pre-existing microvascular density in tissues where tumors originate is a crucial determinant for tumor growth and neovascularization. In three independent tumor types including breast cancer, melanoma, and fibrosarcoma, inoculation of tumor cells in the subcutaneous tissue, white adipose tissue (WAT), and brown adipose tissue (BAT) resulted in markedly differential tumor growth rates and angiogenesis, which were in concordance with the degree of pre-existing vascularization in these tissues. Relative to subcutaneous tumors, WAT and BAT tumors grew at accelerated rates along with improved neovascularization, blood perfusion, and decreased hypoxia. Tumor cells implanted in adipose tissues contained leaky microvessel with poor perivascular cell coverage. Thus, adipose vasculature predetermines the tumor microenvironment that eventually supports tumor growth. PMID:27203675

  14. Disruption of inducible 6-phosphofructo-2-kinase ameliorates diet-induced adiposity but exacerbates systemic insulin resistance and adipose tissue inflammatory response.

    PubMed

    Huo, Yuqing; Guo, Xin; Li, Honggui; Wang, Huan; Zhang, Weiyu; Wang, Ying; Zhou, Huaijun; Gao, Zhanguo; Telang, Sucheta; Chesney, Jason; Chen, Y Eugene; Ye, Jianping; Chapkin, Robert S; Wu, Chaodong

    2010-02-05

    Adiposity is commonly associated with adipose tissue dysfunction and many overnutrition-related metabolic diseases including type 2 diabetes. Much attention has been paid to reducing adiposity as a way to improve adipose tissue function and systemic insulin sensitivity. PFKFB3/iPFK2 is a master regulator of adipocyte nutrient metabolism. Using PFKFB3(+/-) mice, the present study investigated the role of PFKFB3/iPFK2 in regulating diet-induced adiposity and systemic insulin resistance. On a high-fat diet (HFD), PFKFB3(+/-) mice gained much less body weight than did wild-type littermates. This was attributed to a smaller increase in adiposity in PFKFB3(+/-) mice than in wild-type controls. However, HFD-induced systemic insulin resistance was more severe in PFKFB3(+/-) mice than in wild-type littermates. Compared with wild-type littermates, PFKFB3(+/-) mice exhibited increased severity of HFD-induced adipose tissue dysfunction, as evidenced by increased adipose tissue lipolysis, inappropriate adipokine expression, and decreased insulin signaling, as well as increased levels of proinflammatory cytokines in both isolated adipose tissue macrophages and adipocytes. In an in vitro system, knockdown of PFKFB3/iPFK2 in 3T3-L1 adipocytes caused a decrease in the rate of glucose incorporation into lipid but an increase in the production of reactive oxygen species. Furthermore, knockdown of PFKFB3/iPFK2 in 3T3-L1 adipocytes inappropriately altered the expression of adipokines, decreased insulin signaling, increased the phosphorylation states of JNK and NFkappaB p65, and enhanced the production of proinflammatory cytokines. Together, these data suggest that PFKFB3/iPFK2, although contributing to adiposity, protects against diet-induced insulin resistance and adipose tissue inflammatory response.

  15. Autocrine effects of transgenic resistin reduce palmitate and glucose oxidation in brown adipose tissue.

    PubMed

    Pravenec, Michal; Mlejnek, Petr; Zídek, Václav; Landa, Vladimír; Šimáková, Miroslava; Šilhavý, Jan; Strnad, Hynek; Eigner, Sebastian; Eigner Henke, Kateřina; Škop, Vojtěch; Malínská, Hana; Trnovská, Jaroslava; Kazdová, Ludmila; Drahota, Zdeněk; Mráček, Tomáš; Houštěk, Josef

    2016-06-01

    Resistin has been originally identified as an adipokine that links obesity to insulin resistance in mice. In our previous studies in spontaneously hypertensive rats (SHR) expressing a nonsecreted form of mouse resistin (Retn) transgene specifically in adipose tissue (SHR-Retn), we have observed an increased lipolysis and serum free fatty acids, ectopic fat accumulation in muscles, and insulin resistance. Recently, brown adipose tissue (BAT) has been suggested to play an important role in the pathogenesis of metabolic disturbances. In the current study, we have analyzed autocrine effects of transgenic resistin on BAT glucose and lipid metabolism and mitochondrial function in the SHR-Retn vs. nontransgenic SHR controls. We observed that interscapular BAT isolated from SHR-Retn transgenic rats compared with SHR controls showed a lower relative weight (0.71 ± 0.05 vs. 0.91 ± 0.08 g/100 g body wt, P < 0.05), significantly reduced both basal and insulin stimulated incorporation of palmitate into BAT lipids (658 ± 50 vs. 856 ± 45 and 864 ± 47 vs. 1,086 ± 35 nmol/g/2 h, P ≤ 0.01, respectively), and significantly decreased palmitate oxidation (37.6 ± 4.5 vs. 57 ± 4.1 nmol/g/2 h, P = 0.007) and glucose oxidation (277 ± 34 vs. 458 ± 38 nmol/g/2 h, P = 0.001). In addition, in vivo microPET imaging revealed significantly reduced (18)F-FDG uptake in BAT induced by exposure to cold in SHR-Retn vs. control SHR (232 ± 19 vs. 334 ± 22 kBq/ml, P < 0.05). Gene expression profiles in BAT identified differentially expressed genes involved in skeletal muscle and connective tissue development, inflammation and MAPK and insulin signaling. These results provide evidence that autocrine effects of resistin attenuate differentiation and activity of BAT and thus may play a role in the pathogenesis of insulin resistance in the rat.

  16. A maternal cafeteria diet during gestation and lactation promotes adiposity and impairs skeletal muscle development and metabolism in rat offspring at weaning.

    PubMed

    Bayol, Stéphanie A; Simbi, Bigboy H; Stickland, Neil C

    2005-09-15

    We examined the effects of a maternal cafeteria diet on skeletal muscle and adipose tissue development in the offspring at weaning. Rats born to mothers fed the cafeteria diet either during gestation alone or during both gestation and lactation exhibited a 25% reduction in muscle cross-sectional area with approximately 20% fewer fibres compared with pups fed a balanced chow diet. Maintaining the cafeteria diet during lactation increased intramuscular lipid content and fat pad weights characterized by adipocyte hypertrophy but not hyperplasia. These pups also had elevated muscle IGF-1, IGF-1 receptor, and PPARgamma mRNA levels, which may indicate an attempt to maintain normal insulin sensitivity. The increased adiposity and elevated IGF-1, IGF-1 receptor and PPARgamma mRNAs were not seen in the pups rehabilitated to the balanced diet during lactation. However, these pups exhibited reduced muscle cell proliferation (PCNA) with reduced insulin receptor and a trend towards reduced glucose transporter (GLUT)-4 mRNAs when compared with pups fed a balanced chow diet, indicating possible alterations in glucose uptake by muscle tissue. Therefore, rats born to mothers fed a cafeteria diet during gestation alone or during both gestation and lactation exhibited impaired skeletal muscle development and metabolic disorders normally associated with insulin resistance as early as the weaning stage.

  17. Impaired Adipose Tissue Expandability and Lipogenic Capacities as Ones of the Main Causes of Metabolic Disorders

    PubMed Central

    Tinahones, Francisco José

    2015-01-01

    Obesity is considered a major health problem. However, mechanisms involved and its comorbidities are not elucidated. Recent theories concerning the causes of obesity have focused on a limit to the functional capacity of adipose tissue, comparing it with other vital organs. This assumption has been the central point of interest in our laboratory. We proposed that the failure of adipose tissue is initiated by the difficulty of this tissue to increase its cellularity due to excess in fat contribution, owing to genetic or environmental factors. Nevertheless, why the adipose tissue reduces its capacity to make new adipocytes via mesenchymal cells of the stroma has not yet been elucidated. Thus, we suggest that this tissue ceases fulfilling its main function, the storage of excess fat, thereby affecting some of the key factors involved in lipogenesis, some of which are reviewed in this paper (PPARγ, ROR1, FASN, SCD1, Rab18, BrCa1, ZAG, and FABP4). On the other hand, mechanisms involved in adipose tissue expandability are also impaired, predominating hypertrophy via an increase in apoptosis and a decrease in adipogenesis and angiogenesis. However, adipose tissue failure is only part of this great orchestra, only a chapter of this nightmare. PMID:25922847

  18. Human adipose-derived stem cells: definition, isolation, tissue-engineering applications.

    PubMed

    Nae, S; Bordeianu, I; Stăncioiu, A T; Antohi, N

    2013-01-01

    Recent researches have demonstrated that the most effective repair system of the body is represented by stem cells - unspecialized cells, capable of self-renewal through successive mitoses, which have also the ability to transform into different cell types through differentiation. The discovery of adult stem cells represented an important step in regenerative medicine because they no longer raises ethical or legal issues and are more accessible. Only in 2002, stem cells isolated from adipose tissue were described as multipotent stem cells. Adipose tissue stem cells benefits in tissue engineering and regenerative medicine are numerous. Development of adipose tissue engineering techniques offers a great potential in surpassing the existing limits faced by the classical approaches used in plastic and reconstructive surgery. Adipose tissue engineering clinical applications are wide and varied, including reconstructive, corrective and cosmetic procedures. Nowadays, adipose tissue engineering is a fast developing field, both in terms of fundamental researches and medical applications, addressing issues related to current clinical pathology or trauma management of soft tissue injuries in different body locations.

  19. 12/15-Lipoxygenase Is Required for the Early Onset of High Fat Diet-Induced Adipose Tissue Inflammation and Insulin Resistance in Mice

    PubMed Central

    Sears, Dorothy D.; Miles, Philip D.; Chapman, Justin; Ofrecio, Jachelle M.; Almazan, Felicidad; Thapar, Divya; Miller, Yury I.

    2009-01-01

    Background Recent understanding that insulin resistance is an inflammatory condition necessitates searching for genes that regulate inflammation in insulin sensitive tissues. 12/15-lipoxygenase (12/15LO) regulates the expression of proinflammatory cytokines and chemokines and is implicated in the early development of diet-induced atherosclerosis. Thus, we tested the hypothesis that 12/15LO is involved in the onset of high fat diet (HFD)-induced insulin resistance. Methodology/Principal Findings Cells over-expressing 12/15LO secreted two potent chemokines, MCP-1 and osteopontin, implicated in the development of insulin resistance. We assessed adipose tissue inflammation and whole body insulin resistance in wild type (WT) and 12/15LO knockout (KO) mice after 2–4 weeks on HFD. In adipose tissue from WT mice, HFD resulted in recruitment of CD11b+, F4/80+ macrophages and elevated protein levels of the inflammatory markers IL-1β, IL-6, IL-10, IL-12, IFNγ, Cxcl1 and TNFα. Remarkably, adipose tissue from HFD-fed 12/15LO KO mice was not infiltrated by macrophages and did not display any increase in the inflammatory markers compared to adipose tissue from normal chow-fed mice. WT mice developed severe whole body (hepatic and skeletal muscle) insulin resistance after HFD, as measured by hyperinsulinemic euglycemic clamp. In contrast, 12/15LO KO mice exhibited no HFD-induced change in insulin-stimulated glucose disposal rate or hepatic glucose output during clamp studies. Insulin-stimulated Akt phosphorylation in muscle tissue from HFD-fed mice was significantly greater in 12/15LO KO mice than in WT mice. Conclusions These results demonstrate that 12/15LO mediates early stages of adipose tissue inflammation and whole body insulin resistance induced by high fat feeding. PMID:19787041

  20. Clustering of strength, physical function, muscle and adiposity characteristics and risk of disability in older adults

    PubMed Central

    Cawthon, Peggy M.; Fox, Kathleen M.; Gandra, Shravanthi. R.; Delmonico, Matthew J.; Chiou, Chiun-Fang; Anthony, Mary S.; Caserotti, Paolo; Kritchevsky, Stephen B.; Newman, Anne B.; Goodpaster, Bret H.; Satterfield, Suzanne; Cummings, Steven R.; Harris, Tamara B.

    2011-01-01

    Objectives Strength, physical performance, adiposity and lean mass may be independent risk factors for disability in older adults. The aim of this study was to empirically identify groupings of these interrelated measures and test how such groupings may relate to disability risk. Design Prospective Health, Aging and Body Composition Study (Health ABC) Setting Two US clinical centers Participants 1,263 women and 1,221 men Measurements Weight, strength (knee extension, grip); walking speed; chair stands; dual x-ray absorptiometry (fat and lean mass for total body, arm, and leg; percent fat); and thigh computed tomography scans (muscle area, muscle density). Analyses were stratified by sex. Factor analysis reduced these variables into a smaller number of components, and proportional hazards models assessed risk of major disability for the components identified. Results In both sexes, factor analysis reduced the 14 individual variables into three components that explained 76–77% of the data variance: Factor 1, an adiposity component, with strong loading by fat mass, weight and muscle density; Factor 2, a strength/lean body size component with strong loading by lean mass, weight and strength; Factor 3, a physical performance component with positive loading by walking speed and chair stands performance. Factor 1 (adiposity) and Factor 3 (performance), but not Factor 2 (strength/lean body size), were associated with disability over 6.1 (± 2.6 SD) years. Conclusion Adiposity and physical performance constructs, but not the strength/lean body size construct, were associated with disability risk, suggesting that adiposity and performance should be considered as risk factors for disability. PMID:21568948

  1. Maternal Obesity in Pregnancy Developmentally Programs Adipose Tissue Inflammation in Young, Lean Male Mice Offspring

    PubMed Central

    Alfaradhi, Maria Z.; Fernandez-Twinn, Denise S.; Pantaleão, Lucas C.; Carr, Sarah K.; Ferland-McCollough, David; Yeo, Giles S. H.; Bushell, Martin; Ozanne, Susan E.

    2016-01-01

    Obesity during pregnancy has a long-term effect on the health of the offspring including risk of developing the metabolic syndrome. Using a mouse model of maternal diet-induced obesity, we employed a genome-wide approach to investigate the microRNA (miRNA) and miRNA transcription profile in adipose tissue to understand mechanisms through which this occurs. Male offspring of diet-induced obese mothers, fed a control diet from weaning, showed no differences in body weight or adiposity at 8 weeks of age. However, offspring from the obese dams had up-regulated cytokine (Tnfα; P < .05) and chemokine (Ccl2 and Ccl7; P < .05) signaling in their adipose tissue. This was accompanied by reduced expression of miR-706, which we showed can directly regulate translation of the inflammatory proteins IL-33 (41% up-regulated; P < .05) and calcium/calmodulin-dependent protein kinase 1D (30% up-regulated; P < .01). We conclude that exposure to obesity during development primes an inflammatory environment in adipose tissue that is independent of offspring adiposity. Programming of adipose tissue miRNAs that regulate expression of inflammatory signaling molecules may be a contributing mechanism. PMID:27583789

  2. Adipose tissue glycogen accumulation is associated with obesity-linked inflammation in humans

    PubMed Central

    Ceperuelo-Mallafré, Victòria; Ejarque, Miriam; Serena, Carolina; Duran, Xavier; Montori-Grau, Marta; Rodríguez, Miguel Angel; Yanes, Oscar; Núñez-Roa, Catalina; Roche, Kelly; Puthanveetil, Prasanth; Garrido-Sánchez, Lourdes; Saez, Enrique; Tinahones, Francisco J.; Garcia-Roves, Pablo M.; Gómez-Foix, Anna Ma; Saltiel, Alan R.; Vendrell, Joan; Fernández-Veledo, Sonia

    2015-01-01

    Objective Glycogen metabolism has emerged as a mediator in the control of energy homeostasis and studies in murine models reveal that adipose tissue might contain glycogen stores. Here we investigated the physio(patho)logical role of glycogen in human adipose tissue in the context of obesity and insulin resistance. Methods We studied glucose metabolic flux of hypoxic human adipoctyes by nuclear magnetic resonance and mass spectrometry-based metabolic approaches. Glycogen synthesis and glycogen content in response to hypoxia was analyzed in human adipocytes and macrophages. To explore the metabolic effects of enforced glycogen deposition in adipocytes and macrophages, we overexpressed PTG, the only glycogen-associated regulatory subunit (PP1-GTS) reported in murine adipocytes. Adipose tissue gene expression analysis was performed on wild type and homozygous PTG KO male mice. Finally, glycogen metabolism gene expression and glycogen accumulation was analyzed in adipose tissue, mature adipocytes and resident macrophages from lean and obese subjects with different degrees of insulin resistance in 2 independent cohorts. Results We show that hypoxia modulates glucose metabolic flux in human adipocytes and macrophages and promotes glycogenesis. Enforced glycogen deposition by overexpression of PTG re-orients adipocyte secretion to a pro-inflammatory response linked to insulin resistance and monocyte/lymphocyte migration. Furthermore, glycogen accumulation is associated with inhibition of mTORC1 signaling and increased basal autophagy flux, correlating with greater leptin release in glycogen-loaded adipocytes. PTG-KO mice have reduced expression of key inflammatory genes in adipose tissue and PTG overexpression in M0 macrophages induces a pro-inflammatory and glycolytic M1 phenotype. Increased glycogen synthase expression correlates with glycogen deposition in subcutaneous adipose tissue of obese patients. Glycogen content in subcutaneous mature adipocytes is associated

  3. Ovariectomy in mature mice does not increase food intake, but increases adiposity and adipose tissue inflammation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Menopause, characterized by reduced estrogen (E2), is associated with increased adiposity and metabolic pathology. Molecular mechanisms underlying this association between low E2 status and metabolic disease are not fully elucidated. When mice are fed a high fat diet (HFD) to induce obesity and diab...

  4. Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles.

    PubMed

    Daquinag, Alexes C; Souza, Glauco R; Kolonin, Mikhail G

    2013-05-01

    White adipose tissue (WAT) is becoming widely used in regenerative medicine/cell therapy applications, and its physiological and pathological importance is increasingly appreciated. WAT is a complex organ composed of differentiated adipocytes, stromal mesenchymal progenitors known as adipose stromal cells (ASC), as well as endothelial vascular cells and infiltrating leukocytes. Two-dimensional (2D) culture that has been typically used for studying adipose cells does not adequately recapitulate WAT complexity. Improved methods for reconstruction of functional WAT ex vivo are instrumental for understanding of physiological interactions between the composing cell populations. Here, we used a three-dimensional (3D) levitation tissue culture system based on magnetic nanoparticle assembly to model WAT development and growth in organoids termed adipospheres. We show that 3T3-L1 preadipocytes remain viable in spheroids for a long period of time, while in 2D culture, they lose adherence and die after reaching confluence. Upon adipogenesis induction in 3T3-L1 adipospheres, cells efficiently formed large lipid droplets typical of white adipocytes in vivo, while only smaller lipid droplet formation is achievable in 2D. Adiposphere-based coculture of 3T3-L1 preadipocytes with murine endothelial bEND.3 cells led to a vascular-like network assembly concomitantly with lipogenesis in perivascular cells. Adipocyte-depleted stromal vascular fraction (SVF) of mouse WAT cultured in 3D underwent assembly into organoids with vascular-like structures containing luminal endothelial and perivascular stromal cell layers. Adipospheres made from primary WAT cells displayed robust proliferation and complex hierarchical organization reflected by a matricellular gradient incorporating ASC, endothelial cells, and leukocytes, while ASC quickly outgrew other cell types in adherent culture. Upon adipogenesis induction, adipospheres derived from the SVF displayed more efficient lipid droplet

  5. Metabolic impact of the glycerol channels AQP7 and AQP9 in adipose tissue and liver.

    PubMed

    Lebeck, Janne

    2014-04-01

    Obesity and secondary development of type 2 diabetes (T2D) are major health care problems throughout the developed world. Accumulating evidence suggest that glycerol metabolism contributes to the pathophysiology of obesity and T2D. Glycerol is a small molecule that serves as an important intermediate between carbohydrate and lipid metabolism. It is stored primarily in adipose tissue as the backbone of triglyceride (TG) and during states of metabolic stress, such as fasting and diabetes, it is released for metabolism in other tissues. In the liver, glycerol serves as a gluconeogenic precursor and it is used for the esterification of free fatty acid into TGs. Aquaporin 7 (AQP7) in adipose tissue and AQP9 in the liver are transmembrane proteins that belong to the subset of AQPs called aquaglyceroporins. AQP7 facilitates the efflux of glycerol from adipose tissue and AQP7 deficiency has been linked to TG accumulation in adipose tissue and adult onset obesity. On the other hand, AQP9 expressed in liver facilitates the hepatic uptake of glycerol and thereby the availability of glycerol for de novo synthesis of glucose and TG that both are involved in the pathophysiology of diabetes. The aim of this review was to summarize the current knowledge on the role of the two glycerol channels in controlling glycerol metabolism in adipose tissue and liver.

  6. The role of sex steroids in white adipose tissue adipocyte function.

    PubMed

    Newell-Fugate, A E

    2017-04-01

    With the increasing knowledge that gender influences normal physiology, much biomedical research has begun to focus on the differential effects of sex on tissue function. Sexual dimorphism in mammals is due to the combined effects of both genetic and hormonal factors. Hormonal factors are mutable particularly in females in whom the estrous cycle dominates the hormonal milieu. Given the severity of the obesity epidemic and the fact that there are differences in the obesity rates in men and women, the role of sex in white adipose tissue function is being recognized as increasingly important. Although sex differences in white adipose tissue distribution are well established, the mechanisms affecting differential function of adipocytes within white adipose tissue in males and females remain largely understudied and poorly understood. One of the largest differences in the endocrine environment in males and females is the concentration of circulating androgens and estrogens. This review examines the effects of androgens and estrogens on lipolysis/lipogenesis, adipocyte differentiation, insulin sensitivity and adipokine production in adipocytes from white adipose tissue with a specific emphasis on the sexual dimorphism of adipocyte function in white adipose tissue during both health and disease.

  7. Differential Role of <