Sample records for adipose tissue protein

  1. Protein Kinase A Regulatory Subunits in Human Adipose Tissue

    PubMed Central

    Mantovani, Giovanna; Bondioni, Sara; Alberti, Luisella; Gilardini, Luisa; Invitti, Cecilia; Corbetta, Sabrina; Zappa, Marco A.; Ferrero, Stefano; Lania, Andrea G.; Bosari, Silvano; Beck-Peccoz, Paolo; Spada, Anna

    2009-01-01

    OBJECTIVE—In human adipocytes, the cAMP-dependent pathway mediates signals originating from β-adrenergic activation, thus playing a key role in the regulation of important metabolic processes, i.e., lipolysis and thermogenesis. Cyclic AMP effects are mainly mediated by protein kinase A (PKA), whose R2B regulatory isoform is the most expressed in mouse adipose tissue, where it protects against diet-induced obesity and fatty liver development. The aim of the study was to investigate possible differences in R2B expression, PKA activity, and lipolysis in adipose tissues from obese and nonobese subjects. RESEARCH DESIGN AND METHODS—The expression of the different PKA regulatory subunits was evaluated by immunohistochemistry, Western blot, and real-time PCR in subcutaneous and visceral adipose tissue samples from 20 nonobese and 67 obese patients. PKA activity and glycerol release were evaluated in total protein extract and adipocytes isolated from fresh tissue samples, respectively. RESULTS—Expression techniques showed that R2B was the most abundant regulatory protein, both at mRNA and protein level. Interestingly, R2B mRNA levels were significantly lower in both subcutaneous and visceral adipose tissues from obese than nonobese patients and negatively correlated with BMI, waist circumference, insulin levels, and homeostasis model assessment of insulin resistance. Moreover, both basal and stimulated PKA activity and glycerol release were significantly lower in visceral adipose tissue from obese patients then nonobese subjects. CONCLUSIONS—Our results first indicate that, in human adipose tissue, there are important BMI-related differences in R2B expression and PKA activation, which might be included among the multiple determinants involved in the different lipolytic response to β-adrenergic activation in obesity. PMID:19095761

  2. Succination of Thiol Groups in Adipose Tissue Proteins in Diabetes

    PubMed Central

    Frizzell, Norma; Rajesh, Mathur; Jepson, Matthew J.; Nagai, Ryoji; Carson, James A.; Thorpe, Suzanne R.; Baynes, John W.

    2009-01-01

    S-(2-Succinyl)cysteine (2SC) is formed by reaction of the Krebs cycle intermediate fumarate with cysteine residues in protein, a process termed succination of protein. Both fumarate and succination of proteins are increased in adipocytes cultured in high glucose medium (Nagai, R., Brock, J. W., Blatnik, M., Baatz, J. E., Bethard, J., Walla, M. D., Thorpe, S. R., Baynes, J. W., and Frizzell, N. (2007) J. Biol. Chem. 282, 34219–34228). We show here that succination of protein is also increased in epididymal, mesenteric, and subcutaneous adipose tissue of diabetic (db/db) mice and that adiponectin is a major target for succination in both adipocytes and adipose tissue. Cys-39, which is involved in cross-linking of adiponectin monomers to form trimers, was identified as a key site of succination of adiponectin in adipocytes. 2SC was detected on two of seven monomeric forms of adiponectin immunoprecipitated from adipocytes and epididymal adipose tissue. Based on densitometry, 2SC-adiponectin accounted for ∼7 and 8% of total intracellular adiponectin in cells and tissue, respectively. 2SC was found only in the intracellular, monomeric forms of adiponectin and was not detectable in polymeric forms of adiponectin in cell culture medium or plasma. We conclude that succination of adiponectin blocks its incorporation into trimeric and higher molecular weight, secreted forms of adiponectin. We propose that succination of proteins is a biomarker of mitochondrial stress and accumulation of Krebs cycle intermediates in adipose tissue in diabetes and that succination of adiponectin may contribute to the decrease in plasma adiponectin in diabetes. PMID:19592500

  3. Brown adipose tissue

    PubMed Central

    Townsend, Kristy; Tseng, Yu-Hua

    2012-01-01

    Obesity is currently a global pandemic, and is associated with increased mortality and co-morbidities including many metabolic diseases. Obesity is characterized by an increase in adipose mass due to increased energy intake, decreased energy expenditure, or both. While white adipose tissue is specialized for energy storage, brown adipose tissue has a high concentration of mitochondria and uniquely expresses uncoupling protein 1, enabling it to be specialized for energy expenditure and thermogenesis. Although brown fat was once considered only necessary in babies, recent morphological and imaging studies have provided evidence that, contrary to prior belief, this tissue is present and active in adult humans. In recent years, the topic of brown adipose tissue has been reinvigorated with many new studies regarding brown adipose tissue differentiation, function and therapeutic promise. This review summarizes the recent advances, discusses the emerging questions and offers perspective on the potential therapeutic applications targeting this tissue. PMID:23700507

  4. Vibration Training Triggers Brown Adipocyte Relative Protein Expression in Rat White Adipose Tissue

    PubMed Central

    Sun, Chao; Zeng, Ruixia; Cao, Ge; Song, Zhibang; Zhang, Yibo; Liu, Chang

    2015-01-01

    Recently, vibration training is considered as a novel strategy of weight loss; however, its mechanisms are still unclear. In this study, normal or high-fat diet-induced rats were trained by whole body vibration for 8 weeks. We observed that the body weight and fat metabolism index, blood glucose, triglyceride, cholesterol, and free fatty acid in obesity rats decreased significantly compared with nonvibration group (n = 6). Although intrascapular BAT weight did not change significantly, vibration enhanced ATP reduction and increased protein level of the key molecule of brown adipose tissue (BAT), PGC-1α, and UCP1 in BAT. Interestingly, the adipocytes in retroperitoneal white adipose tissue (WAT) became smaller due to vibration exercise and had higher protein level of the key molecule of brown adipose tissue (BAT), PGC-1α, and UCP1 and inflammatory relative proteins, IL-6 and TNFα. Simultaneously, ATP content and PPARγ protein level in WAT became less in rats compared with nonvibration group. The results indicated that vibration training changed lipid metabolism in rats and promoted brown fat-like change in white adipose tissues through triggering BAT associated gene expression, inflammatory reflect, and reducing energy reserve. PMID:26125027

  5. A low-protein, high-carbohydrate diet increases browning in perirenal adipose tissue but not in inguinal adipose tissue.

    PubMed

    Pereira, Mayara P; Ferreira, Laís A A; da Silva, Flávia H S; Christoffolete, Marcelo A; Metsios, George S; Chaves, Valéria E; de França, Suélem A; Damazo, Amílcar S; Flouris, Andreas D; Kawashita, Nair H

    2017-10-01

    The aim of this study was to evaluate the browning and origin of fatty acids (FAs) in the maintenance of triacylglycerol (TG) storage and/or as fuel for thermogenesis in perirenal adipose tissue (periWAT) and inguinal adipose tissue (ingWAT) of rats fed a low-protein, high-carbohydrate (LPHC) diet. LPHC (6% protein, 74% carbohydrate) or control (C; 17% protein, 63% carbohydrate) diets were administered to rats for 15 d. The tissues were stained with hematoxylin and eosin for histologic analysis. The content of uncoupling protein 1 (UCP1) was determined by immunofluorescence. Levels of T-box transcription factor (TBX1), PR domain containing 16 (PRDM16), adipose triacylglycerol lipase (ATGL), hormone-sensitive lipase, lipoprotein lipase (LPL), glycerokinase, phosphoenolpyruvate carboxykinase (PEPCK), glucose transporter 4, β 3 -adrenergic receptor (AR), β 1 -AR, protein kinase A (PKA), adenosine-monophosphate-activated protein kinase (AMPK), and phospho-AMPK were determined by immunoblotting. Serum fibroblast growth factor 21 (FGF21) was measured using a commercial kit (Student's t tests, P < 0.05). The LPHC diet increased FGF21 levels by 150-fold. The presence of multilocular adipocytes, combined with the increased contents of UCP1, TBX1, and PRDM16 in periWAT of LPHC-fed rats, suggested the occurrence of browning. The contents of β 1 -AR and LPL were increased in the periWAT. The ingWAT showed higher ATGL and PEPCK levels, phospho-AMPK/AMPK ratio, and reduced β 3 -AR and PKA levels. These findings suggest that browning occurred only in the periWAT and that higher utilization of FAs from blood lipoproteins acted as fuel for thermogenesis. Increased glycerol 3-phosphate generation by glyceroneogenesis increased FAs reesterification from lipolysis, explaining the increased TG storage in the ingWAT. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. White adipose tissue genome wide-expression profiling and adipocyte metabolic functions after soy protein consumption in rats.

    PubMed

    Frigolet, Maria E; Torres, Nimbe; Uribe-Figueroa, Laura; Rangel, Claudia; Jimenez-Sanchez, Gerardo; Tovar, Armando R

    2011-02-01

    Obesity is associated with an increase in adipose tissue mass due to an imbalance between high dietary energy intake and low physical activity; however, the type of dietary protein may contribute to its development. The aim of the present work was to study the effect of soy protein versus casein on white adipose tissue genome profiling, and the metabolic functions of adipocytes in rats with diet-induced obesity. The results showed that rats fed a Soy Protein High-Fat (Soy HF) diet gained less weight and had lower serum leptin concentration than rats fed a Casein High-Fat (Cas HF) diet, despite similar energy intake. Histological studies indicated that rats fed the Soy HF diet had significantly smaller adipocytes than those fed the Cas HF diet, and this was associated with a lower triglyceride/DNA content. Fatty acid synthesis in isolated adipocytes was reduced by the amount of fat consumed but not by the type of protein ingested. Expression of genes of fatty acid oxidation increased in adipose tissue of rats fed Soy diets; microarray analysis revealed that Soy protein consumption modified the expression of 90 genes involved in metabolic functions and inflammatory response in adipose tissue. Network analysis showed that the expression of leptin was regulated by the type of dietary protein and it was identified as a central regulator of the expression of lipid metabolism genes in adipose tissue. Thus, soy maintains the size and metabolic functions of adipose tissue through biochemical adaptations, adipokine secretion, and global changes in gene expression. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Adipose Tissue in HIV Infection.

    PubMed

    Koethe, John R

    2017-09-12

    HIV infection and antiretroviral therapy (ART) treatment exert diverse effects on adipocytes and stromal-vascular fraction cells, leading to changes in adipose tissue quantity, distribution, and energy storage. A HIV-associated lipodystrophic condition was recognized early in the epidemic, characterized by clinically apparent changes in subcutaneous, visceral, and dorsocervical adipose depots. Underlying these changes is altered adipose tissue morphology and expression of genes central to adipocyte maturation, regulation, metabolism, and cytokine signaling. HIV viral proteins persist in circulation and locally within adipose tissue despite suppression of plasma viremia on ART, and exposure to these proteins impairs preadipocyte maturation and reduces adipocyte expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) and other genes involved in cell regulation. Several early nucleoside reverse transcriptase inhibitor and protease inhibitor antiretroviral drugs demonstrated substantial adipocyte toxicity, including reduced mitochondrial DNA content and respiratory chain enzymes, reduced PPAR-γ and other regulatory gene expression, and increased proinflammatory cytokine production. Newer-generation agents, such as integrase inhibitors, appear to have fewer adverse effects. HIV infection also alters the balance of CD4+ and CD8+ T cells in adipose tissue, with effects on macrophage activation and local inflammation, while the presence of latently infected CD4+ T cells in adipose tissue may constitute a protected viral reservoir. This review provides a synthesis of the literature on how HIV virus, ART treatment, and host characteristics interact to affect adipose tissue distribution, immunology, and contribution to metabolic health, and adipocyte maturation, cellular regulation, and energy storage. © 2017 American Physiological Society. Compr Physiol 7:1339-1357, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  8. The peritumoural adipose tissue microenvironment and cancer. The roles of fatty acid binding protein 4 and fatty acid binding protein 5.

    PubMed

    Guaita-Esteruelas, S; Gumà, J; Masana, L; Borràs, J

    2018-02-15

    The adipose tissue microenvironment plays a key role in tumour initiation and progression because it provides fatty acids and adipokines to tumour cells. The fatty acid-binding protein (FABP) family is a group of small proteins that act as intracellular fatty acid transporters. Adipose-derived FABPs include FABP4 and FABP5. Both have an important role in lipid-related metabolic processes and overexpressed in many cancers, such as breast, prostate, colorectal and ovarian. Moreover, their expression in peritumoural adipose tissue is deregulated, and their circulating levels are upregulated in some tumours. In this review, we discuss the role of the peritumoural adipose tissue and the related adipokines FABP4 and FABP5 in cancer initiation and progression and the possible pathways implicated in these processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Noncanonical Wnt signaling promotes obesity-induced adipose tissue inflammation and metabolic dysfunction independent of adipose tissue expansion.

    PubMed

    Fuster, José J; Zuriaga, María A; Ngo, Doan Thi-Minh; Farb, Melissa G; Aprahamian, Tamar; Yamaguchi, Terry P; Gokce, Noyan; Walsh, Kenneth

    2015-04-01

    Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains largely unexplored. Here we provide evidence from human, mouse, and cell culture studies showing that Wnt5a-mediated, noncanonical Wnt signaling contributes to obesity-associated metabolic dysfunction by increasing adipose tissue inflammation. Wnt5a expression is significantly upregulated in human visceral fat compared with subcutaneous fat in obese individuals. In obese mice, Wnt5a ablation ameliorates insulin resistance, in parallel with reductions in adipose tissue inflammation. Conversely, Wnt5a overexpression in myeloid cells augments adipose tissue inflammation and leads to greater impairments in glucose homeostasis. Wnt5a ablation or overexpression did not affect fat mass or adipocyte size. Mechanistically, Wnt5a promotes the expression of proinflammatory cytokines by macrophages in a Jun NH2-terminal kinase-dependent manner, leading to defective insulin signaling in adipocytes. Exogenous interleukin-6 administration restores insulin resistance in obese Wnt5a-deficient mice, suggesting a central role for this cytokine in Wnt5a-mediated metabolic dysfunction. Taken together, these results demonstrate that noncanonical Wnt signaling contributes to obesity-induced insulin resistance independent of adipose tissue expansion. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. [Human brown adipose tissue].

    PubMed

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  11. Estrogen receptor protein content is different in abdominal than gluteal subcutaneous adipose tissue of overweight-to-obese premenopausal women.

    PubMed

    Gavin, Kathleen M; Cooper, Elizabeth E; Hickner, Robert C

    2013-08-01

    Premenopausal women demonstrate a distinctive gynoid body fat distribution and circulating estrogen status is associated with the maintenance of this adiposity patterning. Estrogen's role in modulation of regional adiposity may occur through estrogen receptors (ERs), which are present in human adipose tissue. The purpose of this study was to determine regional differences in the protein content of ERα, ERβ, and the G protein-coupled estrogen receptor (GPER) between the abdominal (AB) and gluteal (GL) subcutaneous adipose tissue of overweight-to-obese premenopausal women. Biopsies of the subcutaneous AB and GL adipose tissue were performed in 15 premenopausal women (7 Caucasian/8 African American, 25.1 ± 1.8 years, BMI 29.5 ± 0.5kg/m(2)). Adipose tissue protein content was measured by western blot analysis and correlation analyses were conducted to assess the relationship between ER protein content and anthropometric indices/body composition measurements. We found that ERα protein was higher in AB than GL (AB 1.0 ± 0.2 vs GL 0.67 ± 0.1 arbitrary units [AU], P=0.02), ERβ protein was higher in GL than AB (AB 0.78 ± 0.12 vs GL 1.3 ± 0.2 AU, P=0.002), ERα/ERβ ratio was higher in AB than GL (AB 1.9 ± 0.4 vs GL 0.58 ± 0.08 AU, P=0.007), and GPER protein content was similar in AB and GL (P=0.80) subcutaneous adipose tissue. Waist-to-hip ratio was inversely related to gluteal ERβ (r(2)=0.315, P=0.03) and positively related to gluteal ERα/ERβ ratio (r(2)=0.406, P=0.01). These results indicate that depot specific ER content may be an important underlying determinant of regional effects of estrogen in upper and lower body adipose tissue of overweight-to-obese premenopausal women. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Functional Characterization of Preadipocytes Derived from Human Periaortic Adipose Tissue

    PubMed Central

    Camacho, Jaime; Duque, Juan; Carreño, Marisol; Acero, Edward; Pérez, Máximo; Ramirez, Sergio; Umaña, Juan; Obando, Carlos; Guerrero, Albert; Sandoval, Néstor; Rodríguez, Gina

    2017-01-01

    Adipose tissue can affect the metabolic control of the cardiovascular system, and its anatomic location can affect the vascular function differently. In this study, biochemical and phenotypical characteristics of adipose tissue from periaortic fat were evaluated. Periaortic and subcutaneous adipose tissues were obtained from areas surrounding the ascending aorta and sternotomy incision, respectively. Adipose tissues were collected from patients undergoing myocardial revascularization or mitral valve replacement surgery. Morphological studies with hematoxylin/eosin and immunohistochemical assay were performed in situ to quantify adipokine expression. To analyze adipogenic capacity, adipokine expression, and the levels of thermogenic proteins, adipocyte precursor cells were isolated from periaortic and subcutaneous adipose tissues and induced to differentiation. The precursors of adipocytes from the periaortic tissue accumulated less triglycerides than those from the subcutaneous tissue after differentiation and were smaller than those from subcutaneous adipose tissue. The levels of proteins involved in thermogenesis and energy expenditure increased significantly in periaortic adipose tissue. Additionally, the expression levels of adipokines that affect carbohydrate metabolism, such as FGF21, increased significantly in mature adipocytes induced from periaortic adipose tissue. These results demonstrate that precursors of periaortic adipose tissue in humans may affect cardiovascular events and might serve as a target for preventing vascular diseases. PMID:29209367

  13. Uncovering Suitable Reference Proteins for Expression Studies in Human Adipose Tissue with Relevance to Obesity

    PubMed Central

    Pérez-Pérez, Rafael; López, Juan A.; García-Santos, Eva; Camafeita, Emilio; Gómez-Serrano, María; Ortega-Delgado, Francisco J.; Ricart, Wifredo; Fernández-Real, José M.; Peral, Belén

    2012-01-01

    Background Protein expression studies based on the two major intra-abdominal human fat depots, the subcutaneous and the omental fat, can shed light into the mechanisms involved in obesity and its co-morbidities. Here we address, for the first time, the identification and validation of reference proteins for data standardization, which are essential for accurate comparison of protein levels in expression studies based on fat from obese and non-obese individuals. Methodology and Findings To uncover adipose tissue proteins equally expressed either in omental and subcutaneous fat depots (study 1) or in omental fat from non-obese and obese individuals (study 2), we have reanalyzed our previously published data based on two-dimensional fluorescence difference gel electrophoresis. Twenty-four proteins (12 in study 1 and 12 in study 2) with similar expression levels in all conditions tested were selected and identified by mass spectrometry. Immunoblotting analysis was used to confirm in adipose tissue the expression pattern of the potential reference proteins and three proteins were validated: PARK7, ENOA and FAA. Western Blot analysis was also used to test customary loading control proteins. ENOA, PARK7 and the customary loading control protein Beta-actin showed steady expression profiles in fat from non-obese and obese individuals, whilst FAA maintained steady expression levels across paired omental and subcutaneous fat samples. Conclusions ENOA, PARK7 and Beta-actin are proper reference standards in obesity studies based on omental fat, whilst FAA is the best loading control for the comparative analysis of omental and subcutaneous adipose tissues either in obese and non-obese subjects. Neither customary loading control proteins GAPDH and TBB5 nor CALX are adequate standards in differential expression studies on adipose tissue. The use of the proposed reference proteins will facilitate the adequate analysis of proteins differentially expressed in the context of obesity

  14. Adenovirus 36 DNA in human adipose tissue.

    PubMed

    Ponterio, E; Cangemi, R; Mariani, S; Casella, G; De Cesare, A; Trovato, F M; Garozzo, A; Gnessi, L

    2015-12-01

    Recent studies have suggested a possible correlation between obesity and adenovirus 36 (Adv36) infection in humans. As information on adenoviral DNA presence in human adipose tissue are limited, we evaluated the presence of Adv36 DNA in adipose tissue of 21 adult overweight or obese patients. Total DNA was extracted from adipose tissue biopsies. Virus detection was performed using PCR protocols with primers against specific Adv36 fiber protein and the viral oncogenic E4orf1 protein nucleotide sequences. Sequences were aligned with the NCBI database and phylogenetic analyses were carried out with MEGA6 software. Adv36 DNA was found in four samples (19%). This study indicates that some individuals carry Adv36 in the visceral adipose tissue. Further studies are needed to determine the specific effect of Adv36 infection on adipocytes, the prevalence of Adv36 infection and its relationship with obesity in the perspective of developing a vaccine that could potentially prevent or mitigate infection.

  15. Soya protein attenuates abnormalities of the renin-angiotensin system in adipose tissue from obese rats.

    PubMed

    Frigolet, María E; Torres, Nimbe; Tovar, Armando R

    2012-01-01

    Several metabolic disturbances during obesity are associated with adipose tissue-altered functions. Adipocytes contain the renin-angiotensin system (RAS), which regulates signalling pathways that control angiogenesis via Akt in an autocrine fashion. Soya protein (Soy) consumption modifies the gene expression pattern in adipose tissue, resulting in an improved adipocyte function. Therefore, the aim of the present work is to study whether dietary Soy regulates the expression of RAS and angiogenesis-related genes and its association with the phosphorylated state of Akt in the adipose tissue of obese rats. Animals were fed a 30 % Soy or casein (Cas) diet containing 5 or 25 % fat for 160 d. mRNA abundance was studied in the adipose tissue, and Akt phosphorylation and hormone release were measured in the primary adipocyte culture. The present results show that Soy treatment in comparison with Cas consumption induces lower angiotensin release and increased insulin-stimulated Akt activation in adipocytes. Furthermore, Soy consumption varies the expression of RAS and angiogenesis-related genes, which maintain cell size and vascularity in the adipose tissue of rats fed a high-fat diet. Thus, adipocyte hypertrophy and impaired angiogenesis, which are frequently observed in dysfunctional adipose tissue, were avoided by consuming dietary Soy. Taken together, these findings suggest that Soy can be used as a dietary strategy to preserve adipocyte functionality and to prevent obesity abnormalities.

  16. Decreased RB1 mRNA, Protein, and Activity Reflect Obesity-Induced Altered Adipogenic Capacity in Human Adipose Tissue

    PubMed Central

    Moreno-Navarrete, José María; Petrov, Petar; Serrano, Marta; Ortega, Francisco; García-Ruiz, Estefanía; Oliver, Paula; Ribot, Joan; Ricart, Wifredo; Palou, Andreu; Bonet, Mª Luisa; Fernández-Real, José Manuel

    2013-01-01

    Retinoblastoma (Rb1) has been described as an essential player in white adipocyte differentiation in mice. No studies have been reported thus far in human adipose tissue or human adipocytes. We aimed to investigate the possible role and regulation of RB1 in adipose tissue in obesity using human samples and animal and cell models. Adipose RB1 (mRNA, protein, and activity) was negatively associated with BMI and insulin resistance (HOMA-IR) while positively associated with the expression of adipogenic genes (PPARγ and IRS1) in both visceral and subcutaneous human adipose tissue. BMI increase was the main contributor to adipose RB1 downregulation. In rats, adipose Rb1 gene expression and activity decreased in parallel to dietary-induced weight gain and returned to baseline with weight loss. RB1 gene and protein expression and activity increased significantly during human adipocyte differentiation. In fully differentiated adipocytes, transient knockdown of Rb1 led to loss of the adipogenic phenotype. In conclusion, Rb1 seems to play a permissive role for human adipose tissue function, being downregulated in obesity and increased during differentiation of human adipocytes. Rb1 knockdown findings further implicate Rb1 as necessary for maintenance of adipogenic characteristics in fully differentiated adipocytes. PMID:23315497

  17. Chronic hindlimb suspension unloading markedly decreases turnover rates of skeletal and cardiac muscle proteins and adipose tissue triglycerides.

    PubMed

    Bederman, Ilya R; Lai, Nicola; Shuster, Jeffrey; Henderson, Leigh; Ewart, Steven; Cabrera, Marco E

    2015-07-01

    We previously showed that a single bolus of "doubly-labeled" water ((2)H2 (18)O) can be used to simultaneously determine energy expenditure and turnover rates (synthesis and degradation) of tissue-specific lipids and proteins by modeling labeling patterns of protein-bound alanine and triglyceride-bound glycerol (Bederman IR, Dufner DA, Alexander JC, Previs SF. Am J Physiol Endocrinol Metab 290: E1048-E1056, 2006). Using this novel method, we quantified changes in the whole body and tissue-specific energy balance in a rat model of simulated "microgravity" induced by hindlimb suspension unloading (HSU). After chronic HSU (3 wk), rats exhibited marked atrophy of skeletal and cardiac muscles and significant decrease in adipose tissue mass. For example, soleus muscle mass progressively decreased 11, 43, and 52%. We found similar energy expenditure between control (90 ± 3 kcal · kg(-1)· day(-1)) and hindlimb suspended (81 ± 6 kcal/kg day) animals. By comparing food intake (∼ 112 kcal · kg(-1) · day(-1)) and expenditure, we found that animals maintained positive calorie balance proportional to their body weight. From multicompartmental fitting of (2)H-labeling patterns, we found significantly (P < 0.005) decreased rates of synthesis (percent decrease from control: cardiac, 25.5%; soleus, 70.3%; extensor digitorum longus, 44.9%; gastrocnemius, 52.5%; and adipose tissue, 39.5%) and rates of degradation (muscles: cardiac, 9.7%; soleus, 52.0%; extensor digitorum longus, 27.8%; gastrocnemius, 37.4%; and adipose tissue, 50.2%). Overall, HSU affected growth of young rats by decreasing the turnover rates of proteins in skeletal and cardiac muscles and adipose tissue triglycerides. Specifically, we found that synthesis rates of skeletal and cardiac muscle proteins were affected to a much greater degree compared with the decrease in degradation rates, resulting in large negative balance and significant tissue loss. In contrast, we found a small decrease in adipose tissue

  18. Effects of Male Hypogonadism on Regional Adipose Tissue Fatty Acid Storage and Lipogenic Proteins

    PubMed Central

    Santosa, Sylvia; Jensen, Michael D.

    2012-01-01

    Testosterone has long been known to affect body fat distribution, although the underlying mechanisms remain elusive. We investigated the effects of chronic hypogonadism in men on adipose tissue fatty acid (FA) storage and FA storage factors. Twelve men with chronic hypogonadism and 13 control men matched for age and body composition: 1) underwent measures of body composition with dual energy x-ray absorptiometry and an abdominal CT scan; 2) consumed an experimental meal containing [3H]triolein to determine the fate of meal FA (biopsy-measured adipose storage vs. oxidation); 3) received infusions of [U-13C]palmitate and [1-14C]palmitate to measure rates of direct free (F)FA storage (adipose biopsies). Adipose tissue lipoprotein lipase, acyl-CoA synthetase (ACS), and diacylglycerol acetyl-transferase (DGAT) activities, as well as, CD36 content were measured to understand the mechanism by which alterations in fat storage occur in response to testosterone deficiency. Results of the study showed that hypogonadal men stored a greater proportion of both dietary FA and FFA in lower body subcutaneous fat than did eugonadal men (both p<0.05). Femoral adipose tissue ACS activity was significantly greater in hypogonadal than eugonadal men, whereas CD36 and DGAT were not different between the two groups. The relationships between these proteins and FA storage varied somewhat between the two groups. We conclude that chronic effects of testosterone deficiency has effects on leg adipose tissue ACS activity which may relate to greater lower body FA storage. These results provide further insight into the role of androgens in body fat distribution and adipose tissue metabolism in humans. PMID:22363653

  19. Thyroid hormone status defines brown adipose tissue activity and browning of white adipose tissues in mice.

    PubMed

    Weiner, Juliane; Kranz, Mathias; Klöting, Nora; Kunath, Anne; Steinhoff, Karen; Rijntjes, Eddy; Köhrle, Josef; Zeisig, Vilia; Hankir, Mohammed; Gebhardt, Claudia; Deuther-Conrad, Winnie; Heiker, John T; Kralisch, Susan; Stumvoll, Michael; Blüher, Matthias; Sabri, Osama; Hesse, Swen; Brust, Peter; Tönjes, Anke; Krause, Kerstin

    2016-12-12

    The present study aimed to determine the effect of thyroid hormone dysfunction on brown adipose tissue activity and white adipose tissue browning in mice. Twenty randomized female C57BL/6NTac mice per treatment group housed at room temperature were rendered hypothyroid or hyperthyroid. In-vivo small animal 18 F-FDG PET/MRI was performed to determine the effects of hypo- and hyperthyroidism on BAT mass and BAT activity. Ex-vivo 14 C-acetate loading assay and assessment of thermogenic gene and protein expression permitted analysis of oxidative and thermogenic capacities of WAT and BAT of eu-, hyper and hypothyroid mice. 18 F-FDG PET/MRI revealed a lack of brown adipose tissue activity in hypothyroid mice, whereas hyperthyroid mice displayed increased BAT mass alongside enhanced 18 F-FDG uptake. In white adipose tissue of both, hyper- and hypothyroid mice, we found a significant induction of thermogenic genes together with multilocular adipocytes expressing UCP1. Taken together, these results suggest that both the hyperthyroid and hypothyroid state stimulate WAT thermogenesis most likely as a consequence of enhanced adrenergic signaling or compensation for impaired BAT function, respectively.

  20. Overall Adiposity, Adipose Tissue Distribution, and Endometriosis: A Systematic Review.

    PubMed

    Backonja, Uba; Buck Louis, Germaine M; Lauver, Diane R

    2016-01-01

    Endometriosis has been associated with a lean body habitus. However, we do not understand whether endometriosis is also associated with other characteristics of adiposity, including adipose tissue distribution and amount of visceral adipose tissue (VAT; adipose tissue lining inner organs). Having these understandings may provide insights on how endometriosis develops-some of the physiological actions of adipose tissue differ depending on tissue amount and location and are related to proposed mechanisms of endometriosis development. The aim of this study was to review the literature regarding overall adiposity, adipose tissue distribution and/or VAT, and endometriosis. We reviewed and synthesized studies indexed in PubMed and/or Web of Science. We included studies that had one or more measures of overall adiposity, adipose tissue distribution, and/or VAT and women with and without endometriosis for comparison. We summarized the findings and commented on the methods used and potential sources of bias. Of 366 identified publications, 19 (5.2%) were eligible. Two additional publications were identified from reference lists. Current research included measures of overall adiposity (e.g., body figure drawings) or adipose tissue distribution (e.g., waist-to-hip ratio), but not VAT. The weight of evidence indicated that endometriosis was associated with low overall adiposity and with a preponderance of adipose tissue distributed below the waist (peripheral). Endometriosis may be associated with being lean or having peripherally distributed adipose tissue. Well-designed studies with various sampling frameworks and precise measures of adiposity and endometriosis are needed to confirm associations between adiposity measures and endometriosis and delineate potential etiological mechanisms underlying endometriosis.

  1. Overall Adiposity, Adipose Tissue Distribution, and Endometriosis: A Systematic Review

    PubMed Central

    Backonja, Uba; Buck Louis, Germaine M.; Lauver, Diane R.

    2015-01-01

    Background Endometriosis has been associated with a lean body habitus. However, we do not understand whether endometriosis is also associated with other characteristics of adiposity, including adipose tissue distribution and amount of visceral adipose tissue (VAT; adipose tissue lining inner organs). Having these understandings may provide insights on how endometriosis develops—some of the physiologic actions of adipose tissue differ depending on tissue amount and location, and are related to proposed mechanisms of endometriosis development. Objectives To review the literature regarding overall adiposity, adipose tissue distribution and/or VAT, and endometriosis. Methods We reviewed and synthesized studies indexed in PubMed and/or Web of Science. We included studies that had one or more measures of overall adiposity, adipose tissue distribution, and/or VAT, and women with and without endometriosis for comparison. We summarized the findings and commented on the methods used and potential sources of bias. Results Out of 366 identified publications, 19 (5.2%) were eligible. Two additional publications were identified from reference lists. Current research included measures of overall adiposity (e.g., body figure drawings) or adipose tissue distribution (e.g., waist-to-hip ratio), but not VAT. The weight of evidence indicated that endometriosis was associated with low overall adiposity and with a preponderance of adipose tissue distributed below the waist (peripheral). Discussion Endometriosis may be associated with being lean or having peripherally distributed adipose tissue. Well-designed studies with various sampling frameworks and precise measures of adiposity and endometriosis are needed to confirm associations between adiposity measures and endometriosis, and delineate potential etiologic mechanisms underlying endometriosis. PMID:26938364

  2. Lipopolysaccharide-binding protein is a negative regulator of adipose tissue browning in mice and humans.

    PubMed

    Gavaldà-Navarro, Aleix; Moreno-Navarrete, José M; Quesada-López, Tania; Cairó, Montserrat; Giralt, Marta; Fernández-Real, José M; Villarroya, Francesc

    2016-10-01

    Adipocyte lipopolysaccharide-binding protein (LBP) biosynthesis is associated with obesity-induced adipose tissue dysfunction. Our purpose was to study the role of LBP in regulating the browning of adipose tissue. Adult mice were maintained at 4°C for 3 weeks or treated with the β3-adrenergic agonist, CL316,243, for 1 week to induce the browning of white fat. Precursor cells from brown and white adipose tissues were cultured under differentiation-inducing conditions to yield brown and beige/brite adipocytes, respectively. In vitro, Lbp was knocked down in 3T3-L1 adipocytes, and cells were treated with recombinant LBP or co-cultured in transwells with control 3T3-L1 adipocytes. Wild-type and Lbp-null mice, fed a standard or high fat diet (HFD) for 15 weeks, were also used in investigations. In humans, subcutaneous and visceral adipose tissue samples were obtained from a cohort of morbidly obese participants. The induction of white fat browning by exposure of mice to cold or CL316,243 treatment was strongly associated with decreased Lbp mRNA expression in white adipose tissue. The acquisition of the beige/brite phenotype in cultured cells was associated with downregulation of Lbp. Moreover, silencing of Lbp induced the expression of brown fat-related genes in adipocytes, whereas LBP treatment reversed this effect. Lbp-null mice exhibited the spontaneous induction of subcutaneous adipose tissue browning, as evidenced by a remarkable increase in Ucp1 and Dio2 gene expression and the appearance of multivacuolar adipocyte clusters. The amount of brown adipose tissue, and brown adipose tissue activity were also increased in Lbp-null mice. These changes were associated with decreased weight gain in Lbp-null mice and protection against HFD-induced inflammatory responses, as shown by reduced IL-6 levels. However, rather than improving glucose homeostasis, these effects led to glucose intolerance and insulin resistance. LBP is identified as a negative regulator of the

  3. Effects of chronic antipsychotic drug exposure on the expression of Translocator Protein and inflammatory markers in rat adipose tissue.

    PubMed

    Calevro, Anita; Cotel, Marie-Caroline; Natesan, Sridhar; Modo, Michel; Vernon, Anthony C; Mondelli, Valeria

    2018-05-16

    The precise effect of antipsychotic drugs on either central or peripheral inflammation remains unclear. An important issue in this debate is to what extent the known peripheral metabolic effects of antipsychotics, including increased adiposity, may contribute to increased inflammation. Adipose tissue is known to contribute to the development of systemic inflammation, which can eventually lead to insulin resistance and metabolic dysregulation. As a first step to address this question, we evaluated whether chronic exposure to clinically comparable doses of haloperidol or olanzapine resulted in the immune activation of rat adipose tissue. Samples of visceral adipose tissue were sampled from male Sprague-Dawley rats exposed to, haloperidol, olanzapine or vehicle (all n = 8), for 8 weeks. From these we measured a cytokine profile, protein expression of F4/80 (a phenotypic macrophage marker) and translocator protein (TSPO), a target for radiotracers putatively indicating microgliosis in clinical neuroimaging studies. Chronic olanzapine exposure resulted in significantly higher adipose IL-6 levels compared with vehicle-controls (ANOVA p = 0.008, Bonferroni post-hoc test p = 0.006); in parallel, animals exposed to olanzapine had significantly higher F4/80 expression when compared with vehicle-controls (Mann Whitney Test, p = 0.014), whereas there was no difference between haloperidol and vehicle groups (Mann Whitney test, p = 0.1). There were no significant effects of either drug on adipose TSPO protein levels. Nevertheless, we found a positive correlation between F4/80 and TSPO adipose protein levels in the olanzapine-exposed rats (Spearman's rho = 0.76, p = 0.037). Our data suggest that chronic exposure to olanzapine, but not haloperidol, increases production of the pro-inflammatory cytokine IL-6 in adipose tissue and increased macrophages expression (F4/80), in the absence of measurable changes in TSPO with respect to vehicle. This may have

  4. Vitamin D and adipose tissue-more than storage.

    PubMed

    Mutt, Shivaprakash J; Hyppönen, Elina; Saarnio, Juha; Järvelin, Marjo-Riitta; Herzig, Karl-Heinz

    2014-01-01

    The pandemic increase in obesity is inversely associated with vitamin D levels. While a higher BMI was causally related to lower 25-hydroxyvitamin D (25(OH)D), no evidence was obtained for a BMI lowering effect by higher 25(OH)D. Some of the physiological functions of 1,25(OH)2D3 (1,25-dihydroxycholecalciferol or calcitriol) via its receptor within the adipose tissue have been investigated such as its effect on energy balance, adipogenesis, adipokine, and cytokine secretion. Adipose tissue inflammation has been recognized as the key component of metabolic disorders, e.g., in the metabolic syndrome. The adipose organ secretes more than 260 different proteins/peptides. However, the molecular basis of the interactions of 1,25(OH)2D3, vitamin D binding proteins (VDBPs) and nuclear vitamin D receptor (VDR) after sequestration in adipose tissue and their regulations are still unclear. 1,25(OH)2D3 and its inactive metabolites are known to inhibit the formation of adipocytes in mouse 3T3-L1 cell line. In humans, 1,25(OH)2D3 promotes preadipocyte differentiation under cell culture conditions. Further evidence of its important functions is given by VDR knock out (VDR(-/-)) and CYP27B1 knock out (CYP27B1 (-/-)) mouse models: Both VDR(-/-) and CYP27B1(-/-) models are highly resistant to the diet induced weight gain, while the specific overexpression of human VDR in adipose tissue leads to increased adipose tissue mass. The analysis of microarray datasets from human adipocytes treated with macrophage-secreted products up-regulated VDR and CYP27B1 genes indicating the capacity of adipocytes to even produce active 1,25(OH)2D3. Experimental studies demonstrate that 1,25(OH)2D3 has an active role in adipose tissue by modulating inflammation, adipogenesis and adipocyte secretion. Yet, further in vivo studies are needed to address the effects and the effective dosages of vitamin D in human adipose tissue and its relevance in the associated diseases.

  5. Protein turnover in adipose tissue from fasted or diabetic rats

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Ost, Alan H.; Coffman, Julia

    1986-01-01

    Protein synthesis and degradation in vitro were compared in epididymal fat pads from animals deprived of food for 48 h or treated 6 or 12 days prior with streptozotocin to induce diabetes. Although both fasting and diabetes led to depressed (-24 to -57 percent) protein synthesis, the diminution in protein degradation (-63 to -72 percent) was even greater, so that net in vitro protein balance improved dramatically. Insulin failed to inhibit protein degradation in fat pads of these rats as it does for fed animals. Although insulin stimulated protein synthesis in fat pads of fasted and 12 day diabetic rats, the absolute change was much smaller than that seen in the fed state. The inhibition of protein degradation by leucine also seems to be less in fasted animals, probably because leucine catabolism is slower in fasting. These results show that fasting and diabetes may improve protein balance in adipose tissue but diminish the regulatory effects of insulin.

  6. Insulin and Metformin Regulate Circulating and Adipose Tissue Chemerin

    PubMed Central

    Tan, Bee K.; Chen, Jing; Farhatullah, Syed; Adya, Raghu; Kaur, Jaspreet; Heutling, Dennis; Lewandowski, Krzysztof C.; O'Hare, J. Paul; Lehnert, Hendrik; Randeva, Harpal S.

    2009-01-01

    OBJECTIVE To assess chemerin levels and regulation in sera and adipose tissue from women with polycystic ovary syndrome (PCOS) and matched control subjects. RESEARCH DESIGN AND METHODS Real-time RT-PCR and Western blotting were used to assess mRNA and protein expression of chemerin. Serum chemerin was measured by enzyme-linked immunosorbent assay. We investigated the in vivo effects of insulin on serum chemerin levels via a prolonged insulin-glucose infusion. Ex vivo effects of insulin, metformin, and steroid hormones on adipose tissue chemerin protein production and secretion into conditioned media were assessed by Western blotting and enzyme-linked immunosorbent assay, respectively. RESULTS Serum chemerin, subcutaneous, and omental adipose tissue chemerin were significantly higher in women with PCOS (n = 14; P < 0.05, P < 0.01). Hyperinsulinemic induction in human subjects significantly increased serum chemerin levels (n = 6; P < 0.05, P < 0.01). In adipose tissue explants, insulin significantly increased (n = 6; P < 0.05, P < 0.01) whereas metformin significantly decreased (n = 6; P < 0.05, P < 0.01) chemerin protein production and secretion into conditioned media, respectively. After 6 months of metformin treatment, there was a significant decrease in serum chemerin (n = 21; P < 0.01). Importantly, changes in homeostasis model assessment–insulin resistance were predictive of changes in serum chemerin (P = 0.046). CONCLUSIONS Serum and adipose tissue chemerin levels are increased in women with PCOS and are upregulated by insulin. Metformin treatment decreases serum chemerin in these women. PMID:19502420

  7. Adipose-derived stem cells and periodontal tissue engineering.

    PubMed

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  8. Exosome-Like Vesicles Derived from Adipose Tissue Provide Biochemical Cues for Adipose Tissue Regeneration.

    PubMed

    Dai, Minjia; Yu, Mei; Zhang, Yan; Tian, Weidong

    2017-11-01

    There is an emerging need for soft tissue replacements in the field of reconstructive surgery for the treatment of congenital deformities, posttraumatic repair, and cancer rehabilitation. Previous studies have shown that the bioactive adipose tissue extract can induce adipogenesis without additional stem cells or growth factors. In this study, we innovatively investigated whether exosome-like vesicles derived from adipose tissue (ELV-AT) could direct stem cell differentiation and trigger adipose tissue regeneration. In vitro, ELV-AT can induce adipogenesis of adipose-derived stem cells and promote proliferation, migration, and angiogenic potential of the aorta endothelial cells. In vivo, ELV-AT were transplanted to a chamber on the back of nude mice and neoadipose tissues were formed. Our findings indicated that ELV-AT could be used as a cell-free therapeutic approach for adipose tissue regeneration.

  9. UCP1 in adipose tissues: two steps to full browning.

    PubMed

    Kalinovich, Anastasia V; de Jong, Jasper M A; Cannon, Barbara; Nedergaard, Jan

    2017-03-01

    The possibility that brown adipose tissue thermogenesis can be recruited in order to combat the development of obesity has led to a high interest in the identification of "browning agents", i.e. agents that increase the amount and activity of UCP1 in brown and brite/beige adipose tissues. However, functional analysis of the browning process yields confusingly different results when the analysis is performed in one of two alternative steps. Thus, in one of the steps, using cold acclimation as a potent model browning agent, we find that if the browning process is followed in mice initially housed at 21 °C (the most common procedure), there is only weak molecular evidence for increases in UCP1 gene expression or UCP1 protein abundance in classical brown adipose tissue; however, in brite/beige adipose depots, there are large increases, apparently associating functional browning with events only in the brite/beige tissues. Contrastingly, in another step, if the process is followed starting with mice initially housed at 30 °C (thermoneutrality for mice, thus similar to normal human conditions), large increases in UCP1 gene expression and UCP1 protein abundance are observed in the classical brown adipose tissue depots; there is then practically no observable UCP1 gene expression in brite/beige tissues. This apparent conundrum can be resolved when it is realized that the classical brown adipose tissue at 21 °C is already essentially fully differentiated and thus expands extensively through proliferation upon further browning induction, rather than by further enhancing cellular differentiation. When the limiting factor for thermogenesis, i.e. the total amount of UCP1 protein per depot, is analyzed, classical brown adipose tissue is by far the predominant site for the browning process, irrespective of which of the two steps is analyzed. There are to date no published data demonstrating that alternative browning agents would selectively promote brite/beige tissues

  10. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels.

    PubMed

    Herman, Mark A; She, Pengxiang; Peroni, Odile D; Lynch, Christopher J; Kahn, Barbara B

    2010-04-09

    Whereas the role of adipose tissue in glucose and lipid homeostasis is widely recognized, its role in systemic protein and amino acid metabolism is less well-appreciated. In vitro and ex vivo experiments suggest that adipose tissue can metabolize substantial amounts of branched chain amino acids (BCAAs). However, the role of adipose tissue in regulating BCAA metabolism in vivo is controversial. Interest in the contribution of adipose tissue to BCAA metabolism has been renewed with recent observations demonstrating down-regulation of BCAA oxidation enzymes in adipose tissue in obese and insulin-resistant humans. Using gene set enrichment analysis, we observe alterations in adipose-tissue BCAA enzyme expression caused by adipose-selective genetic alterations in the GLUT4 glucose-transporter expression. We show that the rate of adipose tissue BCAA oxidation per mg of tissue from normal mice is higher than in skeletal muscle. In mice overexpressing GLUT4 specifically in adipose tissue, we observe coordinate down-regulation of BCAA metabolizing enzymes selectively in adipose tissue. This decreases BCAA oxidation rates in adipose tissue, but not in muscle, in association with increased circulating BCAA levels. To confirm the capacity of adipose tissue to modulate circulating BCAA levels in vivo, we demonstrate that transplantation of normal adipose tissue into mice that are globally defective in peripheral BCAA metabolism reduces circulating BCAA levels by 30% (fasting)-50% (fed state). These results demonstrate for the first time the capacity of adipose tissue to catabolize circulating BCAAs in vivo and that coordinate regulation of adipose-tissue BCAA enzymes may modulate circulating BCAA levels.

  11. Adipose tissue in myocardial infarction.

    PubMed

    Su, Leon; Siegel, John E; Fishbein, Michael C

    2004-01-01

    The histologic evolution of myocardial infarction (MI) has been studied in some detail. However, there is little mention of the presence of adipose tissue in healed MI(HMI). Ninety-one hearts explanted during 1997-2001 were examined to determine the extent of adipose tissue within HMI. The medical records, surgical pathology reports, and all histologic sections of the explanted heart, from patients undergoing heart transplantation for ischemic heart disease, were reviewed. Adipose tissue within the areas of HMI was quantified. The location of the HMI, the age and gender of the patient, age of HMI, and whether the patient was treated with coronary artery bypass surgery (CABG) were noted. Of the 91 hearts examined, 168 HMIs were identified; 141 (84%) contained some mature fat within the HMI. Adipose tissue increased with increasing age, in males, and in those patients who had CABG surgery. The amount of adipose tissue was not related to the location or age of the HMI. Adipose tissue is a prevalent histological finding in HMIs. The pathogenesis of adipose tissue is unknown, but may be influenced by current medical therapy for ischemic heart disease, thus explaining why adipose tissue in HMIs was not reported until 1997. The presence of fat supports the speculation that a regenerative cell, or multipotent stem cell, exists within the heart, and under the influence of microenvironmental or therapeutic factors can differentiate into fat, other mesenchymal tissues, and potentially even myocardium.

  12. Osteopontin: Relation between Adipose Tissue and Bone Homeostasis.

    PubMed

    De Fusco, Carolina; Messina, Antonietta; Monda, Vincenzo; Viggiano, Emanuela; Moscatelli, Fiorenzo; Valenzano, Anna; Esposito, Teresa; Sergio, Chieffi; Cibelli, Giuseppe; Monda, Marcellino; Messina, Giovanni

    2017-01-01

    Osteopontin (OPN) is a multifunctional protein mainly associated with bone metabolism and remodeling. Besides its physiological functions, OPN is implicated in the pathogenesis of a variety of disease states, such as obesity and osteoporosis. Importantly, during the last decades obesity and osteoporosis have become among the main threats to health worldwide. Because OPN is a protein principally expressed in cells with multifaceted effects on bone morphogenesis and remodeling and because it seems to be one of the most overexpressed genes in the adipose tissue of the obese contributing to osteoporosis, this mini review will highlight recent insights about relation between adipose tissue and bone homeostasis.

  13. Changes in lipid transport-involved proteins of epicardial adipose tissue associated with coronary artery disease.

    PubMed

    Salgado-Somoza, Antonio; Teijeira-Fernández, Elvis; Fernández, Ángel Luis; González-Juanatey, José Ramón; Eiras, Sonia

    2012-10-01

    Recent studies have focused on the potential role of epicardial adipose tissue (EAT) in the physiopathology of several metabolic and cardiovascular diseases, especially coronary artery disease (CAD). We aimed to study whether there are differences in the proteome and the secretome between epicardial and subcutaneous adipose tissue (SAT) from patients with and without CAD. EAT and SAT samples were collected from 64 patients undergoing elective cardiac surgery either for coronary artery bypass grafting or valve surgery. One or two-dimensional electrophoresis were performed on tissue samples and media collected at 3, 6, 24 or 48 of tissue culture. Protein identification was performed with mass spectrometry, and the results were then validated with Western blot or enzyme immunoassay. mRNA expression levels were analysed by real time polymerase chain reaction. The release of several proteins was found to be higher in EAT that in SAT. Remarkably, there were higher levels of apolipoprotein A-I and glutation S-transferase P release, whereas mRNA expression of fatty acid binding protein 4 was lower in EAT. Although apolipoprotein A-I protein quantity in EAT was similar between CAD and non CAD patients, its released levels from this fat pad were lower in CAD. EAT and SAT show different profiles of protein release and a different pattern was also found in samples from patients with CAD. These findings might support the hypothesis that EAT plays an interesting role in the physiopathology of atherosclerosis and CAD. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Glucose uptake and glycolytic flux in adipose tissue from rats adapted to a high-protein, carbohydrate-free diet.

    PubMed

    Brito, S R; Moura, M A; Kawashita, N H; Brito, M N; Kettelhut, I C; Migliorini, R H

    2001-10-01

    Rates of glucose uptake by epididymal and retroperitoneal adipose tissue in vivo, as well as rates of hexose uptake and glycolytic flux in isolated adipocytes, were determined in rats adapted to a high-protein, carbohydrate-free (HP) diet and in control rats fed a balanced (N) diet. Adaptation to the HP diet induced a significant reduction in rates of glucose uptake, estimated with 2-deoxy-[1-(3)H]-glucose, both by adipose tissue (epididymal and retroperitoneal) in vivo and by isolated adipocytes. Twelve hours after replacement of the HP diet with the balanced diet, rates of adipose tissue uptake in vivo in HP-adapted rats returned to levels that did not differ significantly from those in N-fed rats. The rate of flux in the glycolytic pathway, estimated with (3)H[5]-glucose, was also significantly reduced in adipocytes from HP-fed rats. In agreement with the above findings, the activities of hexokinase (HK), phosphofructo-1-kinase (PFK-1), and pyruvate kinase (PK) were markedly reduced in adipose tissue from HP-adapted rats. The activity of pyruvate kinase was partially reverted by diet replacement for 12 hours. The low-plasma insulin and high-glucagon levels in HP-fed rats may have played an important role in the reduction of adipose tissue glucose utilization in these animals. Copyright 2001 by W.B. Saunders Company

  15. Adiponectin/resistin interplay in serum and in adipose tissue of obese and normal-weight individuals.

    PubMed

    Jonas, Marta Izabela; Kurylowicz, Alina; Bartoszewicz, Zbigniew; Lisik, Wojciech; Jonas, Maurycy; Domienik-Karlowicz, Justyna; Puzianowska-Kuznicka, Monika

    2017-01-01

    The interplay between adiponectin and resistin, the two adipokines of opposite effects, may determine the metabolic profile of obese individuals and development of obesity-related complications. The current study was conducted to assess how adiponectin/resistin interplay in sera and adipose tissues may influence the metabolic profile of obese and normal-weight subjects. Concentrations of adiponectin and resistin were measured on protein level by immunoassay in visceral and subcutaneous adipose tissues from 50 obese (body mass index > 40 kg/m 2 ) and 28 normal-weight (body mass index 20-24.9 kg/m 2 ) individuals. Simultaneously expression of ADIPOQ and RETN (encoding adiponectin and resistin, respectively) was assessed on mRNA level by real-time PCR. ADIPOQ mRNA (P = 0.0001) and adiponectin protein (P = 0.0013) levels were lower, while RETN mRNA (P = 0.0338) and resistin (P < 0.0001)-higher in subcutaneous adipose tissues of obese subjects. ADIPOQ and RETN mRNA levels did not correlate with protein concentrations in the investigated adipose tissues. In obesity adiponectin serum concentrations correlated positively with ADIPOQ mRNA in subcutaneous adipose tissue (P = 0.005) and negatively with protein levels in visceral adipose tissue (P = 0.001). Obesity was associated with higher adiponectin-resistin index value in sera (P < 0.0001) and decreased in subcutaneous adipose tissue (P < 0.001), but only adiponectin-resistin index measured in sera was significantly higher in obese with the metabolic syndrome (P = 0.04). Obesity affects synthesis of adiponectin and resistin mainly in subcutaneous adipose tissue. The adiponectin-resistin index assessed in the adipose tissues has a different prognostic value compared to the adiponectin-resistin index in serum and does not reflect a metabolic risk in obese individuals.

  16. Differences in prostate and adipose tissue basic fibroblast growth factor: analysis of preliminary results.

    PubMed

    Mydlo, J H; Kral, J G; Macchia, R J

    1997-09-01

    Basic fibroblast growth factor (bFGF or FGF-2) is mitogenic to human prostate epithelial and stromal cells, and it is reported to be elevated in the serum and urine of patients with various cancers, including prostate cancer. Obesity, with increased body fat, is a risk factor for prostate cancer through unknown mechanisms. Because adipose tissue is a source of FGF-2, we determined the quantity and quality of activity of FGF-2 in omental adipose tissue and compared it with normal and cancerous prostate tissues. Using heparin-Sepharose chromatography, we extracted proteins from human omental adipose tissue, adenocarcinoma of the prostate, and benign prostatic hypertrophic (BPH) tissues. Each of the mitogenic proteins eluted with NaCl concentrations between 1.4 M and 1.8 M, similar to control FGF-2. Using FGF-2 antisera (which inhibited the mitogenic activity of the proteins), we performed Western blot analysis to confirm their homology to FGF-2. We also assessed recovery, mitogenicity, and angiogenicity of each of the proteins using thymidine incorporation into human umbilical vein endothelial cells and the chorioallantoic membrane assay. There was greater recovery of FGF-2 from omental adipose tissue compared with cancerous or BPH homogenates (40 micrograms [2.0 micrograms/g] versus 25 micrograms [1.25 micrograms/g] and 20 micrograms [1.0 microgram/g], respectively). Moreover. FGF-2 from adipose tissue had greater mitogenic activity (96.2% versus 74.8% and 54%; P < 0.05) and a greater angiogenic activity (5.1 vessels versus 2.9 and 1.8 vessels; P < 0.05) on the chorioallantoic assay. We suggest that human omental adipose tissue FGF-2 may demonstrate greater mitogenic and angiogenic activity than either BPH or prostate cancer tissue FGF-2. It is not known whether FGF-2 from adipose tissue qualitatively or quantitatively may underlie the relationship between obesity and prostate cancer.

  17. MKK6 controls T3-mediated browning of white adipose tissue.

    PubMed

    Matesanz, Nuria; Bernardo, Edgar; Acín-Pérez, Rebeca; Manieri, Elisa; Pérez-Sieira, Sonia; Hernández-Cosido, Lourdes; Montalvo-Romeral, Valle; Mora, Alfonso; Rodríguez, Elena; Leiva-Vega, Luis; Lechuga-Vieco, Ana Victoria; Ruiz-Cabello, Jesús; Torres, Jorge L; Crespo-Ruiz, Maria; Centeno, Francisco; Álvarez, Clara V; Marcos, Miguel; Enríquez, Jose Antonio; Nogueiras, Ruben; Sabio, Guadalupe

    2017-10-11

    Increasing the thermogenic capacity of adipose tissue to enhance organismal energy expenditure is considered a promising therapeutic strategy to combat obesity. Here, we report that expression of the p38 MAPK activator MKK6 is elevated in white adipose tissue of obese individuals. Using knockout animals and shRNA, we show that Mkk6 deletion increases energy expenditure and thermogenic capacity of white adipose tissue, protecting mice against diet-induced obesity and the development of diabetes. Deletion of Mkk6 increases T3-stimulated UCP1 expression in adipocytes, thereby increasing their thermogenic capacity. Mechanistically, we demonstrate that, in white adipose tissue, p38 is activated by an alternative pathway involving AMPK, TAK, and TAB. Our results identify MKK6 in adipocytes as a potential therapeutic target to reduce obesity.Brown and beige adipose tissues dissipate heat via uncoupling protein 1 (UCP1). Here the authors show that the stress activated kinase MKK6 acts as a repressor of UCP1 expression, suggesting that its inhibition promotes adipose tissue browning and increases organismal energy expenditure.

  18. The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation.

    PubMed

    Engin, Atilla

    2017-01-01

    Obesity is characterized by a state of chronic, low-grade inflammation. However, excessive fatty acid release may worsen adipose tissue inflammation and contributes to insulin resistance. In this case, several novel and highly active molecules are released abundantly by adipocytes like leptin, resistin, adiponectin or visfatin, as well as some more classical cytokines. Most likely cytokines that are released by inflammatory cells infiltrating obese adipose tissue are such as tumor necrosis factor-alpha (TNF-alpha), interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1) (CCL-2) and IL-1. All of those molecules may act on immune cells leading to local and generalized inflammation. In this process, toll-like receptor 4 (TLR4)/phosphatidylinositol-3'-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, the unfolded protein response (UPR) due to endoplasmic reticulum (ER) stress through hyperactivation of c-Jun N-terminal Kinase (JNK) -Activator Protein 1 (AP1) and inhibitor of nuclear factor kappa-B kinase beta (IKKbeta)-nuclear factor kappa B (NF-kappaB) pathways play an important role, and may also affect vascular endothelial function by modulating vascular nitric oxide and superoxide release. Additionally, systemic oxidative stress, macrophage recruitment, increase in the expression of NOD-like receptor (NLR) family protein (NLRP3) inflammasone and adipocyte death are predominant determinants in the pathogenesis of obesity-associated adipose tissue inflammation. In this chapter potential involvement of these factors that contribute to the adverse effects of obesity are reviewed.

  19. Inactivation of adipose angiotensinogen reduces adipose tissue macrophages and increases metabolic activity.

    PubMed

    LeMieux, Monique J; Ramalingam, Latha; Mynatt, Randall L; Kalupahana, Nishan S; Kim, Jung Han; Moustaïd-Moussa, Naïma

    2016-02-01

    The adipose renin-angiotensin system (RAS) has been linked to obesity-induced inflammation, though mechanisms are not completely understood. In this study, adipose-specific angiotensinogen knockout mice (Agt-KO) were generated to determine whether Agt inactivation reduces inflammation and alters the metabolic profile of the Agt-KO mice compared to wild-type (WT) littermates. Adipose tissue-specific Agt-KO mice were created using the Cre-LoxP system with both Agt-KO and WT littermates fed either a low-fat or high-fat diet to assess metabolic changes. White adipose tissue was used for gene/protein expression analyses and WAT stromal vascular cells for metabolic extracellular flux assays. No significant differences were observed in body weight or fat mass between both genotypes on either diet. However, improved glucose clearance was observed in Agt-KO compared to WT littermates, consistent with higher expression of genes involved in insulin signaling, glucose transport, and fatty acid metabolism. Furthermore, Agt inactivation reduced total macrophage infiltration in Agt-KO mice fed both diets. Lastly, stroma vascular cells from Agt-KO mice revealed higher metabolic activity compared to WT mice. These findings indicate that adipose-specific Agt inactivation leads to reduced adipose inflammation and increased glucose tolerance mediated in part via increased metabolic activity of adipose cells. © 2015 The Obesity Society.

  20. Adipose tissue-organotypic culture system as a promising model for studying adipose tissue biology and regeneration

    PubMed Central

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Sonoda, Emiko; Yamasaki, Fumio; Piao, Meihua; Ootani, Akifumi; Yonemitsu, Nobuhisa; Sugihara, Hajime

    2009-01-01

    Adipose tissue consists of mature adipocytes, preadipocytes and mesenchymal stem cells (MSCs), but a culture system for analyzing their cell types within the tissue has not been established. We have recently developed “adipose tissue-organotypic culture system” that maintains unilocular structure, proliferative ability and functions of mature adipocytes for a long term, using three-dimensional collagen gel culture of the tissue fragments. In this system, both preadipocytes and MSCs regenerate actively at the peripheral zone of the fragments. Our method will open up a new way for studying both multiple cell types within adipose tissue and the cell-based mechanisms of obesity and metabolic syndrome. Thus, it seems to be a promising model for investigating adipose tissue biology and regeneration. In this article, we introduce adipose tissue-organotypic culture, and propose two theories regarding the mechanism of tissue regeneration that occurs specifically at peripheral zone of tissue fragments in vitro. PMID:19794899

  1. Evidence for the ectopic synthesis of melanin in human adipose tissue.

    PubMed

    Randhawa, Manpreet; Huff, Tom; Valencia, Julio C; Younossi, Zobair; Chandhoke, Vikas; Hearing, Vincent J; Baranova, Ancha

    2009-03-01

    Melanin is a common pigment in animals. In humans, melanin is produced in melanocytes, in retinal pigment epithelium (RPE) cells, in the inner ear, and in the central nervous system. Previously, we noted that human adipose tissue expresses several melanogenesis-related genes. In the current study, we confirmed the expression of melanogenesis-related mRNAs and proteins in human adipose tissue using real-time polymerase chain reaction and immunohistochemical staining. TYR mRNA signals were also detected by in situ hybridization in visceral adipocytes. The presence of melanin in human adipose tissue was revealed both by Fontana-Masson staining and by permanganate degradation of melanin coupled with liquid chromatography/ultraviolet/mass spectrometry determination of the pyrrole-2,3,5-tricarboxylic acid (PTCA) derivative of melanin. We also compared melanogenic activities in adipose tissues and in other human tissues using the L-[U-(14)C] tyrosine assay. A marked heterogeneity in the melanogenic activities of individual adipose tissue extracts was noted. We hypothesize that the ectopic synthesis of melanin in obese adipose may serve as a compensatory mechanism that uses its anti-inflammatory and its oxidative damage-absorbing properties. In conclusion, our study demonstrates for the first time that the melanin biosynthesis pathway is functional in adipose tissue.

  2. Adipose tissue as an immunological organ

    PubMed Central

    Grant, Ryan W.; Dixit, Vishwa Deep

    2014-01-01

    Objective This review will focus on the immunological aspects of adipose tissue and its potential role in development of chronic inflammation that instigates obesity-associated co-morbidities. Design and Methods The review utilized PubMed searches of current literature to examine adipose tissue leukocytosis. Results The adipose tissue of obese subjects becomes inflamed and contributes to the development of insulin resistance, type 2 diabetes and metabolic syndrome. Numerous immune cells including B cells, T cells, macrophages and neutrophils have been identified in adipose tissue, and obesity influences both the quantity and the nature of immune cell subtypes which emerges as an active immunological organ capable of modifying whole body metabolism through paracrine and endocrine mechanisms. Conclusion Adipose tissue is a large immunologically active organ during obesity that displays hallmarks of both and innate and adaptive immune response. Despite the presence of hematopoietic lineage cells in adipose tissue, it is presently unclear whether the adipose compartment has a direct role in immune-surveillance or host defense. Understanding the interactions between leukocytes and adipocytes may reveal the clinically relevant pathways that control adipose tissue inflammation and is likely to reveal mechanism by which obesity contributes to increased susceptibility to both metabolic and certain infectious disease. PMID:25612251

  3. AMP-Activated Protein Kinase (AMPK) Regulates Energy Metabolism through Modulating Thermogenesis in Adipose Tissue

    PubMed Central

    Wu, Lingyan; Zhang, Lina; Li, Bohan; Jiang, Haowen; Duan, Yanan; Xie, Zhifu; Shuai, Lin; Li, Jia; Li, Jingya

    2018-01-01

    Obesity occurs when excess energy accumulates in white adipose tissue (WAT), whereas brown adipose tissue (BAT), which is specialized in dissipating energy through thermogenesis, potently counteracts obesity. White adipocytes can be converted to thermogenic “brown-like” cells (beige cells; WAT browning) under various stimuli, such as cold exposure. AMP-activated protein kinase (AMPK) is a crucial energy sensor that regulates energy metabolism in multiple tissues. However, the role of AMPK in adipose tissue function, especially in the WAT browning process, is not fully understood. To illuminate the effect of adipocyte AMPK on energy metabolism, we generated Adiponectin-Cre-driven adipose tissue-specific AMPK α1/α2 KO mice (AKO). These AKO mice were cold intolerant and their inguinal WAT displayed impaired mitochondrial integrity and biogenesis, and reduced expression of thermogenic markers upon cold exposure. High-fat-diet (HFD)-fed AKO mice exhibited increased adiposity and exacerbated hepatic steatosis and fibrosis and impaired glucose tolerance and insulin sensitivity. Meanwhile, energy expenditure and oxygen consumption were markedly decreased in the AKO mice both in basal conditions and after stimulation with a β3-adrenergic receptor agonist, CL 316,243. In contrast, we found that in HFD-fed obese mouse model, chronic AMPK activation by A-769662 protected against obesity and related metabolic dysfunction. A-769662 alleviated HFD-induced glucose intolerance and reduced body weight gain and WAT expansion. Notably, A-769662 increased energy expenditure and cold tolerance in HFD-fed mice. A-769662 treatment also induced the browning process in the inguinal fat depot of HFD-fed mice. Likewise, A-769662 enhanced thermogenesis in differentiated inguinal stromal vascular fraction (SVF) cells via AMPK signaling pathway. In summary, a lack of adipocyte AMPKα induced thermogenic impairment and obesity in response to cold and nutrient-overload, respectively

  4. Defining the Adipose Tissue Proteome of Dairy Cows to Reveal Biomarkers Related to Peripartum Insulin Resistance and Metabolic Status.

    PubMed

    Zachut, Maya

    2015-07-02

    Adipose tissue is a central regulator of metabolism in dairy cows; however, little is known about the association between various proteins in adipose tissue and the metabolic status of peripartum cows. Therefore, the objectives were to (1) examine total protein expression in adipose tissue of dairy cows and (2) identify biomarkers in adipose that are linked to insulin resistance and to cows' metabolic status. Adipose tissue biopsies were obtained from eight multiparous cows at -17 and +4 days relative to parturition. Proteins were analyzed by intensity-based, label-free, quantitative shotgun proteomics (nanoLC-MS/MS). Cows were divided into groups with insulin-resistant (IR) and insulin-sensitive (IS) adipose according to protein kinase B phosphorylation following insulin stimulation. Cows with IR adipose lost more body weight postpartum compared with IS cows. Differential expression of 143 out of 586 proteins was detected in prepartum versus postpartum adipose. Comparing IR to IS adipose revealed differential expression of 18.9% of the proteins; those related to lipolysis (hormone-sensitive lipase, perilipin, monoglycerol lipase) were increased in IR adipose. In conclusion, we found novel biomarkers related to IR in adipose and to metabolic status that could be used to characterize high-yielding dairy cows that are better adapted to peripartum metabolic stress.

  5. Amyloid Precursor Protein and Proinflammatory Changes Are Regulated in Brain and Adipose Tissue in a Murine Model of High Fat Diet-Induced Obesity

    PubMed Central

    Puig, Kendra L.; Floden, Angela M.; Adhikari, Ramchandra; Golovko, Mikhail Y.; Combs, Colin K.

    2012-01-01

    Background Middle age obesity is recognized as a risk factor for Alzheimer's disease (AD) although a mechanistic linkage remains unclear. Based upon the fact that obese adipose tissue and AD brains are both areas of proinflammatory change, a possible common event is chronic inflammation. Since an autosomal dominant form of AD is associated with mutations in the gene coding for the ubiquitously expressed transmembrane protein, amyloid precursor protein (APP) and recent evidence demonstrates increased APP levels in adipose tissue during obesity it is feasible that APP serves some function in both disease conditions. Methodology/Principal Findings To determine whether diet-induced obesity produced proinflammatory changes and altered APP expression in brain versus adipose tissue, 6 week old C57BL6/J mice were maintained on a control or high fat diet for 22 weeks. Protein levels and cell-specific APP expression along with markers of inflammation and immune cell activation were compared between hippocampus, abdominal subcutaneous fat and visceral pericardial fat. APP stimulation-dependent changes in macrophage and adipocyte culture phenotype were examined for comparison to the in vivo changes. Conclusions/Significance Adipose tissue and brain from high fat diet fed animals demonstrated increased TNF-α and microglial and macrophage activation. Both brains and adipose tissue also had elevated APP levels localizing to neurons and macrophage/adipocytes, respectively. APP agonist antibody stimulation of macrophage cultures increased specific cytokine secretion with no obvious effects on adipocyte culture phenotype. These data support the hypothesis that high fat diet-dependent obesity results in concomitant pro-inflammatory changes in brain and adipose tissue that is characterized, in part, by increased levels of APP that may be contributing specifically to inflammatory changes that occur. PMID:22276186

  6. Effects of prenatal low protein and postnatal high fat diets on visceral adipose tissue macrophage phenotypes and IL-6 expression in Sprague Dawley rat offspring

    USDA-ARS?s Scientific Manuscript database

    Adipose tissue macrophages (ATM) are implicated in adipose tissue inflammation and obesity-related insulin resistance. Maternal low protein models result in fetal programming of obesity. However, it is not known whether maternal undernutrition increases ATM phenotypic expression in F1 offspring. Us...

  7. Adipose and mammary epithelial tissue engineering.

    PubMed

    Zhu, Wenting; Nelson, Celeste M

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.

  8. Adipose and mammary epithelial tissue engineering

    PubMed Central

    Zhu, Wenting; Nelson, Celeste M.

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast. PMID:23628872

  9. Preliminary results comparing the recovery of basic fibroblast growth factor (FGF-2) in adipose tissue and benign and malignant renal tissue.

    PubMed

    Mydlo, J H; Kral, J G; Macchia, R J

    1998-06-01

    Basic fibroblast growth factor (bFGF or FGF-2) is mitogenic to numerous epithelial, mesodermal and endothelial cells, and thus may play a role in the neovascularity and progression of several tumors. Furthermore, FGF-2 is reported to be elevated in the serum and urine of patients with various cancers, including renal cancer. Obesity, with increased body fat, is a risk factor for renal cancer through unknown mechanisms. Since adipose tissue is a source of FGF-2, we determined the quantity and quality of activity of FGF-2 in omental adipose tissue and compared it to normal and cancerous renal tissue. Using heparin-Sepharose chromatography we extracted proteins from human omental adipose tissue, renal cell carcinoma (RCC) and benign renal tissue (BRT). Using FGF-2 antisera we performed western blot analysis to confirm their homology to FGF-2. We also assessed recovery, mitogenicity and angiogenicity of each of the proteins using thymidine incorporation into human umbilical vein endothelial cells (HUVEC) and the chorioallantoic membrane (CAM) assay. Each of the three purified mitogenic proteins eluted with NaCl concentrations between 1.4 M. and 1.8 M., similar to control FGF-2. There was greater recovery of FGF-2 from omental adipose tissue compared with renal cell carcinoma or benign renal tissue (42 microg. vs. 24 microg. and 18 microg., respectively; ANOVA p <0.05). Moreover, FGF-2 from adipose tissue had greater mitogenic activity (96.% versus 68% and 38%; p <0.05) and greater angiogenic activity (5.5 vessels versus 2.7 and 1.6 vessels; p <0.05) on the CAM assay. We suggest that human omental adipose tissue FGF-2 may demonstrate greater mitogenic and angiogenic activity than either benign or cancerous renal tissue FGF-2. It is not known if FGF-2 from adipose tissue may play a role in the relationship between obesity and renal cancer.

  10. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with amore » high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.« less

  11. A specific l-tri-iodothyronine-binding protein in the cytosol fraction of human breast adipose tissue

    PubMed Central

    Rao, Marie Luise; Rao, Govind S.

    1982-01-01

    1. Binding of l-tri-[125I]iodothyronine to the cytosol fraction of normal human female breast adipose tissue was investigated by the charcoal adsorption method. Equilibrium of binding was reached after 120s at 25°C. 2. The l-tri-[125I]iodothyronine-binding component is a protein; this was confirmed by experiments in which binding was totally lost after heating the cytosol fraction for 10min at 100°C and in which binding was diminished after treatment with proteolytic enzymes and with thiol-group-blocking reagents. The binding protein was stable at −38°C for several months. 3. It displayed saturability, high affinity (apparent Kd 3.28nm) and a single class of binding sites. 4. High specificity for l-tri-iodothyronine and l-3,5-di-iodo-3′-isopropylthyronine was observed, whereas other iodothyronines were less effective in displacing l-tri-[125I]-iodothyronine from its binding site. 5. The binding of the hormone by the cytosol fraction did not show a pH optimum. 6. When cytosol fractions of adipose tissue from different females were subjected to radioimmunoassay for the determination of thyroxine-binding globulin a value of 0.304±0.11μg/mg of cytosol protein (mean±s.d., n=4) was obtained; the mean concentration in plasma was 0.309±0.07μg/mg of plasma protein (mean±s.d., n=3). 7. The Ka value of 6.3×108m−1 of l-tri-[125I]iodothyronine for binding to plasma, the similar thermalinactivation profiles of binding and the reactivity to thiol-group-blocking reagents were some properties common between the binding components from the cytosol fraction and plasma. 8. These results suggest that the cytosol fraction of human female breast adipose tissue contains thyroxine-binding globulin; the protein that binds l-tri-[125I]iodothyronine with high affinity and specificity appears to be similar to thyroxine-binding globulin. PMID:6289813

  12. Is epicardial adipose tissue, assessed by echocardiography, a reliable method for visceral adipose tissue prediction?

    PubMed

    Silaghi, Alina Cristina; Poantă, Laura; Valea, Ana; Pais, Raluca; Silaghi, Horatiu

    2011-03-01

    Epicardial adipose tissue is an ectopic fat storage at the heart surface in direct contact with the coronary arteries. It is considered a metabolically active tissue, being a local source of pro-inflammatory factors that contribute to the pathogenesis of coronary artery disease. The AIM of our study was to establish correlations between echocardiographic assessment of epicardial adipose tissue and anthropometric and ultrasound measurements of the central and peripheral fat depots. The study was conducted on 22 patients with or without coronaropathy. Epicardial adipose tissue was measured using Aloka Prosound α 10 machine with a 3.5-7.5 MHz variable-frequency transducer and subcutaneous and visceral fat with Esaote Megas GPX machine and 3.5-7.5 MHz variable frequency transducer. Epicardial adipose tissue measured by echocardiography is correlated with waist circumference (p < 0.05), visceral adipose tissue thickness measured by ultrasonography (US) and is not correlated with body mass index (p = 0.315), hip and thigh circumference or subcutaneous fat thickness measured by US. Our study confirms that US assessment of epicardial fat correlates with anthropometric and US measurements of the central fat, representing an indirect but reliable marker of the visceral fat.

  13. Quantification of Adipose Tissue Leukocytosis in Obesity

    PubMed Central

    Grant, Ryan; Youm, Yun-Hee; Ravussin, Anthony; Dixit, Vishwa Deep

    2014-01-01

    Summary The infiltration of immune cell subsets in adipose tissue termed ‘adipose tissue leukocytosis’ is a critical event in the development of chronic inflammation and obesity-associated comorbidities. Given that a significant proportion of cells in adipose tissue of obese patients are of hematopoietic lineage, the distinct adipose depots represent an uncharacterized immunological organ that can impact metabolic functions. Here, we describe approaches to characterize and isolate leukocytes from the complex adipose tissue microenvironment to aid mechanistic studies to understand the role of specific pattern recognition receptors (PRRs) such as inflammasomes in adipose-immune crosstalk. PMID:23852606

  14. An alternative splicing program promotes adipose tissue thermogenesis

    PubMed Central

    Vernia, Santiago; Edwards, Yvonne JK; Han, Myoung Sook; Cavanagh-Kyros, Julie; Barrett, Tamera; Kim, Jason K; Davis, Roger J

    2016-01-01

    Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia. DOI: http://dx.doi.org/10.7554/eLife.17672.001 PMID:27635635

  15. Breast Cancer and Estrogen Biosynthesis in Adipose Tissue

    DTIC Science & Technology

    1998-10-01

    transferred to a nitrocellulose mem - brane. The transferred proteins were subjected to a denaturation/rena- turation process and hybridized to the 32P...aromatase expression in adipose tissue has been recently observed to be regulated by mem - bers of the interleukin-6 (IL-6) cytokine family. Based on...shown in human adipose stromal cells that the stimulatory effects of serum on aromatase expression can be mimicked by mem - bers of the interleukin-6

  16. C1q/TNF-related protein 6 (CTRP6) links obesity to adipose tissue inflammation and insulin resistance.

    PubMed

    Lei, Xia; Seldin, Marcus M; Little, Hannah C; Choy, Nicholas; Klonisch, Thomas; Wong, G William

    2017-09-08

    Obesity is associated with chronic low-grade inflammation, and metabolic regulators linking obesity to inflammation have therefore received much attention. Secreted C1q/TNF-related proteins (CTRPs) are one such group of regulators that regulate glucose and fat metabolism in peripheral tissues and modulate inflammation in adipose tissue. We have previously shown that expression of CTRP6 is up-regulated in leptin-deficient mice and, conversely, down-regulated by the anti-diabetic drug rosiglitazone. Here, we provide evidence for a novel role of CTRP6 in modulating both inflammation and insulin sensitivity. We found that in obese and diabetic humans and mouse models, CTRP6 expression was markedly up-regulated in adipose tissue and that stromal vascular cells, such as macrophages, are a major CTRP6 source. Overexpressing mouse or human CTRP6 impaired glucose disposal in peripheral tissues in response to glucose and insulin challenge in wild-type mice. Conversely, Ctrp6 gene deletion improved insulin action and increased metabolic rate and energy expenditure in diet-induced obese mice. Mechanistically, CTRP6 regulates local inflammation and glucose metabolism by targeting macrophages and adipocytes, respectively. In cultured macrophages, recombinant CTRP6 dose-dependently up-regulated the expression and production of TNF-α. Conversely, CTRP6 deficiency reduced circulating inflammatory cytokines and pro-inflammatory macrophages in adipose tissue. CTRP6-overexpressing mice or CTRP6-treated adipocytes had reduced insulin-stimulated Akt phosphorylation and glucose uptake. In contrast, loss of CTRP6 enhanced insulin-stimulated Akt activation in adipose tissue. Together, these results establish CTRP6 as a novel metabolic/immune regulator linking obesity to adipose tissue inflammation and insulin resistance. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue

    PubMed Central

    Salas, Anna; Noé, Véronique; Ciudad, Carlos J; Romero, M Mar; Remesar, Xavier; Esteve, Montserrat

    2007-01-01

    Background Short-term OE (oleoyl-estrone) treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Results Gene expression in adipose tissue from female treated rats (48 hours) was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL) were decreased by 52%, those of Fatty Acid Synthase (FAS) by 95%, those of Hormone Sensible Lipase (HSL) by 32%, those of Acetyl CoA Carboxylase (ACC) by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b) by 45%, and those of Fatty Acid Transport Protein 1 (FATP1) and Adipocyte Fatty Acid Binding Protein (FABP4) by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNFα) values showed overexpression (198%). Conclusion Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism. PMID:17725831

  18. Short-term oleoyl-estrone treatment affects capacity to manage lipids in rat adipose tissue.

    PubMed

    Salas, Anna; Noé, Véronique; Ciudad, Carlos J; Romero, M Mar; Remesar, Xavier; Esteve, Montserrat

    2007-08-28

    Short-term OE (oleoyl-estrone) treatment causes significant decreases in rat weight mainly due to adipose tissue loss. The aim of this work was to determine if OE treatment affects the expression of genes that regulate lipid metabolism in white adipose tissue. Gene expression in adipose tissue from female treated rats (48 hours) was analysed by hybridization to cDNA arrays and levels of specific mRNAs were determined by real-time PCR. Treatment with OE decreased the expression of 232 genes and up-regulated 75 other genes in mesenteric white adipose tissue. The use of real-time PCR validate that, in mesenteric white adipose tissue, mRNA levels for Lipoprotein Lipase (LPL) were decreased by 52%, those of Fatty Acid Synthase (FAS) by 95%, those of Hormone Sensible Lipase (HSL) by 32%, those of Acetyl CoA Carboxylase (ACC) by 92%, those of Carnitine Palmitoyltransferase 1b (CPT1b) by 45%, and those of Fatty Acid Transport Protein 1 (FATP1) and Adipocyte Fatty Acid Binding Protein (FABP4) by 52% and 49%, respectively. Conversely, Tumour Necrosis Factor (TNFalpha) values showed overexpression (198%). Short-term treatment with OE affects adipose tissue capacity to extract fatty acids from lipoproteins and to deal with fatty acid transport and metabolism.

  19. ABCD2 identifies a subclass of peroxisomes in mouse adipose tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaoxi, E-mail: xiaoxi.liu@uky.edu; Liu, Jingjing, E-mail: jingjing.liu0@gmail.com; Lester, Joshua D., E-mail: joshua.lester@uky.edu

    2015-01-02

    Highlights: • We examined the D2 localization and the proteome of D2-containing compartment in mouse adipose tissue. • We confirmed the presence of D2 on a subcellular compartment that has typical structure as a microperoxisome. • We demonstrated the scarcity of peroxisome markers on D2-containing compartment. • The D2-containing compartment may be a subpopulation of peroxisome in mouse adipose tissue. • Proteomic data suggests potential association between D2-containing compartment and mitochondria and ER. - Abstract: ATP-binding cassette transporter D2 (D2) is an ABC half transporter that is thought to promote the transport of very long-chain fatty acyl-CoAs into peroxisomes. Bothmore » D2 and peroxisomes increase during adipogenesis. Although peroxisomes are essential to both catabolic and anabolic lipid metabolism, their function, and that of D2, in adipose tissues remain largely unknown. Here, we investigated the D2 localization and the proteome of D2-containing organelles, in adipose tissue. Centrifugation of mouse adipose homogenates generated a fraction enriched with D2, but deficient in peroxisome markers including catalase, PEX19, and ABCD3 (D3). Electron microscopic imaging of this fraction confirmed the presence of D2 protein on an organelle with a dense matrix and a diameter of ∼200 nm, the typical structure and size of a microperoxisome. D2 and PEX19 antibodies recognized distinct structures in mouse adipose. Immunoisolation of the D2-containing compartment confirmed the scarcity of PEX19 and proteomic profiling revealed the presence of proteins associated with peroxisome, endoplasmic reticulum (ER), and mitochondria. D2 is localized to a distinct class of peroxisomes that lack many peroxisome proteins, and may associate physically with mitochondria and the ER.« less

  20. Adipose Tissue Quantification by Imaging Methods: A Proposed Classification

    PubMed Central

    Shen, Wei; Wang, ZiMian; Punyanita, Mark; Lei, Jianbo; Sinav, Ahmet; Kral, John G.; Imielinska, Celina; Ross, Robert; Heymsfield, Steven B.

    2007-01-01

    Recent advances in imaging techniques and understanding of differences in the molecular biology of adipose tissue has rendered classical anatomy obsolete, requiring a new classification of the topography of adipose tissue. Adipose tissue is one of the largest body compartments, yet a classification that defines specific adipose tissue depots based on their anatomic location and related functions is lacking. The absence of an accepted taxonomy poses problems for investigators studying adipose tissue topography and its functional correlates. The aim of this review was to critically examine the literature on imaging of whole body and regional adipose tissue and to create the first systematic classification of adipose tissue topography. Adipose tissue terminology was examined in over 100 original publications. Our analysis revealed inconsistencies in the use of specific definitions, especially for the compartment termed “visceral” adipose tissue. This analysis leads us to propose an updated classification of total body and regional adipose tissue, providing a well-defined basis for correlating imaging studies of specific adipose tissue depots with molecular processes. PMID:12529479

  1. High intensity interval training improves liver and adipose tissue insulin sensitivity

    PubMed Central

    Marcinko, Katarina; Sikkema, Sarah R.; Samaan, M. Constantine; Kemp, Bruce E.; Fullerton, Morgan D.; Steinberg, Gregory R.

    2015-01-01

    Objective Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. Methods In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine–alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. Results HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. Conclusions These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC. PMID:26909307

  2. High intensity interval training improves liver and adipose tissue insulin sensitivity.

    PubMed

    Marcinko, Katarina; Sikkema, Sarah R; Samaan, M Constantine; Kemp, Bruce E; Fullerton, Morgan D; Steinberg, Gregory R

    2015-12-01

    Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine-alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC.

  3. Immunoexpression of PPAR-γ and osteocalcin proteins for bone repair of critical-size defects treated with fragmented autogenous abdominal adipose tissue graft.

    PubMed

    Deliberador, Tatiana Miranda; Giovanini, Allan Fernando; Lopes, Tertuliano Ricardo; Zielak, João César; Moro, Alexandre; Baratto Filho, Flares; Santos, Felipe Rychuv; Storrer, Carmen L Mueller

    2014-01-01

    Immunoexpression of PPAR-γ and osteocalcin proteins was evaluated for bone repair of critical-size defects (CSDs), created in rat calvaria (n=42) and treated with fragmented abdominal autogenous adipose tissue graft. Three groups (n=14) were formed: C (control - blood clot), AB (autogenous bone) and AT (fragmented adipose tissue). The groups were divided into subgroups (n=7) for euthanasia at 30 and 90 days. Histological and immunohistochemical analyses were performed. Data were subjected to descriptive statistics (mode). A complete bone closure was observed in Group AB 90 days after surgery. In Group C, repair was achieved by the formation of collagen fiber bundles oriented parallel to the wound surface at both post-surgery periods. In Group AT the type of healing was characterized by dense connective tissue containing collagen fiber bundles arranged amidst the remaining adipose tissue, with rare heterotopic bone formation associated with fibrosis and different types of tissue necrosis. Immunostaining of PPAR-γ was not observed in any specimen from Groups C and AB. In Group AT, the immunostaining of PPAR-γ was more evident 30 days after surgery. Immunostaining of osteocalcin was present in all groups and at both postoperative periods. The fragmented autogenous abdominal adipose tissue graft did not favor the repair of critical-size bone defects created surgically in rat calvaria as evidenced by the positive immunostaining of PPAR-γ protein and the negative immunostaining of osteocalcin in the osteoblast-like cells and bone matrix.

  4. The ubiquitin ligase Siah2 regulates obesity-induced adipose tissue inflammation.

    PubMed

    Kilroy, Gail; Carter, Lauren E; Newman, Susan; Burk, David H; Manuel, Justin; Möller, Andreas; Bowtell, David D; Mynatt, Randall L; Ghosh, Sujoy; Floyd, Z Elizabeth

    2015-11-01

    Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation was examined. Wild-type and Siah2KO mice were fed a low- or high-fat diet for 16 weeks. Indirect calorimetry, body composition, and glucose and insulin tolerance were assayed along with glucose and insulin levels. Gene and protein expression, immunohistochemistry, adipocyte size distribution, and lipolysis were also analyzed. Enlarged adipocytes in obese Siah2KO mice were not associated with obesity-induced insulin resistance. Proinflammatory gene expression, stress kinase signaling, fibrosis, and crown-like structures were reduced in the Siah2KO adipose tissue, and Siah2KO adipocytes were more responsive to insulin-dependent inhibition of lipolysis. Loss of Siah2 increased expression of PPARγ target genes involved in lipid metabolism and decreased expression of proinflammatory adipokines regulated by PPARγ. Siah2 links adipocyte hypertrophy with adipocyte dysfunction and recruitment of proinflammatory immune cells to adipose tissue. Selective regulation of PPARγ activity is a Siah2-mediated mechanism contributing to obesity-induced adipose tissue inflammation. © 2015 The Obesity Society.

  5. Adipose tissue: cell heterogeneity and functional diversity.

    PubMed

    Esteve Ràfols, Montserrat

    2014-02-01

    There are two types of adipose tissue in the body whose function appears to be clearly differentiated. White adipose tissue stores energy reserves as fat, whereas the metabolic function of brown adipose tissue is lipid oxidation to produce heat. A good balance between them is important to maintain energy homeostasis. The concept of white adipose tissue has radically changed in the past decades, and is now considered as an endocrine organ that secretes many factors with autocrine, paracrine, and endocrine functions. In addition, we can no longer consider white adipose tissue as a single tissue, because it shows different metabolic profiles in its different locations, with also different implications. Although the characteristic cell of adipose tissue is the adipocyte, this is not the only cell type present in adipose tissue, neither the most abundant. Other cell types in adipose tissue described include stem cells, preadipocytes, macrophages, neutrophils, lymphocytes, and endothelial cells. The balance between these different cell types and their expression profile is closely related to maintenance of energy homeostasis. Increases in adipocyte size, number and type of lymphocytes, and infiltrated macrophages are closely related to the metabolic syndrome diseases. The study of regulation of proliferation and differentiation of preadipocytes and stem cells, and understanding of the interrelationship between the different cell types will provide new targets for action against these diseases. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  6. Whey protein and essential amino acids promote the reduction of adipose tissue and increased muscle protein synthesis during caloric restriction-induced weight loss in elderly, obese individuals.

    PubMed

    Coker, Robert H; Miller, Sharon; Schutzler, Scott; Deutz, Nicolaas; Wolfe, Robert R

    2012-12-11

    Excess adipose tissue and sarcopenia presents a multifaceted clinical challenge that promotes morbidity and mortality in the obese, elderly population. Unfortunately, the mortality risks of muscle loss may outweigh the potential benefits of weight loss in the elderly. We have previously demonstrated the effectiveness of whey protein and essential amino acids towards the preservation of lean tissue, even under the conditions of strict bedrest in the elderly. In the context of caloric restriction-based weight loss, we hypothesized that a similar formulation given as a meal replacement (EAAMR) would foster the retention of lean tissue through an increase in the skeletal muscle fractional synthesis rate (FSR). We also proposed that EAAMR would promote the preferential loss of adipose tissue through the increased energy cost of skeletal muscle FSR. We recruited and randomized 12 elderly individuals to an 8 week, caloric restriction diet utilizing equivalent caloric meal replacements (800 kcal/day): 1) EAAMR or a 2) competitive meal replacement (CMR) in conjunction with 400 kcal of solid food that totaled 1200 kcal/day designed to induce 7% weight loss. Combined with weekly measurements of total body weight and body composition, we also measured the acute change in the skeletal muscle FSR to EAAMR and CMR. By design, both groups lost ~7% of total body weight. While EAAMR did not promote a significant preservation of lean tissue, the reduction in adipose tissue was greater in EAAMR compared to CMR. Interestingly, these results corresponded to an increase in the acute skeletal muscle protein FSR. The provision of EAAMR during caloric restriction-induced weight loss promotes the preferential reduction of adipose tissue and the modest loss of lean tissue in the elderly population.

  7. Free Fatty Acid Storage in Human Visceral and Subcutaneous Adipose Tissue

    PubMed Central

    Ali, Asem H.; Koutsari, Christina; Mundi, Manpreet; Stegall, Mark D.; Heimbach, Julie K.; Taler, Sandra J.; Nygren, Jonas; Thorell, Anders; Bogachus, Lindsey D.; Turcotte, Lorraine P.; Bernlohr, David; Jensen, Michael D.

    2011-01-01

    OBJECTIVE Because direct adipose tissue free fatty acid (FFA) storage may contribute to body fat distribution, we measured FFA (palmitate) storage rates and fatty acid (FA) storage enzymes/proteins in omental and abdominal subcutaneous fat. RESEARCH DESIGN AND METHODS Elective surgery patients received a bolus of [1-14C]palmitate followed by omental and abdominal subcutaneous fat biopsies to measure direct FFA storage. Long chain acyl-CoA synthetase (ACS) and diacylglycerol acyltransferase activities, CD36, fatty acid-binding protein, and fatty acid transport protein 1 were measured. RESULTS Palmitate tracer storage (dpm/g adipose lipid) and calculated palmitate storage rates were greater in omental than abdominal subcutaneous fat in women (1.2 ± 0.8 vs. 0.7 ± 0.4 μmol ⋅ kg adipose lipid−1 ⋅ min−1, P = 0.005) and men (0.7 ± 0.2 vs. 0.2 ± 0.1, P < 0.001), and both were greater in women than men (P < 0.0001). Abdominal subcutaneous adipose tissue palmitate storage rates correlated with ACS activity (women: r = 0.66, P = 0.001; men: r = 0.70, P = 0.007); in men, CD36 was also independently related to palmitate storage rates. The content/activity of FA storage enzymes/proteins in omental fat was dramatically lower in those with more visceral fat. In women, only omental palmitate storage rates were correlated (r = 0.54, P = 0.03) with ACS activity. CONCLUSIONS Some adipocyte FA storage factors correlate with direct FFA storage, but sex differences in this process in visceral fat do not account for sex differences in visceral fatness. The reduced storage proteins in those with greater visceral fat suggest that the storage factors we measured are not a predominant cause of visceral adipose tissue accumulation. PMID:21810594

  8. White adipose tissue cells and the progression of cachexia: inflammatory pathways

    PubMed Central

    Neves, Rodrigo X.; Rosa‐Neto, José Cesar; Yamashita, Alex S.; Matos‐Neto, Emidio M.; Riccardi, Daniela M. R.; Lira, Fabio S.; Batista, Miguel L.

    2015-01-01

    Abstract Background Cachexia is a systemic syndrome leading to body wasting, systemic inflammation, and to metabolic chaos. It is a progressive condition, and little is known about its dynamics. Detection of the early signs of the disease may lead to the attenuation of the associated symptoms. The white adipose tissue is an organ with endocrine functions, capable of synthesising and secreting a plethora of proteins, including cytokines, chemokines, and adipokines. It is well established that different adipose tissue depots demonstrate heterogeneous responses to physiological and pathological stimuli. The present study aimed at providing insight into adipocyte involvement in inflammation along the progression of cachexia. Methods Eight‐weeks‐old male rats were subcutaneously inoculated with a Walker 256 carcinosarcoma cell suspension (2 × 107 cells in 1.0 mL; tumour‐bearing, T) or Phosphate‐buffered saline (control, C). The retroperitoneal, epididymal, and mesenteric adipose pads were excised on Days 0, 7, and 14 post‐tumour cell injection, and the adipocytes were isolated. Results Mesenteric and epididymal adipocytes showed up‐regulation of IL‐1β protein expression and activation of the inflammasome pathway, contributing for whole tissue inflammation. The stromal vascular fraction of the retroperitoneal adipose tissue, on the other hand, seems to be the major contributor for the inflammation in this specific pad. Conclusion Adipocytes seem to play a relevant role in the establishment of white adipose tissue inflammation, through the activation of the NF‐κB and inflammasome pathways. In epididymal adipocytes, induction of the inflammasome may be detected already on Day 7 post‐tumour cell inoculation. PMID:27493872

  9. Increased expressions of genes and proteins involved in mitochondrial oxidation and antioxidant pathway in adipose tissue of pigs selected for a low residual feed intake.

    PubMed

    Louveau, I; Vincent, A; Tacher, S; Gilbert, H; Gondret, F

    2016-12-01

    Adipose tissue is a primary sensor for nutrient availability and regulates many functions including feed intake and energy homeostasis. This study was undertaken to determine the molecular responses of adipose tissue to differences in feed intake and feed efficiency. Subcutaneous adipose tissue was collected from two lines of pigs divergently selected for residual feed intake (RFI), a measure of feed efficiency defined as the difference between actual and expected feed intake, and from a subset of high-RFI pigs that were feed-restricted at the level of the voluntary feed intake of low-RFI pigs during the growing-finishing period. Transcriptomics analyses indicated that the number of genes that were differentially expressed ( < 0.01) between low- and high-RFI pigs ( = 8 per group at each stage) in adipose tissue was much lower when pigs were considered at 19 kg (postweaning) than at 115 kg BW (market weight). Extended investigations were performed at 115 kg BW to compare low-RFI ( = 8), high-RFI ( = 8), and feed-restricted high-RFI ( = 8) pigs. They included in silico pathway analyses of the differentially expressed (DE) genes ( < 0.01) and a complementary proteomic investigation to list adipose proteins with a differential abundance ( < 0.10). Only 23% of the DE genes were affected by both RFI and feed restriction. This indicates that the responses of adipose tissue to RFI difference shared only some common mechanisms with feed intake modulation, notably the regulation of cell cycle (including ) and transferase activity pathway. Two carboxylesterase genes (, ) involved in lipolysis, were among the most overexpressed genes in the low-RFI pigs; they were also affected by feed restriction within the high-RFI line. About 60% of the molecular changes between low- and high-RFI pigs were specific to genetic divergence in feed efficiency, independently of feed intake. Different genes and proteins known to be associated with mitochondrial oxidative metabolism were

  10. Lean phenotype and resistance to diet-induced obesity in vitamin D receptor knockout mice correlates with induction of uncoupling protein-1 in white adipose tissue.

    PubMed

    Narvaez, Carmen J; Matthews, Donald; Broun, Emily; Chan, Michelle; Welsh, JoEllen

    2009-02-01

    Increased adiposity is a feature of aging in both mice and humans, but the molecular mechanisms underlying age-related changes in adipose tissue stores remain unclear. In previous studies, we noted that 18-month-old normocalcemic vitamin D receptor (VDR) knockout (VDRKO) mice exhibited atrophy of the mammary adipose compartment relative to wild-type (WT) littermates, suggesting a role for VDR in adiposity. Here we monitored body fat depots, food intake, metabolic factors, and gene expression in WT and VDRKO mice on the C57BL6 and CD1 genetic backgrounds. Regardless of genetic background, both sc and visceral white adipose tissue depots were smaller in VDRKO mice than WT mice. The lean phenotype of VDRKO mice was associated with reduced serum leptin and compensatory increased food intake. Similar effects on adipose tissue, leptin and food intake were observed in mice lacking Cyp27b1, the 1alpha-hydroxylase enzyme that generates 1,25-dihydroxyvitamin D(3), the VDR ligand. Although VDR ablation did not reduce expression of peroxisome proliferator-activated receptor-gamma or fatty acid synthase, PCR array screening identified several differentially expressed genes in white adipose tissue from WT and VDRKO mice. Uncoupling protein-1, which mediates dissociation of cellular respiration from energy production, was greater than 25-fold elevated in VDRKO white adipose tissue. Consistent with elevation in uncoupling protein-1, VDRKO mice were resistant to high-fat diet-induced weight gain. Collectively, these studies identify a novel role for 1,25-dihydroxyvitamin D(3) and the VDR in the control of adipocyte metabolism and lipid storage in vivo.

  11. Matrix-Assisted Transplantation of Functional Beige Adipose Tissue

    PubMed Central

    Tharp, Kevin M.; Jha, Amit K.; Kraiczy, Judith; Yesian, Alexandra; Karateev, Grigory; Sinisi, Riccardo; Dubikovskaya, Elena A.

    2015-01-01

    Novel, clinically relevant, approaches to shift energy balance are urgently needed to combat metabolic disorders such as obesity and diabetes. One promising approach has been the expansion of brown adipose tissues that express uncoupling protein (UCP) 1 and thus can uncouple mitochondrial respiration from ATP synthesis. While expansion of UCP1-expressing adipose depots may be achieved in rodents via genetic and pharmacological manipulations or the transplantation of brown fat depots, these methods are difficult to use for human clinical intervention. We present a novel cell scaffold technology optimized to establish functional brown fat–like depots in vivo. We adapted the biophysical properties of hyaluronic acid–based hydrogels to support the differentiation of white adipose tissue–derived multipotent stem cells (ADMSCs) into lipid-accumulating, UCP1-expressing beige adipose tissue. Subcutaneous implantation of ADMSCs within optimized hydrogels resulted in the establishment of distinct UCP1-expressing implants that successfully attracted host vasculature and persisted for several weeks. Importantly, implant recipients demonstrated elevated core body temperature during cold challenges, enhanced respiration rates, improved glucose homeostasis, and reduced weight gain, demonstrating the therapeutic merit of this highly translatable approach. This novel approach is the first truly clinically translatable system to unlock the therapeutic potential of brown fat–like tissue expansion. PMID:26293504

  12. Adipose Tissue-Derived Pericytes for Cartilage Tissue Engineering.

    PubMed

    Zhang, Jinxin; Du, Chunyan; Guo, Weimin; Li, Pan; Liu, Shuyun; Yuan, Zhiguo; Yang, Jianhua; Sun, Xun; Yin, Heyong; Guo, Quanyi; Zhou, Chenfu

    2017-01-01

    Mesenchymal stem cells (MSCs) represent a promising alternative source for cartilage tissue engineering. However, MSC culture is labor-intensive, so these cells cannot be applied immediately to regenerate cartilage for clinical purposes. Risks during the ex vivo expansion of MSCs, such as infection and immunogenicity, can be a bottleneck in their use in clinical tissue engineering. As a novel stem cell source, pericytes are generally considered to be the origin of MSCs. Pericytes do not have to undergo time-consuming ex vivo expansion because they are uncultured cells. Adipose tissue is another optimal stem cell reservoir. Because adipose tissue is well vascularized, a considerable number of pericytes are located around blood vessels in this accessible and dispensable tissue, and autologous pericytes can be applied immediately for cartilage regeneration. Thus, we suggest that adipose tissue-derived pericytes are promising seed cells for cartilage regeneration. Many studies have been performed to develop isolation methods for the adipose tissuederived stromal vascular fraction (AT-SVF) using lipoaspiration and sorting pericytes from AT-SVF. These methods are useful for sorting a large number of viable pericytes for clinical therapy after being combined with automatic isolation using an SVF device and automatic magnetic-activated cell sorting. These tools should help to develop one-step surgery for repairing cartilage damage. However, the use of adipose tissue-derived pericytes as a cell source for cartilage tissue engineering has not drawn sufficient attention and preclinical studies are needed to improve cell purity, to increase sorting efficiency, and to assess safety issues of clinical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Liver fat content is linked to inflammatory changes in subcutaneous adipose tissue in type 2 diabetes patients.

    PubMed

    Jansen, Henry J; Vervoort, Gerald M; van der Graaf, Marinette; Stienstra, Rinke; Tack, Cees J

    2013-11-01

    Patients with type 2 diabetes mellitus (T2DM) are typically overweight and have an increased liver fat content (LFAT). High LFAT may be explained by an increased efflux of free fatty acids from the adipose tissue, which is partly instigated by inflammatory changes. This would imply an association between inflammatory features of the adipose tissue and liver fat content. To analyse associations between inflammatory features of the adipose tissue and liver fat content. A cross-sectional study. Twenty-seven obese patients with insulin-treated T2DM were studied. LFAT content was measured by proton magnetic resonance spectroscopy. A subcutaneous (sc) fat biopsy was obtained to determine morphology and protein levels within adipose tissue. In addition to fat cell size, the percentage of macrophages and the presence of crown-like structures (CLSs) within sc fat were assessed by CD68-immunohistochemical staining. Mean LFAT percentage was 11·1 ± 1·7% (range: 0·75-32·9%); 63% of the patients were diagnosed with an elevated LFAT (upper range of normal ≤5·5%). Whereas adipocyte size did not correlate with LFAT, 3 of 4 subjects with CLSs in sc fat had elevated LFAT and the percentage of macrophages present in sc adipose tissue was positively associated with LFAT. Protein concentrations of adiponectin within adipose tissue negatively correlated with LFAT. Adipose tissue protein levels of the key inflammatory adipokine plasminogen activator inhibitor-1 (PAI-1) were positively associated with LFAT. Several pro-inflammatory changes in sc adipose tissue associate with increased LFAT content in obese insulin-treated patients with T2DM. These findings suggest that inflammatory changes at the level of the adipose tissue may drive liver fat accumulation. © 2012 John Wiley & Sons Ltd.

  14. Taurine supplementation regulates Iκ-Bα protein expression in adipose tissue and serum IL-4 and TNF-α concentrations in MSG obesity.

    PubMed

    Caetano, Luiz Carlos; Bonfleur, Maria Lúcia; Ribeiro, Rosane Aparecida; Nardelli, Tarlliza Romanna; Lubaczeuski, Camila; do Nascimento da Silva, Juliana; Carneiro, Everardo Magalhães; Balbo, Sandra Lucinei

    2017-03-01

    Obesity is usually associated with low-grade inflammation, which impairs insulin action. The amino acid, taurine (TAU), regulates glucose homeostasis and lipid metabolism and presents anti-inflammatory actions. Here, we evaluated whether inflammatory markers are altered in the serum and retroperitoneal adipose tissue of monosodium glutamate (MSG) obese rats, supplemented or not with TAU. Male Wistar rats received subcutaneous injections of MSG (4 mg/kg body weight/day, MSG group) or hypertonic saline (CTL) during the first 5 days of life. From 21 to 120 days of age, half of each of the MSG and CTL groups received 2.5 % TAU in their drinking water (CTAU and MTAU). At 120 days of age, MSG rats were obese and hyperinsulinemic. TAU supplementation reduced fat deposition without affecting insulinemia in MTAU rats. MSG rats presented increased pIκ-Bα/Iκ-Bα protein expression in the retroperitoneal adipose tissue. TAU supplementation decreased the ratio of pIκ-Bα/Iκ-Bα protein, possibly contributing to the increased Iκ-Bα content in MTAU adipose tissue. Furthermore, MSG obesity or supplementation did not alter TNF-α, IL-1β or IL-6 content in adipose tissue. In contrast, MSG rats presented lower serum TNF-α, IL-4 and IL-10 concentrations, and these alterations were prevented by TAU treatment. MSG obesity in rats was not associated with alterations in pro-inflammatory markers in retroperitoneal fat stores; however, reductions in the serum concentrations of anti-inflammatory cytokines and of TNF-α were observed. TAU treatment decreased adiposity, and this effect was associated with the normalization of circulating TNF-α and IL-4 concentrations in MTAU rats.

  15. Pomegranate vinegar attenuates adiposity in obese rats through coordinated control of AMPK signaling in the liver and adipose tissue

    PubMed Central

    2013-01-01

    Background The effect of pomegranate vinegar (PV) on adiposity was investigated in high-fat diet (HF)-induced obese rats. Methods The rats were divided into 5 groups and treated with HF with PV or acetic acid (0, 6.5 or 13% w/w) for 16 weeks. Statistical analyses were performed by the Statistical Analysis Systems package, version 9.2. Results Compared to control, PV supplementation increased phosphorylation of AMP-activated protein kinase (AMPK), leading to changes in mRNA expressions: increases for hormone sensitive lipase and mitochondrial uncoupling protein 2 and decreases for sterol regulatory element binding protein-1c (SREBP-1c) and peroxisome proliferator-activated receptorγ (PPARγ) in adipose tissue; increases for PPARα and carnitinepalmitoyltransferase-1a (CPT-1a) and decrease for SREBP-1c in the liver. Concomitantly, PV reduced increases of body weight (p = 0.048), fat mass (p = 0.033), hepatic triglycerides (p = 0.005), and plasma triglycerides (p = 0.001). Conclusions These results suggest that PV attenuates adiposity through the coordinated control of AMPK, which leads to promotion of lipolysis in adipose tissue and stimulation of fatty acid oxidation in the liver. PMID:24180378

  16. Anti-Inflammatory and Anti-Obesity Properties of Food Bioactive Components: Effects on Adipose Tissue

    PubMed Central

    Jayarathne, Shasika; Koboziev, Iurii; Park, Oak-Hee; Oldewage-Theron, Wilna; Shen, Chwan-Li; Moustaid-Moussa, Naima

    2017-01-01

    Obesity is an epidemic and costly disease affecting 13% of the adult population worldwide. Obesity is associated with adipose tissue hypertrophy and hyperplasia, as well as pathologic endocrine alterations of adipose tissue including local and chronic systemic low-grade inflammation. Moreover, this inflammation is a risk factor for both metabolic syndrome (MetS) and insulin resistance. Basic and clinical studies demonstrate that foods containing bioactive compounds are capable of preventing both obesity and adipose tissue inflammation, improving obesity-associated MetS in human subjects and animal models of obesity. In this review, we discuss the anti-obesity and anti-inflammatory protective effects of some bioactive polyphenols of plant origin and omega-3 polyunsaturated fatty acids, available for the customers worldwide from commonly used foods and/or as components of commercial food supplements. We review how these bioactive compounds modulate cell signaling including through the nuclear factor-κB, adenosine monophosphate-activated protein kinase, mitogen-activated protein kinase, toll-like receptors, and G-protein coupled receptor 120 intracellular signaling pathways and improve the balance of pro- and anti-inflammatory mediators secreted by adipose tissue and subsequently lower systemic inflammation and risk for metabolic diseases. PMID:29333376

  17. FABP4 dynamics in obesity: discrepancies in adipose tissue and liver expression regarding circulating plasma levels.

    PubMed

    Queipo-Ortuño, María Isabel; Escoté, Xavier; Ceperuelo-Mallafré, Victoria; Garrido-Sanchez, Lourdes; Miranda, Merce; Clemente-Postigo, Mercedes; Pérez-Pérez, Rafael; Peral, Belen; Cardona, Fernando; Fernández-Real, Jose Manuel; Tinahones, Francisco J; Vendrell, Joan

    2012-01-01

    FABP4 is predominantly expressed in adipose tissue, and its circulating levels are linked with obesity and a poor atherogenic profile. In patients with a wide BMI range, we analyze FABP4 expression in adipose and hepatic tissues in the settings of obesity and insulin resistance. Associations between FABP4 expression in adipose tissue and the FABP4 plasma level as well as the main adipogenic and lipolytic genes expressed in adipose tissue were also analyzed. The expression of several lipogenic, lipolytic, PPAR family and FABP family genes was analyzed by real time PCR. FABP4 protein expression in total adipose tissues and its fractions were determined by western blot. In obesity FABP4 expression was down-regulated (at both mRNA and protein levels), with its levels mainly predicted by ATGL and inversely by the HOMA-IR index. The BMI appeared as the only determinant of the FABP4 variation in both adipose tissue depots. FABP4 plasma levels showed a significant progressive increase according to BMI but no association was detected between FABP4 circulating levels and SAT or VAT FABP4 gene expression. The gene expression of FABP1, FABP4 and FABP5 in hepatic tissue was significantly higher in tissue from the obese IR patients compared to the non-IR group. The inverse pattern in FABP4 expression between adipose and hepatic tissue observed in morbid obese patients, regarding the IR context, suggests that both tissues may act in a balanced manner. These differences may help us to understand the discrepancies between circulating plasma levels and adipose tissue expression in obesity.

  18. FABP4 Dynamics in Obesity: Discrepancies in Adipose Tissue and Liver Expression Regarding Circulating Plasma Levels

    PubMed Central

    Ceperuelo-Mallafré, Victoria; Garrido-Sanchez, Lourdes; Miranda, Merce; Clemente-Postigo, Mercedes; Pérez-Pérez, Rafael; Peral, Belen; Cardona, Fernando; Fernández-Real, Jose Manuel; Tinahones, Francisco J.; Vendrell, Joan

    2012-01-01

    Background FABP4 is predominantly expressed in adipose tissue, and its circulating levels are linked with obesity and a poor atherogenic profile. Objective In patients with a wide BMI range, we analyze FABP4 expression in adipose and hepatic tissues in the settings of obesity and insulin resistance. Associations between FABP4 expression in adipose tissue and the FABP4 plasma level as well as the main adipogenic and lipolytic genes expressed in adipose tissue were also analyzed. Methods The expression of several lipogenic, lipolytic, PPAR family and FABP family genes was analyzed by real time PCR. FABP4 protein expression in total adipose tissues and its fractions were determined by western blot. Results In obesity FABP4 expression was down-regulated (at both mRNA and protein levels), with its levels mainly predicted by ATGL and inversely by the HOMA-IR index. The BMI appeared as the only determinant of the FABP4 variation in both adipose tissue depots. FABP4 plasma levels showed a significant progressive increase according to BMI but no association was detected between FABP4 circulating levels and SAT or VAT FABP4 gene expression. The gene expression of FABP1, FABP4 and FABP5 in hepatic tissue was significantly higher in tissue from the obese IR patients compared to the non-IR group. Conclusion The inverse pattern in FABP4 expression between adipose and hepatic tissue observed in morbid obese patients, regarding the IR context, suggests that both tissues may act in a balanced manner. These differences may help us to understand the discrepancies between circulating plasma levels and adipose tissue expression in obesity. PMID:23139800

  19. Contribution of Adipose Tissue to Development of Cancer

    PubMed Central

    Cozzo, Alyssa J.; Fuller, Ashley M.; Makowski, Liza

    2018-01-01

    Solid tumor growth and metastasis require the interaction of tumor cells with the surrounding tissue, leading to a view of tumors as tissue-level phenomena rather than exclusively cell-intrinsic anomalies. Due to the ubiquitous nature of adipose tissue, many types of solid tumors grow in proximate or direct contact with adipocytes and adipose-associated stromal and vascular components, such as fibroblasts and other connective tissue cells, stem and progenitor cells, endothelial cells, innate and adaptive immune cells, and extracellular signaling and matrix components. Excess adiposity in obesity both increases risk of cancer development and negatively influences prognosis in several cancer types, in part due to interaction with adipose tissue cell populations. Herein, we review the cellular and noncellular constituents of the adipose “organ,” and discuss the mechanisms by which these varied microenvironmental components contribute to tumor development, with special emphasis on obesity. Due to the prevalence of breast and prostate cancers in the United States, their close anatomical proximity to adipose tissue depots, and their complex epidemiologic associations with obesity, we particularly highlight research addressing the contribution of adipose tissue to the initiation and progression of these cancer types. Obesity dramatically modifies the adipose tissue microenvironment in numerous ways, including induction of fibrosis and angiogenesis, increased stem cell abundance, and expansion of proinflammatory immune cells. As many of these changes also resemble shifts observed within the tumor microenvironment, proximity to adipose tissue may present a hospitable environment to developing tumors, providing a critical link between adiposity and tumorigenesis. PMID:29357128

  20. Development, regulation, metabolism and function of bone marrow adipose tissues.

    PubMed

    Li, Ziru; Hardij, Julie; Bagchi, Devika P; Scheller, Erica L; MacDougald, Ormond A

    2018-05-01

    Most adipocytes exist in discrete depots throughout the body, notably in well-defined white and brown adipose tissues. However, adipocytes also reside within specialized niches, of which the most abundant is within bone marrow. Whereas bone marrow adipose tissue (BMAT) shares many properties in common with white adipose tissue, the distinct functions of BMAT are reflected by its development, regulation, protein secretion, and lipid composition. In addition to its potential role as a local energy reservoir, BMAT also secretes proteins, including adiponectin, RANK ligand, dipeptidyl peptidase-4, and stem cell factor, which contribute to local marrow niche functions and which may also influence global metabolism. The characteristics of BMAT are also distinct depending on whether marrow adipocytes are contained within yellow or red marrow, as these can be thought of as 'constitutive' and 'regulated', respectively. The rBMAT for instance can be expanded or depleted by myriad factors, including age, nutrition, endocrine status and pharmaceuticals. Herein we review the site specificity, age-related development, regulation and metabolic characteristics of BMAT under various metabolic conditions, including the functional interactions with bone and hematopoietic cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. The development and endocrine functions of adipose tissue

    USDA-ARS?s Scientific Manuscript database

    White adipose tissue is a mesenchymal tissue that begins developing in the fetus. Classically known for storing the body’s fuel reserves, adipose tissue is now recognized as an endocrine organ. As such, the secretions from adipose tissue are known to affect several systems such as the vascular and...

  2. Post-Mortem Stability of RNA in Skeletal Muscle and Adipose Tissue and the Tissue-Specific Expression of Myostatin, Perilipin and Associated Factors in the Horse

    PubMed Central

    Morrison, Philippa K.; Bing, Chen; Harris, Patricia A.; Maltin, Charlotte A.; Grove-White, Dai; Argo, Caroline McG.

    2014-01-01

    Obesity, a major concern for equine welfare, is highly prevalent in the leisure horse population. Skeletal-muscle and adipose tissues are important determinants of maintenance energy requirements. The myostatin and perilipin pathways play key roles in the regulation of muscle mass and lipolysis respectively and have both been associated with obesity predisposition in other mammalian species. High quality samples, suitable for molecular biology, are an essential prerequisite for detailed investigations of gene and protein expression. Hence, this study has evaluated a) the post-mortem stability of RNA extracted from skeletal-muscle and adipose-tissues collected under commercial conditions and b) the tissue-specific presence of myostatin, the moystatin receptor (activin receptor IIB, ActRIIB), follistatin and perilipin, genes and proteins across a range of equine tissues. Objectives were addressed using tissues from 7 Thoroughbred horses presented for slaughter at a commercial abattoir; a) samples were collected at 7 time-points from Masseter muscle and perirenal adipose from 5 minutes to 6 hours post-mortem. Extracted RN was appraised by Optical Density analysis and agarose-gel electrophoresis. b) Quantitative real time PCR and Western Blotting were used to evaluate gene and protein expression in anatomically-defined samples collected from 17 tissues (6 organs, 4 skeletal muscles and 7 discrete adipose depots). The results indicate that, under the present collection conditions, intact, good quality RNA could be extracted from skeletal-muscle for up to 2 hours post-mortem. However, RNA from adipose tissue may be more susceptible to degradation/contamination and samples should be collected no later than 30 minutes post-mortem. The data also show that myostatin and ActRIIB genes and proteins were almost exclusively expressed in skeletal muscle. The follistatin gene showed a more diverse gene expression profile, with expression evident in several organs, adipose tissue

  3. Coordinated release of acylation stimulating protein (ASP) and triacylglycerol clearance by human adipose tissue in vivo in the postprandial period.

    PubMed

    Saleh, J; Summers, L K; Cianflone, K; Fielding, B A; Sniderman, A D; Frayn, K N

    1998-04-01

    The objective of this study was to determine whether Acylation Stimulating Protein (ASP) is generated in vivo by human adipose tissue during the postprandial period. After a fat meal, samples from 12 subjects were obtained (up to 6 h) from an arterialized hand vein and an anterior abdominal wall vein that drains adipose tissue. Veno-arterial (V-A) gradients across the subcutaneous adipose tissue bed were calculated. The data demonstrate that ASP is produced in vivo (positive V-A gradient) With maximal production at 3-5 h postprandially. The plasma triacylglycerol (TAG) clearance was evidenced by a negative V-A gradient. It increased substantially after 3 h and remained prominent until the final time point. There was, therefore, a close temporal coordination between ASP generation and TAG clearance. In contrast, plasma insulin and non-esterified fatty acid (NEFA) had an early (1-2 h) postprandial change. Fatty acid incorporation into adipose tissue (FIAT) was calculated from V-A glycerol and non-esterified fatty acid (NEFA) differences postprandially. FIAT was negative during the first hour, implying net fat mobilization. FIAT then became increasingly positive, implying net fat deposition, and overall followed the same time course as ASP and TAG clearance. There was a direct positive correlation between total ASP production and total FIAT (r = 0.566, P < 0.05). These data demonstrate that ASP is generated in vivo by human adipocytes and that this process is accentuated postprandially, supporting the concept that ASP plays an important role in clearance of TAG from plasma and fatty acid storage in adipose tissue.

  4. Isoliquiritigenin Attenuates Adipose Tissue Inflammation in vitro and Adipose Tissue Fibrosis through Inhibition of Innate Immune Responses in Mice.

    PubMed

    Watanabe, Yasuharu; Nagai, Yoshinori; Honda, Hiroe; Okamoto, Naoki; Yamamoto, Seiji; Hamashima, Takeru; Ishii, Yoko; Tanaka, Miyako; Suganami, Takayoshi; Sasahara, Masakiyo; Miyake, Kensuke; Takatsu, Kiyoshi

    2016-03-15

    Isoliquiritigenin (ILG) is a flavonoid derived from Glycyrrhiza uralensis and potently suppresses NLRP3 inflammasome activation resulting in the improvement of diet-induced adipose tissue inflammation. However, whether ILG affects other pathways besides the inflammasome in adipose tissue inflammation is unknown. We here show that ILG suppresses adipose tissue inflammation by affecting the paracrine loop containing saturated fatty acids and TNF-α by using a co-culture composed of adipocytes and macrophages. ILG suppressed inflammatory changes induced by the co-culture through inhibition of NF-κB activation. This effect was independent of either inhibition of inflammasome activation or activation of peroxisome proliferator-activated receptor-γ. Moreover, ILG suppressed TNF-α-induced activation of adipocytes, coincident with inhibition of IκBα phosphorylation. Additionally, TNF-α-mediated inhibition of Akt phosphorylation under insulin signaling was alleviated by ILG in adipocytes. ILG suppressed palmitic acid-induced activation of macrophages, with decreasing the level of phosphorylated Jnk expression. Intriguingly, ILG improved high fat diet-induced fibrosis in adipose tissue in vivo. Finally, ILG inhibited TLR4- or Mincle-stimulated expression of fibrosis-related genes in stromal vascular fraction from obese adipose tissue and macrophages in vitro. Thus, ILG can suppress adipose tissue inflammation by both inflammasome-dependent and -independent manners and attenuate adipose tissue fibrosis by targeting innate immune sensors.

  5. Assessing the effect of a high-fat diet on rodents' adipose tissue using Brillouin and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Troyanova-Wood, Maria; Gobbell, Cassidy; Meng, Zhaokai; Yakovlev, Vladislav V.

    2016-03-01

    The purpose of this study is to evaluate the effect of a high-lipid diet on elasticity of adipose tissue. We employed dual Raman/Brillouin microspectroscopy to analyze brown and white adipose tissues obtained from adult rats. The rats were divided into two groups, one of which received a high-fat feed, while the other served as a control. We hypothesized that the changes in the elasticity of adipose tissues between the two groups can be successfully assessed using Brillouin spectroscopy. We found that the brown adipose tissue possessed a lesser Brillouin shift than the white adipose within each group and that the elastic modulus of both adipose tissues increases in the high-fat diet group. The Raman spectra provided supplementary chemical information and indicated an increase in the lipid-to-protein ratio in the brown adipose, but not in the white adipose.

  6. Improvement of adipose tissue-derived cells by low-energy extracorporeal shock wave therapy.

    PubMed

    Priglinger, Eleni; Schuh, Christina M A P; Steffenhagen, Carolin; Wurzer, Christoph; Maier, Julia; Nuernberger, Sylvia; Holnthoner, Wolfgang; Fuchs, Christiane; Suessner, Susanne; Rünzler, Dominik; Redl, Heinz; Wolbank, Susanne

    2017-09-01

    Cell-based therapies with autologous adipose tissue-derived cells have shown great potential in several clinical studies in the last decades. The majority of these studies have been using the stromal vascular fraction (SVF), a heterogeneous mixture of fibroblasts, lymphocytes, monocytes/macrophages, endothelial cells, endothelial progenitor cells, pericytes and adipose-derived stromal/stem cells (ASC) among others. Although possible clinical applications of autologous adipose tissue-derived cells are manifold, they are limited by insufficient uniformity in cell identity and regenerative potency. In our experimental set-up, low-energy extracorporeal shock wave therapy (ESWT) was performed on freshly obtained human adipose tissue and isolated adipose tissue SVF cells aiming to equalize and enhance stem cell properties and functionality. After ESWT on adipose tissue we could achieve higher cellular adenosine triphosphate (ATP) levels compared with ESWT on the isolated SVF as well as the control. ESWT on adipose tissue resulted in a significantly higher expression of single mesenchymal and vascular marker compared with untreated control. Analysis of SVF protein secretome revealed a significant enhancement in insulin-like growth factor (IGF)-1 and placental growth factor (PLGF) after ESWT on adipose tissue. Summarizing we could show that ESWT on adipose tissue enhanced the cellular ATP content and modified the expression of single mesenchymal and vascular marker, and thus potentially provides a more regenerative cell population. Because the effectiveness of autologous cell therapy is dependent on the therapeutic potency of the patient's cells, this technology might raise the number of patients eligible for autologous cell transplantation. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  7. Dietary sardine protein lowers insulin resistance, leptin and TNF-α and beneficially affects adipose tissue oxidative stress in rats with fructose-induced metabolic syndrome.

    PubMed

    Madani, Zohra; Louchami, Karim; Sener, Abdullah; Malaisse, Willy J; Ait Yahia, Dalila

    2012-02-01

    The present study aims at exploring the effects of sardine protein on insulin resistance, plasma lipid profile, as well as oxidative and inflammatory status in rats with fructose-induced metabolic syndrome. Rats were fed sardine protein (S) or casein (C) diets supplemented or not with high-fructose (HF) for 2 months. Rats fed the HF diets had greater body weight and adiposity and lower food intake as compared to control rats. Increased plasma glucose, insulin, HbA1C, triacylglycerols, free fatty acids and impaired glucose tolerance and insulin resistance was observed in HF-fed rats. Moreover, a decline in adipose tissues antioxidant status and a rise in lipid peroxidation and plasma TNF-α and fibrinogen were noted. Rats fed sardine protein diets exhibited lower food intake and fat mass than those fed casein diets. Sardine protein diets diminished plasma insulin and insulin resistance. Plasma triacylglycerol and free fatty acids were also lower, while those of α-tocopherol, taurine and calcium were enhanced as compared to casein diets. Moreover, S-HF diet significantly decreased plasma glucose and HbA1C. Sardine protein consumption lowered hydroperoxide levels in perirenal and brown adipose tissues. The S-HF diet, as compared to C-HF diet decreased epididymal hydroperoxides. Feeding sardine protein diets decreased brown adipose tissue carbonyls and increased glutathione peroxidase activity. Perirenal and epididymal superoxide dismutase and catalase activities and brown catalase activity were significantly greater in S-HF group than in C-HF group. Sardine protein diets also prevented hyperleptinemia and reduced inflammatory status in comparison with rats fed casein diets. Taken together, these results support the beneficial effect of sardine protein in fructose-induced metabolic syndrome on such variables as hyperglycemia, insulin resistance, hyperlipidemia and oxidative and inflammatory status, suggesting the possible use of sardine protein as a protective

  8. Reduced Socs3 expression in adipose tissue protects female mice against obesity-induced insulin resistance.

    PubMed

    Palanivel, R; Fullerton, M D; Galic, S; Honeyman, J; Hewitt, K A; Jorgensen, S B; Steinberg, G R

    2012-11-01

    Inflammation in obesity increases the levels of the suppressor of cytokine signalling-3 (SOCS3) protein in adipose tissue, but the physiological importance of this protein in regulating whole-body insulin sensitivity in obesity is not known. We generated Socs3 floxed (wild-type, WT) and Socs3 aP2 (also known as Fabp4)-Cre null (Socs3 AKO) mice. Mice were maintained on either a regular chow or a high-fat diet (HFD) for 16 weeks during which time body mass, adiposity, glucose homeostasis and insulin sensitivity were assessed. The HFD increased SOCS3 levels in adipose tissue of WT but not Socs3 AKO mice. WT and Socs3 AKO mice had similar body mass and adiposity, assessed using computed tomography (CT) imaging, irrespective of diet or sex. On a control chow diet there were no differences in insulin sensitivity or glucose tolerance. When fed a HFD, female but not male Socs3 AKO mice had improved glucose tolerance as well as lower fasting glucose and insulin levels compared with WT littermates. Hyperinsulinaemic-euglycaemic clamps and positron emission tomography (PET) imaging demonstrated that improved insulin sensitivity was due to elevated adipose tissue glucose uptake. Increased insulin-stimulated glucose uptake in adipose tissue was associated with enhanced levels and activating phosphorylation of insulin receptor substrate-1 (IRS1). These data demonstrate that inhibiting SOCS3 production in adipose tissue of female mice is effective for improving whole-body insulin sensitivity in obesity.

  9. Metabolic benefits of inhibition of p38α in white adipose tissue in obesity.

    PubMed

    Zhang, Shengjie; Cao, Hongchao; Li, Yan; Jing, Yanyan; Liu, Shengnan; Ye, Cheng; Wang, Hui; Yu, Shuxian; Peng, Chengyuan; Hui, Lijian; Wang, Yu-Cheng; Zhang, Haibing; Guo, Feifan; Zhai, Qiwei; Wang, Hui; Huang, Ruimin; Zhang, Ling; Jiang, Jingjing; Liu, Wei; Ying, Hao

    2018-05-01

    p38 has long been known as a central mediator of protein kinase A (PKA) signaling in brown adipocytes, which positively regulate the transcription of uncoupling protein 1 (UCP-1). However, the physiological role of p38 in adipose tissues, especially the white adipose tissue (WAT), is largely unknown. Here, we show that mice lacking p38α in adipose tissues display a lean phenotype, improved metabolism, and resistance to diet-induced obesity. Surprisingly, ablation of p38α causes minimal effects on brown adipose tissue (BAT) in adult mice, as evident from undetectable changes in UCP-1 expression, mitochondrial function, body temperature (BT), and energy expenditure. In contrast, genetic ablation of p38α in adipose tissues not only markedly facilitates the browning in WAT upon cold stress but also prevents diet-induced obesity. Consistently, pharmaceutical inhibition of p38α remarkably enhances the browning of WAT and has metabolic benefits. Furthermore, our data suggest that p38α deficiency promotes white-to-beige adipocyte reprogramming in a cell-autonomous manner. Mechanistically, inhibition of p38α stimulates the UCP-1 transcription through PKA and its downstream cAMP-response element binding protein (CREB), which form a positive feedback loop that functions to reinforce the white-to-beige phenotypic switch during cold exposure. Together, our study reveals that inhibition of p38α is able to promote WAT browning and confer metabolic benefits. Our study also indicates that p38α in WAT represents an exciting pharmacological target to combat obesity and metabolic diseases.

  10. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice

    PubMed Central

    Kliewer, Kara L; Ke, Jia-Yu; Tian, Min; Cole, Rachel M; Andridge, Rebecca R; Belury, Martha A

    2015-01-01

    Cancer cachexia is a progressive metabolic disorder that results in depletion of adipose tissue and skeletal muscle. A growing body of literature suggests that maintaining adipose tissue mass in cachexia may improve quality-of-life and survival outcomes. Studies of lipid metabolism in cachexia, however, have generally focused on later stages of the disorder when severe loss of adipose tissue has already occurred. Here, we investigated lipid metabolism in adipose, liver and muscle tissues during early stage cachexia – before severe fat loss – in the colon-26 murine model of cachexia. White adipose tissue mass in cachectic mice was moderately reduced (34–42%) and weight loss was less than 10% of initial body weight in this study of early cachexia. In white adipose depots of cachectic mice, we found evidence of enhanced protein kinase A - activated lipolysis which coincided with elevated total energy expenditure and increased expression of markers of brown (but not white) adipose tissue thermogenesis and the acute phase response. Total lipids in liver and muscle were unchanged in early cachexia while markers of fatty oxidation were increased. Many of these initial metabolic responses contrast with reports of lipid metabolism in later stages of cachexia. Our observations suggest intervention studies to preserve fat mass in cachexia should be tailored to the stage of cachexia. Our observations also highlight a need for studies that delineate the contribution of cachexia stage and animal model to altered lipid metabolism in cancer cachexia and identify those that most closely mimic the human condition. PMID:25457061

  11. Broiler chicken adipose tissue dynamics during the first two weeks post-hatch.

    PubMed

    Bai, Shiping; Wang, Guoqing; Zhang, Wei; Zhang, Shuai; Rice, Brittany Breon; Cline, Mark Andrew; Gilbert, Elizabeth Ruth

    2015-11-01

    Selection of broiler chickens for growth has led to increased adipose tissue accretion. To investigate the post-hatch development of adipose tissue, the abdominal, clavicular, and subcutaneous adipose tissue depots were collected from broiler chicks at 4 and 14 days post-hatch. As a percent of body weight, abdominal fat increased (P<0.001) with age. At day 4, clavicular and subcutaneous fat depots were heavier (P<0.003) than abdominal fat whereas at day 14, abdominal and clavicular weighed more (P<0.003) than subcutaneous fat. Adipocyte area and diameter were greater in clavicular and subcutaneous than abdominal fat at 4 and 14 days post-hatch (P<0.001). Glycerol-3-phosphate dehydrogenase (G3PDH) activity increased (P<0.001) in all depots from day 4 to 14, and at both ages was greatest in subcutaneous, intermediate in clavicular, and lowest in abdominal fat (P<0.05). In clavicular fat, peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancer binding protein (CEBP)α, CEBPβ, fatty acid synthase (FASN), fatty acid binding protein 4 (FABP4), lipoprotein lipase (LPL), neuropeptide Y (NPY), and NPY receptor 5 (NPYR5) mRNA increased and NPYR2 mRNA decreased from day 4 to 14 (P<0.001). Thus, there are site-specific differences in broiler chick adipose development, with larger adipocytes and greater G3PDH activity in subcutaneous fat at day 4, more rapid growth of abdominal fat, and clavicular fat intermediate for most traits. Adipose tissue expansion was accompanied by changes in gene expression of adipose-associated factors. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Optimized adipose tissue engineering strategy based on a neo-mechanical processing method.

    PubMed

    He, Yunfan; Lin, Maohui; Wang, Xuecen; Guan, Jingyan; Dong, Ziqing; Feng, Lu; Xing, Malcolm; Feng, Chuanbo; Li, Xiaojian

    2018-05-26

    Decellularized adipose tissue (DAT) represents a promising scaffold for adipose tissue engineering. However, the unique and prolonged lipid removal process required for adipose tissue can damage extracellular matrix (ECM) constituents. Moreover, inadequate vascularization limits the recellularization of DAT in vivo. We proposed a neo-mechanical protocol for rapidly breaking adipocytes and removing lipid content from adipose tissue. The lipid-depleted adipose tissue was then subjected to a fast and mild decellularization to fabricate high-quality DAT (M-DAT). Adipose liquid extract (ALE) derived from this mechanical process was collected and incorporated into M-DAT to further optimize in vivo recellularization. Ordinary DAT was fabricated and served as a control. This developed strategy was evaluated based on decellularization efficiency, ECM quality, and recellularization efficiency. Angiogenic factor components and angiogenic potential of ALE were evaluated in vivo and in vitro. M-DAT achieved the same decellularization efficiency, but exhibited better retention of ECM components and recellularization, compared to those with ordinary DAT. Protein quantification revealed considerable levels of angiogenic factors (basic fibroblast growth factor, epidermal growth factor, transforming growth factor-β1, and vascular endothelial growth factor) in ALE. ALE promoted tube formation in vitro and induced intense angiogenesis in M-DAT in vivo; furthermore, higher expression of the adipogenic factor PPARγ and greater numbers of adipocytes were evident following ALE treatment, compared to those in the M-DAT group. Mechanical processing of adipose tissue led to the production of high-quality M-DAT and angiogenic factor-enriched ALE. The combination of ALE and M-DAT could be a promising strategy for engineered adipose tissue construction. This article is protected by copyright. All rights reserved. © 2018 by the Wound Healing Society.

  13. Weight loss induced by bariatric surgery restores adipose tissue PNPLA3 expression.

    PubMed

    Wieser, Verena; Adolph, Timon E; Enrich, Barbara; Moser, Patrizia; Moschen, Alexander R; Tilg, Herbert

    2017-02-01

    Obesity and its related co-morbidities such as non-alcoholic fatty liver disease (NAFLD) are increasing dramatically worldwide. The genetic variation in Patatin-like phospholipase domain-containing protein 3 (PNPLA3), which is also called adiponutrin (ADPN), in residue 148 (I148M, rs738409) has been associated with NAFLD. However, the regulation and function of PNPLA3 in metabolic diseases remains unclear. Laparoscopic gastric banding (LAGB) of severely obese patients reduces body weight, liver and adipose tissue inflammation. In this study, we investigated whether weight loss induced by LAGB affected PNPLA3 expression in hepatic and adipose tissue. Liver and subcutaneous adipose tissue samples were collected from 28 severely obese patients before and 6 months after LAGB. PNPLA3 expression was assessed by quantitative real-time PCR. To understand whether inflammatory stimuli regulated PNPLA3 expression, we studied the effect of tumour necrosis factor alpha (TNFα) and lipopolysaccharide (LPS) on PNPLA3 expression in human adipocytes and hepatocytes. PNPLA3 was strongly expressed in the liver and clearly detectable in subcutaneous adipose tissue of obese patients. Weight loss induced by LAGB of severely obese patients led to significantly increased adipose, but not hepatic, tissue expression of PNPLA3. Subcutaneous PNPLA3 expression negatively correlated with body-mass-index, fasting glucose and fasting insulin. TNFα potently suppressed PNPLA3 expression in adipocytes but not hepatocytes. Weight loss induced by LAGB restored adipose tissue PNPLA3 expression which is suppressed by TNFα. Further studies will be required to determine the functional impact of PNPLA3 and its related genetic variation on adipose tissue inflammation and NAFLD. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Saturated or unsaturated fat supplemented maternal diets influence omental adipose tissue proteome of suckling goat-kids.

    PubMed

    Restelli, Laura; Marques, Andreia T; Savoini, Giovanni; Invernizzi, Guido; Carisetti, Michela; Lecchi, Cristina; Bendixen, Emoke; Ceciliani, Fabrizio

    2017-11-03

    The aim of the present study was to investigate how maternal diet can influence the adipose tissue of goat kids. Omental adipose tissue proteomes of goat-kids from mothers fed with diet enriched with stearic acid (ST-kids), fish oil (FO-kids) and standard diets (CTRL) were determined by quantitative iTRAQ 2D-LC-MS/MS analysis. Twenty proteins were found to be differentially expressed in suckling kids' omental adipose tissue. Stearic acid induces changes in a higher number of proteins when compared to fish oil. Eleven proteins, namely AARS, ECl1, PMSC2, CP, HSPA8, GPD1, RPL7, OGDH, RPL24, FGA and RPL5 were decreased in ST-kids only. Four proteins, namely DLST, EEF1G, BCAP31 and RALA were decreased in FO-kids only, and one, NUCKS1, was increased. Four proteins, namely PMSC1, PPIB, TUB5×2 and EIF5A1, were be less abundant in both ST- and FO- kids. Most of the protein whose abundance was decreased in ST kids (10 out of 15) are involved in protein metabolism and catabolism pathways. Qualitative gene expression analysis confirmed that all the proteins identified by mass spectrometry, with the exception of FGA, were produced by adipose tissue. Quantitative gene expression analysis demonstrated that two proteins, namely CP, a minor acute phase protein, and ECl1, involved in fatty acid beta oxidation, were downregulated at mRNA level as well. ECl1 gene expression was downregulated in ST-kids AT as compared to Ctrl-kids and CP was downregulated in both ST- and FO-kids. The present results demonstrate that it is possible to influence adipose goat-kid proteome by modifying the maternal diet. Copyright © 2017. Published by Elsevier Ltd.

  15. Inorganic Nitrate Promotes the Browning of White Adipose Tissue through the Nitrate-Nitrite-Nitric Oxide Pathway

    PubMed Central

    Roberts, Lee D; Ashmore, Tom; Kotwica, Aleksandra O; Murfitt, Steven A; Fernandez, Bernadette O; Feelisch, Martin; Griffin, Julian L

    2015-01-01

    Inorganic nitrate was once considered an oxidation end-product of nitric oxide metabolism with little biological activity. However, recent studies have demonstrated that dietary nitrate can modulate mitochondrial function in man and is effective in reversing features of the metabolic syndrome in mice. Using a combined histological, metabolomics, and transcriptional and protein analysis approach we mechanistically define that nitrate not only increases the expression of thermogenic genes in brown-adipose tissue but also induces the expression of brown adipocyte-specific genes and proteins in white adipose tissue, substantially increasing oxygen consumption and fatty acid β-oxidation in adipocytes. Nitrate induces these phenotypic changes through a mechanism distinct from known physiological small molecule activators of browning, the recently identified nitrate-nitrite-nitric oxide pathway. The nitrate-induced browning effect was enhanced in hypoxia, a serious co-morbidity affecting white adipose tissue in obese individuals, and corrected impaired brown adipocyte-specific gene expression in white adipose tissue in a murine model of obesity. Since resulting beige/brite cells exhibit anti-obesity and anti-diabetic effects, nitrate may be an effective means of inducing the browning response in adipose tissue to treat the metabolic syndrome. PMID:25249574

  16. Dietary overload lithium decreases the adipogenesis in abdominal adipose tissue of broiler chickens.

    PubMed

    Bai, Shiping; Pan, Shuqin; Zhang, Keying; Ding, Xuemei; Wang, Jianping; Zeng, Qiufeng; Xuan, Yue; Su, Zuowei

    2017-01-01

    To investigate the toxic effects of dietary overload lithium on the adipogenesis in adipose tissue of chicken and the role of hypothalamic neuropeptide Y (NPY) in this process, one-day-old male chicks were fed with the basal diet added with 0 (control) or 100mg lithium/kg diet from lithium chloride (overload lithium) for 35days. Abdominal adipose tissue and hypothalamus were collected at day 6, 14, and 35. As a percentage of body weight, abdominal fat decreased (p<0.001) at day 6, 14, and 35, and feed intake and body weight gain decreased during day 7-14, and day 15-35 in overload lithium treated broilers as compared to control. Adipocyte diameter and DNA content in abdominal adipose tissue were significantly lower in overload-lithium treatment than control at day 35, although no significant differences were observed at day 6 and 14. Dietary overload lithium decreased (p<0.01) transcriptional expression of preadipocyte proliferation makers ki-67 (KI67), microtubule-associated protein homolog (TPX2), and topoisomerase 2-alpha (TOP2A), and preadipocyte differentiation transcriptional factors peroxisome proliferator-activated receptor-γ (PPARγ), and CCAAT/enhancer binding protein (C/EBP) α mRNA abundance in abdominal adipose tissue. In hypothalamus, dietary overload lithium influenced (p<0.001) NPY, and NPY receptor (NPYR) 6 mRNA abundance at day 6 and 14, but not at day 35. In conclusion, dietary overload lithium decreased the adipogenesis in abdominal adipose tissue of chicken, which was accompanied by depressing transcriptional expression of adipogenesis-associated factors. Hypothalamic NPY had a potential role in the adipogenesis in abdominal adipose tissue of broilers with a short-term overload lithium treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Analysis of type II diabetes mellitus adipose-derived stem cells for tissue engineering applications

    PubMed Central

    Minteer, Danielle Marie; Young, Matthew T; Lin, Yen-Chih; Over, Patrick J; Rubin, J Peter; Gerlach, Jorg C

    2015-01-01

    To address the functionality of diabetic adipose-derived stem cells in tissue engineering applications, adipose-derived stem cells isolated from patients with and without type II diabetes mellitus were cultured in bioreactor culture systems. The adipose-derived stem cells were differentiated into adipocytes and maintained as functional adipocytes. The bioreactor system utilizes a hollow fiber–based technology for three-dimensional perfusion of tissues in vitro, creating a model in which long-term culture of adipocytes is feasible, and providing a potential tool useful for drug discovery. Daily metabolic activity of the adipose-derived stem cells was analyzed within the medium recirculating throughout the bioreactor system. At experiment termination, tissues were extracted from bioreactors for immunohistological analyses in addition to gene and protein expression. Type II diabetic adipose-derived stem cells did not exhibit significantly different glucose consumption compared to adipose-derived stem cells from patients without type II diabetes (p > 0.05, N = 3). Expression of mature adipocyte genes was not significantly different between diabetic/non-diabetic groups (p > 0.05, N = 3). Protein expression of adipose tissue grown within all bioreactors was verified by Western blotting.The results from this small-scale study reveal adipose-derived stem cells from patients with type II diabetes when removed from diabetic environments behave metabolically similar to the same cells of non-diabetic patients when cultured in a three-dimensional perfusion bioreactor, suggesting that glucose transport across the adipocyte cell membrane, the hindrance of which being characteristic of type II diabetes, is dependent on environment. The presented observation describes a tissue-engineered tool for long-term cell culture and, following future adjustments to the culture environment and increased sample sizes, potentially for anti-diabetic drug testing. PMID:26090087

  18. Downregulation of Adipose Tissue Fatty Acid Trafficking in Obesity

    PubMed Central

    McQuaid, Siobhán E.; Hodson, Leanne; Neville, Matthew J.; Dennis, A. Louise; Cheeseman, Jane; Humphreys, Sandy M.; Ruge, Toralph; Gilbert, Marjorie; Fielding, Barbara A.; Frayn, Keith N.; Karpe, Fredrik

    2011-01-01

    OBJECTIVE Lipotoxicity and ectopic fat deposition reduce insulin signaling. It is not clear whether excess fat deposition in nonadipose tissue arises from excessive fatty acid delivery from adipose tissue or from impaired adipose tissue storage of ingested fat. RESEARCH DESIGN AND METHODS To investigate this we used a whole-body integrative physiological approach with multiple and simultaneous stable-isotope fatty acid tracers to assess delivery and transport of endogenous and exogenous fatty acid in adipose tissue over a diurnal cycle in lean (n = 9) and abdominally obese men (n = 10). RESULTS Abdominally obese men had substantially (2.5-fold) greater adipose tissue mass than lean control subjects, but the rates of delivery of nonesterified fatty acids (NEFA) were downregulated, resulting in normal systemic NEFA concentrations over a 24-h period. However, adipose tissue fat storage after meals was substantially depressed in the obese men. This was especially so for chylomicron-derived fatty acids, representing the direct storage pathway for dietary fat. Adipose tissue from the obese men showed a transcriptional signature consistent with this impaired fat storage function. CONCLUSIONS Enlargement of adipose tissue mass leads to an appropriate downregulation of systemic NEFA delivery with maintained plasma NEFA concentrations. However the implicit reduction in adipose tissue fatty acid uptake goes beyond this and shows a maladaptive response with a severely impaired pathway for direct dietary fat storage. This adipose tissue response to obesity may provide the pathophysiological basis for ectopic fat deposition and lipotoxicity. PMID:20943748

  19. Adipose tissue as an endocrine organ.

    PubMed

    McGown, Christine; Birerdinc, Aybike; Younossi, Zobair M

    2014-02-01

    Obesity is one of the most important health challenges faced by developed countries and is increasingly affecting adolescents and children. Obesity is also a considerable risk factor for the development of numerous other chronic diseases, such as insulin resistance, type 2 diabetes, heart disease and nonalcoholic fatty liver disease. The epidemic proportions of obesity and its numerous comorbidities are bringing into focus the highly complex and metabolically active adipose tissue. Adipose tissue is increasingly being considered as a functional endocrine organ. This article discusses the endocrine effects of adipose tissue during obesity and the systemic impact of this signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    PubMed

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues

  1. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    PubMed Central

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone–fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues – subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT – is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat

  2. The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting.

    PubMed

    Elattar, Sawsan; Dimri, Manali; Satyanarayana, Ande

    2018-03-23

    Cachexia is a complex tissue-wasting syndrome characterized by inflammation, hypermetabolism, increased energy expenditure, and anorexia. Browning of white adipose tissue (WAT) is one of the significant factors that contribute to energy wasting in cachexia. By utilizing a cell implantation model, we demonstrate here that the lipid mobilizing factor zinc-α 2 -glycoprotein (ZAG) induces WAT browning in mice. Increased circulating levels of ZAG not only induced lipolysis in adipose tissues but also caused robust browning in WAT. Stimulating WAT progenitors with ZAG recombinant protein or expression of ZAG in mouse embryonic fibroblasts (MEFs) strongly enhanced brown-like differentiation. At the molecular level, ZAG stimulated peroxisome proliferator-activated receptor γ (PPARγ) and early B cell factor 2 expression and promoted their recruitment to the PR/SET domain 16 (Prdm16) promoter, leading to enhanced expression of Prdm16, which determines brown cell fate. In brown adipose tissue, ZAG stimulated the expression of PPARγ and PPARγ coactivator 1α and promoted recruitment of PPARγ to the uncoupling protein 1 (Ucp1) promoter, leading to increased expression of Ucp1. Overall, our results reveal a novel function of ZAG in WAT browning and highlight the targeting of ZAG as a potential therapeutic application in humans with cachexia.-Elattar, S., Dimri, M., Satyanarayana, A. The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting.

  3. Reduced Socs3 expression in adipose tissue protects female mice against obesity-induced insulin resistance

    PubMed Central

    Palanivel, R.; Fullerton, M. D.; Galic, S.; Honeyman, J.; Hewitt, K. A.; Jorgensen, S. B.; Steinberg, G. R.

    2017-01-01

    Aims/hypothesis Inflammation in obesity increases the levels of the suppressor of cytokine signalling-3 (SOCS3) protein in adipose tissue, but the physiological importance of this protein in regulating whole-body insulin sensitivity in obesity is not known. Methods We generated Socs3 floxed (wild-type, WT) and Socs3 aP2 (also known as Fabp4)-Cre null (Socs3 AKO) mice. Mice were maintained on either a regular chow or a high-fat diet (HFD) for 16 weeks during which time body mass, adiposity, glucose homeostasis and insulin sensitivity were assessed. Results The HFD increased SOCS3 levels in adipose tissue of WT but not Socs3 AKO mice. WT and Socs3 AKO mice had similar body mass and adiposity, assessed using computed tomography (CT) imaging, irrespective of diet or sex. On a control chow diet there were no differences in insulin sensitivity or glucose tolerance. When fed a HFD, female but not male Socs3 AKO mice had improved glucose tolerance as well as lower fasting glucose and insulin levels compared with WT littermates. Hyperinsulinaemic–euglycaemic clamps and positron emission tomography (PET) imaging demonstrated that improved insulin sensitivity was due to elevated adipose tissue glucose uptake. Increased insulin-stimulated glucose uptake in adipose tissue was associated with enhanced levels and activating phosphorylation of insulin receptor substrate-1 (IRS1). Conclusions/interpretation These data demonstrate that inhibiting SOCS3 production in adipose tissue of female mice is effective for improving whole-body insulin sensitivity in obesity. PMID:22872213

  4. Adipose tissue-derived stem cells enhance bioprosthetic mesh repair of ventral hernias.

    PubMed

    Altman, Andrew M; Abdul Khalek, Feras J; Alt, Eckhard U; Butler, Charles E

    2010-09-01

    Bioprosthetic mesh used for ventral hernia repair becomes incorporated into the musculofascial edge by cellular infiltration and vascularization. Adipose tissue-derived stem cells promote tissue repair and vascularization and may increase the rate or degree of tissue incorporation. The authors hypothesized that introducing these cells into bioprosthetic mesh would result in adipose tissue-derived stem cell engraftment and proliferation and enhance incorporation of the bioprosthetic mesh. Adipose tissue-derived stem cells were isolated from the subcutaneous adipose tissue of syngeneic Brown Norway rats, expanded in vitro, and labeled with green fluorescent protein. Thirty-six additional rats underwent inlay ventral hernia repair with porcine acellular dermal matrix. Two 12-rat groups had the cells (1.0 x 10(6)) injected directly into the musculofascial/porcine acellular dermal matrix interface after repair or received porcine acellular dermal matrix on which the cells had been preseeded; the 12-rat control group received no stem cells. At 2 weeks, adipose tissue-derived stem cells in both stem cell groups engrafted, survived, migrated, and proliferated. Mean cellular infiltration into porcine acellular dermal matrix at the musculofascial/graft interface was significantly greater in the preseeded and injected stem cell groups than in the control group. Mean vascular infiltration of the porcine acellular dermal matrix was significantly greater in both stem cell groups than in the control group. Preseeded and injected adipose tissue-derived stem cells engraft, migrate, proliferate, and enhance the vascularity of porcine acellular dermal matrix grafts at the musculofascial/graft interface. These cells can thus enhance incorporation of porcine acellular dermal matrix into the abdominal wall after repair of ventral hernias.

  5. Role of arsenic exposure in adipose tissue dysfunction and its possible implication in diabetes pathophysiology.

    PubMed

    Renu, Kaviyarasi; Madhyastha, Harishkumar; Madhyastha, Radha; Maruyama, Masugi; Arunachlam, Sankarganesh; V G, Abilash

    2018-03-01

    Exposure to arsenic in drinking water can stimulate a diverse number of diseases that originate from impaired lipid metabolism in adipose and glucose metabolism, leading to insulin resistance. Arsenic inhibits differentiation of adipocyte and mediates insulin resistance with diminutive information on arsenicosis on lipid storage and lipolysis. This review focused on different mechanisms and pathways involved in adipogenesis and lipolysis in adipose tissue during arsenic-induced diabetes. Though arsenic is known to cause type2 diabetes through different mechanisms, the role of adipose tissue in causing type2 diabetes is still unclear. With the existing literature, this review exhibits the effect of arsenic on adipose tissue and its signalling events such as SIRT3- FOXO3a signalling pathway, Ras -MAP -AP-1 cascade, PI(3)-K-Akt pathway, endoplasmic reticulum stress protein, C/EBP homologous protein (CHOP10) and GPCR pathway with role of adipokines. There is a need to elucidate the different types of adipokines which are involved in arsenic-induced diabetes. The exhibited information brings to light that arsenic has negative effects on a white adipose tissue (WAT) by decreasing adipogenesis and enhancing lipolysis. Some of the epidemiological studies show that arsenic would causes obesity. Few studies indicate that arsenic might induces lipodystrophy condition. Further research is needed to evaluate the mechanistic link between arsenic and adipose tissue dysfunction which leads to insulin resistance. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The role of adipose tissue in cancer-associated cachexia.

    PubMed

    Vaitkus, Janina A; Celi, Francesco S

    2017-03-01

    Adipose tissue (fat) is a heterogeneous organ, both in function and histology, distributed throughout the body. White adipose tissue, responsible for energy storage and more recently found to have endocrine and inflammation-modulatory activities, was historically thought to be the only type of fat present in adult humans. The recent demonstration of functional brown adipose tissue in adults, which is highly metabolic, shifted this paradigm. Additionally, recent studies demonstrate the ability of white adipose tissue to be induced toward the brown adipose phenotype - "beige" or "brite" adipose tissue - in a process referred to as "browning." While these adipose tissue depots are under investigation in the context of obesity, new evidence suggests a maladaptive role in other metabolic disturbances including cancer-associated cachexia, which is the topic of this review. This syndrome is multifactorial in nature and is an independent factor associated with poor prognosis. Here, we review the contributions of all three adipose depots - white, brown, and beige - to the development and progression of cancer-associated cachexia. Specifically, we focus on the local and systemic processes involving these adipose tissues that lead to increased energy expenditure and sustained negative energy balance. We highlight key findings from both animal and human studies and discuss areas within the field that need further exploration. Impact statement Cancer-associated cachexia (CAC) is a complex, multifactorial syndrome that negatively impacts patient quality of live and prognosis. This work reviews a component of CAC that lacks prior discussion: adipose tissue contributions. Uniquely, it discusses all three types of adipose tissue, white, beige, and brown, their interactions, and their contributions to the development and progression of CAC. Summarizing key bench and clinical studies, it provides information that will be useful to both basic and clinical researchers in designing

  7. Optimizing Adipose Tissue Extract Isolation with Stirred Suspension Culture.

    PubMed

    Zhang, Yan; Yu, Mei; Zhao, Xueyong; Dai, Minjia; Chen, Chang; Tian, Weidong

    2018-05-31

    Adherent culture which is used to collect adipose tissue extract (ATE) previously brings the problem of inhomogeneity and non-repeatability. Here we aim to extract ATE with stirred suspension culture to speed up the extraction process, stabilize the yield and improve consistent potency metrics of ATE. ATE was collected with adherent culture (ATE-A) and stirred suspension culture (ATE-S) separately. Protein yield and composition were detected by SDS-PAGE while cytokines in ATE were determined with ELISA. The adipogenic and angiogenic potential of ATE were compared by Western blot and qPCR. In addition, HE staining and LDH activity assays were used to analyze the cell viability of adipose tissue cultured with different methods. The yield of ATE-S was consistent while ATE-A varied notably. Characterization of the protein composition and exosome-like vesicles (ELVs) indicated no significant difference between ATE-S and ATE-A. The concentrations of cytokines (VEGF, bFGF and IL-6) showed no significant difference while IGF in ATE-S was higher than that in ATE-A. ATE-S showed upregulated adipogenic and angiogenic potential compared to ATE-A. Morever, stirred suspension culture decreased the LDH activity of ATE while increased the number of viable adipocytes and reduced adipose tissue necrosis. Compared with adherent culture, stirred suspension culture is a reliable, time and labor-saving method to collect ATE, which might be used to improve the downstream applications of ATE.

  8. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis

    PubMed Central

    Park, Byung Young; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Hong, Yeonhee; Lee, Hee Suk; Park, Eun Kyu; Hahm, Jong Cheon; Kim, Jin Woo; Shin, Soon Shik; Kim, Min-Young; Yoon, Michung

    2015-01-01

    It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS) prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP) activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9), whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors. PMID:26599360

  9. Regulation of the Fibrosis and Angiogenesis Promoter SPARC/Osteonectin in Human Adipose Tissue by Weight Change, Leptin, Insulin, and Glucose

    PubMed Central

    Kos, Katrina; Wong, Steve; Tan, Bee; Gummesson, Anders; Jernas, Margareta; Franck, Niclas; Kerrigan, David; Nystrom, Fredrik H.; Carlsson, Lena M.S.; Randeva, Harpal S.; Pinkney, Jonathan H.; Wilding, John P.H.

    2009-01-01

    OBJECTIVE Matricellular Secreted Protein, Acidic and Rich in Cysteine (SPARC), originally discovered in bone as osteonectin, is a mediator of collagen deposition and promotes fibrosis. Adipose tissue collagen has recently been found to be linked with metabolic dysregulation. Therefore, we tested the hypothesis that SPARC in human adipose tissue is influenced by glucose metabolism and adipokines. RESEARCH DESIGN AND METHODS Serum and adipose tissue biopsies were obtained from morbidly obese nondiabetic subjects undergoing bariatric surgery and lean control subjects for analysis of metabolic markers, SPARC, and various cytokines (RT-PCR). Additionally, 24 obese subjects underwent a very-low-calorie diet of 1,883 kJ (450 kcal)/day for 16 weeks and serial subcutaneous-abdominal-adipose tissue (SCAT) biopsies (weight loss: 28 ± 3.7 kg). Another six lean subjects underwent fast-food–based hyperalimentation for 4 weeks (weight gain: 7.2 ± 1.6 kg). Finally, visceral adipose tissue explants were cultured with recombinant leptin, insulin, and glucose, and SPARC mRNA and protein expression determined by Western blot analyses. RESULTS SPARC expression in human adipose tissue correlated with fat mass and was higher in SCAT. Weight loss induced by very-low-calorie diet lowered SPARC expression by 33% and increased by 30% in adipose tissue of subjects gaining weight after a fast-food diet. SPARC expression was correlated with leptin independent of fat mass and correlated with homeostasis model assessment–insulin resistance. In vitro experiments showed that leptin and insulin potently increased SPARC production dose dependently in visceral adipose tissue explants, while glucose decreased SPARC protein. CONCLUSIONS Our data suggest that SPARC expression is predominant in subcutaneous fat and its expression and secretion in adipose tissue are influenced by fat mass, leptin, insulin, and glucose. The profibrotic effects of SPARC may contribute to metabolic dysregulation in

  10. Fat body, fat pad and adipose tissues in invertebrates and vertebrates: the nexus

    PubMed Central

    2014-01-01

    The fat body in invertebrates was shown to participate in energy storage and homeostasis, apart from its other roles in immune mediation and protein synthesis to mention a few. Thus, sharing similar characteristics with the liver and adipose tissues in vertebrates. However, vertebrate adipose tissue or fat has been incriminated in the pathophysiology of metabolic disorders due to its role in production of pro-inflammatory cytokines. This has not been reported in the insect fat body. The link between the fat body and adipose tissue was examined in this review with the aim of determining the principal factors responsible for resistance to inflammation in the insect fat body. This could be the missing link in the prevention of metabolic disorders in vertebrates, occasioned by obesity. PMID:24758278

  11. Mycobacterium tuberculosis infection modulates adipose tissue biology

    PubMed Central

    Kühl, Anja A.; Kupz, Andreas; Vogelzang, Alexis; Mollenkopf, Hans-Joachim; Löwe, Delia; Bandermann, Silke; Dorhoi, Anca; Brinkmann, Volker

    2017-01-01

    Mycobacterium tuberculosis (Mtb) primarily resides in the lung but can also persist in extrapulmonary sites. Macrophages are considered the prime cellular habitat in all tissues. Here we demonstrate that Mtb resides inside adipocytes of fat tissue where it expresses stress-related genes. Moreover, perigonadal fat of Mtb-infected mice disseminated the infection when transferred to uninfected animals. Adipose tissue harbors leukocytes in addition to adipocytes and other cell types and we observed that Mtb infection induces changes in adipose tissue biology depending on stage of infection. Mice infected via aerosol showed infiltration of inducible nitric oxide synthase (iNOS) or arginase 1 (Arg1)-negative F4/80+ cells, despite recruitment of CD3+, CD4+ and CD8+ T cells. Gene expression analysis of adipose tissue of aerosol Mtb-infected mice provided evidence for upregulated expression of genes associated with T cells and NK cells at 28 days post-infection. Strikingly, IFN-γ-producing NK cells and Mtb-specific CD8+ T cells were identified in perigonadal fat, specifically CD8+CD44-CD69+ and CD8+CD44-CD103+ subpopulations. Gene expression analysis of these cells revealed that they expressed IFN-γ and the lectin-like receptor Klrg1 and down-regulated CD27 and CD62L, consistent with an effector phenotype of Mtb-specific CD8+ T cells. Sorted NK cells expressed higher abundance of Klrg1 upon infection, as well. Our results reveal the ability of Mtb to persist in adipose tissue in a stressed state, and that NK cells and Mtb-specific CD8+ T cells infiltrate infected adipose tissue where they produce IFN-γ and assume an effector phenotype. We conclude that adipose tissue is a potential niche for Mtb and that due to infection CD8+ T cells and NK cells are attracted to this tissue. PMID:29040326

  12. Comparison of fractionation strategies for offline two-dimensional liquid chromatography tandem mass spectrometry analysis of proteins from mouse adipose tissue.

    PubMed

    Sajic, Tatjana; Varesio, Emmanuel; Szanto, Ildiko; Hopfgartner, Gérard

    2015-09-01

    In the frame of protein identification from mouse adipose tissue, two strategies were compared for the offline elution of peptides from a strong cation exchange (SCX) column in two-dimensional liquid chromatography tandem mass spectrometry (2D-LC-MS/MS) analyses. First, the salt gradient (using K(+) as displacing agent) was evaluated from 25 to 500mM KCl. Then, a less investigated elution mode using a pH gradient (using citric acid and ammonium hydroxide) was carried out from pH 2.5 to 9.0. Equal amounts of peptide digest derived from mouse adipose tissue were loaded onto the SCX column and fractionated according to the two approaches. A total of 15 fractions were collected in two independent experiments for each SCX elution strategy. Then, each fraction was analyzed on a nanoLC-MS/MS platform equipped with a column-switching unit for desalting and enrichment. No substantial differences in peptide quality characteristics (molecular weight, isoelectric point, or GRAVY [grand average of hydropathicity] index distributions) were observed between the two datasets. The pH gradient approach was found to be superior, with 27.5% more unique peptide identifications and 10% more distinct protein identifications compared with the salt-based elution method. In conclusion, our data imply that the pH gradient SCX fractionation is more desirable for proteomics analysis of entire adipose tissue. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Autophagy in adipose tissue biology.

    PubMed

    Zhang, Yong; Zeng, Xiangang; Jin, Shengkan

    2012-12-01

    Obesity, which predisposes individuals to type II diabetes and cardiovascular diseases, results from accumulation of white adipose tissue (WAT). WAT comprises mainly white adipocytes that have a unique cellular structure in which almost the entire intracellular space is occupied by one single lipid droplet. The cytoplasm envelopes this lipid droplet and occupies negligible space. Differentiation of WAT, or adipogenesis, requires dramatic cytoplasmic reorganization, including a dynamic change in mitochondrial mass. Autophagy is a major cytoplasmic degradation pathway and a primary pathway for mitochondrial degradation. Recent studies indicate that autophagy is implicated in adipogenesis. In this review, we summarize our current knowledge on autophagy in adipose tissue biology, with the emphasis on its role in mitochondrial degradation. Adipose tissue is a central component for whole-body energy homeostasis regulation. Advancement in this research area may provide novel venues for the intervention of obesity and obesity related diseases. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Oxidative stress accumulates in adipose tissue during aging and inhibits adipogenesis.

    PubMed

    Findeisen, Hannes M; Pearson, Kevin J; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L; Cohn, Dianne; Heywood, Elizabeth B; de Cabo, Rafael; Bruemmer, Dennis

    2011-04-14

    Aging constitutes a major independent risk factor for the development of type 2 diabetes and is accompanied by insulin resistance and adipose tissue dysfunction. One of the most important factors implicitly linked to aging and age-related chronic diseases is the accumulation of oxidative stress. However, the effect of increased oxidative stress on adipose tissue biology remains elusive. In this study, we demonstrate that aging in mice results in a loss of fat mass and the accumulation of oxidative stress in adipose tissue. In vitro, increased oxidative stress through glutathione depletion inhibits preadipocyte differentiation. This inhibition of adipogenesis is at least in part the result of reduced cell proliferation and an inhibition of G(1)→S-phase transition during the initial mitotic clonal expansion of the adipocyte differentiation process. While phosphorylation of the retinoblastoma protein (Rb) by cyclin/cdk complexes remains unaffected, oxidative stress decreases the expression of S-phase genes downstream of Rb. This silencing of S phase gene expression by increased oxidative stress is mediated through a transcriptional mechanism involving the inhibition of E2F recruitment and transactivation of its target promoters. Collectively, these data demonstrate a previously unrecognized role of oxidative stress in the regulation of adipogenesis which may contribute to age-associated adipose tissue dysfunction.

  15. Oxidative Stress Accumulates in Adipose Tissue during Aging and Inhibits Adipogenesis

    PubMed Central

    Findeisen, Hannes M.; Pearson, Kevin J.; Gizard, Florence; Zhao, Yue; Qing, Hua; Jones, Karrie L.; Cohn, Dianne; Heywood, Elizabeth B.; de Cabo, Rafael; Bruemmer, Dennis

    2011-01-01

    Aging constitutes a major independent risk factor for the development of type 2 diabetes and is accompanied by insulin resistance and adipose tissue dysfunction. One of the most important factors implicitly linked to aging and age-related chronic diseases is the accumulation of oxidative stress. However, the effect of increased oxidative stress on adipose tissue biology remains elusive. In this study, we demonstrate that aging in mice results in a loss of fat mass and the accumulation of oxidative stress in adipose tissue. In vitro, increased oxidative stress through glutathione depletion inhibits preadipocyte differentiation. This inhibition of adipogenesis is at least in part the result of reduced cell proliferation and an inhibition of G1→S-phase transition during the initial mitotic clonal expansion of the adipocyte differentiation process. While phosphorylation of the retinoblastoma protein (Rb) by cyclin/cdk complexes remains unaffected, oxidative stress decreases the expression of S-phase genes downstream of Rb. This silencing of S phase gene expression by increased oxidative stress is mediated through a transcriptional mechanism involving the inhibition of E2F recruitment and transactivation of its target promoters. Collectively, these data demonstrate a previously unrecognized role of oxidative stress in the regulation of adipogenesis which may contribute to age-associated adipose tissue dysfunction. PMID:21533223

  16. Exploratory Studies on Biomarkers: An Example Study on Brown Adipose Tissue

    NASA Astrophysics Data System (ADS)

    Watanabe, Masahiro; Yamazaki, Naoshi; Kataoka, Masatoshi; Shinohara, Yasuo

    In mammals, two kinds of adipose tissue are known to exist, i.e., white (WAT) and brown (BAT) adipose tissue. The physiological role of WAT is storage of excess energy as fat, whereas that of BAT is the expenditure of excess energy as heat. The uncoupling protein UCP1, which is specifically expressed in brown fat mitochondria, dissipates the proton electrochemical potential across the inner mitochondrial membrane, known as a driving force of ATP synthesis, and thus it dissipates excess energy in a form of heat. Because deficiency in effective expenditure of excess energy causes accumulation of this energy in the form of fat (i.e., obesity), it is very important to understand the energy metabolism in this tissue for the development of anti-obesity drugs. In this article, in addition to providing a brief introduction to the functional properties of BAT and UCP1, the results of our exploratory studies on protein components involved in the energy-dissipating function in BAT.

  17. Adipose Tissue Angiogenesis: Impact on Obesity and Type-2 Diabetes

    PubMed Central

    Corvera, Silvia; Gealekman, Olga

    2013-01-01

    The growth and function of tissues is critically dependent on their vascularization. Adipose tissue is capable of expanding many-fold during adulthood, therefore requiring the formation of new vasculature to supply growing and proliferating adipocytes. The expansion of the vasculature in adipose tissue occurs through angiogenesis, where new blood vessels develop from those pre-existing within the tissue. Inappropriate angiogenesis may underlie adipose tissue dysfunction in obesity, which in turn increases type-2 diabetes risk. In addition, genetic and developmental factors involved in vascular patterning may define the size and expandability of diverse adipose tissue depots, which are also associated with type-2 diabetes risk. Moreover, the adipose tissue vasculature appears to be the niche for pre-adipocyte precursors, and factors that affect angiogenesis may directly impact the generation of new adipocytes. Here we review recent advances on the basic mechanisms of angiogenesis, and on the role of angiogenesis in adipose tissue development and obesity. A substantial amount of data point to a deficit in adipose tissue angiogenesis as a contributing factor to insulin resistance and metabolic disease in obesity. These emerging findings support the concept of the adipose tissue vasculature as a source of new targets for metabolic disease therapies. PMID:23770388

  18. Adipose-Derived Stem Cell Delivery for Adipose Tissue Engineering: Current Status and Potential Applications in a Tissue Engineering Chamber Model.

    PubMed

    Zhan, Weiqing; Tan, Shaun S; Lu, Feng

    2016-08-01

    In reconstructive surgery, there is a clinical need for adequate implants to repair soft tissue defects caused by traumatic injury, tumor resection, or congenital abnormalities. Adipose tissue engineering may provide answers to this increasing demand. This study comprehensively reviews current approaches to adipose tissue engineering, detailing different cell carriers under investigation, with a special focus on the application of adipose-derived stem cells (ASCs). ASCs act as building blocks for new tissue growth and as modulators of the host response. Recent studies have also demonstrated that the implantation of a hollow protected chamber, combined with a vascular pedicle within the fat flaps provides blood supply and enables the growth of large-volume of engineered soft tissue. Conceptually, it would be of value to co-regulate this unique chamber model with adipose-derived stem cells to obtain a greater volume of soft tissue constructs for clinical use. Our review provides a cogent update on these advances and details the generation of possible fat substitutes.

  19. Resistin in Dairy Cows: Plasma Concentrations during Early Lactation, Expression and Potential Role in Adipose Tissue

    PubMed Central

    Reverchon, Maxime; Ramé, Christelle; Cognié, Juliette; Briant, Eric; Elis, Sébastien; Guillaume, Daniel; Dupont, Joëlle

    2014-01-01

    Resistin is an adipokine that has been implicated in energy metabolism regulation in rodents but has been little studied in dairy cows. We determined plasma resistin concentrations in early lactation in dairy cows and investigated the levels of resistin mRNA and protein in adipose tissue and the phosphorylation of several components of insulin signaling pathways one week post partum (1 WPP) and at five months of gestation (5 MG). We detected resistin in mature bovine adipocytes and investigated the effect of recombinant bovine resistin on lipolysis in bovine adipose tissue explants. ELISA showed that plasma resistin concentration was low before calving, subsequently increasing and reaching a peak at 1 WPP, decreasing steadily thereafter to reach pre-calving levels at 6 WPP. Plasma resistin concentration was significantly positively correlated with plasma non esterified fatty acid (NEFA) levels and negatively with milk yield, dry matter intake and energy balance between WPP1 to WPP22. We showed, by quantitative RT-PCR and western blotting, that resistin mRNA and protein levels in adipose tissue were higher at WPP1 than at 5 MG. The level of phosphorylation of several early and downstream insulin signaling components (IRβ, IRS-1, IRS-2, Akt, MAPK ERK1/2, P70S6K and S6) in adipose tissue was also lower at 1 WPP than at 5 MG. Finally, we showed that recombinant bovine resistin increased the release of glycerol and mRNA levels for ATGL (adipose triglyceride lipase) and HSL (hormone-sensitive lipase) in adipose tissue explants. Overall, resistin levels were high in the plasma and adipose tissue and were positively correlated with NEFA levels after calving. Resistin is expressed in bovine mature adipocytes and promotes lipid mobilization in adipose explants in vitro. PMID:24675707

  20. TRB3 gene silencing activates AMPK in adipose tissue with beneficial metabolic effects in obese and diabetic rats.

    PubMed

    Sun, Xiaoyan; Song, Ming; Wang, Hui; Zhou, Huimin; Wang, Feng; Li, Ya; Zhang, Yun; Zhang, Wei; Zhong, Ming; Ti, Yun

    2017-06-17

    Our previous study had suggested Tribbles homolog 3 (TRB3) might be involved in metabolic syndrome via adipose tissue. Given prior studies, we sought to determine whether TRB3 plays a major role in adipocytes and adipose tissue with beneficial metabolic effects in obese and diabetic rats. Fully differentiated 3T3-L1 adipocytes were incubated to induce insulin resistant adipocytes. Forty male Sprague-Dawley rats were all fed high-fat (HF) diet. Type 2 diabetic rat model was induced by high-fat diet and low-dose streptozotocin (STZ). Compared with control group, in insulin resistant adipocytes, protein levels of insulin receptor substrate-1(IRS-1), glucose transporter 4(GLUT4) and phosphorylated-AMP-activated protein kinase (p-AMPK)were reduced, TRB3 protein level and triglyceride level were significantly increased, glucose uptake was markedly decreased. TRB3 silencing alleviated adipocytes insulin resistance. With TRB3 gene silencing, protein levels of IRS-1, GLUT4 and p-AMPK were significantly increased in adipocytes. TRB3 gene silencing decreased blood glucose, ameliorated insulin sensitivity and adipose tissue remodeling in diabetic rats. TRB3 silencing decreased triglyceride, increased glycogen simultaneously in diabetic epididymal and brown adipose tissues (BAT). Consistently, p-AMPK levels were increased in diabetic epididymal adipose tissue, and BAT after TRB3-siRNA treatment. TRB3silencing increased phosphorylation of Akt in liver, and improved liver insulin resistance. Copyright © 2017. Published by Elsevier Inc.

  1. Supercritical carbon dioxide extracted extracellular matrix material from adipose tissue.

    PubMed

    Wang, Jun Kit; Luo, Baiwen; Guneta, Vipra; Li, Liang; Foo, Selin Ee Min; Dai, Yun; Tan, Timothy Thatt Yang; Tan, Nguan Soon; Choong, Cleo; Wong, Marcus Thien Chong

    2017-06-01

    Adipose tissue is a rich source of extracellular matrix (ECM) material that can be isolated by delipidating and decellularizing the tissue. However, the current delipidation and decellularization methods either involve tedious and lengthy processes or require toxic chemicals, which may result in the elimination of vital proteins and growth factors found in the ECM. Hence, an alternative delipidation and decellularization method for adipose tissue was developed using supercritical carbon dioxide (SC-CO 2 ) that eliminates the need of any harsh chemicals and also reduces the amount of processing time required. The resultant SC-CO 2 -treated ECM material showed an absence of nuclear content but the preservation of key proteins such as collagen Type I, collagen Type III, collagen Type IV, elastin, fibronectin and laminin. In addition, other biological factors such as glycosaminoglycans (GAGs) and growth factors such as basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) were also retained. Subsequently, the resulting SC-CO 2 -treated ECM material was used as a bioactive coating on tissue culture plastic (TCP). Four different cell types including adipose tissue-derived mesenchymal stem cells (ASCs), human umbilical vein endothelial cells (HUVECs), immortalized human keratinocyte (HaCaT) cells and human monocytic leukemia cells (THP-1) were used in this study to show that the SC-CO 2 -treated ECM coating can be potentially used for various biomedical applications. The SC-CO 2 -treated ECM material showed improved cell-material interactions for all cell types tested. In addition, in vitro scratch wound assay using HaCaT cells showed that the presence of SC-CO 2 -treated ECM material enhanced keratinocyte migration whilst the in vitro cellular studies using THP-1-derived macrophages showed that the SC-CO 2 -treated ECM material did not evoke pro-inflammatory responses from the THP-1-derived macrophages. Overall, this study shows the efficacy

  2. Active spice-derived components can inhibit inflammatory responses of adipose tissue in obesity by suppressing inflammatory actions of macrophages and release of monocyte chemoattractant protein-1 from adipocytes.

    PubMed

    Woo, Hae-Mi; Kang, Ji-Hye; Kawada, Teruo; Yoo, Hoon; Sung, Mi-Kyung; Yu, Rina

    2007-02-13

    Inflammation plays a key role in obesity-related pathologies such as cardiovascular disease, type II diabetes, and several types of cancer. Obesity-induced inflammation entails the enhancement of the recruitment of macrophages into adipose tissue and the release of various proinflammatory proteins from fat tissue. Therefore, the modulation of inflammatory responses in obesity may be useful for preventing or ameliorating obesity-related pathologies. Some spice-derived components, which are naturally occurring phytochemicals, elicit antiobesity and antiinflammatory properties. In this study, we investigated whether active spice-derived components can be applied to the suppression of obesity-induced inflammatory responses. Mesenteric adipose tissue was isolated from obese mice fed a high-fat diet and cultured to prepare an adipose tissue-conditioned medium. Raw 264.7 macrophages were treated with the adipose tissue-conditioned medium with or without active spice-derived components (i.e., diallyl disulfide, allyl isothiocyanate, piperine, zingerone and curcumin). Chemotaxis assay was performed to measure the degree of macrophage migration. Macrophage activation was estimated by measuring tumor necrosis factor-alpha (TNF-alpha), nitric oxide, and monocyte chemoattractant protein-1 (MCP-1) concentrations. The active spice-derived components markedly suppressed the migration of macrophages induced by the mesenteric adipose tissue-conditioned medium in a dose-dependent manner. Among the active spice-derived components studied, allyl isothiocyanate, zingerone, and curcumin significantly inhibited the cellular production of proinflammatory mediators such as TNF-alpha and nitric oxide, and significantly inhibited the release of MCP-1 from 3T3-L1 adipocytes. Our findings suggest that the spice-derived components can suppress obesity-induced inflammatory responses by suppressing adipose tissue macrophage accumulation or activation and inhibiting MCP-1 release from adipocytes

  3. Insulin action in adipose tissue and muscle in hypothyroidism.

    PubMed

    Dimitriadis, George; Mitrou, Panayota; Lambadiari, Vaia; Boutati, Eleni; Maratou, Eirini; Panagiotakos, Demosthenes B; Koukkou, Efi; Tzanela, Marinela; Thalassinos, Nikos; Raptis, Sotirios A

    2006-12-01

    Although insulin resistance in thyroid hormone excess is well documented, information on insulin action in hypothyroidism is limited. To investigate this, a meal was given to 11 hypothyroid (HO; aged 45 +/- 3 yr) and 10 euthyroid subjects (EU; aged 42 +/- 4 yr). Blood was withdrawn for 360 min from veins (V) draining the anterior abdominal sc adipose tissue and the forearm and from the radial artery (A). Blood flow (BF) in adipose tissue was measured with 133Xe and in forearm with strain-gauge plethysmography. Tissue glucose uptake was calculated as (A-V)glucose(BF), lipoprotein lipase as (A-V)Triglycerides(BF), and lipolysis as [(V-A)glycerol(BF)]-lipoprotein lipase. The HO group had higher glucose and insulin levels than the EU group (P < 0.05). In HO vs. EU after meal ingestion (area under curve 0-360 min): 1) BF (1290 +/- 79 vs. 1579 +/- 106 ml per 100 ml tissue in forearm and 706 +/- 105 vs. 1340 +/- 144 ml per 100 ml tissue in adipose tissue) and glucose uptake (464 +/- 74 vs. 850 +/- 155 micromol per 100 ml tissue in forearm and 208 +/- 42 vs. 406 +/- 47 micromol per 100 ml tissue in adipose tissue) were decreased (P < 0.05), but fractional glucose uptake was similar (28 +/- 6 vs. 33 +/- 6% per minute in forearm and 17 +/- 4 vs. 14 +/- 3% per minute in adipose tissue); 2) suppression of lipolysis by insulin was similar; and 3) plasma triglycerides were elevated (489 +/- 91 vs. 264 +/- 36 nmol/liter.min, P < 0.05), whereas adipose tissue lipoprotein lipase (42 +/- 11 vs. 80 +/- 21 micromol per 100 ml tissue) and triglyceride clearance (45 +/- 10 vs. 109 +/- 21 ml per 100 ml tissue) were decreased in HO (P < 0.05). In hypothyroidism: 1) glucose uptake in muscle and adipose tissue is resistant to insulin; 2) suppression of lipolysis by insulin is not impaired; and 3) hypertriglyceridemia is due to decreased clearance by the adipose tissue.

  4. Hydrogel derived from decellularized porcine adipose tissue as a promising biomaterial for soft tissue augmentation.

    PubMed

    Tan, Qiu-Wen; Zhang, Yi; Luo, Jing-Cong; Zhang, Di; Xiong, Bin-Jun; Yang, Ji-Qiao; Xie, Hui-Qi; Lv, Qing

    2017-06-01

    Decellularized extracellular matrix (ECM) scaffolds from human adipose tissue, characterized by impressive adipogenic induction ability, are promising for soft tissue augmentation. However, scaffolds from autologous human adipose tissue are limited by the availability of tissue resources and the time necessary for scaffold fabrication. The objective of the current study was to investigate the adipogenic properties of hydrogels of decellularized porcine adipose tissue (HDPA). HDPA induced the adipogenic differentiation of human adipose-derived stem cells (ADSCs) in vitro, with significantly increased expression of adipogenic genes. Subcutaneous injection of HDPA in immunocompetent mice induced host-derived adipogenesis without cell seeding, and adipogenesis was significantly enhanced with ADSCs seeding. The newly formed adipocytes were frequently located on the basal side in the non-seeding group, but this trend was not observed in the ADSCs seeding group. Our results indicated that, similar to human adipose tissue, the ECM scaffold derived from porcine adipose tissue could provide an adipogenic microenvironment for adipose tissue regeneration and is a promising biomaterial for soft tissue augmentation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1756-1764, 2017. © 2017 Wiley Periodicals, Inc.

  5. Neutron organ dose and the influence of adipose tissue

    NASA Astrophysics Data System (ADS)

    Simpkins, Robert Wayne

    Neutron fluence to dose conversion coefficients have been assessed considering the influences of human adipose tissue. Monte Carlo code MCNP4C was used to simulate broad parallel beam monoenergetic neutrons ranging in energy from thermal to 10 MeV. Simulated Irradiations were conducted for standard irradiation geometries. The targets were on gender specific mathematical anthropomorphic phantoms modified to approximate human adipose tissue distributions. Dosimetric analysis compared adipose tissue influence against reference anthropomorphic phantom characteristics. Adipose Male and Post-Menopausal Female Phantoms were derived introducing interstitial adipose tissue to account for 22 and 27 kg additional body mass, respectively, each demonstrating a Body Mass Index (BMI) of 30. An Adipose Female Phantom was derived introducing specific subcutaneous adipose tissue accounting for 15 kg of additional body mass demonstrating a BMI of 26. Neutron dose was shielded in the superficial tissues; giving rise to secondary photons which dominated the effective dose for Incident energies less than 100 keV. Adipose tissue impact on the effective dose was a 25% reduction at the anterior-posterior incidence ranging to a 10% increase at the lateral incidences. Organ dose impacts were more distinctive; symmetrically situated organs demonstrated a 15% reduction at the anterior-posterior Incidence ranging to a 2% increase at the lateral incidences. Abdominal or asymmetrically situated organs demonstrated a 50% reduction at the anterior-posterior incidence ranging to a 25% increase at the lateral incidences.

  6. Pre-Operative Diet Impacts the Adipose Tissue Response to Surgical Trauma

    PubMed Central

    Nguyen, Binh; Tao, Ming; Yu, Peng; Mauro, Christine; Seidman, Michael A.; Wang, Yaoyu E.; Mitchell, James; Ozaki, C. Keith

    2012-01-01

    Background Short-term changes in pre-operative nutrition can have profound effects on surgery related outcomes such as ischemia reperfusions injury in pre-clinical models. Dietary interventions that lend protection against stress in animal models (e.g. fasting, dietary restriction [DR]) impact adipose tissue quality/quantity. Adipose tissue holds high surgical relevance due to its anatomic location and high tissue volume, and it is ubiquitously traumatized during surgery. Yet the response of adipose tissue to trauma under clinically relevant circumstances including dietary status remains poorly defined. We hypothesized that pre-operative diet alters the adipose tissue response to surgical trauma. Methods A novel mouse model of adipose tissue surgical trauma was employed. Dietary conditions (diet induced obesity [DIO], pre-operative DR) were modulated prior to application of surgical adipose tissue trauma in the context of clinically common scenarios (different ages, simulated bacterial wound contamination). Local/distant adipose tissue phenotypic responses were measured as represented by gene expression of inflammatory, tissue remodeling/growth, and metabolic markers. Results Surgical trauma had a profound effect on adipose tissue phenotype at the site of trauma. Milder but significant distal effects on non-traumatized adipose tissue were also observed. DIO exacerbated the inflammatory aspects of this response, and pre-operative DR tended to reverse these changes. Age and LPS-simulated bacterial contamination also impacted the adipose tissue response to trauma, with young adult animals and LPS treatment exacerbating the proinflammatory response. Conclusions Surgical trauma dramatically impacts both local and distal adipose tissue biology. Short-term pre-operative DR may offer a strategy to attenuate this response. PMID:23274098

  7. Comparison of Dorsocervical With Abdominal Subcutaneous Adipose Tissue in Patients With and Without Antiretroviral Therapy–Associated Lipodystrophy

    PubMed Central

    Sevastianova, Ksenia; Sutinen, Jussi; Greco, Dario; Sievers, Meline; Salmenkivi, Kaisa; Perttilä, Julia; Olkkonen, Vesa M.; Wågsäter, Dick; Lidell, Martin E.; Enerbäck, Sven; Eriksson, Per; Walker, Ulrich A.; Auvinen, Petri; Ristola, Matti; Yki-Järvinen, Hannele

    2011-01-01

    OBJECTIVE Combination antiretroviral therapy (cART) is associated with lipodystrophy, i.e., loss of subcutaneous adipose tissue in the abdomen, limbs, and face and its accumulation intra-abdominally. No fat is lost dorsocervically and it can even accumulate in this region (buffalo hump). It is unknown how preserved dorsocervical fat differs from abdominal subcutaneous fat in HIV-1–infected cART-treated patients with (cART+LD+) and without (cART+LD−) lipodystrophy. RESEARCH DESIGN AND METHODS We used histology, microarray, PCR, and magnetic resonance imaging to compare dorsocervical and abdominal subcutaneous adipose tissue in cART+LD+ (n = 21) and cART+LD− (n = 11). RESULTS Albeit dorsocervical adipose tissue in cART+LD+ seems spared from lipoatrophy, its mitochondrial DNA (mtDNA; copies/cell) content was significantly lower (by 62%) than that of the corresponding tissue in cART+LD−. Expression of CD68 mRNA, a marker of macrophages, and numerous inflammatory genes in microarray were significantly lower in dorsocervical versus abdominal subcutaneous adipose tissue. Genes with the greatest difference in expression between the two depots were those involved in regulation of transcription and regionalization (homeobox genes), irrespective of lipodystrophy status. There was negligible mRNA expression of uncoupling protein 1, a gene characteristic of brown adipose tissue, in either depot. CONCLUSIONS Because mtDNA is depleted even in the nonatrophic dorsocervical adipose tissue, it is unlikely that the cause of lipoatrophy is loss of mtDNA. Dorsocervical adipose tissue is less inflamed than lipoatrophic adipose tissue. It does not resemble brown adipose tissue. The greatest difference in gene expression between dorsocervical and abdominal subcutaneous adipose tissue is in expression of homeobox genes. PMID:21602514

  8. The beneficial effects of betaine on dysfunctional adipose tissue and N6-methyladenosine mRNA methylation requires the AMP-activated protein kinase α1 subunit.

    PubMed

    Zhou, Xihong; Chen, Jingqing; Chen, Jin; Wu, Weiche; Wang, Xinxia; Wang, Yizhen

    2015-12-01

    The current study was conducted to determine whether betaine could improve fatty acid oxidation, mitochondrial function and N6-methyladenosine (m(6)A) mRNA methylation in adipose tissue in high-fat-induced mice and how AMP-activated protein kinase α1 subunit (AMPKα1) was involved. AMPKα1 knockout mice and wild-type mice were fed either a low-fat diet, high-fat diet or high-fat diet supplemented with betaine in the drinking water for 8weeks. Our results showed that mitochondrial genes (PGC1α) and β-oxidation-related genes (CPT1a) at protein level were increased in wild-type mice supplemented with betaine when compared with those in mice with high-fat diet. Betaine also decreased FTO expression and improved m(6)A methylation in adipose tissue of wild-type mice with high-fat diet. However, betaine failed to exert the abovementioned effects in AMPKα1 knockout mice. In adipocytes isolated from mice with high-fat diet, betaine treatment increased lipolysis and lipid oxidation. Moreover, betaine decreased FTO expression and increased m(6)A methylation. However, while AMPKα1 was knockdown, no remarkable changes in adipocytes were observed under betaine treatment. Our results indicated that betaine supplementation rectified mRNA hypomethylation and high FTO expression induced by high-fat diet, which may contribute to its beneficial effects on impaired adipose tissue function. Our results suggested that the AMPKα1 subunit is required for the beneficial effects of betaine on dysfunctional adipose tissue and m(6)A methylation. These results may provide the foundation for a mechanism that links m(6)A methylation status in RNA, AMPKα1 phosphorylation and dysfunctional adipose tissue induced by high-fat diet. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Adipose tissue immunity and cancer

    PubMed Central

    Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Frühbeck, Gema

    2013-01-01

    Inflammation and altered immune response are important components of obesity and contribute greatly to the promotion of obesity-related metabolic complications, especially cancer development. Adipose tissue expansion is associated with increased infiltration of various types of immune cells from both the innate and adaptive immune systems. Thus, adipocytes and infiltrating immune cells secrete pro-inflammatory adipokines and cytokines providing a microenvironment favorable for tumor growth. Accumulation of B and T cells in adipose tissue precedes macrophage infiltration causing a chronic low-grade inflammation. Phenotypic switching toward M1 macrophages and Th1 T cells constitutes an important mechanism described in the obese state correlating with increased tumor growth risk. Other possible synergic mechanisms causing a dysfunctional adipose tissue include fatty acid-induced inflammation, oxidative stress, endoplasmic reticulum stress, and hypoxia. Recent investigations have started to unravel the intricacy of the cross-talk between tumor cell/immune cell/adipocyte. In this sense, future therapies should take into account the combination of anti-inflammatory approaches that target the tumor microenvironment with more sophisticated and selective anti-tumoral drugs. PMID:24106481

  10. Aging and Adipose Tissue: Potential Interventions for Diabetes and Regenerative Medicine

    PubMed Central

    Palmer, Allyson K.; Kirkland, James L.

    2016-01-01

    Adipose tissue dysfunction occurs with aging and has systemic effects, including peripheral insulin resistance, ectopic lipid deposition, and inflammation. Fundamental aging mechanisms, including cellular senescence and progenitor cell dysfunction, occur in adipose tissue with aging and may serve as potential therapeutic targets in age-related disease. In this review, we examine the role of adipose tissue in healthy individuals and explore how aging leads to adipose tissue dysfunction, redistribution, and changes in gene regulation. Adipose tissue plays a central role in longevity, and interventions restricted to adipose tissue may impact lifespan. Conversely, obesity may represent a state of accelerated aging. We discuss the potential therapeutic potential of targeting basic aging mechanisms, including cellular senescence, in adipose tissue, using type II diabetes and regenerative medicine as examples. We make the case that aging should not be neglected in the study of adipose-derived stem cells for regenerative medicine strategies, as elderly patients make up a large portion of individuals in need of such therapies. PMID:26924669

  11. Allele compensation in tip60+/- mice rescues white adipose tissue function in vivo.

    PubMed

    Gao, Yuan; Hamers, Nicole; Rakhshandehroo, Maryam; Berger, Ruud; Lough, John; Kalkhoven, Eric

    2014-01-01

    Adipose tissue is a key regulator of energy homestasis. The amount of adipose tissue is largely determined by adipocyte differentiation (adipogenesis), a process that is regulated by the concerted actions of multiple transcription factors and cofactors. Based on in vitro studies in murine 3T3-L1 preadipocytes and human primary preadipocytes, the transcriptional cofactor and acetyltransferase Tip60 was recently identified as an essential adipogenic factor. We therefore investigated the role of Tip60 on adipocyte differentiation and function, and possible consequences on energy homeostasis, in vivo. Because homozygous inactivation results in early embryonic lethality, Tip60+/- mice were used. Heterozygous inactivation of Tip60 had no effect on body weight, despite slightly higher food intake by Tip60+/- mice. No major effects of heterozygous inactivation of Tip60 were observed on adipose tissue and liver, and Tip60+/- displayed normal glucose tolerance, both on a low fat and a high fat diet. While Tip60 mRNA was reduced to 50% in adipose tissue, the protein levels were unaltered, suggesting compensation by the intact allele. These findings indicate that the in vivo role of Tip60 in adipocyte differentiation and function cannot be properly addressed in Tip60+/- mice, but requires the generation of adipose tissue-specific knock out animals or specific knock-in mice.

  12. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    NASA Astrophysics Data System (ADS)

    Kasten, Annika; Siegmund, Birte J.; Grüttner, Cordula; Kühn, Jens-Peter; Frerich, Bernhard

    2015-04-01

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time.

  13. Impact of Doxorubicin Treatment on the Physiological Functions of White Adipose Tissue

    PubMed Central

    Cruz, Maysa Mariana; Cunha, Roberta D. C.; Alonso-Vale, Maria Isabel; Oyama, Lila Missae; Nascimento, Claudia M. Oller; Pimentel, Gustavo Duarte; dos Santos, Ronaldo V. T.; Lira, Fabio Santos

    2016-01-01

    White adipose tissue (WAT) plays a fundamental role in maintaining energy balance and important endocrine functions. The loss of WAT modifies adipokine secretion and disrupts homeostasis, potentially leading to severe metabolic effects and a reduced quality of life. Doxorubicin is a chemotherapeutic agent used clinically because of its good effectiveness against various types of cancer. However, doxorubicin has deleterious effects in many healthy tissues, including WAT, liver, and skeletal and cardiac muscles. Our objective was to investigate the effects of doxorubicin on white adipocytes through in vivo and in vitro experiments. Doxorubicin reduced the uptake of glucose by retroperitoneal adipocytes and 3T3-L1 cells via the inhibition of AMP-activated protein kinase Thr172 phosphorylation and glucose transporter 4 content. Doxorubicin also reduced the serum level of adiponectin and, to a greater extent, the expression of genes encoding lipogenic (Fas and Acc) and adipogenic factors (Pparg, C/ebpa, and Srebp1c) in retroperitoneal adipose tissue. In addition, doxorubicin inhibited both lipogenesis and lipolysis and reduced the hormone-sensitive lipase and adipose tissue triacylglycerol lipase protein levels. Therefore, our results demonstrate the impact of doxorubicin on WAT. These results are important to understand some side effects observed in patients receiving chemotherapy and should encourage new adjuvant treatments that aim to inhibit these side effects. PMID:27015538

  14. Retinoic acid receptor-related orphan receptor α stimulates adipose tissue inflammation by modulating endoplasmic reticulum stress.

    PubMed

    Liu, Yin; Chen, Yulong; Zhang, Jinlong; Liu, Yulan; Zhang, Yanjie; Su, Zhiguang

    2017-08-25

    Adipose tissue inflammation has been linked to metabolic diseases such as obesity and type 2 diabetes. However, the molecules that mediate inflammation in adipose tissue have not been addressed. Although retinoic acid receptor-related orphan receptor α (RORα) is known to be involved in the regulation of inflammatory response in some tissues, its role is largely unknown in adipose tissue. Conversely, it is known that endoplasmic reticulum (ER) stress and unfolding protein response (UPR) signaling affect the inflammatory response in obese adipose tissue, but whether RORα regulates these processes remains unknown. In this study, we investigate the link between RORα and adipose tissue inflammation. We showed that the inflammatory response in macrophages or 3T3-L1 adipocytes stimulated by lipopolysaccharide, as well as adipose tissue in obese mice, markedly increased the expression of RORα. Adenovirus-mediated overexpression of RORα or treatment with the RORα-specific agonist SR1078 enhanced the expression of inflammatory cytokines and increased the number of infiltrated macrophages into adipose tissue. Furthermore, SR1078 up-regulated the mRNA expression of ER stress response genes and enhanced phosphorylations of two of the three mediators of major UPR signaling pathways, PERK and IRE1α. Finally, we found that alleviation of ER stress using a chemical chaperone followed by the suppression of RORα induced inflammation in adipose tissue. Our data suggest that RORα-induced ER stress response potentially contributes to the adipose tissue inflammation that can be mitigated by treatment with chemical chaperones. The relationships established here between RORα expression, inflammation, and UPR signaling may have implications for therapeutic targeting of obesity-related metabolic diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications.

    PubMed

    Vernochet, Cecile; Damilano, Federico; Mourier, Arnaud; Bezy, Olivier; Mori, Marcelo A; Smyth, Graham; Rosenzweig, Anthony; Larsson, Nils-Göran; Kahn, C Ronald

    2014-10-01

    Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-TFAM-KO) mice had a 75-81% reduction in TFAM in the subcutaneous and intra-abdominal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), causing decreased expression and enzymatic activity of proteins in complexes I, III, and IV of the electron transport chain (ETC). This mitochondrial dysfunction led to adipocyte death and inflammation in WAT and a whitening of BAT. As a result, adipo-TFAM-KO mice were resistant to weight gain, but exhibited insulin resistance on both normal chow and high-fat diets. These lipodystrophic mice also developed hypertension, cardiac hypertrophy, and cardiac dysfunction. Thus, isolated mitochondrial dysfunction in adipose tissue can lead a syndrome of lipodystrophy with metabolic syndrome and cardiovascular complications. © FASEB.

  16. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications

    PubMed Central

    Vernochet, Cecile; Damilano, Federico; Mourier, Arnaud; Bezy, Olivier; Mori, Marcelo A.; Smyth, Graham; Rosenzweig, Anthony; Larsson, Nils-Göran; Kahn, C. Ronald

    2014-01-01

    Mitochondrial dysfunction in adipose tissue occurs in obesity, type 2 diabetes, and some forms of lipodystrophy, but whether this dysfunction contributes to or is the result of these disorders is unknown. To investigate the physiological consequences of severe mitochondrial impairment in adipose tissue, we generated mice deficient in mitochondrial transcription factor A (TFAM) in adipocytes by using mice carrying adiponectin-Cre and TFAM floxed alleles. These adiponectin TFAM-knockout (adipo-TFAM-KO) mice had a 75–81% reduction in TFAM in the subcutaneous and intra-abdominal white adipose tissue (WAT) and interscapular brown adipose tissue (BAT), causing decreased expression and enzymatic activity of proteins in complexes I, III, and IV of the electron transport chain (ETC). This mitochondrial dysfunction led to adipocyte death and inflammation in WAT and a whitening of BAT. As a result, adipo-TFAM-KO mice were resistant to weight gain, but exhibited insulin resistance on both normal chow and high-fat diets. These lipodystrophic mice also developed hypertension, cardiac hypertrophy, and cardiac dysfunction. Thus, isolated mitochondrial dysfunction in adipose tissue can lead a syndrome of lipodystrophy with metabolic syndrome and cardiovascular complications.—Vernochet, C., Damilano, F., Mourier, A., Bezy, O., Mori, M. A., Smyth, G., Rosenzweig, A., Larsson, N.-G., Kahn, C. R. Adipose tissue mitochondrial dysfunction triggers a lipodystrophic syndrome with insulin resistance, hepatosteatosis, and cardiovascular complications. PMID:25005176

  17. Lipocalin 2, a Regulator of Retinoid Homeostasis and Retinoid-mediated Thermogenic Activation in Adipose Tissue*

    PubMed Central

    Guo, Hong; Foncea, Rocio; O'Byrne, Sheila M.; Jiang, Hongfeng; Zhang, Yuanyuan; Deis, Jessica A.; Blaner, William S.; Bernlohr, David A.; Chen, Xiaoli

    2016-01-01

    We have recently characterized the role of lipocalin 2 (Lcn2) as a new adipose-derived cytokine in the regulation of adaptive thermogenesis via a non-adrenergic pathway. Herein, we explored a potential non-adrenergic mechanism by which Lcn2 regulates thermogenesis and lipid metabolism. We found that Lcn2 is a retinoic acid target gene, and retinoic acid concurrently stimulated UCP1 and Lcn2 expression in adipocytes. Lcn2 KO mice exhibited a blunted effect of all-trans-retinoic acid (ATRA) on body weight and fat mass, lipid metabolism, and retinoic acid signaling pathway activation in adipose tissue under the high fat diet-induced obese condition. We further demonstrated that Lcn2 is required for the full action of ATRA on the induction of UCP1 and PGC-1α expression in brown adipocytes and the restoration of cold intolerance in Lcn2 KO mice. Interestingly, we discovered that Lcn2 KO mice have decreased levels of retinoic acid and retinol in adipose tissue. The protein levels of STRA6 responsible for retinol uptake were significantly decreased in adipose tissue. The retinol transporter RBP4 was increased in adipose tissue but decreased in the circulation, suggesting the impairment of RBP4 secretion in Lcn2 KO adipose tissue. Moreover, Lcn2 deficiency abolished the ATRA effect on RBP4 expression in adipocytes. All the data suggest that the decreased retinoid level and action are associated with impaired retinol transport and storage in adipose tissue in Lcn2 KO mice. We conclude that Lcn2 plays a critical role in regulating metabolic homeostasis of retinoids and retinoid-mediated thermogenesis in adipose tissue. PMID:27008859

  18. Characterization of In Vitro Engineered Human Adipose Tissues: Relevant Adipokine Secretion and Impact of TNF-α

    PubMed Central

    Aubin, Kim; Safoine, Meryem; Proulx, Maryse; Audet-Casgrain, Marie-Alice; Côté, Jean-François; Têtu, Félix-André; Roy, Alphonse; Fradette, Julie

    2015-01-01

    Representative modelling of human adipose tissue functions is central to metabolic research. Tridimensional models able to recreate human adipogenesis in a physiological tissue-like context in vitro are still scarce. We describe the engineering of white adipose tissues reconstructed from their cultured adipose-derived stromal precursor cells. We hypothesize that these reconstructed tissues can recapitulate key functions of AT under basal and pro-inflammatory conditions. These tissues, featuring human adipocytes surrounded by stroma, were stable and metabolically active in long-term cultures (at least 11 weeks). Secretion of major adipokines and growth factors by the reconstructed tissues was determined and compared to media conditioned by human native fat explants. Interestingly, the secretory profiles of the reconstructed adipose tissues indicated an abundant production of leptin, PAI-1 and angiopoietin-1 proteins, while higher HGF levels were detected for the human fat explants. We next demonstrated the responsiveness of the tissues to the pro-inflammatory stimulus TNF-α, as reflected by modulation of MCP-1, NGF and HGF secretion, while VEGF and leptin protein expression did not vary. TNF-α exposure induced changes in gene expression for adipocyte metabolism-associated mRNAs such as SLC2A4, FASN and LIPE, as well as for genes implicated in NF-κB activation. Finally, this model was customized to feature adipocytes representative of progressive stages of differentiation, thereby allowing investigations using newly differentiated or more mature adipocytes. In conclusion, we produced tridimensional tissues engineered in vitro that are able to recapitulate key characteristics of subcutaneous white adipose tissue. These tissues are produced from human cells and their neo-synthesized matrix elements without exogenous or synthetic biomaterials. Therefore, they represent unique tools to investigate the effects of pharmacologically active products on human stromal cells

  19. Ghrelin receptor regulates adipose tissue inflammation in aging.

    PubMed

    Lin, Ligen; Lee, Jong Han; Buras, Eric D; Yu, Kaijiang; Wang, Ruitao; Smith, C Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr(-/-) mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsrp(-/-) mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsrp(-/-) mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance.

  20. Ghrelin receptor regulates adipose tissue inflammation in aging

    PubMed Central

    Buras, Eric D.; Yu, Kaijiang; Wang, Ruitao; Smith, C. Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr−/− mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsr−/− mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsr−/− mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance. PMID:26837433

  1. Estrogen receptor 1 (ESR1) regulates VEGFA in adipose tissue.

    PubMed

    Fatima, L A; Campello, R S; Santos, R de Souza; Freitas, H S; Frank, A P; Machado, U F; Clegg, D J

    2017-12-01

    Vascular endothelial growth factor A (VEGFA) is a key factor in the regulation of angiogenesis in adipose tissue. Poor vascularization during adipose tissue proliferation causes fibrosis and local inflammation, and is associated with insulin resistance. It is known that 17-beta estradiol (E2) regulates adipose tissue function and VEGFA expression in other tissues; however, the ability of E2 to regulate VEGFA in adipose tissue is currently unknown. In this study, we showed that, in 3T3-L1 cells, E2 and the estrogen receptor 1 (ESR1) agonist PPT induced VEGFA expression, while ESR1 antagonist (MPP), and selective knockdown of ESR1 using siRNA decreased VEGFA and prevented the ability of E2 to modulate its expression. Additionally, we found that E2 and PPT induced the binding of hypoxia inducible factor 1 alpha subunit (HIF1A) in the VEGFA gene promoter. We further found that VEGFA expression was lower in inguinal and gonadal white adipose tissues of ESR1 total body knockout female mice compared to wild type mice. In conclusion, our data provide evidence of an important role for E2/ESR1 in modulating adipose tissue VEGFA, which is potentially important to enhance angiogenesis, reduce inflammation and improve adipose tissue function.

  2. Aging and adipose tissue: potential interventions for diabetes and regenerative medicine.

    PubMed

    Palmer, Allyson K; Kirkland, James L

    2016-12-15

    Adipose tissue dysfunction occurs with aging and has systemic effects, including peripheral insulin resistance, ectopic lipid deposition, and inflammation. Fundamental aging mechanisms, including cellular senescence and progenitor cell dysfunction, occur in adipose tissue with aging and may serve as potential therapeutic targets in age-related disease. In this review, we examine the role of adipose tissue in healthy individuals and explore how aging leads to adipose tissue dysfunction, redistribution, and changes in gene regulation. Adipose tissue plays a central role in longevity, and interventions restricted to adipose tissue may impact lifespan. Conversely, obesity may represent a state of accelerated aging. We discuss the potential therapeutic potential of targeting basic aging mechanisms, including cellular senescence, in adipose tissue, using type II diabetes and regenerative medicine as examples. We make the case that aging should not be neglected in the study of adipose-derived stem cells for regenerative medicine strategies, as elderly patients make up a large portion of individuals in need of such therapies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Inflammation and Fibrosis in Perirenal Adipose Tissue of Patients With Aldosterone-Producing Adenoma.

    PubMed

    Wu, Chunyan; Zhang, Huijian; Zhang, Jiajun; Xie, Cuihua; Fan, Cunxia; Zhang, Hongbin; Wu, Peng; Wei, Qiang; Tan, Wanlong; Xu, Lingling; Wang, Ling; Xue, Yaoming; Guan, Meiping

    2018-01-01

    The prevalence of primary aldosteronism is much higher than previously thought. Recent studies have shown that primary aldosteronism is related to a higher risk of cardiovascular events. However, the underlying mechanism is not yet clear. Here we investigate the characteristics, including inflammation, fibrosis, and adipokine expression, of adipose tissues from different deposits in patients with aldosterone-producing adenoma (APA). Inflammation and fibrosis changes were evaluated in perirenal and subcutaneous adipose tissues obtained from patients with APA (n = 16), normotension (NT; n = 10), and essential hypertension (EH; n = 5) undergoing laparoscopic surgery. We also evaluated the effect of aldosterone in isolated human perirenal adipose tissue stromal vascular fraction (SVF) cells and investigated the effect of aldosterone in mouse 3T3-L1 and brown preadipocytes. Compared with the EH group, significantly higher levels of interleukin-6 (IL-6) and tumor necrosis factor-α messenger RNA (mRNA) and protein were observed in perirenal adipose tissue of patients with APA. Expression of genes related to fibrosis and adipogenesis in perirenal adipose tissue was notably higher in patients with APA than in patients with NT and EH. Aldosterone significantly induced IL-6 and fibrosis gene mRNA expression in differentiated SVF cells. Aldosterone treatment enhanced mRNA expression of genes associated with inflammation and fibrosis and stimulated differentiation of 3T3-L1 and brown preadipocytes. In conclusion, these data indicate that high aldosterone in patients with APA may induce perirenal adipose tissue dysfunction and lead to inflammation and fibrosis, which may be involved in the high risk of cardiovascular events observed in patients with primary aldosteronism. Copyright © 2018 Endocrine Society.

  4. Magnetic Resonance Imaging of Adipose Tissue in Metabolic Dysfunction.

    PubMed

    Franz, Daniela; Syväri, Jan; Weidlich, Dominik; Baum, Thomas; Rummeny, Ernst J; Karampinos, Dimitrios C

    2018-06-06

    Adipose tissue has become an increasingly important tissue target in medicine. It plays a central role in the storage and release of energy throughout the human body and has recently gained interest for its endocrinologic function. Magnetic resonance imaging (MRI) is an established method for quantitative direct evaluation of adipose tissue distribution, and is used increasingly as the modality of choice for metabolic phenotyping. The purpose of this review was the identification and presentation of the currently available literature on MRI of adipose tissue in metabolic dysfunction.  A PubMed (http://www.ncbi.nlm.nih.gov/pubmed) keyword search up to August 2017 without starting date limitation was performed and reference lists of relevant articles were searched.  MRI provides excellent tools for the evaluation of adipose tissue distribution and further characterization of the tissue. Standard as well as newly developed MRI techniques allow a risk stratification for the development of metabolic dysfunction and enable monitoring without the use of ionizing radiation or contrast material.   · Different types of adipose tissue play a crucial role in various types of metabolic dysfunction.. · Magnetic resonance imaging (MRI) is an excellent tool for noninvasive adipose tissue evaluation with respect to distribution, composition and metabolic activity.. · Both standard and newly developed MRI techniques can be used for risk stratification for the development of metabolic dysfunction and allow monitoring without the use of ionizing radiation or contrast material.. · Franz D, Syväri J, Weidlich D et al. Magnetic Resonance Imaging of Adipose Tissue in Metabolic Dysfunction. Fortschr Röntgenstr 2018; DOI: 10.1055/a-0612-8006. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Novel browning agents, mechanisms and therapeutic potentials of brown adipose tissue

    USDA-ARS?s Scientific Manuscript database

    Non-shivering thermogenesis is the process of biological heat production in mammals and is primarily mediated by brown adipose tissue (BAT). Through ubiquitous expression of uncoupling protein 1 (Ucp1) on the mitochondrial inner membrane, BAT displays uncoupling of fuel combustion and ATP production...

  6. Non-invasive Assessments of Adipose Tissue Metabolism In Vitro.

    PubMed

    Abbott, Rosalyn D; Borowsky, Francis E; Quinn, Kyle P; Bernstein, David L; Georgakoudi, Irene; Kaplan, David L

    2016-03-01

    Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with non-invasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored.

  7. Non-invasive assessments of adipose tissue metabolism in vitro

    PubMed Central

    Abbott, Rosalyn D.; Borowsky, Francis E.; Quinn, Kyle P.; Bernstein, David L.; Georgakoudi, Irene; Kaplan, David L.

    2015-01-01

    Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with noninvasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored. PMID:26399988

  8. Seasonal heat stress affects adipose tissue proteome toward enrichment of the Nrf2-mediated oxidative stress response in late-pregnant dairy cows.

    PubMed

    Zachut, M; Kra, G; Livshitz, L; Portnick, Y; Yakoby, S; Friedlander, G; Levin, Y

    2017-03-31

    Environmental heat stress and metabolic stress during transition from late gestation to lactation are main factors limiting production in dairy cattle, and there is a complex interaction between them. Many proteins expressed in adipose tissue are involved in metabolic responses to stress. We aimed to investigate the effects of seasonal heat stress on adipose proteome in late-pregnant cows, and to identify biomarkers of heat stress. Late pregnant cows during summer heat stress (S, n=18), or during the winter season (W, n=12) were used. Subcutaneous adipose tissue biopsies sampled 14days prepartum from S (n=10) and W (n=8) were analyzed by intensity-based, label-free, quantitative shotgun proteomics (nano-LC-MS/MS). Plasma concentrations of malondialdehyde and cortisol were higher in S than in W cows. Proteomic analysis revealed that 107/1495 proteins were differentially abundant in S compared to W (P<0.05 and fold change of at least ±1.5). Top canonical pathways in S vs. W adipose were Nrf2-mediated oxidative stress response, acute-phase response, and FXR/RXR and LXR/RXR activation. Novel biomarkers of heat stress in adipose tissue were found. These findings indicate that seasonal heat stress has a unique effect on adipose tissue in late-pregnant cows. This work shows that seasonal heat stress increases plasma concentrations of the oxidative stress marker malondialdehyde and cortisol in transition dairy cows. As many proteins expressed in the adipose tissue are involved in metabolic responses to stress, we investigated the effects of heat stress on the proteome of adipose tissue from late-pregnant cows during summer or winter seasons. We demonstrated that heat stress enriches several stress-related pathways, such as the Nrf2-mediated oxidative stress response and the acute-phase response in adipose tissues. Thus, environmental heat stress has a unique effect on adipose tissue in late-pregnant cows, as part of the regulatory adaptations to chronic heat load during

  9. Epigenetic regulation of depot-specific gene expression in adipose tissue.

    PubMed

    Gehrke, Sandra; Brueckner, Bodo; Schepky, Andreas; Klein, Johannes; Iwen, Alexander; Bosch, Thomas C G; Wenck, Horst; Winnefeld, Marc; Hagemann, Sabine

    2013-01-01

    In humans, adipose tissue is distributed in subcutaneous abdominal and subcutaneous gluteal depots that comprise a variety of functional differences. Whereas energy storage in gluteal adipose tissue has been shown to mediate a protective effect, an increase of abdominal adipose tissue is associated with metabolic disorders. However, the molecular basis of depot-specific characteristics is not completely understood yet. Using array-based analyses of transcription profiles, we identified a specific set of genes that was differentially expressed between subcutaneous abdominal and gluteal adipose tissue. To investigate the role of epigenetic regulation in depot-specific gene expression, we additionally analyzed genome-wide DNA methylation patterns in abdominal and gluteal depots. By combining both data sets, we identified a highly significant set of depot-specifically expressed genes that appear to be epigenetically regulated. Interestingly, the majority of these genes form part of the homeobox gene family. Moreover, genes involved in fatty acid metabolism were also differentially expressed. Therefore we suppose that changes in gene expression profiles might account for depot-specific differences in lipid composition. Indeed, triglycerides and fatty acids of abdominal adipose tissue were more saturated compared to triglycerides and fatty acids in gluteal adipose tissue. Taken together, our results uncover clear differences between abdominal and gluteal adipose tissue on the gene expression and DNA methylation level as well as in fatty acid composition. Therefore, a detailed molecular characterization of adipose tissue depots will be essential to develop new treatment strategies for metabolic syndrome associated complications.

  10. Brown Adipose YY1 Deficiency Activates Expression of Secreted Proteins Linked to Energy Expenditure and Prevents Diet-Induced Obesity

    PubMed Central

    Verdeguer, Francisco; Soustek, Meghan S.; Hatting, Maximilian; Blättler, Sharon M.; McDonald, Devin; Barrow, Joeva J.

    2015-01-01

    Mitochondrial oxidative and thermogenic functions in brown and beige adipose tissues modulate rates of energy expenditure. It is unclear, however, how beige or white adipose tissue contributes to brown fat thermogenic function or compensates for partial deficiencies in this tissue and protects against obesity. Here, we show that the transcription factor Yin Yang 1 (YY1) in brown adipose tissue activates the canonical thermogenic and uncoupling gene expression program. In contrast, YY1 represses a series of secreted proteins, including fibroblast growth factor 21 (FGF21), bone morphogenetic protein 8b (BMP8b), growth differentiation factor 15 (GDF15), angiopoietin-like 6 (Angptl6), neuromedin B, and nesfatin, linked to energy expenditure. Despite substantial decreases in mitochondrial thermogenic proteins in brown fat, mice lacking YY1 in this tissue are strongly protected against diet-induced obesity and exhibit increased energy expenditure and oxygen consumption in beige and white fat depots. The increased expression of secreted proteins correlates with elevation of energy expenditure and promotion of beige and white fat activation. These results indicate that YY1 in brown adipose tissue controls antagonistic gene expression programs associated with energy balance and maintenance of body weight. PMID:26503783

  11. Altered autophagy in human adipose tissues in obesity

    USDA-ARS?s Scientific Manuscript database

    Context: Autophagy is a housekeeping mechanism, involved in metabolic regulation and stress response, shown recently to regulate lipid droplets biogenesis/breakdown and adipose tissue phenotype. Objective: We hypothesized that in human obesity autophagy may be altered in adipose tissue in a fat d...

  12. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche.

    PubMed

    Templeton, Zach S; Lie, Wen-Rong; Wang, Weiqi; Rosenberg-Hasson, Yael; Alluri, Rajiv V; Tamaresis, John S; Bachmann, Michael H; Lee, Kitty; Maloney, William J; Contag, Christopher H; King, Bonnie L

    2015-12-01

    Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Carotenoids in Adipose Tissue Biology and Obesity.

    PubMed

    Bonet, M Luisa; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2016-01-01

    Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition.

  14. Botulinum toxin A improves adipose tissue engraftment by promoting cell proliferation, adipogenesis and angiogenesis

    PubMed Central

    Tang, Qi; Chen, Chang; Wang, Xiaqi; Li, Wei; Zhang, Yan; Wang, Muyao; Jing, Wei; Wang, Hang; Guo, Weihua; Tian, Weidong

    2017-01-01

    Adipose tissue engraftment has become a well-established therapy in plastic and reconstructive surgery used to restore age-related or injury-related soft tissue loss. However, the unpredictable absorption rates limit its further application. Some clinicians have noted that more optimal aesthetic results are achieved when botulinum toxin A (BoNTA) is applied prior to adipose tissue grafting. In the present study, we transplanted allogeneic adipose tissue treated with or without BoNTA in SD rats in vivo. We subsequently evaluated the survival rate (weight, volume, apoptosis and cellular integrity) and revascularization of the adipose tissue. The results revealed that BoNTA improved the long-term weight and volume retention of the graft, and preserved cellular integrity. BoNTA significantly increased the expression levels of CD31 and vascular endothelial growth factor (VEGF), suggesting enhanced vasodilation and endothelial cell proliferation. In vitro, adipose-derived stem cells (ASCs) were isolated, identified and induced to proliferate and differentiate with or without BoNTA. Furthermore, to evaluate the proliferative, adipogenic and angiogenic ability of the ASCs, CCK-8 assay and Oil Red O staining were conducted. Gene and protein expression levels were analyzed by RT-qPCR and western blot analysis. The results revealed that 8×10−2 U/ml BoNTA as the optimal dose increased ASC proliferation and adipogenic differentiation capacity, as well as the expression level of the key cytokine of angiogenesis. On the whole, our findings indicate that BoNTA improves adipose tissue engraftment and promotes ASC regeneration, which could benefit future clinical applications. PMID:28731141

  15. Does bariatric surgery improve adipose tissue function?

    PubMed Central

    Frikke-Schmidt, H.; O’Rourke, R. W.; Lumeng, C. N.; Sandoval, D. A.; Seeley, R. J.

    2017-01-01

    Summary Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. PMID:27272117

  16. 4E-BP1 regulates the differentiation of white adipose tissue.

    PubMed

    Tsukiyama-Kohara, Kyoko; Katsume, Asao; Kimura, Kazuhiro; Saito, Masayuki; Kohara, Michinori

    2013-07-01

    4E Binding protein 1 (4E-BP1) suppresses translation initiation. The absence of 4E-BP1 drastically reduces the amount of adipose tissue in mice. To address the role of 4E-BP1 in adipocyte differentiation, we characterized 4E-BP1(-/-) mice in this study. The lack of 4E-BP1 decreased the amount of white adipose tissue and increased the amount of brown adipose tissue. In 4E-BP1(-/-) MEF cells, PPARγ coactivator 1 alpha (PGC-1α) expression increased and exogenous 4E-BP1 expression suppressed PGC-1α expression. The level of 4E-BP1 expression was higher in white adipocytes than in brown adipocytes and showed significantly greater up-regulation in white adipocytes than in brown adipocytes during preadipocyte differentiation into mature adipocytes. The amount of PGC-1α was consistently higher in HB cells (a brown preadipocyte cell line) than in HW cells (a white preadipocyte cell line) during differentiation. Moreover, the ectopic over-expression of 4E-BP1 suppressed PGC-1α expression in white adipocytes, but not in brown adipocytes. Thus, the results of our study indicate that 4E-BP1 may suppress brown adipocyte differentiation and PGC-1α expression in white adipose tissues. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  17. Endurance training blocks uncoupling protein 1 up-regulation in brown adipose tissue while increasing uncoupling protein 3 in the muscle tissue of rats fed with a high-sugar diet.

    PubMed

    de Queiroz, Karina Barbosa; Rodovalho, Gisele Vieira; Guimarães, Juliana Bohnen; de Lima, Daniel Carvalho; Coimbra, Cândido Celso; Evangelista, Elísio Alberto; Guerra-Sá, Renata

    2012-09-01

    The mitochondrial uncoupling proteins (UCPs) of interscapular brown adipose tissue (iBAT) and of muscles play important roles in energy balance. For instance, the expression of UCP1 and UCP3 are modulated by free fatty acid gradients induced by high-sugar diets and acute exercise that is dependent on sympathetic stimulation. However, the effects of endurance training in animals fed with high-sugar diets are unknown. This study aims to evaluate the long-term effects of diet and exercise on UCP1 and UCP3 levels and energy balance efficiency. Rats fed with standard or high-sugar (HSD) diets were simultaneously subjected to running training over an 8-week period. After the training period, the rats were decapitated, and the iBAT and gastrocnemius muscle tissues were removed for evaluation of the β₃-receptor, Ucp1, and Ucp3 mRNA and protein expression, which were analyzed by quantitative reverse transcriptase polymerase chain reaction and Western blot, respectively. Groups fed with an HSD displayed a higher adiposity index and iBAT weight (P < .05), whereas exhibited an up-regulation of Ucp1 mRNA and protein levels (P < .05). Training increased β₃-receptor mRNA in iBAT and reduced the Ucp3 mRNA in muscle tissues. In association with an HSD, training restored the increasing β₃-receptor mRNA and greatly up-regulated the levels of Ucp3 mRNA. Therefore, training blocked the HSD-induced up-regulation of UCP1 expression in iBAT, whereas it up-regulated the expression of Ucp3 mRNA in muscle. These results suggest that training enhances the relationship between Ucp1/Ucp3 mRNA levels, which could result in higher energy efficiency, but not when HSD-induced elevated sympathetic activity is maintained. Copyright © 2012. Published by Elsevier Inc.

  18. Adipose tissue and the reproductive axis: biological aspects

    USDA-ARS?s Scientific Manuscript database

    The discovery of leptin clearly demonstrated a relationship between body fat and the neuroendocrine axis since leptin influences appetite and the reproductive axis. Since adipose tissue is a primary source of leptin, adipose tissue is no longer considered as simply a depot to store fat. Recent find...

  19. Adipocyte fetuin-A contributes to macrophage migration into adipose tissue and polarization of macrophages.

    PubMed

    Chatterjee, Priyajit; Seal, Soma; Mukherjee, Sandip; Kundu, Rakesh; Mukherjee, Sutapa; Ray, Sukanta; Mukhopadhyay, Satinath; Majumdar, Subeer S; Bhattacharya, Samir

    2013-09-27

    Macrophage infiltration into adipose tissue during obesity and their phenotypic conversion from anti-inflammatory M2 to proinflammatory M1 subtype significantly contributes to develop a link between inflammation and insulin resistance; signaling molecule(s) for these events, however, remains poorly understood. We demonstrate here that excess lipid in the adipose tissue environment may trigger one such signal. Adipose tissue from obese diabetic db/db mice, high fat diet-fed mice, and obese diabetic patients showed significantly elevated fetuin-A (FetA) levels in respect to their controls; partially hepatectomized high fat diet mice did not show noticeable alteration, indicating adipose tissue to be the source of this alteration. In adipocytes, fatty acid induces FetA gene and protein expressions, resulting in its copious release. We found that FetA could act as a chemoattractant for macrophages. To simulate lipid-induced inflammatory conditions when proinflammatory adipose tissue and macrophages create a niche of an altered microenvironment, we set up a transculture system of macrophages and adipocytes; the addition of fatty acid to adipocytes released FetA into the medium, which polarized M2 macrophages to M1. This was further confirmed by direct FetA addition to macrophages. Taken together, lipid-induced FetA from adipocytes is an efficient chemokine for macrophage migration and polarization. These findings open a new dimension for understanding obesity-induced inflammation.

  20. Allele Compensation in Tip60+/− Mice Rescues White Adipose Tissue Function In Vivo

    PubMed Central

    Gao, Yuan; Hamers, Nicole; Rakhshandehroo, Maryam; Berger, Ruud; Lough, John; Kalkhoven, Eric

    2014-01-01

    Adipose tissue is a key regulator of energy homestasis. The amount of adipose tissue is largely determined by adipocyte differentiation (adipogenesis), a process that is regulated by the concerted actions of multiple transcription factors and cofactors. Based on in vitro studies in murine 3T3-L1 preadipocytes and human primary preadipocytes, the transcriptional cofactor and acetyltransferase Tip60 was recently identified as an essential adipogenic factor. We therefore investigated the role of Tip60 on adipocyte differentiation and function, and possible consequences on energy homeostasis, in vivo. Because homozygous inactivation results in early embryonic lethality, Tip60+/− mice were used. Heterozygous inactivation of Tip60 had no effect on body weight, despite slightly higher food intake by Tip60+/− mice. No major effects of heterozygous inactivation of Tip60 were observed on adipose tissue and liver, and Tip60+/− displayed normal glucose tolerance, both on a low fat and a high fat diet. While Tip60 mRNA was reduced to 50% in adipose tissue, the protein levels were unaltered, suggesting compensation by the intact allele. These findings indicate that the in vivo role of Tip60 in adipocyte differentiation and function cannot be properly addressed in Tip60+/− mice, but requires the generation of adipose tissue-specific knock out animals or specific knock-in mice. PMID:24870614

  1. Ontogenesis of muscle and adipose tissues and their interactions in ruminants and other species.

    PubMed

    Bonnet, M; Cassar-Malek, I; Chilliard, Y; Picard, B

    2010-07-01

    competition or prioritization occurs through cellular signalling pathways and the secretion of proteins by adipose tissue (adipokines) and muscle (myokines), putatively regulating their hypertrophy in a reciprocal manner. Further work on the mechanisms underlying cross-talk between brown or white adipocytes and muscle fibres will help to achieve better understanding as a prerequisite to improving the control of body growth and composition in cattle.

  2. Distinct effects of calorie restriction on adipose tissue cytokine and angiogenesis profiles in obese and lean mice

    PubMed Central

    2012-01-01

    Background Obesity associates with low-grade inflammation and adipose tissue remodeling. Using sensitive high-throughput protein arrays we here investigated adipose tissue cytokine and angiogenesis-related protein profiles from obese and lean mice, and in particular, the influence of calorie restriction (CR). Methods Tissue samples from visceral fat were harvested from obese mice fed with a high-fat diet (60% of energy), lean controls receiving low-fat control diet as well as from obese and lean mice kept under CR (energy intake 70% of ad libitum intake) for 50 days. Protein profiles were analyzed using mouse cytokine and angiogenesis protein array kits. Results In obese and lean mice, CR was associated with 11.3% and 15.6% reductions in body weight, as well as with 4.0% and 4.6% reductions in body fat percentage, respectively. Obesity induced adipose tissue cytokine expressions, the most highly upregulated cytokines being IL-1ra, IL-2, IL-16, MCP-1, MIG, RANTES, C5a, sICAM-1 and TIMP-1. CR increased sICAM-1 and TIMP-1 expression both in obese and lean mice. Overall, CR showed distinct effects on cytokine expressions; in obese mice CR largely decreased but in lean mice increased adipose tissue cytokine expressions. Obesity was also associated with increased expressions of angiogenesis-related proteins, in particular, angiogenin, endoglin, endostatin, endothelin-1, IGFBP-3, leptin, MMP-3, PAI-1, TIMP-4, CXCL16, platelet factor 4, DPPIV and coagulation factor III. CR increased endoglin, endostatin and platelet factor 4 expressions, and decreased IGFBP-3, NOV, MMP-9, CXCL16 and osteopontin expressions both in obese and lean mice. Interestingly, in obese mice, CR decreased leptin and TIMP-4 expressions, whereas in lean mice their expressions were increased. CR decreased MMP-3 and PAI-1 only in obese mice, whereas CR decreased FGF acidic, FGF basic and coagulation factor III, and increased angiogenin and DPPIV expression only in lean mice. Conclusions CR exerts

  3. Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty

    PubMed Central

    Stout, Michael B.; Justice, Jamie N.; Nicklas, Barbara J.; Kirkland, James L.

    2016-01-01

    Advancing age is associated with progressive declines in physiological function that lead to overt chronic disease, frailty, and eventual mortality. Importantly, age-related physiological changes occur in cellularity, insulin-responsiveness, secretory profiles, and inflammatory status of adipose tissue, leading to adipose tissue dysfunction. Although the mechanisms underlying adipose tissue dysfunction are multifactorial, the consequences result in secretion of proinflammatory cytokines and chemokines, immune cell infiltration, an accumulation of senescent cells, and an increase in senescence-associated secretory phenotype (SASP). These processes synergistically promote chronic sterile inflammation, insulin resistance, and lipid redistribution away from subcutaneous adipose tissue. Without intervention, these effects contribute to age-related systemic metabolic dysfunction, physical limitations, and frailty. Thus adipose tissue dysfunction may be a fundamental contributor to the elevated risk of chronic disease, disability, and adverse health outcomes with advancing age. PMID:27927801

  4. Gene Delivery to Adipose Tissue Using Transcriptionally Targeted rAAV8 Vectors

    PubMed Central

    Uhrig-Schmidt, Silke; Geiger, Matthias; Luippold, Gerd; Birk, Gerald; Mennerich, Detlev; Neubauer, Heike; Grimm, Dirk; Wolfrum, Christian; Kreuz, Sebastian

    2014-01-01

    In recent years, the increasing prevalence of obesity and obesity-related co-morbidities fostered intensive research in the field of adipose tissue biology. To further unravel molecular mechanisms of adipose tissue function, genetic tools enabling functional studies in vitro and in vivo are essential. While the use of transgenic animals is well established, attempts using viral and non-viral vectors to genetically modify adipocytes in vivo are rare. Therefore, we here characterized recombinant Adeno-associated virus (rAAV) vectors regarding their potency as gene transfer vehicles for adipose tissue. Our results demonstrate that a single dose of systemically applied rAAV8-CMV-eGFP can give rise to remarkable transgene expression in murine adipose tissues. Upon transcriptional targeting of the rAAV8 vector to adipocytes using a 2.2 kb fragment of the murine adiponectin (mAP2.2) promoter, eGFP expression was significantly decreased in off-target tissues while efficient transduction was maintained in subcutaneous and visceral fat depots. Moreover, rAAV8-mAP2.2-mediated expression of perilipin A – a lipid-droplet-associated protein – resulted in significant changes in metabolic parameters only three weeks post vector administration. Taken together, our findings indicate that rAAV vector technology is applicable as a flexible tool to genetically modify adipocytes for functional proof-of-concept studies and the assessment of putative therapeutic targets in vivo. PMID:25551639

  5. Epicardial adipose tissue, hepatic steatosis and obesity.

    PubMed

    Cikim, A Sertkaya; Topal, E; Harputluoglu, M; Keskin, L; Zengin, Z; Cikim, K; Ozdemir, R; Aladag, M; Yologlu, S

    2007-06-01

    Hepatic steatosis is a common companion of obesity. Moreover, the measurement of epicardial adipose tissue (EAT) has been reported to be related with both obesity and insulin resistance. Therefore, we aimed to evaluate the relationship between hepatic steatosis, EAT and insulin resistance in obese patients. Sixty-three obese subjects were enrolled in the study. Patients were divided into 3 groups according to body mass index (BMI) as follows: 20 patients with 30 < or = BMI < 35 kg/m2 (Group 1, mean age 39.3+/-12.9 yr), 25 patients with 35 < or = BMI < 40 kg/m2 (Group 2, mean age 41.7+/-9.3 yr), and 18 patients with BMI > or = 40 kg/m2 (Group 3, mean age 36.8+/-13.9 yr). EAT and grade of hepatic steatosis were assessed sonographically. Anthropometrical measurements were assessed with the foot-to-foot bioelectrical impedance analysis. Insulin resistance was assessed according to basal insulin, quantitative insulin sensitivity check index (QUICKI) and homeostasis model assessment (HOMA) equations. Although EAT was similarly higher in both groups 2 and 3, these groups were found to be similar in terms of the grade of hepatic steatosis. Both EAT and the grade of hepatic steatosis were correlated with whole body fat mass, abdominal adiposity, insulin resistance, and triglyceridemia but waist circumference was the only factor affecting EAT thickness. Highly sensitive C-reactive protein (hsCRP) was the only metabolic parameter that was significantly higher in Group 3 than in Group 1 (p=0.02). Hepatic steatosis should be assessed as a valuable predictor that reflects the increments of whole body fat mass as well as abdominal adiposity. However, in an attempt to demonstrate marginal differences between patients with similar obesity levels, epicardial adipose tissue appears to be a more sensitive marker compared to hepatic steatosis.

  6. Brown adipose tissue macrophages control tissue innervation and homeostatic energy expenditure

    PubMed Central

    Cortese, Nina; Haimon, Zhana; Sar Shalom, Hadas; Kuperman, Yael; Kalchenko, Vyacheslav; Brandis, Alexander; David, Eyal; Segal-Hayoun, Yifat; Chappell-Maor, Louise; Yaron, Avraham; Jung, Steffen

    2017-01-01

    Tissue macrophages provide immune defense and contribute to establishment and maintenance of tissue homeostasis. Here we used constitutive and inducible mutagenesis to delete the nuclear transcription regulator methyl-CpG binding protein 2 (Mecp2) in defined tissue macrophages. Animals lacking the Rett syndrome-associated gene in macrophages did not show signs of neurodevelopmental disorder, but displayed spontaneous obesity, which could be linked to impaired brown adipose tissue (BAT) function. Specifically, mutagenesis of a BAT-resident CX3CR1+ macrophage subpopulation compromised homeostatic, though not acute cold-induced thermogenesis. Mechanistically, BAT malfunction of pre-obese mice harboring mutant macrophages was associated with decreased sympathetic innervation and local norepinephrine titers, resulting in reduced adipocyte expression of thermogenic factors. Mutant macrophages over-expressed PlexinA4, which might contribute to the phenotype by repulsion of Sema6A-expressing sympathetic axons. Collectively, we report a previously unappreciated homeostatic role of macrophages in the control of tissue innervation, disruption of which in BAT results in metabolic imbalance. PMID:28459435

  7. Atorvastatin reduces cardiac and adipose tissue inflammation in rats with metabolic syndrome.

    PubMed

    Yamada, Yuichiro; Takeuchi, Shino; Yoneda, Mamoru; Ito, Shogo; Sano, Yusuke; Nagasawa, Kai; Matsuura, Natsumi; Uchinaka, Ayako; Murohara, Toyoaki; Nagata, Kohzo

    2017-08-01

    Statins are strong inhibitors of cholesterol biosynthesis and help to prevent cardiovascular disease. They also exert additional pleiotropic effects that include an anti-inflammatory action and are independent of cholesterol, but the molecular mechanisms underlying these additional effects have remained unclear. We have now examined the effects of atorvastatin on cardiac and adipose tissue inflammation in DahlS.Z-Lepr fa /Lepr fa (DS/obese) rats, which we previously established as a model of metabolic syndrome (MetS). DS/obese rats were treated with atorvastatin (6 or 20mgkg -1 day -1 ) from 9 to 13weeks of age. Atorvastatin ameliorated cardiac fibrosis, diastolic dysfunction, oxidative stress, and inflammation as well as adipose tissue inflammation in these animals at both doses. The high dose of atorvastatin reduced adipocyte hypertrophy to a greater extent than did the low dose. Atorvastatin inhibited the up-regulation of peroxisome proliferator-activated receptor γ gene expression in adipose tissue as well as decreased the serum adiponectin concentration in DS/obese rats. It also activated AMP-activated protein kinase (AMPK) as well as inactivated nuclear factor-κB (NF-κB) in the heart of these animals. The down-regulation of AMPK and NF-κB activities in adipose tissue of DS/obese rats was attenuated and further enhanced, respectively, by atorvastatin treatment. The present results suggest that the anti-inflammatory effects of atorvastatin on the heart and adipose tissue are attributable at least partly to increased AMPK activity and decreased NF-κB activity in this rat model of MetS. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Proteomic analysis of adipose tissue during the last weeks of gestation in pure and crossbred Large White or Meishan fetuses gestated by sows of either breed.

    PubMed

    Gondret, F; Guével, B; Père, M C; Quesnel, H; Billon, Y; Com, E; Canario, L; Louveau, I; Liaubet, L

    2018-01-01

    The degree of adipose tissue development at birth may influence neonatal survival and subsequent health outcomes. Despite their lower birth weights, piglets from Meishan sows (a fat breed with excellent maternal ability) have a higher survival rate than piglets from Large White sows (a lean breed). To identify the main pathways involved in subcutaneous adipose tissue maturation during the last month of gestation, we compared the proteome and the expression levels of some genes at d 90 and d 110 of gestation in purebred and crossbred Large White or Meishan fetuses gestated by sows of either breed. A total of 52 proteins in fetal subcutaneous adipose tissue were identified as differentially expressed over the course of gestation. Many proteins involved in energy metabolism were more abundant, whereas some proteins participating in cytoskeleton organization were reduced in abundance on d 110 compared with d 90. Irrespective of age, 24 proteins differed in abundance between fetal genotypes, and an interaction effect between fetal age and genotype was observed for 13 proteins. The abundance levels of proteins known to be responsive to nutrient levels such as aldolase and fatty acid binding proteins, as well as the expression levels of FASN, a key lipogenic enzyme, and MLXIPL , a pivotal transcriptional mediator of glucose-related stimulation of lipogenic genes, were elevated in the adipose tissue of pure and crossbred fetuses from Meishan sows. These data suggested that the adipose tissue of these fetuses had superior metabolic functionality, whatever their paternal genes. Conversely, proteins participating in redox homeostasis and apoptotic cell clearance had a lower abundance in Meishan than in Large White fetuses. Time-course differences in adipose tissue protein abundance were revealed between fetal genotypes for a few secreted proteins participating in responses to organic substances, such as alpha-2-HS-glycoprotein, transferrin and albumin. These results

  9. Increased uncoupling protein-2 mRNA abundance and glucocorticoid action in adipose tissue in the sheep fetus during late gestation is dependent on plasma cortisol and triiodothyronine

    PubMed Central

    Gnanalingham, MG; Mostyn, A; Forhead, AJ; Fowden, AL; Symonds, ME; Stephenson, T

    2005-01-01

    The endocrine regulation of uncoupling protein-2 (UCP2), an inner mitochondrial protein, in fetal adipose tissue remains unclear. The present study aimed to determine if fetal plasma cortisol and triiodothyronine (T3) influenced the mRNA abundance of UCP2, glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) and 2 (11βHSD2) in fetal adipose tissue in the sheep during late gestation. Perirenal–abdominal adipose tissue was sampled from ovine fetuses to which either cortisol (2–3 mg kg−1 day−1) or saline was infused for 5 days up to 127–130 days gestation, or near term fetuses (i.e. 142–145 days gestation) that were either adrenalectomised (AX) or remained intact. Fetal plasma cortisol and T3 concentrations were higher in the cortisol infused animals and lower in AX fetuses compared with their corresponding control group, and increased with gestational age. UCP2 and GR mRNA abundance were significantly lower in AX fetuses compared with age-matched controls, and increased with gestational age and by cortisol infusion. Glucocorticoid action in fetal adipose tissue was augmented by AX and suppressed by cortisol infusion, the latter also preventing the gestational increase in 11βHSD1 mRNA and decrease in 11βHSD2 mRNA. When all treatment groups were combined, both fetal plasma cortisol and T3 concentrations were positively correlated with UCP2, GR and 11βHSD2 mRNA abundance, but negatively correlated with 11βHSD1 mRNA abundance. In conclusion, plasma cortisol and T3 are both required for the late gestation rise in UCP2 mRNA and differentially regulate glucocorticoid action in fetal adipose tissue in the sheep during late gestation. PMID:15961419

  10. Adipose Tissue Plasticity During Catch-Up Fat Driven by Thrifty Metabolism

    PubMed Central

    Summermatter, Serge; Marcelino, Helena; Arsenijevic, Denis; Buchala, Antony; Aprikian, Olivier; Assimacopoulos-Jeannet, Françoise; Seydoux, Josiane; Montani, Jean-Pierre; Solinas, Giovanni; Dulloo, Abdul G.

    2009-01-01

    OBJECTIVE Catch-up growth, a risk factor for later type 2 diabetes, is characterized by hyperinsulinemia, accelerated body-fat recovery (catch-up fat), and enhanced glucose utilization in adipose tissue. Our objective was to characterize the determinants of enhanced glucose utilization in adipose tissue during catch-up fat. RESEARCH DESIGN AND METHODS White adipose tissue morphometry, lipogenic capacity, fatty acid composition, insulin signaling, in vivo glucose homeostasis, and insulinemic response to glucose were assessed in a rat model of semistarvation-refeeding. This model is characterized by glucose redistribution from skeletal muscle to adipose tissue during catch-up fat that results solely from suppressed thermogenesis (i.e., without hyperphagia). RESULTS Adipose tissue recovery during the dynamic phase of catch-up fat is accompanied by increased adipocyte number with smaller diameter, increased expression of genes for adipogenesis and de novo lipogenesis, increased fatty acid synthase activity, increased proportion of saturated fatty acids in triglyceride (storage) fraction but not in phospholipid (membrane) fraction, and no impairment in insulin signaling. Furthermore, it is shown that hyperinsulinemia and enhanced adipose tissue de novo lipogenesis occur concomitantly and are very early events in catch-up fat. CONCLUSIONS These findings suggest that increased adipose tissue insulin stimulation and consequential increase in intracellular glucose flux play an important role in initiating catch-up fat. Once activated, the machinery for lipogenesis and adipogenesis contribute to sustain an increased insulin-stimulated glucose flux toward fat storage. Such adipose tissue plasticity could play an active role in the thrifty metabolism that underlies glucose redistribution from skeletal muscle to adipose tissue. PMID:19602538

  11. Adipose Tissue Responses to Breaking Sitting in Men and Women with Central Adiposity.

    PubMed

    Chen, Yung-Chih; Betts, James A; Walhin, Jean-Philippe; Thompson, Dylan

    2018-04-27

    Breaking prolonged sitting reduces postprandial glucose and insulin concentrations and influences skeletal muscle molecular signalling pathways but it is unknown whether breaking sitting also affects adipose tissue. Eleven central overweight participants (7 men and 4 post-menopausal women) aged 50 ± 5 years (means ± SD) completed two mixed-meal feeding trials (PROLONGED SITTING versus BREAKING SITTING) in a randomised, counterbalanced design. The BREAKING SITTING intervention comprised walking for 2 min every 20 min over 5.5 h. Blood samples were taken at regular intervals to examine metabolic biomarkers and adipokine concentrations. Adipose tissue samples were taken at baseline and at 5.5 h to examine changes in mRNA expression and secretion of selected adipokines ex-vivo. Postprandial glycaemia and insulinaemia were attenuated by approximately 50% and 40% in BREAKING SITTING compared to PROLONGED SITTING (iAUC: 359 ± 117 versus 697 ± 218 mmol·330 min·L, p = 0.001 and 202 ± 71 versus 346 ± 150 nmol·330 min·L, p = 0.001, respectively). Despite these pronounced and sustained differences in postprandial glucose and insulin concentrations, adipose tissue mRNA expression for various genes (IL-6, leptin, adiponectin, PDK4, IRS1/2, PI3K and Akt1, etc.) and ex-vivo adipose tissue secretion of IL-6, leptin and adiponectin were not different between trials. This study demonstrates that breaking sitting with short bouts of physical activity has very pronounced effects on systemic postprandial glucose and insulin concentrations but this does not translate into corresponding effects within adipose tissue.

  12. Human adipose-derived stem cells: definition, isolation, tissue-engineering applications.

    PubMed

    Nae, S; Bordeianu, I; Stăncioiu, A T; Antohi, N

    2013-01-01

    Recent researches have demonstrated that the most effective repair system of the body is represented by stem cells - unspecialized cells, capable of self-renewal through successive mitoses, which have also the ability to transform into different cell types through differentiation. The discovery of adult stem cells represented an important step in regenerative medicine because they no longer raises ethical or legal issues and are more accessible. Only in 2002, stem cells isolated from adipose tissue were described as multipotent stem cells. Adipose tissue stem cells benefits in tissue engineering and regenerative medicine are numerous. Development of adipose tissue engineering techniques offers a great potential in surpassing the existing limits faced by the classical approaches used in plastic and reconstructive surgery. Adipose tissue engineering clinical applications are wide and varied, including reconstructive, corrective and cosmetic procedures. Nowadays, adipose tissue engineering is a fast developing field, both in terms of fundamental researches and medical applications, addressing issues related to current clinical pathology or trauma management of soft tissue injuries in different body locations.

  13. Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty.

    PubMed

    Stout, Michael B; Justice, Jamie N; Nicklas, Barbara J; Kirkland, James L

    2017-01-01

    Advancing age is associated with progressive declines in physiological function that lead to overt chronic disease, frailty, and eventual mortality. Importantly, age-related physiological changes occur in cellularity, insulin-responsiveness, secretory profiles, and inflammatory status of adipose tissue, leading to adipose tissue dysfunction. Although the mechanisms underlying adipose tissue dysfunction are multifactorial, the consequences result in secretion of proinflammatory cytokines and chemokines, immune cell infiltration, an accumulation of senescent cells, and an increase in senescence-associated secretory phenotype (SASP). These processes synergistically promote chronic sterile inflammation, insulin resistance, and lipid redistribution away from subcutaneous adipose tissue. Without intervention, these effects contribute to age-related systemic metabolic dysfunction, physical limitations, and frailty. Thus adipose tissue dysfunction may be a fundamental contributor to the elevated risk of chronic disease, disability, and adverse health outcomes with advancing age. ©2017 Int. Union Physiol. Sci./Am. Physiol. Soc.

  14. Intra-body microwave communication through adipose tissue.

    PubMed

    Asan, Noor Badariah; Noreland, Daniel; Hassan, Emadeldeen; Redzwan Mohd Shah, Syaiful; Rydberg, Anders; Blokhuis, Taco J; Carlsson, Per-Ola; Voigt, Thiemo; Augustine, Robin

    2017-08-01

    The human body can act as a medium for the transmission of electromagnetic waves in the wireless body sensor networks context. However, there are transmission losses in biological tissues due to the presence of water and salts. This Letter focuses on lateral intra-body microwave communication through different biological tissue layers and demonstrates the effect of the tissue thicknesses by comparing signal coupling in the channel. For this work, the authors utilise the R-band frequencies since it overlaps the industrial, scientific and medical radio (ISM) band. The channel model in human tissues is proposed based on electromagnetic simulations, validated using equivalent phantom and ex-vivo measurements. The phantom and ex-vivo measurements are compared with simulation modelling. The results show that electromagnetic communication is feasible in the adipose tissue layer with a low attenuation of ∼2 dB per 20 mm for phantom measurements and 4 dB per 20 mm for ex-vivo measurements at 2 GHz. Since the dielectric losses of human adipose tissues are almost half of ex-vivo tissue, an attenuation of around 3 dB per 20 mm is expected. The results show that human adipose tissue can be used as an intra-body communication channel.

  15. Epicardial Adipose Tissue Thickness in Patients With Subclinical Hypothyroidism and the Relationship Thereof With Visceral Adipose Tissue Thickness.

    PubMed

    Arpaci, Dilek; Gurkan Tocoglu, Aysel; Yilmaz, Sabiye; Korkmaz, Sumeyye; Ergenc, Hasan; Gunduz, Huseyin; Keser, Nurgul; Tamer, Ali

    2016-03-01

    Subclinical hypothyroidism (SH) is associated with cardiovascular metabolic syndromes, especially dislipidemia and abdominal obesity. Visceral abdominal adipose tissue (VAAT) and epicardial adipose tissue (EAT) have the same ontogenic origin and produce many proinflammatory and proatherogenic cytokines. We evaluated EAT and VAAT thickness in patients with SH. Forty-one patients with SH and 35 controls were included in the study. Demographical and anthropometric features of both patients and controls were recorded. Thyroid and metabolic parameters were measured. EAT was measured using 2D-transthoracic echocardiography. The age and gender distributions were similar in the two groups (P = 0.998 and P = 0.121, respectively). Body mass index (BMI), fat mass, waist circumference (WC), hip circumference (HC), the WC/HC ratio, and the thicknesses of VAAT and abdominal subcutaneous adipose tissue were higher in the case group than the control group (all P values < 0.01). However, both groups had similar EAT thickness (P = 0.532), which was positively correlated with BMI, fat mass, WC, HC, VAAT thickness, abdominal subcutaneous adipose tissue thickness, and serum triglyceride (TG) level (all P values < 0.01). We found no correlation between EAT thickness and thyroid-stimulating hormone (TSH) level, free thyroxine (FT4) level, or low-density lipoprotein-cholesterol (LDL-C) level, and anti-TPO level (all P values > 0.05). We found no difference between the two groups in fasting plasma glucose (FPG) level (P = 0.780), but the levels of LDL-C and TG differed significantly (P = 0.002 and P = 0.026, respectively). The serum TSH level was higher and the FT4 level was lower in the case than the control group (both P values <0.01). Increased abdominal adipose tissue thickness in patients with SH is associated with atherosclerosis. To detemine the risk of atherosclerosis in such patients, EAT measurements are valuable; such assessment is simple to perform.

  16. PPAR γ is highly expressed in F4/80hi adipose tissue macrophages and dampens adipose-tissue inflammation

    PubMed Central

    Bassaganya-Riera, Josep; Misyak, Sarah; Guri, Amir J.; Hontecillas, Raquel

    2009-01-01

    Macrophage infiltration into adipose tissue is a hallmark of obesity. We recently reported two phenotypically distinct subsets of adipose tissue macrophages (ATM) based on the surface expression of the glycoprotein F4/80 and responsiveness to treatment with a peroxisome proliferator-activated receptor (PPAR) γ agonist. Hence, we hypothesized that F4/80hi and F4/80lo ATM differentially express PPAR γ. This study phenotypically and functionally characterizes F4/80hi and F4/80lo ATM subsets during obesity. Changes in gene expression were also examined on sorted F4/80lo and F4/80hi ATM by quantitative real-time RT-PCR. We show that while F4/80lo macrophages predominate in adipose tissue of lean mice, obesity causes accumulation of both F4/80lo and F4/80hi ATM. Moreover, accumulation of F4/80hi ATM in adipose tissue is associated with impaired glucose tolerance. Phenotypically, F4/80hi ATM express greater amounts of CD11c, MHC II, CD49b, and CX3CR1 and produce more TNF-α, MCP-1, and IL-10 than F4/80lo ATM. Gene expression analyses of the sorted populations revealed that only the F4/80lo population produced IL-4, whereas the F4/80hi ATM expressed greater amounts of PPAR γ, δ, CD36 and toll-like receptor-4. In addition, the deficiency of PPAR γ in immune cells favors expression of M1 and impairs M2 macrophage marker expression in adipose tissue. Thus, PPAR γ is differentially expressed in F4/80hi versus F4/80low ATM subsets and its deficiency favors a predominance of M1 markers in WAT. PMID:19423085

  17. PPAR gamma is highly expressed in F4/80(hi) adipose tissue macrophages and dampens adipose-tissue inflammation.

    PubMed

    Bassaganya-Riera, Josep; Misyak, Sarah; Guri, Amir J; Hontecillas, Raquel

    2009-01-01

    Macrophage infiltration into adipose tissue is a hallmark of obesity. We recently reported two phenotypically distinct subsets of adipose tissue macrophages (ATM) based on the surface expression of the glycoprotein F4/80 and responsiveness to treatment with a peroxisome proliferator-activated receptor (PPAR) gamma agonist. Hence, we hypothesized that F4/80(hi) and F4/80(lo) ATM differentially express PPAR gamma. This study phenotypically and functionally characterizes F4/80(hi) and F4/80(lo) ATM subsets during obesity. Changes in gene expression were also examined on sorted F4/80(lo) and F4/80(hi) ATM by quantitative real-time RT-PCR. We show that while F4/80(lo) macrophages predominate in adipose tissue of lean mice, obesity causes accumulation of both F4/80(lo) and F4/80(hi) ATM. Moreover, accumulation of F4/80(hi) ATM in adipose tissue is associated with impaired glucose tolerance. Phenotypically, F4/80(hi) ATM express greater amounts of CD11c, MHC II, CD49b, and CX3CR1 and produce more TNF-alpha, MCP-1, and IL-10 than F4/80(lo) ATM. Gene expression analyses of the sorted populations revealed that only the F4/80(lo) population produced IL-4, whereas the F4/80(hi) ATM expressed greater amounts of PPAR gamma, delta, CD36 and toll-like receptor-4. In addition, the deficiency of PPAR gamma in immune cells favors expression of M1 and impairs M2 macrophage marker expression in adipose tissue. Thus, PPAR gamma is differentially expressed in F4/80(hi) versus F4/80(low) ATM subsets and its deficiency favors a predominance of M1 markers in WAT.

  18. Pleiotropic effects of apolipoprotein C3 on HDL functionality and adipose tissue metabolic activity.

    PubMed

    Zvintzou, Evangelia; Lhomme, Marie; Chasapi, Stella; Filou, Serafoula; Theodoropoulos, Vassilis; Xapapadaki, Eva; Kontush, Anatol; Spyroulias, George; Tellis, Constantinos C; Tselepis, Alexandros D; Constantinou, Caterina; Kypreos, Kyriakos E

    2017-09-01

    APOC3 is produced mainly by the liver and intestine and approximately half of plasma APOC3 associates with HDL. Though it was believed that APOC3 associates with HDL by simple binding to preexisting particles, recent data support that biogenesis of APOC3-containing HDL (APOC3-HDL) requires Abca1. Moreover, APOC3-HDL contributes to plasma triglyceride homeostasis by preventing APOC3 association with triglyceride-rich lipoproteins. Interestingly, APOC3-HDL also shows positive correlation with the morbidly obese phenotype. However, the roles of APOC3 in HDL functionality and adipose tissue metabolic activity remain unknown. Therefore, here we investigated the direct effects of APOC3 expression on HDL structure and function, as well as white adipose tissue (WAT) and brown adipose tissue (BAT) metabolic activity. C57BL/6 mice were infected with an adenovirus expressing human APOC3 or a recombinant attenuated control adenovirus expressing green fluorescent protein and blood and tissue samples were collected at 5 days postinfection. HDL was then analyzed for its apolipoprotein and lipid composition and particle functionality. Additionally, purified mitochondria from BAT and WAT were analyzed for uncoupling protein 1, cytochrome c (Cytc), and Cytc oxidase subunit 4 protein levels as an indirect measure of their metabolic activity. Serum metabolomic analysis was performed by NMR. Combined, our data show that APOC3 modulates HDL structure and function, while it selectively promotes BAT metabolic activation. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  19. Reference genes for quantitative PCR in the adipose tissue of mice with metabolic disease.

    PubMed

    Almeida-Oliveira, Fernanda; Leandro, João G B; Ausina, Priscila; Sola-Penna, Mauro; Majerowicz, David

    2017-04-01

    Obesity and diabetes are metabolic diseases and they are increasing in prevalence. The dynamics of gene expression associated with these diseases is fundamental to identifying genes involved in related biological processes. qPCR is a sensitive technique for mRNA quantification and the most commonly used method in gene-expression studies. However, the reliability of these results is directly influenced by data normalization. As reference genes are the major normalization method used, this work aims to identify reference genes for qPCR in adipose tissues of mice with type-I diabetes or obesity. We selected 12 genes that are commonly used as reference genes. The expression of these genes in the adipose tissues of mice was analyzed in the context of three different experimental protocols: 1) untreated animals; 2) high-fat-diet animals; and 3) streptozotocin-treated animals. Gene-expression stability was analyzed using four different algorithms. Our data indicate that TATA-binding protein is stably expressed across adipose tissues in control animals. This gene was also a useful reference when the brown adipose tissues of control and obese mice were analyzed. The mitochondrial ATP synthase F1 complex gene exhibits stable expression in subcutaneous and perigonadal adipose tissue from control and obese mice. Moreover, this gene is the best reference for qPCR normalization in adipose tissue from streptozotocin-treated animals. These results show that there is no perfect stable gene suited for use under all experimental conditions. In conclusion, the selection of appropriate genes is a prerequisite to ensure qPCR reliability and must be performed separately for different experimental protocols. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis

    PubMed Central

    Davis, Kathryn E.; D. Neinast, Michael; Sun, Kai; M. Skiles, William; D. Bills, Jessica; A. Zehr, Jordan; Zeve, Daniel; D. Hahner, Lisa; W. Cox, Derek; M. Gent, Lana; Xu, Yong; V. Wang, Zhao; A. Khan, Sohaib; Clegg, Deborah J.

    2013-01-01

    Our data demonstrate that estrogens, estrogen receptor-α (ERα), and estrogen receptor-β (ERβ) regulate adipose tissue distribution, inflammation, fibrosis, and glucose homeostasis, by determining that αERKO mice have increased adipose tissue inflammation and fibrosis prior to obesity onset. Selective deletion of adipose tissue ERα in adult mice using a novel viral vector technology recapitulated the findings in the total body ERα null mice. Generation of a novel mouse model, lacking ERα specifically from adipocytes (AdipoERα), demonstrated increased markers of fibrosis and inflammation, especially in the males. Additionally, we found that the beneficial effects of estrogens on adipose tissue require adipocyte ERα. Lastly, we determined the role of ERβ in regulating inflammation and fibrosis, by breeding the AdipoERα into the βERKO background and found that in the absence of adipocyte ERα, ERβ has a protective role. These data suggest that adipose tissue and adipocyte ERα protects against adiposity, inflammation, and fibrosis in both males and females. PMID:24049737

  1. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue.

    PubMed

    Kawasaki, Noritaka; Asada, Rie; Saito, Atsushi; Kanemoto, Soshi; Imaizumi, Kazunori

    2012-01-01

    Adipose tissue plays a central role in maintaining metabolic homeostasis under normal conditions. Metabolic diseases such as obesity and type 2 diabetes are often accompanied by chronic inflammation and adipose tissue dysfunction. In this study, we observed that endoplasmic reticulum (ER) stress and the inflammatory response occurred in adipose tissue of mice fed a high-fat diet for a period of 16 weeks. After 16 weeks of feeding, ER stress markers increased and chronic inflammation occurred in adipose tissue. We found that ER stress is induced by free fatty acid (FFA)-mediated reactive oxygen species (ROS) generation and up-regulated gene expression of inflammatory cytokines in 3T3-L1 adipocytes. Oral administration to obese mice of chemical chaperons, which alleviate ER stress, improved chronic inflammation in adipose tissue, followed by the suppression of increased body weight and improved insulin signaling. These results indicate that ER stress plays important pathophysiological roles in obesity-induced adipose tissue dysfunction.

  2. A microarray analysis of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice

    PubMed Central

    Grove, KL; Fried, SK; Greenberg, AS; Xiao, XQ; Clegg, DJ

    2013-01-01

    Objective A sexual dimorphism exists in body fat distribution; females deposit relatively more fat in subcutaneous/inguinal depots whereas males deposit more fat in the intra-abdominal/gonadal depot. Our objective was to systematically document depot- and sex-related differences in the accumulation of adipose tissue and gene expression, comparing differentially expressed genes in diet-induced obese mice with mice maintained on a chow diet. Research Design and Methods We used a microarray approach to determine whether there are sexual dimorphisms in gene expression in age-matched male, female or ovariectomized female (OVX) C57/BL6 mice maintained on a high-fat (HF) diet. We then compared expression of validated genes between the sexes on a chow diet. Results After exposure to a high fat diet for 12 weeks, females gained less weight than males. The microarray analyses indicate in intra-abdominal/gonadal adipose tissue in females 1642 genes differ by at least twofold between the depots, whereas 706 genes differ in subcutaneous/inguinal adipose tissue when compared with males. Only 138 genes are commonly regulated in both sexes and adipose tissue depots. Inflammatory genes (cytokine–cytokine receptor interactions and acute-phase protein synthesis) are upregulated in males when compared with females, and there is a partial reversal after OVX, where OVX adipose tissue gene expression is more ′male-like′. This pattern is not observed in mice maintained on chow. Histology of male gonadal white adipose tissue (GWAT) shows more crown-like structures than females, indicative of inflammation and adipose tissue remodeling. In addition, genes related to insulin signaling and lipid synthesis are higher in females than males, regardless of dietary exposure. Conclusions These data suggest that male and female adipose tissue differ between the sexes regardless of diet. Moreover, HF diet exposure elicits a much greater inflammatory response in males when compared with females

  3. Gene Expression Signature in Adipose Tissue of Acromegaly Patients

    PubMed Central

    Hochberg, Irit; Tran, Quynh T.; Barkan, Ariel L.; Saltiel, Alan R.; Chandler, William F.; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly. PMID:26087292

  4. Start of insulin therapy in patients with type 2 diabetes mellitus promotes the influx of macrophages into subcutaneous adipose tissue.

    PubMed

    Jansen, H J; Stienstra, R; van Diepen, J A; Hijmans, A; van der Laak, J A; Vervoort, G M M; Tack, C J

    2013-12-01

    Insulin therapy in patients with type 2 diabetes mellitus is accompanied by weight gain characterised by an increase in abdominal fat mass. The expansion of adipose tissue mass is generally paralleled by profound morphological and inflammatory changes. We hypothesised that the insulin-associated increase in fat mass would also result in changes in the morphology of human subcutaneous adipose tissue and in increased inflammation, especially when weight gain was excessive. We investigated the effects of weight gain on adipocyte size, macrophage influx, and mRNA expression and protein levels of key inflammatory markers within the adipose tissue in patients with type 2 diabetes mellitus before and 6 months after starting insulin therapy. As expected, insulin therapy significantly increased body weight. At the level of the subcutaneous adipose tissue, insulin treatment led to an influx of macrophages. When comparing patients gaining no or little weight with patients gaining >4% body weight after 6 months of insulin therapy, both subgroups displayed an increase in macrophage influx. However, individuals who had gained weight had higher protein levels of monocyte chemoattractant protein-1, TNF-α and IL-1β after 6 months of insulin therapy compared with those who had not gained weight. We conclude that insulin therapy in patients with type 2 diabetes mellitus improved glycaemic control but also induced body weight gain and an influx of macrophages into the subcutaneous adipose tissue. In patients characterised by a pronounced insulin-associated weight gain, the influx of macrophages into the adipose tissue was accompanied by a more pronounced inflammatory status. ClinicalTrials.gov: NCT00781495. The study was funded by European Foundation for the Study of Diabetes and the Dutch Diabetes Research Foundation.

  5. Flow cytometry on the stromal-vascular fraction of white adipose tissue

    USDA-ARS?s Scientific Manuscript database

    Adipose tissue contains cell types other than adipocytes that may contribute to complications linked to obesity. For example, macrophages have been shown to infiltrate adipose tissue in response to a high-fat diet. Isolation of the stromal-vascular fraction of adipose tissue allows one to use flow c...

  6. Omega-3-derived mediators counteract obesity-induced adipose tissue inflammation.

    PubMed

    Titos, Esther; Clària, Joan

    2013-12-01

    Chronic low-grade inflammation in adipose tissue has been recognized as a key step in the development of obesity-associated complications. In obesity, the accumulation of infiltrating macrophages in adipose tissue and their phenotypic switch to M1-type dysregulate inflammatory adipokine production leading to obesity-linked insulin resistance. Resolvins are potent anti-inflammatory and pro-resolving mediators endogenously generated from omega-3 fatty acids that act as "stop-signals" of the inflammatory response promoting the resolution of inflammation. Recently, a deficit in the production of these endogenous anti-inflammatory signals has been demonstrated in obese adipose tissue. The restoration of their levels by either exogenous administration of these mediators or feeding omega-3-enriched diets, improves the inflammatory status of adipose tissue and ameliorates metabolic dysfunction. Here, we review the current knowledge on the role of these endogenous autacoids in the resolution of adipose tissue inflammation with special emphasis on their functional actions on macrophages. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. White adipose tissue and cardiovascular disease.

    PubMed

    Matsuzawa, Yuji

    2005-12-01

    Adipocytes have recently been shown to secrete a variety of bioactive substances called 'adipocytokines', and have been recognized as endocrine cells. Tumour necrosis factor (TNF)-alphaalpha, plasminogen activator inhibitor-1 (PAI-1) and heparin-binding epidermal-growth-factor-like growth factor (HBEGF) are among these adipocytokines, and they contribute to the development of vascular diseases. Visfatin is a visceral fat-specific protein that may be related to the development of obesity-related diseases such as diabetes mellitus and cardiovascular disease. In contrast, adiponectin, an adipose-tissue-specific collagen-like protein, has recently been reported as an important anti-atherogenic and anti-diabetic protein. Adipocytokine secretion may be regulated dynamically by the nutritional state. Visceral fat accumulation leads to dysfunction of adipocytes (including hypersecretion of TNF-alphaalpha, PAI-1 and HBEGF, and hyposecretion of adiponectin), which results in the development of a variety of metabolic and circulatory diseases. In this review, the importance of adipocytokines, including adiponectin, is discussed with respect to cardiovascular disease.

  8. Androgen Effects on Adipose Tissue Architecture and Function in Nonhuman Primates

    PubMed Central

    Varlamov, Oleg; White, Ashley E.; Carroll, Julie M.; Bethea, Cynthia L.; Reddy, Arubala; Slayden, Ov; O'Rourke, Robert W.

    2012-01-01

    The differential association of hypoandrogenism in men and hyperandrogenism in women with insulin resistance and obesity suggests that androgens may exert sex-specific effects on adipose and other tissues, although the underlying mechanisms remain poorly understood. Moreover, recent studies also suggest that rodents and humans may respond differently to androgen imbalance. To achieve better insight into clinically relevant sex-specific mechanisms of androgen action, we used nonhuman primates to investigate the direct effects of gonadectomy and hormone replacement on white adipose tissue. We also employed a novel ex vivo approach that provides a convenient framework for understanding of adipose tissue physiology under a controlled tissue culture environment. In vivo androgen deprivation of males did not result in overt obesity or insulin resistance but did induce the appearance of very small, multilocular white adipocytes. Testosterone replacement restored normal cell size and a unilocular phenotype and stimulated adipogenic gene transcription and improved insulin sensitivity of male adipose tissue. Ex vivo studies demonstrated sex-specific effects of androgens on adipocyte function. Female adipose tissue treated with androgens displayed elevated basal but reduced insulin-dependent fatty acid uptake. Androgen-stimulated basal uptake was greater in adipose tissue of ovariectomized females than in adipose tissue of intact females and ovariectomized females replaced with estrogen and progesterone in vivo. Collectively, these data demonstrate that androgens are essential for normal adipogenesis in males and can impair essential adipocyte functions in females, thus strengthening the experimental basis for sex-specific effects of androgens in adipose tissue. PMID:22547568

  9. An adipoinductive role of inflammation in adipose tissue engineering: key factors in the early development of engineered soft tissues.

    PubMed

    Lilja, Heidi E; Morrison, Wayne A; Han, Xiao-Lian; Palmer, Jason; Taylor, Caroline; Tee, Richard; Möller, Andreas; Thompson, Erik W; Abberton, Keren M

    2013-05-15

    Tissue engineering and cell implantation therapies are gaining popularity because of their potential to repair and regenerate tissues and organs. To investigate the role of inflammatory cytokines in new tissue development in engineered tissues, we have characterized the nature and timing of cell populations forming new adipose tissue in a mouse tissue engineering chamber (TEC) and characterized the gene and protein expression of cytokines in the newly developing tissues. EGFP-labeled bone marrow transplant mice and MacGreen mice were implanted with TEC for periods ranging from 0.5 days to 6 weeks. Tissues were collected at various time points and assessed for cytokine expression through ELISA and mRNA analysis or labeled for specific cell populations in the TEC. Macrophage-derived factors, such as monocyte chemotactic protein-1 (MCP-1), appear to induce adipogenesis by recruiting macrophages and bone marrow-derived precursor cells to the TEC at early time points, with a second wave of nonbone marrow-derived progenitors. Gene expression analysis suggests that TNFα, LCN-2, and Interleukin 1β are important in early stages of neo-adipogenesis. Increasing platelet-derived growth factor and vascular endothelial cell growth factor expression at early time points correlates with preadipocyte proliferation and induction of angiogenesis. This study provides new information about key elements that are involved in early development of new adipose tissue.

  10. IL-33 induces protective effects in adipose tissue inflammation during obesity in mice

    PubMed Central

    Miller, Ashley M.; Asquith, Darren L.; Hueber, Axel J.; Anderson, Lesley A.; Holmes, William M.; McKenzie, Andrew N.; Xu, Damo; Sattar, Naveed; McInnes, Iain B.; Liew, Foo Y.

    2014-01-01

    Rationale Chronic low-grade inflammation involving adipose tissue likely contributes to the metabolic consequences of obesity. The cytokine IL-33 and its receptor ST2 are expressed in adipose tissue but their role in adipose tissue inflammation during obesity is unclear. Objective To examine the functional role of IL-33 in adipose tissues, and investigate the effects on adipose tissue inflammation and obesity in vivo. Methods and Results We demonstrate that treatment of adipose tissue cultures in vitro with IL-33 induced production of Th2 cytokines (IL-5, IL-13, IL-10), and reduced expression of adipogenic and metabolic genes. Administration of recombinant IL-33 to genetically obese diabetic (ob/ob) mice led to reduced adiposity, reduced fasting glucose and improved glucose and insulin tolerance. IL-33 also induced accumulation of Th2 cells in adipose tissue and polarization of adipose tissue macrophages towards an M2 alternatively activated phenotype (CD206+), a lineage associated with protection against obesity-related metabolic events. Furthermore, mice lacking endogenous ST2 fed HFD had increased body weight and fat mass, impaired insulin secretion and glucose regulation compared to WT controls fed HFD. Conclusions In conclusion, IL-33 may play a protective role in the development of adipose tissue inflammation during obesity. PMID:20634488

  11. Adipose tissue stem cells in regenerative medicine

    PubMed Central

    Miana, Vanesa Verónica; González, Elio A Prieto

    2018-01-01

    Adipose tissue-derived stem cells (ADSCs) are mesenchymal cells with the capacity for self-renewal and multipotential differentiation. This multipotentiality allows them to become adipocytes, chondrocytes, myocytes, osteoblasts and neurocytes among other cell lineages. Stem cells and, in particular, adipose tissue-derived cells, play a key role in reconstructive or tissue engineering medicine as they have already proven effective in developing new treatments. The purpose of this work is to review the applications of ADSCs in various areas of regenerative medicine, as well as some of the risks associated with treatment with ADSCs in neoplastic disease. PMID:29662535

  12. Apoptosis inhibitor of macrophage (AIM) is required for obesity-associated recruitment of inflammatory macrophages into adipose tissue

    PubMed Central

    Kurokawa, Jun; Nagano, Hiromichi; Ohara, Osamu; Kubota, Naoto; Kadowaki, Takashi; Arai, Satoko; Miyazaki, Toru

    2011-01-01

    Infiltration of inflammatory macrophages into adipose tissues with the progression of obesity triggers insulin resistance and obesity-related metabolic diseases. We recently reported that macrophage-derived apoptosis inhibitor of macrophage (AIM) protein is increased in blood in line with obesity progression and is incorporated into adipocytes, thereby inducing lipolysis in adipose tissue. Here we show that such a response is required for the recruitment of adipose tissue macrophages. In vitro, AIM-dependent lipolysis induced an efflux of palmitic and stearic acids from 3T3-L1 adipocytes, thereby stimulating chemokine production in adipocytes via activation of toll-like receptor 4 (TLR4). In vivo administration of recombinant AIM to TLR4-deficient (TLR4−/−) mice resulted in induction of lipolysis without chemokine production in adipose tissues. Consistently, mRNA levels for the chemokines that affect macrophages were far lower in AIM-deficient (AIM−/−) than in wild-type (AIM+/+) obese adipose tissue. This reduction in chemokine production resulted in a marked prevention of inflammatory macrophage infiltration into adipose tissue in obese AIM−/− mice, although these mice showed more advanced obesity than AIM+/+ mice on a high-fat diet. Diminished macrophage infiltration resulted in decreased inflammation locally and systemically in obese AIM−/− mice, thereby protecting them from insulin resistance and glucose intolerance. These results indicate that the increase in blood AIM is a critical event for the initiation of macrophage recruitment into adipose tissue, which is followed by insulin resistance. Thus, AIM suppression might be therapeutically applicable for the prevention of obesity-related metabolic disorders. PMID:21730133

  13. [Role of chronic inflammation in adipose tissue in the pathophysiology of obesity].

    PubMed

    Suganami, Takayoshi; Ogawa, Yoshihiro

    2013-02-01

    Obesity may be viewed as a chronic low-grade inflammatory disease as well as a metabolic disease. Evidence has accumulated suggesting that chronic inflammation in adipose tissue leads to dramatic changes in number and cell type of stromal cells during the course of obesity, which is referred to as"adipose tissue remodeling". Among stromal cells, macrophages in obese adipose tissue are considered to be crucial for adipose tissue inflammation, which results in dysregulated adipocytokine production and ectopic fat accumulation. Understanding the molecular mechanism underlying adipose tissue inflammation would contribute to the identification of novel therapeutic strategies to prevent or treat obesity-induced metabolic derangements.

  14. Gene expression changes in subcutaneous adipose tissue due to Cushing's disease

    PubMed Central

    Hochberg, Irit; Harvey, Innocence; Tran, Quynh T; Stephenson, Erin J; Barkan, Ariel L; Saltiel, Alan R; Chandler, William F; Bridges, Dave

    2015-01-01

    Glucocorticoids have major effects on adipose tissue metabolism. To study tissue mRNA expression changes induced by chronic elevated endogenous glucocorticoids, we performed RNA sequencing on the subcutaneous adipose tissue from patients with Cushing's disease (n=5) compared to patients with nonfunctioning pituitary adenomas (n=11). We found a higher expression of transcripts involved in several metabolic pathways, including lipogenesis, proteolysis and glucose oxidation as well as a decreased expression of transcripts involved in inflammation and protein synthesis. To further study this in a model system, we subjected mice to dexamethasone treatment for 12 weeks and analyzed their inguinal (subcutaneous) fat pads, which led to similar findings. Additionally, mice treated with dexamethasone showed drastic decreases in lean body mass as well as increased fat mass, further supporting the human transcriptomic data. These data provide insight to transcriptional changes that may be responsible for the comorbidities associated with chronic elevations of glucocorticoids. PMID:26150553

  15. Maternal nutrition induces gene expression changes in fetal muscle and adipose tissues in sheep.

    PubMed

    Peñagaricano, Francisco; Wang, Xin; Rosa, Guilherme Jm; Radunz, Amy E; Khatib, Hasan

    2014-11-28

    Maternal nutrition during different stages of pregnancy can induce significant changes in the structure, physiology, and metabolism of the offspring. These changes could have important implications on food animal production especially if these perturbations impact muscle and adipose tissue development. Here, we evaluated the impact of different maternal isoenergetic diets, alfalfa haylage (HY; fiber), corn (CN; starch), and dried corn distillers grains (DG; fiber plus protein plus fat), on the transcriptome of fetal muscle and adipose tissues in sheep. Prepartum diets were associated with notable gene expression changes in fetal tissues. In longissimus dorsi muscle, a total of 224 and 823 genes showed differential expression (FDR ≤0.05) in fetuses derived from DG vs. CN and HY vs. CN maternal diets, respectively. Several of these significant genes affected myogenesis and muscle differentiation. In subcutaneous and perirenal adipose tissues, 745 and 208 genes were differentially expressed (FDR ≤0.05), respectively, between CN and DG diets. Many of these genes are involved in adipogenesis, lipogenesis, and adipose tissue development. Pathway analysis revealed that several GO terms and KEGG pathways were enriched (FDR ≤0.05) with differentially expressed genes associated with tissue and organ development, chromatin biology, and different metabolic processes. These findings provide evidence that maternal nutrition during pregnancy can alter the programming of fetal muscle and fat tissues in sheep. The ramifications of the observed gene expression changes, in terms of postnatal growth, body composition, and meat quality of the offspring, warrant future investigation.

  16. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling.

    PubMed

    Basse, Astrid L; Dixen, Karen; Yadav, Rachita; Tygesen, Malin P; Qvortrup, Klaus; Kristiansen, Karsten; Quistorff, Bjørn; Gupta, Ramneek; Wang, Jun; Hansen, Jacob B

    2015-03-19

    Large mammals are capable of thermoregulation shortly after birth due to the presence of brown adipose tissue (BAT). The majority of BAT disappears after birth and is replaced by white adipose tissue (WAT). We analyzed the postnatal transformation of adipose in sheep with a time course study of the perirenal adipose depot. We observed changes in tissue morphology, gene expression and metabolism within the first two weeks of postnatal life consistent with the expected transition from BAT to WAT. The transformation was characterized by massively decreased mitochondrial abundance and down-regulation of gene expression related to mitochondrial function and oxidative phosphorylation. Global gene expression profiling demonstrated that the time points grouped into three phases: a brown adipose phase, a transition phase and a white adipose phase. Between the brown adipose and the transition phase 170 genes were differentially expressed, and 717 genes were differentially expressed between the transition and the white adipose phase. Thirty-eight genes were shared among the two sets of differentially expressed genes. We identified a number of regulated transcription factors, including NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over time. Using global gene expression profiling of the postnatal BAT to WAT transformation in sheep, we provide novel insight into adipose tissue plasticity in a large mammal, including identification of novel transcriptional components linked to adipose tissue remodeling. Moreover, our data set provides a useful resource for further studies in adipose tissue plasticity.

  17. Uric Acid Secretion from Adipose Tissue and Its Increase in Obesity*

    PubMed Central

    Tsushima, Yu; Nishizawa, Hitoshi; Tochino, Yoshihiro; Nakatsuji, Hideaki; Sekimoto, Ryohei; Nagao, Hirofumi; Shirakura, Takashi; Kato, Kenta; Imaizumi, Keiichiro; Takahashi, Hiroyuki; Tamura, Mizuho; Maeda, Norikazu; Funahashi, Tohru; Shimomura, Iichiro

    2013-01-01

    Obesity is often accompanied by hyperuricemia. However, purine metabolism in various tissues, especially regarding uric acid production, has not been fully elucidated. Here we report, using mouse models, that adipose tissue could produce and secrete uric acid through xanthine oxidoreductase (XOR) and that the production was enhanced in obesity. Plasma uric acid was elevated in obese mice and attenuated by administration of the XOR inhibitor febuxostat. Adipose tissue was one of major organs that had abundant expression and activities of XOR, and adipose tissues in obese mice had higher XOR activities than those in control mice. 3T3-L1 and mouse primary mature adipocytes produced and secreted uric acid into culture medium. The secretion was inhibited by febuxostat in a dose-dependent manner or by gene knockdown of XOR. Surgical ischemia in adipose tissue increased local uric acid production and secretion via XOR, with a subsequent increase in circulating uric acid levels. Uric acid secretion from whole adipose tissue was increased in obese mice, and uric acid secretion from 3T3-L1 adipocytes was increased under hypoxia. Our results suggest that purine catabolism in adipose tissue could be enhanced in obesity. PMID:23913681

  18. [Construction of injectable tissue engineered adipose tissue with fibrin glue scaffold and human adipose-derived stem cells transfected by lentivirus vector expressing hepatocyte growth factor].

    PubMed

    Zhu, Yuanzheng; Yi, Yangyan; Yang, Shuifa; Zhang, Jing; Wu, Shu; Wang, Zhaohui

    2017-09-01

    To discuss the possibility of constructing injectable tissue engineered adipose tissue, and to provide a new approach for repairing soft tissue defects. Human adipose-derived stem cells (hADSCs) were extracted from the lipid part of human liposuction aspirate by enzymatic digestion and identified by morphological observation, flow cytometry, and adipogenic induction. The hADSCs underwent transfection by lentivirus vector expressing hepatocyte growth factor and green fluorescent protein (HGF-GFP-LVs) of different multiplicity of infection (MOI, 10, 30, 50, and 100), the transfection efficiency was calculated to determine the optimum MOI. The hADSCs transfected by HGF-GFP-LVs of optimal MOI and being adipogenic inducted were combined with injectable fibrin glue scaffold, and were injected subcutaneously into the right side of the low back of 10 T-cell deficiency BALB/c female nude mice (transfected group); non-HGF-GFP-LVs transfected hADSCs (being adipogenic inducted) combined with injectable fibrin glue scaffold were injected subcutaneously into the left side of the low back (untransfected group); and injectable fibrin glue scaffold were injected subcutaneously into the middle part of the neck (blank control group); 0.4 mL at each point. Twelve weeks later the mice were killed and the implants were taken out. Gross observation, wet weight measurement, HE staining, GFP fluorescence labeling, and immunofluorescence staining were performed to assess the in vivo adipogenic ability of the seed cells and the neovascularization of the grafts. The cultured cells were identified as hADSCs. Poor transfection efficiency was observed in MOI of 10 and 30, the transfection efficiency of MOI of 50 and 100 was more than 80%, so the optimum MOI was 50. Adipose tissue-like new-born tissues were found in the injection sites of the transfected and untransfected groups after 12 weeks of injection, and no new-born tissues was found in the blank control group. The wet-weight of new

  19. Adipose tissue engineering: state of the art, recent advances and innovative approaches.

    PubMed

    Tanzi, Maria Cristina; Farè, Silvia

    2009-09-01

    Adipose tissue is a highly specialized connective tissue found either in white or brown forms, the white form being the most abundant in adult humans. Loss or damage of white adipose tissue due to aging or pathological conditions needs reconstructive approaches. To date, two main strategies are being investigated for generating functional adipose tissue: autologous tissue/cell transplantation and adipose tissue engineering. Free-fat transplantation rarely achieves sufficient tissue augmentation owing to delayed neovascularization, with subsequent cell necrosis and graft volume shrinkage. Tissue engineering approaches represent, instead, a more suitable alternative for adipose tissue regeneration; they can be performed either with in situ or de novo adipogenesis. In situ adipogenesis or transplantation of encapsulated cells can be useful in healing small-volume defects, whereas restoration of large defects, where vascularization and a rapid volumetric gain are strict requirements, needs de novo strategies with 3D scaffold/filling matrix combinations. For adipose tissue engineering, the use of adult mesenchymal stem cells (both adipose- and bone marrow-derived stem cells) or of preadipocytes is preferred to the use of mature adipocytes, which have low expandability and poor ability for volume retention. This review intends to assemble and describe recent work on this topic, critically presenting successes obtained and drawbacks faced to date.

  20. Mechanically robust cryogels with injectability and bioprinting supportability for adipose tissue engineering.

    PubMed

    Qi, Dianjun; Wu, Shaohua; Kuss, Mitchell A; Shi, Wen; Chung, Soonkyu; Deegan, Paul T; Kamenskiy, Alexey; He, Yini; Duan, Bin

    2018-05-26

    Bioengineered adipose tissues have gained increased interest as a promising alternative to autologous tissue flaps and synthetic adipose fillers for soft tissue augmentation and defect reconstruction in clinic. Although many scaffolding materials and biofabrication methods have been investigated for adipose tissue engineering in the last decades, there are still challenges to recapitulate the appropriate adipose tissue microenvironment, maintain volume stability, and induce vascularization to achieve long-term function and integration. In the present research, we fabricated cryogels consisting of methacrylated gelatin, methacrylated hyaluronic acid, and 4arm poly(ethylene glycol) acrylate (PEG-4A) by using cryopolymerization. The cryogels were repeatedly injectable and stretchable, and the addition of PEG-4A improved the robustness and mechanical properties. The cryogels supported human adipose progenitor cell (HWA) and adipose derived mesenchymal stromal cell adhesion, proliferation, and adipogenic differentiation and maturation, regardless of the addition of PEG-4A. The HWA laden cryogels facilitated the co-culture of human umbilical vein endothelial cells (HUVEC) and capillary-like network formation, which in return also promoted adipogenesis. We further combined cryogels with 3D bioprinting to generate handleable adipose constructs with clinically relevant size. 3D bioprinting enabled the deposition of multiple bioinks onto the cryogels. The bioprinted flap-like constructs had an integrated structure without delamination and supported vascularization. Adipose tissue engineering is promising for reconstruction of soft tissue defects, and also challenging for restoring and maintaining soft tissue volume and shape, and achieving vascularization and integration. In this study, we fabricated cryogels with mechanical robustness, injectability, and stretchability by using cryopolymerization. The cryogels promoted cell adhesion, proliferation, and adipogenic

  1. Adipose tissue transcriptome changes during obesity development in female dogs.

    PubMed

    Grant, Ryan W; Vester Boler, Brittany M; Ridge, Tonya K; Graves, Thomas K; Swanson, Kelly S

    2011-03-29

    During the development of obesity, adipose tissue undergoes major expansion and remodeling, but the biological processes involved in this transition are not well understood. The objective of this study was to analyze global gene expression profiles of adipose tissue in dogs, fed a high-fat diet, during the transition from a lean to obese phenotype. Nine female beagles (4.09 ± 0.64 yr; 8.48 ± 0.35 kg) were randomized to ad libitum feeding or body weight maintenance. Subcutaneous adipose tissue biopsy, blood, and dual x-ray absorptiometry measurements were collected at 0, 4, 8, 12, and 24 wk of feeding. Serum was analyzed for glucose, insulin, fructosamine, triglycerides, free fatty acids, adiponectin, and leptin. Formalin-fixed adipose tissue was used for determination of adipocyte size. Adipose RNA samples were hybridized to Affymetrix Canine 2.0 microarrays. Statistical analysis, using repeated-measures ANOVA, showed ad libitum feeding increased (P < 0.05) body weight (0 wk, 8.36 ± 0.34 kg; 24 wk, 14.64 ± 0.34 kg), body fat mass (0 wk, 1.36 ± 0.24 kg; 24 wk, 6.52 ± 0.24 kg), adipocyte size (0 wk, 114.66 ± 17.38 μm(2); 24 wk, 320.97 ± 0.18.17 μm(2)), and leptin (0 wk, 0.8 ± 1.0 ng/ml; 24 wk, 12.9 ± 1.0 ng/ml). Microarrays displayed 1,665 differentially expressed genes in adipose tissue as weight increased. Alterations were seen in adipose tissue homeostatic processes including metabolism, oxidative stress, mitochondrial homeostasis, and extracellular matrix. Adipose transcriptome changes highlight the dynamic and adaptive response to ad libitum feeding and obesity development.

  2. Enhanced glycogen metabolism in adipose tissue decreases triglyceride mobilization

    PubMed Central

    Markan, Kathleen R.; Jurczak, Michael J.; Allison, Margaret B.; Ye, Honggang; Sutanto, Maria M.; Cohen, Ronald N.

    2010-01-01

    Adipose tissue is a primary site for lipid storage containing trace amounts of glycogen. However, refeeding after a prolonged partial fast produces a marked transient spike in adipose glycogen, which dissipates in coordination with the initiation of lipid resynthesis. To further study the potential interplay between glycogen and lipid metabolism in adipose tissue, the aP2-PTG transgenic mouse line was utilized since it contains a 100- to 400-fold elevation of adipocyte glycogen levels that are mobilized upon fasting. To determine the fate of the released glucose 1-phosphate, a series of metabolic measurements were made. Basal and isoproterenol-stimulated lactate production in vitro was significantly increased in adipose tissue from transgenic animals. In parallel, basal and isoproterenol-induced release of nonesterified fatty acids (NEFAs) was significantly reduced in transgenic adipose tissue vs. control. Interestingly, glycerol release was unchanged between the genotypes, suggesting that enhanced triglyceride resynthesis was occurring in the transgenic tissue. Qualitatively similar results for NEFA and glycerol levels between wild-type and transgenic animals were obtained in vivo during fasting. Additionally, the physiological upregulation of the phosphoenolpyruvate carboxykinase cytosolic isoform (PEPCK-C) expression in adipose upon fasting was significantly blunted in transgenic mice. No changes in whole body metabolism were detected through indirect calorimetry. Yet weight loss following a weight gain/loss protocol was significantly impeded in the transgenic animals, indicating a further impairment in triglyceride mobilization. Cumulatively, these results support the notion that the adipocyte possesses a set point for glycogen, which is altered in response to nutritional cues, enabling the coordination of adipose glycogen turnover with lipid metabolism. PMID:20424138

  3. Differential effect of subcutaneous abdominal and visceral adipose tissue on cardiometabolic risk.

    PubMed

    Sam, Susan

    2018-03-09

    Metabolic and cardiovascular diseases are increasing worldwide due to the rise in the obesity epidemic. The metabolic consequences of obesity vary by distribution of adipose tissue. Visceral and ectopic adipose accumulation are associated with adverse cardiometabolic consequences, while gluteal-femoral adipose accumulation are negatively associated with these adverse complications and subcutaneous abdominal adipose accumulation is more neutral in its associations. Gender, race and ethnic differences in adipose tissue distribution have been described and could account for the observed differences in risk for cardiometabolic disease. The mechanisms behind the differential impact of adipose tissue on cardiometabolic risk have started to be unraveled and include differences in adipocyte biology, inflammatory profile, connection to systemic circulation and most importantly the inability of the subcutaneous adipose tissue to expand in response to positive energy balance.

  4. Inverse association between brown adipose tissue activation and white adipose tissue accumulation in successfully treated pediatric malignancy1234

    PubMed Central

    Chalfant, James S; Smith, Michelle L; Hu, Houchun H; Dorey, Fred J; Goodarzian, Fariba; Fu, Cecilia H

    2012-01-01

    Background: Although the accumulation of white adipose tissue (WAT) is a risk factor for disease, brown adipose tissue (BAT) has been suggested to have a protective role against obesity. Objective: We studied whether changes in BAT were related to changes in the amounts of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in children treated for malignancy. Design: We examined the effect of BAT activity on weight, SAT, and VAT in 32 pediatric patients with cancer whose positron emission tomography–computed tomography (PET-CT) scans at diagnosis showed no BAT activity. Changes in weight, SAT, and VAT from diagnosis to remission for children with metabolically active BAT at disease-free follow-up (BAT+) were compared with those in children without visualized BAT when free of disease (BAT−). Results: Follow-up PET-CT studies (4.7 ± 2.4 mo later) after successful treatment of the cancer showed BAT+ in 19 patients but no active BAT (BAT−) in 13 patients. BAT+ patients, in comparison with BAT− patients, gained significantly less weight (3.3 ± 6.6% compared with 11.0 ± 11.6%; P = 0.02) and had significantly less SAT (18.2 ± 26.5% compared with 67.4 ± 71.7%; P = 0.01) and VAT (22.6 ± 33.5% compared with 131.6 ± 171.8%; P = 0.01) during treatment. Multiple regression analysis indicated that the inverse relations between BAT activation and measures of weight, SAT, and VAT persisted even after age, glucocorticoid treatment, and the season when the PET-CT scans were obtained were accounted for. Conclusion: The activation of BAT in pediatric patients undergoing treatment of malignancy is associated with significantly less adipose accumulation. This trial was registered at clinicaltrials.gov as NCT01517581. PMID:22456659

  5. Roles of Perivascular Adipose Tissue in the Pathogenesis of Atherosclerosis

    PubMed Central

    Tanaka, Kimie; Sata, Masataka

    2018-01-01

    Traditionally, it is believed that white adipose tissues serve as energy storage, heat insulation, and mechanical cushion, whereas non-shivering thermogenesis occurs in brown adipose tissue. Recent evidence revealed that adipose tissue secretes many types of cytokines, called as adipocytokines, which modulate glucose metabolism, lipid profile, appetite, fibrinolysis, blood pressure, and inflammation. Most of the arteries are surrounded by perivascular adipose tissue (PVAT). PVAT has been thought to be simply a structurally supportive tissue for vasculature. However, recent studies showed that PVAT influences vasodilation and vasocontraction, suggesting that PVAT regulates vascular tone and diameter. Adipocytokines secreted from PVAT appear to have direct access to the adjacent arterial wall by diffusion or via vasa vasorum. In fact, PVAT around atherosclerotic lesions and mechanically-injured arteries displayed inflammatory cytokine profiles, suggesting that PVAT functions to promote vascular lesion formation. Many clinical studies revealed that increased accumulation of epicardial adipose tissue (EAT), which surrounds coronary arteries, is associated with coronary artery disease. In this review article, we will summarize recent findings about potential roles of PVAT in the pathogenesis of atherosclerosis, particularly focusing on a series of basic and clinical studies from our laboratory. PMID:29487532

  6. Brown adipose tissue and lipid metabolism.

    PubMed

    Heeren, Joerg; Scheja, Ludger

    2018-06-01

    This article explores how the interplay between lipid metabolism and thermogenic adipose tissues enables proper physiological adaptation to cold environments in rodents and humans. Cold exposure triggers systemic changes in lipid metabolism, which increases fatty acid delivery to brown adipose tissue (BAT) by various routes. Next to fatty acids generated intracellularly by de-novo lipogenesis or by lipolysis at lipid droplets, brown adipocytes utilize fatty acids released by white adipose tissue (WAT) for adaptive thermogenesis. WAT-derived fatty acids are internalized directly by BAT, or indirectly after hepatic conversion to very low-density lipoproteins and acylcarnitines. In the postprandial state, chylomicrons hydrolyzed by lipoprotein lipase - activated specifically in thermogenic adipocytes - are the predominant fatty acid source. Cholesterol-enriched chylomicron remnants and HDL generated by intravascular lipolysis in BAT are cleared more rapidly by the liver, explaining the antiatherogenic effects of BAT activation. Notably, increased cholesterol flux and elevated hepatic synthesis of bile acids under cold exposure further promote BAT-dependent thermogenesis. Although pathways providing fatty acids for activated BAT have been identified, more research is needed to understand the integration of lipid metabolism in BAT, WAT and liver, and to determine the relevance of BAT for human energy metabolism.

  7. Expression of ceramide-metabolising enzymes in subcutaneous and intra-abdominal human adipose tissue

    PubMed Central

    2012-01-01

    Background Inflammation and increased ceramide concentrations characterise adipose tissue of obese women with high liver fat content compared to equally obese women with normal liver fat content. The present study characterises enzymes involved in ceramide metabolism in subcutaneous and intra-abdominal adipose tissue. Methods Pathways leading to increased ceramide concentrations in inflamed versus non-inflamed adipose tissue were investigated by quantifying expression levels of key enzymes involved in ceramide metabolism. Sphingomyelinases (sphingomyelin phosphodiesterases SMPD1-3) were investigated further using immunohistochemistry to establish their location within adipose tissue, and their mRNA expression levels were determined in subcutaneous and intra-abdominal adipose tissue from both non-obese and obese subject. Results Gene expression levels of sphingomyelinases, enzymes that hydrolyse sphingomyelin to ceramide, rather than enzymes involved in de novo ceramide synthesis, were higher in inflamed compared to non-inflamed adipose tissue of obese women (with high and normal liver fat contents respectively). Sphingomyelinases were localised to both macrophages and adipocytes, but also to blood vessels and to extracellular regions surrounding vessels within adipose tissue. Expression levels of SMPD3 mRNA correlated significantly with concentrations of different ceramides and sphingomyelins. In both non-obese and obese subjects SMPD3 mRNA levels were higher in the more inflamed intra-abdominal compared to the subcutaneous adipose tissue depot. Conclusions Generation of ceramides within adipose tissue as a result of sphingomyelinase action may contribute to inflammation in human adipose tissue. PMID:22974251

  8. Liver but not adipose tissue is responsive to the pattern of enteral feeding

    PubMed Central

    Otero, Yolanda F.; Lundblad, Tammy M.; Ford, Eric A.; House, Lawrence M.; McGuinness, Owen P.

    2014-01-01

    Abstract Nutritional support is an important aspect of medical care, providing calories to patients with compromised nutrient intake. Metabolism has a diurnal pattern, responding to the light cycle and food intake, which in turn can drive changes in liver and adipose tissue metabolism. In this study, we assessed the response of liver and white adipose tissue (WAT) to different feeding patterns under nutritional support (total enteral nutrition or TEN). Mice received continuous isocaloric TEN for 10 days or equal calories of chow once a day (Ch). TEN was given either at a constant (CN, same infusion rate during 24 h) or variable rate (VN, 80% of calories fed at night, 20% at day). Hepatic lipogenesis and carbohydrate‐responsive element‐binding protein (ChREBP) expression increased in parallel with the diurnal feeding pattern. Relative to Ch, both patterns of enteral feeding increased adiposity. This increase was not associated with enhanced lipogenic gene expression in WAT; moreover, lipogenesis was unaffected by the feeding pattern. Surprisingly, leptin and adiponectin expression increased. Moreover, nutritional support markedly increased hepatic and adipose FGF21 expression in CN and VN, despite being considered a fasting hormone. In summary, liver but not WAT, respond to the pattern of feeding. While hepatic lipid metabolism adapts to the pattern of nutrient availability, WAT does not. Moreover, sustained delivery of nutrients in an isocaloric diet can cause adiposity without the proinflammatory state observed in hypercaloric feeding. Thus, the liver but not adipose tissue is responsive to the pattern of feeding behavior. PMID:24744913

  9. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance.

    PubMed

    Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-Ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka

    2016-03-01

    Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9 (-/-) ) macrophages. Fat-fed Tlr9 (-/-) mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9 (-/-) mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography-determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance.

  10. Development of volume-stable adipose tissue constructs using polycaprolactone-based polyurethane scaffolds and fibrin hydrogels.

    PubMed

    Wittmann, Katharina; Storck, Katharina; Muhr, Christian; Mayer, Helena; Regn, Sybille; Staudenmaier, Rainer; Wiese, Hinrich; Maier, Gerhard; Bauer-Kreisel, Petra; Blunk, Torsten

    2016-10-01

    Adipose tissue engineering aims at the restoration of soft tissue defects and the correction of contour deformities. It is therefore crucial to provide functional adipose tissue implants with appropriate volume stability. Here, we investigate two different fibrin formulations, alone or in combination with biodegradable polyurethane (PU) scaffolds as additional support structures, with regard to their suitability to generate volume-stable adipose tissue constructs. Human adipose-derived stem cells (ASCs) were incorporated in a commercially available fibrin sealant as well as a stable fibrin hydrogel previously developed by our group. The composite constructs made from the commercially available fibrin and porous poly(ε-caprolactone)-based polyurethane scaffolds exhibited increased volume stability as compared to fibrin gels alone; however, only constructs using the stable fibrin gels completely maintained their size and weight for 21 days. Adipogenesis of ASCs was not impaired by the additional PU scaffold. After induction with a common hormonal cocktail, for constructs with either fibrin formulation, strong adipogenic differentiation of ASCs was observed after 21 days in vitro. Furthermore, upregulation of adipogenic marker genes was demonstrated at mRNA (PPARγ, C/EBPα, GLUT4 and aP2; qRT-PCR) and protein (leptin; ELISA) levels. Stable fibrin/PU constructs were further evaluated in a pilot in vivo study, resulting in areas of well-vascularized adipose tissue within the implants after only 5 weeks. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Proliferation and differentiation of adipose tissue in prolonged lean and obese critically ill patients.

    PubMed

    Goossens, Chloë; Vander Perre, Sarah; Van den Berghe, Greet; Langouche, Lies

    2017-12-01

    In prolonged non-obese critically ill patients, preservation of adipose tissue is prioritized over that of the skeletal muscle and coincides with increased adipogenesis. However, we recently demonstrated that in obese critically ill mice, this priority was switched. In the obese, the use of abundantly available adipose tissue-derived energy substrates was preferred and counteracted muscle wasting. These observations suggest that different processes are ongoing in adipose tissue of lean vs. overweight/obese critically ill patients. We hypothesize that to preserve adipose tissue mass during critical illness, adipogenesis is increased in prolonged lean critically ill patients, but not in overweight/obese critically ill patients, who enter the ICU with excess adipose tissue. To test this, we studied markers of adipogenesis in subcutaneous and visceral biopsies of matched lean (n = 24) and overweight/obese (n = 24) prolonged critically ill patients. Secondly, to further unravel the underlying mechanism of critical illness-induced adipogenesis, local production of eicosanoid PPARγ agonists was explored, as well as the adipogenic potential of serum from matched lean (n = 20) and overweight/obese (n = 20) critically ill patients. The number of small adipocytes, PPARγ protein, and CEBPB expression were equally upregulated (p ≤ 0.05) in subcutaneous and visceral adipose tissue biopsies of lean and overweight/obese prolonged critically ill patients. Gene expression of key enzymes involved in eicosanoid production was reduced (COX1, HPGDS, LPGDS, ALOX15, all p ≤ 0.05) or unaltered (COX2, ALOX5) during critical illness, irrespective of obesity. Gene expression of PLA2G2A and ALOX15B was upregulated in lean and overweight/obese patients (p ≤ 0.05), whereas their end products, the PPARγ-activating metabolites 15s-HETE and 9-HODE, were not increased in the adipose tissue. In vitro, serum of lean and overweight/obese prolonged critically ill

  12. Kupffer cells activation promoted binge drinking-induced fatty liver by activating lipolysis in white adipose tissues.

    PubMed

    Zhao, Yu-Ying; Yang, Rui; Xiao, Mo; Guan, Min-Jie; Zhao, Ning; Zeng, Tao

    2017-09-01

    Kupffer cells (KCs) have been suggested to play critical roles in chronic ethanol induced early liver injury, but the role of KCs in binge drinking-induced hepatic steatosis remains unclear. This study was designed to investigate the roles of KCs inhibitor (GdCl 3 ) and TNF-α antagonist (etanercept) on binge drinking-induced liver steatosis and to explore the underlying mechanisms. C57BL/6 mice were exposed to three doses of ethanol (6g/kg body weight) to mimic binge drinking-induced fatty liver. The results showed that both GdCl 3 and etanercept partially but significantly alleviated binge drinking-induced increase of hepatic triglyceride (TG) level, and reduced fat droplets accumulation in mice liver. GdCl 3 but not etanercept significantly blocked binge drinking-induced activation of KCs. However, neither GdCl 3 nor etanercept could affect binge drinking-induced decrease of PPAR-α, ACOX, FAS, ACC and SCD protein levels, or increase of the LC3 II/LC3 I ratio and p62 protein level. Interestingly, both GdCl 3 and etanercept significantly suppressed binge drinking-induced phosphorylation of HSL in epididymal adipose tissues. Results of in vitro studies with cultured epididymal adipose tissues showed that TNF-α could increase the phosphorylation of HSL in adipose tissues and upgrade the secretion of free fatty acid (FFA) in the culture medium. Taken together, KCs inhibitor and TNF-α antagonist could partially attenuate binge drinking-induced liver steatosis, which might be attributed to the suppression of mobilization of white adipose tissues. These results suggest that KCs activation may promote binge drinking-induced fatty liver by TNF-α mediated activation of lipolysis in white adipose tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Depot- and sex-specific effects of maternal obesity in offspring's adipose tissue.

    PubMed

    Lecoutre, Simon; Deracinois, Barbara; Laborie, Christine; Eberlé, Delphine; Guinez, Céline; Panchenko, Polina E; Lesage, Jean; Vieau, Didier; Junien, Claudine; Gabory, Anne; Breton, Christophe

    2016-07-01

    According to the Developmental Origin of Health and Disease (DOHaD) concept, alterations of nutrient supply in the fetus or neonate result in long-term programming of individual body weight (BW) setpoint. In particular, maternal obesity, excessive nutrition, and accelerated growth in neonates have been shown to sensitize offspring to obesity. The white adipose tissue may represent a prime target of metabolic programming induced by maternal obesity. In order to unravel the underlying mechanisms, we have developed a rat model of maternal obesity using a high-fat (HF) diet (containing 60% lipids) before and during gestation and lactation. At birth, newborns from obese dams (called HF) were normotrophs. However, HF neonates exhibited a rapid weight gain during lactation, a key period of adipose tissue development in rodents. In males, increased BW at weaning (+30%) persists until 3months of age. Nine-month-old HF male offspring was normoglycemic but showed mild glucose intolerance, hyperinsulinemia, and hypercorticosteronemia. Despite no difference in BW and energy intake, HF adult male offspring was predisposed to fat accumulation showing increased visceral (gonadal and perirenal) depots weights and hyperleptinemia. However, only perirenal adipose tissue depot exhibited marked adipocyte hypertrophy and hyperplasia with elevated lipogenic (i.e. sterol-regulated element binding protein 1 (Srebp1), fatty acid synthase (Fas), and leptin) and diminished adipogenic (i.e. peroxisome proliferator-activated receptor gamma (Pparγ), 11β-hydroxysteroid dehydrogenase type 1 (11β-Hds1)) mRNA levels. By contrast, very few metabolic variations were observed in HF female offspring. Thus, maternal obesity and accelerated growth during lactation program offspring for higher adiposity via transcriptional alterations of visceral adipose tissue in a depot- and sex-specific manner. © 2016 Society for Endocrinology.

  14. A FSI-based structural approach for micromechanical characterization of adipose tissue

    NASA Astrophysics Data System (ADS)

    Seyfi, Behzad; Sabzalinejad, Masoumeh; Haddad, Seyed M. H.; Fatouraee, Nasser; Samani, Abbas

    2017-03-01

    This paper presents a novel computational method for micromechanical modeling of adipose tissue. The model can be regarded as the first step for developing an inversion based framework that uses adipose stiffness data obtained from elastography to determine its microstructural alterations. Such information can be used as biomarkers for diseases associated with adipose tissue microstructure alteration (e.g. adipose tissue fibrosis and inflammation in obesity). In contrast to previous studies, the presented model follows a multiphase structure which accounts for both solid and fluid components as well as their mechanical interaction. In the model, the lipid droplets and extracellular matrix were considered as the fluid and solid phase, respectively. As such, the fluid-structure interaction (FSI) problem was solved using finite element method. In order to gain insight into how microstructural characteristics influence the macro scale mechanical properties of the adipose tissue, a compression mechanical test was simulated using the FSI model and its results were fitted to corresponding experimental data. The simulation procedure was performed for adipocytes in healthy conditions while the stiffness of extracellular matrix in normal adipose tissue was found by varying it systematically within an optimization process until the simulation response agreed with experimental data. Results obtained in this study are encouraging and show the capability of the proposed model to capture adipose tissue macroscale mechanical behavior based on its microstructure under health and different pathological conditions.

  15. Impaired adipogenesis in adipose tissue associated with hepatic lipid deposition induced by chronic inflammation in mice with chew diet.

    PubMed

    Yang, Shumin; Zhang, Wenlong; Zhen, Qianna; Gao, Rufei; Du, Tingting; Xiao, Xiaoqiu; Wang, Zhihong; Ge, Qian; Hu, Jinbo; Ye, Peng; Zhu, Qibo; Li, Qifu

    2015-09-15

    Chronic inflammation might be associated with hepatic lipid deposition independent of overnutrition. However, the mechanism is not fully understood. In this study, we investigate if impaired adipogenesis in adipose tissue is associated with hepatic lipid deposition induced by chronic inflammation in mice with chew diet. Casein injection in C57BL/6J mice was given every other day to induce chronic inflammation. All mice were sacrificed after 18weeks of injections. The serum, liver and adipose tissue were collected for analysis. Real-time polymerase chain reaction and western blotting were used to examine the gene and protein expressions of molecules involved in hepatic lipid metabolism and adipose adipogenesis. Casein injection elevated serum levels of insulin, free fatty acid (FFA) and proinflammatory factors. The gene expression of proinflammatory factors of adipose tissue and the liver also increased in the casein group as compared with the control group. Chronic inflammation up-regulated the hepatic expression of fatty acid translocase (CD36) and down-regulated microsomal triacylglycerol transfer protein (MTP), carnitine palmitoyltransferase 1a (CPT1a) and acyl-coenzyme a oxidase 1 (ACOX1). Meanwhile, chronic inflammation not only diminished the size of adipocytes, but also down-regulated the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding proteinα (C/EBPα), both indicating an impaired adipogenesis. Besides disturbed lipid metabolism in the liver per se, impaired adipogenesis in the adipose tissue might also be associated with hepatic lipid deposition induced by chronic inflammation in mice with chew diet. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Alamandine reduces leptin expression through the c-Src/p38 MAP kinase pathway in adipose tissue.

    PubMed

    Uchiyama, Tsuyoshi; Okajima, Fumikazu; Mogi, Chihiro; Tobo, Ayaka; Tomono, Shoichi; Sato, Koichi

    2017-01-01

    Obesity is associated with an increased risk of diabetes mellitus, hypertension, and renal dysfunction. Angiotensin 1-7 and alamandine are heptameric renin angiotensin system peptide hormones. Further, alamandine levels increase with renal dysfunction. In the cardiovascular system, angiotensin 1-7 and alamandine produce similar improvements and counterbalance angiotensin II in regulating vascular function. We aimed to determine whether the effect of alamandine on leptin expression and secretion in adipocytes was similar to that of angiotensin 1-7. We studied isolated peri-renal visceral adipose tissue and peri-renal isolated visceral adipocytes from male Wistar rats. Angiotensin II from 0.01 to 10nM had no effect on leptin expression. Angiotensin 1-7 (1 nM) increased leptin secretion and expression, whereas alamandine (1 nM) decreased leptin secretion and expression in adipose tissue and isolated adipocytes and reduced blood leptin levels in vivo. These effects were mediated by Gq, c-Src, p38 mitogen-activated protein, and IκB activation. Additionally, alamandine induced nitric oxide expression via inducible nitric oxidase synthase and plasminogen activator inhibitor 1 expression in adipose tissue and isolated adipocytes. Angiotensin 1-7 and alamandine produced opposing effects on leptin expression and secretion in adipose tissue. This result suggests that the action of Mas (angiotensin 1-7 receptor) and Mas-related G-protein coupled receptor D in adipocytes exhibited opposing actions similar to angiotensin II type 1 and type 2 receptors.

  17. Neural Stem Cells Derived Directly from Adipose Tissue.

    PubMed

    Petersen, Eric D; Zenchak, Jessica R; Lossia, Olivia V; Hochgeschwender, Ute

    2018-05-01

    Neural stem cells (NSCs) are characterized as self-renewing cell populations with the ability to differentiate into the multiple tissue types of the central nervous system. These cells can differentiate into mature neurons, astrocytes, and oligodendrocytes. This category of stem cells has been shown to be a promisingly effective treatment for neurodegenerative diseases and neuronal injury. Most treatment studies with NSCs in animal models use embryonic brain-derived NSCs. This approach presents both ethical and feasibility issues for translation to human patients. Adult tissue is a more practical source of stem cells for transplantation therapies in humans. Some adult tissues such as adipose tissue and bone marrow contain a wide variety of stem cell populations, some of which have been shown to be similar to embryonic stem cells, possessing many pluripotent properties. Of these stem cell populations, some are able to respond to neuronal growth factors and can be expanded in vitro, forming neurospheres analogous to cells harvested from embryonic brain tissue. In this study, we describe a method for the collection and culture of cells from adipose tissue that directly, without going through intermediates such as mesenchymal stem cells, results in a population of NSCs that are able to be expanded in vitro and be differentiated into functional neuronal cells. These adipose-derived NSCs display a similar phenotype to those directly derived from embryonic brain. When differentiated into neurons, cells derived from adipose tissue have spontaneous spiking activity with network characteristics similar to that of neuronal cultures.

  18. Metabolic inflammation in inflammatory bowel disease: crosstalk between adipose tissue and bowel.

    PubMed

    Gonçalves, Pedro; Magro, Fernando; Martel, Fátima

    2015-02-01

    Epidemiological studies show that both the incidence of inflammatory bowel disease (IBD) and the proportion of people with obesity and/or obesity-associated metabolic syndrome increased markedly in developed countries during the past half century. Obesity is also associated with the development of more active IBD and requirement for hospitalization and with a decrease in the time span between diagnosis and surgery. Patients with IBD, especially Crohn's disease, present fat-wrapping or "creeping fat," which corresponds to ectopic adipose tissue extending from the mesenteric attachment and covering the majority of the small and large intestinal surface. Mesenteric adipose tissue in patients with IBD presents several morphological and functional alterations, e.g., it is more infiltrated with immune cells such as macrophages and T cells. All these lines of evidence clearly show an association between obesity, adipose tissue, and functional bowel disorders. In this review, we will show that the mesenteric adipose tissue and creeping fat are not innocent by standers but actively contribute to the intestinal and systemic inflammatory responses in patients with IBD. More specifically, we will review evidence showing that adipose tissue in IBD is associated with major alterations in the secretion of cytokines and adipokines involved in inflammatory process, in adipose tissue mesenchymal stem cells and adipogenesis, and in the interaction between adipose tissue and other intestinal components (immune, lymphatic, neuroendocrine, and intestinal epithelial systems). Collectively, these studies underline the importance of adipose tissue for the identification of novel therapeutic approaches for IBD.

  19. Acute Hypercortisolemia Exerts Depot-Specific Effects on Abdominal and Femoral Adipose Tissue Function

    PubMed Central

    O’Reilly, Michael W.; Bujalska, Iwona J.; Tomlinson, Jeremy W.; Arlt, Wiebke

    2017-01-01

    Context: Glucocorticoids have pleiotropic metabolic functions, and acute glucocorticoid excess affects fatty acid metabolism, increasing systemic lipolysis. Whether glucocorticoids exert adipose tissue depot-specific effects remains unclear. Objective: To provide an in vivo assessment of femoral and abdominal adipose tissue responses to acute glucocorticoid administration. Design and Outcome Measures: Nine healthy male volunteers were studied on two occasions, after a hydrocortisone infusion (0.2 mg/kg/min for 14 hours) and a saline infusion, respectively, given in randomized double-blind order. The subjects were studied in the fasting state and after a 75-g glucose drink with an in vivo assessment of femoral adipose tissue blood flow (ATBF) using radioactive xenon washout and of lipolysis and glucose uptake using the arteriovenous difference technique. In a separate study (same infusion design), eight additional healthy male subjects underwent assessment of fasting abdominal ATBF and lipolysis only. Lipolysis was assessed as the net release of nonesterified fatty acids (NEFAs) from femoral and abdominal subcutaneous adipose tissue. Results: Acute hypercortisolemia significantly increased basal and postprandial ATBF in femoral adipose tissue, but the femoral net NEFA release did not change. In abdominal adipose tissue, hypercortisolemia induced substantial increases in basal ATBF and NEFA release. Conclusions: Acute hypercortisolemia induces differential lipolysis and ATBF responses in abdominal and femoral adipose tissue, suggesting depot-specific glucocorticoid effects. Abdominal, but not femoral, adipose tissue contributes to the hypercortisolemia-induced systemic NEFA increase, with likely contributions from other adipose tissue sources and intravascular triglyceride hydrolysis. PMID:28323916

  20. Adipose tissue content and distribution in children and adolescents with bronchial asthma.

    PubMed

    Umławska, Wioleta

    2015-02-01

    The excess of adipose tissue and the pattern of adipose tissue distribution in the body seem to play an important role in the complicated dependencies between obesity and risk of developing asthma. The aim of the present study was to determine nutritional status in children and adolescents with bronchial asthma with special emphasis on adipose tissue distribution evaluated on the basis of skin-fold thicknesses, and to determine the relationships between patterns of adipose tissue distribution and the course of the disease. Anthropometric data on height, weight, circumferences and skin-fold thicknesses were extracted from the medical histories of 261 children diagnosed with asthma bronchitis. Values for children with asthma were compared to Polish national growth reference charts. Distribution of subcutaneous adipose tissue was evaluated using principal components analysis (PCA). Multivariate linear regression analyses tested the effect of three factors on subcutaneous adipose tissue distribution: type of asthma, the severity of the disease and the duration of the disease. Mean body height in the children examined in this study was lower than in their healthy peers. Mean BMI and skin-fold thicknesses were significantly higher and lean body mass was lower in the study group. Excess body fat was noted, especially in girls. Adipose tissue was preferentially deposited in the trunk in girls with severe asthma, as well as in those who had been suffering from asthma for a longer time. The type of asthma, atopic or non-atopic, had no observable effect on subcutaneous adipose tissue distribution in children examined. The data suggest that long-treated subjects and those with severe bronchial asthma accumulate more adipose tissue on the trunk. It is important to regularly monitor nutritional status in children with asthma, especially in those receiving high doses of systemic or inhaled glucocorticosteroids, and long-term treatment as well. Copyright © 2014 Elsevier Ltd. All

  1. Acerola (Malpighia emarginata DC.) juice intake protects against alterations to proteins involved in inflammatory and lipolysis pathways in the adipose tissue of obese mice fed a cafeteria diet

    PubMed Central

    2014-01-01

    Background Obesity has been studied as a metabolic and an inflammatory disease and is characterized by increases in the production of pro-inflammatory adipokines in the adipose tissue. To elucidate the effects of natural dietary components on the inflammatory and metabolic consequences of obesity, we examined the effects of unripe, ripe and industrial acerola juice (Malpighia emarginata DC.) on the relevant inflammatory and lipolysis proteins in the adipose tissue of mice with cafeteria diet-induced obesity. Materials/methods Two groups of male Swiss mice were fed on a standard diet (STA) or a cafeteria diet (CAF) for 13 weeks. Afterwards, the CAF-fed animals were divided into five subgroups, each of which received a different supplement for one further month (water, unripe acerola juice, ripe acerola juice, industrial acerola juice, or vitamin C) by gavage. Enzyme-linked immunosorbent assays, Western blotting, a colorimetric method and histology were utilized to assess the observed data. Results The CAF water (control obese) group showed a significant increase in their adiposity indices and triacylglycerol levels, in addition to a reduced IL-10/TNF-α ratio in the adipose tissue, compared with the control lean group. In contrast, acerola juice and Vitamin C intake ameliorated the weight gain, reducing the TAG levels and increasing the IL-10/TNF-α ratio in adipose tissue. In addition, acerola juice intake led to reductions both in the level of phosphorylated JNK and to increases in the phosphorylation of IκBα and HSLser660 in adipose tissue. Conclusions Taken together, these results suggest that acerola juice reduces low-grade inflammation and ameliorates obesity-associated defects in the lipolytic processes. PMID:24495336

  2. Acerola (Malpighia emarginata DC.) juice intake protects against alterations to proteins involved in inflammatory and lipolysis pathways in the adipose tissue of obese mice fed a cafeteria diet.

    PubMed

    Dias, Fernando Milanez; Leffa, Daniela Dimer; Daumann, Francine; Marques, Schérolin de Oliveira; Luciano, Thais F; Possato, Jonathan Correa; de Santana, Aline Alves; Neves, Rodrigo Xavier; Rosa, José Cesar; Oyama, Lila Missae; Rodrigues, Bruno; de Andrade, Vanessa Moraes; de Souza, Cláudio Teodoro; de Lira, Fabio Santos

    2014-02-04

    Obesity has been studied as a metabolic and an inflammatory disease and is characterized by increases in the production of pro-inflammatory adipokines in the adipose tissue.To elucidate the effects of natural dietary components on the inflammatory and metabolic consequences of obesity, we examined the effects of unripe, ripe and industrial acerola juice (Malpighia emarginata DC.) on the relevant inflammatory and lipolysis proteins in the adipose tissue of mice with cafeteria diet-induced obesity. Two groups of male Swiss mice were fed on a standard diet (STA) or a cafeteria diet (CAF) for 13 weeks. Afterwards, the CAF-fed animals were divided into five subgroups, each of which received a different supplement for one further month (water, unripe acerola juice, ripe acerola juice, industrial acerola juice, or vitamin C) by gavage. Enzyme-linked immunosorbent assays, Western blotting, a colorimetric method and histology were utilized to assess the observed data. The CAF water (control obese) group showed a significant increase in their adiposity indices and triacylglycerol levels, in addition to a reduced IL-10/TNF-α ratio in the adipose tissue, compared with the control lean group. In contrast, acerola juice and Vitamin C intake ameliorated the weight gain, reducing the TAG levels and increasing the IL-10/TNF-α ratio in adipose tissue. In addition, acerola juice intake led to reductions both in the level of phosphorylated JNK and to increases in the phosphorylation of IκBα and HSLser660 in adipose tissue. Taken together, these results suggest that acerola juice reduces low-grade inflammation and ameliorates obesity-associated defects in the lipolytic processes.

  3. Flow cytometry on the stromal-vascular fraction of white adipose tissue.

    PubMed

    Brake, Danett K; Smith, C Wayne

    2008-01-01

    Adipose tissue contains cell types other than adipocytes that may contribute to complications linked to obesity. For example, macrophages have been shown to infiltrate adipose tissue in response to a high-fat diet. Isolation of the stromal-vascular fraction of adipose tissue allows one to use flow cytometry to analyze cell surface markers on leukocytes. Here, we present a technical approach to identify subsets of leukocytes that differentially express cell surface markers.

  4. Adipose tissue and inflammatory bowel disease pathogenesis.

    PubMed

    Fink, Christopher; Karagiannides, Iordanes; Bakirtzi, Kyriaki; Pothoulakis, Charalabos

    2012-08-01

    Creeping fat has long been recognized as an indicator of Crohn's disease (CD) activity. Although most patients with CD have normal or low body mass index (BMI), the ratio of intraabdominal fat to total abdominal fat is far greater than that of controls. The obesity epidemic has instructed us on the inflammatory nature of hypertrophic adipose tissue and similarities between mesenteric depots in obese and CD patients can be drawn. However, several important physiological differences exist between these two depots as well. While the molecular basis of the crosstalk between mesenteric adipose and the inflamed intestine in CD is largely unknown, novel evidence implicates neuropeptides along with adipocyte-derived paracrine mediators (adipokines) as potential targets for future investigations and highlight adipose tissue physiology as a potential important determinant in the course of IBD. Copyright © 2012 Crohn's & Colitis Foundation of America, Inc.

  5. Dietary cholesterol worsens adipose tissue macrophage accumulation and atherosclerosis in obese LDL receptor-deficient mice

    PubMed Central

    Subramanian, Savitha; Han, Chang Yeop; Chiba, Tsuyoshi; McMillen, Timothy S.; Wang, Shari A.; Haw, Antonio; Kirk, Elizabeth A.; O’Brien, Kevin D.; Chait, Alan

    2009-01-01

    Objective Chronic systemic inflammation accompanies obesity and predicts development of cardiovascular disease. Dietary cholesterol has been shown to increase inflammation and atherosclerosis in LDL receptor-deficient (LDLR-/-) mice. This study was undertaken to determine whether dietary cholesterol and obesity have additive effects on inflammation and atherosclerosis. Methods and Results LDLR-/- mice were fed chow, high fat, high carbohydrate (diabetogenic) diet without (DD) or with added cholesterol (DDC) for 24 weeks. Effects on adipose tissue, inflammatory markers and atherosclerosis were studied. Despite similar weight gain between DD and DDC groups, addition of dietary cholesterol increased insulin resistance relative to DD. Adipocyte hypertrophy, macrophage accumulation and local inflammation were observed in intra-abdominal adipose tissue in DD and DDC, but were significantly higher in the DDC group. Circulating levels of the inflammatory protein serum amyloid A (SAA) were 4.4-fold higher in DD animals and 15-fold higher in DDC animals than controls, suggesting chronic systemic inflammation. Hepatic SAA mRNA levels were similarly elevated. Atherosclerosis was increased in the DD-fed animals and further increased in the DDC group. Conclusions Obesity-induced macrophage accumulation in adipose tissue is exacerbated by dietary cholesterol. These local inflammatory changes in adipose tissue are associated with insulin resistance, systemic inflammation and increased atherosclerosis in this mouse model. PMID:18239153

  6. Spontaneous hypertension occurs with adipose tissue dysfunction in perilipin-1 null mice.

    PubMed

    Zou, Liangqiang; Wang, Weiyi; Liu, Shangxin; Zhao, Xiaojing; Lyv, Ying; Du, Congkuo; Su, Xueying; Geng, Bin; Xu, Guoheng

    2016-02-01

    Perilipin-1 (Plin1) coats lipid droplets exclusively in adipocytes and regulates two principle functions of adipose tissue, triglyceride storage and hydrolysis, which are disrupted upon Plin1 deficiency. In the present study, we investigated the alterations in systemic metabolites and hormones, vascular function and adipose function in spontaneous hypertensive mice lacking perilipin-1 (Plin1-/-). Plin1-/- mice developed spontaneous hypertension without obvious alterations in systemic metabolites and hormones. Plin1 expressed only in adipose cells but not in vascular cells, so its ablation would have no direct effect in situ on blood vessels. Instead, Plin1-/- mice showed dysfunctions of perivascular adipose tissue (PVAT), a fat depot that anatomically surrounds systemic arteries and has an anticontractile effect. In Plin1-/- mice, aortic and mesenteric PVAT were reduced in mass and adipocyte derived relaxing factor secretion, but increased in basal lipolysis, angiotensin II secretion, macrophage infiltration and oxidative stress. Such multiple culprits impaired the anticontractile effect of PVAT to promote vasoconstriction of aortic and mesenteric arteries of Plin1-/- mice. Furthermore, arterial vessels of Plin1-/- mice showed increasing angiotensin II receptor type 1, monocyte chemotactic protein-1 and interlukin-6 expression, structural damage of endothelial and smooth muscle cells, along with impaired endothelium-dependent relaxation. Hypertension in Plin1-/- mice might occur as a deleterious consequence of PVAT dysfunction. This finding provides the direct evidence that links dysfunctional PVAT to vascular dysfunction and hypertension, particularly in pathophysiological states. This hypertensive mouse model might mimic and explain the hypertension occurring in patients with adipose tissue dysfunction, particularly with Plin1 mutations. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Fasting rapidly increases fatty acid oxidation in white adipose tissue of young broiler chickens.

    PubMed

    Torchon, Emmanuelle; Ray, Rodney; Hulver, Matthew W; McMillan, Ryan P; Voy, Brynn H

    2017-01-02

    Upregulating the fatty acid oxidation capacity of white adipose tissue in mice protects against diet-induced obesity, inflammation and insulin resistance. Part of this capacity results from induction of brown-like adipocytes within classical white depots, making it difficult to determine the oxidative contribution of the more abundant white adipocytes. Avian genomes lack a gene for uncoupling protein 1 and are devoid of brown adipose cells, making them a useful model in which to study white adipocyte metabolism in vivo. We recently reported that a brief (5 hour) period of fasting significantly upregulated many genes involved in mitochondrial and peroxisomal fatty acid oxidation pathways in white adipose tissue of young broiler chickens. The objective of this study was to determine if the effects on gene expression manifested in increased rates of fatty acid oxidation. Abdominal adipose tissue was collected from 21 day-old broiler chicks that were fasted for 3, 5 or 7 hours or fed ad libitum (controls). Fatty acid oxidation was determined by measuring and summing 14 CO 2 production and 14 C-labeled acid-soluble metabolites from the oxidation of [1- 14 C] palmitic acid. Fasting induced a progressive increase in complete fatty acid oxidation and citrate synthase activity relative to controls. These results confirm that fatty acid oxidation in white adipose tissue is dynamically controlled by nutritional status. Identifying the underlying mechanism may provide new therapeutic targets through which to increase fatty acid oxidation in situ and protect against the detrimental effects of excess free fatty acids on adipocyte insulin sensitivity.

  8. Role of adipose tissue-derived stem cells in the progression of renal disease.

    PubMed

    Donizetti-Oliveira, Cassiano; Semedo, Patricia; Burgos-Silva, Marina; Cenedeze, Marco Antonio; Malheiros, Denise Maria Avancini Costa; Reis, Marlene Antônia Dos; Pacheco-Silva, Alvaro; Câmara, Niels Olsen Saraiva

    2011-03-01

    To analyze the role of adipose tissue-derived stem cells in reducing the progression of renal fibrosis. adipose tissue-derived stem cells were isolated from C57Bl/6 mice and characterized by cytometry and differentiation. Renal fibrosis was established after unilateral clamping of the renal pedicle for 1 hour. Four hours after reperfusion, 2.105 adipose tissue-derived stem cells were administered intraperitoneally and the animals were followed for 24 hours during 6 weeks. In another experimental group, 2.105adipose tissue-derived stem cells were administered only after 6 weeks of reperfusion, and they were euthanized and studied 4 weeks later. Twenty-four hours after reperfusion, the animals treated with adipose tissue-derived stem cells displayed reduced renal and tubular dysfunction and an increase of the regenerative process. Renal expression of IL-6 and TNF mRNA were decreased in the animals treated with adipose tissue-derived stem cells, while the levels of IL-4, IL-10, and HO-1 were increased, despite the fact that adipose tissue-derived stem cells were not observed in the kidneys via SRY analysis. In 6 weeks, the kidneys of non-treated animals decreased in size, and the kidneys of the animals treated with adipose tissue-derived stem cells remained at normal size and display less deposition of type 1 collagen and FSP-1. The renal protection observed in animals treated with adipose tissue-derived stem cells was followed by a drop in serum levels of TNF-α, KC, RANTES, and IL-1a. Treatment with adipose tissue-derived stem cells after 6 weeks, when the animals already displayed established fibrosis, demonstrated an improvement in functional parameters and less fibrosis analyzed by Picrosirius stain, as well as a reduction of the expression of type 1 collagen and vimentin mRNA. Treatment with adipose tissue-derived stem cells may deter the progression of renal fibrosis by modulation of the early inflammatory response, likely via reduction of the epithelial

  9. Adipose tissue redistribution caused by an early consumption of a high sucrose diet in a rat model.

    PubMed

    Castellanos Jankiewicz, Ashley Kate; Rodríguez Peredo, Sofía Montserrat; Cardoso Saldaña, Guillermo; Díaz Díaz, Eulises; Tejero Barrera, María Elizabeth; del Bosque Plata, Laura; Carbó Zabala, Roxana

    2015-06-01

    Obesity is a major public health problem worldwide. The quantity and site of accumulation of adipose tissue is of great importance for the physiopathology of this disease. The aim of this study was to assess the effect of a high carbohydrate diet on adipose tissue distribution. Male Wistar rats, control (CONT) and high sucrose diet (HSD; 30% sucrose in their drinking water), were monitored during 24 weeks and total energy and macronutrient intake were estimated by measuring daily average consumption. A bioelectrical impedance procedure was performed at 22 weeks of treatment to assess body compartments and systolic arterial blood pressure was measured. Serum was obtained and retroperitoneal adipose tissue was collected and weighed. HSD ingested less pellets and beverage, consuming less lipids and proteins than CONT, but the same amount of carbohydrates. Retroperitoneal adipose tissue was more abundant in HSD. Both groups were normoglycemic; triglycerides, adiponectin and leptin levels were higher, while total cholesterol and HDL-cholesterol were lower in HSD; insulin, HOMA index and systolic blood pressure had a tendency of being higher in HSD. This model presents dyslipidemia and a strong tendency for insulin resistance and hypertension. Even though there was no difference in body compartments between groups, retroperitoneal adipose tissue was significantly increased in HSD. This suggests that a rearrangement of adipose tissue distribution towards the abdominal cavity takes place as a result of chronic high sucrose consumption, which contributes to a higher risk of suffering from metabolic and chronic degenerative diseases. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  10. Novel Role of Endogenous Catalase in Macrophage Polarization in Adipose Tissue.

    PubMed

    Park, Ye Seul; Uddin, Md Jamal; Piao, Lingjuan; Hwang, Inah; Lee, Jung Hwa; Ha, Hunjoo

    2016-01-01

    Macrophages are important components of adipose tissue inflammation, which results in metabolic diseases such as insulin resistance. Notably, obesity induces a proinflammatory phenotypic switch in adipose tissue macrophages, and oxidative stress facilitates this switch. Thus, we examined the role of endogenous catalase, a key regulator of oxidative stress, in the activity of adipose tissue macrophages in obese mice. Catalase knockout (CKO) exacerbated insulin resistance, amplified oxidative stress, and accelerated macrophage infiltration into epididymal white adipose tissue in mice on normal or high-fat diet. Interestingly, catalase deficiency also enhanced classical macrophage activation (M1) and inflammation but suppressed alternative activation (M2) regardless of diet. Similarly, pharmacological inhibition of catalase activity using 3-aminotriazole induced the same phenotypic switch and inflammatory response in RAW264.7 macrophages. Finally, the same phenotypic switch and inflammatory responses were observed in primary bone marrow-derived macrophages from CKO mice. Taken together, the data indicate that endogenous catalase regulates the polarization of adipose tissue macrophages and thereby inhibits inflammation and insulin resistance.

  11. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone

    PubMed Central

    Wilson-Fritch, Leanne; Nicoloro, Sarah; Chouinard, My; Lazar, Mitchell A.; Chui, Patricia C.; Leszyk, John; Straubhaar, Juerg; Czech, Michael P.; Corvera, Silvia

    2004-01-01

    Adipose tissue plays a central role in the control of energy homeostasis through the storage and turnover of triglycerides and through the secretion of factors that affect satiety and fuel utilization. Agents that enhance insulin sensitivity, such as rosiglitazone, appear to exert their therapeutic effect through adipose tissue, but the precise mechanisms of their actions are unclear. Rosiglitazone changes the morphological features and protein profiles of mitochondria in 3T3-L1 adipocytes. To examine the relevance of these effects in vivo, we studied white adipocytes from ob/ob mice during the development of obesity and after treatment with rosiglitazone. The levels of approximately 50% of gene transcripts encoding mitochondrial proteins were decreased with the onset of obesity. About half of those genes were upregulated after treatment with rosiglitazone, and this was accompanied by an increase in mitochondrial mass and changes in mitochondrial structure. Functionally, adipocytes from rosiglitazone-treated mice displayed markedly enhanced oxygen consumption and significantly increased palmitate oxidation. These data reveal mitochondrial remodeling and increased energy expenditure in white fat in response to rosiglitazone treatment in vivo and suggest that enhanced lipid utilization in this tissue may affect whole-body energy homeostasis and insulin sensitivity. PMID:15520860

  12. Plasticity of adipose tissue in response to fasting and refeeding in male mice.

    PubMed

    Tang, Hao-Neng; Tang, Chen-Yi; Man, Xiao-Fei; Tan, Shu-Wen; Guo, Yue; Tang, Jun; Zhou, Ci-La; Zhou, Hou-De

    2017-01-01

    Fasting is the most widely prescribed and self-imposed strategy for treating excessive weight gain and obesity, and has been shown to exert a number of beneficial effects. The aim of the present study was to determine the exact role of fasting and subsequent refeeding on fat distribution in mice. C57/BL6 mice fasted for 24 to 72 h and were then subjected to refeeding for 72 h. At 24, 48 and 72 h of fasting, and 12, 24, 48 and 72 h of refeeding, the mice were sacrificed, and serum and various adipose tissues were collected. Serum biochemical parameters, adipose tissue masses and histomorphological analysis of different depots were detected. MRNA was isolated from various adipose tissues, and the expressions of thermogenesis, visceral signature and lipid metabolism-related genes were examined. The phenotypes of adipose tissues between juvenile and adult mice subjected to fasting and refeeding were also compared. Fasting preferentially consumed mesenteric fat mass and decreased the cell size of mesenteric depots; however, refeeding recovered the mass and morphology of inguinal adipose tissues preferentially compared with visceral depots. Thermogenesis-related gene expression in the inguinal WAT and interscapular BAT were suppressed. Mitochondrial biogenesis was affected by fasting in a depot-specific manner. Furthermore, a short period of fasting led to an increase in visceral signature genes ( Wt1, Tcf21 ) in subcutaneous adipose tissue, while the expression of these genes decreased sharply as the fasting time increased. Additionally, lipogenesis-related markers were enhanced to a greater extent greater in subcutaneous depots compared with those in visceral adipose tissues by refeeding. Although similar phenotypic changes in adipose tissue were observed between juvenile mice and adult mice subjected to fasting and refeeding, the alterations appeared earlier and more sensitively in juvenile mice. Fasting preferentially consumes lipids in visceral adipose tissues

  13. Myocardial regeneration potential of adipose tissue-derived stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xiaowen, E-mail: baixw01@yahoo.com; Alt, Eckhard, E-mail: ealt@mdanderson.org

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derivedmore » stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and

  14. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice

    PubMed Central

    Yang, Hao; Wang, Shu Pei; Mitchell, Grant A.

    2017-01-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency. PMID:29232702

  15. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice.

    PubMed

    Xia, Bo; Cai, Guo He; Yang, Hao; Wang, Shu Pei; Mitchell, Grant A; Wu, Jiang Wei

    2017-12-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency.

  16. Adipose tissue NAD+ biology in obesity and insulin resistance: From mechanism to therapy.

    PubMed

    Yamaguchi, Shintaro; Yoshino, Jun

    2017-05-01

    Nicotinamide adenine dinucleotide (NAD + ) biosynthetic pathway, mediated by nicotinamide phosphoribosyltransferase (NAMPT), a key NAD + biosynthetic enzyme, plays a pivotal role in controlling many biological processes, such as metabolism, circadian rhythm, inflammation, and aging. Over the past decade, NAMPT-mediated NAD + biosynthesis, together with its key downstream mediator, namely the NAD + -dependent protein deacetylase SIRT1, has been demonstrated to regulate glucose and lipid metabolism in a tissue-dependent manner. These discoveries have provided novel mechanistic and therapeutic insights into obesity and its metabolic complications, such as insulin resistance, an important risk factor for developing type 2 diabetes and cardiovascular disease. This review will focus on the importance of adipose tissue NAMPT-mediated NAD + biosynthesis and SIRT1 in the pathophysiology of obesity and insulin resistance. We will also critically explore translational and clinical aspects of adipose tissue NAD + biology. © 2017 WILEY Periodicals, Inc.

  17. Abalation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues

    USDA-ARS?s Scientific Manuscript database

    Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show ...

  18. Surgical reduction of adipose tissue in the male Sprague-Dawley rat.

    PubMed

    Kral, J G

    1976-10-01

    The lipostatic theory of regulation of adipose tissue mass was tested by a method for surgical reduction (adipectomy) of 24% of the total body fat of nonobese adult Sprague-Dawley rats, as judged from carcass analyses. The reduction persisted during an observation period of 12 wk without any evidence of altered food intake, weight gain, or compensatory hypertrophy or hyperplasia of adipose tissue compared with sham-operated controls. No changes were found in serum free fatty acids, glycerol, triglycerides, cholesterol, or insulin between adipectomized and control animals, implying an intact quantitative function of the remaining adipose tissue. It is concluded that the size of the adipocytes rather than the number is important for a presumed lipostatic regulation of adipose tissue mass in the adult male Sprague-Dawley rat.

  19. Cell supermarket: Adipose tissue as a source of stem cells

    USDA-ARS?s Scientific Manuscript database

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  20. Complete nucleotide and derived amino acid sequence of cDNA encoding the mitochondrial uncoupling protein of rat brown adipose tissue: lack of a mitochondrial targeting presequence.

    PubMed Central

    Ridley, R G; Patel, H V; Gerber, G E; Morton, R C; Freeman, K B

    1986-01-01

    A cDNA clone spanning the entire amino acid sequence of the nuclear-encoded uncoupling protein of rat brown adipose tissue mitochondria has been isolated and sequenced. With the exception of the N-terminal methionine the deduced N-terminus of the newly synthesized uncoupling protein is identical to the N-terminal 30 amino acids of the native uncoupling protein as determined by protein sequencing. This proves that the protein contains no N-terminal mitochondrial targeting prepiece and that a targeting region must reside within the amino acid sequence of the mature protein. Images PMID:3012461

  1. Sex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease.

    PubMed

    Lee, Yun-Hee; Kim, Sou Hyun; Kim, Sang-Nam; Kwon, Hyun-Jung; Kim, Jeong-Dong; Oh, Ji Youn; Jung, Young-Suk

    2016-07-26

    Higher susceptibility to metabolic disease in male exemplifies the importance of sexual dimorphism in pathogenesis. We hypothesized that the higher incidence of non-alcoholic fatty liver disease in males involves sex-specific metabolic interactions between liver and adipose tissue. In the present study, we used a methionine-choline deficient (MCD) diet-induced fatty liver mouse model to investigate sex differences in the metabolic response of the liver and adipose tissue. After 2 weeks on an MCD-diet, fatty liver was induced in a sex-specific manner, affecting male mice more severely than females. The MCD-diet increased lipolytic enzymes in the gonadal white adipose tissue (gWAT) of male mice, whereas it increased expression of uncoupling protein 1 and other brown adipocyte markers in the gWAT of female mice. Moreover, gWAT from female mice demonstrated higher levels of oxygen consumption and mitochondrial content compared to gWAT from male mice. FGF21 expression was increased in liver tissue by the MCD diet, and the degree of upregulation was significantly higher in the livers of female mice. The endocrine effect of FGF21 was responsible, in part, for the sex-specific browning of gonadal white adipose tissue. Collectively, these data demonstrated that distinctively female-specific browning of white adipose tissue aids in protecting female mice against MCD diet-induced fatty liver disease.

  2. Sex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease

    PubMed Central

    Lee, Yun-Hee; Kim, Sou Hyun; Kim, Sang-Nam; Kwon, Hyun-Jung; Kim, Jeong-Dong; Oh, Ji Youn; Jung, Young-Suk

    2016-01-01

    Higher susceptibility to metabolic disease in male exemplifies the importance of sexual dimorphism in pathogenesis. We hypothesized that the higher incidence of non-alcoholic fatty liver disease in males involves sex-specific metabolic interactions between liver and adipose tissue. In the present study, we used a methionine-choline deficient (MCD) diet-induced fatty liver mouse model to investigate sex differences in the metabolic response of the liver and adipose tissue. After 2 weeks on an MCD-diet, fatty liver was induced in a sex-specific manner, affecting male mice more severely than females. The MCD-diet increased lipolytic enzymes in the gonadal white adipose tissue (gWAT) of male mice, whereas it increased expression of uncoupling protein 1 and other brown adipocyte markers in the gWAT of female mice. Moreover, gWAT from female mice demonstrated higher levels of oxygen consumption and mitochondrial content compared to gWAT from male mice. FGF21 expression was increased in liver tissue by the MCD diet, and the degree of upregulation was significantly higher in the livers of female mice. The endocrine effect of FGF21 was responsible, in part, for the sex-specific browning of gonadal white adipose tissue. Collectively, these data demonstrated that distinctively female-specific browning of white adipose tissue aids in protecting female mice against MCD diet-induced fatty liver disease. PMID:27409675

  3. Responses to peripheral neuropeptide Y in avian adipose tissue are diet, depot, and time specific.

    PubMed

    Wang, Guoqing; Cline, Mark A; Gilbert, Elizabeth R

    2018-06-01

    The goal of this research was to determine the effect of dietary macronutrient composition on peripheral neuropeptide Y (NPY)-induced changes in adipose tissue dynamics in chicks. Chicks were fed one of three isocaloric diets from the day of hatch: high carbohydrate (HC), high fat (HF), or high protein (HP). On day 4 post-hatch, 0 (vehicle), 60, or 120 µg/kg BW of NPY was injected intraperitoneally, and subcutaneous, clavicular and abdominal adipose tissue samples were collected at 1 and 3 h post-injection. The effect of NPY was most pronounced in chicks fed the HF or HP diet. In the subcutaneous fat at 1 h post-injection, 60 µg/kg BW of NPY was associated with an increase in NPY receptor 2 (NPYR2) mRNA in chicks fed the HP diet and a decrease in 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2) mRNA in chicks fed the HC diet. In response to 120 µg/kg BW of NPY, there was greater AGPAT2 mRNA in the clavicular fat of chicks that consumed the HP diet and less CCAAT/enhancer-binding protein alpha in the abdominal fat of chicks that were provided the HF diet. There were no gene expression changes in the abdominal fat at 3 h post-injection, whereas there were decreases in AGPAT2, adipose triglyceride lipase, fatty acid binding protein 4 and NPY mRNA in the clavicular fat of chicks fed the HP diet. Results demonstrate that diet affects exogenous NPY-dependent physiological effects in a time- and depot-dependent manner in chick adipose tissue. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. From the Cover: Adipose tissue mass can be regulated through the vasculature

    NASA Astrophysics Data System (ADS)

    Rupnick, Maria A.; Panigrahy, Dipak; Zhang, Chen-Yu; Dallabrida, Susan M.; Lowell, Bradford B.; Langer, Robert; Judah Folkman, M.

    2002-08-01

    Tumor growth is angiogenesis dependent. We hypothesized that nonneoplastic tissue growth also depends on neovascularization. We chose adipose tissue as an experimental system because of its remodeling capacity. Mice from different obesity models received anti-angiogenic agents. Treatment resulted in dose-dependent, reversible weight reduction and adipose tissue loss. Marked vascular remodeling was evident in adipose tissue sections, which revealed decreased endothelial proliferation and increased apoptosis in treated mice compared with controls. Continuous treatment maintained mice near normal body weights for age without adverse effects. Metabolic adaptations in food intake, metabolic rate, and energy substrate utilization were associated with anti-angiogenic weight loss. We conclude that adipose tissue mass is sensitive to angiogenesis inhibitors and can be regulated by its vasculature.

  5. Ginsenoside Rg1 and platelet-rich fibrin enhance human breast adipose-derived stem cells function for soft tissue regeneration

    PubMed Central

    Li, Hong-Mian; Peng, Qi-Liu; Huang, Min-Hong; Li, De-Quan; Liang, Yi-Dan; Chi, Gang-Yi; Li, De-Hui; Yu, Bing-Chao; Huang, Ji-Rong

    2016-01-01

    Adipose-derived stem cells (ASCs) can be used to repair soft tissue defects, wounds, burns, and scars and to regenerate various damaged tissues. The cell differentiation capacity of ASCs is crucial for engineered adipose tissue regeneration in reconstructive and plastic surgery. We previously reported that ginsenoside Rg1 (G-Rg1 or Rg1) promotes proliferation and differentiation of ASCs in vitro and in vivio. Here we show that both G-Rg1 and platelet-rich fibrin (PRF) improve the proliferation, differentiation, and soft tissue regeneration capacity of human breast adipose-derived stem cells (HBASCs) on collagen type I sponge scaffolds in vitro and in vivo. Three months after transplantation, tissue wet weight, adipocyte number, intracellular lipid, microvessel density, and gene and protein expression of VEGF, HIF-1α, and PPARγ were higher in both G-Rg1- and PRF-treated HBASCs than in control grafts. More extensive new adipose tissue formation was evident after treatment with G-Rg1 or PRF. In summary, G-Rg1 and/or PRF co-administration improves the function of HBASCs for soft tissue regeneration engineering. PMID:27191987

  6. Global DNA modifications suppress transcription in brown adipose tissue during hibernation.

    PubMed

    Biggar, Yulia; Storey, Kenneth B

    2014-10-01

    Hibernation is crucial to winter survival for many small mammals and is characterized by prolonged periods of torpor during which strong global controls are applied to suppress energy-expensive cellular processes. We hypothesized that one strategy of energy conservation is a global reduction in gene transcription imparted by reversible modifications to DNA and to proteins involved in chromatin packing. Transcriptional regulation during hibernation was examined over euthermic control groups and five stages of the torpor/arousal cycle in brown adipose tissue of thirteen-lined ground squirrels (Ictidomys tridecemlineatus). Brown adipose is crucial to hibernation success because it is responsible for the non-shivering thermogenesis that rewarms animals during arousal. A direct modification of DNA during torpor was revealed by a 1.7-fold increase in global DNA methylation during long term torpor as compared with euthermic controls. Acetylation of histone H3 (on Lys23) was reduced by about 50% when squirrels entered torpor, which would result in increased chromatin packing (and transcriptional repression). This was accompanied by strong increases in histone deacetylase protein levels during torpor; e.g. HDAC1 and HDAC4 levels rose by 1.5- and 6-fold, respectively. Protein levels of two co-repressors of transcription, MBD1 and HP1, also increased by 1.9- and 1.5-fold, respectively, in long-term torpor and remained high during early arousal. MBD1, HP1 and HDACs all returned to near control values during interbout indicating a reversal of their inhibitory actions. Overall, the data presents strong evidence for a global suppression of transcription during torpor via the action of epigenetic regulatory mechanisms in brown adipose tissue of hibernating thirteen-lined ground squirrels. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Lipolysis and thermogenesis in adipose tissues as new potential mechanisms for metabolic benefits of dietary fiber.

    PubMed

    Han, Shu-Fen; Jiao, Jun; Zhang, Wei; Xu, Jia-Ying; Zhang, Weiguo; Fu, Chun-Ling; Qin, Li-Qiang

    2017-01-01

    Dietary fiber consumption is associated with reduced risk for the development of noncommunicable diseases. The aim of the present study was to evaluate the effects of cereal dietary fiber on the levels of proteins involved in lipolysis and thermogenesis in white adipose tissue (WAT) and brown adipose tissue (BAT) of C57 BL/6 J mice fed a high-fat diet (HFD). Male C57BL/6 J mice were fed normal chow diet (Chow), HFD, HFD plus oat fiber (H-oat), or HFD plus wheat bran fiber (H-wheat) for 24 wk. Body weight and food intake were recorded weekly. Serum adiponectin was assayed by an enzyme-linked immunosorbent assay kit. Western blotting was used to assess the protein expressions of adipose triacylglycerol lipase (ATGL), cAMP protein kinase catalytic subunit (cAMP), protein kinase A (PKA), perilipin A, hormone-sensitive lipase (HSL), uncoupling protein 1 (UCP1), fibroblast growth factor 21 (FGF-21), β3-adrenergic receptor (β3AR), and proliferator-activated receptor gamma coactivator-1 α (PGC-1 α) in the WAT and BAT. At the end of the feeding period, body and adipose tissues weight in both H-oat and H-wheat groups were lower than in the HFD group. Mice in the H-oat and H-wheat groups showed an increasing trend in serum adiponectin level. Compared with the HFD group, cereal dietary fiber increased protein expressions involved in the lipolysis and browning process. Compared with the H-wheat group, H-oat was more effective in protein expressions of PKA, PGC-1 α, and UCP1 of the WAT samples. Compared with the H-oat group, H-wheat was more effective in protein expressions of PKA, ATGL, UCP1, β3AR, and FGF-21 of the BAT samples. Taken together, our results suggested that cereal dietary fiber enhanced adipocyte lipolysis by the cAMP-PKA-HSL pathway and promoted WAT browning by activation of UCP1, and consequently reduced visceral fat mass in response to HFD feeding. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis

    PubMed Central

    Fischer, Katrin; Ruiz, Henry H.; Jhun, Kevin; Finan, Brian; Oberlin, Douglas J.; van der Heide, Verena; Kalinovich, Anastasia V.; Petrovic, Natasa; Wolf, Yochai; Clemmensen, Christoffer; Shin, Andrew C.; Divanovic, Senad; Brombacher, Frank; Glasmacher, Elke; Keipert, Susanne; Jastroch, Martin; Nagler, Joachim; Schramm, Karl-Werner; Medrikova, Dasa; Collden, Gustav; Woods, Stephen C.; Herzig, Stephan; Homann, Dirk; Jung, Steffen; Nedergaard, Jan; Cannon, Barbara; Tschöp, Matthias H.

    2017-01-01

    Adaptive thermogenesis is the process of heat generation in response to cold stimulation and is under the control of the sympathetic nervous system whose chief effector is the catecholamine norepinephrine (NE). NE enhances thermogenesis through beta3 adrenergic receptors to activate brown adipose tissue and by “browning” white adipose tissue. Recent studies reported that the alternative activation of macrophages in response to IL-4 stimulation induces the expression of tyrosine hydroxylase (TH), a key enzyme in the catecholamine synthesis pathway, and to provide an alternative source of locally produced catecholamines during the thermogenic process. We here report that the deletion of Th in hematopoetic cells of adult mice neither alters energy expenditure upon cold exposure nor reduces browning in inguinal adipose tissue. Bone marrow-derived macrophages did not release NE in response to stimulation with Interleukin-4 (IL-4), and conditioned media from IL-4 stimulated macrophages failed to induce expression of thermogenic genes, such as the one for uncoupling protein 1 (Ucp1) in adipocytes cultured with the conditioned media. Further, chronic IL-4 treatment failed to increase energy expenditure in WT, Ucp1-/- and Il4ra-/- mice. Consistent with these findings, adipose tissue-resident macrophages did not express TH. Thus, we conclude that alternatively activated macrophages do not synthesize relevant amounts of catecholamines and hence are not likely to play a direct role in adipocyte metabolism or adaptive thermogenesis. PMID:28414329

  9. Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis.

    PubMed

    Fischer, Katrin; Ruiz, Henry H; Jhun, Kevin; Finan, Brian; Oberlin, Douglas J; van der Heide, Verena; Kalinovich, Anastasia V; Petrovic, Natasa; Wolf, Yochai; Clemmensen, Christoffer; Shin, Andrew C; Divanovic, Senad; Brombacher, Frank; Glasmacher, Elke; Keipert, Susanne; Jastroch, Martin; Nagler, Joachim; Schramm, Karl-Werner; Medrikova, Dasa; Collden, Gustav; Woods, Stephen C; Herzig, Stephan; Homann, Dirk; Jung, Steffen; Nedergaard, Jan; Cannon, Barbara; Tschöp, Matthias H; Müller, Timo D; Buettner, Christoph

    2017-05-01

    Adaptive thermogenesis is the process of heat generation in response to cold stimulation. It is under the control of the sympathetic nervous system, whose chief effector is the catecholamine norepinephrine (NE). NE enhances thermogenesis through β3-adrenergic receptors to activate brown adipose tissue and by 'browning' white adipose tissue. Recent studies have reported that alternative activation of macrophages in response to interleukin (IL)-4 stimulation induces the expression of tyrosine hydroxylase (TH), a key enzyme in the catecholamine synthesis pathway, and that this activation provides an alternative source of locally produced catecholamines during the thermogenic process. Here we report that the deletion of Th in hematopoietic cells of adult mice neither alters energy expenditure upon cold exposure nor reduces browning in inguinal adipose tissue. Bone marrow-derived macrophages did not release NE in response to stimulation with IL-4, and conditioned media from IL-4-stimulated macrophages failed to induce expression of thermogenic genes, such as uncoupling protein 1 (Ucp1), in adipocytes cultured with the conditioned media. Furthermore, chronic treatment with IL-4 failed to increase energy expenditure in wild-type, Ucp1 -/- and interleukin-4 receptor-α double-negative (Il4ra -/- ) mice. In agreement with these findings, adipose-tissue-resident macrophages did not express TH. Thus, we conclude that alternatively activated macrophages do not synthesize relevant amounts of catecholamines, and hence, are not likely to have a direct role in adipocyte metabolism or adaptive thermogenesis.

  10. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes.

    PubMed

    Du, Zhen-Yu; Ma, Tao; Lock, Erik-Jan; Hao, Qin; Kristiansen, Karsten; Frøyland, Livar; Madsen, Lise

    2011-01-01

    We have developed an in vitro hepatocyte-adipose tissue explant (ATE) co-culture model enabling examination of the effect of visceral and subcutaneous adipose tissues on primary rat hepatocytes. Initial analyses of inflammatory marker genes were performed in fractionated epididymal or inguinal adipose tissues. Expressions of inflammation related genes (IL-6, TNF-α, COX-2) were higher in the inguinal than the epididymal ATE. Similarly, expressions of marker genes of macrophage and monocyte (MPEG-1, CD68, F4/80, CD64) were higher in the stromal vascular fraction (SVF) isolated from inguinal ATE than that from epididymal ATE. However, expressions of lipolysis related genes (ATGL, HSL, perilipin-1) were higher in the epididymal adipocytes than inguinal adipocytes. Moreover, secretion of IL-6 and PGE(2) was higher from inguinal ATEs than from epididymal ATEs. There was a trend that the total levels of IL-6, TNF-α and PGE(2) in the media from inguinal ATEs co-cultured with primary rat hepatocytes were higher than that in the media from epididymal ATEs co-cultured with hepatocytes, although the significant difference was only seen in PGE(2). Lipolysis, measured as glycerol release, was similar in the ATEs isolated from inguinal and epididymal adipose tissues when cultured alone, but the glycerol release was higher in the ATEs isolated from epididymal than from inguinal adipose tissue when co-cultured with hepatocytes. Compared to epididymal ATEs, the ATEs from inguinal adipose tissue elicited a stronger cytotoxic response and higher level of insulin resistance in the co-cultured hepatocytes. In conclusion, our results reveal depot-dependent effects of ATEs on co-cultured primary hepatocytes, which in part may be related to a more pronounced infiltration of stromal vascular cells (SVCs), particularly macrophages, in inguinal adipose tissue resulting in stronger responses in terms of hepatotoxicity and insulin-resistance.

  11. Adipose tissue MRI for quantitative measurement of central obesity.

    PubMed

    Poonawalla, Aziz H; Sjoberg, Brett P; Rehm, Jennifer L; Hernando, Diego; Hines, Catherine D; Irarrazaval, Pablo; Reeder, Scott B

    2013-03-01

    To validate adipose tissue magnetic resonance imaging (atMRI) for rapid, quantitative volumetry of visceral adipose tissue (VAT) and total adipose tissue (TAT). Data were acquired on normal adults and clinically overweight girls with Institutional Review Board (IRB) approval/parental consent using sagittal 6-echo 3D-spoiled gradient-echo (SPGR) (26-sec single-breath-hold) at 3T. Fat-fraction images were reconstructed with quantitative corrections, permitting measurement of a physiologically based fat-fraction threshold in normals to identify adipose tissue, for automated measurement of TAT, and semiautomated measurement of VAT. TAT accuracy was validated using oil phantoms and in vivo TAT/VAT measurements validated with manual segmentation. Group comparisons were performed between normals and overweight girls using TAT, VAT, VAT-TAT-ratio (VTR), body-mass-index (BMI), waist circumference, and waist-hip-ratio (WHR). Oil phantom measurements were highly accurate (<3% error). The measured adipose fat-fraction threshold was 96% ± 2%. VAT and TAT correlated strongly with manual segmentation (normals r(2) ≥ 0.96, overweight girls r(2) ≥ 0.99). VAT segmentation required 30 ± 11 minutes/subject (14 ± 5 sec/slice) using atMRI, versus 216 ± 73 minutes/subject (99 ± 31 sec/slice) manually. Group discrimination was significant using WHR (P < 0.001) and VTR (P = 0.004). The atMRI technique permits rapid, accurate measurements of TAT, VAT, and VTR. Copyright © 2012 Wiley Periodicals, Inc.

  12. Impaired autophagy activity is linked to elevated ER-stress and inflammation in aging adipose tissue.

    PubMed

    Ghosh, Amiya Kumar; Mau, Theresa; O'Brien, Martin; Garg, Sanjay; Yung, Raymond

    2016-10-24

    Adipose tissue dysfunction in aging is associated with inflammation, metabolic syndrome and other diseases. We propose that impaired protein homeostasis due to compromised lysosomal degradation (micro-autophagy) might promote aberrant ER stress response and inflammation in aging adipose tissue. Using C57BL/6 mouse model, we demonstrate that adipose tissue-derived stromal vascular fraction (SVF) cells from old (18-20 months) mice have reduced expression of autophagy markers as compared to the younger (4-6 months) cohort. Elevated expressions of ER-stress marker CHOP and autophagy substrate SQSTM1/p62 are observed in old SVFs compared to young, when treated with either vehicle or with thapsigargin (Tg), an ER stress inducer. Treatment with bafilomycin A1 (Baf), a vacuolar-type H (+)-ATPase, or Tg elevated expressions of CHOP, and SQSTM1/p62 and LC-3-II, in 3T3-L1-preadipocytes. We also demonstrate impaired autophagy activity in old SVFs by analyzing increased accumulation of autophagy substrates LC3-II and p62. Compromised autophagy activity in old SVFs is correlated with enhanced release of pro-inflammatory cytokines IL-6 and MCP-1. Finally, SVFs from calorie restricted old mice (CR-O) have shown enhanced autophagy activity compared to ad libitum fed old mice (AL-O). Our results support the notion that diminished autophagy activity with aging contributes to increased adipose tissue ER stress and inflammation.

  13. Inhibition of NET Release Fails to Reduce Adipose Tissue Inflammation in Mice.

    PubMed

    Braster, Quinte; Silvestre Roig, Carlos; Hartwig, Helene; Beckers, Linda; den Toom, Myrthe; Döring, Yvonne; Daemen, Mat J; Lutgens, Esther; Soehnlein, Oliver

    2016-01-01

    Obesity-associated diseases such as Type 2 diabetes, liver disease and cardiovascular diseases are profoundly mediated by low-grade chronic inflammation of the adipose tissue. Recently, the importance of neutrophils and neutrophil-derived myeloperoxidase and neutrophil elastase on the induction of insulin resistance has been established. Since neutrophil elastase and myeloperoxidase are critically involved in the release of neutrophil extracellular traps (NETs), we here hypothesized that NETs may be relevant to early adipose tissue inflammation. Thus, we tested the effect of the Peptidyl Arginine Deiminase 4 inhibitor Cl-amidine, a compound preventing histone citrullination and subsequent NET release, in a mouse model of adipose tissue inflammation. C57BL6 mice received a 60% high fat diet for 10 weeks and were treated with either Cl-amidine or vehicle. Flow cytometry of adipose tissue and liver, immunohistological analysis and glucose and insulin tolerance tests were performed to determine the effect of the treatment and diet. Although high fat diet feeding induced insulin resistance no significant effect was observed between the treatment groups. In addition no effect was found in leukocyte infiltration and activation in the adipose tissue and liver. Therefore we concluded that inhibition of neutrophil extracellular trap formation may have no clinical relevance for early obesity-mediated pathogenesis of the adipose tissue and liver.

  14. The effect of diabetes on the wound healing potential of adipose-tissue derived stem cells.

    PubMed

    Kim, Sue Min; Kim, Yun Ho; Jun, Young Joon; Yoo, Gyeol; Rhie, Jong Won

    2016-03-01

    To investigate whether diabetes mellitus affects the wound-healing-promoting potential of adipose tissue-derived stem cells, we designed a wound-healing model using diabetic mice. We compared the degree of wound healing between wounds treated with normal adipose tissue-derived stem cells and wounds treated with diabetic adipose tissue-derived stem cells. We evaluated the wound-healing rate, the epithelial tongue distance, the area of granulation tissue, the number of capillary and the number of Ki-67-stained cells. The wound-healing rate was significantly higher in the normal adipose tissue-derived stem cells group than in the diabetic adipose tissue-derived stem cells group; it was also significantly higher in the normal adipose tissue-derived stem cells group than in the control group. Although the diabetic adipose tissue-derived stem cells group showed a better wound-healing rate than the control group, the difference was not statistically significant. Similar trends were observed for the other parameters examined: re-epithelisation and keratinocyte proliferation; granulation tissue formation; and dermal regeneration. However, with regard to the number of capillary, diabetic adipose tissue-derived stem cells retained their ability to promote neovasculisation and angiogenesis. These results reflect the general impairment of the therapeutic potential of diabetic adipose tissue-derived stem cells in vivo. © 2016 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  15. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, Masakazu, E-mail: masakazu731079@yahoo.co.jp; Inoguchi, Toyoshi, E-mail: toyoshi@intmed3.med.kyushu-u.ac.jp; Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophagemore » polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.« less

  16. Identification of a Lipokine, a Lipid Hormone Linking Adipose Tissue to Systemic Metabolism

    PubMed Central

    Cao, Haiming; Gerhold, Kristin; Mayers, Jared R.; Wiest, Michelle M.; Watkins, Steve M.; Hotamisligil, Gökhan S.

    2008-01-01

    Dysregulation of lipid metabolism in individual tissues can lead to systemic disruption of insulin action and glucose metabolism. Utilizing a comprehensive lipidomic platform and mice deficient in adipose tissue lipid chaperones aP2 and mal1, we explored how metabolic alterations in adipose tissue are linked to whole-body metabolism through lipid signals. A robust increase in de novo lipogenesis rendered the adipose tissue of these mice resistant to the deleterious systemic effects of dietary lipid exposure. Systemic lipid profiling also led to identification of C16:1n7-palmitoleate as an adipose tissue-derived lipid hormone that strongly stimulates muscle insulin action and suppresses hepatosteatosis. Our data reveal a novel, lipid-mediated endocrine network and demonstrate that adipose tissue uses lipokines such as C16:1n7-palmitoleate to communicate with distant organs and regulate systemic metabolic homeostasis. PMID:18805087

  17. Adipose Tissue CLK2 Promotes Energy Expenditure during High-Fat Diet Intermittent Fasting.

    PubMed

    Hatting, Maximilian; Rines, Amy K; Luo, Chi; Tabata, Mitsuhisa; Sharabi, Kfir; Hall, Jessica A; Verdeguer, Francisco; Trautwein, Christian; Puigserver, Pere

    2017-02-07

    A promising approach to treating obesity is to increase diet-induced thermogenesis in brown adipose tissue (BAT), but the regulation of this process remains unclear. Here we find that CDC-like kinase 2 (CLK2) is expressed in BAT and upregulated upon refeeding. Mice lacking CLK2 in adipose tissue exhibit exacerbated obesity and decreased energy expenditure during high-fat diet intermittent fasting. Additionally, tissue oxygen consumption and protein levels of UCP1 are reduced in CLK2-deficient BAT. Phosphorylation of CREB, a transcriptional activator of UCP1, is markedly decreased in BAT cells lacking CLK2 due to enhanced CREB dephosphorylation. Mechanistically, CREB dephosphorylation is rescued by the inhibition of PP2A, a phosphatase that targets CREB. Our results suggest that CLK2 is a regulatory component of diet-induced thermogenesis in BAT through increased CREB-dependent expression of UCP1. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Adipose tissue metabolic and inflammatory responses to a mixed meal in lean, overweight and obese men.

    PubMed

    Travers, Rebecca L; Motta, Alexandre C; Betts, James A; Thompson, Dylan

    2017-02-01

    Most of what we know about adipose tissue is restricted to observations derived after an overnight fast. However, humans spend the majority of waking hours in a postprandial (fed) state, and it is unclear whether increasing adiposity impacts adipose tissue responses to feeding. The aim of this research was to investigate postprandial responses in adipose tissue across varying degrees of adiposity. Thirty males aged 35-55 years with waist circumference 81-118 cm were divided equally into groups categorized as either lean, overweight or obese. Participants consumed a meal and insulinaemic, glycaemic and lipidaemic responses were monitored over 6 h. Subcutaneous adipose tissue samples were obtained at baseline and after 6 h to examine changes in gene expression and adipose tissue secretion of various adipokines. Following consumption of the meal, insulin and glucose responses were higher with increased adiposity (total AUC effects of group; p = 0.058 and p = 0.027, respectively). At 6 h, significant time effects reflected increases in IL-6 (F = 14.7, p = 0.001) and MCP-1 (F = 10.7, p = 0.003) and reduction in IRS2 adipose tissue gene expression (F = 24.6, p < 0.001), all independent of adiposity. Ex vivo adipokine secretion from adipose tissue explants remained largely unchanged after feeding. Increased systemic measures of postprandial metabolism with greater adiposity do not translate into increased inflammatory responses within adipose tissue. Instead, postprandial adipose tissue changes may represent a normal response to feeding or a (relatively) normalized response with increased adiposity due to either similar net exposure (i.e. per g of adipose) or reduced adipose tissue responsiveness.

  19. Soft tissue fillers for adipose tissue regeneration: From hydrogel development toward clinical applications.

    PubMed

    Van Nieuwenhove, I; Tytgat, L; Ryx, M; Blondeel, P; Stillaert, F; Thienpont, H; Ottevaere, H; Dubruel, P; Van Vlierberghe, S

    2017-11-01

    There is a clear and urgent clinical need to develop soft tissue fillers that outperform the materials currently used for adipose tissue reconstruction. Recently, extensive research has been performed within this field of adipose tissue engineering as the commercially available products and the currently existing techniques are concomitant with several disadvantages. Commercial products are highly expensive and associated with an imposing need for repeated injections. Lipofilling or free fat transfer has an unpredictable outcome with respect to cell survival and potential resorption of the fat grafts. Therefore, researchers are predominantly investigating two challenging adipose tissue engineering strategies: in situ injectable materials and porous 3D printed scaffolds. The present work provides an overview of current research encompassing synthetic, biopolymer-based and extracellular matrix-derived materials with a clear focus on emerging fabrication technologies and developments realized throughout the last decade. Moreover, clinical relevance of the most promising materials will be discussed, together with potential concerns associated with their application in the clinic. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. PVAT and Its Relation to Brown, Beige, and White Adipose Tissue in Development and Function

    PubMed Central

    Hildebrand, Staffan; Stümer, Jasmin; Pfeifer, Alexander

    2018-01-01

    Adipose tissue is commonly categorized into three types with distinct functions, phenotypes, and anatomical localizations. White adipose tissue (WAT) is the major energy store; the largest depots of WAT are found in subcutaneous or intravisceral sites. Brown adipose tissue (BAT) is responsible for energy dissipation during cold-exposure (i.e., non-shivering thermogenesis) and is primarily located in the interscapular region. Beige or brite (brown-in-white) adipose tissue can be found interspersed in WAT and can attain a brown-like phenotype. These three types of tissues also have endocrine functions and play major roles in whole body metabolism especially in obesity and its co-morbidities, such as cardiovascular disease. Over the last years, perivascular adipose tissue (PVAT) has emerged as an adipose organ with endocrine and paracrine functions. Pro and anti-inflammatory agents released by PVAT affect vascular health, and are implicated in the inflammatory aspects of atherosclerosis. PVAT shares several of the defining characteristics of brown adipose tissue, including its cellular morphology and expression of thermogenic genes characteristic for brown adipocytes. However, PVATs from different vessels are phenotypically different, and significant developmental differences exist between PVAT and other adipose tissues. Whether PVAT represents classical BAT, beige adipose tissue, or WAT with changing characteristics, is unclear. In this review, we summarize the current knowledge on how PVAT relates to other types of adipose tissue, both in terms of functionality, developmental origins, and its role in obesity-related cardiovascular disease and inflammation. PMID:29467675

  1. [Isolation,culture and identification of adipose-derived stem cells from SD rat adipose tissues subjected to long-term cryopreservation].

    PubMed

    Liu, Qin; Wang, Liping; Chen, Fang; Zhang, Yi

    2017-02-01

    To study the feasibility of isolation and culture of adipose-derived stem cells( ADSCs) from SD rat adipose tissues subjected to long-term cryopreservation. We took inguinal fat pads from healthy SD rats. Adipose tissues were stored with 100 m L / L dimethyl sulfoxide( DMSO) combined with 900 m L / L fetal bovine serum( FBS) in liquid nitrogen. Three months later,the adipose tissues were resuscitated for the isolation and culture of ADSCs. The growth status and morphology were observed. The growth curve and cell surface markers CD29,CD45,CD90 of the 3rd passage cells were analyzed respectively by CCK-8 assay and immunocytochemistry. The 3rd passage cells were induced towards adipogenic lineages and osteogenic lineages by different inducers,and the resulting cells were examined separately by oil red O staining and alizarin red staining. The ADSCs obtained from SD rat adipose tissues subjected to long-term cryopreservation showed a spindle-shape appearance and had a good proliferation ability. The cell growth curve was typical "S " curve.Immunocytochemistry showed that the 3rd passage cells were positive for CD29 and CD90,while negative for CD45. The cells were positive for oil red O staining after adipogenic induction,and also positive for alizarin red staining after osteogenic induction. The ADSCs can be isolated from SD rat adipose tissues subjected to long-term cryopreservation.

  2. Visceral Adiposity Index: An Indicator of Adipose Tissue Dysfunction

    PubMed Central

    2014-01-01

    The Visceral Adiposity Index (VAI) has recently proven to be an indicator of adipose distribution and function that indirectly expresses cardiometabolic risk. In addition, VAI has been proposed as a useful tool for early detection of a condition of cardiometabolic risk before it develops into an overt metabolic syndrome. The application of the VAI in particular populations of patients (women with polycystic ovary syndrome, patients with acromegaly, patients with NAFLD/NASH, patients with HCV hepatitis, patients with type 2 diabetes, and general population) has produced interesting results, which have led to the hypothesis that the VAI could be considered a marker of adipose tissue dysfunction. Unfortunately, in some cases, on the same patient population, there is conflicting evidence. We think that this could be mainly due to a lack of knowledge of the application limits of the index, on the part of various authors, and to having applied the VAI in non-Caucasian populations. Future prospective studies could certainly better define the possible usefulness of the VAI as a predictor of cardiometabolic risk. PMID:24829577

  3. Early overfeed-induced obesity leads to brown adipose tissue hypoactivity in rats.

    PubMed

    de Almeida, Douglas L; Fabrício, Gabriel S; Trombini, Amanda B; Pavanello, Audrei; Tófolo, Laize P; da Silva Ribeiro, Tatiane A; de Freitas Mathias, Paulo C; Palma-Rigo, Kesia

    2013-01-01

    Brown adipose tissue activation has been considered a potential anti-obesity mechanism because it is able to expend energy through thermogenesis. In contrast, white adipose tissue stores energy, contributing to obesity. We investigated whether the early programming of obesity by overfeeding during lactation changes structure of interscapular brown adipose tissue in adulthood and its effects on thermogenesis. Birth of litters was considered day 0. On day 2, litter size was adjusted to normal (9 pups) and small (3 pups) litters. On day 21, the litters were weaned. A temperature transponder was implanted underneath interscapular brown adipose tissue pads of 81-day-old animals; local temperature was measured during light and dark periods between days 87 and 90. The animals were euthanized, and tissue and blood samples were collected for further analysis. The vagus and retroperitoneal sympathetic nerve activity was recorded. Small litter rats presented significant lower interscapular brown adipose tissue temperature during the light (NL 37.6°C vs. SL 37.2°C) and dark (NL 38°C vs. SL 37.6°C) periods compared to controls. Morphology of small litter brown adipose tissue showed fewer lipid droplets in the tissue center and more and larger in the periphery. The activity of vagus nerve was 19,9% greater in the small litter than in control (p<0.01), and no difference was observed in the sympathetic nerve activity. In adulthood, the small litter rats were 11,7% heavier than the controls and presented higher glycemia 13,1%, insulinemia 70% and corticosteronemia 92,6%. Early overfeeding programming of obesity changes the interscapular brown adipose tissue structure in adulthood, leading to local thermogenesis hypoactivity, which may contribute to obesity in adults. © 2013 S. Karger AG, Basel.

  4. Phytochemicals and their impact on adipose tissue inflammation and diabetes.

    PubMed

    Leiherer, Andreas; Mündlein, Axel; Drexel, Heinz

    2013-01-01

    Type 2 diabetes mellitus is an inflammatory disease and the mechanisms that underlie this disease, although still incompletely understood, take place in the adipose tissue of obese subjects. Concurrently, the prevalence of obesity caused by Western diet's excessive energy intake and the lack of exercise escalates, and is believed to be causative for the chronic inflammatory state in adipose tissue. Overnutrition itself as an overload of energy may induce the adipocytes to secrete chemokines activating and attracting immune cells to adipose tissue. But also inflammation-mediating food ingredients like saturated fatty acids are believed to directly initiate the inflammatory cascade. In addition, hypoxia in adipose tissue as a direct consequence of obesity, and its effect on gene expression in adipocytes and surrounding cells in fat tissue of obese subjects appears to play a central role in this inflammatory response too. In contrast, revisiting diet all over the world, there are also some natural food products and beverages which are associated with curative effects on human health. Several natural compounds known as spices such as curcumin, capsaicin, and gingerol, or secondary plant metabolites catechin, resveratrol, genistein, and quercetin have been reported to provide an improved health status to their consumers, especially with regard to diabetes, and therefore have been investigated for their anti-inflammatory effect. In this review, we will give an overview about these phytochemicals and their role to interfere with inflammatory cascades in adipose tissue and their potential for fighting against inflammatory diseases like diabetes as investigated in vivo. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Relationship between reflection spectra of breast adipose tissue with histologic grade

    NASA Astrophysics Data System (ADS)

    Muñoz Morales, Aarón; Vázquez Y Montiel, Sergio; Reigosa, Aldo

    2011-08-01

    Optical spectroscopy allows the characterization, recognition and differentiation of subcutaneous tissues healthy and no-healthy, to facilitate the diagnosis or early detection for breast cancer are studied white adipose tissue by the subcutaneous region with the help of the diffuse reflection spectroscopy in the visible areas (400 to 700 nm) of electromagnetic spectrum for them using a spectrometer portable of integrating sphere, Hunter lab Model Mini-Scan. The problem to be solved for cancer detection by optical techniques is to find the solution to the inverse problem of scattering of radiation in tissue where it is necessary to solve the equation of energy transfer. us through the trigonometric interpolation and by the data adjustment by least squares using Fourier series expansion to parameterize the spectral response curves of each sample of breast adipose tissue then correlated with histological grades established by the optical biopsy for each one of the samples, allowing use this technique to the study of anomalies in White Adipose Tissue Breast, changes are evident in the spectral response for Breast Adipose Tissue carcinogens with respect to healthy tissues and for the different histological grades.

  6. Multiple symmetric lipomatosis: a rare disease and its possible links to brown adipose tissue.

    PubMed

    Enzi, G; Busetto, L; Sergi, G; Coin, A; Inelmen, E M; Vindigni, V; Bassetto, F; Cinti, S

    2015-04-01

    Aim of this study is an updated review of our case series (72 patients) as well as available literature on the Multiple Symmetric Lipomatosis (MSL), a rare disease primarily involving adipose tissue, characterized by the presence of not encapsulated fat masses, symmetrically disposed at characteristic body sites (neck, trunk, proximal parts of upper and lower limbs). The disease is more frequent in males, associated to an elevated chronic alcohol consumption, mainly in form of red wine. Familiarity has been reported and MSL is considered an autosomic dominant inherited disease. MSL is associated to severe clinical complications, represented by occupation of the mediastinum by lipomatous tissue with a mediastinal syndrome and by the presence of a somatic and autonomic neuropathies. Hyper-alphalipoproteinemia with an increased adipose tissue lipoprotein-lipase activity, a defect of adrenergic stimulated lipolysis and a reduction of mitochondrial enzymes have been described. The localization of lipomatous masses suggests that MSL lipomas could originate from brown adipose tissue (BAT). Moreover, studies on cultured pre-adipocytes demonstrate that these cells synthetize the mitochondrial inner membrane protein UCP-1, the selective marker of BAT. Surgical removal of lipomatous tissue is to date the only validated therapeutic approach. MSL is supposed to be the result of a disorder of the proliferation and differentiation of human BAT cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Caveolin-1 Deficiency Leads to Increased Susceptibility to Cell Death and Fibrosis in White Adipose Tissue: Characterization of a Lipodystrophic Model

    PubMed Central

    Stanley, Amanda C.; Bastiani, Michele; Okano, Satomi; Nixon, Susan J.; Thomas, Gethin; Stow, Jennifer L.; Parton, Robert G.

    2012-01-01

    Caveolin-1 (CAV1) is an important regulator of adipose tissue homeostasis. In the present study we examined the impact of CAV1 deficiency on the properties of mouse adipose tissue both in vivo and in explant cultures during conditions of metabolic stress. In CAV1−/− mice fasting caused loss of adipose tissue mass despite a lack of hormone-sensitive lipase (HSL) phosphorylation. In addition, fasting resulted in increased macrophage infiltration, enhanced deposition of collagen, and a reduction in the level of the lipid droplet protein perilipin A (PLIN1a). Explant cultures of CAV1−/− adipose tissue also showed a loss of PLIN1a during culture, enhanced secretion of IL-6, increased release of lactate dehydrogenase, and demonstrated increased susceptibility to cell death upon collagenase treatment. Attenuated PKA-mediated signaling to HSL, loss of PLIN1a and increased secretion of IL-6 were also observed in adipose tissue explants of CAV1+/+ mice with diet-induced obesity. Together these results suggest that while alterations in adipocyte lipid droplet biology support adipose tissue metabolism in the absence of PKA-mediated pro-lipolytic signaling in CAV1−/− mice, the tissue is intrinsically unstable resulting in increased susceptibility to cell death, which we suggest underlies the development of fibrosis and inflammation during periods of metabolic stress. PMID:23049990

  8. Decellularized skin/adipose tissue flap matrix for engineering vascularized composite soft tissue flaps.

    PubMed

    Zhang, Qixu; Johnson, Joshua A; Dunne, Lina W; Chen, Youbai; Iyyanki, Tejaswi; Wu, Yewen; Chang, Edward I; Branch-Brooks, Cynthia D; Robb, Geoffrey L; Butler, Charles E

    2016-04-15

    Using a perfusion decellularization protocol, we developed a decellularized skin/adipose tissue flap (DSAF) comprising extracellular matrix (ECM) and intact vasculature. Our DSAF had a dominant vascular pedicle, microcirculatory vascularity, and a sensory nerve network and retained three-dimensional (3D) nanofibrous structures well. DSAF, which was composed of collagen and laminin with well-preserved growth factors (e.g., vascular endothelial growth factor, basic fibroblast growth factor), was successfully repopulated with human adipose-derived stem cells (hASCs) and human umbilical vein endothelial cells (HUVECs), which integrated with DSAF and formed 3D aggregates and vessel-like structures in vitro. We used microsurgery techniques to re-anastomose the recellularized DSAF into nude rats. In vivo, the engineered flap construct underwent neovascularization and constructive remodeling, which was characterized by the predominant infiltration of M2 macrophages and significant adipose tissue formation at 3months postoperatively. Our results indicate that DSAF co-cultured with hASCs and HUVECs is a promising platform for vascularized soft tissue flap engineering. This platform is not limited by the flap size, as the entire construct can be immediately perfused by the recellularized vascular network following simple re-integration into the host using conventional microsurgical techniques. Significant soft tissue loss resulting from traumatic injury or tumor resection often requires surgical reconstruction using autologous soft tissue flaps. However, the limited availability of qualitative autologous flaps as well as the donor site morbidity significantly limits this approach. Engineered soft tissue flap grafts may offer a clinically relevant alternative to the autologous flap tissue. In this study, we engineered vascularized soft tissue free flap by using skin/adipose flap extracellular matrix scaffold (DSAF) in combination with multiple types of human cells. Following

  9. Effect of luminescence transport through adipose tissue on measurement of tissue temperature by using ZnCdS nanothermometers

    NASA Astrophysics Data System (ADS)

    Volkova, Elena K.; Yanina, Irina Yu.; Sagaydachnaya, Elena; Konyukhova, Julia G.; Kochubey, Vyacheslav I.; Tuchin, Valery V.

    2018-02-01

    The spectra of luminescence of ZnCdS nanoparticles (ZnCdS NPs) were measured and analyzed in a wide temperature range: from room to human body and further to a hyperthermic temperature resulting in tissue morphology change. The results show that the signal of luminescence of ZnCdS NPs placed within the tissue is reasonably good sensitive to temperature change and accompanied by phase transitions of lipid structures of adipose tissue. It is shown that the presence of a phase transition in adipose tissue upon its heating (polymorphic transformations of lipids) leads to a nonmonotonic temperature dependence of the intensity of luminescence for the nanoparticles introduced into adipose tissue. This is due to a change in the light scattering by the tissue. The light scattering of adipose tissue greatly distorts the results of temperature measurements. The application of these nanoparticles is possible for temperature measurements in very thin or weakly scattering samples.

  10. Organotypic culture of human bone marrow adipose tissue.

    PubMed

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Shigematsu, Masamori; Kamochi, Noriyuki; Sonoda, Emiko; Soejima, Hidenobu; Fukudome, Kenji; Sugihara, Hajime; Hotokebuchi, Takao; Toda, Shuji

    2010-04-01

    The precise role of bone marrow adipose tissue (BMAT) in the marrow remains unknown. The purpose of the present study was therefore to describe a novel method for studying BMAT using 3-D collagen gel culture of BMAT fragments, immunohistochemistry, ELISA and real-time reverse transcription-polymerase chain reaction. Mature adipocytes and CD45+ leukocytes were retained for >3 weeks. Bone marrow stromal cells (BMSC) including a small number of lipid-laden preadipocytes and CD44+/CD105+ mesenchymal stem cell (MSC)-like cells, developed from BMAT. Dexamethasone (10 micromol/L), but not insulin (20 mU/mL), significantly increased the number of preadipocytes. Dexamethasone and insulin also promoted leptin production and gene expression in BMAT. Adiponectin production by BMAT was <0.8 ng/mL under all culture conditions. Dexamethasone promoted adiponectin gene expression, while insulin inhibited it. This finding suggests that dexamethasone, but not insulin, may serve as a powerful adipogenic factor for BMAT, in which adiponectin protein secretion is normally very low, and that BMAT may exhibit a different phenotype from that of the visceral and subcutaneous adipose tissues. BMAT-osteoblast interactions were also examined, and it was found that osteoblasts inhibited the development of BMSC and reduced leptin production, while BMAT inhibited the growth and differentiation of osteoblasts. The present novel method proved to be useful for the study of BMAT biology.

  11. Biology and function of adipose tissue macrophages, dendritic cells and B cells.

    PubMed

    Ivanov, Stoyan; Merlin, Johanna; Lee, Man Kit Sam; Murphy, Andrew J; Guinamard, Rodolphe R

    2018-04-01

    The increasing incidence of obesity and its socio-economical impact is a global health issue due to its associated co-morbidities, namely diabetes and cardiovascular disease [1-5]. Obesity is characterized by an increase in adipose tissue, which promotes the recruitment of immune cells resulting in low-grade inflammation and dysfunctional metabolism. Macrophages are the most abundant immune cells in the adipose tissue of mice and humans. The adipose tissue also contains other myeloid cells (dendritic cells (DC) and neutrophils) and to a lesser extent lymphocyte populations, including T cells, B cells, Natural Killer (NK) and Natural Killer T (NKT) cells. While the majority of studies have linked adipose tissue macrophages (ATM) to the development of low-grade inflammation and co-morbidities associated with obesity, emerging evidence suggests for a role of other immune cells within the adipose tissue that may act in part by supporting macrophage homeostasis. In this review, we summarize the current knowledge of the functions ATMs, DCs and B cells possess during steady-state and obesity. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Physiological regulation and metabolic role of browning in white adipose tissue.

    PubMed

    Jankovic, Aleksandra; Otasevic, Vesna; Stancic, Ana; Buzadzic, Biljana; Korac, Aleksandra; Korac, Bato

    2017-09-01

    Great progress has been made in our understanding of the browning process in white adipose tissue (WAT) in rodents. The recognition that i) adult humans have physiologically inducible brown adipose tissue (BAT) that may facilitate resistance to obesity and ii) that adult human BAT molecularly and functionally resembles beige adipose tissue in rodents, reignited optimism that obesity and obesity-related diabetes type 2 can be battled by controlling the browning of WAT. In this review the main cellular mechanisms and molecular mediators of browning of WAT in different physiological states are summarized. The relevance of browning of WAT in metabolic health is considered primarily through a modulation of biological role of fat tissue in overall metabolic homeostasis.

  13. In vitro differentiation of neural cells from human adipose tissue derived stromal cells.

    PubMed

    Dave, Shruti D; Patel, Chetan N; Vanikar, Aruna V; Trivedi, Hargovind L

    2018-01-01

    Stem cells, including neural stem cells (NSCs), are endowed with self-renewal capability and hence hold great opportunity for the institution of replacement/protective therapy. We propose a method for in vitro generation of stromal cells from human adipose tissue and their differentiation into neural cells. Ten grams of donor adipose tissue was surgically resected from the abdominal wall of the human donor after the participants' informed consents. The resected adipose tissue was minced and incubated for 1 hour in the presence of an enzyme (collagenase-type I) at 37 0 C followed by its centrifugation. After centrifugation, the supernatant and pellets were separated and cultured in a medium for proliferation at 37 0 C with 5% CO2 for 9-10 days in separate tissue culture dishes for generation of mesenchymal stromal cells (MSC). At the end of the culture, MSC were harvested and analyzed. The harvested MSC were subjected for further culture for their differentiation into neural cells for 5-7 days using differentiation medium mainly comprising of neurobasal medium. At the end of the procedure, culture cells were isolated and studied for expression of transcriptional factor proteins: orthodenticle homolog-2 (OTX-2), beta-III-tubulin (β3-Tubulin), glial-fibrillary acid protein (GFAP) and synaptophysin-β2. In total, 50 neural cells-lines were generated. In vitro generated MSC differentiated neural cells' mean quantum was 5.4 ± 6.9 ml with the mean cell count being, 5.27 ± 2.65 × 10 3/ μl. All of them showed the presence of OTX-2, β3-Tubulin, GFAP, synaptophysin-β2. Neural cells can be differentiated in vitro from MSC safely and effectively. In vitro generated neural cells represent a potential therapy for recovery from spinal cord injuries and neurodegenerative disease.

  14. Opposite Effects of Soluble Factors Secreted by Adipose Tissue on Proliferating and Quiescent Osteosarcoma Cells.

    PubMed

    Avril, Pierre; Duteille, Franck; Ridel, Perrine; Heymann, Marie-Françoise; De Pinieux, Gonzague; Rédini, Françoise; Blanchard, Frédéric; Heymann, Dominique; Trichet, Valérie; Perrot, Pierre

    2016-03-01

    Autologous adipose tissue transfer may be performed for aesthetic needs following resection of osteosarcoma, the most frequent primary malignant tumor of bone, excluding myeloma. The safety of autologous adipose tissue transfer regarding the potential risk of cancer recurrence must be addressed. Adipose tissue injection was tested in a human osteosarcoma preclinical model induced by MNNG-HOS cells. Culture media without growth factors from fetal bovine serum were conditioned with adipose tissue samples and added to two osteosarcoma cell lines (MNNG-HOS and MG-63) that were cultured in monolayer or maintained in nonadherent spheres, favoring a proliferation or quiescent stage, respectively. Proliferation and cell cycle were analyzed. Adipose tissue injection increased local growth of osteosarcoma in mice but was not associated with aggravation of lung metastasis or osteolysis. Adipose tissue-derived soluble factors increased the in vitro proliferation of osteosarcoma cells up to 180 percent. Interleukin-6 and leptin were measured in higher concentrations in adipose tissue-conditioned medium than in osteosarcoma cell-conditioned medium, but the authors' results indicated that they were not implicated alone. Furthermore, adipose tissue-derived soluble factors did not favor a G0-to-G1 phase transition of MNNG-HOS cells in nonadherent oncospheres. This study indicates that adipose tissue-soluble factors activate osteosarcoma cell cycle from G1 to mitosis phases, but do not promote the transition from quiescent G0 to G1 phases. Autologous adipose tissue transfer may not be involved in the activation of dormant tumor cells or cancer stem cells.

  15. Alpha-Lipoic Acid Alleviates Acute Inflammation and Promotes Lipid Mobilization During the Inflammatory Response in White Adipose Tissue of Mice.

    PubMed

    Guo, Jun; Gao, Shixing; Liu, Zhiqing; Zhao, Ruqian; Yang, Xiaojing

    2016-10-01

    Recently, white adipose tissue has been shown to exhibit immunological activity, and may play an important role in host defense and protection against bacterial infection. Αlpha-lipoic acid (α-LA) has been demonstrated to function as an anti-inflammatory and anti-oxidant agent. However, its influence on the inflammatory response and metabolic changes in white adipose tissue remains unknown. We used male C57BL/6 mice as models to study the effect of α-LA on the inflammatory response and metabolic changes in white adipose tissue after stimulation with lipopolysaccharide (LPS). The non-esterified fatty acid content was measured by an automatic biochemical analyzer. The expression of inflammation-, lipid- and energy metabolism-related genes and proteins was determined by quantitative real-time polymerase chain reaction and western blotting. The results indicated that α-LA significantly decreased the epididymis fat weight index and the non-esterified fatty acid content in plasma compared with the control group. LPS significantly increased the expression of inflammation genes and α-LA reduced their expression. The LPS-induced expression of nuclear factor-κB protein was decreased by α-LA. Regarding lipid metabolism, α-LA significantly counteracted the inhibitory effects of LPS on the expression of hormone-sensitive lipase gene and protein. α-LA evidently increased the gene expression of fatty acid transport protein 1 and cluster of differentiation 36. Regarding energy metabolism, α-LA significantly increased the expression of most of mitochondrial DNA-encoded genes compared with the control and LPS group. Accordingly, α-LA can alleviate acute inflammatory response and this action may be related with the promotion of lipid mobilization in white adipose tissue.

  16. Mesenchymal Stem Cells From Bone Marrow, Adipose Tissue, and Lung Tissue Differentially Mitigate Lung and Distal Organ Damage in Experimental Acute Respiratory Distress Syndrome.

    PubMed

    Silva, Johnatas D; Lopes-Pacheco, Miquéias; Paz, Ana H R; Cruz, Fernanda F; Melo, Elga B; de Oliveira, Milena V; Xisto, Débora G; Capelozzi, Vera L; Morales, Marcelo M; Pelosi, Paolo; Cirne-Lima, Elizabeth; Rocco, Patricia R M

    2018-02-01

    Mesenchymal stem cells-based therapies have shown promising effects in experimental acute respiratory distress syndrome. Different mesenchymal stem cells sources may result in diverse effects in respiratory diseases; however, there is no information regarding the best source of mesenchymal stem cells to treat pulmonary acute respiratory distress syndrome. We tested the hypothesis that mesenchymal stem cells derived from bone marrow, adipose tissue, and lung tissue would lead to different beneficial effects on lung and distal organ damage in experimental pulmonary acute respiratory distress syndrome. Animal study and primary cell culture. Laboratory investigation. Seventy-five Wistar rats. Wistar rats received saline (control) or Escherichia coli lipopolysaccharide (acute respiratory distress syndrome) intratracheally. On day 2, acute respiratory distress syndrome animals were further randomized to receive saline or bone marrow, adipose tissue, or lung tissue mesenchymal stem cells (1 × 10 cells) IV. Lung mechanics, histology, and protein levels of inflammatory mediators and growth factors were analyzed 5 days after mesenchymal stem cells administration. RAW 264.7 cells (a macrophage cell line) were incubated with lipopolysaccharide followed by coculture or not with bone marrow, adipose tissue, and lung tissue mesenchymal stem cells (10 cells/mL medium). Regardless of mesenchymal stem cells source, cells administration improved lung function and reduced alveolar collapse, tissue cellularity, collagen, and elastic fiber content in lung tissue, as well as decreased apoptotic cell counts in liver. Bone marrow and adipose tissue mesenchymal stem cells administration also reduced levels of tumor necrosis factor-α, interleukin-1β, keratinocyte-derived chemokine, transforming growth factor-β, and vascular endothelial growth factor, as well as apoptotic cell counts in lung and kidney, while increasing expression of keratinocyte growth factor in lung tissue

  17. Characterization of Visceral and Subcutaneous Adipose Tissue Transcriptome and Biological Pathways in Pregnant and Non-Pregnant Women: Evidence for Pregnancy-Related Regional-Specific Differences in Adipose Tissue

    PubMed Central

    Mazaki-Tovi, Shali; Vaisbuch, Edi; Tarca, Adi L.; Kusanovic, Juan Pedro; Than, Nandor Gabor; Chaiworapongsa, Tinnakorn; Dong, Zhong; Hassan, Sonia S.; Romero, Roberto

    2015-01-01

    Objective The purpose of this study was to compare the transcriptome of visceral and subcutaneous adipose tissues between pregnant and non-pregnant women. Study Design The transcriptome of paired visceral and abdominal subcutaneous adipose tissues from pregnant women at term and matched non-pregnant women (n = 11) was profiled with the Affymetrix Human Exon 1.0 ST array. Differential expression of selected genes was validated with the use of quantitative reverse transcription–polymerase chain reaction. Results Six hundred forty-four transcripts from 633 known genes were differentially expressed (false discovery rate (FDR) <0.1; fold-change >1.5), while 42 exons from 36 genes showed differential usage (difference in FIRMA scores >2 and FDR<0.1) between the visceral and subcutaneous fat of pregnant women. Fifty-six known genes were differentially expressed between pregnant and non-pregnant subcutaneous fat and three genes in the visceral fat. Enriched biological processes in the subcutaneous adipose tissue of pregnant women were mostly related to inflammation. Conclusion The transcriptome of visceral and subcutaneous fat depots reveals pregnancy-related gene expression and splicing differences in both visceral and subcutaneous adipose tissue. Furthermore, for the first time, alternative splicing in adipose tissue has been associated with regional differences and human parturition. PMID:26636677

  18. Feast and famine: Adipose tissue adaptations for healthy aging.

    PubMed

    Lettieri Barbato, Daniele; Aquilano, Katia

    2016-07-01

    Proper adipose tissue function controls energy balance with favourable effects on metabolic health and longevity. The molecular and metabolic asset of adipose tissue quickly and dynamically readapts in response to nutrient fluctuations. Once delivered into cells, nutrients are managed by mitochondria that represent a key bioenergetics node. A persistent nutrient overload generates mitochondrial exhaustion and uncontrolled reactive oxygen species ((mt)ROS) production. In adipocytes, metabolic/molecular reorganization is triggered culminating in the acquirement of a hypertrophic and hypersecretory phenotype that accelerates aging. Conversely, dietary regimens such as caloric restriction or time-controlled fasting endorse mitochondrial functionality and (mt)ROS-mediated signalling, thus promoting geroprotection. In this perspective view, we argued some important molecular and metabolic aspects related to adipocyte response to nutrient stress. Finally we delineated hypothetical routes by which molecularly and metabolically readapted adipose tissue promotes healthy aging. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Disconnect Between Adipose Tissue Inflammation and Cardiometabolic Dysfunction in Ossabaw Pigs

    PubMed Central

    Vieira-Potter, Victoria J.; Lee, Sewon; Bayless, David S.; Scroggins, Rebecca J.; Welly, Rebecca J.; Fleming, Nicholas J.; Smith, Thomas N.; Meers, Grace M.; Hill, Michael A.; Rector, R. Scott; Padilla, Jaume

    2015-01-01

    Objective The Ossabaw pig is emerging as an attractive model of human cardiometabolic disease due to its size and susceptibility to atherosclerosis, among other characteristics. Here we investigated the relationship between adipose tissue inflammation and metabolic dysfunction in this model. Methods Young female Ossabaw pigs were fed a western-style high-fat diet (HFD) (n=4) or control low-fat diet (LFD) (n=4) for a period of 9 months and compared for cardiometabolic outcomes and adipose tissue inflammation. Results The HFD-fed “OBESE” pigs were 2.5 times heavier (p<0.001) than LFD-fed “LEAN” pigs and developed severe obesity. HFD-feeding caused pronounced dyslipidemia, hypertension, insulin resistance (systemic and adipose) as well as induction of inflammatory genes, impairments in vasomotor reactivity to insulin and atherosclerosis in the coronary arteries. Remarkably, visceral, subcutaneous and perivascular adipose tissue inflammation (via FACS analysis and RT-PCR) was not increased in OBESE pigs, nor were circulating inflammatory cytokines. Conclusions These findings reveal a disconnect between adipose tissue inflammation and cardiometabolic dysfunction induced by western diet feeding in the Ossabaw pig model. PMID:26524201

  20. Sex and depot differences in ex vivo adipose tissue fatty acid storage and glycerol-3-phosphate acyltransferase activity

    PubMed Central

    Morgan-Bathke, Maria; Chen, Liang; Oberschneider, Elisabeth; Harteneck, Debra

    2015-01-01

    Adipose tissue fatty acid storage varies according to sex, adipose tissue depot, and degree of fat gain. However, the mechanism(s) for these variations is not completely understood. We examined whether differences in adipose tissue glycerol-3-phosphate acyltransferase (GPAT) might play a role in these variations. We optimized an enzyme activity assay for total GPAT and GPAT1 activity in human adipose tissue and measured GPAT activity. Omental and subcutaneous adipose tissue was collected from obese and nonobese adults for measures of GPAT and GPAT1 activities, ex vivo palmitate storage, acyl-CoA synthetase (ACS) and diacylglycerol-acyltransferase (DGAT) activities, and CD36 protein. Total GPAT and GPAT1 activities decreased as a function of adipocyte size in both omental (r = −0.71, P = 0.003) and subcutaneous (r = −0.58, P = 0.04) fat. The relative contribution of GPAT1 to total GPAT activity increased as a function of adipocyte size, accounting for up to 60% of GPAT activity in those with the largest adipocytes. We found strong, positive correlations between ACS, GPAT, and DGAT activities for both sexes and depots (r values 0.58–0.91) and between these storage factors and palmitate storage rates into TAG (r values 0.55–0.90). We conclude that: 1) total GPAT activity decreases as a function of adipocyte size; 2) GPAT1 can account for over half of adipose GPAT activity in hypertrophic obesity; and 3) ACS, GPAT, and DGAT are coordinately regulated. PMID:25738782

  1. Reduced Adipose Tissue Oxygenation in Human Obesity

    PubMed Central

    Pasarica, Magdalena; Sereda, Olga R.; Redman, Leanne M.; Albarado, Diana C.; Hymel, David T.; Roan, Laura E.; Rood, Jennifer C.; Burk, David H.; Smith, Steven R.

    2009-01-01

    OBJECTIVE— Based on rodent studies, we examined the hypothesis that increased adipose tissue (AT) mass in obesity without an adequate support of vascularization might lead to hypoxia, macrophage infiltration, and inflammation. RESEARCH DESIGN AND METHODS— Oxygen partial pressure (AT pO2) and AT temperature in abdominal AT (9 lean and 12 overweight/obese men and women) was measured by direct insertion of a polarographic Clark electrode. Body composition was measured by dual-energy X-ray absorptiometry, and insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp. Abdominal subcutaneous tissue was used for staining, quantitative RT-PCR, and chemokine secretion assay. RESULTS— AT pO2 was lower in overweight/obese subjects than lean subjects (47 ± 10.6 vs. 55 ± 9.1 mmHg); however, this level of pO2 did not activate the classic hypoxia targets (pyruvate dehydrogenase kinase and vascular endothelial growth factor [VEGF]). AT pO2 was negatively correlated with percent body fat (R = −0.50, P < 0.05). Compared with lean subjects, overweight/obese subjects had 44% lower capillary density and 58% lower VEGF, suggesting AT rarefaction (capillary drop out). This might be due to lower peroxisome proliferator–activated receptor γ1 and higher collagen VI mRNA expression, which correlated with AT pO2 (P < 0.05). Of clinical importance, AT pO2 negatively correlated with CD68 mRNA and macrophage inflammatory protein 1α secretion (R = −0.58, R = −0.79, P < 0.05), suggesting that lower AT pO2 could drive AT inflammation in obesity. CONCLUSIONS— Adipose tissue rarefaction might lie upstream of both low AT pO2 and inflammation in obesity. These results suggest novel approaches to treat the dysfunctional AT found in obesity. PMID:19074987

  2. Obesity-induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease

    PubMed Central

    Fuster, Jose J.; Ouchi, Noriyuki; Gokce, Noyan; Walsh, Kenneth

    2016-01-01

    Obesity is causally linked with the development of cardiovascular disorders. Accumulating evidence indicates that cardiovascular disease is the “collateral damage” of obesity-driven adipose tissue dysfunction that promotes a chronic inflammatory state within the organism. Adipose tissues secrete bioactive substances, referred to as adipokines, which largely function as modulators of inflammation. The microenvironment of adipose tissue will affect the adipokine secretome, having actions on remote tissues. Obesity typically leads to the upregulation of pro-inflammatory adipokines and the downregulation of anti-inflammatory adipokines, thereby contributing to the pathogenesis of cardiovascular diseases. In this review, we focus on the microenvironment of adipose tissue and how it influences cardiovascular disorders, including atherosclerosis and ischemic heart diseases, through the systemic actions of adipokines. PMID:27230642

  3. Abdominal subcutaneous adipose tissue: a favorable adipose depot for diabetes?

    PubMed

    Chen, Peizhu; Hou, Xuhong; Hu, Gang; Wei, Li; Jiao, Lei; Wang, Hongmei; Chen, Siyu; Wu, Jingzhu; Bao, Yuqian; Jia, Weiping

    2018-06-26

    Previous studies have documented that visceral adipose tissue is positively associated with the risk of diabetes. However, the association of subcutaneous adipose tissue with diabetes risk is still in dispute. We aimed to assess the associations between different adipose distributions and the risk of newly diagnosed diabetes in Chinese adults. The Shanghai Nicheng Cohort Study was conducted among Chinese adults aged 45-70 years. The baseline data of 12,137 participants were analyzed. Subcutaneous and visceral fat area (SFA and VFA) were measured by magnetic resonance imaging. Diabetes was newly diagnosed using a 75 g oral glucose tolerance test. The multivariable-adjusted odds ratios (OR) and 95% confidence intervals (CI) of newly diagnosed diabetes per 1-standard deviation increase in SFA and VFA were 1.29 (1.19-1.39) and 1.61 (1.49-1.74) in men, and 1.10 (1.03-1.18) and 1.56 (1.45-1.67) in women, respectively. However, the association between SFA and newly diagnosed diabetes disappeared in men and was reversed in women (OR 0.86 [95% CI, 0.78-0.94]) after additional adjustment for body mass index (BMI) and VFA. The positive association between VFA and newly diagnosed diabetes remained significant in both sexes after further adjustment for BMI and SFA. Areas under the receiver operating characteristic curve of newly diagnosed diabetes predicted by VFA (0.679 [95% CI, 0.659-0.699] for men and 0.707 [95% CI, 0.690-0.723] for women) were significantly larger than by the other adiposity indicators. SFA was beneficial for lower risk of newly diagnosed diabetes in women but was not associated with newly diagnosed diabetes in men after taking general obesity and visceral obesity into account. VFA, however, was associated with likelihood of newly diagnosed diabetes in both Chinese men and women.

  4. Orosomucoid expression profiles in liver, adipose tissues and serum of lean and obese domestic pigs, Göttingen minipigs and Ossabaw minipigs.

    PubMed

    Rødgaard, Tina; Stagsted, Jan; Christoffersen, Berit Ø; Cirera, Susanna; Moesgaard, Sophia G; Sturek, Michael; Alloosh, Mouhamad; Heegaard, Peter M H

    2013-02-15

    The acute phase protein orosomucoid (ORM) has anti-inflammatory and immunomodulatory effects, and may play an important role in the maintenance of metabolic homeostasis in obesity-induced low-grade inflammation. Even though the pig is a widely used model for obesity related metabolic symptoms, the expression of ORM has not yet been characterized in such pig models. The objective of this study was to investigate the expression of ORM1 mRNA in liver, visceral adipose tissue, subcutaneous adipose tissue (SAT) from the abdomen or retroperitoneal abdominal adipose tissue (RPAT) and SAT from the neck, as well as the serum concentration of ORM protein in three porcine obesity models; the domestic pig, Göttingen minipigs and Ossabaw minipigs. No changes in ORM1 mRNA expression were observed in obese pigs compared to lean pigs in the four types of tissues. However, obese Ossabaw minipigs, but none of the other breeds, showed significantly elevated ORM serum concentrations compared to their lean counterparts. Studies in humans have shown that the expression of ORM was unchanged in adipose tissue depots in obese humans with an increased serum concentration of ORM. Thus in this respect, obese Ossabaw minipigs behave more similarly to obese humans than the other two pig breeds investigated. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Visceral and subcutaneous adipose tissue express and secrete functional alpha2hsglycoprotein (fetuin a) especially in obesity.

    PubMed

    Pérez-Sotelo, Diego; Roca-Rivada, Arturo; Larrosa-García, María; Castelao, Cecilia; Baamonde, Iván; Baltar, Javier; Crujeiras, Ana Belen; Seoane, Luisa María; Casanueva, Felipe F; Pardo, María

    2017-02-01

    The secretion of the hepatokine alpha-2-Heremans-Schmid glycoprotein/Fetuin A, implicated in pathological processes including systemic insulin resistance, by adipose tissue has been recently described. Thus, we have recently identified its presence in white adipose tissue secretomes by mass spectrometry. However, the secretion pattern and function of adipose-derived alpha-2-Heremans-Schmid glycoprotein are poorly understood. The aim of this study is to evaluate the expression and secretion of total and active phosphorylated alpha-2-Heremans-Schmid glycoprotein by adipose tissue from visceral and subcutaneous localizations in animals at different physiological and nutritional status including anorexia and obesity. Alpha-2-Heremans-Schmid glycoprotein expression and secretion in visceral adipose tissue and subcutaneous adipose tissue explants from animals under fasting and exercise training, at pathological situations such as anorexia and obesity, and from human obese individuals were assayed by immunoblotting, quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. We reveal that visceral adipose tissue expresses and secretes more alpha-2-Heremans-Schmid glycoprotein than subcutaneous adipose tissue, and that this secretion is diminished after fasting and exercise training. Visceral adipose tissue from anorectic animals showed reduced alpha-2-Heremans-Schmid glycoprotein secretion; on the contrary, alpha-2-Heremans-Schmid glycoprotein is over-secreted by visceral adipose tissue in the occurrence of obesity. While secretion of active-PhophoSer321α2HSG by visceral adipose tissue is independent of body mass index, we found that the fraction of active-alpha-2-Heremans-Schmid glycoprotein secreted by subcutaneous adipose tissue increments significantly in situations of obesity. Functional studies show that the inhibition of adipose-derived alpha-2-Heremans-Schmid glycoprotein increases insulin sensitivity in differentiated adipocytes. In

  6. Impaired autophagy activity is linked to elevated ER-stress and inflammation in aging adipose tissue

    PubMed Central

    Ghosh, Amiya Kumar; Mau, Theresa; O'Brien, Martin; Garg, Sanjay; Yung, Raymond

    2016-01-01

    Adipose tissue dysfunction in aging is associated with inflammation, metabolic syndrome and other diseases. We propose that impaired protein homeostasis due to compromised lysosomal degradation (micro-autophagy) might promote aberrant ER stress response and inflammation in aging adipose tissue. Using C57BL/6 mouse model, we demonstrate that adipose tissue-derived stromal vascular fraction (SVF) cells from old (18-20 months) mice have reduced expression of autophagy markers as compared to the younger (4-6 months) cohort. Elevated expressions of ER-stress marker CHOP and autophagy substrate SQSTM1/p62 are observed in old SVFs compared to young, when treated with either vehicle or with thapsigargin (Tg), an ER stress inducer. Treatment with bafilomycin A1 (Baf), a vacuolar-type H (+)-ATPase, or Tg elevated expressions of CHOP, and SQSTM1/p62 and LC-3-II, in 3T3-L1-preadipocytes. We also demonstrate impaired autophagy activity in old SVFs by analyzing increased accumulation of autophagy substrates LC3-II and p62. Compromised autophagy activity in old SVFs is correlated with enhanced release of pro-inflammatory cytokines IL-6 and MCP-1. Finally, SVFs from calorie restricted old mice (CR-O) have shown enhanced autophagy activity compared to ad libitum fed old mice (AL-O). Our results support the notion that diminished autophagy activity with aging contributes to increased adipose tissue ER stress and inflammation. PMID:27777379

  7. The Role of Physical Exercise to Improve the Browning of White Adipose Tissue via POMC Neurons.

    PubMed

    Rodrigues, Kellen C da Cruz; Pereira, Rodrigo M; de Campos, Thaís D P; de Moura, Rodrigo F; da Silva, Adelino S R; Cintra, Dennys E; Ropelle, Eduardo R; Pauli, José R; de Araújo, Michel B; de Moura, Leandro P

    2018-01-01

    Obesity is a public health issue that affects more than 600 million adults worldwide. The disease is characterized by fat accumulation, mainly in the abdominal area. The human body is mainly composed of two types of adipose tissue: white adipose tissue (WAT) and brown adipose tissue (BAT); however, the browning process generates a different type of brown fat-like adipocyte in WAT, which similar to BAT has thermogenic capacity by activating UCP-1. The hypothalamic arcuate nucleus plays an important role in WAT browning via POMC neurons, which are influenced by synergistic insulin and leptin signaling. On the other hand, stimulation of AgRP neurons suppresses WAT browning. The hypothalamic inflammatory process that occurs in obesity impairs insulin and leptin signaling in this tissue and, consequently, can decrease WAT browning. In addition, practicing physical exercise may be a great strategy for triggering the browning process since it reduces hypothalamic inflammation and increases POMC neurons gene expression. Moreover, physical exercise stimulates irisin gene expression, which has an important impact on thermogenesis, which in turn culminates in increased gene expression of proteins such as UCP-1 and Cidea, which are related to WAT browning. Furthermore, thermogenetic activation of WAT leads to increased energy expenditure, favoring obesity treatment. Therefore, this mini-review aimed to highlight the most recent studies that link the control of hypothalamic activity with the browning metabolism of adipose tissue in response to physical exercise.

  8. Methods for quantifying adipose tissue insulin resistance in overweight/obese humans.

    PubMed

    Ter Horst, K W; van Galen, K A; Gilijamse, P W; Hartstra, A V; de Groot, P F; van der Valk, F M; Ackermans, M T; Nieuwdorp, M; Romijn, J A; Serlie, M J

    2017-08-01

    Insulin resistance of adipose tissue is an important feature of obesity-related metabolic disease. However, assessment of lipolysis in humans requires labor-intensive and expensive methods, and there is limited validation of simplified measurement methods. We aimed to validate simplified methods for the quantification of adipose tissue insulin resistance against the assessment of insulin sensitivity of lipolysis suppression during hyperinsulinemic-euglycemic clamp studies. We assessed the insulin-mediated suppression of lipolysis by tracer-dilution of [1,1,2,3,3- 2 H 5 ]glycerol during hyperinsulinemic-euglycemic clamp studies in 125 overweight or obese adults (85 men, 40 women; age 50±11 years; body mass index 38±7 kg m -2 ). Seven indices of adipose tissue insulin resistance were validated against the reference measurement method. Low-dose insulin infusion resulted in suppression of the glycerol rate of appearance ranging from 4% (most resistant) to 85% (most sensitive), indicating a good range of adipose tissue insulin sensitivity in the study population. The reference method correlated with (1) insulin-mediated suppression of plasma glycerol concentrations (r=0.960, P<0.001), (2) suppression of plasma non-esterified fatty acid (NEFA) concentrations (r=0.899, P<0.001), (3) the Adipose tissue Insulin Resistance (Adipo-IR) index (fasting plasma insulin-NEFA product; r=-0.526, P<0.001), (4) the fasting plasma insulin-glycerol product (r=-0.467, P<0.001), (5) the Adipose Tissue Insulin Resistance Index (fasting plasma insulin-basal lipolysis product; r=0.460, P<0.001), (6) the Quantitative Insulin Sensitivity Check Index (QUICKI)-NEFA index (r=0.621, P<0.001), and (7) the QUICKI-glycerol index (r=0.671, P<0.001). Bland-Altman plots showed no systematic errors for the suppression indices but proportional errors for all fasting indices. Receiver-operator characteristic curves confirmed that all indices were able to detect adipose tissue insulin resistance (area

  9. Adiposity, lipogenesis, and fatty acid composition of subcutaneous and intramuscular adipose tissues of Brahman and Angus crossbred cattle.

    PubMed

    Campbell, E M G; Sanders, J O; Lunt, D K; Gill, C A; Taylor, J F; Davis, S K; Riley, D G; Smith, S B

    2016-04-01

    The objective of this study was to demonstrate differences in aspects of adipose tissue cellularity, lipid metabolism, and fatty and cholesterol composition in Angus and Brahman crossbred cattle. We hypothesized that in vitro measures of lipogenesis would be greater in three-fourths Angus progeny than in three-fourths Brahman progeny, especially in intramuscular (i.m.) adipose tissue. Progeny ( = 227) were fed a standard, corn-based diet for approximately 150 d before slaughter. Breed was considered to be the effect of interest and was forced into the model. There were 9 breed groups including all 4 kinds of three-fourths Angus calves: Angus bulls Angus-sired F cows ( = 32), Angus bulls Brahman-sired F cows ( = 20), Brahman-sired F bulls Angus cows ( = 24), and Angus-sired F bulls Angus cows ( = 20). There were all 4 kinds of three-fourths Brahman calves: Brahman bulls Brahman-sired F cows ( = 21), Brahman bulls Angus-sired F cows ( = 43), Brahman-sired F bulls Brahman cows ( = 26), and Angus-sired F bulls Brahman cows ( = 13). Additionally, F calves (one-half Brahman and one-half Angus) were produced only from Brahman-sired F bulls Angus-sired F cows ( = 28). Contrasts were calculated when breed was an important fixed effect, using the random effect family(breed) as the error term. Most contrasts were nonsignificant ( > 0.10). Those that were significant ( < 0.05) included cholesterol concentration of subcutaneous (s.c.) adipose tissue (three-fourths Angus > F, three-fourths Brahman > F, and three-fourths crossbred progeny combined > F), s.c. adipocyte volume (three-fourths Angus > F and three-fourths bloods combined > F), lipogenesis from acetate in s.c. adipose tissue (three-fourths Brahman calves from Brahman dams > three-fourths Brahman calves from F dams), and percentage 18:3-3 in s.c. adipose tissue (three-fourths Brahman calves from Brahman-sired F dams < three-fourths Brahman calves from Angus-sired F dams). Intramuscular adipocyte volume ( < 0.001) was

  10. Magnetic Resonance Imaging of Human Tissue-Engineered Adipose Substitutes

    PubMed Central

    Proulx, Maryse; Aubin, Kim; Lagueux, Jean; Audet, Pierre; Auger, Michèle

    2015-01-01

    Adipose tissue (AT) substitutes are being developed to answer the strong demand in reconstructive surgery. To facilitate the validation of their functional performance in vivo, and to avoid resorting to excessive number of animals, it is crucial at this stage to develop biomedical imaging methodologies, enabling the follow-up of reconstructed AT substitutes. Until now, biomedical imaging of AT substitutes has scarcely been reported in the literature. Therefore, the optimal parameters enabling good resolution, appropriate contrast, and graft delineation, as well as blood perfusion validation, must be studied and reported. In this study, human adipose substitutes produced from adipose-derived stem/stromal cells using the self-assembly approach of tissue engineering were implanted into athymic mice. The fate of the reconstructed AT substitutes implanted in vivo was successfully followed by magnetic resonance imaging (MRI), which is the imaging modality of choice for visualizing soft ATs. T1-weighted images allowed clear delineation of the grafts, followed by volume integration. The magnetic resonance (MR) signal of reconstructed AT was studied in vitro by proton nuclear magnetic resonance (1H-NMR). This confirmed the presence of a strong triglyceride peak of short longitudinal proton relaxation time (T1) values (200±53 ms) in reconstructed AT substitutes (total T1=813±76 ms), which establishes a clear signal difference between adjacent muscle, connective tissue, and native fat (total T1 ∼300 ms). Graft volume retention was followed up to 6 weeks after implantation, revealing a gradual resorption rate averaging at 44% of initial substitute's volume. In addition, vascular perfusion measured by dynamic contrast-enhanced-MRI confirmed the graft's vascularization postimplantation (14 and 21 days after grafting). Histological analysis of the grafted tissues revealed the persistence of numerous adipocytes without evidence of cysts or tissue necrosis. This study

  11. The role of adenosine monophosphate kinase in remodeling white adipose tissue metabolism.

    PubMed

    Gaidhu, Mandeep Pinky; Ceddia, Rolando Bacis

    2011-04-01

    Recent evidence indicates that the enzyme adenosine monophosphate (AMP) kinase exerts important fat-reducing effects in the adipose tissue, which has created great interest in this enzyme as a potential target for obesity treatment. This review summarizes our findings that chronic AMP kinase activation remodels adipocyte glucose and lipid metabolism and enhances the ability of adipose tissue to dissipate energy within itself and reduce adiposity.

  12. [Cancer cachexia and white adipose tissue browning].

    PubMed

    Zhang, S T; Yang, H M

    2016-08-01

    Cancer cachexia occurs in a majority of advanced cancer patients. These patients with impaired physical function are unable to tolerance cancer treatment well and have a significantly reduced survival rate. Currently, there is no effective clinical treatment available for cancer cachexia, therefore, it is necessary to clarify the molecular mechanisms of cancer cachexia, moreover, new therapeutic targets for cancer cachexia treatment are urgently needed. Very recent studies suggest that, during cancer cachexia, white adipose tissue undergo a 'browning' process, resulting in increased lipid mobilization and energy expenditure, which may be necessary for the occurrence of cancer cachexia. In this article, we summarize the definition and characteristics of cancer cachexia and adipose tissue 'browning', then, we discuss the new study directions presented in latest research.

  13. Activation of natriuretic peptides and the sympathetic nervous system following Roux-en-Y gastric bypass is associated with gonadal adipose tissues browning

    PubMed Central

    Neinast, Michael D.; Frank, Aaron P.; Zechner, Juliet F.; Li, Quanlin; Vishvanath, Lavanya; Palmer, Biff F.; Aguirre, Vincent; Gupta, Rana K.; Clegg, Deborah J.

    2015-01-01

    Objective Roux-en-Y gastric bypass (RYGB) is an effective method of weight loss and remediation of type-2 diabetes; however, the mechanisms leading to these improvements are unclear. Additionally, adipocytes within white adipose tissue (WAT) depots can manifest characteristics of brown adipocytes. These ‘BRITE/beige’ adipocytes express uncoupling protein 1 (UCP1) and are associated with improvements in glucose homeostasis and protection from obesity. Interestingly, atrial and B-type natriuretic peptides (NPs) promote BRITE/beige adipocyte enrichment of WAT depots, an effect known as “browning.” Here, we investigate the effect of RYGB surgery on NP, NP receptors, and browning in the gonadal adipose tissues of female mice. We propose that such changes may lead to improvements in metabolic homeostasis commonly observed following RYGB. Methods Wild type, female, C57/Bl6 mice were fed a 60% fat diet ad libitum for six months. Mice were divided into three groups: Sham operated (SO), Roux-en-Y gastric bypass (RYGB), and Weight matched, sham operated (WM-SO). Mice were sacrificed six weeks following surgery and evaluated for differences in body weight, glucose homeostasis, adipocyte morphology, and adipose tissue gene expression. Results RYGB and calorie restriction induced similar weight loss and improved glucose metabolism without decreasing food intake. β3-adrenergic receptor expression increased in gonadal adipose tissue, in addition to Nppb (BNP), and NP receptors, Npr1, and Npr2. The ratio of Npr1:Npr3 and Npr2:Npr3 increased in RYGB, but not WM-SO groups. Ucp1 protein and mRNA, as well as additional markers of BRITE/beige adipose tissue and lipolytic genes increased in RYGB mice to a greater extent than calorie-restricted mice. Conclusions Upregulation of Nppb, Npr1, Npr2, and β3-adrenergic receptors in gonadal adipose tissue following RYGB was associated with increased markers of browning. This browning of gonadal adipose tissue may underpin the positive

  14. Cell proliferation and anti-apoptosis: Essential processes for recruitment of the full thermogenic capacity of brown adipose tissue.

    PubMed

    Nedergaard, Jan; Wang, Yanling; Cannon, Barbara

    2018-06-13

    In mice living under normal animal house conditions, the brown adipocytes in classical brown adipose tissue depots are already essentially fully differentiated: UCP1 mRNA and UCP1 protein levels are practically saturated. This means that any further recruitment - in response to cold exposure or any other browning agent - does not result in significant augmentation of these parameters. This may easily be construed to indicate that classical brown adipose tissue cannot be further recruited. However, this is far from the case: the capacity for further recruitment instead lies in the ability of the tissue to increase the number of brown-fat cells, a remarkable and highly controlled physiological recruitment process. We have compiled here the available data concerning the unique ability of norepinephrine to increase cell proliferation and inhibit apoptosis in brown adipocytes. Adrenergically stimulated cell proliferation is fully mediated via β 1 -adrenoceptors and occurs through activation of stem cells in the tissue; intracellular mediation of the signal involves cAMP and protein kinase A activation, but activation of Erk1/2 is not part of the pathway. Apoptosis inhibition in brown adipocytes is induced by both β- and α 1 -adrenergic receptors and here the intracellular pathway includes Erk1/2 activation. This ability of norepinephrine to increase cell number in a dormant tissue provides possibilities to augment the metabolic capacity of brown adipose tissue, also for therapeutic purposes. Copyright © 2018. Published by Elsevier B.V.

  15. Adipose tissue IL-8 is increased in normal weight women after menopause and reduced after gastric bypass surgery in obese women.

    PubMed

    Alvehus, Malin; Simonyte, Kotryna; Andersson, Therése; Söderström, Ingegerd; Burén, Jonas; Rask, Eva; Mattsson, Cecilia; Olsson, Tommy

    2012-11-01

    The menopausal transition is characterized by increased body fat accumulation, including redistribution from peripheral to central fat depots. This distribution is associated with an increased risk of type 2 diabetes and cardiovascular disease that are linked to low-grade inflammation. We determined whether postmenopausal women have higher levels of inflammatory markers, compared with premenopausal women. We also wanted to determine whether these markers are reduced by stable weight loss in obese women. Anthropometric data, blood samples and subcutaneous adipose tissue biopsies were collected from normal weight premenopausal and postmenopausal women and obese women before and 2 years after gastric bypass (GBP) surgery. Serum protein levels and adipose tissue gene expression of inflammatory markers were investigated. IL-8 expression in adipose tissue and circulating levels were higher in postmenopausal vs premenopausal women. IL-8 expression was associated with waist circumference, independent of menopausal status. IL-6 expression and serum levels of monocyte chemoattractant protein (MCP)-1 were higher in postmenopausal vs premenopausal women. Two years after GBP surgery, adipose expression of IL-8, tumour necrosis factor-α and MCP-1 decreased significantly. Serum insulin levels were associated with inflammation-related gene expression before GBP surgery, but these associations disappeared after surgery. Postmenopausal women have an increased inflammatory response in the subcutaneous fat and circulation. Inflammatory markers in adipose tissue decreased significantly after surgery-induced weight loss. This effect may be beneficial for metabolic control and reduced cardiovascular risk after weight loss. © 2011 Blackwell Publishing Ltd.

  16. Human bone marrow harbors cells with neural crest-associated characteristics like human adipose and dermis tissues

    PubMed Central

    Coste, Cécile; Neirinckx, Virginie; Sharma, Anil; Agirman, Gulistan; Rogister, Bernard; Foguenne, Jacques; Lallemend, François

    2017-01-01

    Adult neural crest stem-derived cells (NCSC) are of extraordinary high plasticity and promising candidates for use in regenerative medicine. Several locations such as skin, adipose tissue, dental pulp or bone marrow have been described in rodent, as sources of NCSC. However, very little information is available concerning their correspondence in human tissues, and more precisely for human bone marrow. The main objective of this study was therefore to characterize NCSC from adult human bone marrow. In this purpose, we compared human bone marrow stromal cells to human adipose tissue and dermis, already described for containing NCSC. We performed comparative analyses in terms of gene and protein expression as well as functional characterizations. It appeared that human bone marrow, similarly to adipose tissue and dermis, contains NESTIN+ / SOX9+ / TWIST+ / SLUG+ / P75NTR+ / BRN3A+/ MSI1+/ SNAIL1+ cells and were able to differentiate into melanocytes, Schwann cells and neurons. Moreover, when injected into chicken embryos, all those cells were able to migrate and follow endogenous neural crest migration pathways. Altogether, the phenotypic characterization and migration abilities strongly suggest the presence of neural crest-derived cells in human adult bone marrow. PMID:28683107

  17. Insulin signaling, inflammation, and lipolysis in subcutaneous adipose tissue of transition dairy cows either overfed energy during the prepartum period or fed a controlled-energy diet.

    PubMed

    Mann, S; Nydam, D V; Abuelo, A; Leal Yepes, F A; Overton, T R; Wakshlag, J J

    2016-08-01

    Adipose tissue mobilization is a hallmark of the transition period in dairy cows. Cows overfed energy during the dry period have higher concentrations of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) compared with cows fed a controlled-energy diet prepartum. The reason for an increase in blood NEFA concentrations at the level of adipose tissue in cows overfed energy has not been fully elucidated. One hypothesis is that cows with high BHB concentrations suffer from adipose tissue-specific insulin resistance, leading to higher rates of adipose tissue mobilization in the postpartum period. To test this hypothesis, subcutaneous adipose tissue biopsies of cows overfed energy in excess of predicted requirements by 50% in the dry period, and that had high concentrations of blood BHB postpartum (group H; n=12), were used. Findings were compared with results of biopsies from cows fed a controlled-energy diet and with low BHB concentrations postpartum (group C; n=12) to create the biggest contrast in BHB concentrations. Subcutaneous adipose tissue biopsies were obtained before and 60 min after an intravenous glucose challenge (0.25 g/kg of glucose) at 28 and 10 d before expected calving as well as on d 4 and 21 postpartum. Phosphorylation of protein kinase B, extracellular signal-regulated kinase, and hormone-sensitive lipase was determined before and after glucose infusion by Western blot. Western blot was also used to assess the baseline protein abundance of peroxisome proliferator-activated receptor gamma and insulin receptor β-subunit. In addition, gene expression of fatty acid synthase, adiponectin, monocyte chemoattractant protein 1, and tumor necrosis factor α was determined by real-time quantitative reverse-transcription PCR. Backfat thickness was determined in the thurl area by ultrasonography. Cows in group H showed a greater degree of lipogenesis prepartum, but no differences were found in lipolytic enzyme activity postpartum compared with cows

  18. Mechanisms of Chronic State of Inflammation as Mediators That Link Obese Adipose Tissue and Metabolic Syndrome

    PubMed Central

    Fuentes, Eduardo; Fuentes, Francisco; Badimon, Lina; Palomo, Iván

    2013-01-01

    The metabolic syndrome is a cluster of cardiometabolic alterations that include the presence of arterial hypertension, insulin resistance, dyslipidemia, and abdominal obesity. Obesity is associated with a chronic inflammatory response, characterized by abnormal adipokine production, and the activation of proinflammatory signalling pathways resulting in the induction of several biological markers of inflammation. Macrophage and lymphocyte infiltration in adipose tissue may contribute to the pathogenesis of obesity-mediated metabolic disorders. Adiponectin can either act directly on macrophages to shift polarization and/or prime human monocytes into alternative M2-macrophages with anti-inflammatory properties. Meanwhile, the chronic inflammation in adipose tissue is regulated by a series of transcription factors, mainly PPARs and C/EBPs, that in conjunction regulate the expression of hundreds of proteins that participate in the metabolism and storage of lipids and, as such, the secretion by adipocytes. Therefore, the management of the metabolic syndrome requires the development of new therapeutic strategies aimed to alter the main genetic pathways involved in the regulation of adipose tissue metabolism. PMID:23843680

  19. Global adiposity and thickness of intraperitoneal and mesenteric adipose tissue depots are increased in women with polycystic ovary syndrome (PCOS).

    PubMed

    Borruel, Susana; Fernández-Durán, Elena; Alpañés, Macarena; Martí, David; Alvarez-Blasco, Francisco; Luque-Ramírez, Manuel; Escobar-Morreale, Héctor F

    2013-03-01

    Sexual dimorphism suggests a role for androgens in body fat distribution. Women with polycystic ovary syndrome (PCOS), a mainly androgen excess disorder, often present with abdominal obesity and visceral adiposity. We hypothesized that women with PCOS have a masculinized body fat distribution favoring the deposition of fat in visceral and organ-specific adipose tissue depots. This was a case-control study. The study was conducted at an academic hospital. Women with PCOS (n = 55), women without androgen excess (n = 25), and men (n = 26) presenting with similar body mass index participated in the study. There were no interventions. Ultrasound measurements of adipose tissue depots including sc (minimum and maximum), preperitoneal, ip, mesenteric, epicardial, and perirenal fat thickness were obtained and total body fat mass was estimated using a body fat monitor. Men and patients with PCOS had increased amounts of total body fat compared with control women. Men had increased thickness of intraabdominal adipose tissue depots compared with the control women, with the women with PCOS showing intermediate values that were also higher than those of control women in the case of ip and mesenteric fat thickness and was close to reaching statistical significance in the case of epicardial fat thickness. Women with PCOS also showed increased minimum sc fat thickness compared with the control women. Obesity increased the thickness of all of the adipose tissue depots in the 3 groups of subjects. Women with PCOS have higher global adiposity and increased amounts of visceral adipose tissue compared with control women, especially in the ip and mesenteric depots.

  20. White Adipose Tissue Is a Reservoir for Memory T Cells and Promotes Protective Memory Responses to Infection.

    PubMed

    Han, Seong-Ji; Glatman Zaretsky, Arielle; Andrade-Oliveira, Vinicius; Collins, Nicholas; Dzutsev, Amiran; Shaik, Jahangheer; Morais da Fonseca, Denise; Harrison, Oliver J; Tamoutounour, Samira; Byrd, Allyson L; Smelkinson, Margery; Bouladoux, Nicolas; Bliska, James B; Brenchley, Jason M; Brodsky, Igor E; Belkaid, Yasmine

    2017-12-19

    White adipose tissue bridges body organs and plays a fundamental role in host metabolism. To what extent adipose tissue also contributes to immune surveillance and long-term protective defense remains largely unknown. Here, we have shown that at steady state, white adipose tissue contained abundant memory lymphocyte populations. After infection, white adipose tissue accumulated large numbers of pathogen-specific memory T cells, including tissue-resident cells. Memory T cells in white adipose tissue expressed a distinct metabolic profile, and white adipose tissue from previously infected mice was sufficient to protect uninfected mice from lethal pathogen challenge. Induction of recall responses within white adipose tissue was associated with the collapse of lipid metabolism in favor of antimicrobial responses. Our results suggest that white adipose tissue represents a memory T cell reservoir that provides potent and rapid effector memory responses, positioning this compartment as a potential major contributor to immunological memory. Published by Elsevier Inc.

  1. Quantifying the effect of adipose tissue in muscle oximetry by near infrared spectroscopy

    PubMed Central

    Nasseri, Nassim; Kleiser, Stefan; Ostojic, Daniel; Karen, Tanja; Wolf, Martin

    2016-01-01

    Change of muscle tissue oxygen saturation (StO2), due to exercise, measured by near infrared spectroscopy (NIRS) is known to be lower for subjects with higher adipose tissue thickness. This is most likely not physiological but caused by the superficial fat and adipose tissue. In this paper we assessed, in vitro, the influence of adipose tissue thickness on muscle StO2, measured by NIRS oximeters. We measured StO2 of a liquid phantom by 3 continuous wave (CW) oximeters (Sensmart Model X-100 Universal Oximetry System, INVOS 5100C, and OxyPrem v1.3), as well as a frequency-domain oximeter, OxiplexTS, through superficial layers with 4 different thicknesses. Later, we employed the results to calibrate OxyPrem v1.3 for adipose tissue thickness in-vivo. PMID:27895999

  2. Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21.

    PubMed

    Chartoumpekis, Dionysios V; Habeos, Ioannis G; Ziros, Panos G; Psyrogiannis, Agathoklis I; Kyriazopoulou, Venetsana E; Papavassiliou, Athanasios G

    2011-01-01

    Fibroblast growth factor-21 (FGF21) is a pleiotropic protein involved in glucose, lipid metabolism and energy homeostasis, with main tissues of expression being the liver and adipose tissue. Brown adipose tissue (BAT) is responsible for cold-induced thermogenesis in rodents. The role of FGF21 in BAT biology has not been investigated. In the present study, wild-type C57BL/6J mice as well as a brown adipocyte cell line were used to explore the potential role of cold exposure and β3-adrenergic stimulation in the expression of FGF21 in BAT. Our results demonstrate that short-term exposure to cold, as well as β3-adrenergic stimulation, causes a significant induction of FGF21 mRNA levels in BAT, without a concomitant increase in FGF21 plasma levels. This finding opens new routes for the potential use of pharmaceuticals that could induce FGF21 and, hence, activate BAT thermogenesis.

  3. Loss of ADAMTS5 enhances brown adipose tissue mass and promotes browning of white adipose tissue via CREB signaling.

    PubMed

    Bauters, Dries; Cobbaut, Mathias; Geys, Lotte; Van Lint, Johan; Hemmeryckx, Bianca; Lijnen, H Roger

    2017-07-01

    A potential strategy to treat obesity - and the associated metabolic consequences - is to increase energy expenditure. This could be achieved by stimulating thermogenesis through activation of brown adipose tissue (BAT) and/or the induction of browning of white adipose tissue (WAT). Over the last years, it has become clear that several metalloproteinases play an important role in adipocyte biology. Here, we investigated the potential role of ADAMTS5. Mice deficient in ADAMTS5 ( Adamts5 -/- ) and wild-type ( Adamts5 +/+ ) littermates were kept on a standard of Western-type diet for 15 weeks. Energy expenditure and heat production was followed by indirect calorimetry. To activate thermogenesis, mice were treated with the β3-adrenergic receptor (β 3 -AR) agonist CL-316,243 or alternatively, exposed to cold for 2 weeks. Compared to Adamts5 +/+ mice, Adamts5 -/- mice have significantly more interscapular BAT and marked browning of their subcutaneous (SC) WAT. Thermogenic pathway analysis indicated, in the absence of ADAMTS5, enhanced β 3 -AR signaling via activation of the cAMP response element-binding protein (CREB). Additional β 3 -AR stimulation with CL-316,243 promoted browning of WAT in Adamts5 +/+ mice but had no additive effect in Adamts5 -/- mice. However, cold exposure induced more pronounced browning of WAT in Adamts5 -/- mice. These data indicate that ADAMTS5 plays a functional role in development of BAT and browning of WAT. Hence, selective targeting of ADAMTS5 could provide a novel therapeutic strategy for treatment/prevention of obesity and metabolic diseases.

  4. Fructose-rich diet differently affects angiotensin II receptor content in the nucleus and a plasma membrane fraction of visceral adipose tissue.

    PubMed

    Bundalo, Maja; Djordjevic, Ana; Bursac, Biljana; Zivkovic, Maja; Koricanac, Goran; Stanković, Aleksandra

    2017-12-01

    The adipose tissue renin-angiotensin system (RAS) is proposed to be a pathophysiological link between adipose tissue dysregulation and metabolic disorders induced by a fructose-rich diet (FRD). RAS can act intracellularly. We hypothesized that adipocyte nuclear membranes possess angiotensin receptor types 1 and 2 (AT1R and AT2R), which couple to nuclear signaling pathways and regulate oxidative gene expression under FRD conditions. We analyzed the effect of consumption of 10% fructose solution for 9 weeks on biochemical parameters, adipocyte morphology, and expression of AT1R, AT2R, AT1R-associated protein (ATRAP), NADPH oxidase 4 (NOX4), matrix metalloproteinase-9 (MMP-9), and manganese superoxide dismutase (MnSOD) in adipose tissue of Wistar rats. We detected AT1R and AT2R in the nuclear fraction. FRD reduced the level of angiotensin receptors in the nucleus, while increased AT1R and decreased AT2R levels were observed in the plasma membrane. FRD increased the ATRAP mRNA level and decreased MnSOD mRNA and protein levels. No significant differences were observed for MMP-9 and NOX4 mRNA levels. These findings coincided with hyperleptinemia, elevated blood pressure and triglycerides, and unchanged visceral adipose tissue mass and morphology in FRD rats. Besides providing evidence for nuclear localization of angiotensin receptors in visceral adipose tissue, this study demonstrates the different effects of FRD on AT1R expression in different cellular compartments. Elevated blood pressure and decreased antioxidant capacity in visceral fat of fructose-fed rats were accompanied by an increased AT1R level in the plasma membrane, while upregulation of ATRAP and a decrease of nuclear membrane AT1R suggest an increased capacity for attenuation of excessive AT1R signaling and visceral adiposity.

  5. The preferred magnetic resonance imaging planes in quantifying visceral adipose tissue and evaluating cardiovascular risk.

    PubMed

    Liu, K H; Chan, Y L; Chan, J C N; Chan, W B; Kong, M O; Poon, M Y

    2005-09-01

    Magnetic Resonance Imaging (MRI) is a well-accepted non-invasive method in the quantification of visceral adipose tissue. However, a standard method of measurement has not yet been universally agreed. The objectives of the present study were 2-fold, firstly, to identify the imaging plane in the Chinese population which gives the best correlation with total visceral adipose tissue volume and cardiovascular risk factors; and secondly to compare the correlations between single-slice and multiple-slice approach with cardiovascular risk factors. Thirty-seven Chinese subjects with no known medical history underwent MRI examination for quantifying total visceral adipose tissue volume. The visceral adipose tissue area at five axial imaging levels within abdomen and pelvis were determined. All subjects had blood pressure measured and fasting blood taken for analysis of cardiovascular risk factors. Framingham risk score for each subject was calculated. The imaging plane at the level of 'lower costal margin' (LCM) in both men and women had the highest correlation with total visceral adipose tissue volume (r = 0.97 and 0.99 respectively). The visceral adipose tissue area at specific imaging levels showed higher correlations with various cardiovascular risk factors and Framingham risk score than total visceral adipose tissue volume. The visceral adipose tissue area at 'umbilicus' (UMB) level in men (r = 0.88) and LCM level in women (r = 0.70) showed the best correlation with Framingham risk score. The imaging plane at the level of LCM is preferred for reflecting total visceral adipose tissue volume in Chinese subjects. For investigating the association of cardiovascular risk with visceral adipose tissue in MRI-obesity research, the single-slice approach is superior to the multiple-slice approach, with the level of UMB in men and LCM in women as the preferred imaging planes.

  6. Defining adipose tissue-derived stem cells in tissue and in culture.

    PubMed

    Lin, Ching-Shwun; Xin, Zhong-Cheng; Deng, Chun-Hua; Ning, Hongxiu; Lin, Guiting; Lue, Tom F

    2010-06-01

    Adipose tissue-derived stem cells (ADSC) are routinely isolated from the stromal vascular fraction (SVF) of homogenized adipose tissue. Similar to other types of mesenchymal stem cells (MSC), ADSC remain difficult to define due to the lack of definitive cellular markers. Still, many types of MSC, including ADSC, have been shown to reside in a perivascular location, and increasing evidence shows that both MSC and ADSC may in fact be vascular stem cells (VSC). Locally, these cells differentiate into smooth muscle and endothelial cells that are assembled into newly formed blood vessels during angiogenesis and neovasculogenesis. Additionally, MSC or ADSC can also differentiate into tissue cells such as adipocytes in the adipose tissue. Systematically, MSC or ADSC are recruited to injury sites where they participate in the repair/regeneration of the injured tissue. Due to the vasculature's dynamic capacity for growth and multipotential nature for diversification, VSC in tissue are individually at various stages and on different paths of differentiation. Therefore, when isolated and put in culture, these cells are expected to be heterogeneous in marker expression, renewal capacity, and differentiation potential. Although this heterogeneity of VSC does impose difficulties and cause confusions in basic science studies, its impact on the development of VSC as a therapeutic cell source has not been as apparent, as many preclinical and clinical trials have reported favorable outcomes. With this understanding, ADSC are generally defined as CD34+CD31- although loss of CD34 expression in culture is well documented. In adipose tissue, CD34 is localized to the intima and adventitia of blood vessels but not the media where cells expressing alpha-smooth muscle actin (SMA) exist. By excluding the intima, which contains the CD34+CD31+ endothelial cells, and the media, which contains the CD34-CD31- smooth muscle cells, it leaves the adventitia as the only possible location for the CD34

  7. Plasma and adipose tissue level of angiopoietin-like 7 (ANGPTL7) are increased in obesity and reduced after physical exercise.

    PubMed

    Abu-Farha, Mohamed; Cherian, Preethi; Al-Khairi, Irina; Madhu, Dhanya; Tiss, Ali; Warsam, Samia; Alhubail, Asma; Sriraman, Devarajan; Al-Refaei, Faisal; Abubaker, Jehad

    2017-01-01

    ANGPTL7 is a member of the Angiopoietin-like (ANGPTL) protein family that is composed of eight proteins (1-8). Increasing evidence is associating ANGPTL proteins to obesity and insulin resistance. The biological role of ANGPTL7 is yet to be understood except for a recently proposed role in the pathophysiology of glaucoma. This study was designed to shed light on the function of ANGPTL7 in obesity and its modulation by physical exercise as well as its potential association with lipid profile. A total of 144 subjects were enrolled in this study and finished three months of physical exercise. The participants were classified based on their BMI, 82 subjects were non-obese and 62 obese. ANGPTL7 levels in plasma and adipose tissue were measured by ELISA, RT-PCR and immunohistochemistry. In this study, we showed that ANGPTL7 level was increased in the plasma of obese subjects (1249.05± 130.39 pg/mL) as compared to non-obese (930.34 ± 87.27 pg/mL) (p-Value = 0.032). ANGPTL7 Gene and protein expression levels in adipose tissue also showed over two fold increase. Physical exercise reduced circulating level of ANGPTL7 in the obese subjects to 740.98± 127.18 pg/mL, (p-Value = 0.007). ANGPTL7 expression in adipose tissue was also reduced after exercise. Finally, ANGPTL7 circulating level showed significant association with TG level in the obese subjects (R2 = 0.183, p-Value = 0.03). In conclusion, our data shows for the first time that obesity increases the level of ANGPTL7 in both plasma and adipose tissue. Increased expression of ANGPTL7 might play a minor role in the regulation of TG level in obese subjects either directly or through interaction with other ANGPTL protein members. Physical exercise reduced the level of ANGPTL7 highlighting the potential for targeting this protein as a therapeutic target for regulating dyslipidemia.

  8. Plasma and adipose tissue level of angiopoietin-like 7 (ANGPTL7) are increased in obesity and reduced after physical exercise

    PubMed Central

    Cherian, Preethi; Al-Khairi, Irina; Madhu, Dhanya; Tiss, Ali; Warsam, Samia; Alhubail, Asma; Sriraman, Devarajan; Al-Refaei, Faisal; Abubaker, Jehad

    2017-01-01

    Objective ANGPTL7 is a member of the Angiopoietin-like (ANGPTL) protein family that is composed of eight proteins (1–8). Increasing evidence is associating ANGPTL proteins to obesity and insulin resistance. The biological role of ANGPTL7 is yet to be understood except for a recently proposed role in the pathophysiology of glaucoma. This study was designed to shed light on the function of ANGPTL7 in obesity and its modulation by physical exercise as well as its potential association with lipid profile. Methods A total of 144 subjects were enrolled in this study and finished three months of physical exercise. The participants were classified based on their BMI, 82 subjects were non-obese and 62 obese. ANGPTL7 levels in plasma and adipose tissue were measured by ELISA, RT-PCR and immunohistochemistry. Results In this study, we showed that ANGPTL7 level was increased in the plasma of obese subjects (1249.05± 130.39 pg/mL) as compared to non-obese (930.34 ± 87.27 pg/mL) (p-Value = 0.032). ANGPTL7 Gene and protein expression levels in adipose tissue also showed over two fold increase. Physical exercise reduced circulating level of ANGPTL7 in the obese subjects to 740.98± 127.18 pg/mL, (p-Value = 0.007). ANGPTL7 expression in adipose tissue was also reduced after exercise. Finally, ANGPTL7 circulating level showed significant association with TG level in the obese subjects (R2 = 0.183, p-Value = 0.03). Conclusion In conclusion, our data shows for the first time that obesity increases the level of ANGPTL7 in both plasma and adipose tissue. Increased expression of ANGPTL7 might play a minor role in the regulation of TG level in obese subjects either directly or through interaction with other ANGPTL protein members. Physical exercise reduced the level of ANGPTL7 highlighting the potential for targeting this protein as a therapeutic target for regulating dyslipidemia. PMID:28264047

  9. Soy isoflavones in nutritionally relevant amounts have varied nutrigenomic effects on adipose tissue.

    PubMed

    Giordano, Elena; Dávalos, Alberto; Crespo, Maria Carmen; Tomé-Carneiro, Joao; Gómez-Coronado, Diego; Visioli, Francesco

    2015-01-30

    Soy consumption has been suggested to afford protection from cardiovascular disease (CVD). Indeed, accumulated albeit controversial evidence suggests that daily consumption of ≥25 g of soy protein with its associated phytochemicals intact can improve lipid profiles in hypercholesterolemic humans. However, the belief that soy foods and supplements positively impact human health has become increasingly controversial among the general public because of the reported estrogenic activities of soy isoflavones. In this study, we investigated the nutrigenomic actions of soy isoflavones (in nutritionally-relevant amounts) with a specific focus on the adipose tissue, due to its pivotal role in cardiometabolism. Young C57BL/6 mice were maintained for eight weeks under two different diet regimes: (1) purified control diet; or (2) purified control diet supplemented with 0.45 g% soybean dry purified extract (a genistein/daidzein mix). Soy isoflavones increased plasma total cholesterol concentrations and decreased triglyceride ones. Circulating leptin levels was also increased by soy consumption. Differentially expressed genes in adipose tissue were classified according to their role(s) in cellular or metabolic pathways. Our data show that soy isoflavones, administered in nutritionally-relevant amounts, have diverse nutrigenomic effects on adipose tissue. Taking into account the moderate average exposure to such molecules, their impact on cardiovascular health needs to be further investigated to resolve the issue of whether soy consumption does indeed increase or decrease cardiovascular risk.

  10. White adipose tissue coloring by intermittent fasting.

    PubMed

    Kivelä, Riikka; Alitalo, Kari

    2017-11-01

    Intermittent fasting (IF) has been shown to promote metabolic health in several organisms. Two recent papers show that IF induces white adipose tissue beiging and increases thermogenesis, which improves metabolic health in mice.

  11. IL-15 concentrations in skeletal muscle and subcutaneous adipose tissue in lean and obese humans: local effects of IL-15 on adipose tissue lipolysis

    PubMed Central

    Pierce, Joseph R.; Maples, Jill M.

    2015-01-01

    Animal/cell investigations indicate that there is a decreased adipose tissue mass resulting from skeletal muscle (SkM) IL-15 secretion (e.g., SkM-blood-adipose tissue axis). IL-15 could regulate fat mass accumulation in obesity via lipolysis, although this has not been investigated in humans. Therefore, the purpose was to examine whether SkM and/or subcutaneous adipose tissue (SCAT) IL-15 concentrations were correlated with SCAT lipolysis in lean and obese humans and determine whether IL-15 perfusion could induce lipolysis in human SCAT. Local SkM and abdominal SCAT IL-15 (microdialysis) and circulating IL-15 (blood) were sampled in lean (BMI: 23.1 ± 1.9 kg/m2; n = 10) and obese (BMI: 34.7 ± 3.5 kg/m2; n = 10) subjects at rest/during 1-h cycling exercise. Lipolysis (SCAT interstitial glycerol concentration) was compared against local/systemic IL-15. An additional probe in SCAT was perfused with IL-15 to assess direct lipolytic responses. SkM IL-15 was not different between lean and obese subjects (P = 0.45), whereas SCAT IL-15 was higher in obese vs. lean subjects (P = 0.02) and was correlated with SCAT lipolysis (r = 0.45, P = 0.05). Exercise increased SCAT lipolysis in lean and obese (P < 0.01), but exercise-induced SCAT lipolysis changes were not correlated with exercise-induced SCAT IL-15 changes. Microdialysis perfusion resulting in physiological IL-15 concentrations in the adipose tissue interstitium increased lipolysis in lean (P = 0.04) but suppressed lipolysis in obese (P < 0.01). Although we found no support for a human IL-15 SkM-blood-adipose tissue axis, IL-15 may be produced in/act on the abdominal SCAT depot. The extent to which this autocrine/paracrine IL-15 action regulates human body composition remains unknown. PMID:25921578

  12. Exercise-induced adaptations to white and brown adipose tissue.

    PubMed

    Lehnig, Adam C; Stanford, Kristin I

    2018-03-07

    The beneficial effects of exercise on skeletal muscle and the cardiovascular system have long been known. Recent studies have focused on investigating the effects of exercise on adipose tissue and the effects that these exercise-induced adaptations have on overall metabolic health. Examination of exercise-induced adaptations in both white adipose tissue (WAT) and brown adipose tissue (BAT) has revealed marked differences in each tissue with exercise. In WAT, there are changes to both subcutaneous WAT (scWAT) and visceral WAT (vWAT), including decreased adipocyte size and lipid content, increased expression of metabolic genes, altered secretion of adipokines and increased mitochondrial activity. Adaptations specific to scWAT include lipidomic remodeling of phospholipids and, in rodents, the beiging of scWAT. The changes to BAT are less clear: studies evaluating the effect of exercise on the BAT of humans and rodents have revealed contradictory data, making this an important area of current investigation. In this Review, we discuss the exercise-induced changes to WAT and BAT that have been reported by different studies and highlight the current questions in this field. © 2018. Published by The Company of Biologists Ltd.

  13. Cancer-adipose tissue interaction and fluid flow synergistically modulate cell kinetics, HER2 expression, and trastuzumab efficacy in gastric cancer.

    PubMed

    Akutagawa, Takashi; Aoki, Shigehisa; Yamamoto-Rikitake, Mihoko; Iwakiri, Ryuichi; Fujimoto, Kazuma; Toda, Shuji

    2018-04-25

    Early local tumor invasion in gastric cancer results in likely encounters between cancer cells and submucosal and subserosal adipose tissue, but these interactions remain to be clarified. Microenvironmental mechanical forces, such as fluid flow, are known to modulate normal cell kinetics, but the effects of fluid flow on gastric cancer cells are poorly understood. We analyzed the cell kinetics and chemosensitivity in gastric cancer using a simple in vitro model that simultaneously replicated the cancer-adipocyte interaction and physical microenvironment. Gastric cancer cells (MKN7 and MKN74) were seeded on rat adipose tissue fragment-embedded discs or collagen discs alone. To generate fluid flow, samples were placed on a rotatory shaker in a CO 2 incubator. Proliferation, apoptosis, invasion, and motility-related molecules were analyzed by morphometry and immunostaining. Proteins were evaluated by western blot analysis. Chemosensitivity was investigated by trastuzumab treatment. Adipose tissue and fluid flow had a positive synergistic effect on the proliferative potential and invasive capacity of gastric cancer cells, and adipose tissue inhibited apoptosis in these cells. Adipose tissue upregulated ERK1/2 signaling in gastric cancer cells, but downregulated p38 signaling. Notably, adipose tissue and fluid flow promoted membranous and cytoplasmic HER2 expression and modulated chemosensitivity to trastuzumab in gastric cancer cells. We have demonstrated that cancer-adipocyte interaction and physical microenvironment mutually modulate gastric cancer cell kinetics. Further elucidation of the microenvironmental regulation in gastric cancer will be very important for the development of strategies involving molecular targeted therapy.

  14. Serum Progranulin Concentrations May Be Associated With Macrophage Infiltration Into Omental Adipose Tissue

    PubMed Central

    Youn, Byung-Soo; Bang, Sa-Ik; Klöting, Nora; Park, Ji Woo; Lee, Namseok; Oh, Ji-Eun; Pi, Kyung-Bae; Lee, Tae Hee; Ruschke, Karen; Fasshauer, Mathias; Stumvoll, Michael; Blüher, Matthias

    2009-01-01

    OBJECTIVE—Progranulin is an important molecule in inflammatory response. Chronic inflammation is frequently associated with central obesity and associated disturbances; however, the role of circulating progranulin in human obesity, type 2 diabetes, and dyslipidemia is unknown. RESEARCH DESIGN AND METHODS—For the measurement of progranulin serum concentrations, we developed an enzyme-linked immunosorbent assay (ELISA). Using this ELISA, we assessed circulating progranulin in a cross-sectional study of 209 subjects with a wide range of obesity, body fat distribution, insulin sensitivity, and glucose tolerance and in 60 individuals with normal (NGT) or impaired (IGT) glucose tolerance or type 2 diabetes before and after a 4-week physical training program. Progranulin mRNA and protein expression was measured in paired samples of omental and subcutaneous adipose tissue (adipocytes and cells of the stromal vascular fraction) from 55 lean or obese individuals. Measurement of Erk activation and chemotactic activity induced by progranulin in vitro was performed using THP-1–based cell migration assays. RESULTS—Progranulin serum concentrations were significantly higher in individuals with type 2 diabetes compared with NGT and in obese subjects with predominant visceral fat accumulation. Circulating progranulin significantly correlates with BMI, macrophage infiltration in omental adipose tissue, C-reactive protein (CRP) serum concentrations, A1C values, and total cholesterol. Multivariable linear regression analyses revealed CRP levels as the strongest independent predictor of circulating progranulin. The extent of in vitro progranulin-mediated chemotaxis is similar to that of monocyte chemoattractant protein-1 but independent of Gα. Moreover, in type 2 diabetes, but not in IGT and NGT individuals, physical training for 4 weeks resulted in significantly decreased circulating progranulin levels. CONCLUSIONS—Elevated progranulin serum concentrations are associated

  15. Adipose tissue and breast epithelial cells: a dangerous dynamic duo in breast cancer.

    PubMed

    Wang, Yuan-Yuan; Lehuédé, Camille; Laurent, Victor; Dirat, Béatrice; Dauvillier, Stéphanie; Bochet, Ludivine; Le Gonidec, Sophie; Escourrou, Ghislaine; Valet, Philippe; Muller, Catherine

    2012-11-28

    Among the many different cell types surrounding breast cancer cells, the most abundant are those that compose mammary adipose tissue, mainly mature adipocytes and progenitors. New accumulating recent evidences bring the tumor-surrounding adipose tissue into the light as a key component of breast cancer progression. The purpose of this review is to emphasize the role that adipose tissue might play by locally affecting breast cancer cell behavior and subsequent clinical consequences arising from this dialog. Two particular clinical aspects are addressed: obesity that was identified as an independent negative prognostic factor in breast cancer and the oncological safety of autologous fat transfer used in reconstructive surgery for breast cancer patients. This is preceded by the overall description of adipose tissue composition and function with special emphasis on the specificity of adipose depots and the species differences, key experimental aspects that need to be taken in account when cancer is considered. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Inhibition of intestinal cholesterol absorption decreases atherosclerosis but not adipose tissue inflammation

    PubMed Central

    Umemoto, Tomio; Subramanian, Savitha; Ding, Yilei; Goodspeed, Leela; Wang, Shari; Han, Chang Yeop; Teresa, Antonio Sta.; Kim, Jinkyu; O'Brien, Kevin D.; Chait, Alan

    2012-01-01

    Adipose tissue inflammation is associated with insulin resistance and increased cardiovascular disease risk in obesity. We previously showed that addition of cholesterol to a diet rich in saturated fat and refined carbohydrate significantly worsens dyslipidemia, insulin resistance, adipose tissue macrophage accumulation, systemic inflammation, and atherosclerosis in LDL receptor-deficient (Ldlr−/−) mice. To test whether inhibition of intestinal cholesterol absorption would improve metabolic abnormalities and adipose tissue inflammation in obesity, we administered ezetimibe, a dietary and endogenous cholesterol absorption inhibitor, to Ldlr−/− mice fed chow or high-fat, high-sucrose (HFHS) diets without or with 0.15% cholesterol (HFHS+C). Ezetimibe blunted weight gain and markedly reduced plasma lipids in the HFHS+C group. Ezetimibe had no effect on glucose homeostasis or visceral adipose tissue macrophage gene expression in the HFHS+C fed mice, although circulating inflammatory markers serum amyloid A (SSA) and serum amyloid P (SSP) levels decreased. Nevertheless, ezetimibe treatment led to a striking (>85%) reduction in atherosclerotic lesion area with reduced lesion lipid and macrophage content in the HFHS+C group. Thus, in the presence of dietary cholesterol, ezetimibe did not improve adipose tissue inflammation in obese Ldlr−/− mice, but it led to a major reduction in atherosclerotic lesions associated with improved plasma lipids and lipoproteins. PMID:22956784

  17. A fish protein hydrolysate alters fatty acid composition in liver and adipose tissue and increases plasma carnitine levels in a mouse model of chronic inflammation.

    PubMed

    Bjørndal, Bodil; Berge, Christ; Ramsvik, Marie Sannes; Svardal, Asbjørn; Bohov, Pavol; Skorve, Jon; Berge, Rolf K

    2013-10-07

    There is growing evidence that fish protein hydrolysate (FPH) diets affect mitochondrial fatty acid metabolism in animals. The aim of the study was to determine if FPH could influence fatty acid metabolism and inflammation in transgene mice expressing human tumor necrosis factor alpha (hTNFα). hTNFα mice (C57BL/6 hTNFα) were given a high-fat (23%, w/w) diet containing 20% casein (control group) or 15% FPH and 5% casein (FPH group) for two weeks. After an overnight fast, blood, adipose tissue, and liver samples were collected. Gene expression and enzyme activity was analysed in liver, fatty acid composition was analyzed in liver and ovarian white adipose tissue, and inflammatory parameters, carnitine, and acylcarnitines were analyzed in plasma. The n-3/n-6 fatty acid ratio was higher in mice fed the FPH diet than in mice fed the control diet in both adipose tissue and liver, and the FPH diet affected the gene expression of ∆6 and ∆9 desaturases. Mice fed this diet also demonstrated lower hepatic activity of fatty acid synthase. Concomitantly, a lower plasma INF-γ level was observed. Plasma carnitine and the carnitine precursor γ-butyrobetaine was higher in the FPH-group compared to control, as was plasma short-chained and medium-chained acylcarnitine esters. The higher level of plasma acetylcarnitine may reflect a stimulated mitochondrial and peroxisomal β-oxidation of fatty acids, as the hepatic activities of peroxisomal acyl-CoA oxidase 1 and mitochondrial carnitine palmitoyltransferase-II were higher in the FPH-fed mice. The FPH diet was shown to influence hepatic fatty acid metabolism and fatty acid composition. This indicates that effects on fatty acid metabolism are important for the bioactivity of protein hydrolysates of marine origin.

  18. Three-Dimensional Magnetic Levitation Culture System Simulating White Adipose Tissue.

    PubMed

    Tseng, Hubert; Daquinag, Alexes C; Souza, Glauco R; Kolonin, Mikhail G

    2018-01-01

    White adipose tissue (WAT) has attracted interest for tissue engineering and cell-based therapies as an abundant source of adipose stem/stromal cells (ASC). However, technical challenges in WAT cell culture have limited its applications in regenerative medicine. Traditional two-dimensional (2D) cell culture models, which are essentially monolayers of cells on glass or plastic substrates, inadequately represent tissue architecture, biochemical concentration gradients, substrate stiffness, and most importantly for WAT research, cell phenotypic heterogeneity. Physiological cell culture platforms for WAT modeling must recapitulate the native diversity of cell types and their coordination within the organ. For this purpose, we developed a three-dimensional (3D) model using magnetic levitation. Here, we describe our protocol that we successfully employed to build adipose tissue organoids (adipospheres) that preserve the heterogeneity of the constituent cell types in vitro. We demonstrate the capacity of assembling adipospheres from multiple cell types, including ASCs, endohtelial cells, and leukocytes that recreate tissue organization. These adipospheres mimicked WAT organogenesis in that they enabled the formation of vessel-like endothelial structures with lumens and differentiation of unilocular adipocytes. Altogether, magnetic levitation is a cell culture platform that recreates tissue structure, function, and heterogeneity in vitro, and serves as a foundation for high-throughput WAT tissue culture and analysis.

  19. Grape pomace extract induced beige cells in white adipose tissue from rats and in 3T3-L1 adipocytes.

    PubMed

    Rodriguez Lanzi, Cecilia; Perdicaro, Diahann Jeanette; Landa, María Silvina; Fontana, Ariel; Antoniolli, Andrea; Miatello, Roberto Miguel; Oteiza, Patricia Isabel; Vazquez Prieto, Marcela Alejandra

    2018-06-01

    This study investigated the effects of a grape pomace extract (GPE) rich in phenolic compounds on brown-like adipocyte induction and adiposity in spontaneously hypertensive (SHR) and control normotensive Wistar-Kyoto (WKY) rats fed a high-fat diet (HFD). HFD consumption for 10 weeks significantly increased epididymal white adipose tissue (eWAT) in WKY but not in SHR rats. Supplementation with GPE (300 mg/kg body weight/day) reduced adipocyte diameter and increased levels of proteins that participate in adipogenesis and angiogenesis, i.e., peroxisome-proliferator activated receptor gamma (PPARγ), vascular endothelial grow factor-A (VEGF-A) and its receptor 2 (VEGF-R2), and partially increased the uncoupling protein 1 (UCP-1) in WKY. In both strains, GPE attenuated adipose inflammation. In eWAT from SHR, GPE increased the expression of proteins involved in adipose tissue "browning," i.e., PPARγ-coactivator-1α (PGC-1α), PPARγ, PR domain containing 16 (PRDM16) and UCP-1. In primary cultures of SHR adipocytes, GPE-induced UCP-1 up-regulation was dependent on p38 and ERK activation. Accordingly, in 3T3-L1 adipocytes treated with palmitate, the addition of GPE (30 μM) activated the β-adrenergic signaling cascade (PKA, AMPK, p38, ERK). This led to the associated up-regulation of proteins involved in mitochondrial biogenesis (PGC-1α, PPARγ, PRDM16 and UCP-1) and fatty acid oxidation (ATGL). These effects were similar to those exerted by (-)-epicatechin and quercetin, major phenolic compounds in GPE. Overall, in HFD-fed rats, supplementation with GPE promoted brown-like cell formation in eWAT and diminished adipose dysfunction. Thus, winemaking residues, rich in bioactive compounds, could be useful to mitigate the adverse effects of HFD-induced adipose dysfunction. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. The Metabolic Phenotype in Obesity: Fat Mass, Body Fat Distribution, and Adipose Tissue Function.

    PubMed

    Goossens, Gijs H

    2017-01-01

    The current obesity epidemic poses a major public health issue since obesity predisposes towards several chronic diseases. BMI and total adiposity are positively correlated with cardiometabolic disease risk at the population level. However, body fat distribution and an impaired adipose tissue function, rather than total fat mass, better predict insulin resistance and related complications at the individual level. Adipose tissue dysfunction is determined by an impaired adipose tissue expandability, adipocyte hypertrophy, altered lipid metabolism, and local inflammation. Recent human studies suggest that adipose tissue oxygenation may be a key factor herein. A subgroup of obese individuals - the 'metabolically healthy obese' (MHO) - have a better adipose tissue function, less ectopic fat storage, and are more insulin sensitive than obese metabolically unhealthy persons, emphasizing the central role of adipose tissue function in metabolic health. However, controversy has surrounded the idea that metabolically healthy obesity may be considered really healthy since MHO individuals are at increased (cardio)metabolic disease risk and may have a lower quality of life than normal weight subjects due to other comorbidities. Detailed metabolic phenotyping of obese persons will be invaluable in understanding the pathophysiology of metabolic disturbances, and is needed to identify high-risk individuals or subgroups, thereby paving the way for optimization of prevention and treatment strategies to combat cardiometabolic diseases. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  1. Immune response in the adipose tissue of lean mice infected with the protozoan parasite Neospora caninum

    PubMed Central

    Teixeira, Luzia; Moreira, João; Melo, Joana; Bezerra, Filipa; Marques, Raquel M; Ferreirinha, Pedro; Correia, Alexandra; Monteiro, Mariana P; Ferreira, Paula G; Vilanova, Manuel

    2015-01-01

    The adipose tissue can make important contributions to immune function. Nevertheless, only a limited number of reports have investigated in lean hosts the immune response elicited in this tissue upon infection. Previous studies suggested that the intracellular protozoan Neospora caninum might affect adipose tissue physiology. Therefore, we investigated in mice challenged with this protozoan if immune cell populations within adipose tissue of different anatomical locations could be differently affected. Early in infection, parasites were detected in the adipose tissue and by 7 days of infection increased numbers of macrophages, regulatory T (Treg) cells and T-bet+ cells were observed in gonadal, mesenteric, omental and subcutaneous adipose tissue. Increased expression of interferon-γ was also detected in gonadal adipose tissue of infected mice. Two months after infection, parasite DNA was no longer detected in these tissues, but T helper type 1 (Th1) cell numbers remained above control levels in the infected mice. Moreover, the Th1/Treg cell ratio was higher than that of controls in the mesenteric and subcutaneous adipose tissue. Interestingly, chronically infected mice presented a marked increase of serum leptin, a molecule that plays a role in energy balance regulation as well as in promoting Th1-type immune responses. Altogether, we show that an apicomplexa parasitic infection influences immune cellular composition of adipose tissue throughout the body as well as adipokine production, still noticed at a chronic phase of infection when parasites were already cleared from that particular tissue. This strengthens the emerging view that infections can have long-term consequences for the physiology of adipose tissue. PMID:25581844

  2. [Rosuvastatin improves insulin sensitivity in overweight rats induced by high fat diet. Role of SIRT1 in adipose tissue].

    PubMed

    Valero-Muñoz, María; Martín-Fernández, Beatriz; Ballesteros, Sandra; Cachofeiro, Victoria; Lahera, Vicente; de Las Heras, Natalia

    2014-01-01

    To study the effects of rosuvastatin on insulin resistance in overweight rats induced by high fat diet, as well as potential mediators. We used male Wistar rats fed with a standard diet (CT) or high fat diet (33.5% fat) (HFD); half of the animals HFD were treated with rosuvastatin (15mg/kg/day) (HFD+Rosu) for 7 weeks. HFD rats showed increased body, epididymal and lumbar adipose tissue weights. Treatment with Rosu did not modify body weight or the weight of the adipose packages in HFD rat. Plasma glucose and insulin levels and HOMA index were higher in HFD rats, and rosuvastatin treatment reduced them. Leptin/adiponectin ratio in plasma and lumbar adipose tissue were higher in HDF rats, and were reduced by rosuvastatin. SIRT-1, PPAR-γ and GLUT-4 protein expression in lumbar adipose tissue were lower in HFD rats and Rosu normalized expression of the three mediators. Rosuvastatin ameliorates insulin sensitivity induced by HFD in rats. This effect is mediated by several mechanisms including reduction of leptin and enhancement of SIRT-1, PPAR-γ and GLUT-4 expression in white adipose tissue. SIRT1 could be considered a major mediator of the beneficial effects of rosuvastatin on insulin sensitivity in overweight rats induced by diet. Copyright © 2013 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  3. Two key temporally distinguishable molecular and cellular components of white adipose tissue browning during cold acclimation.

    PubMed

    Jankovic, Aleksandra; Golic, Igor; Markelic, Milica; Stancic, Ana; Otasevic, Vesna; Buzadzic, Biljana; Korac, Aleksandra; Korac, Bato

    2015-08-01

    White to brown adipose tissue conversion and thermogenesis can be ignited by different conditions or agents and its sustainability over the long term is still unclear. Browning of rat retroperitoneal white adipose tissue (rpWAT) during cold acclimation involves two temporally apparent components: (1) a predominant non-selective browning of most adipocytes and an initial sharp but transient induction of uncoupling protein 1, peroxisome proliferator-activated receptor (PPAR) coactivator-1α, PPARγ and PPARα expression, and (2) the subsistence of relatively few thermogenically competent adipocytes after 45 days of cold acclimation. The different behaviours of two rpWAT beige/brown adipocyte subsets control temporal aspects of the browning process, and thus regulation of both components may influence body weight and the potential successfulness of anti-obesity therapies. Conversion of white into brown adipose tissue may have important implications in obesity resistance and treatment. Several browning agents or conditions ignite thermogenesis in white adipose tissue (WAT). To reveal the capacity of WAT to function in a brownish/burning mode over the long term, we investigated the progression of the rat retroperitoneal WAT (rpWAT) browning during 45 days of cold acclimation. During the early stages of cold acclimation, the majority of rpWAT adipocytes underwent multilocularization and thermogenic-profile induction, as demonstrated by the presence of a multitude of uncoupling protein 1 (UCP1)-immunopositive paucilocular adipocytes containing peroxisome proliferator-activated receptor (PPAR) coactivator-1α (PGC-1α) and PR domain-containing 16 (PRDM16) in their nuclei. After 45 days, all adipocytes remained PRDM16 immunopositive, but only a few multilocular adipocytes rich in mitochondria remained UCP1/PGC-1α immunopositive. Molecular evidence showed that thermogenic recruitment of rpWAT occurred following cold exposure, but returned to starting levels after cold

  4. Vitamin D deficiency decreases adiposity in rats and causes altered expression of uncoupling proteins and steroid receptor coactivator3.

    PubMed

    Bhat, Mehrajuddin; Noolu, Bindu; Qadri, Syed S Y H; Ismail, Ayesha

    2014-10-01

    The vitamin D endocrine system is functional in the adipose tissue, as demonstrated in vitro, in cultured adipocytes, and in vivo in mutant mice that developed altered lipid metabolism and fat storage in the absence of either 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] or the vitamin D receptor. The aim of the present study was to examine the role of vitamin D and calcium on body adiposity in a diet-induced vitamin D deficient rat model. Vitamin D-deficient rats gained less weight and had lower amounts of visceral fat. Consistent with reduced adipose tissue mass, the vitamin D-deficient rats had low circulating levels of leptin, which reflects body fat stores. Expression of vitamin D and calcium sensing receptors, and that of genes involved in adipogenesis such as peroxisome proliferator-activated receptor, fatty acid synthase and leptin were significantly reduced in white adipose tissue of deficient rats compared to vitamin D-sufficient rats. Furthermore, the expression of uncoupling proteins (Ucp1 and Ucp2) was elevated in the white adipose tissue of the deficient rat indicative of higher energy expenditure, thereby leading to a lean phenotype. Expression of the p160 steroid receptor coactivator3 (SRC3), a key regulator of adipogenesis in white adipose tissue was decreased in vitamin D-deficient state. Interestingly, most of the changes observed in vitamin D deficient rats were corrected by calcium supplementation alone. Our data demonstrates that dietary vitamin D and calcium regulate adipose tissue function and metabolism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The effect of hypokinesia on lipid metabolism in adipose tissue

    NASA Astrophysics Data System (ADS)

    Macho, Ladislav; Kvetn̆anský, Richard; Ficková, Mária

    The increase of nonesterified fatty acid (NEFA) concentration in plasma was observed in rats subjected to hypokinesia for 1-60 days. In the period of recovery (7 and 21 days after 60 days immobilization) the content of NEFA returned to control values. The increase of fatty acid release from adipose tissue was observed in hypokinetic rats, however the stimulation of lipolysis by norepinephrine was lower in rats exposed to hypokinesis. The decrease of the binding capacity and a diminished number of beta-adrenergic receptors were found in animals after hypokinesia. The augmentation of the incorporation of glucose into lipids and the marked increase in the stimulation of lipogenesis by insulin were found in adipose tissue of rats subjected to long-term hypokinesia. These results showed an important effect of hypokinesia on lipid mobilization, on lipogenesis and on the processes of hormone regulation in adipose tissue.

  6. Effects of Biotin Supplementation in the Diet on Adipose Tissue cGMP Concentrations, AMPK Activation, Lipolysis, and Serum-Free Fatty Acid Levels.

    PubMed

    Boone-Villa, Daniel; Aguilera-Méndez, Asdrubal; Miranda-Cervantes, Adriana; Fernandez-Mejia, Cristina

    2015-10-01

    Several studies have shown that pharmacological concentrations of biotin decrease hyperlipidemia. The molecular mechanisms by which pharmacological concentrations of biotin modify lipid metabolism are largely unknown. Adipose tissue plays a central role in lipid homeostasis. In the present study, we analyzed the effects of biotin supplementation in adipose tissue on signaling pathways and critical proteins that regulate lipid metabolism, as well as on lipolysis. In addition, we assessed serum fatty acid concentrations. Male BALB/cAnN Hsd mice were fed a control or a biotin-supplemented diet (control: 1.76 mg biotin/kg; supplemented: 97.7 mg biotin/kg diet) over 8 weeks postweaning. Compared with the control group, biotin-supplemented mice showed an increase in the levels of adipose guanosine 3',5'-cyclic monophosphate (cGMP) (control: 30.3±3.27 pmol/g wet tissue; supplemented: 49.5±3.44 pmol/g wet tissue) and of phosphorylated forms of adenosine 5'-monophosphate-activated protein kinase (AMPK; 65.2%±1.06%), acetyl-coenzyme A (CoA), carboxylase-1 (196%±68%), and acetyl-CoA carboxylase-2 (78.1%±18%). Serum fatty acid concentrations were decreased (control: 1.12±0.04 mM; supplemented: 0.91±0.03 mM), and no change in lipolysis was found (control: 0.29±0.05 μmol/mL; supplemented: 0.33±0.08 μmol/mL). In conclusion, 8 weeks of dietary biotin supplementation increased adipose tissue cGMP content and protein expression of the active form of AMPK and of the inactive forms of acetyl-CoA carboxylase-1 and acetyl-CoA carboxylase-2. Serum fatty acid levels fell, and no change in lipolysis was observed. These findings provide insight into the effects of biotin supplementation on adipose tissue and support its use in the treatment of dyslipidemia.

  7. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Tomoya, E-mail: toyamada@affrc.go.jp; Higuchi, Mikito; Nakanishi, Naoto

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere lengthmore » of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner. - Highlights: • Visceral adipose tissue express higher pref-1 mRNA than other anatomical sites. • Telomere length in visceral adipose tissue is longer than other anatomical sites. • Telomere length of adipose tissue is not associated with adipocyte size. • Pref-1 mRNA is negatively correlated with intramuscular and visceral adipocyte size.« less

  8. Inhibition of M1 macrophage activation in adipose tissue by berberine improves insulin resistance.

    PubMed

    Ye, Lifang; Liang, Shu; Guo, Chao; Yu, Xizhong; Zhao, Juan; Zhang, Hao; Shang, Wenbin

    2016-12-01

    Insulin resistance is associated with a chronic inflammation in adipose tissue which is propagated by a phenotypic switch in adipose tissue macrophage (ATM) polarization. This study aimed to investigate whether berberine, the major alkaloid of rhizoma coptidis, can improve insulin resistance through inhibiting ATM activation and inflammatory response in adipose tissue. High-fat-diet induced obese mice were administered oral with berberine (50mg/kg/day) for 14days. ATMs were analysed using FACS and insulin resistance was evaluated. Expressions of pro-inflammatory cytokines and activation of inflammatory pathways were detected. The chemotaxis of macrophages was measured. Glucose consumption and insulin signalling of adipocytes were examined. Berberine significantly decreased F4/80 + /CD11c + /CD206 - cells in the stromal vascular fraction from adipose tissue and improved glucose tolerance in obsess mice. In addition, berberine reduced the elevated levels of serum TNF-α, IL-6 and MCP-1 and the expressions of TNF-α, IL-6 and MCP-1 and attenuated the phosphorylation of JNK and IKKβ and the expression of NF-κB p65 in the obese adipose tissue, Raw264.7 macrophages and 3T3-L1 adipocytes, respectively. The phosphorylation of IRS-1 (Ser307) was inhibited by berberine in adipose tissue and cultured adipocytes. The phosphorylation of AKT (Ser473) was increased in berberine-treated adipose tissue. Conditioned medium from adipocytes treated with berberine reduced the number of infiltrated macrophages. Berberine partly restored the impaired glucose consumption and the activation of IRS-1 (Ser307) in adipocytes induced by the activation of macrophages. Our findings imply that berberine improves insulin resistance by inhibiting M1 macrophage activation in adipose tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Automated adipose study for assessing cancerous human breast tissue using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gan, Yu; Yao, Xinwen; Chang, Ernest W.; Bin Amir, Syed A.; Hibshoosh, Hanina; Feldman, Sheldon; Hendon, Christine P.

    2017-02-01

    Breast cancer is the third leading cause of death in women in the United States. In human breast tissue, adipose cells are infiltrated or replaced by cancer cells during the development of breast tumor. Therefore, an adipose map can be an indicator of identifying cancerous region. We developed an automated classification method to generate adipose map within human breast. To facilitate the automated classification, we first mask the B-scans from OCT volumes by comparing the signal noise ratio with a threshold. Then, the image was divided into multiple blocks with a size of 30 pixels by 30 pixels. In each block, we extracted texture features such as local standard deviation, entropy, homogeneity, and coarseness. The features of each block were input to a probabilistic model, relevance vector machine (RVM), which was trained prior to the experiment, to classify tissue types. For each block within the B-scan, RVM identified the region with adipose tissue. We calculated the adipose ratio as the number of blocks identified as adipose over the total number of blocks within the B-scan. We obtained OCT images from patients (n = 19) in Columbia medical center. We automatically generated the adipose maps from 24 B-scans including normal samples (n = 16) and cancerous samples (n = 8). We found the adipose regions show an isolated pattern that in cancerous tissue while a clustered pattern in normal tissue. Moreover, the adipose ratio (52.30 ± 29.42%) in normal tissue was higher than the that in cancerous tissue (12.41 ± 10.07%).

  10. Insulin resistance, hepatic lipid and adipose tissue distribution in HIV-infected men.

    PubMed

    He, Qing; Engelson, Ellen S; Ionescu, Gabriel; Glesby, Marshall J; Albu, Jeanine B; Kotler, Donald P

    2008-01-01

    A large proportion of HIV-infected patients on antiretroviral medication develop insulin resistance, especially in the context of fat redistribution. This study investigates the interrelationships among fat distribution, hepatic lipid content, and insulin resistance in HIV-infected men. We performed a cross-sectional analysis of baseline data from 23 HIV-infected participants in three prospective clinical studies. Magnetic resonance spectroscopy was used to quantify hepatic lipid concentrations. Magnetic resonance imaging was used to quantify whole-body adipose tissue compartments: that is, subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) volumes, as well as the intermuscular adipose tissue (IMAT) subcompartment and the omental-mesenteric adipose tissue (OMAT) and retroperitoneal adipose tissue (RPAT) subcompartments of VAT. The homeostasis model for assessment of insulin resistance (HOMA-IR) was calculated from fasting glucose and insulin concentrations. Hepatic lipid content correlated significantly with total VAT (r = 0.62, P = 0.0014), but not with SAT (r = 0.053, P = 0.81). In univariate analysis, hepatic lipid content was associated with the OMAT (r = 0.67, P = 0.0004) and RPAT (r = 0.53, P = 0.009) subcompartments; HOMA-IR correlated with both VAT and hepatic lipid contents (r = 0.61, P = 0.057 and r = 0.68, P = 0.0012, respectively). In stepwise linear regression models, hepatic lipid had the strongest associations with OMAT and with HOMA-IR. Hepatic lipid content is associated with VAT volume, especially the OMAT subcompartment, in HIV-infected men. Hepatic lipid content is associated with insulin resistance in HIV-infected men. Hepatic lipid content might mediate the relationship between VAT and insulin resistance among treated, HIV-infected men.

  11. Insulin resistance, hepatic lipid and adipose tissue distribution in HIV infected men

    PubMed Central

    He, Qing; Engelson, Ellen S.; Ionescu, Gabriel; Glesby, Marshall J.; Albu, Jeanine B.; Kotler, Donald P.

    2010-01-01

    Background A large proportion of HIV-infected subjects on antiretroviral medication develop insulin resistance, especially in the context of fat redistribution. This study investigates the interrelationships among fat distribution, hepatic lipid content, and insulin resistance in HIV-infected men. Design and methods We performed a cross-sectional analysis of baseline data from twenty-three HIV-infected participants in 3 prospective clinical studies. Magnetic resonance spectroscopy was applied to quantify hepatic lipid concentrations. Magnetic resonance imaging was used to quantify whole body adipose tissue compartments, i.e., subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) volumes as well as inter-muscular adipose tissue (IMAT) subcompartment, and omental-mesenteric adipose tissue (OMAT) and retroperitoneal adipose tissue (RPAT) subcompartments of VAT. Homeostasis model for assessment of insulin resistance (HOMA-IR) was calculated from fasting glucose and insulin concentrations. Results Hepatic lipid content correlated significantly with total VAT (r=0.62, p=0.0014) but not with SAT (r=0.053, p=0.81). In univariate analysis, hepatic lipid content was associated with the OMAT (r=0.67, p=0.0004) and RPAT (r=0.53, p=0.009) subcompartments; HOMA-IR correlated with both VAT and hepatic lipid contents (r=0.61, p=0.057 and 0.68, p=0.0012, respectively). In stepwise linear regression models, hepatic lipid had the strongest associations with OMAT and with HOMA-IR. Conclusion Hepatic lipid content is associated with VAT volume, especially the omental-mesenteric subcompartment, in HIV-infected men. Hepatic lipid content is associated with insulin resistance in HIV-infected men. Hepatic lipid content might mediate the relationship between VAT and insulin resistance among treated, HIV-infected men. PMID:18572755

  12. Rad GTPase is essential for the regulation of bone density and bone marrow adipose tissue in mice.

    PubMed

    Withers, Catherine N; Brown, Drew M; Byiringiro, Innocent; Allen, Matthew R; Condon, Keith W; Satin, Jonathan; Andres, Douglas A

    2017-10-01

    The small GTP-binding protein Rad (RRAD, Ras associated with diabetes) is the founding member of the RGK (Rad, Rem, Rem2, and Gem/Kir) family that regulates cardiac voltage-gated Ca 2+ channel function. However, its cellular and physiological functions outside of the heart remain to be elucidated. Here we report that Rad GTPase function is required for normal bone homeostasis in mice, as Rad deletion results in significantly lower bone mass and higher bone marrow adipose tissue (BMAT) levels. Dynamic histomorphometry in vivo and primary calvarial osteoblast assays in vitro demonstrate that bone formation and osteoblast mineralization rates are depressed, while in vitro osteoclast differentiation is increased, in the absence of Rad. Microarray analysis revealed that canonical osteogenic gene expression (Runx2, osterix, etc.) is not altered in Rad -/- calvarial osteoblasts; instead robust up-regulation of matrix Gla protein (MGP, +11-fold), an inhibitor of extracellular matrix mineralization and a protein secreted during adipocyte differentiation, was observed. Strikingly, Rad deficiency also resulted in significantly higher marrow adipose tissue levels in vivo and promoted spontaneous in vitro adipogenesis of primary calvarial osteoblasts. Adipogenic differentiation of wildtype calvarial osteoblasts resulted in the loss of endogenous Rad protein, further supporting a role for Rad in the control of BMAT levels. These findings reveal a novel in vivo function for Rad and establish a role for Rad signaling in the complex physiological control of skeletal homeostasis and bone marrow adiposity. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Adipose Tissue in Metabolic Syndrome: Onset and Progression of Atherosclerosis.

    PubMed

    Luna-Luna, María; Medina-Urrutia, Aida; Vargas-Alarcón, Gilberto; Coss-Rovirosa, Fernanda; Vargas-Barrón, Jesús; Pérez-Méndez, Óscar

    2015-07-01

    Metabolic syndrome (MetS) should be considered a clinical entity when its different symptoms share a common etiology: obesity/insulin resistance as a result of a multi-organ dysfunction. The main interest in treating MetS as a clinical entity is that the addition of its components drastically increases the risk of atherosclerosis. In MetS, the adipose tissue plays a central role along with an unbalanced gut microbiome, which has become relevant in recent years. Once visceral adipose tissue (VAT) increases, dyslipidemia and endothelial dysfunction follow as additive risk factors. However, when the nonalcoholic fatty liver is present, risk of a cardiovascular event is highly augmented. Epicardial adipose tissue (EAT) seems to increase simultaneously with the VAT. In this context, the former may play a more important role in the development of the atherosclerotic plaque than the latter. Hence, EAT may act as a paracrine tissue vis-à-vis the coronary arteries favoring the local inflammation and the atheroma calcification. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  14. The "Big Bang" in obese fat: Events initiating obesity-induced adipose tissue inflammation.

    PubMed

    Wensveen, Felix M; Valentić, Sonja; Šestan, Marko; Turk Wensveen, Tamara; Polić, Bojan

    2015-09-01

    Obesity is associated with the accumulation of pro-inflammatory cells in visceral adipose tissue (VAT), which is an important underlying cause of insulin resistance and progression to diabetes mellitus type 2 (DM2). Although the role of pro-inflammatory cytokines in disease development is established, the initiating events leading to immune cell activation remain elusive. Lean adipose tissue is predominantly populated with regulatory cells, such as eosinophils and type 2 innate lymphocytes. These cells maintain tissue homeostasis through the excretion of type 2 cytokines, such as IL-4, IL-5, and IL-13, which keep adipose tissue macrophages (ATMs) in an anti-inflammatory, M2-like state. Diet-induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in VAT, characterized by IFN-γ. A key event is a shift of ATMs toward an M1 phenotype. Recent studies show that obesity-induced adipocyte hypertrophy results in upregulated surface expression of stress markers. Adipose stress is detected by local sentinels, such as NK cells and CD8(+) T cells, which produce IFN-γ, driving M1 ATM polarization. A rapid accumulation of pro-inflammatory cells in VAT follows, leading to inflammation. In this review, we provide an overview of events leading to adipose tissue inflammation, with a special focus on adipose homeostasis and the obesity-induced loss of homeostasis which marks the initiation of VAT inflammation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Lymphocytes and macrophages in adipose tissue in obesity: markers or makers of subclinical inflammation?

    PubMed

    Cinkajzlová, Anna; Mráz, Miloš; Haluzík, Martin

    2017-05-01

    Obesity is accompanied by the development of chronic low-grade inflammation in adipose tissue. The presence of chronic inflammatory response along with metabolically harmful factors released by adipose tissue into the circulation is associated with several metabolic complications of obesity such as type 2 diabetes mellitus or accelerated atherosclerosis. The present review is focused on macrophages and lymphocytes and their possible role in low-grade inflammation in fat. Both macrophages and lymphocytes respond to obesity-induced adipocyte hypertrophy by their migration into adipose tissue. After activation and differentiation, they contribute to the development of local inflammatory response and modulation of endocrine function of adipose tissue. Despite intensive research, the exact role of lymphocytes and macrophages within adipose tissue is only partially clarified and various data obtained by different approaches bring ambiguous information with respect to their polarization and cytokine production. Compared to immunocompetent cells, the role of adipocytes in the obesity-related adipose tissue inflammation is often underestimated despite their abundant production of factors with immunomodulatory actions such as cytokines or adipokines such as leptin, adiponektin, and others. In summary, conflicting evidence together with only partial correlation of in vitro findings with true in vivo situation due to great heterogeneity and molecular complexity of tissue environment calls for intensive research in this rapidly evolving and important area.

  16. Germline Ablation of VGF Increases Lipolysis in White Adipose Tissue

    PubMed Central

    Fargali, Samira; Scherer, Thomas; Shin, Andrew C.; Sadahiro, Masato; Buettner, Christoph; Salton, Stephen R.

    2012-01-01

    Targeted deletion of VGF, a neuronal and endocrine secreted protein and neuropeptide precursor, produces a lean, hypermetabolic mouse that is resistant to diet-, lesion-, and genetically-induced obesity and diabetes. We hypothesized that increased sympathetic nervous system activity in Vgf−/Vgf− knockout mice is responsible for increased energy expenditure and decreased fat storage, and that increased beta-adrenergic receptor stimulation induces lipolysis in white adipose tissue (WAT) of Vgf−/Vgf− mice. We found that fat mass was markedly reduced in Vgf−/Vgf− mice. Within knockout WAT, phosphorylation of protein kinase A (PKA) substrate increased in males and females, phosphorylation of hormone sensitive lipase (HSL) (Ser563) increased in females, and levels of adipose triglyceride lipase (ATGL), comparative gene identification-58 (CGI-58), and phospho-perilipin, were higher in male Vgf−/Vgf− WAT compared to wild type, consistent with increased lipolysis. The phosphorylation of AMP-activated protein kinase (AMPK) (Thr172) and levels of the AMPK kinase, transforming growth factor β-activated kinase 1 (TAK-1), were decreased. This was associated with a decrease in HSL Ser565 phosphorylation, the site phosphorylated by AMPK, in both male and female Vgf−/Vgf− WAT. No significant differences in phosphorylation of cAMP response element binding protein (CREB) or the p42/44 mitogen-activated protein kinase (MAPK) were noted. Despite this evidence supporting increased cAMP signaling and lipolysis, lipogenesis as assessed by fatty acid synthase (FAS) protein expression and phosphorylated acetyl-CoA carboxylase (pACC) was not decreased. Our data suggest that the VGF precursor or selected VGF-derived peptides dampen sympathetic outflow pathway activity to WAT to regulate fat storage and lipolysis. PMID:22942234

  17. Rosiglitazone-Induced Mitochondrial Biogenesis in White Adipose Tissue Is Independent of Peroxisome Proliferator-Activated Receptor γ Coactivator-1α

    PubMed Central

    Pardo, Rosario; Enguix, Natàlia; Lasheras, Jaime; Feliu, Juan E.; Kralli, Anastasia; Villena, Josep A.

    2011-01-01

    Background Thiazolidinediones, a family of insulin-sensitizing drugs commonly used to treat type 2 diabetes, are thought to exert their effects in part by promoting mitochondrial biogenesis in white adipose tissue through the transcriptional coactivator PGC-1α (Peroxisome Proliferator-Activated Receptor γ Coactivator-1α). Methodology/Principal Findings To assess the role of PGC-1α in the control of rosiglitazone-induced mitochondrial biogenesis, we have generated a mouse model that lacks expression of PGC-1α specifically in adipose tissues (PGC-1α-FAT-KO mice). We found that expression of genes encoding for mitochondrial proteins involved in oxidative phosphorylation, tricarboxylic acid cycle or fatty acid oxidation, was similar in white adipose tissue of wild type and PGC-1α-FAT-KO mice. Furthermore, the absence of PGC-1α did not prevent the positive effect of rosiglitazone on mitochondrial gene expression or biogenesis, but it precluded the induction by rosiglitazone of UCP1 and other brown fat-specific genes in white adipose tissue. Consistent with the in vivo findings, basal and rosiglitazone-induced mitochondrial gene expression in 3T3-L1 adipocytes was unaffected by the knockdown of PGC-1α but it was impaired when PGC-1β expression was knockdown by the use of specific siRNA. Conclusions/Significance These results indicate that in white adipose tissue PGC-1α is dispensable for basal and rosiglitazone-induced mitochondrial biogenesis but required for the rosiglitazone-induced expression of UCP1 and other brown adipocyte-specific markers. Our study suggests that PGC-1α is important for the appearance of brown adipocytes in white adipose tissue. Our findings also provide evidence that PGC-1β and not PGC-1α regulates basal and rosiglitazone-induced mitochondrial gene expression in white adipocytes. PMID:22087241

  18. Regulation of leptin synthesis in white adipose tissue of the female fruit bat, Cynopterus sphinx: role of melatonin with or without insulin.

    PubMed

    Banerjee, A; Udin, S; Krishna, A

    2011-02-01

    Factors regulating leptin synthesis during adipogenesis in wild species are not well known. Studies in the female Cynopterus sphinx bat have shown that it undergoes seasonal changes in its fat deposition and serum leptin and melatonin levels. The aim of the present study was to investigate the hormonal regulation of leptin synthesis by the white adipose tissue during the period of fat deposition in female C. sphinx. This study showed a significant correlation between the seasonal changes in serum melatonin level with the circulating leptin level (r = 0.78; P < 0.05) and with the changes in body fat mass (r = 0.88; P < 0.05) in C. sphinx. A significant correlation between circulating insulin and leptin levels (r = 0.65; P < 0.05) was also found in this species. This in vivo finding suggests that melatonin together with insulin may enhance leptin synthesis by increasing adipose tissue accumulation. The in vitro study showed that melatonin interacts synergistically with insulin in stimulating leptin synthesis by adipose tissue in C. sphinx. The study showed MT(2) receptors in adipose tissue and a stimulatory effect of melatonin on leptin synthesis, which was blocked by treatment with an MT(2) receptor antagonist, suggesting that the effect of melatonin on leptin synthesis by adipose tissue is mediated through the MT(2) receptor in C. sphinx. The in vitro study showed that the synthesis of leptin is directly proportional to the amount of glucose uptake by the adipose tissue. It further showed that melatonin together with insulin synergistically enhanced the leptin synthesis by adipose tissue through phosphorylation of mitogen-activated protein kinase in C. sphinx.

  19. Modal response of a computational vocal fold model with a substrate layer of adipose tissue.

    PubMed

    Jones, Cameron L; Achuthan, Ajit; Erath, Byron D

    2015-02-01

    This study demonstrates the effect of a substrate layer of adipose tissue on the modal response of the vocal folds, and hence, on the mechanics of voice production. Modal analysis is performed on the vocal fold structure with a lateral layer of adipose tissue. A finite element model is employed, and the first six mode shapes and modal frequencies are studied. The results show significant changes in modal frequencies and substantial variation in mode shapes depending on the strain rate of the adipose tissue. These findings highlight the importance of considering adipose tissue in computational vocal fold modeling.

  20. Carcass and Meat Characteristics and Gene Expression in Intramuscular Adipose Tissue of Korean Native Cattle Fed Finishing Diets Supplemented with 5% Palm Oil.

    PubMed

    Park, Sungkwon; Yan, Zhang; Choi, Changweon; Kim, Kyounghoon; Lee, Hyunjeong; Oh, Youngkyoon; Jeong, Jinyoung; Lee, Jonggil; Smith, Stephen B; Choi, Seongho

    2017-01-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression but depress stearoyl-CoA desaturase ( SCD ) gene expression in intramuscular (i.m.) adipose tissues of Hanwoo steers during fattening period (from 16 to 32 mon of age). Fourteen Hanwoo steers were allotted randomly to 2 groups of 7 steers based on initial BW and fed either a basal diet (control) or the basal diet supplemented with 5% palm oil (BDSP). At slaughter, i.m. adipose tissue was harvested for analysis of adipogenic gene expression and fatty acid composition. There were no differences in BW or average daily gain between treatment groups. Supplemental palm oil had no effect on carcass quality traits (carcass weight, backfat thickness, loin muscle area, or marbling scores) or meat color values. Palm oil increased ( p <0.05) expression of AMP-activated protein kinase-α and peroxisome proliferator-activated receptor-γ, but decreased ( p <0.05) CAAT/enhancer binding protein-β gene expression and tended to decrease stearoyl-CoA desaturase gene expression in i.m. adipose tissue. Palm oil increased total i.m. polyunsaturated fatty acids ( p <0.05) compared to the control i.m. adipose tissue, but had no effect on saturated or monounsaturated fatty acids. Although there were significant effects of supplemental palm oil on i.m. adipose tissue gene expression, the absence of negative effects on carcass and meat characteristics indicates that palm oil could be a suitable dietary supplement for the production of Hanwoo beef cattle.

  1. Carcass and Meat Characteristics and Gene Expression in Intramuscular Adipose Tissue of Korean Native Cattle Fed Finishing Diets Supplemented with 5% Palm Oil

    PubMed Central

    Park, Sungkwon; Yan, Zhang; Choi, Changweon; Kim, Kyounghoon; Lee, Hyunjeong; Oh, Youngkyoon; Jeong, Jinyoung; Lee, Jonggil; Smith, Stephen B.; Choi, Seongho

    2017-01-01

    We hypothesized that supplementing finishing diets with palm oil would promote adipogenic gene expression but depress stearoyl-CoA desaturase (SCD) gene expression in intramuscular (i.m.) adipose tissues of Hanwoo steers during fattening period (from 16 to 32 mon of age). Fourteen Hanwoo steers were allotted randomly to 2 groups of 7 steers based on initial BW and fed either a basal diet (control) or the basal diet supplemented with 5% palm oil (BDSP). At slaughter, i.m. adipose tissue was harvested for analysis of adipogenic gene expression and fatty acid composition. There were no differences in BW or average daily gain between treatment groups. Supplemental palm oil had no effect on carcass quality traits (carcass weight, backfat thickness, loin muscle area, or marbling scores) or meat color values. Palm oil increased (p<0.05) expression of AMP-activated protein kinase-α and peroxisome proliferator-activated receptor-γ, but decreased (p<0.05) CAAT/enhancer binding protein-β gene expression and tended to decrease stearoyl-CoA desaturase gene expression in i.m. adipose tissue. Palm oil increased total i.m. polyunsaturated fatty acids (p<0.05) compared to the control i.m. adipose tissue, but had no effect on saturated or monounsaturated fatty acids. Although there were significant effects of supplemental palm oil on i.m. adipose tissue gene expression, the absence of negative effects on carcass and meat characteristics indicates that palm oil could be a suitable dietary supplement for the production of Hanwoo beef cattle. PMID:28515640

  2. Potential Effects of Aerobic Exercise on the Expression of Perilipin 3 in the Adipose Tissue of Women with Polycystic Ovary Syndrome: A Pilot Study

    PubMed Central

    Covington, Jeffrey D.; Bajpeyi, Sudip; Moro, Cedric; Tchoukalova, Yourka D.; Ebenezer, Philip J.; Burk, David H.; Ravussin, Eric; Redman, Leanne M.

    2014-01-01

    Objective Polycystic Ovary Syndrome (PCOS) is associated with reduced adipose tissue lipolysis that can be rescued by aerobic exercise. We aimed to identify differences in gene expression of perilipins and associated targets in adipose tissue in women with PCOS before and after exercise. Design and Methods We conducted a cross-sectional study in 8 women with PCOS and 8 women matched for BMI and age with normal cycles. Women with PCOS also completed a 16-week prospective aerobic exercise-training study. Abdominal subcutaneous adipose tissue biopsies were collected, and primary adipose-derived stromal/stem cell cultures were established from women with PCOS before 16 weeks of aerobic exercise training (n=5) and controls (n=5). Gene expression was measured using real time PCR, in vitro lipolysis was measured using radiolabeled oleate, and PLIN3 protein content was measured by western blotting. Results The expression of PLIN1, PLIN3, and PLIN5, along with coatomers ARF1, ARFRP1, and βCOP were ~80% lower in women with PCOS (all p<0.05). Following exercise training, PLIN3 was the only perilipin to increase significantly (p<0.05), along with coatomers ARF1, ARFRP1, βCOP, and Sec23a (all p<0.05). Furthermore, PLIN3 protein expression was undetectable in the cell cultures from women with PCOS vs. controls. Following exercise training, in vitro adipose oleate oxidation, glycerol secretion, and PLIN3 protein expression were increased, along with reductions in triglyceride content and absence of large lipid droplet morphology. Conclusions These findings suggest that PLIN3 and coatomer GTPases are important regulators of lipolysis and triglyceride storage in the adipose tissue of women with PCOS. PMID:25342854

  3. Mammary Adipose Tissue-derived Lysophospholipids Promote Estrogen Receptor-negative Mammary Epithelial Cell Proliferation

    PubMed Central

    Volden, Paul A.; Skor, Maxwell N.; Johnson, Marianna B.; Singh, Puneet; Patel, Feenalie N.; McClintock, Martha K.; Brady, Matthew J.; Conzen, Suzanne D.

    2016-01-01

    Lysophosphatidic acid (LPA), acting in an autocrine or paracrine fashion through G protein-coupled receptors, has been implicated in many physiological and pathological processes including cancer. LPA is converted to lysophosphatidylcholine (LPC) by the secreted phospholipase, autotaxin (ATX). Although various cell types can produce ATX, adipocyte-derived ATX is believed to be the major source of circulating ATX and also to be the major regulator of plasma LPA. In addition to ATX, adipocytes secrete numerous other factors (adipokines); although several adipokines have been implicated in breast cancer biology, the contribution of mammary adipose tissue-derived LPC/ATX/LPA (LPA-axis) signaling to breast cancer is poorly understood. Using mammary fat-conditioned medium, we investigated the contribution of LPA signaling to mammary epithelial cancer cell biology and identified LPA signaling as a significant contributor to the oncogenic effects of the mammary adipose tissue secretome. To interrogate the role of mammary fat in the LPA-axis during breast cancer progression, we exposed mammary adipose tissue to secreted factors from estrogen receptor-negative mammary epithelial cell lines and monitored changes in the mammary fat pad LPA-axis. Our data indicate that bidirectional interactions between mammary cancer cells and mammary adipocytes alter the local LPA-axis and increase ATX expression in the mammary fat pad during breast cancer progression. Thus, the LPC/ATX/LPA axis may be a useful target for prevention in patients at risk of ER-negative breast cancer. PMID:26862086

  4. Adipose Tissue: Sanctuary for HIV/SIV Persistence and Replication.

    PubMed

    Pallikkuth, Suresh; Mohan, Mahesh

    2015-12-01

    This commentary highlights new findings from a recent study identifying adipose tissue as a potential HIV reservoir and a major site of inflammation during chronic human/simian immunodeficiency virus (HIV/SIV) infection. A concise discussion about upcoming challenges and new research avenues for reducing chronic adipose inflammation during HIV/SIV infection is presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Characterization of visceral and subcutaneous adipose tissue transcriptome in pregnant women with and without spontaneous labor at term: implication of alternative splicing in the metabolic adaptations of adipose tissue to parturition.

    PubMed

    Mazaki-Tovi, Shali; Tarca, Adi L; Vaisbuch, Edi; Kusanovic, Juan Pedro; Than, Nandor Gabor; Chaiworapongsa, Tinnakorn; Dong, Zhong; Hassan, Sonia S; Romero, Roberto

    2016-10-01

    The aim of this study was to determine gene expression and splicing changes associated with parturition and regions (visceral vs. subcutaneous) of the adipose tissue of pregnant women. The transcriptome of visceral and abdominal subcutaneous adipose tissue from pregnant women at term with (n=15) and without (n=25) spontaneous labor was profiled with the Affymetrix GeneChip Human Exon 1.0 ST array. Overall gene expression changes and the differential exon usage rate were compared between patient groups (unpaired analyses) and adipose tissue regions (paired analyses). Selected genes were tested by quantitative reverse transcription-polymerase chain reaction. Four hundred and eighty-two genes were differentially expressed between visceral and subcutaneous fat of pregnant women with spontaneous labor at term (q-value <0.1; fold change >1.5). Biological processes enriched in this comparison included tissue and vasculature development as well as inflammatory and metabolic pathways. Differential splicing was found for 42 genes [q-value <0.1; differences in Finding Isoforms using Robust Multichip Analysis scores >2] between adipose tissue regions of women not in labor. Differential exon usage associated with parturition was found for three genes (LIMS1, HSPA5, and GSTK1) in subcutaneous tissues. We show for the first time evidence of implication of mRNA splicing and processing machinery in the subcutaneous adipose tissue of women in labor compared to those without labor.

  6. Characterization of visceral and subcutaneous adipose tissue transcriptome in pregnant women with and without spontaneous labor at term: Implication of alternative splicing in the metabolic adaptations of adipose tissue to parturition

    PubMed Central

    Mazaki-Tovi, Shali; Tarca, Adi L.; Vaisbuch, Edi; Kusanovic, Juan Pedro; Than, Nandor Gabor; Chaiworapongsa, Tinnakorn; Dong, Zhong; Hassan, Sonia S; Romero, Roberto

    2018-01-01

    OBJECTIVE The aim of this study was to determine gene expression and splicing changes associated with parturition and regions (visceral vs subcutaneous) of the adipose tissue of pregnant women. STUDY DESIGN The transcriptome of visceral and abdominal subcutaneous adipose tissue from pregnant women at term with (n=15) and without (n=25) spontaneous labor was profiled with Affymetrix GeneChip Human Exon 1.0 ST array. Overall gene expression changes and differential exon usage rate were compared between patient groups and adipose tissue regions (paired analyses). Selected genes were tested by quantitative reverse transcription–polymerase chain reaction. RESULTS Four hundred eighty-two genes were differentially expressed between visceral and subcutaneous fat of pregnant women with spontaneous labor at term (q-value <0.1; fold change >1.5). Biological processes enriched in this comparison included tissue and vasculature development, inflammatory and metabolic pathways. Differential splicing was found for 42 genes (q-value <0.1; difference FIRMA scores >2) between adipose tissue regions of women not in labor. Differential exon usage associated with parturition was found for three genes (LIMS1, HSPA5 and GSTK1) in subcutaneous tissues. CONCLUSION We show for the first time evidence of implication of mRNA splicing and processing machinery in the subcutaneous adipose tissue of women in labor compared to those without labor. PMID:26994472

  7. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    USDA-ARS?s Scientific Manuscript database

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  8. Adipose tissue endocannabinoid system gene expression: depot differences and effects of diet and exercise

    PubMed Central

    2011-01-01

    Background Alterations of endocannabinoid system in adipose tissue play an important role in lipid regulation and metabolic dysfunction associated with obesity. The purpose of this study was to determine whether gene expression levels of cannabinoid type 1 receptor (CB1) and fatty acid amide hydrolase (FAAH) are different in subcutaneous abdominal and gluteal adipose tissue, and whether hypocaloric diet and aerobic exercise influence subcutaneous adipose tissue CB1 and FAAH gene expression in obese women. Methods Thirty overweight or obese, middle-aged women (BMI = 34.3 ± 0.8 kg/m2, age = 59 ± 1 years) underwent one of three 20-week weight loss interventions: caloric restriction only (CR, N = 9), caloric restriction plus moderate-intensity aerobic exercise (CRM, 45-50% HRR, N = 13), or caloric restriction plus vigorous-intensity aerobic exercise (CRV, 70-75% HRR, N = 8). Subcutaneous abdominal and gluteal adipose tissue samples were collected before and after the interventions to measure CB1 and FAAH gene expression. Results At baseline, FAAH gene expression was higher in abdominal, compared to gluteal adipose tissue (2.08 ± 0.11 vs. 1.78 ± 0.10, expressed as target gene/β-actin mRNA ratio × 10-3, P < 0.05). Compared to pre-intervention, CR did not change abdominal, but decreased gluteal CB1 (Δ = -0.82 ± 0.25, P < 0.05) and FAAH (Δ = -0.49 ± 0.14, P < 0.05) gene expression. CRM or CRV alone did not change adipose tissue CB1 and FAAH gene expression. However, combined CRM and CRV (CRM+CRV) decreased abdominal adipose tissue FAAH gene expression (Δ = -0.37 ± 0.18, P < 0.05). The changes in gluteal CB1 and abdominal FAAH gene expression levels in the CR alone and the CRM+CRV group were different (P < 0.05) or tended to be different (P = 0.10). Conclusions There are depot differences in subcutaneous adipose tissue endocannabinoid system gene expression in obese individuals. Aerobic exercise training may preferentially modulate abdominal adipose tissue

  9. Developmental programming, adiposity, and reproduction in ruminants.

    PubMed

    Symonds, M E; Dellschaft, N; Pope, M; Birtwistle, M; Alagal, R; Keisler, D; Budge, H

    2016-07-01

    Although sheep have been widely adopted as an animal model for examining the timing of nutritional interventions through pregnancy on the short- and long-term outcomes, only modest programming effects have been seen. This is due in part to the mismatch in numbers of twins and singletons between study groups as well as unequal numbers of males and females. Placental growth differs between singleton and twin pregnancies which can result in different body composition in the offspring. One tissue that is especially affected is adipose tissue which in the sheep fetus is primarily located around the kidneys and heart plus the sternal/neck region. Its main role is the rapid generation of heat due to activation of the brown adipose tissue-specific uncoupling protein 1 at birth. The fetal adipose tissue response to suboptimal maternal food intake at defined stages of development differs between the perirenal abdominal and pericardial depots, with the latter being more sensitive. Fetal adipose tissue growth may be mediated in part by changes in leptin status of the mother which are paralleled in the fetus. Then, over the first month of life plasma leptin is higher in females than males despite similar adiposity, when fat is the fastest growing tissue with the sternal/neck depot retaining uncoupling protein 1, whereas other depots do not. Future studies should take into account the respective effects of fetal number and sex to provide more detailed insights into the mechanisms by which adipose and related tissues can be programmed in utero. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Adipose tissue as a stem cell source for musculo-skeletal regeneration

    PubMed Central

    Gimble, Jeffrey M.; Grayson, Warren; Guilak, Farshid; Lopez, Mandi J.; Vunjak-Novakovic, Gordana

    2013-01-01

    Adipose tissue is an abundant, easily accessible, and reproducible cell source for musculo-skeletal regenerative medicine applications. Initial derivation steps yield a heterogeneous population of cells collectively termed the stromal vascular fraction (SVF), which consist of endothelial cells, immune cells, pericytes, and pre-adipocytes. Subsequent selection of an adherent cell subset from the SVF results in a relatively homogeneous population of adipose-derived stromal/stem cells (ASCs). Mammalian ASCs exhibit the ability to selectively differentiate into chondrogenic, myogenic, and osteogenic lineages in response to inductive stimuli in vitro (when cultured on scaffolds in bioreactors) and in vivo (when implanted in pre-clinical animal models). Unlike hematopoietic cells, ASCs do not elicit a robust lymphocyte reaction and instead generate and release immunosuppressive factors, such as prostaglandin E2. These unique immunomodulatory features suggest that both allogeneic and autologous ASCs will engraft successfully following application for tissue regeneration purposes. The differentiation and expansion potential of ASCs can be modified by growth factors like bone morphogenetic protein 6, bio-inductive scaffolds, and bioreactors providing environmental control and biophysical stimulation. Gene therapy approaches using lentiviral transduction can also be used to direct differentiation of ASCs along particular lineage pathways. We discuss here the utility of ASCs for musculo-skeletal tissue repair and some of the technologies that can be implemented to unlock the full regenerative potential of these highly valuable cells. PMID:21196358

  11. Fully automated adipose tissue measurement on abdominal CT

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Sussman, Daniel L.; Summers, Ronald M.

    2011-03-01

    Obesity has become widespread in America and has been associated as a risk factor for many illnesses. Adipose tissue (AT) content, especially visceral AT (VAT), is an important indicator for risks of many disorders, including heart disease and diabetes. Measuring adipose tissue (AT) with traditional means is often unreliable and inaccurate. CT provides a means to measure AT accurately and consistently. We present a fully automated method to segment and measure abdominal AT in CT. Our method integrates image preprocessing which attempts to correct for image artifacts and inhomogeneities. We use fuzzy cmeans to cluster AT regions and active contour models to separate subcutaneous and visceral AT. We tested our method on 50 abdominal CT scans and evaluated the correlations between several measurements.

  12. Maternal high-fat diet modulates brown adipose tissue response to B-adrenergic agonist

    USDA-ARS?s Scientific Manuscript database

    Maternal obesity increases offspring risk for several metabolic diseases. We previously showed that offspring of obese dams are predisposed to obesity, liver and adipose tissue anomalies. However, the effect of maternal obesity on developmental programing brown adipose tissue (BAT) is poorly underst...

  13. Association between subcutaneous white adipose tissue and serum 25-hydroxyvitamin D in overweight and obese adults

    USDA-ARS?s Scientific Manuscript database

    Background: Cholecalciferol is known to be deposited in human adipose tissue, but the distribution of 25-hydroxyvitamin D (25(OH)D) in adipose tissue is not known. Objectives: To determine whether 25(OH)D is detectable in subcutaneous white adipose tissue (SWAT) in overweight and obese persons an...

  14. Implication of low level inflammation in the insulin resistance of adipose tissue at late pregnancy.

    PubMed

    de Castro, J; Sevillano, J; Marciniak, J; Rodriguez, R; González-Martín, C; Viana, M; Eun-suk, O H; de Mouzon, S Hauguel; Herrera, E; Ramos, M P

    2011-11-01

    Insulin resistance is a characteristic of late pregnancy, and adipose tissue is one of the tissues that most actively contributes to the reduced maternal insulin sensitivity. There is evidence that pregnancy is a condition of moderate inflammation, although the physiological role of this low-grade inflammation remains unclear. The present study was designed to validate whether low-grade inflammation plays a role in the development of insulin resistance in adipose tissue during late pregnancy. To this end, we analyzed proinflammatory adipokines and kinases in lumbar adipose tissue of nonpregnant and late pregnant rats at d 18 and 20 of gestation. We found that circulating and tissue levels of adipokines, such as IL-1β, plasminogen activator inhibitor-1, and TNF-α, were increased at late pregnancy, which correlated with insulin resistance. The observed increase in adipokines coincided with an enhanced activation of p38 MAPK in adipose tissue. Treatment of pregnant rats with the p38 MAPK inhibitor SB 202190 increased insulin-stimulated tyrosine phosphorylation of the insulin receptor (IR) and IR substrate-1 in adipose tissue, which was paralleled by a reduction of IR substrate-1 serine phosphorylation and an enhancement of the metabolic actions of insulin. These results indicate that activation of p38 MAPK in adipose tissue contributes to adipose tissue insulin resistance at late pregnancy. Furthermore, the results of the present study support the hypothesis that physiological low-grade inflammation in the maternal organism is relevant to the development of pregnancy-associated insulin resistance.

  15. Implication of Low Level Inflammation in the Insulin Resistance of Adipose Tissue at Late Pregnancy

    PubMed Central

    de Castro, J.; Sevillano, J.; Marciniak, J.; Rodriguez, R.; González-Martín, C.; Viana, M.; Eun-suk, O. H.; de Mouzon, S. Hauguel; Herrera, E.

    2011-01-01

    Insulin resistance is a characteristic of late pregnancy, and adipose tissue is one of the tissues that most actively contributes to the reduced maternal insulin sensitivity. There is evidence that pregnancy is a condition of moderate inflammation, although the physiological role of this low-grade inflammation remains unclear. The present study was designed to validate whether low-grade inflammation plays a role in the development of insulin resistance in adipose tissue during late pregnancy. To this end, we analyzed proinflammatory adipokines and kinases in lumbar adipose tissue of nonpregnant and late pregnant rats at d 18 and 20 of gestation. We found that circulating and tissue levels of adipokines, such as IL-1β, plasminogen activator inhibitor-1, and TNF-α, were increased at late pregnancy, which correlated with insulin resistance. The observed increase in adipokines coincided with an enhanced activation of p38 MAPK in adipose tissue. Treatment of pregnant rats with the p38 MAPK inhibitor SB 202190 increased insulin-stimulated tyrosine phosphorylation of the insulin receptor (IR) and IR substrate-1 in adipose tissue, which was paralleled by a reduction of IR substrate-1 serine phosphorylation and an enhancement of the metabolic actions of insulin. These results indicate that activation of p38 MAPK in adipose tissue contributes to adipose tissue insulin resistance at late pregnancy. Furthermore, the results of the present study support the hypothesis that physiological low-grade inflammation in the maternal organism is relevant to the development of pregnancy-associated insulin resistance. PMID:21914778

  16. Culture and Sampling of Primary Adipose Tissue in Practical Microfluidic Systems.

    PubMed

    Brooks, Jessica C; Judd, Robert L; Easley, Christopher J

    2017-01-01

    Microfluidic culture of primary adipose tissue allows for reduced sample and reagent volumes as well as constant media perfusion of the cells. By continuously flowing media over the tissue, microfluidic sampling systems can more accurately mimic vascular flow in vivo. Quantitative measurements can be performed on or off chip to provide time-resolved secretion data, furthering insight into the dynamics of the function of adipose tissue. Buoyancy resulting from the large lipid storage capacity in this tissue presents a unique challenge for culture, and it is important to account for this buoyancy during microdevice design. Herein, we describe approaches for microfluidic device fabrication that utilize 3D-printed interface templating to help counteract cell buoyancy. We apply such methods to the culture of both isolated, dispersed primary adipocytes and epididymal adipose explants. To facilitate more widespread adoption of the methodology, the devices presented here are designed for user-friendly operation. Only handheld syringes are needed to control flow, and devices are inexpensive and disposable.

  17. Targeting obesity-related adipose tissue dysfunction to prevent cancer development and progression

    PubMed Central

    Gucalp, Ayca; Iyengar, Neil M.; Hudis, Clifford A.; Dannenberg, Andrew J.

    2016-01-01

    The incidence of obesity, a leading modifiable risk factor for common solid tumors, is increasing. Effective interventions are needed to minimize the public health implications of obesity. Although the mechanisms linking increased adiposity to malignancy are incompletely understood, growing evidence points to complex interactions among multiple systemic and tissue-specific pathways including inflamed white adipose tissue. The metabolic and inflammatory consequences of white adipose tissue dysfunction collectively provide a plausible explanation for the link between overweight/obesity and carcinogenesis. Gaining a better understanding of these underlying molecular pathways and developing risk assessment tools that identify at-risk populations will be critical in implementing effective and novel cancer prevention and management strategies. PMID:26970134

  18. Dietary Quercetin Attenuates Adipose Tissue Expansion and Inflammation and Alters Adipocyte Morphology in a Tissue-Specific Manner

    PubMed Central

    Forney, Laura A.; Lenard, Natalie R.; Stewart, Laura K.

    2018-01-01

    Chronic inflammation in adipose tissue may contribute to depot-specific adipose tissue expansion, leading to obesity and insulin resistance. Dietary supplementation with quercetin or botanical extracts containing quercetin attenuates high fat diet (HFD)-induced obesity and insulin resistance and decreases inflammation. Here, we determined the effects of quercetin and red onion extract (ROE) containing quercetin on subcutaneous (inguinal, IWAT) vs. visceral (epididymal, EWAT) white adipose tissue morphology and inflammation in mice fed low fat, high fat, high fat plus 50 μg/day quercetin or high fat plus ROE containing 50 μg/day quercetin equivalents for 9 weeks. Quercetin and ROE similarly ameliorated HFD-induced increases in adipocyte size and decreases in adipocyte number in IWAT and EWAT. Furthermore, quercetin and ROE induced alterations in adipocyte morphology in IWAT. Quercetin and ROE similarly decreased HFD-induced IWAT inflammation. However, quercetin and red onion differentially affected HFD-induced EWAT inflammation, with quercetin decreasing and REO increasing inflammatory marker gene expression. Quercetin and REO also differentially regulated circulating adipokine levels. These results show that quercetin or botanical extracts containing quercetin induce white adipose tissue remodeling which may occur through inflammatory-related mechanisms. PMID:29562620

  19. Invited review: Pre- and postnatal adipose tissue development in farm animals: from stem cells to adipocyte physiology.

    PubMed

    Louveau, I; Perruchot, M-H; Bonnet, M; Gondret, F

    2016-11-01

    Both white and brown adipose tissues are recognized to be differently involved in energy metabolism and are also able to secrete a variety of factors called adipokines that are involved in a wide range of physiological and metabolic functions. Brown adipose tissue is predominant around birth, except in pigs. Irrespective of species, white adipose tissue has a large capacity to expand postnatally and is able to adapt to a variety of factors. The aim of this review is to update the cellular and molecular mechanisms associated with pre- and postnatal adipose tissue development with a special focus on pigs and ruminants. In contrast to other tissues, the embryonic origin of adipose cells remains the subject of debate. Adipose cells arise from the recruitment of specific multipotent stem cells/progenitors named adipose tissue-derived stromal cells. Recent studies have highlighted the existence of a variety of those cells being able to differentiate into white, brown or brown-like/beige adipocytes. After commitment to the adipocyte lineage, progenitors undergo large changes in the expression of many genes involved in cell cycle arrest, lipid accumulation and secretory functions. Early nutrition can affect these processes during fetal and perinatal periods and can also influence or pre-determinate later growth of adipose tissue. How these changes may be related to adipose tissue functional maturity around birth and can influence newborn survival is discussed. Altogether, a better knowledge of fetal and postnatal adipose tissue development is important for various aspects of animal production, including neonatal survival, postnatal growth efficiency and health.

  20. Regional Differences in Adipose Tissue Hormone/Cytokine Production Before and After Weight Loss in Abdominally Obese Women

    PubMed Central

    You, Tongjian; Wang, Xuewen; Murphy, Karin M.; Lyles, Mary F.; Demons, Jamehl L.; Yang, Rongze; Gong, Da-Wei; Nicklas, Barbara J.

    2014-01-01

    Objective To compare the regional differences in subcutaneous adipose tissue hormone/cytokine production in abdominally obese women during weight loss. Design and Methods Forty-two abdominally obese, older women underwent a 20-week weight loss intervention composed of hypocaloric diet with or without aerobic exercise (total energy expenditure: ~2800 kcal/week). Subcutaneous (gluteal and abdominal) adipose tissue biopsies were conducted before and after the intervention. Results Adipose tissue gene expression and release of leptin, adiponectin, and interleukin 6 (IL-6) were determined. The intervention resulted in significant weight loss (−10.1 ±0.7 kg, P<0.001). At baseline, gene expression of adiponectin were higher (P<0.01), and gene expression and release of IL-6 were lower (both P<0.05) in abdominal than in gluteal adipose tissue. After intervention, leptin gene expression and release were lower in both gluteal and abdominal adipose tissue compared to baseline (P<0.05 to P<0.01). Abdominal, but not gluteal, adipose tissue adiponectin gene expression and release increased after intervention (both P<0.05). Conclusion A 20-week weight loss program decreased leptin production in both gluteal and abdominal adipose tissue, but only increased adiponectin production from abdominal adipose tissue in obese women. This depot-specific effect may be of importance for the treatment of health complications associated with abdominal adiposity. PMID:24634403

  1. Dietary fish protein hydrolysates containing bioactive motifs affect serum and adipose tissue fatty acid compositions, serum lipids, postprandial glucose regulation and growth in obese Zucker fa/fa rats.

    PubMed

    Drotningsvik, Aslaug; Mjøs, Svein A; Pampanin, Daniela M; Slizyte, Rasa; Carvajal, Ana; Remman, Tore; Høgøy, Ingmar; Gudbrandsen, Oddrun A

    2016-10-01

    The world's fisheries and aquaculture industries produce vast amounts of protein-containing by-products that can be enzymatically hydrolysed to smaller peptides and possibly be used as additives to functional foods and nutraceuticals targeted for patients with obesity-related metabolic disorders. To investigate the effects of fish protein hydrolysates on markers of metabolic disorders, obese Zucker fa/fa rats consumed diets with 75 % of protein from casein/whey (CAS) and 25 % from herring (HER) or salmon (SAL) protein hydrolysate from rest raw material, or 100 % protein from CAS for 4 weeks. The fatty acid compositions were similar in the experimental diets, and none of them contained any long-chain n-3 PUFA. Ratios of lysine:arginine and methionine:glycine were lower in HER and SAL diets when compared with CAS, and taurine was detected only in fish protein hydrolysate diets. Motifs with reported hypocholesterolemic or antidiabetic activities were identified in both fish protein hydrolysates. Rats fed HER diet had lower serum HDL-cholesterol and LDL-cholesterol, and higher serum TAG, MUFA and n-3:n-6 PUFA ratio compared with CAS-fed rats. SAL rats gained more weight and had better postprandial glucose regulation compared with CAS rats. Serum lipids and fatty acids were only marginally affected by SAL, but adipose tissue contained less total SFA and more total n-3 PUFA when compared with CAS. To conclude, diets containing hydrolysed rest raw material from herring or salmon proteins may affect growth, lipid metabolism, postprandial glucose regulation and fatty acid composition in serum and adipose tissue in obese Zucker rats.

  2. Early postnatal maternal separation causes alterations in the expression of β3-adrenergic receptor in rat adipose tissue suggesting long-term influence on obesity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miki, Takanori, E-mail: mikit@med.kagawa-u.ac.jp; Liu, Jun-Qian; Ohta, Ken-ichi

    Highlights: •High-fat diet intake following maternal separation did not cause body weight gain. •However, levels of metabolism-related molecules in adipose tissue were altered. •Increased levels of prohibitin mRNA in white fat were observed. •Attenuated levels of β3-adrenergic receptor mRNA were observed in brown fat. •Such alterations in adipose tissue may contribute to obesity later in life. -- Abstract: The effects of early postnatal maternal deprivation on the biological characteristics of the adipose tissue later in life were investigated in the present study. Sprague–Dawley rats were classified as either maternal deprivation (MD) or mother-reared control (MRC) groups. MD was achieved bymore » separating the rat pups from their mothers for 3 h each day during the 10–15 postnatal days. mRNA levels of mitochondrial uncoupling protein 1 (UCP-1), β3-adrenergic receptor (β3-AR), and prohibitin (PHB) in the brown and white adipose tissue were determined using real-time RT-PCR analysis. UCP-1, which is mediated through β3-AR, is closely involved in the energy metabolism and expenditure. PHB is highly expressed in the proliferating tissues/cells. At 10 weeks of age, the body weight of the MRC and MD rats was similar. However, the levels of the key molecules in the adipose tissue were substantially altered. There was a significant increase in the expression of PHB mRNA in the white adipose tissue, while the β3-AR mRNA expression decreased significantly, and the UCP-1 mRNA expression remained unchanged in the brown adipose tissue. Given that these molecules influence the mitochondrial metabolism, our study indicates that early postnatal maternal deprivation can influence the fate of adipose tissue proliferation, presumably leading to obesity later in life.« less

  3. A Low-Protein, High-Carbohydrate Diet Stimulates Thermogenesis in the Brown Adipose Tissue of Rats via ATF-2.

    PubMed

    de França, Suélem A; dos Santos, Maísa P; Przygodda, Franciele; Garófalo, Maria Antonieta R; Kettelhut, Isis C; Magalhães, Diego A; Bezerra, Kalinne S; Colodel, Edson M; Flouris, Andreas D; Andrade, Cláudia M B; Kawashita, Nair H

    2016-03-01

    The aim of this study was to evaluate thermogenesis in the interscapular brown adipose tissue (IBAT) of rats submitted to low-protein, high-carbohydrate (LPHC) diet and the involvement of adrenergic stimulation in this process. Male rats (~100 g) were submitted to LPHC (6%-protein; 74%-carbohydrate) or control (C; 17%-protein; 63%-carbohydrate) isocaloric diets for 15 days. The IBAT temperature was evaluated in the rats before and after the administration of noradrenaline (NA) (20 µg 100 g b w(-1) min(-1)). The expression levels of uncoupling protein 1 (UCP1) and other proteins involved in the regulation of UCP1 expression were determined by Western blot (Student's t test, P ≤ 0.05). The LPHC diet promoted a 1.1 °C increase in the basal temperature of IBAT when compared with the basal temperature in the IBAT of the C group. NA administration promoted a 0.3 °C increase in basal temperature in the IBAT of the C rats and a 0.5 °C increase in the IBAT of the LPHC group. The level of UCP1 increased 60% in the IBAT of LPHC-fed rats, and among the proteins involved in its expression, such as β3-AR and α1-AR, there was a 40% increase in the levels of p38-MAPK and a 30% decrease in CREB when compared to the C rats. The higher sympathetic flux to IBAT, which is a consequence of the administration of the LPHC diet to rats, activates thermogenesis and increases the expression of UCP1 in the tissue. Our results suggest that the increase in UCP1 content may occur via p38 MAPK and ATF2.

  4. Plasma and white adipose tissue lipid composition in marmots.

    PubMed

    Florant, G L; Nuttle, L C; Mullinex, D E; Rintoul, D A

    1990-05-01

    White adipose tissue biopsies and plasma samples were obtained from hibernating yellow-bellied marmots (Marmota flaviventris) maintained in the laboratory. In addition, biopsies and plasma samples were obtained from normothermic animals in the field and laboratory. Measurement of plasma free fatty acid (FA) levels indicated that winter laboratory animals exhibited increased lipolysis. Additionally, analysis of white adipose tissue triacylglycerol revealed that the FA composition of the storage fat in animals maintained on the standard laboratory diet is remarkably simple and uniform between different adipose depots in the same animal. Three FAs (palmitic, oleic, and linoleic acids) made up greater than 95% of the total. Triene (alpha-linolenate) was found in newly captured animals, but the percentage of this FA decreased rapidly when the animals were maintained on the standard laboratory diet. Throughout the hibernation season (October to April), white adipose tissue-saturated FA percentage decreased, monoene percentage remained constant, and diene percentage increased. Analysis of plasma FA composition suggested that these animals tended to metabolize saturated FAs from stored lipid during hibernation and that dienes were mobilized briefly after the last arousal from hibernation in spring. From these observations, we hypothesize that marmots preferentially metabolize saturated fats during the hibernation period and that essential FAs of the omega 6 series tend to be metabolized more slowly than other FAs. These characteristics suggest that marmots are a valuable animal model in which to study lipid metabolism.

  5. Germline ablation of VGF increases lipolysis in white adipose tissue.

    PubMed

    Fargali, Samira; Scherer, Thomas; Shin, Andrew C; Sadahiro, Masato; Buettner, Christoph; Salton, Stephen R

    2012-11-01

    Targeted deletion of VGF, a neuronal and endocrine secreted protein and neuropeptide precursor, produces a lean, hypermetabolic mouse that is resistant to diet-, lesion-, and genetically induced obesity and diabetes. We hypothesized that increased sympathetic nervous system activity in Vgf-/Vgf- knockout mice is responsible for increased energy expenditure and decreased fat storage and that increased β-adrenergic receptor stimulation induces lipolysis in white adipose tissue (WAT) of Vgf-/Vgf- mice. We found that fat mass was markedly reduced in Vgf-/Vgf- mice. Within knockout WAT, phosphorylation of protein kinase A substrate increased in males and females, phosphorylation of hormone-sensitive lipase (HSL) (ser563) increased in females, and levels of adipose triglyceride lipase, comparative gene identification-58, and phospho-perilipin were higher in male Vgf-/Vgf- WAT compared with wild-type, consistent with increased lipolysis. The phosphorylation of AMP-activated protein kinase (AMPK) (Thr172) and levels of the AMPK kinase, transforming growth factor β-activated kinase 1, were decreased. This was associated with a decrease in HSL ser565 phosphorylation, the site phosphorylated by AMPK, in both male and female Vgf-/Vgf- WAT. No significant differences in phosphorylation of CREB or the p42/44 MAPK were noted. Despite this evidence supporting increased cAMP signaling and lipolysis, lipogenesis as assessed by fatty acid synthase protein expression and phosphorylated acetyl-CoA carboxylase was not decreased. Our data suggest that the VGF precursor or selected VGF-derived peptides dampen sympathetic outflow pathway activity to WAT to regulate fat storage and lipolysis.

  6. The effects of exercise and cold exposure on mitochondrial biogenesis in skeletal muscle and white adipose tissue

    PubMed Central

    Chung, Nana; Park, Jonghoon; Lim, Kiwon

    2017-01-01

    [Purpose] The purpose of this study was to determine whether exercise or/and cold exposure regulate mitochondria biogenesis-related gene expression in soleus and inguinal adipose tissue of mice. [Methods] Forty ICR 5-week old male mice were divided into four groups: thermoneutrality-untrained (23 ± 1 °C in room temperature, n=10), cold-water immersion (24 ± 1 °C, n=10), exercise in neutral temperature (34 ± 1 °C, n=10), and exercise in cold temperature (24 ± 1 °C, n=10). The mice performed swimming exercise (30 min to 60 min, 5 times) for 8 weeks. After 8 weeks, we confirmed mitochondrial biogenesis-related gene expression changes for peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), nuclear respiratory factors 1 (NRF1), and mitochondrial transcription factor A (Tfam) in soleus muscle and inguinal adipose tissue, and the related protein expression in soleus muscle. [Results] In soleus muscle, PGC-1α expression significantly increased in response to cold exposure (p = 0.006) and exercise (p = 0.05). There was also significant interaction between exercise and cold exposure (p = 0.005). Only exercise had a significant effect on NRF1 relative expression (p=0.001). Neither cold exposure nor the interaction showed significant effects (p = 0.1222 and p = 0.875, respectively). Relative Tfam expression did not show any significant effect from exercise. In inguinal adipose tissue, relative PGC-1α expression did not significantly change in any group. NRF1 expression showed a significant change from exercise (p = 0.01) and cold exposure (p = 0.011). There was also a significant interaction between exercise and cold exposure (p = 0.000). Tfam mRNA expression showed a significant effect from exercise (p=0.000) and an interaction between exercise and cold exposure (p=0.001). Only temperature significantly affected PGC-1α protein levels (p=0.045). Neither exercise nor the interaction were significant (p = 0.397 and p = 0.292, respectively

  7. Transcriptome analysis reveals differential gene expression in intramuscular adipose tissues of Jinhua and Landrace pigs.

    PubMed

    Miao, Zhiguo; Wei, Panpeng; Khan, Muhammad Akram; Zhang, Jinzhou; Guo, Liping; Liu, Dongyang; Zhang, Xiaojian; Bai, Yueyu; Wang, Shan

    2018-05-01

    Meat is a rich source of protein, fatty acids and carbohydrates for human needs. In addition to necessary nutrients, high fat contents in pork increase the tenderness and juiciness of the meat, featuring diverse application in various dishes. This study investigated the transcriptomic profiles of intramuscular adipose tissues in Jinhua and Landrace pigs by employing advanced RNA sequencing. Results showed significant interesting to note that there were significant differences in the expression of genes. 1,632 genes showed significant differential expression, 837 genes were up-regulated and 195 genes were down-regulated. Variations in genes responsible for cell aggregation, extracellular matrix formation, cellular lipid catabolic process, and fatty acid binding strongly supported that both pig breeds feature variable fat and muscle metabolism. Certain differentially expressed genes are included in the pathway of mitogen-activated protein kinase signaling pathway, Ras signaling pathway and insulin pathway. Results from real-time quantitative polymerase chain reaction also validated the differential expression of 17 mRNAs between meats of the two pig breeds. Overall, these findings reveal significant differences in fat and protein metabolism of intramuscular adipose tissues of two pig breeds at the transcriptomic level and suggest diversification at the genetic level between breeds of the same species.

  8. A role of low dose chemical mixtures in adipose tissue in carcinogenesis.

    PubMed

    Lee, Duk-Hee; Jacobs, David R; Park, Ho Yong; Carpenter, David O

    2017-11-01

    The Halifax project recently hypothesized a composite carcinogenic potential of the mixture of low dose chemicals which are commonly encountered environmentally, yet which are not classified as human carcinogens. A long neglected but important fact is that adipose tissue is an important exposure source for chemical mixtures. In fact, findings from human studies based on several persistent organic pollutants in general populations with only background exposure should be interpreted from the viewpoint of chemical mixtures because serum concentrations of these chemicals can be seen as surrogates for chemical mixtures in adipose tissue. Furthermore, in conditions such as obesity with dysfunctional adipocytes or weight loss in which lipolysis is increased, the amount of the chemical mixture released from adipose tissue to circulation is increased. Thus, both obesity and weight loss can enhance the chance of chemical mixtures reaching critical organs, however paradoxical this idea may be when fat mass is the only factor considered. The complicated, interrelated dynamics of adipocytes and chemical mixtures can explain puzzling findings related to body weight among cancer patients, including the obesity paradox. The contamination of fat in human diet with chemical mixtures, occurring for reasons similar to contamination of human adipose tissue, may be a missing factor which affects the association between dietary fat intake and cancer. The presence of chemical mixtures in adipose tissue should be considered in future cancer research, including clinical trials on weight management among cancer survivors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Minimally invasive collection of adipose tissue facilitates the study of eco-physiology in small-bodied mammals

    Treesearch

    Jeff Clerc; Theodore J. Weller; Jeffrey B. Schineller; Joseph M. Szewczak; Diana Fisher

    2016-01-01

    Adipose tissue is the primary fuel storage for vertebrates and is an important component of energy budgets during periods of peak energetic demands. Investigating the composition of adipose tissue can provide information about energetics, migration, reproduction, and other life-history traits. Until now, most field methods for sampling the adipose tissue of...

  10. Maternal sodium butyrate supplement elevates the lipolysis in adipose tissue and leads to lipid accumulation in offspring liver of weaning-age rats.

    PubMed

    Zhou, Jiabin; Gao, Shixing; Chen, Jinglong; Zhao, Ruqian; Yang, Xiaojing

    2016-07-22

    Sodium butyrate (SB) is reported to regulate lipid metabolism in mammals, and the relationship between maternal nutrition and offspring growth has drawn much attention in the last several years. To elucidate the effects of maternal dietary SB supplementation on hepatic lipid metabolism in weaning rats, we fed 16 primiparous purebred female SD rats either a chow-diet or a 1 % sodium butyrate diet throughout pregnancy and lactation. At weaning age, samples of the maternal subcutaneous adipose tissue and offspring liver were taken. The serum indexes and expressions of proteins related to lipid metabolism were detected in the mother and offspring, respectively. The results showed that the maternal SB supplement increased the concentration of non-esterified fatty acid (NEFA) in the maternal and offspring serum (P < 0.05). Total cholesterol (Tch) increased significantly in the weaning-rat serum (P < 0.05). Maternal adipose tissue from the SB-supplemented rats showed higher content of protein G-coupled protein (GPR43) and protein kinase A (PKA) (P < 0.05). The expression of protein adipose triglyceride lipase (ATGL), and of total and phosphorylated hormone sensitive lipase (HSL), in the maternal adipose tissue increased significantly (P < 0.05) compared to the control group. However the proteins related to lipogenesis showed no significant changes. Moreover, the concentration of triglyceride in the offspring liver increased significantly, and this likely resulted from an increase in the levels of fatty acids binding protein (FABP) and fatty acid translocase (CD36) protein (P < 0.05). SB exposure during pregnancy and lactation increased the hepatic total cholesterol (Tch) content (P < 0.01), which was related to a significantly up-regulated offspring hepatic expression of low density lipoprotein receptor (LDLR) protein (P < 0.05). These results indicate that a maternal SB supplement during pregnancy and the lactation period promotes maternal

  11. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial.

    PubMed

    Perfilyev, Alexander; Dahlman, Ingrid; Gillberg, Linn; Rosqvist, Fredrik; Iggman, David; Volkov, Petr; Nilsson, Emma; Risérus, Ulf; Ling, Charlotte

    2017-04-01

    Background: Dietary fat composition can affect ectopic lipid accumulation and, thereby, insulin resistance. Diets that are high in saturated fatty acids (SFAs) or polyunsaturated fatty acids (PUFAs) have different metabolic responses. Objective: We investigated whether the epigenome of human adipose tissue is affected differently by dietary fat composition and general overfeeding in a randomized trial. Design: We studied the effects of 7 wk of excessive SFA ( n = 17) or PUFA ( n = 14) intake (+750 kcal/d) on the DNA methylation of ∼450,000 sites in human subcutaneous adipose tissue. Both diets resulted in similar body weight increases. We also combined the data from the 2 groups to examine the overall effect of overfeeding on the DNA methylation in adipose tissue. Results: The DNA methylation of 4875 Cytosine-phosphate-guanine (CpG) sites was affected differently between the 2 diets. Furthermore, both the SFA and PUFA diets increased the mean degree of DNA methylation in adipose tissue, particularly in promoter regions. However, although the mean methylation was changed in 1797 genes [e.g., alpha-ketoglutarate dependent dioxygenase ( FTO ), interleukin 6 ( IL6 ), insulin receptor ( INSR ), neuronal growth regulator 1 ( NEGR1 ), and proopiomelanocortin ( POMC )] by PUFAs, only 125 genes [e.g., adiponectin, C1Q and collagen domain containing ( ADIPOQ )] were changed by SFA overfeeding. In addition, the SFA diet significantly altered the expression of 28 transcripts [e.g., acyl-CoA oxidase 1 ( ACOX1 ) and FAT atypical cadherin 1 ( FAT1 )], whereas the PUFA diet did not significantly affect gene expression. When the data from the 2 diet groups were combined, the mean methylation of 1444 genes, including fatty acid binding protein 1 ( FABP1 ), fatty acid binding protein 2 ( FABP2 ), melanocortin 2 receptor ( MC2R ), MC3R , PPARG coactivator 1 α ( PPARGC1A ), and tumor necrosis factor ( TNF ), was changed in adipose tissue by overfeeding. Moreover, the baseline DNA

  12. Parallels in Immunometabolic Adipose Tissue Dysfunction with Ageing and Obesity

    PubMed Central

    Trim, William; Turner, James E.; Thompson, Dylan

    2018-01-01

    Ageing, like obesity, is often associated with alterations in metabolic and inflammatory processes resulting in morbidity from diseases characterised by poor metabolic control, insulin insensitivity, and inflammation. Ageing populations also exhibit a decline in immune competence referred to as immunosenescence, which contributes to, or might be driven by chronic, low-grade inflammation termed “inflammageing”. In recent years, animal and human studies have started to uncover a role for immune cells within the stromal fraction of adipose tissue in driving the health complications that come with obesity, but relatively little work has been conducted in the context of immunometabolic adipose function in ageing. It is now clear that aberrant immune function within adipose tissue in obesity—including an accumulation of pro-inflammatory immune cell populations—plays a major role in the development of systemic chronic, low-grade inflammation, and limiting the function of adipocytes leading to an impaired fat handling capacity. As a consequence, these changes increase the chance of multiorgan dysfunction and disease onset. Considering the important role of the immune system in obesity-associated metabolic and inflammatory diseases, it is critically important to further understand the interplay between immunological processes and adipose tissue function, establishing whether this interaction contributes to age-associated immunometabolic dysfunction and inflammation. Therefore, the aim of this article is to summarise how the interaction between adipose tissue and the immune system changes with ageing, likely contributing to the age-associated increase in inflammatory activity and loss of metabolic control. To understand the potential mechanisms involved, parallels will be drawn to the current knowledge derived from investigations in obesity. We also highlight gaps in research and propose potential future directions based on the current evidence. PMID:29479350

  13. Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trindade, Sandra; Rijo-Ferreira, Filipa; Carvalho, Tania

    Trypanosoma brucei is an extracellular parasite that causes sleeping sickness. In mammalian hosts, trypanosomes are thought to exist in two major niches: early in infection, they populate the blood; later, they breach the blood-brain barrier. Working with a well-established mouse model, we discovered that adipose tissue constitutes a third major reservoir for T. brucei. Parasites from adipose tissue, here termed adipose tissue forms (ATFs), can replicate and were capable of infecting a naive animal. ATFs were transcriptionally distinct from bloodstream forms, and the genes upregulated included putative fatty acid β-oxidation enzymes. Consistent with this, ATFs were able to utilize exogenousmore » myristate and form β-oxidation intermediates, suggesting that ATF parasites can use fatty acids as an external carbon source. Lastly, these findings identify the adipose tissue as a niche for T. brucei during its mammalian life cycle and could potentially explain the weight loss associated with sleeping sickness.« less

  14. Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice

    DOE PAGES

    Trindade, Sandra; Rijo-Ferreira, Filipa; Carvalho, Tania; ...

    2016-05-26

    Trypanosoma brucei is an extracellular parasite that causes sleeping sickness. In mammalian hosts, trypanosomes are thought to exist in two major niches: early in infection, they populate the blood; later, they breach the blood-brain barrier. Working with a well-established mouse model, we discovered that adipose tissue constitutes a third major reservoir for T. brucei. Parasites from adipose tissue, here termed adipose tissue forms (ATFs), can replicate and were capable of infecting a naive animal. ATFs were transcriptionally distinct from bloodstream forms, and the genes upregulated included putative fatty acid β-oxidation enzymes. Consistent with this, ATFs were able to utilize exogenousmore » myristate and form β-oxidation intermediates, suggesting that ATF parasites can use fatty acids as an external carbon source. Lastly, these findings identify the adipose tissue as a niche for T. brucei during its mammalian life cycle and could potentially explain the weight loss associated with sleeping sickness.« less

  15. Increased asthma and adipose tissue inflammatory gene expression with obesity and Inuit migration to a western country.

    PubMed

    Backer, Vibeke; Baines, Katherine J; Powell, Heather; Porsbjerg, Celeste; Gibson, Peter G

    2016-02-01

    An overlap between obesity and asthma exists, and inflammatory cells in adipose tissue could drive the development of asthma. Comparison of adipose tissue gene expression among Inuit living in Greenland to those in Denmark provides an opportunity to assess how changes in adipose tissue inflammation can be modified by migration and diet. To examine mast cell and inflammatory markers in adipose tissue and the association with asthma. Two Inuit populations were recruited, one living in Greenland and another in Denmark. All underwent adipose subcutaneous biopsy, followed by clinical assessment of asthma, and measurement of AHR. Adipose tissue biopsies were homogenised, RNA extracted, and PCR was performed to determine the relative gene expression of mast cell (tryptase, chymase, CPA3) and inflammatory markers (IL-6, IL-1β, and CD163). Of the 1059 Greenlandic Inuit participants, 556 were living in Greenland and 6.4% had asthma. Asthma was increased in Denmark (9%) compared to Greenland (3.6%, p < 0.0001) and associated with increased adipose tissue IL-6 gene expression and increased BMI. There was no association between asthma and adipose tissue mast cell gene expression. Pro-inflammatory gene expression (IL-6, IL-1β) was higher in those living in Denmark, and with increasing BMI and dietary changes. The anti-inflammatory (M2) macrophage marker, CD163, was higher in Greenland-dwelling Inuit (p < 0.01). No association was found between gene expression of mast cell markers in adipose tissue and asthma. Among Greenlandic Inuit, adipose tissue inflammation is also increased in those who migrate to Denmark, possibly as a result of dietary changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection

    PubMed Central

    Damouche, Abderaouf; Huot, Nicolas; Dejucq-Rainsford, Nathalie; Satie, Anne-Pascale; Mélard, Adeline; David, Ludivine; Gommet, Céline; Ghosn, Jade; Noel, Nicolas; Pourcher, Guillaume; Martinez, Valérie; Benoist, Stéphane; Béréziat, Véronique; Cosma, Antonio; Favier, Benoit; Vaslin, Bruno; Rouzioux, Christine; Capeau, Jacqueline; Müller-Trutwin, Michaela; Dereuddre-Bosquet, Nathalie; Le Grand, Roger; Lambotte, Olivier; Bourgeois, Christine

    2015-01-01

    Two of the crucial aspects of human immunodeficiency virus (HIV) infection are (i) viral persistence in reservoirs (precluding viral eradication) and (ii) chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART)-controlled HIV-infected patients). The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF); the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV). The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART). Data on the impact of HIV on the SVF (especially in individuals not receiving ART) are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV) infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells) are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low-grade chronic

  17. Regulatory iNKT cells lack PLZF expression and control Treg cell and macrophage homeostasis in adipose tissue

    PubMed Central

    Lynch, Lydia; Michelet, Xavier; Zhang, Sai; Brennan, Patrick J.; Moseman, Ashley; Lester, Chantel; Besra, Gurdyal; Vomhof-Dekrey, Emilie E.; Tighe, Mike; Koay, Hui-Fern; Godfrey, Dale I.; Leadbetter, Elizabeth A.; Sant’Angelo, Derek B.; von Andrian, Ulrich; Brenner, Michael B.

    2015-01-01

    iNKT cells are CD1d-restricted lipid-sensing innate T cells that express the transcription factor PLZF. iNKT cells accumulate in adipose tissue, where they are anti-inflammatory, but the factors that contribute to their anti-inflammatory nature, and their targets in adipose tissue are unknown. Here we report that adipose tissue iNKT cells have a unique transcriptional program and produce interleukin 2 (IL-2) and IL-10. Unlike other iNKT cells, they lack PLZF, but express the transcription factor E4BP4, which controls their IL-10 production. Adipose iNKT cells are a tissue resident population that induces an anti-inflammatory phenotype in macrophages and, through production of IL-2, controls the number, proliferation and suppressor function of adipose regulatory T (Treg) cells. Thus, adipose tissue iNKT cells are unique regulators of immune homeostasis in this tissue. PMID:25436972

  18. Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease.

    PubMed

    Burke, Shoshana; Nagajyothi, Fnu; Thi, Mia M; Hanani, Menachem; Scherer, Philipp E; Tanowitz, Herbert B; Spray, David C

    2014-11-01

    Adipose tissue serves as a host reservoir for the protozoan Trypanosoma cruzi, the causative organism in Chagas disease. Gap junctions interconnect cells of most tissues, serving to synchronize cell activities including secretion in glandular tissue, and we have previously demonstrated that gap junctions are altered in various tissues and cells infected with T. cruzi. Herein, we examined the gap junction protein connexin 43 (Cx43) expression in infected adipose tissues. Adipose tissue is the largest endocrine organ of the body and is also involved in other physiological functions. In mammals, it is primarily composed of white adipocytes. Although gap junctions are a prominent feature of brown adipocytes, they have not been explored extensively in white adipocytes, especially in the setting of infection. Thus, we examined functional coupling in both white and brown adipocytes in mice. Injection of electrical current or the dye Lucifer Yellow into adipocytes within fat tissue spread to adjacent cells, which was reduced by treatment with agents known to block gap junctions. Moreover, Cx43 was detected in both brown and white fat tissue. At thirty and ninety days post-infection, Cx43 was downregulated in brown adipocytes and upregulated in white adipocytes. Gap junction-mediated intercellular communication likely contributes to hormone secretion and other functions in white adipose tissue and to nonshivering thermogenesis in brown fat, and modulation of the coupling by T. cruzi infection is expected to impact these functions. Copyright © 2014. Published by Elsevier Masson SAS.

  19. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.

    PubMed

    Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M

    2014-01-01

    Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight

  20. Thyroid Hormone Upregulates Zinc-α2-glycoprotein Production in the Liver but Not in Adipose Tissue

    PubMed Central

    Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M.

    2014-01-01

    Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight

  1. Bone Marrow Adipose Tissue and Skeletal Health.

    PubMed

    Muruganandan, Shanmugam; Govindarajan, Rajgopal; Sinal, Christopher J

    2018-05-31

    To summarize and discuss recent progress and novel signaling mechanisms relevant to bone marrow adipocyte formation and its physiological/pathophysiological implications for bone remodeling. Skeletal remodeling is a coordinated process entailing removal of old bone and formation of new bone. Several bone loss disorders such as osteoporosis are commonly associated with increased bone marrow adipose tissue. Experimental and clinical evidence supports that a reduction in osteoblastogenesis from mesenchymal stem cells at the expense of adipogenesis, as well as the deleterious effects of adipocyte-derived signaling, contributes to the etiology of osteoporosis as well as bone loss associated with aging, diabetes mellitus, post-menopause, and chronic drug therapy. However, this view is challenged by findings indicating that, in some contexts, bone marrow adipose tissue may have a beneficial impact on skeletal health. Further research is needed to better define the role of marrow adipocytes in bone physiology/pathophysiology and to determine the therapeutic potential of manipulating mesenchymal stem cell differentiation.

  2. Diet and adipose tissue distributions: The Multi-Ethnic Study of Atherosclerosis

    USDA-ARS?s Scientific Manuscript database

    Dietary quality affects cardiometabolic risk, yet its pathways of influence on regional adipose tissue depots involved in metabolic and diabetes risk are not well established. We aimed to investigate the relationship between dietary quality and regional adiposity. We investigated 5079 individuals in...

  3. Obesity Disrupts Rhythmic Clock Gene Expression in Maternal Adipose Tissue during Rat Pregnancy.

    PubMed

    Crew, Rachael C; Mark, Peter J; Waddell, Brendan J

    2018-06-01

    Obesity during pregnancy causes numerous maternal and fetal health complications, but the underlying mechanisms remain unclear. Adipose tissue dysfunction in obesity has previously been linked to disruption of the intrinsic adipose clock gene network that is crucial for normal metabolic function. This adipose clock also undergoes major change as part of the maternal metabolic adaptation to pregnancy, but whether this is affected by maternal obesity is unknown. Consequently, in this study we tested the hypothesis that obesity disturbs rhythmic gene expression in maternal adipose tissue across pregnancy. A rat model of maternal obesity was established by cafeteria (CAF) feeding, and adipose expression of clock genes and associated nuclear receptors ( Ppars and Pgc1α) was measured across days 15-16 and 21-22 of gestation (term = 23 days). CAF feeding suppressed the mesor and/or amplitude of adipose tissue clock genes (most notably Bmal1, Per2, and Rev-erbα) relative to chow-fed controls (CON) across both days of gestation. On day 15, the CAF diet also induced adipose Pparα, Pparδ, and Pgc1α rhythmicity but repressed that of Pparγ, while expression of Pparα, Pparδ, and Pgc1α was reduced at select time points. CAF mothers were hyperleptinemic at both stages of gestation, and at day 21 this effect was time-of-day dependent. Fetal plasma leptin exhibited clear rhythmicity, albeit with low amplitude, but interestingly these levels were unaffected by CAF feeding. Our data show that maternal obesity disrupts rhythmic expression of clock and metabolic genes in maternal adipose tissue and leads to maternal but not fetal hyperleptinemia.

  4. Cold-Induced Changes in Gene Expression in Brown Adipose Tissue, White Adipose Tissue and Liver

    PubMed Central

    Shore, Andrew M.; Karamitri, Angeliki; Kemp, Paul; Speakman, John R.; Graham, Neil S.; Lomax, Michael A.

    2013-01-01

    Cold exposure imposes a metabolic challenge to mammals that is met by a coordinated response in different tissues to prevent hypothermia. This study reports a transcriptomic analysis in brown adipose tissue (BAT), white adipose (WAT) and liver of mice in response to 24 h cold exposure at 8°C. Expression of 1895 genes were significantly (P<0.05) up- or down-regulated more than two fold by cold exposure in all tissues but only 5 of these genes were shared by all three tissues, and only 19, 14 and 134 genes were common between WAT and BAT, WAT and liver, and BAT and liver, respectively. We confirmed using qRT-PCR, the increased expression of a number of characteristic BAT genes during cold exposure. In both BAT and the liver, the most common direction of change in gene expression was suppression (496 genes in BAT and 590 genes in liver). Gene ontology analysis revealed for the first time significant (P<0.05) down regulation in response to cold, of genes involved in oxidoreductase activity, lipid metabolic processes and protease inhibitor activity, in both BAT and liver, but not WAT. The results reveal an unexpected importance of down regulation of cytochrome P450 gene expression and apolipoprotein, in both BAT and liver, but not WAT, in response to cold exposure. Pathway analysis suggests a model in which down regulation of the nuclear transcription factors HNF4α and PPARα in both BAT and liver may orchestrate the down regulation of genes involved in lipoprotein and steroid metabolism as well as Phase I enzymes belonging to the cytochrome P450 group in response to cold stress in mice. We propose that the response to cold stress involves decreased gene expression in a range of cellular processes in order to maximise pathways involved in heat production. PMID:23894377

  5. Maternal obesity upregulates fatty acid and glucose transporters and increases expression of enzymes mediating fatty acid biosynthesis in fetal adipose tissue depots.

    PubMed

    Long, N M; Rule, D C; Zhu, M J; Nathanielsz, P W; Ford, S P

    2012-07-01

    Maternal nutrient restriction leads to alteration in fetal adipose tissue, and offspring from obese mothers have an increased risk of developing obesity. We hypothesized that maternal obesity increases fetal adipogenesis. Multiparous ewes (Columbia/Rambouillet cross 3 to 5 yr of age) carrying twins were assigned to a diet of 100% (Control; CON; n = 4) or 150% (Obese; OB, n = 7) of NRC maintenance requirements from 60 d before conception until necropsy on d 135 of gestation. Maternal and fetal plasma were collected and stored at -80°C for glucose and hormone analyses. Fetal measurements were made at necropsy, and perirenal, pericardial, and subcutaneous adipose tissues were collected from 7 male twin fetuses per group and snap frozen at -80°C. Protein and mRNA expression of fatty acid translocase [cluster of differentiation (CD) 36], fatty acid transport proteins (FATP) 1 and 4, insulin-sensitive glucose transporter (GLUT-4), fatty acid synthase (FASN), and acetyl-coA carboxylase (ACC) was evaluated. Fetal weight was similar, but fetal carcass weight (FCW) was reduced (P < 0.05) in OB versus CON fetuses. Pericardial and perirenal adipose tissue weights were increased (P < 0.05) as a percentage of FCW in OB versus CON fetuses, as was subcutaneous fat thickness (P < 0.001). Average adipocyte diameter was greater (P < 0.01) in the perirenal fat and the pericardial fat (P = 0.06) in OB fetuses compared with CON fetuses. Maternal plasma showed no difference (P > 0.05) in glucose or other hormones, fetal plasma glucose was similar (P = 0.42), and cortisol, IGF-1, and thyroxine were reduced (P ≤ 0.05) in OB fetuses compared with CON fetuses. Protein and mRNA expression of CD 36, FATP 1 and 4, and GLUT-4 were increased (P ≤ 0.05) in all fetal adipose depots in OB versus CON fetuses. The mRNA expression of FASN and ACC was increased (P < 0.05) in OB vs. CON fetuses in all 3 fetal adipose tissue depots. Fatty acid concentrations were increased (P = 0.01) in the

  6. Impact of Perturbed Pancreatic β-Cell Cholesterol Homeostasis on Adipose Tissue and Skeletal Muscle Metabolism

    PubMed Central

    Cochran, Blake J.; Hou, Liming; Manavalan, Anil Paul Chirackal; Moore, Benjamin M.; Tabet, Fatiha; Sultana, Afroza; Cuesta Torres, Luisa; Tang, Shudi; Shrestha, Sudichhya; Senanayake, Praween; Patel, Mili; Ryder, William J.; Bongers, Andre; Maraninchi, Marie; Wasinger, Valerie C.; Westerterp, Marit; Tall, Alan R.; Barter, Philip J.

    2016-01-01

    Elevated pancreatic β-cell cholesterol levels impair insulin secretion and reduce plasma insulin levels. This study establishes that low plasma insulin levels have a detrimental effect on two major insulin target tissues: adipose tissue and skeletal muscle. Mice with increased β-cell cholesterol levels were generated by conditional deletion of the ATP-binding cassette transporters, ABCA1 and ABCG1, in β-cells (β-DKO mice). Insulin secretion was impaired in these mice under basal and high-glucose conditions, and glucose disposal was shifted from skeletal muscle to adipose tissue. The β-DKO mice also had increased body fat and adipose tissue macrophage content, elevated plasma interleukin-6 and MCP-1 levels, and decreased skeletal muscle mass. They were not, however, insulin resistant. The adipose tissue expansion and reduced skeletal muscle mass, but not the systemic inflammation or increased adipose tissue macrophage content, were reversed when plasma insulin levels were normalized by insulin supplementation. These studies identify a mechanism by which perturbation of β-cell cholesterol homeostasis and impaired insulin secretion increase adiposity, reduce skeletal muscle mass, and cause systemic inflammation. They further identify β-cell dysfunction as a potential therapeutic target in people at increased risk of developing type 2 diabetes. PMID:27702832

  7. Adipose and Muscle Tissue Gene Expression of Two Genes (NCAPG and LCORL) Located in a Chromosomal Region Associated with Cattle Feed Intake and Gain

    PubMed Central

    Lindholm-Perry, Amanda K.; Kuehn, Larry A.; Oliver, William T.; Sexten, Andrea K.; Miles, Jeremy R.; Rempel, Lea A.; Cushman, Robert A.; Freetly, Harvey C.

    2013-01-01

    A region on bovine chromosome 6 has been implicated in cattle birth weight, growth, and length. Non-SMC conodensin I complex subunit G (NCAPG) and ligand dependent nuclear receptor corepressor-like protein (LCORL) are positional candidate genes within this region. Previously identified genetic markers in both genes were associated with average daily gain (ADG) and average daily feed intake (ADFI) in a crossbred population of beef steers. These markers were also associated with hot carcass weight, ribeye area and adjusted fat thickness suggesting that they may have a role in lean muscle growth and/or fat deposition. The purpose of this study was to determine whether the transcript abundance of either of these genes in cattle adipose and muscle tissue was associated with variation in feed intake and average daily gain phenotypes. Transcript abundance for NCAPG and LCORL in adipose and muscle tissue was measured in heifers (adipose only), cows and steers using real-time polymerase chain reaction. In the adipose tissue from cows and heifers, a negative correlation between LCORL transcript abundance and ADFI were detected (P = 0.05). In the muscle tissue from cows, transcript abundance of NCAPG was associated with ADG (r = 0.26; P = 0.009). A positive correlation between LCORL transcript abundance from muscle tissue of steers and ADFI was detected (P = 0.04). LCORL protein levels in the muscle of steers were investigated and were associated with ADFI (P = 0.01). These data support our earlier genetic associations with ADFI and ADG within this region and represent the potential for biological activity of these genes in the muscle and adipose tissues of beef cattle; however, they also suggest that sex, age and/or nutrition-specific interactions may affect the expression of NCAPG and LCORL in these tissues. PMID:24278337

  8. (n-3) Fatty Acids Alleviate Adipose Tissue Inflammation and Insulin Resistance: Mechanistic Insights12

    PubMed Central

    Kalupahana, Nishan S.; Claycombe, Kate J.; Moustaid-Moussa, Naima

    2011-01-01

    Obesity is associated with the metabolic syndrome, a significant risk factor for developing type 2 diabetes and cardiovascular diseases. Chronic low-grade inflammation occurring in the adipose tissue of obese individuals is causally linked to the pathogenesis of insulin resistance and the metabolic syndrome. Although the exact trigger of this inflammatory process is unknown, adipose tissue hypoxia, endoplasmic reticular stress, and saturated fatty acid–mediated activation of innate immune processes have been identified as important processes in these disorders. Furthermore, macrophages and T lymphocytes have important roles in orchestrating this immune process. Although energy restriction leading to weight loss is the primary dietary intervention to reverse these obesity-associated metabolic disorders, other interventions targeted at alleviating adipose tissue inflammation have not been explored in detail. In this regard, (n-3) PUFA of marine origin both prevent and reverse high-fat-diet–induced adipose tissue inflammation and insulin resistance in rodents. We provide an update on the pathogenesis of adipose tissue inflammation and insulin resistance in obesity and discuss potential mechanisms by which (n-3) PUFA prevent and reverse these changes and the implications in human health. PMID:22332072

  9. Targeting the NO/superoxide ratio in adipose tissue: relevance to obesity and diabetes management.

    PubMed

    Jankovic, Aleksandra; Korac, Aleksandra; Buzadzic, Biljana; Stancic, Ana; Otasevic, Vesna; Ferdinandy, Péter; Daiber, Andreas; Korac, Bato

    2017-06-01

    Insulin sensitivity and metabolic homeostasis depend on the capacity of adipose tissue to take up and utilize excess glucose and fatty acids. The key aspects that determine the fuel-buffering capacity of adipose tissue depend on the physiological levels of the small redox molecule, nitric oxide (NO). In addition to impairment of NO synthesis, excessive formation of the superoxide anion (О 2 •- ) in adipose tissue may be an important interfering factor diverting the signalling of NO and other reactive oxygen and nitrogen species in obesity, resulting in metabolic dysfunction of adipose tissue over time. Besides its role in relief from superoxide burst, enhanced NO signalling may be responsible for the therapeutic benefits of different superoxide dismutase mimetics, in obesity and experimental diabetes models. This review summarizes the role of NO in adipose tissue and highlights the effects of NO/О 2 •- ratio 'teetering' as a promising pharmacological target in the metabolic syndrome. This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc. © 2016 The British Pharmacological Society.

  10. The metabolic syndrome as a concept of adipose tissue disease.

    PubMed

    Oda, Eiji

    2008-07-01

    The metabolic syndrome is a constellation of interrelated metabolic risk factors that appear to directly promote the development of diabetes and cardiovascular disease. However, in 2005, the American Diabetes Association and the European Association for the Study of Diabetes jointly stated that no existing definition of the metabolic syndrome meets the criteria of a syndrome, and there have been endless debates on the pros and cons of using the concept of this syndrome. The controversy may stem from confusion between the syndrome and obesity. Obesity is an epidemic, essentially contagious disease caused by an environment of excess nutritional energy and reinforced by deeply rooted social norms. The epidemic of obesity should be prevented or controlled by social and political means, similar to the approaches now being taken to combat global warming. The diagnosis of metabolic syndrome is useless for this public purpose. The purpose of establishing criteria for diagnosing metabolic syndrome is to find individuals who are at increased risk of diabetes and cardiovascular disease and who require specific therapy including diet and exercise. The syndrome may be an adipose tissue disease different from obesity; in that case, it would be characterized by inflammation clinically detected through systemic inflammatory markers such as high-sensitivity C-reactive protein and insulin resistance reflecting histological changes in adipose tissue. However, many problems in defining the optimal diagnostic criteria remain unresolved.

  11. Fatty acid metabolism and the basis of brown adipose tissue function

    PubMed Central

    Calderon-Dominguez, María; Mir, Joan F.; Fucho, Raquel; Weber, Minéia; Serra, Dolors; Herrero, Laura

    2016-01-01

    ABSTRACT Obesity has reached epidemic proportions, leading to severe associated pathologies such as insulin resistance, cardiovascular disease, cancer and type 2 diabetes. Adipose tissue has become crucial due to its involvement in the pathogenesis of obesity-induced insulin resistance, and traditionally white adipose tissue has captured the most attention. However in the last decade the presence and activity of heat-generating brown adipose tissue (BAT) in adult humans has been rediscovered. BAT decreases with age and in obese and diabetic patients. It has thus attracted strong scientific interest, and any strategy to increase its mass or activity might lead to new therapeutic approaches to obesity and associated metabolic diseases. In this review we highlight the mechanisms of fatty acid uptake, trafficking and oxidation in brown fat thermogenesis. We focus on BAT's morphological and functional characteristics and fatty acid synthesis, storage, oxidation and use as a source of energy. PMID:27386151

  12. Technical note: Alternatives to reduce adipose tissue sampling bias.

    PubMed

    Cruz, G D; Wang, Y; Fadel, J G

    2014-10-01

    Understanding the mechanisms by which nutritional and pharmaceutical factors can manipulate adipose tissue growth and development in production animals has direct and indirect effects in the profitability of an enterprise. Adipocyte cellularity (number and size) is a key biological response that is commonly measured in animal science research. The variability and sampling of adipocyte cellularity within a muscle has been addressed in previous studies, but no attempt to critically investigate these issues has been proposed in the literature. The present study evaluated 2 sampling techniques (random and systematic) in an attempt to minimize sampling bias and to determine the minimum number of samples from 1 to 15 needed to represent the overall adipose tissue in the muscle. Both sampling procedures were applied on adipose tissue samples dissected from 30 longissimus muscles from cattle finished either on grass or grain. Briefly, adipose tissue samples were fixed with osmium tetroxide, and size and number of adipocytes were determined by a Coulter Counter. These results were then fit in a finite mixture model to obtain distribution parameters of each sample. To evaluate the benefits of increasing number of samples and the advantage of the new sampling technique, the concept of acceptance ratio was used; simply stated, the higher the acceptance ratio, the better the representation of the overall population. As expected, a great improvement on the estimation of the overall adipocyte cellularity parameters was observed using both sampling techniques when sample size number increased from 1 to 15 samples, considering both techniques' acceptance ratio increased from approximately 3 to 25%. When comparing sampling techniques, the systematic procedure slightly improved parameters estimation. The results suggest that more detailed research using other sampling techniques may provide better estimates for minimum sampling.

  13. Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue1-3

    PubMed Central

    Gallagher, Dympna; Kuznia, Patrick; Heshka, Stanley; Albu, Jeanine; Heymsfield, Steven B; Goodpaster, Bret; Visser, Marjolein; Harris, Tamara B

    2006-01-01

    Background The manner in which fat depot volumes and distributions, particularly the adipose tissue (AT) between the muscles, vary by race is unknown. Objective The objective was to quantify a previously unstudied and novel intermuscular AT (IMAT) depot and subcutaneous AT, visceral AT (VAT), and total-body skeletal muscle mass in healthy sedentary African American (AA), Asian, and white adults by whole-body magnetic resonance imaging. IMAT is the AT between muscles and within the boundary of the muscle fascia. Design Analyses were conducted on 227 women [AA (n = 79): body mass index (BMI; in kg/m2), 29.0 ± 5.5; age, 45.7 ± 16.9 y; Asian (n = 38): BMI, 21.7 ± 2.9; age, 47.2 ± 19.9 y; whites (n = 110): BMI, 24.9 ± 5.4; age, 43.7 ± 16.2 y]) and 111 men [AA (n = 39): BMI, 25.6 ± 3.2; age, 45.5 ± 18.8 y; Asian (n = 13): BMI, 24.9 ± 2.5; age, 45.6 ± 25.0 y; white (n = 59): BMI, 25.8 ± 3.8; age 44.5 ± 16.3 y]. Results IMAT depots were not significantly different in size between race groups at low levels of adiposity; however, with increasing adiposity, AAs had a significantly greater increment in the proportion of total AT (TAT) than did the whites and Asians (58, 46, and 44 g IMAT/kg TAT, respectively; P = 0.001). VAT depots were not significantly different in size at low levels of adiposity but, with increasing adiposity, VAT accumulation was greater than IMAT accumulation in the Asians and whites; no significant differences were observed in AAs. Conclusion Race differences in AT distribution extend to IMAT, a depot that may influence race-ethnicity differences in dysglycemia. PMID:15817870

  14. Functional characteristics of mesenchymal stem cells derived from the adipose tissue of a patient with achondroplasia.

    PubMed

    Park, Jeong-Ran; Lee, Hanbyeol; Kim, Chung-Hyo; Hong, Seok-Ho; Ha, Kwon-Soo; Yang, Se-Ran

    2016-05-01

    Mesenchymal stem cells (MSCs) can be isolated from various tissues including bone marrow, adipose tissue, skin dermis, and umbilical Wharton's jelly as well as injured tissues. MSCs possess the capacity for self-renewal and the potential for differentiation into adipogenic, osteogenic, and chondrogenic lineages. However, the characteristics of MSCs in injured tissues, such as achondroplasia (ACH), are not well known. In this study, we isolated MSCs from human subcutaneous adipose (ACH-SAMSCs) tissue and circumjacent human adipose tissue of the cartilage (ACH-CAMSCs) from a patient with ACH. We then analyzed the characterization of ACH-SAMSCs and ACH-CAMSCs, compared with normal human dermis-derived MSCs (hDMSCs). In flow cytometry analysis, the isolated ACH-MSCs expressed low levels of CD73, CD90, and CD105, compared with hDMSCs. Moreover, both ACH- SAMSCs and ACH-CAMSCs had constitutionally overactive fibroblast growth factor receptor 3 (FGFR3) and exhibited significantly reduced osteogenic differentiation, compared to enhanced adipogenic differentiation. The activity of extracellular signal-regulated kinases 1/2 (ERK1/2) and p38 mitogen-activated protein kinases (p38 MAPK) was increased in ACH-MSCs. In addition, the efficacy of osteogenic differentiation was slightly restored in osteogenic differentiation medium with MAPKs inhibitors. These results suggest that they play essential roles in MSC differentiation toward adipogenesis in ACH pathology. In conclusion, the identification of the characteristics of ACH-MSCs and the favoring of adipogenic differentiation via the FGFR3/MAPK axis might help to elucidate the pathogenic mechanisms relevant to other skeletal diseases and could provide targets for therapeutic interventions.

  15. Adipose Tissues Characteristics of Normal, Obesity, and Type 2 Diabetes in Uygurs Population

    PubMed Central

    Zhang, Jun; Zhang, Zhiwei; Ding, Yulei; Xu, Peng; Wang, Tingting; Xu, Wenjing; Lu, Huan; Li, Jun; Wang, Yan; Li, Siyuan; Liu, Zongzhi; An, Na; Yang, Li; Xie, Jianxin

    2015-01-01

    Our results showed that, at the same BMI level, Uygurs have greater WHR values, abdominal visceral fat content, and diabetes risks than Kazaks. In addition, values of HDL-C in Uygur subjects were lower than those in Kazak subjects, and values of creatinine, uric acid, diastolic blood pressure, blood glucose, and fructosamine in Uygur male subjects were lower than those in Kazak male subjects. In contrast, systolic blood pressure values in Uygur subjects were greater than those in Kazak subjects, and blood glucose values were greater in Uygur female subjects than in Kazak female subjects. Additionally, in Uygurs, visceral adipose tissue expression levels of TBX1 and TCF21 were greater in obesity group than in normal and T2DM groups and lower in T2DM group than in normal group (P < 0.01). The visceral adipose tissue expression levels of APN in normal group was greater than those in obesity and T2DM groups, and visceral adipose tissue expression levels of TNF-α and MCP-1 in normal group were lower than those in obesity and T2DM groups (P < 0.01). In conclusion, T2DM in Uygurs was mainly associated with not only distribution of adipose tissue in body, but also change in metabolic activity and adipocytokines secretion of adipose tissue. PMID:26273678

  16. Deficiency in adipocyte chemokine receptor CXCR4 exacerbates obesity and compromises thermoregulatory responses of brown adipose tissue in a mouse model of diet-induced obesity

    PubMed Central

    Yao, Longbiao; Heuser-Baker, Janet; Herlea-Pana, Oana; Zhang, Nan; Szweda, Luke I.; Griffin, Timothy M.; Barlic-Dicen, Jana

    2014-01-01

    The chemokine receptor CXCR4 is expressed on adipocytes and macrophages in adipose tissue, but its role in this tissue remains unknown. We evaluated whether deficiency in either adipocyte or myeloid leukocyte CXCR4 affects body weight (BW) and adiposity in a mouse model of high-fat-diet (HFD)-induced obesity. We found that ablation of adipocyte, but not myeloid leukocyte, CXCR4 exacerbated obesity. The HFD-fed adipocyte-specific CXCR4-knockout (AdCXCR4ko) mice, compared to wild-type C57BL/6 control mice, had increased BW (average: 52.0 g vs. 35.5 g), adiposity (average: 49.3 vs. 21.0% of total BW), and inflammatory leukocyte content in white adipose tissue (WAT), despite comparable food intake. As previously reported, HFD feeding increased uncoupling protein 1 (UCP1) expression (fold increase: 3.5) in brown adipose tissue (BAT) of the C57BL/6 control mice. However, no HFD-induced increase in UCP1 expression was observed in the AdCXCR4ko mice, which were cold sensitive. Thus, our study suggests that adipocyte CXCR4 limits development of obesity by preventing excessive inflammatory cell recruitment into WAT and by supporting thermogenic activity of BAT. Since CXCR4 is conserved between mouse and human, the newfound role of CXCR4 in mouse adipose tissue may parallel the role of this chemokine receptor in human adipose tissue.—Yao, L., Heuser-Baker, J., Herlea-Pana, O., Zhang, N., Szweda, L. I., Griffin, T. M., Barlic-Dicen, J. Deficiency in adipocyte chemokine receptor CXCR4 exacerbates obesity and compromises thermoregulatory responses of brown adipose tissue in a mouse model of diet-induced obesity. PMID:25016030

  17. Extracellular cyclic AMP-adenosine pathway in isolated adipocytes and adipose tissue.

    PubMed

    Strouch, Marci B; Jackson, Edwin K; Mi, Zaichuan; Metes, Nicole A; Carey, Gale B

    2005-06-01

    Our goal was to evaluate the presence and lipolytic impact of the extracellular cyclic adenosine monophosphate (AMP)-adenosine pathway in adipose tissue. Sixteen miniature Yucatan swine (Sus scrofa) were used for these in vitro and in situ experiments. Four microdialysis probes were implanted into subcutaneous adipose tissue and perfused at 2 microL/min with Ringer's solution containing no addition, varying levels of cyclic AMP, 10 microM isoproterenol, or 10 microM isoproterenol plus 1 mM alpha,beta-methylene adenosine 5'-diphosphate (AMPCP), a 5'-nucleotidase inhibitor. Dialysate was assayed for AMP, adenosine, inosine, hypoxanthine, and glycerol. Freshly isolated adipocytes were incubated with buffer, 1 microM isoproterenol, or 1 microM isoproterenol plus 0.1 mM AMPCP, and extracellular levels of AMP, adenosine, inosine, hypoxanthine, and glycerol were measured. Perfusion of adipose tissue with exogenous cyclic AMP caused a significant increase in AMP and adenosine appearance. Perfusion with AMPCP, in the presence or absence of isoproterenol, significantly increased the levels of AMP and glycerol, whereas it significantly reduced the level of adenosine and its metabolites. However, the AMPCP-provoked increase in lipolysis observed in situ and in vitro was not temporally associated with a decrease in adenosine. These data suggest the existence of a cyclic AMP-adenosine pathway in adipocytes and adipose tissue. The role of this pathway in the regulation of lipolysis remains to be clarified.

  18. Lipolytic and thermogenic depletion of adipose tissue in cancer cachexia.

    PubMed

    Tsoli, Maria; Swarbrick, Michael M; Robertson, Graham R

    2016-06-01

    Although muscle wasting is the obvious manifestation of cancer cachexia that impacts on patient quality of life, the loss of lipid reserves and metabolic imbalance in adipose tissue also contribute to the devastating impact of cachexia. Depletion of fat depots in cancer patients is more pronounced than loss of muscle and often precedes, or even occurs in the absence of, reduced lean body mass. Rapid mobilisation of triglycerides stored within adipocytes to supply the body with fatty acids in periods of high-energy demand is normally mediated through a well-defined process of lipolysis involving the lipases ATGL, HSL and MGL. Studies into how these lipases contribute to fat loss in cancer cachexia have revealed the prominent role for ATGL in initiating lipolysis during adipose tissue atrophy, together with links between tumour-derived factors and the signalling pathways that control lipid flux within fat cells. The recent findings of increased thermogenesis in brown fat during cancer cachexia indicate that metabolically active adipose tissue contributes to the imbalance in energy homeostasis involved in catabolic wasting. Such energetically futile use of fatty acids liberated from adipose tissue to generate heat represents a maladaptive response in conjunction with anorexia experienced by cancer patients. As IL-6 release by tumours provokes lipolysis and activates the thermogenic programme in brown fat, this review explores the overlap in dysregulated metabolic processes due to inflammatory mediators in cancer cachexia and other disease states characterised by elevated cytokines such as obesity and diabetes. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  19. Conjugated linoleic acid supplementation caused reduction of perilipin1 and aberrant lipolysis in epididymal adipose tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Demin; Li, Hongji; Zhou, Bo

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Conjugated linoleic acid supplementation suppresses perilipin1 in epididymal fat. Black-Right-Pointing-Pointer Conjugated linoleic acid inhibits promoter activity of perilipin1 in 3T3-L1 cells. Black-Right-Pointing-Pointer Conjugated linoleic acids elevate basal but blunt hormone-stimulated lipolysis. -- Abstract: Perilipin1, a coat protein of lipid droplet, plays a key role in adipocyte lipolysis and fat formation of adipose tissues. However, it is not clear how the expression of perilipin1 is affected in the decreased white adipose tissues (WAT) of mice treated with dietary supplement of conjugated linoleic acids (CLA). Here we obtained lipodystrophic mice by dietary administration of CLA which exhibited reduced epididymal (EPI)more » WAT, aberrant adipocytes and decreased expression of leptin in this tissue. We found both transcription and translation of perilipin1 was suppressed significantly in EPI WAT of CLA-treated mice compared to that of control mice. The gene expression of negative regulator tumor necrosis factor {alpha} (TNF{alpha}) and the positive regulator Peroxisome Proliferator-Activated Receptor-{gamma} (PPAR{gamma}) of perilipin1 was up-regulated and down-regulated, respectively. In cultured 3T3-L1 cells the promoter activity of perilipin1 was dramatically inhibited in the presence of CLA. Using ex vivo experiment we found that the basal lipolysis was elevated but the hormone-stimulated lipolysis blunted in adipose explants of CLA-treated mice compared to that of control mice, suggesting that the reduction of perilipin1 in white adipose tissues may at least in part contribute to CLA-mediated alternation of lipolysis of WAT.« less

  20. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice.

    PubMed

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. © 2011 Villarroya et al.

  1. Thymidine Kinase 2 Deficiency-Induced Mitochondrial DNA Depletion Causes Abnormal Development of Adipose Tissues and Adipokine Levels in Mice

    PubMed Central

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R.; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. PMID:22216345

  2. Brown Adipose Tissue Bioenergetics: A New Methodological Approach

    PubMed Central

    Calderon‐Dominguez, María; Alcalá, Martín; Sebastián, David; Zorzano, Antonio; Viana, Marta; Serra, Dolors

    2017-01-01

    The rediscovery of brown adipose tissue (BAT) in humans and its capacity to oxidize fat and dissipate energy as heat has put the spotlight on its potential as a therapeutic target in the treatment of several metabolic conditions including obesity and diabetes. To date the measurement of bioenergetics parameters has required the use of cultured cells or extracted mitochondria with the corresponding loss of information in the tissue context. Herein, we present a method to quantify mitochondrial bioenergetics directly in BAT. Based on XF Seahorse Technology, we assessed the appropriate weight of the explants, the exact concentration of each inhibitor in the reaction, and the specific incubation time to optimize bioenergetics measurements. Our results show that BAT basal oxygen consumption is mostly due to proton leak. In addition, BAT presents higher basal oxygen consumption than white adipose tissue and a positive response to b‐adrenergic stimulation. Considering the whole tissue and not just subcellular populations is a direct approach that provides a realistic view of physiological respiration. In addition, it can be adapted to analyze the effect of potential activators of thermogenesis, or to assess the use of fatty acids or glucose as a source of energy. PMID:28435771

  3. ERα upregulates Phd3 to ameliorate HIF-1 induced fibrosis and inflammation in adipose tissue

    PubMed Central

    Kim, Min; Neinast, Michael D.; Frank, Aaron P.; Sun, Kai; Park, Jiyoung; Zehr, Jordan A.; Vishvanath, Lavanya; Morselli, Eugenia; Amelotte, Mason; Palmer, Biff F.; Gupta, Rana K.; Scherer, Philipp E.; Clegg, Deborah J.

    2014-01-01

    Hypoxia Inducible Factor 1 (HIF-1) promotes fibrosis and inflammation in adipose tissues, while estrogens and Estrogen Receptor α (ERα) have the opposite effect. Here we identify an Estrogen Response Element (ERE) in the promoter of Phd3, which is a negative regulatory enzyme of HIF-1, and we demonstrate HIF-1α is ubiquitinated following 17-β estradiol (E2)/ERα mediated Phd3 transcription. Manipulating ERα in vivo increases Phd3 transcription and reduces HIF-1 activity, while addition of PHD3 ameliorates adipose tissue fibrosis and inflammation. Our findings outline a novel regulatory relationship between E2/ERα, PHD3 and HIF-1 in adipose tissues, providing a mechanistic explanation for the protective effect of E2/ERα in adipose tissue. PMID:25161887

  4. Effect of Gender on the Total Abdominal Fat, Intra-Abdominal Adipose Tissue and Abdominal Sub-Cutaneous Adipose Tissue among Indian Hypertensive Patients.

    PubMed

    Sahoo, Jaya Prakash; Kumari, Savita; Jain, Sanjay

    2016-04-01

    Abdominal obesity is a better marker of adverse metabolic profile than generalized obesity in hypertensive subjects. Further, gender has effect on adiposity and its distribution. Effect of gender on obesity and the distribution of fat in different sub-compartments of abdomen among Indian hypertensive subjects. This observational study included 278 adult subjects (Males-149 & Females-129) with essential hypertension from a tertiary care centre in north India over one year. A detailed history taking and physical examination including anthropometry were performed in all patients. Total Abdominal Fat (TAF) and abdominal adipose tissue sub-compartments like Intra-Abdominal Adipose Tissue (IAAT) and Sub-Cutaneous Adipose Tissue (SCAT) were measured using the predictive equations developed for Asian Indians. Female hypertensive subjects had higher Body Mass Index (BMI) with more overweight (BMI ≥ 23kg/m(2)), and obesity (BMI≥ 25 kg/m(2)). Additionally, they had higher prevalence of central obesity based on both Waist Circumference (WC) criteria (WC≥ 90 cm in males and WC≥ 80 cm in females) and TAF criteria {≥245.6 cm(2) (males) and ≥203.46 cm(2) (females)} than male patients. But there was no difference in the prevalence of central obesity based on Waist Hip Ratio (WHR) criteria (WHR ≥0.90 in males and WHR ≥ 0.85 in females) between two genders. High TAF & IAAT were present in more females although there was no difference in the distribution of high SCAT between two genders. Female hypertensive subjects were more obese with higher abnormal TAF & IAAT compared to male patients. However, there was no difference in the distribution of high SCAT among them.

  5. Human skeletal muscles replaced to a high degree by white adipose tissue.

    PubMed

    Ina, Keisuke; Kitamura, Hirokazu; Masaki, Takayuki; Tatsukawa, Shuji; Yoshimatsu, Hironobu; Fujikura, Yoshihisa

    2011-02-01

    Extreme replacement of skeletal muscles by adipose tissue was found in an 86-year old Japanese male cadaver during dissection practice for medical students at Oita University School of Medicine. Especially, the bilateral sartorius muscles looked overall like adipose tissue. The man had suffered from diabetes mellitus, renal failure, hypertension and hypothyroidism before his death. He was also an alcohol drinker. He had been bedridden late in life. The cause of death was renal failure. In microscopy, the adipose tissue-like sartorius muscle was shown to consist of leptin-positive adipocytes with a small number of degenerated muscle fibers. Fatty replacement, or fatty degeneration, appears to result from endocrine and metabolic disorders, and being bedridden leads to muscle atrophy and damage, although the origin of the adipocytes which emerged in the degenerated muscles is unknown.

  6. Absence of ANGPTL4 in adipose tissue improves glucose tolerance and attenuates atherogenesis

    PubMed Central

    Aryal, Binod; Singh, Abhishek K.; Zhang, Xinbo; Varela, Luis; Goedeke, Leigh; Chaube, Balkrishna; Camporez, Joao-Paulo; Vatner, Daniel F.; Horvath, Tamas L.; Suárez, Yajaira; Fernández-Hernando, Carlos

    2018-01-01

    Alterations in ectopic lipid deposition and circulating lipids are major risk factors for developing cardiometabolic diseases. Angiopoietin-like protein 4 (ANGPTL4), a protein that inhibits lipoprotein lipase (LPL), controls fatty acid (FA) uptake in adipose and oxidative tissues and regulates circulating triacylglycerol-rich (TAG-rich) lipoproteins. Unfortunately, global depletion of ANGPTL4 results in severe metabolic abnormalities, inflammation, and fibrosis when mice are fed a high-fat diet (HFD), limiting our understanding of the contribution of ANGPTL4 in metabolic disorders. Here, we demonstrate that genetic ablation of ANGPTL4 in adipose tissue (AT) results in enhanced LPL activity, rapid clearance of circulating TAGs, increased AT lipolysis and FA oxidation, and decreased FA synthesis in AT. Most importantly, we found that absence of ANGPTL4 in AT prevents excessive ectopic lipid deposition in the liver and muscle, reducing novel PKC (nPKC) membrane translocation and enhancing insulin signaling. As a result, we observed a remarkable improvement in glucose tolerance in short-term HFD-fed AT-specific Angptl4-KO mice. Finally, lack of ANGPTL4 in AT enhances the clearance of proatherogenic lipoproteins, attenuates inflammation, and reduces atherosclerosis. Together, these findings uncovered an essential role of AT ANGPTL4 in regulating peripheral lipid deposition, influencing whole-body lipid and glucose metabolism and the progression of atherosclerosis. PMID:29563332

  7. Adipose tissue uncoupling protein 1 levels and function are increased in a mouse model of developmental obesity induced by maternal exposure to high-fat diet.

    PubMed

    Bytautiene Prewit, E; Porter, C; La Rosa, M; Bhattarai, N; Yin, H; Gamble, P; Kechichian, T; Sidossis, L S

    2018-05-17

    With brown adipose tissue (BAT) becoming a possible therapeutic target to counteract obesity, the prenatal environment could represent a critical window to modify BAT function and browning of white AT. We investigated if levels of uncoupling protein 1 (UCP1) and UCP1-mediated thermogenesis are altered in offspring exposed to prenatal obesity. Female CD-1 mice were fed a high-fat (HF) or standard-fat (SF) diet for 3 months before breeding. After weaning, all pups were placed on SF. UCP1 mRNA and protein levels were quantified using quantitative real-time PCR and Western blot analysis, respectively, in brown (BAT), subcutaneous (SAT) and visceral (VAT) adipose tissues at 6 months of age. Total and UCP1-dependent mitochondrial respiration were determined by high-resolution respirometry. A Student's t-test and Mann-Whitney test were used (significance: P<0.05). UCP1 mRNA levels were not different between the HF and SF offspring. UCP1 protein levels, total mitochondrial respiration and UCP1-dependent respiration were significantly higher in BAT from HF males (P=0.02, P=0.04, P=0.005, respectively) and females (P=0.01, P=0.04, P=0.02, respectively). In SAT, the UCP1 protein was significantly lower in HF females (P=0.03), and the UCP1-dependent thermogenesis was significantly lower from HF males (P=0.04). In VAT, UCP1 protein levels and UCP1-dependent respiration were significantly lower only in HF females (P=0.03, P=0.04, respectively). There were no differences in total respiration in SAT and VAT. Prenatal exposure to maternal obesity leads to significant increases in UCP1 levels and function in BAT in offspring with little impact on UCP1 levels and function in SAT and VAT.

  8. Modulations of calcium in adipose tissue by TRPC1: a key player in obesity

    USDA-ARS?s Scientific Manuscript database

    The disruption of metabolic homeostasis, the regulation of energy the body extracts, stores and uses, leads to excess adipose tissue accumulation and the onset of obesity. White adipose tissue (WAT) is a metabolically dynamic endocrine organ responsible for maintaining metabolic homeostasis through ...

  9. Body frame size in school children is related to the amount of adipose tissue in different depots but not to adipose distribution.

    PubMed

    Guzmán-de la Garza, Francisco J; González Ayala, Alejandra E; Gómez Nava, Marisol; Martínez Monsiváis, Leislie I; Salinas Martínez, Ana M; Ramírez López, Erik; Mathiew Quirós, Alvaro; Garcia Quintanilla, Francisco

    2017-09-10

    The main aim of this study was to test the hypothesis that body frame size is related to the amount of fat in different adipose tissue depots and to fat distribution in schoolchildren. Children aged between 5 and 10 years were included in this cross-sectional study (n = 565). Body frame size, adiposity markers (anthropometric, skinfolds thickness, and ultrasound measures), and fat distribution indices were analyzed. Correlation coefficients adjusted by reliability were estimated and analyzed by sex; the significance of the difference between two correlation coefficients was assessed using the Fisher z-transformation. The sample included primarily urban children; 58.6% were normal weight, 16.1% overweight, 19.6% obese, and the rest were underweight. Markers of subcutaneous adiposity, fat mass and fat-free mass, and preperitoneal adiposity showed higher and significant correlations with the sum of the biacromial + bitrochanteric diameter than with the elbow diameter, regardless of sex. The fat distribution conicity index presented significant but weak correlations; and visceral adipose tissue, hepatic steatosis, and the waist-for-hip ratio were not significantly correlated with body frame size measures. Body frame size in school children was related to the amount of adipose tissue in different depots, but not adipose distribution. More studies are needed to confirm this relationship and its importance to predict changes in visceral fat deposition during growth. © 2017 Wiley Periodicals, Inc.

  10. Wound Healing and Angiogenesis through Combined Use of a Vascularized Tissue Flap and Adipose-Derived Stem Cells in a Rat Hindlimb Irradiated Ischemia Model.

    PubMed

    Yoshida, Shuhei; Yoshimoto, Hiroshi; Hirano, Akiyoshi; Akita, Sadanori

    2016-05-01

    Treatment of critical limb ischemia is sometimes difficult because of the patient's condition, and some novel approaches are needed. The hindlimbs of Sprague-Dawley rats, after 20-Gy x-ray irradiation and surgical occlusion, were divided into four groups: with a superficial fascial flap, 5.0 × 10 adipose-derived stromal/stem cells, and both combined. The rats were tested for laser tissue blood flow, immunohistologic blood vessel density, and foot paw punch hole wound healing. Green fluorescent protein-tagged Sprague-Dawley rats were used for further investigation by cell tracking for 2 weeks. Laser tissue blood flow demonstrated a significant increase in the combined treatment of flap and adipose-derived stem cells at both 1 and 2 weeks. There were no significant differences between the treatment groups treated with flaps alone and those treated with adipose-derived stem cells alone. Wound healing was significantly increased following combined treatment at 1 week, and there was no wound by 2 weeks except for the no-flap and no-adipose-derived stem cell group. The number of vessels depicted by von Willebrand factor showed a significant increase in the combined treatment group, at both 1 week and 2 weeks. In the cell tracking group, at 2 weeks, the green fluorescent protein-tagged adipose-derived stem cells were significantly more positive in the no-flap group than in the flap group. Adipose-derived stem cells may be a potent cell source in irradiated and occluded limbs by enhancing tissue blood flow and blood vessel density. Adipose-derived stem cells may play an important role in some difficult ischemic conditions in terms of wound healing.

  11. Regenerative Repair of Damaged Meniscus with Autologous Adipose Tissue-Derived Stem Cells

    PubMed Central

    Pak, Jaewoo; Lee, Jung Hun; Lee, Sang Hee

    2014-01-01

    Mesenchymal stem cells (MSCs) are defined as pluripotent cells found in numerous human tissues, including bone marrow and adipose tissue. Such MSCs, isolated from bone marrow and adipose tissue, have been shown to differentiate into bone and cartilage, along with other types of tissues. Therefore, MSCs represent a promising new therapy in regenerative medicine. The initial treatment of meniscus tear of the knee is managed conservatively with nonsteroidal anti-inflammatory drugs and physical therapy. When such conservative treatment fails, an arthroscopic resection of the meniscus is necessary. However, the major drawback of the meniscectomy is an early onset of osteoarthritis. Therefore, an effective and noninvasive treatment for patients with continuous knee pain due to damaged meniscus has been sought. Here, we present a review, highlighting the possible regenerative mechanisms of damaged meniscus with MSCs (especially adipose tissue-derived stem cells (ASCs)), along with a case of successful repair of torn meniscus with significant reduction of knee pain by percutaneous injection of autologous ASCs into an adult human knee. PMID:24592390

  12. Epicardial adipose tissue is associated with visceral fat, metabolic syndrome, and insulin resistance in menopausal women.

    PubMed

    Fernández Muñoz, María J; Basurto Acevedo, Lourdes; Córdova Pérez, Nydia; Vázquez Martínez, Ana Laura; Tepach Gutiérrez, Nayive; Vega García, Sara; Rocha Cruz, Alberto; Díaz Martínez, Alma; Saucedo García, Renata; Zárate Treviño, Arturo; González Escudero, Eduardo Alberto; Degollado Córdova, José Antonio

    2014-06-01

    Epicardial adipose tissue has been associated with several obesity-related parameters and with insulin resistance. Echocardiographic assessment of this tissue is an easy and reliable marker of cardiometabolic risk. However, there are insufficient studies on the relationship between epicardial fat and insulin resistance during the postmenopausal period, when cardiovascular risk increases in women. The objective of this study was to examine the association between epicardial adipose tissue and visceral adipose tissue, waist circumference, body mass index, and insulin resistance in postmenopausal women. A cross sectional study was conducted in 34 postmenopausal women with and without metabolic syndrome. All participants underwent a transthoracic echocardiogram and body composition analysis. A positive correlation was observed between epicardial fat and visceral adipose tissue, body mass index, and waist circumference. The values of these correlations of epicardial fat thickness overlying the aorta-right ventricle were r = 0.505 (P < .003), r = 0.545 (P < .001), and r = 0.515 (P < .003), respectively. Epicardial adipose tissue was higher in postmenopausal women with metabolic syndrome than in those without this syndrome (mean [standard deviation], 544.2 [122.9] vs 363.6 [162.3] mm(2); P = .03). Epicardial fat thickness measured by echocardiography was associated with visceral adipose tissue and other obesity parameters. Epicardial adipose tissue was higher in postmenopausal women with metabolic syndrome. Therefore, echocardiographic assessment of epicardial fat may be a simple and reliable marker of cardiovascular risk in postmenopausal women. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  13. WAT-on-a-chip: A physiologically relevant microfluidic system incorporating white adipose tissue

    PubMed Central

    Loskill, Peter; Sezhian, Thiagarajan; Tharp, Kevin; Lee-Montiel, Felipe T.; Jeeawoody, Shaheen; Reese, Willie Mae; Zushin, Pete-James H.; Stahl, Andreas; Healy, Kevin E.

    2017-01-01

    Organ-on-a-chip systems possess a promising future as drug screening assays and as testbeds for disease modeling in the context of both single-organ systems and multi-organ-chips. Although it comprises approximately one fourth of the body weight of a healthy human, an organ frequently overlooked in this context is white adipose tissue (WAT). WAT-on-a-chip systems are required to create safety profiles of a large number of drugs due to their interactions with adipose tissue and other organs via paracrine signals, fatty acid release, and drug levels through sequestration. We report a WAT-on-a-chip system with a footprint of less than 1 mm2 consisting of a separate media channel and WAT chamber connected via small micropores. Analogous to the in vivo blood circulation, convective transport is thereby confined to the vasculature-like structures and the tissues protected from shear stresses. Numerical and analytical modeling revealed that the flow rates in the WAT chambers are less than 1/100 of the input flow rate. Using optimized injection parameters, we were able to inject pre-adipocytes, which subsequently formed adipose tissue featuring fully functional lipid metabolism. The physiologically relevant microfluidic environment of the WAT-chip supported long term culture of the functional adipose tissue for more than two weeks. Due to its physiological, highly controlled, and computationally predictable character, the system has the potential to be a powerful tool for the study of adipose tissue associated diseases such as obesity and type 2 diabetes. PMID:28418430

  14. Enhanced Inflammation without Impairment of Insulin Signaling in the Visceral Adipose Tissue of 5α-Dihydrotestosterone-Induced Animal Model of Polycystic Ovary Syndrome.

    PubMed

    Milutinović, Danijela Vojnović; Nikolić, Marina; Veličković, Nataša; Djordjevic, Ana; Bursać, Biljana; Nestorov, Jelena; Teofilović, Ana; Antić, Ivana Božić; Macut, Jelica Bjekić; Zidane, Abdulbaset Shirif; Matić, Gordana; Macut, Djuro

    2017-09-01

    Polycystic ovary syndrome is a heterogeneous endocrine and metabolic disorder associated with abdominal obesity, dyslipidemia and insulin resistance. Since abdominal obesity is characterized by low-grade inflammation, the aim of the study was to investigate whether visceral adipose tissue inflammation linked to abdominal obesity and dyslipidemia could lead to impaired insulin sensitivity in the animal model of polycystic ovary syndrome.Female Wistar rats were treated with nonaromatizable 5α-dihydrotestosterone pellets in order to induce reproductive and metabolic characteristics of polycystic ovary syndrome. Glucose, triglycerides, non-esterified fatty acids and insulin were determined in blood plasma. Visceral adipose tissue inflammation was evaluated by the nuclear factor kappa B intracellular distribution, macrophage migration inhibitory factor protein level, as well as TNFα, IL6 and IL1β mRNA levels. Insulin sensitivity was assessed by intraperitoneal glucose tolerance test and homeostasis model assessment index, and through analysis of insulin signaling pathway in the visceral adipose tissue.Dihydrotestosterone treatment led to increased body weight, abdominal obesity and elevated triglycerides and non-esterified fatty acids, which were accompanied by the activation of nuclear factor kappa B and increase in macrophage migration inhibitory factor, IL6 and IL1β levels in the visceral adipose tissue. In parallel, insulin sensitivity was affected in 5α-dihydrotestosterone-treated animals only at the systemic and not at the level of visceral adipose tissue.The results showed that abdominal obesity and dyslipidemia in the animal model of polycystic ovary syndrome were accompanied with low-grade inflammation in the visceral adipose tissue. However, these metabolic disturbances did not result in decreased tissue insulin sensitivity. © Georg Thieme Verlag KG Stuttgart · New York.

  15. The role of perivascular adipose tissue in vascular smooth muscle cell growth

    PubMed Central

    Miao, Chao-Yu; Li, Zhi-Yong

    2012-01-01

    Adipose tissue is the largest endocrine organ, producing various adipokines and many other substances. Almost all blood vessels are surrounded by perivascular adipose tissue (PVAT), which has not received research attention until recently. This review will discuss the paracrine actions of PVAT on the growth of underlying vascular smooth muscle cells (VSMCs). PVAT can release growth factors and inhibitors. Visfatin is the first identified growth factor derived from PVAT. Decreased adiponectin and increased tumour necrosis factor-α in PVAT play a pathological role for neointimal hyperplasia after endovascular injury. PVAT-derived angiotensin II, angiotensin 1–7, reactive oxygen species, complement component 3, NO and H2S have a paracrine action on VSMC contraction, endothelial or fibroblast function; however, their paracrine actions on VSMC growth remain to be directly verified. Factors such as monocyte chemoattractant protein-1, interleukin-6, interleukin-8, leptin, resistin, plasminogen activator inhibitor type-1, adrenomedullin, free fatty acids, glucocorticoids and sex hormones can be released from adipose tissue and can regulate VSMC growth. Most of them have been verified for their secretion by PVAT; however, their paracrine functions are unknown. Obesity, vascular injury, aging and infection may affect PVAT, causing adipocyte abnormality and inflammatory cell infiltration, inducing imbalance of PVAT-derived growth factors and inhibitors, leading to VSMC growth and finally resulting in development of proliferative vascular disease, including atherosclerosis, restenosis and hypertension. In the future, using cell-specific gene interventions and local treatments may provide definitive evidence for identification of key factor(s) involved in PVAT dysfunction-induced vascular disease and thus may help to develop new therapies. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section

  16. Adipose tissue macrophages induce hepatic neutrophil recruitment and macrophage accumulation in mice.

    PubMed

    Bijnen, Mitchell; Josefs, Tatjana; Cuijpers, Ilona; Maalsen, Constantijn J; van de Gaar, José; Vroomen, Maria; Wijnands, Erwin; Rensen, Sander S; Greve, Jan Willem M; Hofker, Marten H; Biessen, Erik A L; Stehouwer, Coen D A; Schalkwijk, Casper G; Wouters, Kristiaan

    2017-10-26

    Obesity is a risk factor for non-alcoholic steatohepatitis (NASH). This risk has been attributed to visceral adipose tissue (vAT) expansion associated with increased proinflammatory mediators. Accumulation of CD11c + proinflammatory adipose tissue macrophages (ATM) is an important driver of vAT inflammation. We investigated the role of ATMs in hepatic inflammation during NASH development. vAT isolated from lean, obese or ATM-depleted (using clodronate liposomes) obese mice was transplanted to lean ldlr -/- acceptor mice. Systemic and hepatic inflammation was assessed either after 2 weeks on standard chow or after 8 weeks on high cholesterol diet (HCD) to induce NASH. Transplanting donor vAT from obese mice increased HCD-induced hepatic macrophage content compared with lean-transplanted mice, worsening liver damage. ATM depletion prior to vAT transplantation reduced this increased hepatic macrophage accumulation. On chow, vAT transplantation induced a more pronounced increase in circulating and hepatic neutrophil numbers in obese-transplanted than lean-transplanted mice, while ATM depletion prior to vAT transplantation reversed this effect. Microarray analysis of fluorescence-activated cell sorting of CD11c + and CD11c - macrophages isolated from donor adipose tissue showed that obesity resulted in enhanced expression of neutrophil chemotaxis genes specifically in CD11c + ATMs. Involvement of the neutrophil chemotaxis proteins, CXCL14 and CXCL16, was confirmed by culturing vAT. In humans, CD11c expression in vAT of obese individuals correlated with vAT expression of neutrophil chemotactic genes and with hepatic expression of neutrophil and macrophage marker genes. ATMs from obese vAT induce hepatic macrophage accumulation during NASH development, possibly by enhancing neutrophil recruitment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise

  17. Interactions between adipose tissue and the immune system in health and malnutrition.

    PubMed

    Wensveen, Felix M; Valentić, Sonja; Šestan, Marko; Wensveen, Tamara Turk; Polić, Bojan

    2015-09-01

    Adipose tissue provides the body with a storage depot of nutrients that is drained during times of starvation and replenished when food sources are abundant. As such, it is the primary sensor for nutrient availability in the milieu of an organism, which it communicates to the body through the excretion of hormones. Adipose tissue regulates a multitude of body functions associated with metabolism, such as gluconeogenesis, feeding and nutrient uptake. The immune system forms a vital layer of protection against micro-organisms that try to gain access to the nutrients contained in the body. Because infections need to be resolved as quickly as possible, speed is favored over energy-efficiency in an immune response. Especially when immune cells are activated, they switch to fast, but energy-inefficient anaerobic respiration to fulfill their energetic needs. Despite the necessity for an effective immune system, it is not given free rein in its energy expenditure. Signals derived from adipose tissue limit immune cell numbers and activity under conditions of nutrient shortage, whereas they allow proper immune cell activity when food sources are sufficiently available. When excessive fat accumulation occurs, such as in diet-induced obesity, adipose tissue becomes the site of pathological immune cell activation, causing chronic low-grade systemic inflammation. Obesity is therefore associated with a number of disorders in which the immune system plays a central role, such as atherosclerosis and non-alcoholic steatohepatitis. In this review, we will discuss the way in which adipose tissue regulates activity of the immune system under healthy and pathological conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Correlation of MRI-derived adipose tissue measurements and anthropometric markers with prevalent hypertension in the community.

    PubMed

    Lorbeer, Roberto; Rospleszcz, Susanne; Schlett, Christopher L; Heber, Sophia D; Machann, Jürgen; Thorand, Barbara; Meisinger, Christa; Heier, Margit; Peters, Annette; Bamberg, Fabian; Lieb, Wolfgang

    2018-07-01

    To compare the correlations of MRI-derived adipose tissue measurements and anthropometric markers, respectively, with prevalent hypertension in a community-based sample, free of clinical cardiovascular disease. MRI-derived adipose tissue measurements were obtained in 345 participants (143 women; age 39-73 years) of the KORA FF4 survey from Southern Germany using a 3-Tesla machine and included total adipose tissue (TAT), visceral adipose tissue (VAT), subcutaneous adipose tissue (SCAT), hepatic fat fraction (HFF), pancreatic fat fraction (PFF) as well as pericardial adipose tissue (PAT). In addition, the anthropometric markers body mass index, waist circumference, hip circumference, waist-hip ratio (WHR) and waist-height ratio (WHtR) as well as blood pressure measurements were obtained. The prevalence of hypertension was 33.6% (women: 28%, men: 38%). VAT and PAT had the highest area under the curve (AUC) values for identifying individuals with prevalent hypertension (AUC: 0.75; 0.73, respectively), whereas WHtR and waist circumference were best performing anthropometric markers (AUC: 0.72; 0.70, respectively). A 1SD increment of TAT was associated with the highest odd for hypertension in the age-adjusted and sex-adjusted model (OR = 2.20, 95% CI 1.67-2.91, P < 0.001) and in the fully adjusted model (OR = 1.97, 95% CI 1.45-2.66, P < 0.001). TAT was the only MRI-derived adipose tissue measurement that was associated with hypertension independently of the best performing anthropometric marker waist circumference in the fully adjusted model (OR = 1.93, 95% CI 1.00-3.72, P = 0.049). MRI-derived adipose tissue measurements perform similarly in identifying prevalent hypertension compared with anthropometric markers. Especially, TAT, VAT and PAT as well as WHtR and waist circumference were highly correlated with prevalent hypertension.

  19. Depot differences in steroid receptor expression in adipose tissue: possible role of the local steroid milieu.

    PubMed

    Rodriguez-Cuenca, S; Monjo, M; Proenza, A M; Roca, P

    2005-01-01

    Sex hormones play an important role in adipose tissue metabolism by activating specific receptors that alter several steps of the lipolytic and lipogenic signal cascade in depot- and sex-dependent manners. However, studies focusing on steroid receptor status in adipose tissue are scarce. In the present study, we analyzed steroid content [testosterone (T), 17beta-estradiol (17beta-E2), and progesterone (P4)] and steroid receptor mRNA levels in different rat adipose tissue depots. As expected, T levels were higher in males than in females (P = 0.031), whereas the reverse trend was observed for P4 (P < 0.001). It is noteworthy that 17beta-E2 adipose tissue levels were higher in inguinal than in the rest of adipose tissues for both sexes, where no sex differences in 17beta-E2 tissue levels were noted (P = 0.010 for retroperitoneal, P = 0.005 for gonadal, P = 0.018 for mesenteric). Regarding steroid receptor levels, androgen (AR) and estrogen receptor (ER)alpha and ERbeta densities were more clearly dependent on adipose depot location than on sex, with visceral depots showing overall higher mRNA densities than their subcutaneous counterparts. Besides, expression of ERalpha predominated over ERbeta expression, and progesterone receptor (PR-B form and PR-A+B form) mRNAs were identically expressed regardless of anatomic depot and sex. In vitro studies in 3T3-L1 cells showed that 17beta-E2 increased ERalpha (P = 0.001) and AR expression (P = 0.001), indicating that estrogen can alter estrogenic and androgenic signaling in adipose tissue. The results highlighted in this study demonstrate important depot-dependent differences in the sensitivity of adipose tissues to sex hormones between visceral and subcutaneous depots that could be related to metabolic situations observed in response to sex hormones.

  20. Impairment of adipose tissue in Prader-Willi syndrome rescued by growth hormone treatment.

    PubMed

    Cadoudal, T; Buléon, M; Sengenès, C; Diene, G; Desneulin, F; Molinas, C; Eddiry, S; Conte-Auriol, F; Daviaud, D; Martin, P G P; Bouloumié, A; Salles, J-P; Tauber, M; Valet, P

    2014-09-01

    Prader-Willi syndrome (PWS) results from abnormalities in the genomic imprinting process leading to hypothalamic dysfunction with an alteration of growth hormone (GH) secretion. PWS is associated with early morbid obesity and short stature which can be efficiently improved with GH treatment. Our aims were to highlight adipose tissue structural and functional impairments in children with PWS and to study the modifications of those parameters on GH treatment. Plasma samples and adipose tissue biopsies were obtained from 23 research centers in France coordinated by the reference center for PWS in Toulouse, France. Lean controls (n=33), non-syndromic obese (n=53), untreated (n=26) and GH-treated PWS (n=43) children were enrolled in the study. Adipose tissue biopsies were obtained during scheduled surgeries from 15 lean control, 7 untreated and 8 GH-treated PWS children. Children with PWS displayed higher insulin sensitivity as shown by reduced glycemia, insulinemia and HOMA-IR compared with non-syndromic obese children. In contrast, plasma inflammatory cytokines such as TNF-α, MCP-1 and IL-8 were increased in PWS. Analysis of biopsies compared with control children revealed decreased progenitor cell content in the stromal vascular fraction of adipose tissue and an impairment of lipolytic response to β-adrenergic agonist in PWS adipocytes. Interestingly, both of these alterations in PWS seem to be ameliorated on GH treatment. Herein, we report adipose tissue dysfunctions in children with PWS which may be partially restored by GH treatment.

  1. Biologically and mechanically driven design of an RGD-mimetic macroporous foam for adipose tissue engineering applications.

    PubMed

    Rossi, Eleonora; Gerges, Irini; Tocchio, Alessandro; Tamplenizza, Margherita; Aprile, Paola; Recordati, Camilla; Martello, Federico; Martin, Ivan; Milani, Paolo; Lenardi, Cristina

    2016-10-01

    Despite clinical treatments for adipose tissue defects, in particular breast tissue reconstruction, have certain grades of efficacy, many drawbacks are still affecting the long-term survival of new formed fat tissue. To overcome this problem, in the last decades, several scaffolding materials have been investigated in the field of adipose tissue engineering. However, a strategy able to recapitulate a suitable environment for adipose tissue reconstruction and maintenance is still missing. To address this need, we adopted a biologically and mechanically driven design to fabricate an RGD-mimetic poly(amidoamine) oligomer macroporous foam (OPAAF) for adipose tissue reconstruction. The scaffold was designed to fulfil three fundamental criteria: capability to induce cell adhesion and proliferation, support of in vivo vascularization and match of native tissue mechanical properties. Poly(amidoamine) oligomers were formed into soft scaffolds with hierarchical porosity through a combined free radical polymerization and foaming reaction. OPAAF is characterized by a high water uptake capacity, progressive degradation kinetics and ideal mechanical properties for adipose tissue reconstruction. OPAAF's ability to support cell adhesion, proliferation and adipogenesis was assessed in vitro using epithelial, fibroblast and endothelial cells (MDCK, 3T3L1 and HUVEC respectively). In addition, in vivo subcutaneous implantation in murine model highlighted OPAAF potential to support both adipogenesis and vessels infiltration. Overall, the reported results support the use of OPAAF as a scaffold for engineered adipose tissue construct. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Molecular adaptations of adipose tissue to 6 weeks of morning fasting vs. daily breakfast consumption in lean and obese adults

    PubMed Central

    Gonzalez, Javier T.; Richardson, Judith D.; Chowdhury, Enhad A.; Koumanov, Francoise; Holman, Geoffrey D.; Cooper, Scott; Thompson, Dylan

    2017-01-01

    Key points In lean individuals, 6 weeks of extended morning fasting increases the expression of genes involved in lipid turnover (ACADM) and insulin signalling (IRS2) in subcutaneous abdominal adipose tissue.In obese individuals, 6 weeks of extended morning fasting increases IRS2 expression in subcutaneous abdominal adipose tissue.The content and activation status of key proteins involved in insulin signalling and glucose transport (GLUT4, Akt1 and Akt2) were unaffected by extended morning fasting. Therefore, any observations of altered adipose tissue insulin sensitivity with extended morning fasting do not necessarily require changes in insulin signalling proximal to Akt.Insulin‐stimulated adipose tissue glucose uptake rates are lower in obese versus lean individuals, but this difference is abolished when values are normalised to whole‐body fat mass. This suggests a novel hypothesis which proposes that the reduced adipose glucose uptake in obesity is a physiological down‐regulation to prevent excessive de novo lipogenesis. Abstract This study assessed molecular responses of human subcutaneous abdominal adipose tissue (SCAT) to 6 weeks of morning fasting. Forty‐nine healthy lean (n = 29) and obese (n = 20) adults provided SCAT biopsies before and after 6 weeks of morning fasting (FAST; 0 kcal until 12.00 h) or daily breakfast consumption (BFAST; ≥700 kcal before 11.00 h). Biopsies were analysed for mRNA levels of selected genes, and GLUT4 and Akt protein content. Basal and insulin‐stimulated Akt activation and tissue glucose uptake rates were also determined. In lean individuals, lipid turnover and insulin signalling genes (ACADM and IRS2) were up‐regulated with FAST versus BFAST (ACADM: 1.14 (95% CI: 0.97–1.30) versus 0.80 (95% CI: 0.64–0.96), P = 0.007; IRS2: 1.75 (95% CI: 1.33–2.16) versus 1.09 (95% CI: 0.67–1.51), P = 0.03, respectively). In obese individuals, no differential (FAST versus BFAST) expression was observed in

  3. Molecular adaptations of adipose tissue to 6 weeks of morning fasting vs. daily breakfast consumption in lean and obese adults.

    PubMed

    Gonzalez, Javier T; Richardson, Judith D; Chowdhury, Enhad A; Koumanov, Francoise; Holman, Geoffrey D; Cooper, Scott; Thompson, Dylan; Tsintzas, Kostas; Betts, James A

    2018-02-15

    In lean individuals, 6 weeks of extended morning fasting increases the expression of genes involved in lipid turnover (ACADM) and insulin signalling (IRS2) in subcutaneous abdominal adipose tissue. In obese individuals, 6 weeks of extended morning fasting increases IRS2 expression in subcutaneous abdominal adipose tissue. The content and activation status of key proteins involved in insulin signalling and glucose transport (GLUT4, Akt1 and Akt2) were unaffected by extended morning fasting. Therefore, any observations of altered adipose tissue insulin sensitivity with extended morning fasting do not necessarily require changes in insulin signalling proximal to Akt. Insulin-stimulated adipose tissue glucose uptake rates are lower in obese versus lean individuals, but this difference is abolished when values are normalised to whole-body fat mass. This suggests a novel hypothesis which proposes that the reduced adipose glucose uptake in obesity is a physiological down-regulation to prevent excessive de novo lipogenesis. This study assessed molecular responses of human subcutaneous abdominal adipose tissue (SCAT) to 6 weeks of morning fasting. Forty-nine healthy lean (n = 29) and obese (n = 20) adults provided SCAT biopsies before and after 6 weeks of morning fasting (FAST; 0 kcal until 12.00 h) or daily breakfast consumption (BFAST; ≥700 kcal before 11.00 h). Biopsies were analysed for mRNA levels of selected genes, and GLUT4 and Akt protein content. Basal and insulin-stimulated Akt activation and tissue glucose uptake rates were also determined. In lean individuals, lipid turnover and insulin signalling genes (ACADM and IRS2) were up-regulated with FAST versus BFAST (ACADM: 1.14 (95% CI: 0.97-1.30) versus 0.80 (95% CI: 0.64-0.96), P = 0.007; IRS2: 1.75 (95% CI: 1.33-2.16) versus 1.09 (95% CI: 0.67-1.51), P = 0.03, respectively). In obese individuals, no differential (FAST versus BFAST) expression was observed in genes involved in lipid turnover (all

  4. Chronic AMPK activation via loss of FLCN induces functional beige adipose tissue through PGC-1α/ERRα

    PubMed Central

    Yan, Ming; Audet-Walsh, Étienne; Manteghi, Sanaz; Dufour, Catherine Rosa; Walker, Benjamin; Baba, Masaya; St-Pierre, Julie; Giguère, Vincent; Pause, Arnim

    2016-01-01

    The tumor suppressor folliculin (FLCN) forms a repressor complex with AMP-activated protein kinase (AMPK). Given that AMPK is a master regulator of cellular energy homeostasis, we generated an adipose-specific Flcn (Adipoq-FLCN) knockout mouse model to investigate the role of FLCN in energy metabolism. We show that loss of FLCN results in a complete metabolic reprogramming of adipose tissues, resulting in enhanced oxidative metabolism. Adipoq-FLCN knockout mice exhibit increased energy expenditure and are protected from high-fat diet (HFD)-induced obesity. Importantly, FLCN ablation leads to chronic hyperactivation of AMPK, which in turns induces and activates two key transcriptional regulators of cellular metabolism, proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) and estrogen-related receptor α (ERRα). Together, the AMPK/PGC-1α/ERRα molecular axis positively modulates the expression of metabolic genes to promote mitochondrial biogenesis and activity. In addition, mitochondrial uncoupling proteins as well as other markers of brown fat are up-regulated in both white and brown FLCN-null adipose tissues, underlying the increased resistance of Adipoq-FLCN knockout mice to cold exposure. These findings identify a key role of FLCN as a negative regulator of mitochondrial function and identify a novel molecular pathway involved in the browning of white adipocytes and the activity of brown fat. PMID:27151976

  5. Browning of white adipose tissue: lessons from experimental models.

    PubMed

    Bargut, Thereza Cristina Lonzetti; Souza-Mello, Vanessa; Aguila, Marcia Barbosa; Mandarim-de-Lacerda, Carlos Alberto

    2017-01-18

    Beige or brite (brown-in-white) adipocytes are present in white adipose tissue (WAT) and have a white fat-like phenotype that when stimulated acquires a brown fat-like phenotype, leading to increased thermogenesis. This phenomenon is known as browning and is more likely to occur in subcutaneous fat depots. Browning involves the expression of many transcription factors, such as PR domain containing 16 (PRDM16) and peroxisome proliferator-activated receptor (PPAR)-γ, and of uncoupling protein (UCP)-1, which is the hallmark of thermogenesis. Recent papers pointed that browning can occur in the WAT of humans, with beneficial metabolic effects. This fact indicates that these cells can be targeted to treat a range of diseases, with both pharmacological and nutritional activators. Pharmacological approaches to induce browning include the use of PPAR-α agonist, adrenergic receptor stimulation, thyroid hormone administration, irisin and FGF21 induction. Most of them act through the induction of PPAR-γ coactivator (PGC) 1-α and the consequent mitochondrial biogenesis and UCP1 induction. About the nutritional inducers, several compounds have been described with multiple mechanisms of action. Some of these activators include specific amino acids restriction, capsaicin, bile acids, Resveratrol, and retinoic acid. Besides that, some classes of lipids, as well as many plant extracts, have also been implicated in the browning of WAT. In conclusion, the discovery of browning in human WAT opens the possibility to target the adipose tissue to fight a range of diseases. Studies have arisen showing promising results and bringing new opportunities in thermogenesis and obesity control.

  6. Weight-dependent changes of immune system in adipose tissue: Importance of leptin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caspar-Bauguil, S.; Groupe de Recherche et d'Etude en Nutrition; Cousin, B.

    2006-07-15

    Ancestral lymphoid cells reside in adipose tissues, and their numbers are highly altered in obesity. Leptin, production of which is correlated to fat mass, is strongly involved in the relationships between adipose tissues and immune system. We investigated in epididymal (EPI) and inguinal (ING) fat pads to determine whether 1) lymphocyte phenotypes were correlated to the tissue weight and 2) leptin was involved in such relationships. Immunohistological analyses revealed a tight relationship between the T and NK lymphocytes of the stromal vascular fraction and adipocytes. We identified a significant negative and positive correlation between EPI weight and the percentage ofmore » NK and total T cells respectively by cytofluorometric analyses. The NK and ancestral {gamma}{delta} T cell contents were directly dependent of leptin since they increased significantly in high-fat (HF) diet mice but not in leptin-deficient (ob/ob) mice as compared to control. By contrast, the {alpha}{beta} T cell content seemed independent of leptin because their percentages increased significantly with the EPI weight whatever the type of mice (control, HF, ob/ob). The present study suggests that adipose tissues present, according to their localization, different immunological mechanisms that might be involved in the regulation of adipose cells functions and proliferations.« less

  7. Regulation of metabolic health and adipose tissue function by group 2 innate lymphoid cells

    PubMed Central

    Cautivo, Kelly M.; Molofsky, Ari B.

    2016-01-01

    Adipose tissue (AT) is home to an abundance of immune cells. With chronic obesity, inflammatory immune cells accumulate and promote insulin resistance and the progression to type 2 diabetes mellitus (T2DM). In contrast, recent studies have highlighted the regulation and function of immune cells in lean, healthy adipose tissue, including those associated with type 2 or “allergic” immunity. Although traditionally activated by infection with multicellular helminthes, AT type 2 immunity is active independently of infection, and promotes tissue homeostasis, adipose tissue “browning”, and systemic insulin sensitivity, protecting against obesity-induced metabolic dysfunction and T2DM. In particular, group 2 innate lymphoid cells (ILC2s) are integral regulators of AT type 2 immunity, producing the cytokines IL-5 and IL-13, promoting eosinophils and alternatively activated macrophages, and cooperating with and promoting AT regulatory T (Treg) cells. In this review, we focus on the recent developments in our understanding of ILC2 cells and type 2 immunity in adipose tissue metabolism and homeostasis. PMID:27120716

  8. Brown adipose tissue activation as measured by infrared thermography by mild anticipatory psychological stress in lean healthy females.

    PubMed

    Robinson, Lindsay J; Law, James M; Symonds, Michael E; Budge, Helen

    2016-04-01

    What is the central question of this study? Does psychological stress, which is known to promote cortisol secretion, simultaneously activate brown adipose tissue function in healthy adult females? What is the main finding and its importance? One explanation for the pronounced differences in brown adipose tissue function between individuals lies in their responsiveness to psychological stress and, as such, should be taken into account when examining its in vivo stimulation. Brown adipose tissue (BAT) has been implicated in the pathogenesis of obesity, type 2 diabetes and the metabolic syndrome and is a potential therapeutic target. Brown adipose tissue can have a significant impact on energy balance and glucose homeostasis through the action of uncoupling protein 1, dissipating chemical energy as heat following neuroendocrine stimulation. We hypothesized that psychological stress, which is known to promote cortisol secretion, would simultaneously activate BAT at thermoneutrality. Brown adipose tissue activity was measured using infrared thermography to determine changes in the temperature of the skin overlying supraclavicular BAT (TSCR ). A mild psychological stress was induced in five healthy, lean, female, Caucasian volunteers using a short mental arithmetic (MA) test. The TSCR was compared with a repeated assessment, in which the MA test was replaced with a period of relaxation. Although MA did not elicit an acute stress response, anticipation of MA testing led to an increase in salivary cortisol, indicative of an anticipatory stress response, that was associated with a trend towards higher absolute and relative TSCR . A positive correlation between TSCR and cortisol was found during the anticipatory phase, a relationship that was enhanced by increased cortisol linked to MA. Our findings suggest that subtle changes in the level of psychological stress can stimulate BAT, findings that may account for the high variability and inconsistency in reported BAT

  9. Collecting lymphatic vessel permeability facilitates adipose tissue inflammation and distribution of antigen to lymph node-homing adipose tissue dendritic cells.

    PubMed

    Kuan, Emma L; Ivanov, Stoyan; Bridenbaugh, Eric A; Victora, Gabriel; Wang, Wei; Childs, Ed W; Platt, Andrew M; Jakubzick, Claudia V; Mason, Robert J; Gashev, Anatoliy A; Nussenzweig, Michel; Swartz, Melody A; Dustin, Michael L; Zawieja, David C; Randolph, Gwendalyn J

    2015-06-01

    Collecting lymphatic vessels (CLVs), surrounded by fat and endowed with contractile muscle and valves, transport lymph from tissues after it is absorbed into lymphatic capillaries. CLVs are not known to participate in immune responses. In this study, we observed that the inherent permeability of CLVs allowed broad distribution of lymph components within surrounding fat for uptake by adjacent macrophages and dendritic cells (DCs) that actively interacted with CLVs. Endocytosis of lymph-derived Ags by these cells supported recall T cell responses in the fat and also generated Ag-bearing DCs for emigration into adjacent lymph nodes (LNs). Enhanced recruitment of DCs to inflammation-reactive LNs significantly relied on adipose tissue DCs to maintain sufficient numbers of Ag-bearing DCs as the LN expanded. Thus, CLVs coordinate inflammation and immunity within adipose depots and foster the generation of an unexpected pool of APCs for Ag transport into the adjacent LN. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. Comparison of serum vaspin levels and vaspin expression in adipose tissue and smooth muscle tissue in pregnant women with and without gestational diabetes.

    PubMed

    Tang, Yuping; Qiao, Ping; Qu, Xiaoxian; Bao, Yirong; Li, Yuhong; Liao, Yini; Ying, Hao

    2017-10-01

    Vaspin is associated with metabolic parameters and insulin resistance. However, the expression of vaspin in visceral adipose tissue (VAT) in pregnant women with gestational diabetes mellitus (GDM) has not been fully explored, and the contribution of vaspin to the biological mechanisms underlying GDM remains unclear. This study aimed to compare circulating vaspin levels and its expression in different insulin target tissues including subcutaneous adipose tissue (SAT), VAT and smooth muscle tissue (SMT) in pregnant women with and without GDM. A total of 37 women with GDM (GDM group) and 37 normal pregnant women (control group) were selected. Fasting plasma glucose (FPG), fasting insulin (FINS) and serum vaspin levels were quantified at term, and homeostasis model of assessment2-insulin resistance (HOMA2-IR) values were calculated. RT-qPCR and Western blotting were used to measure mRNA and protein levels of vaspin in VAT, SAT and SMT of 15 GDM women and normal pregnant women. In the GDM group, serum vaspin concentrations were significantly higher than in the control group. Serum vaspin levels were positively correlated with HOMA2-IR in the GDM group but not in the control group. In the GDM group, vaspin mRNA and protein expression levels in SAT and VAT were both significantly higher than in controls, but no difference was found in SMT. Moreover, relative mRNA but not protein expression levels of vaspin in SAT were highest among the three tissues in both groups. Circulating vaspin levels and expression of vaspin in SAT and VAT were higher in GDM women than in normal pregnant women. However, the specific role of vaspin from SAT and VAT in the pathogenesis of GDM needs further study. © 2017 John Wiley & Sons Ltd.

  11. Fatty Acid Composition of Lamb Liver, Muscle, And Adipose Tissues in Response to Rumen-Protected Conjugated Linoleic Acid (CLA) Supplementation Is Tissue Dependent.

    PubMed

    Schiavon, Stefano; Bergamaschi, Matteo; Pellattiero, Erika; Simonetto, Alberto; Tagliapietra, Franco

    2017-12-06

    The tissue-specific response to rumen-protected conjugated linoleic acid supply (rpCLA) of liver, two muscles, and three adipose tissues of heavy lambs was studied. Twenty-four lambs, 8 months old, divided into 4 groups of 6, were fed at libitum on a ration supplemented without or with a mixture of rpCLA. Silica and hydrogenated soybean oil was the rpCLA coating matrix. The lambs were slaughtered at 11 months of age. Tissues were collected and analyzed for their FA profiles. The dietary rpCLA supplement had no influence on carcass fatness nor on the fat content of the liver and tissues and had little influence on the FA profiles of these tissues. In the adipose tissues, rpCLA increased the proportions of saturated FAs, 18:0 and 18:2t10c12, and decreased the proportions of monounsaturated FAs in the adipose tissues. In muscles, the effects were the opposite. The results suggest that Δ9 desaturase activity is inhibited by the rpCLA mixture in adipose tissues to a greater extent than in the other tissues.

  12. Comparison of three methods for the derivation of a biologic scaffold composed of adipose tissue extracellular matrix.

    PubMed

    Brown, Bryan N; Freund, John M; Han, Li; Rubin, J Peter; Reing, Janet E; Jeffries, Eric M; Wolf, Mathew T; Tottey, Stephen; Barnes, Christopher A; Ratner, Buddy D; Badylak, Stephen F

    2011-04-01

    Extracellular matrix (ECM)-based scaffold materials have been used successfully in both preclinical and clinical tissue engineering and regenerative medicine approaches to tissue reconstruction. Results of numerous studies have shown that ECM scaffolds are capable of supporting the growth and differentiation of multiple cell types in vitro and of acting as inductive templates for constructive tissue remodeling after implantation in vivo. Adipose tissue represents a potentially abundant source of ECM and may represent an ideal substrate for the growth and adipogenic differentiation of stem cells harvested from this tissue. Numerous studies have shown that the methods by which ECM scaffold materials are prepared have a dramatic effect upon both the biochemical and structural properties of the resultant ECM scaffold material as well as the ability of the material to support a positive tissue remodeling outcome after implantation. The objective of the present study was to characterize the adipose ECM material resulting from three methods of decellularization to determine the most effective method for the derivation of an adipose tissue ECM scaffold that was largely free of potentially immunogenic cellular content while retaining tissue-specific structural and functional components as well as the ability to support the growth and adipogenic differentiation of adipose-derived stem cells. The results show that each of the decellularization methods produced an adipose ECM scaffold that was distinct from both a structural and biochemical perspective, emphasizing the importance of the decellularization protocol used to produce adipose ECM scaffolds. Further, the results suggest that the adipose ECM scaffolds produced using the methods described herein are capable of supporting the maintenance and adipogenic differentiation of adipose-derived stem cells and may represent effective substrates for use in tissue engineering and regenerative medicine approaches to soft tissue

  13. Green tea extract induces genes related to browning of white adipose tissue and limits weight-gain in high energy diet-fed rat.

    PubMed

    Chen, Li-Han; Chien, Yi-Wen; Liang, Chung-Tiang; Chan, Ching-Hung; Fan, Meng-Han; Huang, Hui-Yu

    2017-01-01

    Background: A wealth of research has reported on the anti-obesity effects of green tea extract (GTE). Although browning of white adipose tissue (WAT) has been reported to attenuate obesity, no study has disclosed the effects of GTE on browning in Sprague Dawley rats. Objectives: The aims of the study were to investigate the effects of GTE on anti-obesity and browning, and their underlying mechanisms. Methods: Four groups of rats (n=10/group) were used including a normal diet with vehicle treatment, and a high-energy diet (HED) with vehicle or GTE by oral gavage at 77.5 or 155 mg/kg/day for 8 weeks. Body weight, fat accumulation, and serum biochemical parameters were used to evaluate obesity. The gene expressions were analyzed using RT-qPCR and western blotting. Results: GTE modulated HED-induced body weight, fat accumulation, and serum levels of triacylglycerol, total cholesterol, low-density lipoprotein, free fatty acids, aspartate aminotransferase, and alanine aminotransferase. Moreover, GTE enhanced the serum high-density lipoprotein. Most importantly, the biomarkers of beige adipose tissue were up-regulated in WAT in GTE-given groups. GTE induced genes involved in different pathways of browning, and reduced transducin-like enhancer protein-3 in WAT. Conclusion: Our results suggest that GTE may improve obesity through inducing browning in HED-fed rats. Abbreviations : ALT: Alanine transaminase; AST: Aspartate transaminase; BAT: Brown adipose tissue; BMP-7: Bone morphogenetic protein-7; BW: Body weight; CIDEA: Cell death activator; CPT-1: Carnitine palmitoyltransferase-1; EFP: Epididymal fat pad; FFA: Free fatty acid; FGF-21: Fibroblast growth factor-21; GTE: Green tea extract; HDL: High-density lipoprotein; HED: high-energy diet; LDL: Low-density lipoprotein; MFP: Mesenteric fat pad; PGC-1α: Activates PPAR-γ coactivator-1; PPAR-γ: Peroxisome proliferator-activated receptor-γ; PRDM-16: PR domain containing 16; RFP: Renal fat pad; SD: Sprague Dawley; TC: Total

  14. Prognostic Effect of Low Subcutaneous Adipose Tissue on Survival Outcome in Patients With Multiple Myeloma.

    PubMed

    Takeoka, Yasunobu; Sakatoku, Kazuki; Miura, Akiko; Yamamura, Ryosuke; Araki, Taku; Seura, Hirotaka; Okamura, Terue; Koh, Hideo; Nakamae, Hirohisa; Hino, Masayuki; Ohta, Kensuke

    2016-08-01

    Increasing evidence suggests that decreased skeletal muscle mass (sarcopenia) or adipose tissue assessed using computed tomography (CT) predicts negative outcomes in patients with solid tumors. However, the prognostic value of such an assessment in multiple myeloma (MM) remains unknown. Consecutive patients with newly diagnosed symptomatic MM were retrospectively analyzed. The cross-sectional area of skeletal muscles and subcutaneous or visceral adipose tissue was measured using CT. Body composition indexes (skeletal muscle index, subcutaneous adipose tissue index [SAI], and visceral adipose tissue index) were calculated. The association between these indexes and overall survival (OS) was examined. Of 56 evaluable patients, 37 (66%) had sarcopenia. The 2-year OS in patients with SAI < median was 58% compared with 91% in those with SAI ≥ median (P = .006). In multivariate analyses, SAI < median was significantly associated with poor OS (hazard ratio, 4.05; P = .02). Sarcopenia was not associated with OS. The maximum value of the standardized uptake value was significantly higher in patients with SAI < median (P = .02). The findings of this study suggest that low subcutaneous adipose tissue at baseline predicts poor survival outcome in patients with MM. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The Effect of Marine Derived n-3 Fatty Acids on Adipose Tissue Metabolism and Function

    PubMed Central

    Todorčević, Marijana; Hodson, Leanne

    2015-01-01

    Adipose tissue function is key determinant of metabolic health, with specific nutrients being suggested to play a role in tissue metabolism. One such group of nutrients are the n-3 fatty acids, specifically eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3). Results from studies where human, animal and cellular models have been utilised to investigate the effects of EPA and/or DHA on white adipose tissue/adipocytes suggest anti-obesity and anti-inflammatory effects. We review here evidence for these effects, specifically focusing on studies that provide some insight into metabolic pathways or processes. Of note, limited work has been undertaken investigating the effects of EPA and DHA on white adipose tissue in humans whilst more work has been undertaken using animal and cellular models. Taken together it would appear that EPA and DHA have a positive effect on lowering lipogenesis, increasing lipolysis and decreasing inflammation, all of which would be beneficial for adipose tissue biology. What remains to be elucidated is the duration and dose required to see a favourable effect of EPA and DHA in vivo in humans, across a range of adiposity. PMID:26729182

  16. Chronic intermittent hypoxia from pedo-stage decreases glucose transporter 4 expression in adipose tissue and causes insulin resistance.

    PubMed

    Chen, Lin; Cao, Zhao-long; Han, Fang; Gao, Zhan-cheng; He, Quan-ying

    2010-02-20

    The persistence of sleep disordered breathing (SDB) symptoms after tonsil and/or adenoid (T&A) surgery are common in children with obstructive sleep apnea (OSA). We tested the hypothesis that disturbances of glucose transporters (GLUTs) in intraabdominal adipose tissue caused by chronic intermittent hypoxia (CIH) from the pedo-period could facilitate the appearance of periphery insulin resistance in Sprague-Dawley (SD) rats. We tested the hypothesis that the changes of GLUTs in adipose tissue may be one of the reasons for persistent SDB among clinical OSA children after T&A surgery. Thirty 21-day-old SD rats were randomly divided into a CIH group, a chronic continuous hypoxia (CCH) group, and a normal oxygen group (control group) and exposed for 40 days. The changes of weight, fasting blood glucose and fasting blood insulin levels were measured. Hyperinsulinemic-euglycemic clamp techniques were used to measure insulin resistance in each animal. Real-time quantitative PCR and Western blotting were used to measure GLUT mRNA and proteins in intraabdominal adipose tissue. Additional intraabdomial white adipose tissue (WAT) was also processed into paraffin sections and directly observed for GLUTs1-4 expression. When compared with control group, CIH increased blood fasting insulin levels, (245.07 +/- 53.89) pg/ml vs. (168.63 +/- 38.70) pg/ml, P = 0.038, and decreased the mean glucose infusion rate (GIR), (7.25 +/- 1.29) mg x kg(-1) x min(-1) vs. (13.34 +/- 1.54) mg x kg(-1) x min(-1), P < 0.001. GLUT-4 mRNA and protein expression was significantly reduced after CIH compared with CCH or normal oxygen rats, 0.002 +/- 0.002 vs. 0.039 +/- 0.009, P < 0.001; 0.642 +/- 0.073 vs. 1.000 +/- 0.103, P = 0.035. CIH in young rats could induce insulin resistance via adverse effects on glycometabolism. These findings emphasize the importance of early detection and treatment of insulin insensitivity in obese childhood OSA.

  17. Effects of Rapid Weight Loss on Systemic and Adipose Tissue Inflammation and Metabolism in Obese Postmenopausal Women.

    PubMed

    Alemán, José O; Iyengar, Neil M; Walker, Jeanne M; Milne, Ginger L; Da Rosa, Joel Correa; Liang, Yupu; Giri, Dilip D; Zhou, Xi Kathy; Pollak, Michael N; Hudis, Clifford A; Breslow, Jan L; Holt, Peter R; Dannenberg, Andrew J

    2017-06-01

    Obesity is associated with subclinical white adipose tissue inflammation, as defined by the presence of crown-like structures (CLSs) consisting of dead or dying adipocytes encircled by macrophages. In humans, bariatric surgery-induced weight loss leads to a decrease in CLSs, but the effects of rapid diet-induced weight loss on CLSs and metabolism are unclear. To determine the effects of rapid very-low-calorie diet-induced weight loss on CLS density, systemic biomarkers of inflammation, and metabolism in obese postmenopausal women. Prospective cohort study. Rockefeller University Hospital, New York, NY. Ten obese, postmenopausal women with a mean age of 60.6 years (standard deviation, ±3.6 years). Effects on CLS density and gene expression in abdominal subcutaneous adipose tissue, cardiometabolic risk factors, white blood count, circulating metabolites, and oxidative stress (urinary isoprostane-M) were measured. Obese subjects lost approximately 10% body weight over a mean of 46 days. CLS density increased in subcutaneous adipose tissue without an associated increase in proinflammatory gene expression. Weight loss was accompanied by decreased fasting blood levels of high-sensitivity C-reactive protein, glucose, lactate, and kynurenine, and increased circulating levels of free fatty acids, glycerol, β -hydroxybutyrate, and 25 hydroxyvitamin D. Levels of urinary isoprostane-M declined. Rapid weight loss stimulated lipolysis and an increase in CLS density in subcutaneous adipose tissue in association with changes in levels of circulating metabolites, and improved systemic biomarkers of inflammation and insulin resistance. The observed change in levels of metabolites ( i.e. , lactate, β -hydroxybutyrate, 25 hydroxyvitamin D) may contribute to the anti-inflammatory effect of rapid weight loss.

  18. Effects of Rapid Weight Loss on Systemic and Adipose Tissue Inflammation and Metabolism in Obese Postmenopausal Women

    PubMed Central

    Iyengar, Neil M.; Walker, Jeanne M.; Milne, Ginger L.; Da Rosa, Joel Correa; Liang, Yupu; Giri, Dilip D.; Zhou, Xi Kathy; Pollak, Michael N.; Hudis, Clifford A.; Breslow, Jan L.; Holt, Peter R.; Dannenberg, Andrew J.

    2017-01-01

    Context: Obesity is associated with subclinical white adipose tissue inflammation, as defined by the presence of crown-like structures (CLSs) consisting of dead or dying adipocytes encircled by macrophages. In humans, bariatric surgery-induced weight loss leads to a decrease in CLSs, but the effects of rapid diet-induced weight loss on CLSs and metabolism are unclear. Objective: To determine the effects of rapid very-low-calorie diet-induced weight loss on CLS density, systemic biomarkers of inflammation, and metabolism in obese postmenopausal women. Design: Prospective cohort study. Setting: Rockefeller University Hospital, New York, NY. Participants: Ten obese, postmenopausal women with a mean age of 60.6 years (standard deviation, ±3.6 years). Main Outcome Measures: Effects on CLS density and gene expression in abdominal subcutaneous adipose tissue, cardiometabolic risk factors, white blood count, circulating metabolites, and oxidative stress (urinary isoprostane-M) were measured. Results: Obese subjects lost approximately 10% body weight over a mean of 46 days. CLS density increased in subcutaneous adipose tissue without an associated increase in proinflammatory gene expression. Weight loss was accompanied by decreased fasting blood levels of high-sensitivity C-reactive protein, glucose, lactate, and kynurenine, and increased circulating levels of free fatty acids, glycerol, β-hydroxybutyrate, and 25 hydroxyvitamin D. Levels of urinary isoprostane-M declined. Conclusion: Rapid weight loss stimulated lipolysis and an increase in CLS density in subcutaneous adipose tissue in association with changes in levels of circulating metabolites, and improved systemic biomarkers of inflammation and insulin resistance. The observed change in levels of metabolites (i.e., lactate, β-hydroxybutyrate, 25 hydroxyvitamin D) may contribute to the anti-inflammatory effect of rapid weight loss. PMID:29264516

  19. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-{kappa}B pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zhiquan; Xue, Liqiong; Guo, Cuicui

    Highlights: Black-Right-Pointing-Pointer Stevioside ameliorates high-fat diet-induced insulin resistance. Black-Right-Pointing-Pointer Stevioside alleviates the adipose tissue inflammation. Black-Right-Pointing-Pointer Stevioside reduces macrophages infiltration into the adipose tissue. Black-Right-Pointing-Pointer Stevioside suppresses the activation of NF-{kappa}B in the adipose tissue. -- Abstract: Accumulating evidence suggests that adipose tissue is the main source of pro-inflammatory molecules that predispose individuals to insulin resistance. Stevioside (SVS) is a widely used sweetener with multiple beneficial effects for diabetic patients. In this study, we investigated the effect of SVS on insulin resistance and the pro-inflammatory state of adipose tissue in mice fed with a high-fat diet (HFD). Oral administration ofmore » SVS for 1 month had no effect on body weight, but it significantly improved fasting glucose, basal insulin levels, glucose tolerance and whole body insulin sensitivity. Interestingly, these changes were accompanied with decreased expression levels of several inflammatory cytokines in adipose tissue, including TNF-{alpha}, IL6, IL10, IL1{beta}, KC, MIP-1{alpha}, CD11b and CD14. Moreover, macrophage infiltration in adipose tissue was remarkably reduced by SVS. Finally, SVS significantly suppressed the nuclear factor-kappa b (NF-{kappa}B) signaling pathway in adipose tissue. Collectively, these results suggested that SVS may ameliorate insulin resistance in HFD-fed mice by attenuating adipose tissue inflammation and inhibiting the NF-{kappa}B pathway.« less

  20. Cross Talk between Adipose Tissue and Placenta in Obese and Gestational Diabetes Mellitus Pregnancies via Exosomes.

    PubMed

    Jayabalan, Nanthini; Nair, Soumyalekshmi; Nuzhat, Zarin; Rice, Gregory E; Zuñiga, Felipe A; Sobrevia, Luis; Leiva, Andrea; Sanhueza, Carlos; Gutiérrez, Jaime Agustín; Lappas, Martha; Freeman, Dilys Jane; Salomon, Carlos

    2017-01-01

    Obesity is an important public health issue worldwide, where it is commonly associated with the development of metabolic disorders, especially insulin resistance (IR). Maternal obesity is associated with an increased risk of pregnancy complications, especially gestational diabetes mellitus (GDM). Metabolism is a vital process for energy production and the maintenance of essential cellular functions. Excess energy storage is predominantly regulated by the adipose tissue. Primarily made up of adipocytes, adipose tissue acts as the body's major energy reservoir. The role of adipose tissue, however, is not restricted to a "bag of fat." The adipose tissue is an endocrine organ, secreting various adipokines, enzymes, growth factors, and hormones that take part in glucose and lipid metabolism. In obesity, the greater portion of the adipose tissue comprises fat, and there is increased pro-inflammatory cytokine secretion, macrophage infiltration, and reduced insulin sensitivity. Obesity contributes to systemic IR and its associated metabolic complications. Similar to adipose tissue, the placenta is also an endocrine organ. During pregnancy, the placenta secretes various molecules to maintain pregnancy physiology. In addition, the placenta plays an important role in metabolism and exchange of nutrients between mother and fetus. Inflammation at the placenta may contribute to the severity of maternal IR and her likelihood of developing GDM and may also mediate the adverse consequences of obesity and GDM on the fetus. Interestingly, studies on maternal insulin sensitivity and secretion of placental hormones have not shown a positive correlation between these phenomena. Recently, a great interest in the field of extracellular vesicles (EVs) has been observed in the literature. EVs are produced by a wide range of cells and are present in all biological fluids. EVs are involved in cell-to-cell communication. Recent evidence points to an association between adipose tissue

  1. Cross Talk between Adipose Tissue and Placenta in Obese and Gestational Diabetes Mellitus Pregnancies via Exosomes

    PubMed Central

    Jayabalan, Nanthini; Nair, Soumyalekshmi; Nuzhat, Zarin; Rice, Gregory E.; Zuñiga, Felipe A.; Sobrevia, Luis; Leiva, Andrea; Sanhueza, Carlos; Gutiérrez, Jaime Agustín; Lappas, Martha; Freeman, Dilys Jane; Salomon, Carlos

    2017-01-01

    Obesity is an important public health issue worldwide, where it is commonly associated with the development of metabolic disorders, especially insulin resistance (IR). Maternal obesity is associated with an increased risk of pregnancy complications, especially gestational diabetes mellitus (GDM). Metabolism is a vital process for energy production and the maintenance of essential cellular functions. Excess energy storage is predominantly regulated by the adipose tissue. Primarily made up of adipocytes, adipose tissue acts as the body’s major energy reservoir. The role of adipose tissue, however, is not restricted to a “bag of fat.” The adipose tissue is an endocrine organ, secreting various adipokines, enzymes, growth factors, and hormones that take part in glucose and lipid metabolism. In obesity, the greater portion of the adipose tissue comprises fat, and there is increased pro-inflammatory cytokine secretion, macrophage infiltration, and reduced insulin sensitivity. Obesity contributes to systemic IR and its associated metabolic complications. Similar to adipose tissue, the placenta is also an endocrine organ. During pregnancy, the placenta secretes various molecules to maintain pregnancy physiology. In addition, the placenta plays an important role in metabolism and exchange of nutrients between mother and fetus. Inflammation at the placenta may contribute to the severity of maternal IR and her likelihood of developing GDM and may also mediate the adverse consequences of obesity and GDM on the fetus. Interestingly, studies on maternal insulin sensitivity and secretion of placental hormones have not shown a positive correlation between these phenomena. Recently, a great interest in the field of extracellular vesicles (EVs) has been observed in the literature. EVs are produced by a wide range of cells and are present in all biological fluids. EVs are involved in cell-to-cell communication. Recent evidence points to an association between adipose tissue

  2. Renal injury in Seipin-deficient lipodystrophic mice and its reversal by adipose tissue transplantation or leptin administration alone: adipose tissue-kidney crosstalk.

    PubMed

    Liu, Xue-Jing; Wu, Xiao-Yue; Wang, Huan; Wang, Su-Xia; Kong, Wei; Zhang, Ling; Liu, George; Huang, Wei

    2018-05-08

    Seipin deficiency is responsible for type 2 congenital generalized lipodystrophy with severe loss of adipose tissue (AT) and could lead to renal failure in humans. However, the effect of Seipin on renal function is poorly understood. Here we report that Seipin knockout (SKO) mice exhibited impaired renal function, enlarged glomerular and mesangial surface areas, renal depositions of lipid, and advanced glycation end products. Elevated glycosuria and increased electrolyte excretion were also detected. Relative renal gene expression in fatty acid oxidation and reabsorption pathways were impaired in SKO mice. Elevated glycosuria might be associated with reduced renal glucose transporter 2 levels. To improve renal function, AT transplantation or leptin administration alone was performed. Both treatments effectively ameliorated renal injury by improving all of the parameters that were measured in the kidney. The treatments also rescued insulin resistance and low plasma leptin levels in SKO mice. Our findings demonstrate for the first time that Seipin deficiency induces renal injury, which is closely related to glucolipotoxicity and impaired renal reabsorption in SKO mice, and is primarily caused by the loss of AT and especially the lack of leptin. AT transplantation and leptin administration are two effective treatments for renal injury in Seipin-deficient mice.-Liu, X.-J., Wu, X.-Y., Wang, H., Wang, S.-X., Kong, W., Zhang, L., Liu, G., Huang, W. Renal injury in Seipin-deficient lipodystrophic mice and its reversal by adipose tissue transplantation or leptin administration alone: adipose tissue-kidney crosstalk.

  3. Liver attenuation, pericardial adipose tissue, obesity, and insulin resistance: the Multi-Ethnic Study of Atherosclerosis (MESA).

    PubMed

    McAuley, Paul A; Hsu, Fang-Chi; Loman, Kurt K; Carr, J Jeffrey; Budoff, Matthew J; Szklo, Moyses; Sharrett, A Richey; Ding, Jingzhong

    2011-09-01

    Insulin resistance is linked to general and abdominal obesity, but its relation to hepatic lipid content and pericardial adipose tissue is less clear. The purpose of this study was to examine cross-sectional associations of liver attenuation, pericardial adipose tissue, BMI, and waist circumference with insulin resistance. We measured liver attenuation and pericardial adipose tissue using the existing cardiac computed tomography scans in 5,291 individuals free of clinical cardiovascular disease and diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA) during the study's baseline visit (2000-2002). Low liver attenuation was defined as the lowest quartile and high pericardial adipose tissue as the upper quartile of volume (cm(3)). We used standard clinical definitions for obesity and abdominal obesity. Insulin resistance was assessed by the homeostasis model assessment of insulin resistance (HOMA(IR)) index. In multivariate linear regression with all adiposity measures in the model simultaneously, all adiposity measures were significantly (P < 0.0001) associated with insulin resistance: regression coefficients (±s.e.) were 0.31 (±0.02) for low liver attenuation, 0.27 (±0.02) for high pericardial adipose tissue, 0.27 (±0.02) for obesity, and 0.32 (±0.02) for abdominal obesity. We found significant differences (P = 0.003) between standardized liver attenuation and insulin resistance by ethnicity: regression coefficients per 1 s.d. increment were 0.10 ± 0.01 for whites, 0.11 ± 0.02 for Chinese, 0.08 ± 0.2 for blacks, and 0.14 ± 0.01 for Hispanics. Liver attenuation and pericardial adipose tissue were associated with insulin resistance, independent of BMI and waist circumference.

  4. Betaine improved adipose tissue function in mice fed a high-fat diet: a mechanism for hepatoprotective effect of betaine in nonalcoholic fatty liver disease

    PubMed Central

    Wang, Zhigang; Yao, Tong; Pini, Maria; Zhou, Zhanxiang; Fantuzzi, Giamila

    2010-01-01

    Adipose tissue dysfunction, featured by insulin resistance and/or dysregulated adipokine production, plays a central role not only in disease initiation but also in the progression to nonalcoholic steatohepatitis and cirrhosis. Promising beneficial effects of betaine supplementation on nonalcoholic fatty liver disease (NAFLD) have been reported in both clinical investigations and experimental studies; however, data related to betaine therapy in NAFLD are still limited. In this study, we examined the effects of betaine supplementation on hepatic fat accumulation and injury in mice fed a high-fat diet and evaluated mechanisms underlying its hepatoprotective effects. Male C57BL/6 mice weighing 25 ± 0.5 (SE) g were divided into four groups (8 mice/group) and started on one of four treatments: control diet, control diet supplemented with betaine, high-fat diet, and high-fat diet supplemented with betaine. Betaine was supplemented in the drinking water at a concentration of 1% (wt/vol) (anhydrous). Our results showed that long-term high-fat feeding caused NAFLD in mice, which was manifested by excessive neutral fat accumulation in the liver and elevated plasma alanine aminotransferase levels. Betaine supplementation alleviated hepatic pathological changes, which were concomitant with attenuated insulin resistance as shown by improved homeostasis model assessment of basal insulin resistance values and glucose tolerance test, and corrected abnormal adipokine (adiponectin, resistin, and leptin) productions. Specifically, betaine supplementation enhanced insulin sensitivity in adipose tissue as shown by improved extracellular signal-regulated kinases 1/2 and protein kinase B activations. In adipocytes freshly isolated from mice fed a high-fat diet, pretreatment of betaine enhanced the insulin signaling pathway and improved adipokine productions. Further investigation using whole liver tissues revealed that betaine supplementation alleviated the high-fat diet

  5. Uncultivated stromal vascular fraction is equivalent to adipose-derived stem and stromal cells on porous polyurethrane scaffolds forming adipose tissue in vivo.

    PubMed

    Griessl, Michael; Buchberger, Anna-Maria; Regn, Sybille; Kreutzer, Kilian; Storck, Katharina

    2018-06-01

    To find an alternative approach to contemporary techniques in tissue augmentation and reconstruction, tissue engineering strategies aim to involve adipose-derived stem and stromal cells (ASCs) harboring a strong differentiation potential into various tissue types such as bone, cartilage, and fat. Animal research. The stromal vascular fraction (SVF) was used directly as a cell source to provide a potential alternative to contemporary ASC-based adipose tissue engineering. Seeded in TissuCol fibrin, we applied ASCs or SVF cells to porous, degradable polyurethane (PU) scaffolds. We successfully demonstrated the in vivo generation of volume-stable, well-vascularized PU-based constructs containing host-derived mature fat pads. Seeded human stem cells served as modulators of host-cell migration rather than differentiating themselves. We further demonstrated that preliminary culture of SVF cells was not necessary. Our results bring adipose tissue engineering, together with automated processing devices, closer to clinical applicability. The time-consuming and cost-intensive culture and induction of the ASCs is not necessary. NA. Laryngoscope, 128:E206-E213, 2018. © 2018 The American Laryngological, Rhinological and Otological Society, Inc.

  6. Flaxseed Oil Alleviates Chronic HFD-Induced Insulin Resistance through Remodeling Lipid Homeostasis in Obese Adipose Tissue.

    PubMed

    Yu, Xiao; Tang, Yuhan; Liu, Peiyi; Xiao, Lin; Liu, Liegang; Shen, Ruiling; Deng, Qianchun; Yao, Ping

    2017-11-08

    Emerging evidence suggests that higher circulating long-chain n-3 polyunsaturated fatty acids (n-3PUFA) levels were intimately associated with lower prevalence of obesity and insulin resistance. However, the understanding of bioactivity and potential mechanism of α-linolenic acid-rich flaxseed oil (ALA-FO) against insulin resistance was still limited. This study evaluated the effect of FO on high-fat diet (HFD)-induced insulin resistance in C57BL/6J mice focused on adipose tissue lipolysis. Mice after HFD feeding for 16 weeks (60% fat-derived calories) exhibited systemic insulin resistance, which was greatly attenuated by medium dose of FO (M-FO), paralleling with differential accumulation of ALA and its n-3 derivatives across serum lipid fractions. Moreover, M-FO was sufficient to effectively block the metabolic activation of adipose tissue macrophages (ATMs), thereby improving adipose tissue insulin signaling. Importantly, suppression of hypoxia-inducible factors HIF-1α and HIF-2α were involved in FO-mediated modulation of adipose tissue lipolysis, accompanied by specific reconstitution of n-3PUFA within adipose tissue lipid fractions.

  7. Epicardial adipose tissue thickness and NGAL levels in women with polycystic ovary syndrome.

    PubMed

    Sahin, Serap Baydur; Cure, Medine Cumhur; Ugurlu, Yavuz; Ergul, Elif; Gur, Emine Uslu; Alyildiz, Nese; Bostan, Mehmet

    2014-02-16

    Polycystic ovary syndrome (PCOS) is associated with an increased cardiovascular disease (CVD) risk and early atherosclerosis. Epicardial adipose tissue thickness (EATT) is clinically related to subclinical atherosclerosis. In the present study, considering the major role of neutrophil gelatinase-associated lipocalin (NGAL) which is an acute phase protein rapidly releasing upon inflammation and tissue injury, we aimed to evaluate NGAL levels and EATT in PCOS patients and assess their relationship with cardiometabolic factors. 64 patients with PCOS and 50 age- and body mass index-matched healthy controls were included in the study. We evaluated anthropometric, hormonal and metabolic parameters. EATT was measured by echocardiography above the free wall of the right ventricle. Serum NGAL and high-sensitive C- reactive protein (hsCRP) levels were measured by ELISA. Mean EATT was 0,38 +/-0,16 mm in the PCOS group and 0,34 +/-0,36 mm in the control group (p = 0,144). In the obese PCOS group (n = 44) EAT was thicker compared to the obese control group (n = 41) (p = 0.026). Mean NGAL levels of the patients with PCOS were 101,98 +/-21,53 pg/ml, while mean NGAL levels were 107,40 +/-26,44 pg/ml in the control group (p = 0,228). We found a significant positive correlation between EATT and age, BMI, waist circumference, fasting insulin, HOMA-IR, triglyceride and hsCRP levels in PCOS group. Thickness of the epicardial adipose tissue can be used to follow the risk of CVD development in obese PCOS cases. However serum NGAL levels do not differ in patients with PCOS and control group.

  8. Feeding feedlot steers fish oil alters the fatty acid composition of adipose and muscle tissue.

    PubMed

    Wistuba, T J; Kegley, E B; Apple, J K; Rule, D C

    2007-10-01

    Sixteen steers (441±31.7kg initial body weight) consumed two high concentrate diets with either 0 or 3% fish oil to determine the impact of fish oil, an omega-3 fatty acid source, on the fatty acid composition of beef carcasses. Collected tissue samples included the Longissimus thoracis from the 6th to 7th rib section, ground 10th to 12th rib, liver, subcutaneous adipose tissue adjacent to the 12th rib, intramuscular adipose tissue in the 6th to 7th rib sections, perirenal adipose tissue, and brisket adipose tissue. Including fish oil in the diet increased most of the saturated fatty acids (P<0.01) and proportions of polyunsaturated fatty acids (P<0.06), and decreased (P<0.01) proportions of monounsaturated fatty acids. Dietary fish oil increased (P<0.01) levels of omega-3 fatty acids in sampled tissues, resulting in lower (P<0.01) omega-6:omega-3 ratios. The weight percentages of C20:5 and C22:6 in tissue may provide the recommended daily allowance for humans. Fish oil may have a role in beef niche marketing if there are no deleterious effects on consumer satisfaction.

  9. Autologous Adipose-Derived Tissue Matrix Part I: Biologic Characteristics.

    PubMed

    Schendel, Stephen A

    2017-10-01

    Autologous collagen is an ideal soft tissue filler and may serve as a matrix for stem cell implantation and growth. Procurement of autologous collagen has been limited, though, secondary to a sufficient source. Liposuction is a widely performed and could be a source of autologous collagen. The amount of collagen and its composition in liposuctioned fat remains unknown. The purpose of this research was to characterize an adipose-derived tissue-based product created using ultrasonic cavitation and cryo-grinding. This study evaluated the cellular and protein composition of the final product. Fat was obtained from individuals undergoing routine liposuction and was processed by a 2 step process to obtain only the connective tissue. The tissue was then evaluated by scanning electronic microscope, Western blot analysis, and flow cytometry. Liposuctioned fat was obtained from 10 individuals with an average of 298 mL per subject. After processing an average of 1 mL of collagen matrix was obtained from each 100 mL of fat. Significant viable cell markers were present in descending order for adipocytes > CD90+ > CD105+ > CD45+ > CD19+ > CD144+ > CD34+. Western blot analysis showed collagen type II, III, IV, and other proteins. Scanning electronic microscope study showed a regular pattern of cross-linked, helical collagen. Additionally, vital staing demonstrated that the cells were still viable after processing. Collagen and cells can be easily obtained from liposuctioned fat by ultrasonic separation without alteration of the overall cellular composition of the tissue. Implantation results in new collagen and cellular growth. Collagen matrix with viable cells for autologous use can be obtained from liposuctioned fat and may provide long term results. 5. © 2017 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com

  10. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging.

    PubMed

    Ghosh, Amiya K; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-09-07

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation.

  11. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging

    PubMed Central

    Ghosh, Amiya K.; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-01-01

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation. PMID:28898202

  12. Molecular Interaction of Bone Marrow Adipose Tissue with Energy Metabolism.

    PubMed

    Suchacki, Karla J; Cawthorn, William P

    2018-01-01

    The last decade has seen a resurgence in the study of bone marrow adipose tissue (BMAT) across diverse fields such as metabolism, haematopoiesis, skeletal biology and cancer. Herein, we review the most recent developments of BMAT research in both humans and rodents, including the distinct nature of BMAT; the autocrine, paracrine and endocrine interactions between BMAT and various tissues, both in physiological and pathological scenarios; how these interactions might impact energy metabolism; and the most recent technological advances to quantify BMAT. Though still dwarfed by research into white and brown adipose tissues, BMAT is now recognised as endocrine organ and is attracting increasing attention from biomedical researchers around the globe. We are beginning to learn the importance of BMAT both within and beyond the bone, allowing us to better appreciate the role of BMAT in normal physiology and disease.

  13. Adipose Tissue and Adipokines: The Association with and Application of Adipokines in Obesity

    PubMed Central

    Khan, Muhammad; Joseph, Frank

    2014-01-01

    2014 marks the 20th anniversary of adipokines. Through the identification of leptin, our perceived understanding of adipose tissue was changed instantaneously. From a simple dormant site of energy storage, adipose tissue is now recognized as an integral hub of various hormones known as adipokines. Although great strides have been made in characterizing these hormones in health, research also shows they are significantly implicated in a series of pathologies. One such condition is obesity. Defined as an excess of adipose tissue, obesity remains one of the greatest healthcare epidemics of the 21st century. With no definitive treatment, attention has shifted to understanding the role of adipokines in obesity. This review provides an introduction to the salient obesity-related adipokines and their possible application as a treatment for obesity. PMID:25309775

  14. A worm of one's own: how helminths modulate host adipose tissue function and metabolism.

    PubMed

    Guigas, Bruno; Molofsky, Ari B

    2015-09-01

    Parasitic helminths have coexisted with human beings throughout time. Success in eradicating helminths has limited helminth-induced morbidity and mortality but is also correlated with increasing rates of 'western' diseases, including metabolic syndrome and type 2 diabetes. Recent studies in mice describe how type 2 immune cells, traditionally associated with helminth infection, maintain adipose tissue homeostasis and promote adipose tissue beiging, protecting against obesity and metabolic dysfunction. Here, we review these studies and discuss how helminths and helminth-derived molecules may modulate these physiologic pathways to improve metabolic functions in specific tissues, such as adipose and liver, as well as at the whole-organism level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Dietary olive oil induces cannabinoid CB2 receptor expression in adipose tissue of ApcMin/+ transgenic mice

    PubMed Central

    Notarnicola, Maria; Tutino, Valeria; Tafaro, Angela; Bianco, Giusy; Guglielmi, Emilia; Caruso, Maria Gabriella

    2016-01-01

    BACKGROUND: Cannabinoid- 2 (CB2) receptor is known for its anti-obesity effects silencing the activated immune cells that are key drivers of metabolic syndrome and inflammation. Nutritional interventions in experimental models of carcinogenesis have been demonstrated to modulate tissue inflammation state and proliferation. OBJECTIVE: Aim of this study was to test, in ApcMin/+ mice, whether a diet enriched with olive oil, omega- 3 and omega-6- PUFAs affects the adipose tissue inflammation status. METHODS: Four groups of animal were studied: ST group, receiving a standard diet; OO group, receiving the standard diet in which soybean oil (source of fats) was replaced with olive oil; OM-3 group, receiving the standard diet in which soybean oil was replaced with salmon oil; OM-6 group, receiving the standard diet in which soybean oil was replaced with oenothera oil. Gene and protein expression, in adipose tissue, were evaluated by RT-PCR and Western Blotting, respectively. Enzymatic activities were assayed by fluorescent and radiometric method, where appropriated. RESULTS: The diet enriched with olive oil significantly induced CB2 receptor expression and it was able to control inflammatory and proliferative activity of mice adipose tissue. CONCLUSIONS: The present findings open opportunities for developing novel nutritional strategies considering olive oil a key ingredient of a healthy dietary pattern. PMID:28035344

  16. Proteomic Profiles of Adipose and Liver Tissues from an Animal Model of Metabolic Syndrome Fed Purple Vegetables

    PubMed Central

    Ayoub, Hala M; McDonald, Mary Ruth; Sullivan, James Alan; Tsao, Rong; Meckling, Kelly A

    2018-01-01

    Metabolic Syndrome (MetS) is a complex disorder that predisposes an individual to Cardiovascular Diseases and type 2 Diabetes Mellitus. Proteomics and bioinformatics have proven to be an effective tool to study complex diseases and mechanisms of action of nutrients. We previously showed that substitution of the majority of carbohydrate in a high fat diet by purple potatoes (PP) or purple carrots (PC) improved insulin sensitivity and hypertension in an animal model of MetS (obese Zucker rats) compared to a control sucrose-rich diet. In the current study, we used TMT 10plex mass tag combined with LC-MS/MS technique to study proteomic modulation in the liver (n = 3 samples/diet) and adipose tissue (n = 3 samples/diet) of high fat diet-fed rats with or without substituting sucrose for purple vegetables, followed by functional enrichment analysis, in an attempt to elucidate potential molecular mechanisms responsible for the phenotypic changes seen with purple vegetable feeding. Protein folding, lipid metabolism and cholesterol efflux were identified as the main modulated biological themes in adipose tissue, whereas lipid metabolism, carbohydrate metabolism and oxidative stress were the main modulated themes in liver. We propose that enhanced protein folding, increased cholesterol efflux and higher free fatty acid (FFA) re-esterification are mechanisms by which PP and PC positively modulate MetS pathologies in adipose tissue, whereas, decreased de novo lipogenesis, oxidative stress and FFA uptake, are responsible for the beneficial effects in liver. In conclusion, we provide molecular evidence for the reported metabolic health benefits of purple carrots and potatoes and validate that these vegetables are good choices to replace other simple carbohydrate sources for better metabolic health. PMID:29642414

  17. Enhanced mitogenesis in stromal vascular cells derived from subcutaneous adipose tissue of Wagyu compared with those of Angus cattle.

    PubMed

    Wei, S; Fu, X; Liang, X; Zhu, M J; Jiang, Z; Parish, S M; Dodson, M V; Zan, L; Du, M

    2015-03-01

    Japanese Wagyu cattle are well known for their extremely high marbling and lower subcutaneous adipose tissue compared with Angus cattle. However, mechanisms for differences in adipose deposition are unknown. The objective of this paper was to evaluate breed differences in the structure of subcutaneous adipose tissue, adipogenesis, and mitogenesis of stromal vascular (SV) cells between Wagyu and Angus cattle. Subcutaneous biopsy samples were obtained from 5 Wagyu (BW = 302 ± 9 kg) and 5 Angus (BW = 398 ± 12 kg) heifers at 12 mo of age, and samples were divided into 3 pieces for histological examination, biochemical analysis, and harvest of SV cells. Adipogenesis of SV cells was assessed by the expression of adipogenic markers and Oil Red-O staining, while mitogenesis was evaluated by an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium dromide) test, phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB; AKT). Based on histological analysis, Wagyu had larger adipocytes compared with Angus. At the tissue level, protein expression of peroxisome proliferator-activated receptor γ (PPARG) in Wagyu was much lower compared with that of Angus. Similarly, a lower mRNA expression of PPARG was found in Wagyu SV cells. No significant difference was observed for the zinc finger protein 423 (ZNF423) expression between Wagyu and Angus. As assessed by Oil Red-O staining, Wagyu SV cells possessed a notable trend of lower adipogenic capability. Interestingly, higher mitogenic ability was discovered in Wagyu SV cells, which was associated with an elevated phosphorylation of ERK1/2. There was no difference in AKT phosphorylation of SV cells between Wagyu and Angus. Moreover, exogenous fibroblast growth factor 2 (FGF2) enhanced mitogenesis and ERK1/2 phosphorylation of SV cells to a greater degree in Angus compared with that in Wagyu. Expression of transforming growth factor β 3 (TGFB3) and bone morphogenetic protein 2 (BMP2) in Wagyu SV

  18. Development of a 3D bone marrow adipose tissue model.

    PubMed

    Fairfield, Heather; Falank, Carolyne; Farrell, Mariah; Vary, Calvin; Boucher, Joshua M; Driscoll, Heather; Liaw, Lucy; Rosen, Clifford J; Reagan, Michaela R

    2018-01-26

    Over the past twenty years, evidence has accumulated that biochemically and spatially defined networks of extracellular matrix, cellular components, and interactions dictate cellular differentiation, proliferation, and function in a variety of tissue and diseases. Modeling in vivo systems in vitro has been undeniably necessary, but when simplified 2D conditions rather than 3D in vitro models are used, the reliability and usefulness of the data derived from these models decreases. Thus, there is a pressing need to develop and validate reliable in vitro models to reproduce specific tissue-like structures and mimic functions and responses of cells in a more realistic manner for both drug screening/disease modeling and tissue regeneration applications. In adipose biology and cancer research, these models serve as physiologically relevant 3D platforms to bridge the divide between 2D cultures and in vivo models, bringing about more reliable and translationally useful data to accelerate benchtop to bedside research. Currently, no model has been developed for bone marrow adipose tissue (BMAT), a novel adipose depot that has previously been overlooked as "filler tissue" but has more recently been recognized as endocrine-signaling and systemically relevant. Herein we describe the development of the first 3D, BMAT model derived from either human or mouse bone marrow (BM) mesenchymal stromal cells (MSCs). We found that BMAT models can be stably cultured for at least 3 months in vitro, and that myeloma cells (5TGM1, OPM2 and MM1S cells) can be cultured on these for at least 2 weeks. Upon tumor cell co-culture, delipidation occurred in BMAT adipocytes, suggesting a bidirectional relationship between these two important cell types in the malignant BM niche. Overall, our studies suggest that 3D BMAT represents a "healthier," more realistic tissue model that may be useful for elucidating the effects of MAT on tumor cells, and tumor cells on MAT, to identify novel therapeutic

  19. Human adipose tissue-derived tenomodulin positive subpopulation of stem cells: A promising source of tendon progenitor cells.

    PubMed

    Gonçalves, A I; Gershovich, P M; Rodrigues, M T; Reis, R L; Gomes, M E

    2018-03-01

    Cell-based therapies are of particular interest for tendon and ligament regeneration given the low regenerative potential of these tissues. Adipose tissue is an abundant source of stem cells, which may be employed for the healing of tendon lesions. However, human adult multipotent adipose-derived stem cells (hASCs) isolated from the stromal vascular fraction of adipose tissue originate highly heterogeneous cell populations that hinder their use in specific tissue-oriented applications. In this study, distinct subpopulations of hASCs were immunomagnetic separated and their tenogenic differentiation capacity evaluated in the presence of several growth factors (GFs), namely endothelial GF, basic-fibroblast GF, transforming GF-β1 and platelet-derived GF-BB, which are well-known regulators of tendon development, growth and healing. Among the screened hASCs subpopulations, tenomodulin-positive cells were shown to be more promising for tenogenic applications and therefore this subpopulation was further studied, assessing tendon-related markers (scleraxis, tenomodulin, tenascin C and decorin) both at gene and protein level. Additionally, the ability for depositing collagen type I and III forming extracellular matrix structures were weekly assessed up to 28 days. The results obtained indicated that tenomodulin-positive cells exhibit phenotypical features of tendon progenitor cells and can be biochemically induced towards tenogenic lineage, demonstrating that this subset of hASCs can provide a reliable source of progenitor cells for therapies targeting tendon regeneration. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Dynamic changes in lipid droplet-associated proteins in the "browning" of white adipose tissues.

    PubMed

    Barneda, David; Frontini, Andrea; Cinti, Saverio; Christian, Mark

    2013-05-01

    The morphological and functional differences between lipid droplets (LDs) in brown (BAT) and white (WAT) adipose tissues will largely be determined by their associated proteins. Analysing mRNA expression in mice fat depots we have found that most LD protein genes are expressed at higher levels in BAT, with the greatest differences observed for Cidea and Plin5. Prolonged cold exposure, which induces the appearance of brown-like adipocytes in mice WAT depots, was accompanied with the potentiation of the lipolytic machinery, with changes in ATGL, CGI-58 and G0S2 gene expression. However the major change detected in WAT was the enhancement of Cidea mRNA. Together with the increase in Cidec, it indicates that LD enlargement through LD-LD transference of fat is an important process during WAT browning. To study the dynamics of this phenotypic change, we have applied 4D confocal microscopy in differentiated 3T3-L1 cells under sustained β-adrenergic stimulation. Under these conditions the cells experienced a LD remodelling cycle, with progressive reduction on the LD size by lipolysis, followed by the formation of new LDs, which were subjected to an enlargement process, likely to be CIDE-triggered, until the cell returned to the basal state. This transformation would be triggered by the activation of a thermogenic futile cycle of lipolysis/lipogenesis and could facilitate the molecular mechanism for the unilocular to multilocular transformation during WAT browning. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Decellularized adipose tissue microcarriers as a dynamic culture platform for human adipose-derived stem/stromal cell expansion.

    PubMed

    Yu, Claire; Kornmuller, Anna; Brown, Cody; Hoare, Todd; Flynn, Lauren E

    2017-03-01

    With the goal of designing a clinically-relevant expansion strategy for human adipose-derived stem/stromal cells (ASCs), methods were developed to synthesize porous microcarriers derived purely from human decellularized adipose tissue (DAT). An electrospraying approach was applied to generate spherical DAT microcarriers with an average diameter of 428 ± 41 μm, which were soft, compliant, and stable in long-term culture without chemical crosslinking. Human ASCs demonstrated enhanced proliferation on the DAT microcarriers relative to commercially-sourced Cultispher-S microcarriers within a spinner culture system over 1 month. ASC immunophenotype was maintained post expansion, with a trend for reduced expression of the cell adhesion receptors CD73, CD105, and CD29 under dynamic conditions. Upregulation of the early lineage-specific genes PPARγ, LPL, and COMP was observed in the ASCs expanded on the DAT microcarriers, but the cells retained their multilineage differentiation capacity. Comparison of adipogenic and osteogenic differentiation in 2-D cultures prepared with ASCs pre-expanded on the DAT microcarriers or Cultispher-S microcarriers revealed similar adipogenic and enhanced osteogenic marker expression in the DAT microcarrier group, which had undergone a higher population fold change. Further, histological staining results suggested a more homogeneous differentiation response in the ASCs expanded on the DAT microcarriers as compared to either Cultispher-S microcarriers or tissue culture polystyrene. A pilot chondrogenesis study revealed higher levels of chondrogenic gene and protein expression in the ASCs expanded on the DAT microcarriers relative to all other groups, including the baseline controls. Overall, this study demonstrates the promise of applying dynamic culture with tissue-specific DAT microcarriers as a means of deriving regenerative cell populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Rectification of impaired adipose tissue methylation status and lipolytic response contributes to hepatoprotective effect of betaine in a mouse model of alcoholic liver disease

    PubMed Central

    Dou, Xiaobing; Xia, Yongliang; Chen, Jing; Qian, Ying; Li, Songtao; Zhang, Ximei; Song, Zhenyuan

    2014-01-01

    Background and Purpose Overactive lipolysis in adipose tissue contributes to the pathogenesis of alcoholic liver disease (ALD); however, the mechanisms involved have not been elucidated. We previously reported that chronic alcohol consumption produces a hypomethylation state in adipose tissue. In this study we investigated the role of hypomethylation in adipose tissue in alcohol-induced lipolysis and whether its correction contributes to the well-established hepatoprotective effect of betaine in ALD. Experimental Approach Male C57BL/6 mice were divided into four groups and started on one of four treatments for 5 weeks: isocaloric pair-fed (PF), alcohol-fed (AF), PF supplemented with betaine (BT/AF) and AF supplemented with betaine (BT/AF). Betaine, 0.5% (w v−1), was added to the liquid diet. Both primary adipocytes and mature 3T3-L1 adipocytes were exposed to demethylation reagents and their lipolytic responses determined. Key Results Betaine alleviated alcohol-induced pathological changes in the liver and rectified the impaired methylation status in adipose tissue, concomitant with attenuating lipolysis. In adipocytes, inducing hypomethylation activated lipolysis through a mechanism involving suppression of protein phosphatase 2A (PP2A), due to hypomethylation of its catalytic subunit, leading to increased activation of hormone-sensitive lipase (HSL). In line with in vitro observations, reduced PP2A catalytic subunit methylation and activity, and enhanced HSL activation, were observed in adipose tissue of alcohol-fed mice. Betaine attenuated this alcohol-induced PP2A suppression and HSL activation. Conclusions and Implications In adipose tissue, a hypomethylation state contributes to its alcohol-induced dysfunction and an improvement in its function may contribute to the hepatoprotective effects of betaine in ALD. PMID:24819676

  3. Characterisation of 11β-hydroxysteroid dehydrogenase 1 in human orbital adipose tissue: a comparison with subcutaneous and omental fat

    PubMed Central

    Bujalska, Iwona J; Durrani, Omar M; Abbott, Joseph; Onyimba, Claire U; Khosla, Pamela; Moosavi, Areeb H; Reuser, Tristan T Q; Stewart, Paul M; Tomlinson, Jeremy W; Walker, Elizabeth A; Rauz, Saaeha

    2007-01-01

    Glucocorticoids (GCs) have a profound effect on adipose biology increasing tissue mass causing central obesity. The pre-receptor regulation of GCs by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) that activates cortisol from cortisone has been postulated as a fundamental mechanism underlying the metabolic syndrome mediating adipocyte hyperplasia and hypertrophy in the omental (OM) depot. Orbital adipose tissue (OF) is the site of intense inflammation and tissue remodelling in several orbital inflammatory disease states. In this study, we describe features of the GC metabolic pathways in normal human OF depot and compare it with subcutaneous (SC) and OM depots. Using an automated histological characterisation technique, OF adipocytes were found to be significantly smaller (parameters: area, maximum diameter and perimeter) than OM and SC adipocytes (P<0·001). Although immunohistochemical analyses demonstrated resident CD68+ cells in all three whole tissue adipose depots, OF CD68 mRNA and protein expression exceeded that of OM and SC (mRNA, P<0·05; protein, P<0·001). In addition, there was higher expression of glucocorticoid receptor (GR)α mRNA in the OF whole tissue depot (P<0·05). Conversely, 11β-HSD1 mRNA together with the markers of late adipocyte differentiation (FABP4 and G3PDH) were significantly lower in OF. Primary cultures of OF preadipocytes demonstrated predominant 11β-HSD1 oxo-reductase activity with minimal dehydrogenase activity. Orbital adipocytes are smaller, less differentiated, and express low levels of 11β-HSD1 but abundant GRα compared with SC and OM. OF harbours a large CD68+ population. These characteristics define an orbital microenvironment that has the potential to respond to sight-threatening orbital inflammatory disease. PMID:17283228

  4. Adipose tissue NAD+-homeostasis, sirtuins and poly(ADP-ribose) polymerases -important players in mitochondrial metabolism and metabolic health.

    PubMed

    Jokinen, Riikka; Pirnes-Karhu, Sini; Pietiläinen, Kirsi H; Pirinen, Eija

    2017-08-01

    Obesity, a chronic state of energy overload, is characterized by adipose tissue dysfunction that is considered to be the major driver for obesity associated metabolic complications. The reasons for adipose tissue dysfunction are incompletely understood, but one potential contributing factor is adipose tissue mitochondrial dysfunction. Derangements of adipose tissue mitochondrial biogenesis and pathways associate with obesity and metabolic diseases. Mitochondria are central organelles in energy metabolism through their role in energy derivation through catabolic oxidative reactions. The mitochondrial processes are dependent on the proper NAD + /NADH redox balance and NAD + is essential for reactions catalyzed by the key regulators of mitochondrial metabolism, sirtuins (SIRTs) and poly(ADP-ribose) polymerases (PARPs). Notably, obesity is associated with disturbed adipose tissue NAD + homeostasis and the balance of SIRT and PARP activities. In this review we aim to summarize existing literature on the maintenance of intracellular NAD + pools and the function of SIRTs and PARPs in adipose tissue during normal and obese conditions, with the purpose of comprehending their potential role in mitochondrial derangements and obesity associated metabolic complications. Understanding the molecular mechanisms that are the root cause of the adipose tissue mitochondrial derangements is crucial for developing new effective strategies to reverse obesity associated metabolic complications. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Canine adiponectin: cDNA structure, mRNA expression in adipose tissues and reduced plasma levels in obesity.

    PubMed

    Ishioka, K; Omachi, A; Sagawa, M; Shibata, H; Honjoh, T; Kimura, K; Saito, M

    2006-04-01

    Adiponectin is a protein synthesized and secreted by adipocytes. Decreased adiponectin is responsible for insulin resistance and atherosclerosis associated with human obesity. We obtained a cDNA clone corresponding to canine adiponectin, whose nucleotide and deduced amino acid sequences were highly identical to those of other species. Adiponectin mRNA was detected in adipose tissues, but not in other tissues, of dogs. When 22 adult beagles were given a high-energy diet for 14 weeks, they became obese, showing heavier body weights, higher plasma leptin concentrations, but lower plasma adiponectin concentrations. The adiponectin concentrations of plasma samples collected from 71 dogs visiting veterinary practices were negatively correlated to plasma leptin concentrations, being lower in obese than non-obese dogs. These results are compatible with those reported in other species, and suggest that adiponectin is an index of adiposity and a target molecule for studies on diseases associated with obesity in dogs.

  6. Current Therapeutic Strategies for Adipose Tissue Defects/Repair Using Engineered Biomaterials and Biomolecule Formulations.

    PubMed

    Mahoney, Christopher M; Imbarlina, Cayla; Yates, Cecelia C; Marra, Kacey G

    2018-01-01

    Tissue engineered scaffolds for adipose restoration/repair has significantly evolved in recent years. Patients requiring soft tissue reconstruction, caused by defects or pathology, require biomaterials that will restore void volume with new functional tissue. The gold standard of autologous fat grafting (AFG) is not a reliable option. This review focuses on the latest therapeutic strategies for the treatment of adipose tissue defects using biomolecule formulations and delivery, and specifically engineered biomaterials. Additionally, the clinical need for reliable off-the-shelf therapies, animal models, and challenges facing current technologies are discussed.

  7. Fructose, Glucocorticoids and Adipose Tissue: Implications for the Metabolic Syndrome.

    PubMed

    Legeza, Balázs; Marcolongo, Paola; Gamberucci, Alessandra; Varga, Viola; Bánhegyi, Gábor; Benedetti, Angiolo; Odermatt, Alex

    2017-04-26

    The modern Western society lifestyle is characterized by a hyperenergetic, high sugar containing food intake. Sugar intake increased dramatically during the last few decades, due to the excessive consumption of high-sugar drinks and high-fructose corn syrup. Current evidence suggests that high fructose intake when combined with overeating and adiposity promotes adverse metabolic health effects including dyslipidemia, insulin resistance, type II diabetes, and inflammation. Similarly, elevated glucocorticoid levels, especially the enhanced generation of active glucocorticoids in the adipose tissue due to increased 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity, have been associated with metabolic diseases. Moreover, recent evidence suggests that fructose stimulates the 11β-HSD1-mediated glucocorticoid activation by enhancing the availability of its cofactor NADPH. In adipocytes, fructose was found to stimulate 11β-HSD1 expression and activity, thereby promoting the adipogenic effects of glucocorticoids. This article aims to highlight the interconnections between overwhelmed fructose metabolism, intracellular glucocorticoid activation in adipose tissue, and their metabolic effects on the progression of the metabolic syndrome.

  8. Fructose, Glucocorticoids and Adipose Tissue: Implications for the Metabolic Syndrome

    PubMed Central

    Legeza, Balázs; Marcolongo, Paola; Gamberucci, Alessandra; Varga, Viola; Bánhegyi, Gábor; Benedetti, Angiolo; Odermatt, Alex

    2017-01-01

    The modern Western society lifestyle is characterized by a hyperenergetic, high sugar containing food intake. Sugar intake increased dramatically during the last few decades, due to the excessive consumption of high-sugar drinks and high-fructose corn syrup. Current evidence suggests that high fructose intake when combined with overeating and adiposity promotes adverse metabolic health effects including dyslipidemia, insulin resistance, type II diabetes, and inflammation. Similarly, elevated glucocorticoid levels, especially the enhanced generation of active glucocorticoids in the adipose tissue due to increased 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity, have been associated with metabolic diseases. Moreover, recent evidence suggests that fructose stimulates the 11β-HSD1-mediated glucocorticoid activation by enhancing the availability of its cofactor NADPH. In adipocytes, fructose was found to stimulate 11β-HSD1 expression and activity, thereby promoting the adipogenic effects of glucocorticoids. This article aims to highlight the interconnections between overwhelmed fructose metabolism, intracellular glucocorticoid activation in adipose tissue, and their metabolic effects on the progression of the metabolic syndrome. PMID:28445389

  9. Laser light propagation in adipose tissue and laser effects on adipose cell membranes

    NASA Astrophysics Data System (ADS)

    Solarte, Efraín; Rebolledo, Aldo; Gutierrez, Oscar; Criollo, William; Neira, Rodrigo; Arroyave, José; Ramírez, Hugo

    2006-01-01

    Recently Neira et al. have presented a new liposuction technique that demonstrated the movement of fat from inside to outside of the cell, using a low-level laser device during a liposuction procedure with Ultrawet solution. The clinical observations, allowed this new surgical development, started a set of physical, histological and pharmacological studies aimed to determine the mechanisms involved in the observed fat mobilization concomitant to external laser application in liposuction procedures. Scanning and Transmission Electron Microscopy, studies show that the cellular arrangement of normal adipose tissue changes when laser light from a diode laser: 10 mW, 635 nm is applied. Laser exposures longer than 6 minutes cause the total destruction of the adipocyte panicles. Detailed observation of the adipose cells show that by short irradiation times (less than four minutes) the cell membrane exhibits dark zones, that collapse by longer laser exposures. Optical measurements show that effective penetration length depends on the laser intensity. Moreover, the light scattering is enhanced by diffraction and subsequent interference effects, and the tumescent solution produces a clearing of the tissue optical medium. Finally, isolate adipose cell observation show that fat release from adipocytes is a concomitant effect between the tumescent solution (adrenaline) and laser light, revealing a synergism which conduces to the aperture, and maybe the disruption, of the cell membrane. All these studies were consistent with a laser induced cellular process, which causes fat release from inside the adipocytes into the intercellular space, besides a strong modification of the cellular membranes.

  10. Characteristics of adipose tissue macrophages and macrophage-derived insulin-like growth factor-1 in virus-induced obesity.

    PubMed

    Park, S; Park, H-L; Lee, S-Y; Nam, J-H

    2016-03-01

    Various pathogens are implicated in the induction of obesity. Previous studies have confirmed that human adenovirus 36 (Ad36) is associated with increased adiposity, improved glycemic control and induction of inflammation. The Ad36-induced inflammation is reflected in the infiltration of macrophages into adipose tissue. However, the characteristics and role of adipose tissue macrophages (ATMs) and macrophage-secreted factors in virus-induced obesity (VIO) are unclear. Although insulin-like growth factor-1 (IGF-1) is involved in obesity metabolism, the contribution of IGF secreted by macrophages in VIO has not been studied. Four-week-old male mice were studied 1 week and 12 weeks after Ad36 infection for determining the characteristics of ATMs in VIO and diet-induced obesity (DIO). In addition, macrophage-specific IGF-1-deficient (MIKO) mice were used to study the involvement of IGF-1 in VIO. In the early stage of VIO (1 week after Ad36 infection), the M1 ATM sub-population increased, which increased the M1/M2 ratio, whereas DIO did not cause this change. In the late stage of VIO (12 weeks after Ad36 infection), the M1/M2 ratio did not change because the M1 and M2 ATM sub-populations increased to a similar extent, despite an increase in adiposity. By contrast, DIO increased the M1/M2 ratio. In addition, VIO in wild-type mice upregulated angiogenesis in adipose tissue and improved glycemic control. However, MIKO mice showed no increase in adiposity, angiogenesis, infiltration of macrophages into adipose tissue, or improvement in glycemic control after Ad36 infection. These data suggest that IGF-1 secreted by macrophages may contribute to hyperplasia and hypertrophy in adipose tissue by increasing angiogenesis, which helps to maintain the 'adipose tissue robustness'.

  11. Depot-specific Regulation of the Conversion of Cortisone to Cortisol in Human Adipose Tissue

    PubMed Central

    Lee, Mi-Jeong; Fried, Susan K.; Mundt, Steven S.; Wang, Yanxin; Sullivan, Sean; Stefanni, Alice; Daugherty, Bruce L.; Hermanowski-Vosatka, Anne

    2015-01-01

    Objective Our main objective was to compare the regulation of cortisol production within omental (Om) and abdominal subcutaneous (Abd sc) human adipose tissue. Methods and Procedures Om and Abd sc adipose tissue were obtained at surgery from subjects with a wide range of BMI. Hydroxysteroid dehydrogenase (HSD) activity (3H-cortisone and 3H-cortisol interconversion) and expression were measured before and after organ culture with insulin and/or dexamethasone. Results Type 1 HSD (HSD1) mRNA and reductase activity were mainly expressed within adipocytes and tightly correlated with adipocyte size within both depots. There was no depot difference in HSD1 expression or reductase activity, while cortisol inactivation and HSD2 mRNA expression (expressed in stromal cells) were higher in Om suggesting higher cortisol turnover in this depot. Culture with insulin decreased HSD reductase activity in both depots. Culture with dexamethasone plus insulin compared to insulin alone increased HSD reductase activity only in the Om depot. This depot-specific increase in reductase activity could not be explained by an alteration in HSD1 mRNA or protein, which was paradoxically decreased. However, in Om only, hexose-6-phosphate dehydrogenase (H6PDH) mRNA levels were increased by culture with dexamethasone plus insulin compared to insulin alone, suggesting that higher nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) production within the endoplasmic reticulum (ER) contributed to the higher HSD reductase activity. Discussion We conclude that in the presence of insulin, glucocorticoids cause a depot-specific increase in the activation of cortisone within Om adipose tissue, and that this mechanism may contribute to adipocyte hypertrophy and visceral obesity. PMID:18388900

  12. Quantitative CT imaging for adipose tissue analysis in mouse model of obesity

    NASA Astrophysics Data System (ADS)

    Marchadier, A.; Vidal, C.; Tafani, J.-P.; Ordureau, S.; Lédée, R.; Léger, C.

    2011-03-01

    In obese humans CT imaging is a validated method for follow up studies of adipose tissue distribution and quantification of visceral and subcutaneous fat. Equivalent methods in murine models of obesity are still lacking. Current small animal micro-CT involves long-term X-ray exposure precluding longitudinal studies. We have overcome this limitation by using a human medical CT which allows very fast 3D imaging (2 sec) and minimal radiation exposure. This work presents novel methods fitted to in vivo investigations of mice model of obesity, allowing (i) automated detection of adipose tissue in abdominal regions of interest, (ii) quantification of visceral and subcutaneous fat. For each mouse, 1000 slices (100μm thickness, 160 μm resolution) were acquired in 2 sec using a Toshiba medical CT (135 kV, 400mAs). A Gaussian mixture model of the Hounsfield curve of 2D slices was computed with the Expectation Maximization algorithm. Identification of each Gaussian part allowed the automatic classification of adipose tissue voxels. The abdominal region of interest (umbilical) was automatically detected as the slice showing the highest ratio of the Gaussian proportion between adipose and lean tissues. Segmentation of visceral and subcutaneous fat compartments was achieved with 2D 1/2 level set methods. Our results show that the application of human clinical CT to mice is a promising approach for the study of obesity, allowing valuable comparison between species using the same imaging materials and software analysis.

  13. Reversal of Type 1 Diabetes in Mice by Brown Adipose Tissue Transplant

    PubMed Central

    Gunawardana, Subhadra C.; Piston, David W.

    2012-01-01

    Current therapies for type 1 diabetes (T1D) involve insulin replacement or transplantation of insulin-secreting tissue, both of which suffer from numerous limitations and complications. Here, we show that subcutaneous transplants of embryonic brown adipose tissue (BAT) can correct T1D in streptozotocin-treated mice (both immune competent and immune deficient) with severely impaired glucose tolerance and significant loss of adipose tissue. BAT transplants result in euglycemia, normalized glucose tolerance, reduced tissue inflammation, and reversal of clinical diabetes markers such as polyuria, polydipsia, and polyphagia. These effects are independent of insulin but correlate with recovery of the animals’ white adipose tissue. BAT transplants lead to significant increases in adiponectin and leptin, but with levels that are static and not responsive to glucose. Pharmacological blockade of the insulin receptor in BAT transplant mice leads to impaired glucose tolerance, similar to what is seen in nondiabetic animals, indicating that insulin receptor activity plays a role in the reversal of diabetes. One possible candidate for activating the insulin receptor is IGF-1, whose levels are also significantly elevated in BAT transplant mice. Thus, we propose that the combined action of multiple adipokines establishes a new equilibrium in the animal that allows for chronic glycemic control without insulin. PMID:22315305

  14. Dioxins and dibenzofurans in adipose tissue of US Vietnam veterans and controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, H.K.; Watanabe, K.K.; Breen, J.

    1991-03-01

    The primary reason for concern about the adverse effects of exposure to Agent Orange is attributable to its toxic contaminant, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or dioxin. We studied adipose tissues from 36 Vietnam veterans, a similar group of 79 non-Vietnam veterans, and 80 civilians; the tissue specimens were selected from the 8,000 archived tissues collected from the non-institutionalized general population by the US Environmental Protection Agency. The geometric mean (+/- standard deviation) dioxin levels in adipose tissue for Vietnam veterans, non-Vietnam veterans, and civilian controls were 11.7 (+/- 1.7), 10.9 (+/- 1.7), and 12.4 (+/- 1.9) parts per trillion on a lipidmore » weight basis, respectively. The mean levels for these groups were not significantly different from each other with or without adjustment for age of individuals, body mass index, and specimen collection year. In addition, none of the surrogate measures of Agent Orange exposure such as military branch, service within specific geographic region, military occupation, and troop location in relation to recorded Agent Orange spray was associated with the dioxin levels in adipose tissue of Vietnam veterans. Our results suggest that heavy exposure to Agent Orange or dioxin for most US troops was unlikely.« less

  15. A worm of one’s own: how helminths modulate host adipose tissue function and metabolism

    PubMed Central

    Guigas, Bruno; Molofsky, Ari B.

    2015-01-01

    Parasitic helminths have co-existed with human beings throughout time. Success in eradicating helminths has limited helminth-induced morbidity and mortality but is also correlated with increasing rates of ‘Western’ diseases, including metabolic syndrome and type 2 diabetes. Recent studies in mice describe how type 2 immune cells, traditionally associated with helminth infection, maintain adipose tissue homeostasis and promote adipose tissue beiging, protecting against obesity and metabolic dysfunction. Here we review these studies and discuss how helminths and helminth-derived molecules may modulate these physiologic pathways to improve metabolic functions in specific tissues, such as adipose and liver, as well as at the whole-organism level. PMID:25991556

  16. Inhibition of adipose tissue PPARγ prevents increased adipocyte expansion after lipectomy and exacerbates a glucose-intolerant phenotype.

    PubMed

    Booth, A D; Magnuson, A M; Cox-York, K A; Wei, Y; Wang, D; Pagliassotti, M J; Foster, M T

    2017-04-01

    Adipose tissue plays a fundamental role in glucose homeostasis. For example, fat removal (lipectomy, LipX) in lean mice, resulting in a compensatory 50% increase in total fat mass, is associated with significant improvement in glucose tolerance. This study was designed to further examine the link between fat removal, adipose tissue compensation and glucose homeostasis using a peroxisome proliferator-activated receptor γ (PPAR γ; activator of adipogenesis) knockout mouse. The study involved PPARγ knockout (FKOγ) or control mice (CON), subdivided into groups that received LipX or Sham surgery. We reasoned that as the ability of adipose tissue to expand in response to LipX would be compromised in FKOγ mice, so would improvements in glucose homeostasis. In CON mice, LipX increased total adipose depot mass (~60%), adipocyte number (~45%) and changed adipocyte distribution to smaller cells. Glucose tolerance was improved (~30%) in LipX CON mice compared to Shams. In FKOγ mice, LipX did not result in any significant changes in adipose depot mass, adipocyte number or distribution. LipX FKOγ mice were also characterized by reduction of glucose tolerance (~30%) compared to shams. Inhibition of adipose tissue PPARγ prevented LipX-induced increases in adipocyte expansion and produced a glucose-intolerant phenotype. These data support the notion that adipose tissue expansion is critical to maintain and/or improvement in glucose homeostasis. © 2016 John Wiley & Sons Ltd.

  17. Genomic and epigenomic regulation of adipose tissue inflammation in obesity.

    PubMed

    Toubal, Amine; Treuter, Eckardt; Clément, Karine; Venteclef, Nicolas

    2013-12-01

    Chronic inflammation of adipose tissue is viewed as a hallmark of obesity and contributes to the development of type 2 diabetes and cardiovascular disease. According to current models, nutrient excess causes metabolic and structural changes in adipocytes, which initiate transcriptional programs leading to the expression of inflammatory molecules and the subsequent recruitment of immune cells. Recent advances in deciphering the underlying mechanisms revealed that key regulatory events occur at the genomic and epigenomic levels. Here we review these advances because they offer a better understanding of the mechanisms behind the complex obesogenic program in adipose tissue, and because they may help in defining new therapeutic strategies that prevent, restrict, and resolve inflammation in the context of obesity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effects of endurance exercise training, metformin, and their combination on adipose tissue leptin and IL-10 secretion in OLETF rats

    PubMed Central

    Padilla, Jaume; Arce-Esquivel, Arturo A.; Bayless, David S.; Martin, Jeffrey S.; Leidy, Heather J.; Booth, Frank W.; Rector, R. Scott; Laughlin, M. Harold

    2012-01-01

    Adipose tissue inflammation plays a role in cardiovascular (CV) and metabolic diseases associated with obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). The interactive effects of exercise training and metformin, two first-line T2DM treatments, on adipose tissue inflammation are not known. Using the hyperphagic, obese, insulin-resistant Otsuka Long-Evans Tokushima Fatty (OLETF) rat model, we tested the hypothesis that treadmill training, metformin, or a combination of these reduces the secretion of proinflammatory cytokines from adipose tissue. Compared with Long-Evans Tokushima Otsuka (LETO) control rats (L-Sed), sedentary OLETF (O-Sed) animals secreted significantly greater amounts of leptin from retroperitoneal adipose tissue. Conversely, secretion of interleukin (IL)-10 by O-Sed adipose tissue was lower than that in L-Sed animals. Examination of leptin and IL-10 secretion from adipose tissue in OLETF groups treated with endurance exercise training (O-EndEx), metformin treatment (O-Met), and a combination of these (O-E+M) from 20 to 32 wk of age indicated that 1) leptin secretion from adipose tissue was reduced in O-Met and O-E+M, but not O-EndEx animals; 2) adipose tissue IL-10 secretion was increased in O-EndEx and O-E+M but not in O-Met animals; and 3) only the combined treatment (O-E+M) displayed both a reduction in leptin secretion and an increase in IL-10 secretion. Leptin and IL-10 concentrations in adipose tissue–conditioned buffers were correlated with their plasma concentrations, adipocyte diameters, and total adiposity. Overall, this study indicates that exercise training and metformin have additive influences on adipose tissue secretion and plasma concentrations of leptin and IL-10. PMID:23019312

  19. Microbiota depletion promotes browning of white adipose tissue and reduces obesity

    PubMed Central

    Chevalier, Claire; Stojanović, Ozren; Colin, Didier J.; Stevanović, Ana; Veyrat-Durebex, Christelle; Tarallo, Valentina; Rigo, Dorothée; Germain, Stéphane; Ilievska, Miroslava; Montet, Xavier; Seimbille, Yann; Hapfelmeier, Siegfried; Trajkovski, Mirko

    2015-01-01

    Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity1. In response to cold or exercise brown fat cells also emerge in the white adipose tissue (named beige cells), a process known as browning2,3,4. Here, we show that the development of functional beige fat is promoted by microbiota depletion either by antibiotic treatment or in germ-free mice within the inguinal subcutaneous and perigonadal visceral adipose tissues (ingSAT and pgVAT, respectively). This leads to improved glucose tolerance, insulin sensitivity and decreased white fat and adipocyte size in lean mice and obese leptin-deficient (ob/ob) and high fat diet (HFD)-fed mice. These metabolic improvements are mediated by eosinophil infiltration and enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by suppression of the type 2 signaling and are reversed by recolonization of the antibiotic-treated, or the germ-free mice with microbes. These results provide insight into microbiota-fat signaling axis and beige fat development in health and metabolic disease. PMID:26569380

  20. Adipose tissue derived mesenchymal stem cells for musculoskeletal repair in veterinary medicine

    PubMed Central

    Arnhold, Stefan; Wenisch, Sabine

    2015-01-01

    Adipose tissue derived stem cells (ASCs) are mesenchymal stem cells which can be obtained from different adipose tissue sources within the body. It is an abundant cell pool, which is easy accessible and the cells can be obtained in large numbers, cultivated and expanded in vitro and prepared for tissue engineering approaches, especially for skeletal tissue repair. In the recent years this cell population has attracted a great amount of attention among researchers in human as well as in veterinary medicine. In the meantime ASCs have been well characterized and their use in regenerative medicine is very well established. This review focuses on the characterization of ASCs for their use for tissue engineering approaches especially in veterinary medicine and also highlights a selection of clinical trials on the basis of ASCs as the relevant cell source. PMID:25973326

  1. Adipose tissue derived mesenchymal stem cells for musculoskeletal repair in veterinary medicine.

    PubMed

    Arnhold, Stefan; Wenisch, Sabine

    2015-01-01

    Adipose tissue derived stem cells (ASCs) are mesenchymal stem cells which can be obtained from different adipose tissue sources within the body. It is an abundant cell pool, which is easy accessible and the cells can be obtained in large numbers, cultivated and expanded in vitro and prepared for tissue engineering approaches, especially for skeletal tissue repair. In the recent years this cell population has attracted a great amount of attention among researchers in human as well as in veterinary medicine. In the meantime ASCs have been well characterized and their use in regenerative medicine is very well established. This review focuses on the characterization of ASCs for their use for tissue engineering approaches especially in veterinary medicine and also highlights a selection of clinical trials on the basis of ASCs as the relevant cell source.

  2. Fibroblast Growth Factor 23 is Associated With Adiposity in Patients Receiving Hemodialysis: Possible Cross Talk Between Bone and Adipose Tissue.

    PubMed

    Chiang, Janet M; Kaysen, George A; Schafer, Anne L; Delgado, Cynthia; Johansen, Kirsten L

    2018-03-29

    Fibroblast growth factor 23 (FGF-23) may be involved in signaling between bone and adipose tissue in dialysis patients, but its role is uncertain. We sought to examine the association between FGF-23 and adiposity and whether this association is mediated in part by leptin. We performed univariate and multivariate linear regression analyses using data from 611 participants in a cohort of prevalent hemodialysis patients recruited from dialysis centers in Atlanta, GA and San Francisco, CA from 2009 to 2011. We also investigated the role of leptin in these relationships. Participants were aged ≥18 years, English or Spanish speaking, and receiving hemodialysis for at least 3 months. Outcome measures of adiposity included body mass index, waist circumference, and body fat measured by bioelectrical impedance spectroscopy. Mean age was 56 ± 14 years, 39.8% were female, and median serum FGF-23 was 807 pg/mL. In fully adjusted models, FGF-23 was inversely associated with body mass index (-0.24 kg/m 2 per 50% higher FGF-23, 95% confidence interval [CI]: -0.38 to -0.10), waist circumference (-0.44 cm per 50% higher FGF-23, 95% CI: -0.79 to -0.08), and percent body fat (-0.58% per 50% higher FGF-23, 95% CI: -0.79 to -0.37). Leptin was inversely associated with FGF-23. Addition of leptin to body composition models attenuated the associations between FGF-23 and measures of adiposity, but FGF-23 remained significantly associated with percent body fat (-0.17% per 50% higher FGF-23, 95% CI: -0.32 to -0.02). We found a negative association between FGF-23 and adiposity that appears to be mediated in part by leptin. As adipose tissue provides a "protective energy depot" for patients with chronic illness, a decrease in adipose tissue may be one mechanism in which higher FGF-23 levels may contribute to increased mortality in dialysis patients. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  3. Proteomic Profiling of Tissue-Engineered Blood Vessel Walls Constructed by Adipose-Derived Stem Cells

    PubMed Central

    Wang, Chen; Guo, Fangfang; Zhou, Heng; Zhang, Yun; Xiao, Zhigang

    2013-01-01

    Adipose-derived stem cells (ASCs) can differentiate into smooth muscle cells and have been engineered into elastic small diameter blood vessel walls in vitro. However, the mechanisms involved in the development of three-dimensional (3D) vascular tissue remain poorly understood. The present study analyzed protein expression profiles of engineered blood vessel walls constructed by human ASCs using methods of two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). These results were compared to normal arterial walls. A total of 1701±15 and 1265±26 protein spots from normal and engineered blood vessel wall extractions were detected by 2DE, respectively. A total of 20 spots with at least 2.0-fold changes in expression were identified, and 38 differently expressed proteins were identified by 2D electrophoresis and ion trap MS. These proteins were classified into seven functional categories: cellular organization, energy, signaling pathway, enzyme, anchored protein, cell apoptosis/defense, and others. These results demonstrated that 2DE, followed by ion trap MS, could be successfully utilized to characterize the proteome of vascular tissue, including tissue-engineered vessels. The method could also be employed to achieve a better understanding of differentiated smooth muscle protein expression in vitro. These results provide a basis for comparative studies of protein expression in vascular smooth muscles of different origin and could provide a better understanding of the mechanisms of action needed for constructing blood vessels that exhibit properties consistent with normal blood vessels. PMID:22963350

  4. Proteomic profiling of tissue-engineered blood vessel walls constructed by adipose-derived stem cells.

    PubMed

    Wang, Chen; Guo, Fangfang; Zhou, Heng; Zhang, Yun; Xiao, Zhigang; Cui, Lei

    2013-02-01

    Adipose-derived stem cells (ASCs) can differentiate into smooth muscle cells and have been engineered into elastic small diameter blood vessel walls in vitro. However, the mechanisms involved in the development of three-dimensional (3D) vascular tissue remain poorly understood. The present study analyzed protein expression profiles of engineered blood vessel walls constructed by human ASCs using methods of two-dimensional gel electrophoresis (2DE) and mass spectrometry (MS). These results were compared to normal arterial walls. A total of 1701±15 and 1265±26 protein spots from normal and engineered blood vessel wall extractions were detected by 2DE, respectively. A total of 20 spots with at least 2.0-fold changes in expression were identified, and 38 differently expressed proteins were identified by 2D electrophoresis and ion trap MS. These proteins were classified into seven functional categories: cellular organization, energy, signaling pathway, enzyme, anchored protein, cell apoptosis/defense, and others. These results demonstrated that 2DE, followed by ion trap MS, could be successfully utilized to characterize the proteome of vascular tissue, including tissue-engineered vessels. The method could also be employed to achieve a better understanding of differentiated smooth muscle protein expression in vitro. These results provide a basis for comparative studies of protein expression in vascular smooth muscles of different origin and could provide a better understanding of the mechanisms of action needed for constructing blood vessels that exhibit properties consistent with normal blood vessels.

  5. Changes in UCP expression in tissues of Zucker rats fed diets with different protein content.

    PubMed

    Masanés, R M; Yubero, P; Rafecas, I; Remesar, X

    2002-09-01

    The effect of dietary protein content on the uncoupling proteins (UCP) 1, 2 and 3 expression in a number of tissues of Zucker lean and obese rats was studied. Thirty-day-old male Zucker lean (Fa/?) and obese (fa/fa) rats were fed on hyperproteic (HP, 30% protein), standard (RD, 17% protein) or hypoproteic (LP, 9% protein) diets ad libitum for 30 days. Although dietary protein intake affected the weights of individual muscles in lean and obese animals, these weights were similar. In contrast, huge differences were observed in brown adipose tissue (BAT) and liver weights. Lean rats fed on the LP diet generally increased UCP expression, whereas the HP group had lower values. Obese animals, HP and LP groups showed higher UCP expression in muscles, with slight differences in BAT and lower values for UCP3 in subcutaneous adipose tissue. The mean values of UCP expression in BAT of obese rats were lower than in their lean counterpart, whereas the expression in skeletal muscle was increased. Thus, expression of UCPs can be modified by dietary protein content, in lean and obese rats. A possible thermogenic function of UCP3 in muscle and WAT in obese rats must be taken into account.

  6. Inducing Heat Shock Proteins Enhances the Stemness of Frozen-Thawed Adipose Tissue-Derived Stem Cells.

    PubMed

    Shaik, Shahensha; Hayes, Daniel; Gimble, Jeffrey; Devireddy, Ram

    2017-04-15

    Extensive research has been performed to determine the effect of freezing protocol and cryopreservation agents on the viability of adipose tissue-derived stromal/stem cells (ASCs) as well as other cells. Unfortunately, the conclusion one may draw after decades of research utilizing fundamentally similar cryopreservation techniques is that a barrier exists, which precludes full recovery. We hypothesize that agents capable of inducing a subset of heat shock proteins (HSPs) and chaperones will reduce the intrinsic barriers to the post-thaw recovery of ASCs. ASCs were exposed to 43°C for 1 h to upregulate HSPs, and the temporal HSP expression profile postheat shock was determined by performing quantitative polymerase chain reaction (PCR) and western blotting assays. The expression levels of HSP70 and HSP32 were found to be maximum at 3 h after the heat shock, whereas HSP90 and HSP27 remain unchanged. The heat shocked ASCs cryopreserved during maximal HSPs expression exhibited increased post-thaw viability than the nonheat shocked samples. Histochemical staining and quantitative reverse transcription-PCR indicated that the ASC differentiation potential was retained. Thus, suggesting that the upregulation of HSPs before a freezing insult is beneficial to ASCs and a potential alternative to the use of harmful cryoprotective agents.

  7. Extended Multiplexing of Tandem Mass Tags (TMT) Labeling Reveals Age and High Fat Diet Specific Proteome Changes in Mouse Epididymal Adipose Tissue*

    PubMed Central

    Plubell, Deanna L.; Wilmarth, Phillip A.; Zhao, Yuqi; Fenton, Alexandra M.; Minnier, Jessica; Reddy, Ashok P.; Klimek, John; Yang, Xia; David, Larry L.

    2017-01-01

    The lack of high-throughput methods to analyze the adipose tissue protein composition limits our understanding of the protein networks responsible for age and diet related metabolic response. We have developed an approach using multiple-dimension liquid chromatography tandem mass spectrometry and extended multiplexing (24 biological samples) with tandem mass tags (TMT) labeling to analyze proteomes of epididymal adipose tissues isolated from mice fed either low or high fat diet for a short or a long-term, and from mice that aged on low versus high fat diets. The peripheral metabolic health (as measured by body weight, adiposity, plasma fasting glucose, insulin, triglycerides, total cholesterol levels, and glucose and insulin tolerance tests) deteriorated with diet and advancing age, with long-term high fat diet exposure being the worst. In response to short-term high fat diet, 43 proteins representing lipid metabolism (e.g. AACS, ACOX1, ACLY) and red-ox pathways (e.g. CPD2, CYP2E, SOD3) were significantly altered (FDR < 10%). Long-term high fat diet significantly altered 55 proteins associated with immune response (e.g. IGTB2, IFIT3, LGALS1) and rennin angiotensin system (e.g. ENPEP, CMA1, CPA3, ANPEP). Age-related changes on low fat diet significantly altered only 18 proteins representing mainly urea cycle (e.g. OTC, ARG1, CPS1), and amino acid biosynthesis (e.g. GMT, AKR1C6). Surprisingly, high fat diet driven age-related changes culminated with alterations in 155 proteins involving primarily the urea cycle (e.g. ARG1, CPS1), immune response/complement activation (e.g. C3, C4b, C8, C9, CFB, CFH, FGA), extracellular remodeling (e.g. EFEMP1, FBN1, FBN2, LTBP4, FERMT2, ECM1, EMILIN2, ITIH3) and apoptosis (e.g. YAP1, HIP1, NDRG1, PRKCD, MUL1) pathways. Using our adipose tissue tailored approach we have identified both age-related and high fat diet specific proteomic signatures highlighting a pronounced involvement of arginine metabolism in response to advancing age

  8. Controlled dexamethasone delivery via double-walled microspheres to enhance long-term adipose tissue retention

    PubMed Central

    Kelmendi-Doko, Arta; Rubin, J Peter; Klett, Katarina; Mahoney, Christopher; Wang, Sheri; Marra, Kacey G

    2017-01-01

    Current materials used for adipose tissue reconstruction have critical shortcomings such as suboptimal volume retention, donor-site morbidity, and poor biocompatibility. The aim of this study was to examine a controlled delivery system of dexamethasone to generate stable adipose tissue when mixed with disaggregated human fat in an athymic mouse model for 6 months. The hypothesis that the continued release of dexamethasone from polymeric microspheres would enhance both adipogenesis and angiogenesis more significantly when compared to the single-walled microsphere model, resulting in long-term adipose volume retention, was tested. Dexamethasone was encapsulated within single-walled poly(lactic-co-glycolic acid) microspheres (Dex SW MS) and compared to dexamethasone encapsulated in a poly(lactic-co-glycolic acid) core surrounded by a shell of poly-l-lactide. The double-walled polymer microsphere system in the second model was developed to create a more sustainable drug delivery process. Dexamethasone-loaded poly(lactic-co-glycolic acid) microspheres (Dex SW MS) and dexamethasone-loaded poly(lactic-co-glycolic acid)/poly-l-lactide double-walled microspheres (Dex DW MS) were prepared using single and double emulsion/solvent techniques. In vitro release kinetics were determined. Two doses of each type of microsphere were examined; 50 and 27 mg of Dex MS and Dex DW MS were mixed with 0.3 mL of human lipoaspirate. Additionally, 50 mg of empty MS and lipoaspirate-only controls were examined. Samples were analyzed grossly and histologically after 6 months in vivo. Mass and volume were measured; dexamethasone microsphere-containing samples demonstrated greater adipose tissue retention compared to the control group. Histological analysis, including hematoxylin and eosin and CD31 staining, indicated increased vascularization (p < 0.05) within the Dex MS-containing samples. Controlled delivery of adipogenic factors, such as dexamethasone via polymer microspheres, significantly

  9. Dietary sodium, adiposity, and inflammation in healthy adolescents.

    PubMed

    Zhu, Haidong; Pollock, Norman K; Kotak, Ishita; Gutin, Bernard; Wang, Xiaoling; Bhagatwala, Jigar; Parikh, Samip; Harshfield, Gregory A; Dong, Yanbin

    2014-03-01

    To determine the relationships of sodium intake with adiposity and inflammation in healthy adolescents. A cross-sectional study involved 766 healthy white and African American adolescents aged 14 to 18 years. Dietary sodium intake was estimated by 7-day 24-hour dietary recall. Percent body fat was measured by dual-energy x-ray absorptiometry. Subcutaneous abdominal adipose tissue and visceral adipose tissue were assessed using magnetic resonance imaging. Fasting blood samples were measured for leptin, adiponectin, C-reactive protein, tumor necrosis factor-α, and intercellular adhesion molecule-1. The average sodium intake was 3280 mg/day. Ninety-seven percent of our adolescents exceeded the American Heart Association recommendation for sodium intake. Multiple linear regressions revealed that dietary sodium intake was independently associated with body weight (β = 0.23), BMI (β = 0.23), waist circumference (β = 0.23), percent body fat (β = 0.17), fat mass (β = 0.23), subcutaneous abdominal adipose tissue (β = 0.25), leptin (β = 0.20), and tumor necrosis factor-α (β = 0.61; all Ps < .05). No relation was found between dietary sodium intake and visceral adipose tissue, skinfold thickness, adiponectin, C-reactive protein, or intercellular adhesion molecule-1. All the significant associations persisted after correction for multiple testing (all false discovery rates < 0.05). The mean sodium consumption of our adolescents is as high as that of adults and more than twice the daily intake recommended by the American Heart Association. High sodium intake is positively associated with adiposity and inflammation independent of total energy intake and sugar-sweetened soft drink consumption.

  10. Dietary Sodium, Adiposity, and Inflammation in Healthy Adolescents

    PubMed Central

    Pollock, Norman K.; Kotak, Ishita; Gutin, Bernard; Wang, Xiaoling; Bhagatwala, Jigar; Parikh, Samip; Harshfield, Gregory A.; Dong, Yanbin

    2014-01-01

    OBJECTIVES: To determine the relationships of sodium intake with adiposity and inflammation in healthy adolescents. METHODS: A cross-sectional study involved 766 healthy white and African American adolescents aged 14 to 18 years. Dietary sodium intake was estimated by 7-day 24-hour dietary recall. Percent body fat was measured by dual-energy x-ray absorptiometry. Subcutaneous abdominal adipose tissue and visceral adipose tissue were assessed using magnetic resonance imaging. Fasting blood samples were measured for leptin, adiponectin, C-reactive protein, tumor necrosis factor-α, and intercellular adhesion molecule-1. RESULTS: The average sodium intake was 3280 mg/day. Ninety-seven percent of our adolescents exceeded the American Heart Association recommendation for sodium intake. Multiple linear regressions revealed that dietary sodium intake was independently associated with body weight (β = 0.23), BMI (β = 0.23), waist circumference (β = 0.23), percent body fat (β = 0.17), fat mass (β = 0.23), subcutaneous abdominal adipose tissue (β = 0.25), leptin (β = 0.20), and tumor necrosis factor-α (β = 0.61; all Ps < .05). No relation was found between dietary sodium intake and visceral adipose tissue, skinfold thickness, adiponectin, C-reactive protein, or intercellular adhesion molecule-1. All the significant associations persisted after correction for multiple testing (all false discovery rates < 0.05). CONCLUSIONS: The mean sodium consumption of our adolescents is as high as that of adults and more than twice the daily intake recommended by the American Heart Association. High sodium intake is positively associated with adiposity and inflammation independent of total energy intake and sugar-sweetened soft drink consumption. PMID:24488738

  11. Human breast adipose tissue: characterization of factors that change during tumor progression in human breast cancer.

    PubMed

    Fletcher, Sabrina Johanna; Sacca, Paula Alejandra; Pistone-Creydt, Mercedes; Coló, Federico Andrés; Serra, María Florencia; Santino, Flavia Eliana; Sasso, Corina Verónica; Lopez-Fontana, Constanza Matilde; Carón, Rubén Walter; Calvo, Juan Carlos; Pistone-Creydt, Virginia

    2017-02-07

    Adipose microenvironment is involved in signaling pathways that influence breast cancer. We aim to characterize factors that are modified: 1) in tumor and non tumor human breast epithelial cell lines when incubated with conditioned media (CMs) from human breast cancer adipose tissue explants (hATT) or normal breast adipose tissue explants (hATN); 2) in hATN-CMs vs hATT-CMs; 3) in the tumor associated adipocytes vs. non tumor associated adipocytes. We used hATN or hATT- CMs on tumor and non-tumor breast cancer cell lines. We evaluated changes in versican, CD44, ADAMTS1 and Adipo R1 expression on cell lines or in the different CMs. In addition we evaluated changes in the morphology and expression of these factors in slices of the different adipose tissues. The statistical significance between different experimental conditions was evaluated by one-way ANOVA. Tukey's post-hoc tests were performed within each individual treatment. hATT-CMs increase versican, CD44, ADAMTS1 and Adipo R1 expression in breast cancer epithelial cells. Furthermore, hATT-CMs present higher levels of versican expression compared to hATN-CMs. In addition, we observed a loss of effect in cellular migration when we pre-incubated hATT-CMs with chondroitinase ABC, which cleaves GAGs chains bound to the versican core protein, thus losing the ability to bind to CD44. Adipocytes associated with the invasive front are reduced in size compared to adipocytes that are farther away. Also, hATT adipocytes express significantly higher amounts of versican, CD44 and Adipo R1, and significantly lower amounts of adiponectin and perilipin, unlike hATN adipocytes. We conclude that hATT secrete a different set of proteins compared to hATN. Furthermore, versican, a proteoglycan that is overexpressed in hATT-CMs compared to hATN-CMs, might be involved in the tumorogenic behavior observed in both cell lines employed. In addition, we may conclude that adipocytes from the tumor microenvironment show a less differentiated

  12. Hematopoietic-to-mesenchymal transition of adipose tissue macrophages is regulated by integrin β1 and fabricated fibrin matrices

    PubMed Central

    Majka, Susan M.; Kohrt, Wendy M.; Miller, Heidi L.; Sullivan, Timothy M.; Klemm, Dwight J.

    2017-01-01

    ABSTRACT Some bona fide adult adipocytes arise de novo from a bone marrow-derived myeloid lineage. These studies further demonstrate that adipose tissue stroma contains a resident population of myeloid cells capable of adipocyte and multilineage mesenchymal differentiation. These resident myeloid cells lack hematopoietic markers and express mesenchymal and progenitor cell markers. Because bone marrow mesenchymal progenitor cells have not been shown to enter the circulation, we hypothesized that myeloid cells acquire mesenchymal differentiation capacity in adipose tissue. We fabricated a 3-dimensional fibrin matrix culture system to define the adipose differentiation potential of adipose tissue-resident myeloid subpopulations, including macrophages, granulocytes and dendritic cells. Our data show that multilineage mesenchymal potential was limited to adipose tissue macrophages, characterized by the acquisition of adipocyte, osteoblast, chondrocyte and skeletal muscle myocyte phenotypes. Fibrin hydrogel matrices stimulated macrophage loss of hematopoietic cell lineage determinants and the expression of mesenchymal and progenitor cell markers, including integrin β1. Ablation of integrin β1 in macrophages inhibited adipocyte specification. Therefore, some bona fide adipocytes are specifically derived from adipose tissue-resident macrophages via an integrin β1-dependent hematopoietic-to-mesenchymal transition, whereby they become capable of multipotent mesenchymal differentiation. The requirement for integrin β1 highlights this molecule as a potential target for controlling the production of marrow-derived adipocytes and their contribution to adipose tissue development and function. PMID:28441086

  13. Central Nervous System Regulation of Brown Adipose Tissue

    PubMed Central

    Morrison, Shaun F.; Madden, Christopher J.

    2015-01-01

    Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior. PMID:25428857

  14. Fats, inflammation and insulin resistance: insights to the role of macrophage and T-cell accumulation in adipose tissue.

    PubMed

    Harford, Karen A; Reynolds, Clare M; McGillicuddy, Fiona C; Roche, Helen M

    2011-11-01

    High-fat diet-induced obesity is associated with a chronic state of low-grade inflammation, which pre-disposes to insulin resistance (IR), which can subsequently lead to type 2 diabetes mellitus. Macrophages represent a heterogeneous population of cells that are instrumental in initiating the innate immune response. Recent studies have shown that macrophages are key mediators of obesity-induced IR, with a progressive infiltration of macrophages into obese adipose tissue. These adipose tissue macrophages are referred to as classically activated (M1) macrophages. They release cytokines such as IL-1β, IL-6 and TNFα creating a pro-inflammatory environment that blocks adipocyte insulin action, contributing to the development of IR and type 2 diabetes mellitus. In lean individuals macrophages are in an alternatively activated (M2) state. M2 macrophages are involved in wound healing and immunoregulation. Wound-healing macrophages play a major role in tissue repair and homoeostasis, while immunoregulatory macrophages produce IL-10, an anti-inflammatory cytokine, which may protect against inflammation. The functional role of T-cell accumulation has recently been characterised in adipose tissue. Cytotoxic T-cells are effector T-cells and have been implicated in macrophage differentiation, activation and migration. Infiltration of cytotoxic T-cells into obese adipose tissue is thought to precede macrophage accumulation. T-cell-derived cytokines such as interferon γ promote the recruitment and activation of M1 macrophages augmenting adipose tissue inflammation and IR. Manipulating adipose tissue macrophages/T-cell activity and accumulation in vivo through dietary fat modification may attenuate adipose tissue inflammation, representing a therapeutic target for ameliorating obesity-induced IR.

  15. Telmisartan Therapy Does Not Improve Lymph Node or Adipose Tissue Fibrosis More Than Continued Antiretroviral Therapy Alone.

    PubMed

    Utay, Netanya S; Kitch, Douglas W; Yeh, Eunice; Fichtenbaum, Carl J; Lederman, Michael M; Estes, Jacob D; Deleage, Claire; Magyar, Clara; Nelson, Scott D; Klingman, Karen L; Bastow, Barbara; Luque, Amneris E; McComsey, Grace A; Douek, Daniel C; Currier, Judith S; Lake, Jordan E

    2018-05-05

    Fibrosis in lymph nodes may limit CD4+ T-cell recovery, and lymph node and adipose tissue fibrosis may contribute to inflammation and comorbidities despite antiretroviral therapy (ART). We hypothesized that the angiotensin receptor blocker and peroxisome proliferator-activated receptor γ agonist telmisartan would decrease lymph node or adipose tissue fibrosis in treated human immunodeficiency virus type 1 (HIV) infection. In this 48-week, randomized, controlled trial, adults continued HIV-suppressive ART and received telmisartan or no drug. Collagen I, fibronectin, and phosphorylated SMAD3 (pSMAD3) deposition in lymph nodes, as well as collagen I, collagen VI, and fibronectin deposition in adipose tissue, were quantified by immunohistochemical analysis at weeks 0 and 48. Two-sided rank sum and signed rank tests compared changes over 48 weeks. Forty-four participants enrolled; 35 had paired adipose tissue specimens, and 29 had paired lymph node specimens. The median change overall in the percentage of the area throughout which collagen I was deposited was -2.6 percentage points (P = 0.08) in lymph node specimens and -1.3 percentage points (P = .001) in adipose tissue specimens, with no between-arm differences. In lymph node specimens, pSMAD3 deposition changed by -0.5 percentage points overall (P = .04), with no between-arm differences. Telmisartan attenuated increases in fibronectin deposition (P = .06). In adipose tissue, changes in collagen VI deposition (-1.0 percentage point; P = .001) and fibronectin deposition (-2.4 percentage points; P < .001) were observed, with no between-arm differences. In adults with treated HIV infection, lymph node and adipose tissue fibrosis decreased with continued ART alone, with no additional fibrosis reduction with telmisartan therapy.

  16. The gene expression profile of non-cultured, highly purified human adipose tissue pericytes: Transcriptomic evidence that pericytes are stem cells in human adipose tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva Meirelles, Lindolfo da, E-mail: lindolfomeirelles@gmail.com; Laboratory for Stem Cells and Tissue Engineering, PPGBioSaúde, Lutheran University of Brazil, Av. Farroupilha 8001, 92425-900 Canoas, RS; Deus Wagatsuma, Virgínia Mara de

    Pericytes (PCs) are a subset of perivascular cells that can give rise to mesenchymal stromal cells (MSCs) when culture-expanded, and are postulated to give rise to MSC-like cells during tissue repair in vivo. PCs have been suggested to behave as stem cells (SCs) in situ in animal models, although evidence for this role in humans is lacking. Here, we analyzed the transcriptomes of highly purified, non-cultured adipose tissue (AT)-derived PCs (ATPCs) to detect gene expression changes that occur as they acquire MSC characteristics in vitro, and evaluated the hypothesis that human ATPCs exhibit a gene expression profile compatible with anmore » AT SC phenotype. The results showed ATPCs are non-proliferative and express genes characteristic not only of PCs, but also of AT stem/progenitor cells. Additional analyses defined a gene expression signature for ATPCs, and revealed putative novel ATPC markers. Almost all AT stem/progenitor cell genes differentially expressed by ATPCs were not expressed by ATMSCs or culture-expanded ATPCs. Genes expressed by ATMSCs but not by ATPCs were also identified. These findings strengthen the hypothesis that PCs are SCs in vascularized tissues, highlight gene expression changes they undergo as they assume an MSC phenotype, and provide new insights into PC biology. - Highlights: • Non-cultured adipose tissue-derived human pericytes (ncATPCs) exhibit a distinctive gene expression signature. • ncATPCs express key adipose tissue stem cell genes previously described in vivo in mice. • ncATPCs express message for anti-proliferative and antiangiogenic molecules. • Most ncATPC-specific transcripts are absent in culture-expanded pericytes or ATMSCs • Gene expression changes ncATPCs undergo as they acquire a cultured ATMSC phenotype are pointed out.« less

  17. Adipose tissue fibrosis in human cancer cachexia: the role of TGFβ pathway.

    PubMed

    Alves, Michele Joana; Figuerêdo, Raquel Galvão; Azevedo, Flavia Figueiredo; Cavallaro, Diego Alexandre; Neto, Nelson Inácio Pinto; Lima, Joanna Darck Carola; Matos-Neto, Emidio; Radloff, Katrin; Riccardi, Daniela Mendes; Camargo, Rodolfo Gonzalez; De Alcântara, Paulo Sérgio Martins; Otoch, José Pinhata; Junior, Miguel Luiz Batista; Seelaender, Marília

    2017-03-14

    Cancer cachexia is a multifactorial syndrome that dramatically decreases survival. Loss of white adipose tissue (WAT) is one of the key characteristics of cachexia. WAT wasting is paralleled by microarchitectural remodeling in cachectic cancer patients. Fibrosis results from uncontrolled ECM synthesis, a process in which, transforming growth factor-beta (TGFβ) plays a pivotal role. So far, the mechanisms involved in adipose tissue (AT) re-arrangement, and the role of TGFβ in inducing AT remodeling in weight-losing cancer patients are poorly understood. This study examined the modulation of ECM components mediated by TGFβ pathway in fibrotic AT obtained from cachectic gastrointestinal cancer patients. After signing the informed consent form, patients were enrolled into the following groups: cancer cachexia (CC, n = 21), weight-stable cancer (WSC, n = 17), and control (n = 21). The total amount of collagen and elastic fibers in the subcutaneous AT was assessed by histological analysis and by immunohistochemistry. TGFβ isoforms expression was analyzed by Multiplex assay and by immunohistochemistry. Alpha-smooth muscle actin (αSMA), fibroblast-specific protein (FSP1), Smad3 and 4 were quantified by qPCR and/or by immunohistochemistry. Interleukin (IL) 2, IL5, IL8, IL13 and IL17 content, cytokines known to be associated with fibrosis, was measured by Multiplex assay. There was an accumulation of collagen and elastic fibers in the AT of CC, as compared with WSC and controls. Collagens type I, III, VI, and fibronectin expression was enhanced in the tissue of CC, compared with both WSC and control. The pronounced expression of αSMA in the surrounding of adipocytes, and the increased mRNA content for FSP1 (20-fold) indicate the presence of activated myofibroblasts; particularly in CC. TGFβ1 and TGFβ3 levels were up-regulated by cachexia in AT, as well in the isolated adipocytes. Smad3 and Smad4 labeling was found to be more evident in the fibrotic areas

  18. Gene expression changes with age in skin, adipose tissue, blood and brain.

    PubMed

    Glass, Daniel; Viñuela, Ana; Davies, Matthew N; Ramasamy, Adaikalavan; Parts, Leopold; Knowles, David; Brown, Andrew A; Hedman, Asa K; Small, Kerrin S; Buil, Alfonso; Grundberg, Elin; Nica, Alexandra C; Di Meglio, Paola; Nestle, Frank O; Ryten, Mina; Durbin, Richard; McCarthy, Mark I; Deloukas, Panagiotis; Dermitzakis, Emmanouil T; Weale, Michael E; Bataille, Veronique; Spector, Tim D

    2013-07-26

    Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age. Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues. Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.

  19. Zinc Deficiency Augments Leptin Production and Exacerbates Macrophage Infiltration into Adipose Tissue in Mice Fed a High-Fat Diet123

    PubMed Central

    Liu, Ming-Jie; Bao, Shengying; Bolin, Eric R.; Burris, Dara L.; Xu, Xiaohua; Sun, Qinghua; Killilea, David W.; Shen, Qiwen; Ziouzenkova, Ouliana; Belury, Martha A.; Failla, Mark L.; Knoell, Daren L.

    2013-01-01

    Zinc (Zn) deficiency and obesity are global public health problems. Zn deficiency is associated with obesity and comorbid conditions that include insulin resistance and type 2 diabetes. However, the function of Zn in obesity remains unclear. Using a mouse model of combined high-fat and low-Zn intake (0.5–1.5 mg/kg), we investigated whether Zn deficiency exacerbates the extent of adiposity as well as perturbations in metabolic and immune function. C57BL/6 mice were randomly assigned to receive either a high-fat diet (HFD) or a control (C) diet for 6 wk, followed by further subdivision into 2 additional groups fed Zn-deficient diets (C-Zn, HFD-Zn), along with a C diet and an HFD, for 3 wk (n = 8–9 mice/group). The extent of visceral fat, insulin resistance, or systemic inflammation was unaffected by Zn deficiency. Strikingly, Zn deficiency significantly augmented circulating leptin concentrations (HFD-Zn vs. HFD: 3.15 ± 0.16 vs. 2.59 ± 0.12 μg/L, respectively) and leptin signaling in the liver of obese mice. Furthermore, gene expression of macrophage-specific markers ADAM8 (A disintegrin and metalloproteinase domain-containing protein 8) and CD68 (cluster of differentiation 68) was significantly greater in adipose tissue in the HFD-Zn group than in the HFD group, as confirmed by CD68 protein analysis, indicative of increased macrophage infiltration. Inspection of Zn content and mRNA profiles of all Zn transporters in the adipose tissue revealed alterations of Zn metabolism to obesity and Zn deficiency. Our results demonstrate that Zn deficiency increases leptin production and exacerbates macrophage infiltration into adipose tissue in obese mice, indicating the importance of Zn in metabolic and immune dysregulation in obesity. PMID:23700340

  20. Intermittent fasting up-regulates Fsp27/Cidec gene expression in white adipose tissue.

    PubMed

    Karbowska, Joanna; Kochan, Zdzislaw

    2012-03-01

    Fat-specific protein of 27 kDa (FSP27) is a novel lipid droplet protein that promotes triacylglycerol storage in white adipose tissue (WAT). The regulation of the Fsp27 gene expression in WAT is largely unknown. We investigated the nutritional regulation of FSP27 in WAT. The effects of intermittent fasting (48 d, eight cycles of 3-d fasting and 3-d refeeding), caloric restriction (48 d), fasting-refeeding (3-d fasting and 3-d refeeding), and fasting (3 d) on mRNA expression of FSP27, peroxisome proliferator-activated receptor γ (PPARγ2), CCAAT/enhancer binding protein α (C/EBPα), and M isoform of carnitine palmitoyltransferase 1 (a positive control for PPARγ activation) in epididymal WAT and on serum triacylglycerol, insulin, and leptin levels were determined in Wistar rats. We also determined the effects of PPARγ activation by rosiglitazone or pioglitazone on FSP27 mRNA levels in primary rat adipocytes. Long-term intermittent fasting, in contrast to other dietary manipulations, significantly up-regulated Fsp27 gene expression in WAT. Moreover, in rats subjected to intermittent fasting, serum insulin levels were elevated; PPARγ2 and C/EBPα mRNA expression in WAT was increased, and there was a positive correlation of Fsp27 gene expression with PPARγ2 and C/EBPα mRNA levels. FSP27 mRNA expression was also increased in adipocytes treated with PPARγ agonists. Our study demonstrates that the transcription of the Fsp27 gene in adipose tissue may be induced in response to nutritional stimuli. Furthermore, PPARγ2, C/EBPα, and insulin may be involved in the nutritional regulation of FSP27. Thus intermittent fasting, despite lower caloric intake, may promote triacylglycerol deposition in WAT by increasing the expression of genes involved in lipid storage, such as Fsp27. Copyright © 2012 Elsevier Inc. All rights reserved.