Science.gov

Sample records for adipose tissue reduced

  1. NPY antagonism reduces adiposity and attenuates age-related imbalance of adipose tissue metabolism.

    PubMed

    Park, Seongjoon; Fujishita, Chika; Komatsu, Toshimitsu; Kim, Sang Eun; Chiba, Takuya; Mori, Ryoichi; Shimokawa, Isao

    2014-12-01

    An orexigenic hormone, neuropeptide Y (NPY), plays a role not only in the hypothalamic regulation of appetite, but also in the peripheral regulation of lipid metabolism. However, the intracellular mechanisms triggered by NPY to regulate lipid metabolism are poorly understood. Here we report that NPY deficiency reduces white adipose tissue (WAT) mass and ameliorates the age-related imbalance of adipose tissue metabolism in mice. Gene expression involved in adipogenesis/lipogenesis was found to decrease, whereas proteins involved in lipolysis increased in gonadal WAT (gWAT) of NPY-knockout mice. These changes were associated with an activated SIRT1- and PPARγ-mediated pathway. Moreover, the age-related decrease of de novo lipogenesis in gWAT and thermogenesis in inguinal WAT was inhibited by NPY deficiency. Further analysis using 3T3-L1 cells showed that NPY inhibited lipolysis through the Y1 receptor and enhanced lipogenesis following a reduction in cAMP response element-binding protein (CREB) and SIRT1 protein expression. Therefore, NPY appears to act as a key regulator of adipose tissue metabolism via the CREB-SIRT1 signaling pathway. Taken together, NPY deficiency reduces adiposity and ameliorates the age-related imbalance of adipose tissue metabolism, suggesting that antagonism of NPY may be a promising target for drug development to prevent age-related metabolic diseases.

  2. Technical note: Alternatives to reduce adipose tissue sampling bias.

    PubMed

    Cruz, G D; Wang, Y; Fadel, J G

    2014-10-01

    Understanding the mechanisms by which nutritional and pharmaceutical factors can manipulate adipose tissue growth and development in production animals has direct and indirect effects in the profitability of an enterprise. Adipocyte cellularity (number and size) is a key biological response that is commonly measured in animal science research. The variability and sampling of adipocyte cellularity within a muscle has been addressed in previous studies, but no attempt to critically investigate these issues has been proposed in the literature. The present study evaluated 2 sampling techniques (random and systematic) in an attempt to minimize sampling bias and to determine the minimum number of samples from 1 to 15 needed to represent the overall adipose tissue in the muscle. Both sampling procedures were applied on adipose tissue samples dissected from 30 longissimus muscles from cattle finished either on grass or grain. Briefly, adipose tissue samples were fixed with osmium tetroxide, and size and number of adipocytes were determined by a Coulter Counter. These results were then fit in a finite mixture model to obtain distribution parameters of each sample. To evaluate the benefits of increasing number of samples and the advantage of the new sampling technique, the concept of acceptance ratio was used; simply stated, the higher the acceptance ratio, the better the representation of the overall population. As expected, a great improvement on the estimation of the overall adipocyte cellularity parameters was observed using both sampling techniques when sample size number increased from 1 to 15 samples, considering both techniques' acceptance ratio increased from approximately 3 to 25%. When comparing sampling techniques, the systematic procedure slightly improved parameters estimation. The results suggest that more detailed research using other sampling techniques may provide better estimates for minimum sampling.

  3. Retention of sedentary obese visceral white adipose tissue phenotype with intermittent physical activity despite reduced adiposity.

    PubMed

    Wainright, Katherine S; Fleming, Nicholas J; Rowles, Joe L; Welly, Rebecca J; Zidon, Terese M; Park, Young-Min; Gaines, T'Keaya L; Scroggins, Rebecca J; Anderson-Baucum, Emily K; Hasty, Alyssa H; Vieira-Potter, Victoria J; Padilla, Jaume

    2015-09-01

    Regular physical activity is effective in reducing visceral white adipose tissue (AT) inflammation and oxidative stress, and these changes are commonly associated with reduced adiposity. However, the impact of multiple periods of physical activity, intercalated by periods of inactivity, i.e., intermittent physical activity, on markers of AT inflammation and oxidative stress is unknown. In the present study, 5-wk-old male C57BL/6 mice were randomized into three groups (n = 10/group): sedentary, regular physical activity, and intermittent physical activity, for 24 wk. All animals were singly housed and fed a diet containing 45% kcal from fat. Regularly active mice had access to voluntary running wheels throughout the study period, whereas intermittently active mice had access to running wheels for 3-wk intervals (i.e., 3 wk on/3 wk off) throughout the study. At death, regular and intermittent physical activity was associated with similar reductions in visceral AT mass (approximately -24%, P < 0.05) relative to sedentary. However, regularly, but not intermittently, active mice exhibited decreased expression of visceral AT genes related to inflammation (e.g., monocyte chemoattractant protein 1), immune cell infiltration (e.g., CD68, CD11c, F4/80, CD11b/CD18), oxidative stress (e.g., p47 phagocyte oxidase), and endoplasmic reticulum stress (e.g., CCAAT enhancer-binding protein homologous protein; all P < 0.05). Furthermore, regular, but not intermittent, physical activity was associated with a trend toward improvement in glucose tolerance (P = 0.059). Collectively, these findings suggest that intermittent physical activity over a prolonged period of time may lead to a reduction in adiposity but with retention of a sedentary obese white AT and metabolic phenotype. PMID:26180183

  4. Glucose-6-Phosphate Dehydrogenase Deficiency Improves Insulin Resistance With Reduced Adipose Tissue Inflammation in Obesity.

    PubMed

    Ham, Mira; Choe, Sung Sik; Shin, Kyung Cheul; Choi, Goun; Kim, Ji-Won; Noh, Jung-Ran; Kim, Yong-Hoon; Ryu, Je-Won; Yoon, Kun-Ho; Lee, Chul-Ho; Kim, Jae Bum

    2016-09-01

    Glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, plays important roles in redox regulation and de novo lipogenesis. It was recently demonstrated that aberrant upregulation of G6PD in obese adipose tissue mediates insulin resistance as a result of imbalanced energy metabolism and oxidative stress. It remains elusive, however, whether inhibition of G6PD in vivo may relieve obesity-induced insulin resistance. In this study we showed that a hematopoietic G6PD defect alleviates insulin resistance in obesity, accompanied by reduced adipose tissue inflammation. Compared with wild-type littermates, G6PD-deficient mutant (G6PD(mut)) mice were glucose tolerant upon high-fat-diet (HFD) feeding. Intriguingly, the expression of NADPH oxidase genes to produce reactive oxygen species was alleviated, whereas that of antioxidant genes was enhanced in the adipose tissue of HFD-fed G6PD(mut) mice. In diet-induced obesity (DIO), the adipose tissue of G6PD(mut) mice decreased the expression of inflammatory cytokines, accompanied by downregulated proinflammatory macrophages. Accordingly, macrophages from G6PD(mut) mice greatly suppressed lipopolysaccharide-induced proinflammatory signaling cascades, leading to enhanced insulin sensitivity in adipocytes and hepatocytes. Furthermore, adoptive transfer of G6PD(mut) bone marrow to wild-type mice attenuated adipose tissue inflammation and improved glucose tolerance in DIO. Collectively, these data suggest that inhibition of macrophage G6PD would ameliorate insulin resistance in obesity through suppression of proinflammatory responses. PMID:27284106

  5. Adipose tissue extract promotes adipose tissue regeneration in an adipose tissue engineering chamber model.

    PubMed

    Lu, Zijing; Yuan, Yi; Gao, Jianhua; Lu, Feng

    2016-05-01

    An adipose tissue engineering chamber model of spontaneous adipose tissue generation from an existing fat flap has been described. However, the chamber does not completely fill with adipose tissue in this model. Here, the effect of adipose tissue extract (ATE) on adipose tissue regeneration was investigated. In vitro, the adipogenic and angiogenic capacities of ATE were evaluated using Oil Red O and tube formation assays on adipose-derived stem cells (ASCs) and rat aortic endothelial cells (RAECs), respectively. In vivo, saline or ATE was injected into the adipose tissue engineering chamber 1 week after its implantation. At different time points post-injection, the contents were morphometrically, histologically, and immunohistochemically evaluated, and the expression of growth factors and adipogenic genes was analyzed by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time PCR. With the exception of the baseline control group, in which fat flaps were not inserted into a chamber, the total volume of fat flap tissue increased significantly in all groups, especially in the ATE group. Better morphology and structure, a thinner capsule, and more vessels were observed in the ATE group than in the control group. Expression of angiogenic growth factors and adipogenic markers were significantly higher in the ATE group. ATE therefore significantly promoted adipose tissue regeneration and reduced capsule formation in an adipose tissue engineering chamber model. These data suggest that ATE provides a more angiogenic and adipogenic microenvironment for adipose tissue formation by releasing various cytokines and growth factors that also inhibit capsule formation.

  6. Autologous subcutaneous adipose tissue transplants improve adipose tissue metabolism and reduce insulin resistance and fatty liver in diet-induced obesity rats.

    PubMed

    Torres-Villalobos, Gonzalo; Hamdan-Pérez, Nashla; Díaz-Villaseñor, Andrea; Tovar, Armando R; Torre-Villalvazo, Ivan; Ordaz-Nava, Guillermo; Morán-Ramos, Sofía; Noriega, Lilia G; Martínez-Benítez, Braulio; López-Garibay, Alejandro; Torres-Landa, Samuel; Ceballos-Cantú, Juan C; Tovar-Palacio, Claudia; Figueroa-Juárez, Elizabeth; Hiriart, Marcia; Medina-Santillán, Roberto; Castillo-Hernández, Carmen; Torres, Nimbe

    2016-09-01

    Long-term dietary and pharmacological treatments for obesity have been questioned, particularly in individuals with severe obesity, so a new approach may involve adipose tissue transplants, particularly autologous transplants. Thus, the aim of this study was to evaluate the metabolic effects of autologous subcutaneous adipose tissue (SAT) transplants into two specific intraabdominal cavity sites (omental and retroperitoneal) after 90 days. The study was performed using two different diet-induced obesity (DIO) rat models: one using a high-fat diet (HFD) and the other using a high-carbohydrate diet (HCHD). Autologous SAT transplant reduced hypertrophic adipocytes, improved insulin sensitivity, reduced hepatic lipid content, and fasting serum-free fatty acids (FFAs) concentrations in the two DIO models. In addition, the reductions in FFAs and glycerol were accompanied by a greater reduction in lipolysis, assessed via the phosphorylation status of HSL, in the transplanted adipose tissue localized in the omentum compared with that localized in the retroperitoneal compartment. Therefore, the improvement in hepatic lipid content after autologous SAT transplant may be partially attributed to a reduction in lipolysis in the transplanted adipose tissue in the omentum due to the direct drainage of FFAs into the liver. The HCHD resulted in elevated fasting and postprandial serum insulin levels, which were dramatically reduced by the autologous SAT transplant. In conclusion, the specific intraabdominal localization of the autologous SAT transplant improved the carbohydrate and lipid metabolism of adipose tissue in obese rats and selectively corrected the metabolic parameters that are dependent on the type of diet used to generate the DIO model. PMID:27582062

  7. Autologous subcutaneous adipose tissue transplants improve adipose tissue metabolism and reduce insulin resistance and fatty liver in diet-induced obesity rats.

    PubMed

    Torres-Villalobos, Gonzalo; Hamdan-Pérez, Nashla; Díaz-Villaseñor, Andrea; Tovar, Armando R; Torre-Villalvazo, Ivan; Ordaz-Nava, Guillermo; Morán-Ramos, Sofía; Noriega, Lilia G; Martínez-Benítez, Braulio; López-Garibay, Alejandro; Torres-Landa, Samuel; Ceballos-Cantú, Juan C; Tovar-Palacio, Claudia; Figueroa-Juárez, Elizabeth; Hiriart, Marcia; Medina-Santillán, Roberto; Castillo-Hernández, Carmen; Torres, Nimbe

    2016-09-01

    Long-term dietary and pharmacological treatments for obesity have been questioned, particularly in individuals with severe obesity, so a new approach may involve adipose tissue transplants, particularly autologous transplants. Thus, the aim of this study was to evaluate the metabolic effects of autologous subcutaneous adipose tissue (SAT) transplants into two specific intraabdominal cavity sites (omental and retroperitoneal) after 90 days. The study was performed using two different diet-induced obesity (DIO) rat models: one using a high-fat diet (HFD) and the other using a high-carbohydrate diet (HCHD). Autologous SAT transplant reduced hypertrophic adipocytes, improved insulin sensitivity, reduced hepatic lipid content, and fasting serum-free fatty acids (FFAs) concentrations in the two DIO models. In addition, the reductions in FFAs and glycerol were accompanied by a greater reduction in lipolysis, assessed via the phosphorylation status of HSL, in the transplanted adipose tissue localized in the omentum compared with that localized in the retroperitoneal compartment. Therefore, the improvement in hepatic lipid content after autologous SAT transplant may be partially attributed to a reduction in lipolysis in the transplanted adipose tissue in the omentum due to the direct drainage of FFAs into the liver. The HCHD resulted in elevated fasting and postprandial serum insulin levels, which were dramatically reduced by the autologous SAT transplant. In conclusion, the specific intraabdominal localization of the autologous SAT transplant improved the carbohydrate and lipid metabolism of adipose tissue in obese rats and selectively corrected the metabolic parameters that are dependent on the type of diet used to generate the DIO model.

  8. Osteopontin deletion prevents the development of obesity and hepatic steatosis via impaired adipose tissue matrix remodeling and reduced inflammation and fibrosis in adipose tissue and liver in mice.

    PubMed

    Lancha, Andoni; Rodríguez, Amaia; Catalán, Victoria; Becerril, Sara; Sáinz, Neira; Ramírez, Beatriz; Burrell, María A; Salvador, Javier; Frühbeck, Gema; Gómez-Ambrosi, Javier

    2014-01-01

    Osteopontin (OPN) is a multifunctional extracellular matrix (ECM) protein involved in multiple physiological processes. OPN expression is dramatically increased in visceral adipose tissue in obesity and the lack of OPN protects against the development of insulin resistance and inflammation in mice. We sought to unravel the potential mechanisms involved in the beneficial effects of the absence of OPN. We analyzed the effect of the lack of OPN in the development of obesity and hepatic steatosis induced by a high-fat diet (HFD) using OPN-KO mice. OPN expression was upregulated in epididymal white adipose tissue (EWAT) and liver in wild type (WT) mice with HFD. OPN-KO mice had higher insulin sensitivity, lower body weight and fat mass with reduced adipose tissue ECM remodeling and reduced adipocyte size than WT mice under a HFD. Reduced MMP2 and MMP9 activity was involved in the decreased ECM remodeling. Crown-like structure number in EWAT as well as F4/80-positive cells and Emr1 expression in EWAT and liver increased with HFD, while OPN-deficiency blunted the increase. Moreover, our data show for the first time that OPN-KO under a HFD mice display reduced fibrosis in adipose tissue and liver, as well as reduced oxidative stress in adipose tissue. Gene expression of collagens Col1a1, Col6a1 and Col6a3 in EWAT and liver, as well as the profibrotic cytokine Tgfb1 in EWAT were increased with HFD, while OPN-deficiency prevented this increase. OPN deficiency prevented hepatic steatosis via reduction in the expression of molecules involved in the onset of fat accumulation such as Pparg, Srebf1, Fasn, Mogat1, Dgat2 and Cidec. Furthermore, OPN-KO mice exhibited higher body temperature and improved BAT function. The present data reveal novel mechanisms of OPN in the development of obesity, pointing out the inhibition of OPN as a promising target for the treatment of obesity and fatty liver.

  9. Activation of prostaglandin E2-EP4 signaling reduces chemokine production in adipose tissue.

    PubMed

    Tang, Eva H C; Cai, Yin; Wong, Chi Kin; Rocha, Viviane Z; Sukhova, Galina K; Shimizu, Koichi; Xuan, Ge; Vanhoutte, Paul M; Libby, Peter; Xu, Aimin

    2015-02-01

    Inflammation of adipose tissue induces metabolic derangements associated with obesity. Thus, determining ways to control or inhibit inflammation in adipose tissue is of clinical interest. The present study tested the hypothesis that in mouse adipose tissue, endogenous prostaglandin E2 (PGE2) negatively regulates inflammation via activation of prostaglandin E receptor 4 (EP4). PGE2 (5-500 nM) attenuated lipopolysaccharide-induced mRNA and protein expression of chemokines, including interferon-γ-inducible protein 10 and macrophage-inflammatory protein-1α in mouse adipose tissue. A selective EP4 antagonist (L161,982) reversed, and two structurally different selective EP4 agonists [CAY10580 and CAY10598] mimicked these actions of PGE2. Adipose tissue derived from EP4-deficient mice did not display this response. These findings establish the involvement of EP4 receptors in this anti-inflammatory response. Experiments performed on adipose tissue from high-fat-fed mice demonstrated EP4-dependent attenuation of chemokine production during diet-induced obesity. The anti-inflammatory actions of EP4 became more important on a high-fat diet, in that EP4 activation suppressed a greater variety of chemokines. Furthermore, adipose tissue and systemic inflammation was enhanced in high-fat-fed EP4-deficient mice compared with wild-type littermates, and in high-fat-fed untreated C57BL/6 mice compared with mice treated with EP4 agonist. These findings provide in vivo evidence that PGE2-EP4 signaling limits inflammation. In conclusion, PGE2, via activation of EP4 receptors, functions as an endogenous anti-inflammatory mediator in mouse adipose tissue, and targeting EP4 may mitigate adipose tissue inflammation.

  10. Reduced vascular nitric oxide-cGMP signaling contributes to adipose tissue inflammation during high-fat feeding

    PubMed Central

    Handa, Priya; Tateya, Sanshiro; Rizzo, Norma O.; Cheng, Andrew M.; Morgan-Stevenson, Vicki; Han, Chang-Yeop; Clowes, Alexander W.; Daum, Guenter; O’Brien, Kevin D.; Schwartz, Michael W.; Chait, Alan; Kim, Francis

    2012-01-01

    Rationale Obesity is characterized by chronic inflammation of adipose tissue, which contributes to insulin resistance and diabetes. Although nitric oxide (NO) signaling has anti-inflammatory effects in the vasculature, whether reduced NO contributes to adipose tissue inflammation is unknown. We sought to determine whether 1) obesity induced by high-fat (HF) diet reduces endothelial nitric oxide signaling in adipose tissue, 2) reduced endothelial nitric oxide synthase (eNOS) signaling is sufficient to induce adipose tissue inflammation independent of diet, and 3) increased cGMP signaling can block adipose tissue inflammation induced by HF feeding. Methods and results Relative to mice fed a low-fat diet, HF diet markedly reduced phospho-eNOS and phospho-VASP, markers of vascular NO signaling. Expression of pro-inflammatory cytokines was increased in adipose tissue of eNOS−/− mice. Conversely, enhancement of signaling downstream of NO by phosphodiesterase 5 (PDE-5) inhibition using sildenafil attenuated HF-induced pro-inflammatory cytokine expression and the recruitment of macrophages into adipose tissue. Finally, we implicate a role for Vasodilator- stimulated phosphoprotein (VASP), a downstream mediator of NO-cGMP signaling in mediating eNOS-induced anti-inflammatory effects since VASP−/− mice recapitulated the pro-inflammatory phenotype displayed by eNOS−/− mice. Conclusions These results imply a physiological role for endothelial NO to limit obesity-associated inflammation in adipose tissue and hence identifies the NO-cGMP-VASP pathway as a potential therapeutic target in the treatment of diabetes. PMID:21903940

  11. Adipose tissue angiogenesis assay.

    PubMed

    Rojas-Rodriguez, Raziel; Gealekman, Olga; Kruse, Maxwell E; Rosenthal, Brittany; Rao, Kishore; Min, Soyun; Bellve, Karl D; Lifshitz, Lawrence M; Corvera, Silvia

    2014-01-01

    Changes in adipose tissue mass must be accompanied by parallel changes in microcirculation. Investigating the mechanisms that regulate adipose tissue angiogenesis could lead to better understanding of adipose tissue function and reveal new potential therapeutic strategies. Angiogenesis is defined as the formation of new capillaries from existing microvessels. This process can be recapitulated in vitro, by incubation of tissue in extracellular matrix components in the presence of pro-angiogenic factors. Here, we describe a method to study angiogenesis from adipose tissue fragments obtained from mouse and human tissue. This assay can be used to define effects of diverse factors added in vitro, as well as the role of endogenously produced factors on angiogenesis. We also describe approaches to quantify angiogenic potential for the purpose of enabling comparisons between subjects, thus providing information on the role of physiological conditions of the donor on adipose tissue angiogenic potential.

  12. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance

    PubMed Central

    Fang, Sungsoon; Suh, Jae Myoung; Reilly, Shannon M; Yu, Elizabeth; Osborn, Olivia; Lackey, Denise; Yoshihara, Eiji; Perino, Alessia; Jacinto, Sandra; Lukasheva, Yelizaveta; Atkins, Annette R; Khvat, Alexander; Schnabl, Bernd; Yu, Ruth T; Brenner, David A; Coulter, Sally; Liddle, Christopher; Schoonjans, Kristina; Olefsky, Jerrold M; Saltiel, Alan R; Downes, Michael; Evans, Ronald M

    2015-01-01

    The systemic expression of the bile acid (BA) sensor farnesoid X receptor (FXR) has led to promising new therapies targeting cholesterol metabolism, triglyceride production, hepatic steatosis and biliary cholestasis. In contrast to systemic therapy, bile acid release during a meal selectively activates intestinal FXR. By mimicking this tissue-selective effect, the gut-restricted FXR agonist fexaramine (Fex) robustly induces enteric fibroblast growth factor 15 (FGF15), leading to alterations in BA composition, but does so without activating FXR target genes in the liver. However, unlike systemic agonism, we find that Fex reduces diet-induced weight gain, body-wide inflammation and hepatic glucose production, while enhancing thermogenesis and browning of white adipose tissue (WAT). These pronounced metabolic improvements suggest tissue-restricted FXR activation as a new approach in the treatment of obesity and metabolic syndrome. PMID:25559344

  13. Adipose tissue inflammation and reduced insulin sensitivity in ovariectomized mice occurs in the absence of increased adiposity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Menopause promotes central obesity, adipose tissue (AT) inflammation and insulin resistance (IR). Both obesity and the loss of estrogen can activate innate and adaptive immune cells (macrophages (M's), T-cells). The respective impacts of weight gain and loss of ovarian hormones on AT inflammation an...

  14. Inhibition of NET Release Fails to Reduce Adipose Tissue Inflammation in Mice

    PubMed Central

    Braster, Quinte; Silvestre Roig, Carlos; Hartwig, Helene; Beckers, Linda; den Toom, Myrthe; Döring, Yvonne; Daemen, Mat J.; Lutgens, Esther; Soehnlein, Oliver

    2016-01-01

    Obesity-associated diseases such as Type 2 diabetes, liver disease and cardiovascular diseases are profoundly mediated by low-grade chronic inflammation of the adipose tissue. Recently, the importance of neutrophils and neutrophil-derived myeloperoxidase and neutrophil elastase on the induction of insulin resistance has been established. Since neutrophil elastase and myeloperoxidase are critically involved in the release of neutrophil extracellular traps (NETs), we here hypothesized that NETs may be relevant to early adipose tissue inflammation. Thus, we tested the effect of the Peptidyl Arginine Deiminase 4 inhibitor Cl-amidine, a compound preventing histone citrullination and subsequent NET release, in a mouse model of adipose tissue inflammation. C57BL6 mice received a 60% high fat diet for 10 weeks and were treated with either Cl-amidine or vehicle. Flow cytometry of adipose tissue and liver, immunohistological analysis and glucose and insulin tolerance tests were performed to determine the effect of the treatment and diet. Although high fat diet feeding induced insulin resistance no significant effect was observed between the treatment groups. In addition no effect was found in leukocyte infiltration and activation in the adipose tissue and liver. Therefore we concluded that inhibition of neutrophil extracellular trap formation may have no clinical relevance for early obesity-mediated pathogenesis of the adipose tissue and liver. PMID:27701440

  15. Induction of heme oxygenase-1 with hemin reduces obesity-induced adipose tissue inflammation via adipose macrophage phenotype switching.

    PubMed

    Tu, Thai Hien; Joe, Yeonsoo; Choi, Hye-Seon; Chung, Hun Taeg; Yu, Rina

    2014-01-01

    Adipose macrophages with the anti-inflammatory M2 phenotype protect against obesity-induced inflammation and insulin resistance. Heme oxygenase-1 (HO-1), which elicits antioxidant and anti-inflammatory activity, modulates macrophage phenotypes and thus is implicated in various inflammatory diseases. Here, we demonstrate that the HO-1 inducer, hemin, protects against obesity-induced adipose inflammation by inducing macrophages to switch to the M2 phenotype. HO-1 induction by hemin reduced the production of proinflammatory cytokines (TNF-α and IL-6) from cocultured adipocytes and macrophages by inhibiting the activation of inflammatory signaling molecules (JNK and NF-κB) in both cell types. Hemin enhanced transcript levels of M2 macrophage marker genes (IL-4, Mrc1, and Clec10a) in the cocultures, while reducing transcripts of M1 macrophage markers (CD274 and TNF-α). The protective effects of hemin on adipose inflammation and macrophage phenotype switching were confirmed in mice fed a high-fat diet, and these were associated with PPARγ upregulation and STAT6 activation. These findings suggest that induction of HO-1 with hemin protects against obesity-induced adipose inflammation through M2 macrophage phenotype switching, which is induced by the PPARγ and STAT6 pathway. HO-1 inducers such as hemin may be useful for preventing obesity-induced adipose inflammation.

  16. Abalation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show ...

  17. [Human brown adipose tissue].

    PubMed

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  18. Dietary cocoa reduces metabolic endotoxemia and adipose tissue inflammation in high-fat fed mice.

    PubMed

    Gu, Yeyi; Yu, Shan; Park, Jong Yung; Harvatine, Kevin; Lambert, Joshua D

    2014-04-01

    In diet-induced obesity, adipose tissue (AT) is in a chronic state of inflammation predisposing the development of metabolic syndrome. Cocoa (Theobroma cacao) is a polyphenol-rich food with putative anti-inflammatory activities. Here, we examined the impact and underlying mechanisms of action of cocoa on AT inflammation in high fat-fed mice. In the present study, male C57BL/6 J mice were fed a high fat diet (HF), a HF diet with 8% (w/w) unsweetened cocoa powder (HFC), or a low-fat diet (LF) for 18 weeks. Cocoa supplementation decreased AT mRNA levels of tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, and EGF-like module-containing mucin-like hormone receptor-like 1 by 40-60% compared to HF group, and this was accompanied by decreased nuclear protein levels of nuclear factor-κB. Cocoa treatment reduced the levels of arachidonic acid in the AT by 33% compared to HF controls. Moreover, cocoa treatment also reduced protein levels of the eicosanoid-generating enzymes, adipose-specific phospholipase A2 and cyclooxygenase-2 by 53% and 55%, respectively, compared to HF-fed mice. Finally, cocoa treatment ameliorated metabolic endotoxemia (40% reduction in plasma endotoxin) and improved gut barrier function (as measured by increased plasma levels of glucagon-like peptide-2). In conclusion, the present study has shown for the first time that long-term cocoa supplementation can reduce AT inflammation in part by modulating eicosanoid metabolism and metabolic endotoxemia.

  19. Dietary Cocoa Reduces Metabolic Endotoxemia and Adipose Tissue Inflammation in High-Fat Fed Mice

    PubMed Central

    Gu, Yeyi; Yu, Shan; Park, Jong Yung; Harvatine, Kevin; Lambert, Joshua D.

    2014-01-01

    In diet-induced obesity, adipose tissue (AT) is in a chronic state of inflammation predisposing the development of metabolic syndrome. Cocoa (Theobroma cacao) is a polyphenol-rich food with putative anti-inflammatory activities. Here, we examined the impact and underlying mechanisms of action of cocoa on AT inflammation in high fat-fed mice. In the present study, male C57BL/6J mice were fed a high fat diet (HF), a HF diet with 8% (w/w) unsweetened cocoa powder (HFC), or a low-fat diet (LF) for 18 wk. Cocoa supplementation decreased AT mRNA levels of tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, and EGF-like module-containing mucin-like hormone receptor-like 1 by 40 – 60% compared to HF group, and this was accompanied by decreased nuclear protein levels of nuclear factor-κB. Cocoa treatment reduced the levels of arachidonic acid in the AT by 33% compared to HF controls. Moreover, cocoa treatment also reduced protein levels of the eicosanoid-generating enzymes, adipose-specific phospholipase A2 and cycloxygenase-2 by 53% and 55%, respectively, compared to HF-fed mice. Finally, cocoa treatment ameliorated metabolic endotoxemia (40% reduction in plasma endotoxin) and improved gut barrier function (as measured by increased plasma levels of glucagon-like peptide-2). In conclusion, the present study has shown for the first time that long-term cocoa supplementation can reduce AT inflammation in part by modulating eicosanoid metabolism and metabolic endotoxemia. PMID:24561154

  20. Microbiota depletion promotes browning of white adipose tissue and reduces obesity.

    PubMed

    Suárez-Zamorano, Nicolas; Fabbiano, Salvatore; Chevalier, Claire; Stojanović, Ozren; Colin, Didier J; Stevanović, Ana; Veyrat-Durebex, Christelle; Tarallo, Valentina; Rigo, Dorothée; Germain, Stéphane; Ilievska, Miroslava; Montet, Xavier; Seimbille, Yann; Hapfelmeier, Siegfried; Trajkovski, Mirko

    2015-12-01

    Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity. In response to cold or exercise, brown fat cells also emerge in the white adipose tissue (WAT; also known as beige cells), a process known as browning. Here we show that the development of functional beige fat in the inguinal subcutaneous adipose tissue (ingSAT) and perigonadal visceral adipose tissue (pgVAT) is promoted by the depletion of microbiota either by means of antibiotic treatment or in germ-free mice. This leads to improved glucose tolerance and insulin sensitivity and decreased white fat and adipocyte size in lean mice, obese leptin-deficient (ob/ob) mice and high-fat diet (HFD)-fed mice. Such metabolic improvements are mediated by eosinophil infiltration, enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by the suppression of type 2 cytokine signaling, and they are reversed by recolonization of the antibiotic-treated or germ-free mice with microbes. These results provide insight into the microbiota-fat signaling axis and beige-fat development in health and metabolic disease.

  1. COL6A3 is regulated by leptin in human adipose tissue and reduced in obesity.

    PubMed

    McCulloch, Laura J; Rawling, Tom J; Sjöholm, Kajsa; Franck, Niclas; Dankel, Simon N; Price, Emily J; Knight, Bridget; Liversedge, Neil H; Mellgren, Gunnar; Nystrom, Fredrik; Carlsson, Lena M; Kos, Katarina

    2015-01-01

    Fibrosis of adipose tissue (AT) increases AT rigidity, reduces its expandability, and contributes to metabolic dysfunction. Collagen type VI, α3 (COL6A3) encodes 1 subunit of a fibrotic extracellular matrix protein highly expressed in rodent AT. Knockout of collagen VI in rodent AT led to a significant improvement in metabolic health in obese, diabetic ob/ob mice. However, it is unknown whether this collagen has the same metabolic significance in human AT. We therefore aimed to undertake a comprehensive assessment of COL6A3 in relation to human AT and obesity. Characterization of COL6A3 in human AT showed 5-fold higher expression in the stromalvascular fraction compared with adipocyte expression and significantly higher expression in subcutaneous AT (SCAT) than omental AT. In both depots, COL6A3 expression appeared to be lowered in obesity, whereas diet- and surgery-induced weight loss increased COL6A3 expression in SCAT. Leptin treatment caused a dose-dependent decrease in COL6A3 expression, although no effect was seen with insulin or glucose treatment and no difference observed in subjects with diabetes. In addition, we found that the collagen expression profile in humans differs significantly from rodents, because COL6A3 does not appear to be the predominant collagen in adipose, muscle, or liver. Our findings oppose those initially seen in rodent studies and, most importantly, demonstrate a direct regulation of COL6A3 by leptin. This highlights the importance of a paracrine leptin signaling pathway in human AT and suggests an additional mechanism by which leptin can regulate extracellular matrix composition and, with it, AT expandability. PMID:25337653

  2. Omega-3 Fatty Acids Reduce Adipose Tissue Macrophages in Human Subjects With Insulin Resistance

    PubMed Central

    Spencer, Michael; Finlin, Brian S.; Unal, Resat; Zhu, Beibei; Morris, Andrew J.; Shipp, Lindsey R.; Lee, Jonah; Walton, R. Grace; Adu, Akosua; Erfani, Rod; Campbell, Marilyn; McGehee, Robert E.; Peterson, Charlotte A.; Kern, Philip A.

    2013-01-01

    Fish oils (FOs) have anti-inflammatory effects and lower serum triglycerides. This study examined adipose and muscle inflammatory markers after treatment of humans with FOs and measured the effects of ω-3 fatty acids on adipocytes and macrophages in vitro. Insulin-resistant, nondiabetic subjects were treated with Omega-3-Acid Ethyl Esters (4 g/day) or placebo for 12 weeks. Plasma macrophage chemoattractant protein 1 (MCP-1) levels were reduced by FO, but the levels of other cytokines were unchanged. The adipose (but not muscle) of FO-treated subjects demonstrated a decrease in macrophages, a decrease in MCP-1, and an increase in capillaries, and subjects with the most macrophages demonstrated the greatest response to treatment. Adipose and muscle ω-3 fatty acid content increased after treatment; however, there was no change in insulin sensitivity or adiponectin. In vitro, M1-polarized macrophages expressed high levels of MCP-1. The addition of ω-3 fatty acids reduced MCP-1 expression with no effect on TNF-α. In addition, ω-3 fatty acids suppressed the upregulation of adipocyte MCP-1 that occurred when adipocytes were cocultured with macrophages. Thus, FO reduced adipose macrophages, increased capillaries, and reduced MCP-1 expression in insulin-resistant humans and in macrophages and adipocytes in vitro; however, there was no measureable effect on insulin sensitivity. PMID:23328126

  3. Microbiota depletion promotes browning of white adipose tissue and reduces obesity

    PubMed Central

    Chevalier, Claire; Stojanović, Ozren; Colin, Didier J.; Stevanović, Ana; Veyrat-Durebex, Christelle; Tarallo, Valentina; Rigo, Dorothée; Germain, Stéphane; Ilievska, Miroslava; Montet, Xavier; Seimbille, Yann; Hapfelmeier, Siegfried; Trajkovski, Mirko

    2015-01-01

    Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity1. In response to cold or exercise brown fat cells also emerge in the white adipose tissue (named beige cells), a process known as browning2,3,4. Here, we show that the development of functional beige fat is promoted by microbiota depletion either by antibiotic treatment or in germ-free mice within the inguinal subcutaneous and perigonadal visceral adipose tissues (ingSAT and pgVAT, respectively). This leads to improved glucose tolerance, insulin sensitivity and decreased white fat and adipocyte size in lean mice and obese leptin-deficient (ob/ob) and high fat diet (HFD)-fed mice. These metabolic improvements are mediated by eosinophil infiltration and enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by suppression of the type 2 signaling and are reversed by recolonization of the antibiotic-treated, or the germ-free mice with microbes. These results provide insight into microbiota-fat signaling axis and beige fat development in health and metabolic disease. PMID:26569380

  4. Physical Exercise Reduces the Expression of RANTES and Its CCR5 Receptor in the Adipose Tissue of Obese Humans

    PubMed Central

    Baturcam, Engin; Tiss, Ali; Khadir, Abdelkrim; Al-Ghimlas, Fahad; Al-Khairi, Irina; Cherian, Preethi; Elkum, Naser; John, Jeena; Kavalakatt, Sina; Lehe, Cynthia; Warsame, Samia; Behbehani, Kazem; Dermime, Said

    2014-01-01

    RANTES and its CCR5 receptor trigger inflammation and its progression to insulin resistance in obese. In the present study, we investigated for the first time the effect of physical exercise on the expression of RANTES and CCR5 in obese humans. Fifty-seven adult nondiabetic subjects (17 lean and 40 obese) were enrolled in a 3-month supervised physical exercise. RANTES and CCR5 expressions were measured in PBMCs and subcutaneous adipose tissue before and after exercise. Circulating plasma levels of RANTES were also investigated. There was a significant increase in RANTES and CCR5 expression in the subcutaneous adipose tissue of obese compared to lean. In PBMCs, however, while the levels of RANTES mRNA and protein were comparable between both groups, CCR5 mRNA was downregulated in obese subjects (P < 0.05). Physical exercise significantly reduced the expression of both RANTES and CCR5 (P < 0.05) in the adipose tissue of obese individuals with a concomitant decrease in the levels of the inflammatory markers TNF-α, IL-6, and P-JNK. Circulating RANTES correlated negatively with anti-inflammatory IL-1ra (P = 0.001) and positively with proinflammatory IP-10 and TBARS levels (P < 0.05). Therefore, physical exercise may provide an effective approach for combating the deleterious effects associated with obesity through RANTES signaling in the adipose tissue. PMID:24895488

  5. Targeting adipose tissue

    PubMed Central

    2012-01-01

    Two different types of adipose tissues can be found in humans enabling them to respond to starvation and cold: white adipose tissue (WAT) is generally known and stores excess energy in the form of triacylglycerol (TG), insulates against cold, and serves as a mechanical cushion. Brown adipose tissue (BAT) helps newborns to cope with cold. BAT has the capacity to uncouple the mitochondrial respiratory chain, thereby generating heat rather than adenosine triphosphate (ATP). The previously widely held view was that BAT disappears rapidly after birth and is no longer present in adult humans. Using positron emission tomography (PET), however, it was recently shown that metabolically active BAT occurs in defined regions and scattered in WAT of the adult and possibly has an influence on whole-body energy homeostasis. In obese individuals adipose tissue is at the center of metabolic syndrome. Targeting of WAT by thiazolidinediones (TZDs), activators of peroxisome proliferator-activated receptor γ (PPARγ) a ‘master’ regulator of fat cell biology, is a current therapy for the treatment of type 2 diabetes. Since its unique capacity to increase energy consumption of the body and to dissipate surplus energy as heat, BAT offers new perspectives as a therapeutic target for the treatment of obesity and associated diseases such as type 2 diabetes and metabolic syndrome. Recent discoveries of new signaling pathways of BAT development give rise to new therapeutic possibilities in order to influence BAT content and activity. PMID:23102228

  6. Eosinophils Reduce Chronic Inflammation in Adipose Tissue by Secreting Th2 Cytokines and Promoting M2 Macrophages Polarization

    PubMed Central

    Zhang, Yi; Yang, Peng; Cui, Ran; Zhang, Manna; Li, Hong; Qian, Chunhua; Sheng, Chunjun; Qu, Shen; Bu, Le

    2015-01-01

    Obesity is now recognized as a low-grade, chronic inflammatory disease that is linked to a myriad of disorders including cardiovascular diseases, type 2 diabetes, and liver diseases. Recently it is found that eosinophils accelerate alternative activation macrophage (AAM) polarization by secreting Th2 type cytokines such as interleukin-4 and interleukin-13, thereby reducing metainflammation in adipose tissue. In this review, we focused on the role of eosinophils in regulating metabolic homeostasis and obesity. PMID:26688684

  7. Steroid biosynthesis in adipose tissue.

    PubMed

    Li, Jiehan; Papadopoulos, Vassilios; Vihma, Veera

    2015-11-01

    Tissue-specific expression of steroidogenic enzymes allows the modulation of active steroid levels in a local manner. Thus, the measurement of local steroid concentrations, rather than the circulating levels, has been recognized as a more accurate indicator of the steroid action within a specific tissue. Adipose tissue, one of the largest endocrine tissues in the human body, has been established as an important site for steroid storage and metabolism. Locally produced steroids, through the enzymatic conversion from steroid precursors delivered to adipose tissue, have been proven to either functionally regulate adipose tissue metabolism, or quantitatively contribute to the whole body's steroid levels. Most recently, it has been suggested that adipose tissue may contain the steroidogenic machinery necessary for the initiation of steroid biosynthesis de novo from cholesterol. This review summarizes the evidence indicating the presence of the entire steroidogenic apparatus in adipose tissue and discusses the potential roles of local steroid products in modulating adipose tissue activity and other metabolic parameters.

  8. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    PubMed Central

    2016-01-01

    We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD) or a 60% high-fat diet (HFD) with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh) mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects.

  9. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats

    PubMed Central

    2016-01-01

    We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD) or a 60% high-fat diet (HFD) with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh) mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects. PMID:27652270

  10. Teneligliptin Decreases Uric Acid Levels by Reducing Xanthine Dehydrogenase Expression in White Adipose Tissue of Male Wistar Rats.

    PubMed

    Moriya, Chihiro; Satoh, Hiroaki

    2016-01-01

    We investigated the effects of teneligliptin on uric acid metabolism in male Wistar rats and 3T3-L1 adipocytes. The rats were fed with a normal chow diet (NCD) or a 60% high-fat diet (HFD) with or without teneligliptin for 4 weeks. The plasma uric acid level was not significantly different between the control and teneligliptin groups under the NCD condition. However, the plasma uric acid level was significantly decreased in the HFD-fed teneligliptin treated rats compared to the HFD-fed control rats. The expression levels of xanthine dehydrogenase (Xdh) mRNA in liver and epididymal adipose tissue of NCD-fed rats were not altered by teneligliptin treatment. On the other hand, Xdh expression was reduced significantly in the epididymal adipose tissue of the HFD-fed teneligliptin treated rats compared with that of HFD-fed control rats, whereas Xdh expression in liver did not change significantly in either group. Furthermore, teneligliptin significantly decreased Xdh expression in 3T3-L1 adipocytes. DPP-4 treatment significantly increased Xdh expression in 3T3-L1 adipocytes. With DPP-4 pretreatment, teneligliptin significantly decreased Xdh mRNA expression compared to the DPP-4-treated 3T3-L1 adipocytes. In conclusion, our studies suggest that teneligliptin reduces uric acid levels by suppressing Xdh expression in epididymal adipose tissue of obese subjects. PMID:27652270

  11. Adipose tissue, diet and aging.

    PubMed

    Zamboni, Mauro; Rossi, Andrea P; Fantin, Francesco; Zamboni, Giulia; Chirumbolo, Salvatore; Zoico, Elena; Mazzali, Gloria

    2014-01-01

    Age related increase in body fat mass, visceral adipose tissue (AT), and ectopic fat deposition are strongly related to worse health conditions in the elderly. Moreover, with aging higher inflammation in adipose tissue may be observed and may contribute to inflammaging. Aging may significantly affect AT function by modifying the profile of adipokines produced by adipose cells, reducing preadipocytes number and their function and increasing AT macrophages infiltration. The initiating events of the inflammatory cascade promoting a greater AT inflammatory profile are not completely understood. Nutrients may determine changes in the amount of body fat, in its distribution as well as in AT function with some nutrients showing a pro-inflammatory effect on AT. Evidences are sparse and quite controversial with only a few studies performed in older subjects. Different dietary patterns are the result of the complex interaction of foods and nutrients, thus more studies are needed to evaluate the association between dietary patterns and changes in adipose tissue structure, distribution and function in the elderly.

  12. Bioengineering Beige Adipose Tissue Therapeutics.

    PubMed

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  13. Bioengineering Beige Adipose Tissue Therapeutics.

    PubMed

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  14. Bioengineering Beige Adipose Tissue Therapeutics

    PubMed Central

    Tharp, Kevin M.; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  15. Fat-reducing effects of dehydroepiandrosterone involve upregulation of ATGL and HSL expression, and stimulation of lipolysis in adipose tissue.

    PubMed

    Karbowska, Joanna; Kochan, Zdzislaw

    2012-11-01

    Dehydroepiandrosterone (DHEA) reduces body fat in rodents and humans, and increases glycerol release from isolated rat epididymal adipocytes and human visceral adipose tissue explants. It suggests that DHEA stimulates triglyceride hydrolysis in adipose tissue; however, the mechanisms underlying this action are still unclear. We examined the effects of DHEA on the expression of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), the key enzymes of lipolysis, in rat epididymal white adipose tissue (eWAT). Male Wistar rats were fed a diet containing 0.6% DHEA for 2 weeks and eWAT was analyzed for mRNA and protein expression of ATGL and HSL, as well as mRNA expression of peroxisome proliferator-activated receptor γ 2 (PPARγ2) and its downstream target fatty acid translocase (FAT). Glycerol release from eWAT explants and serum free fatty acids (FFA) were also measured. Rats that received DHEA gained less weight, had 23% lower eWAT mass and 31% higher serum FFA levels than controls. Cultured explants of eWAT from DHEA-treated rats released 81% more glycerol than those from control rats. DHEA administration upregulated ATGL mRNA (1.62-fold, P<0.05) and protein (1.78-fold, P<0.05) expression as well as augmented HSL mRNA levels (1.36-fold, P<0.05) and Ser660 phosphorylation of HSL (2.49-fold, P<0.05). PPARγ2 and FAT mRNA levels were also increased in DHEA-treated rats (1.61-fold, P<0.05 and 2.16-fold, P<0.05; respectively). Moreover, ATGL, HSL, and FAT mRNA levels were positively correlated with PPARγ2 expression. This study demonstrates that DHEA promotes lipid mobilization in adipose tissue by increasing the expression and activity of ATGL and HSL. The effects of DHEA appear to be mediated, at least in part, via PPARγ2 activation, which in turn upregulates ATGL and HSL gene expression.

  16. BMP7 Activates Brown Adipose Tissue and Reduces Diet-Induced Obesity Only at Subthermoneutrality

    PubMed Central

    Boon, Mariëtte R.; van den Berg, Sjoerd A. A.; Wang, Yanan; van den Bossche, Jan; Karkampouna, Sofia; Bauwens, Matthias; De Saint-Hubert, Marijke; van der Horst, Geertje; Vukicevic, Slobodan; de Winther, Menno P. J.; Havekes, Louis M.; Jukema, J. Wouter; Tamsma, Jouke T.; van der Pluijm, Gabri; van Dijk, Ko Willems; Rensen, Patrick C. N.

    2013-01-01

    Background/Aims Brown adipose tissue (BAT) dissipates energy stored in triglycerides as heat via the uncoupling protein UCP-1 and is a promising target to combat hyperlipidemia and obesity. BAT is densely innervated by the sympathetic nervous system, which increases BAT differentiation and activity upon cold exposure. Recently, Bone Morphogenetic Protein 7 (BMP7) was identified as an inducer of BAT differentiation. We aimed to elucidate the role of sympathetic activation in the effect of BMP7 on BAT by treating mice with BMP7 at varying ambient temperature, and assessed the therapeutic potential of BMP7 in combating obesity. Methods and Results High-fat diet fed lean C57Bl6/J mice were treated with BMP7 via subcutaneous osmotic minipumps for 4 weeks at 21°C or 28°C, the latter being a thermoneutral temperature in which sympathetic activation of BAT is largely diminished. At 21°C, BMP7 increased BAT weight, increased the expression of Ucp1, Cd36 and hormone-sensitive lipase in BAT, and increased total energy expenditure. BMP7 treatment markedly increased food intake without affecting physical activity. Despite that, BMP7 diminished white adipose tissue (WAT) mass, accompanied by increased expression of genes related to intracellular lipolysis in WAT. All these effects were blunted at 28°C. Additionally, BMP7 resulted in extensive ‘browning’ of WAT, as evidenced by increased expression of BAT markers and the appearance of whole clusters of brown adipocytes via immunohistochemistry, independent of environmental temperature. Treatment of diet-induced obese C57Bl6/J mice with BMP7 led to an improved metabolic phenotype, consisting of a decreased fat mass and liver lipids as well as attenuated dyslipidemia and hyperglycemia. Conclusion Together, these data show that BMP7-mediated recruitment and activation of BAT only occurs at subthermoneutral temperature, and is thus likely dependent on sympathetic activation of BAT, and that BMP7 may be a promising tool to

  17. Angiotensin II Reduces Lipoprotein Lipase Expression in Visceral Adipose Tissue via Phospholipase C β4 Depending on Feeding but Increases Lipoprotein Lipase Expression in Subcutaneous Adipose Tissue via c-Src.

    PubMed

    Uchiyama, Tsuyoshi; Tomono, Shoichi; Sato, Koichi; Nakamura, Tetsuya; Kurabayashi, Masahiko; Okajima, Fumikazu

    2015-01-01

    Metabolic syndrome is characterized by visceral adiposity, insulin resistance, high triglyceride (TG)- and low high-density lipoprotein cholesterol-levels, hypertension, and diabetes-all of which often cause cardiovascular and cerebrovascular diseases. It remains unclear, however, why visceral adiposity but not subcutaneous adiposity causes insulin resistance and other pathological situations. Lipoprotein lipase (LPL) catalyzes hydrolysis of TG in plasma lipoproteins. In the present study, we investigated whether the effects of angiotensin II (AngII) on TG metabolism are mediated through an effect on LPL expression. Adipose tissues were divided into visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) for comparison. AngII accelerated LPL expression in SAT but, on the contrary, suppressed its expression in VAT. In both SAT and VAT, AngII signaled through the same type 1 receptor. In SAT, AngII increased LPL expression via c-Src and p38 MAPK signaling. In VAT, however, AngII reduced LPL expression via the Gq class of G proteins and the subsequent phospholipase C β4 (PLCβ4), protein kinase C β1, nuclear factor κB, and inducible nitric oxide synthase signaling pathways. PLCβ4 small interfering RNA experiments showed that PLCβ4 expression is important for the AngII-induced LPL reduction in VAT, in which PLCβ4 expression increases in the evening and falls at night. Interestingly, PLCβ4 expression in VAT decreased with fasting, while AngII did not decrease LPL expression in VAT in a fasting state. In conclusion, AngII reduces LPL expression through PLCβ4, the expression of which is regulated by feeding in VAT, whereas AngII increases LPL expression in SAT. The different effects of AngII on LPL expression and, hence, TG metabolism in VAT and SAT may partly explain their different contributions to the development of metabolic syndrome. PMID:26447765

  18. Angiotensin II Reduces Lipoprotein Lipase Expression in Visceral Adipose Tissue via Phospholipase C β4 Depending on Feeding but Increases Lipoprotein Lipase Expression in Subcutaneous Adipose Tissue via c-Src

    PubMed Central

    Uchiyama, Tsuyoshi; Tomono, Shoichi; Sato, Koichi; Nakamura, Tetsuya; Kurabayashi, Masahiko; Okajima, Fumikazu

    2015-01-01

    Metabolic syndrome is characterized by visceral adiposity, insulin resistance, high triglyceride (TG)- and low high-density lipoprotein cholesterol-levels, hypertension, and diabetes—all of which often cause cardiovascular and cerebrovascular diseases. It remains unclear, however, why visceral adiposity but not subcutaneous adiposity causes insulin resistance and other pathological situations. Lipoprotein lipase (LPL) catalyzes hydrolysis of TG in plasma lipoproteins. In the present study, we investigated whether the effects of angiotensin II (AngII) on TG metabolism are mediated through an effect on LPL expression. Adipose tissues were divided into visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) for comparison. AngII accelerated LPL expression in SAT but, on the contrary, suppressed its expression in VAT. In both SAT and VAT, AngII signaled through the same type 1 receptor. In SAT, AngII increased LPL expression via c-Src and p38 MAPK signaling. In VAT, however, AngII reduced LPL expression via the Gq class of G proteins and the subsequent phospholipase C β4 (PLCβ4), protein kinase C β1, nuclear factor κB, and inducible nitric oxide synthase signaling pathways. PLCβ4 small interfering RNA experiments showed that PLCβ4 expression is important for the AngII-induced LPL reduction in VAT, in which PLCβ4 expression increases in the evening and falls at night. Interestingly, PLCβ4 expression in VAT decreased with fasting, while AngII did not decrease LPL expression in VAT in a fasting state. In conclusion, AngII reduces LPL expression through PLCβ4, the expression of which is regulated by feeding in VAT, whereas AngII increases LPL expression in SAT. The different effects of AngII on LPL expression and, hence, TG metabolism in VAT and SAT may partly explain their different contributions to the development of metabolic syndrome. PMID:26447765

  19. Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-{delta}

    SciTech Connect

    Yan Zhencheng; Liu Daoyan; Zhang Lili; Shen Chenyi; Ma Qunli; Cao Tingbing; Wang Lijuan; Nie Hai; Zidek, Walter; Tepel, Martin; Zhu Zhiming . E-mail: zhuzm@yahoo.com

    2007-03-09

    Obesity is one major cardiovascular risk factor. We tested effects of endurance exercise on cannabinoid receptor type 1 (CB1) and peroxisome proliferator-activated receptor-{delta} (PPAR-{delta})-dependent pathways in adipose tissue. Male Wistar rats were randomly assigned to standard laboratory chow or a high-fat diet without and with regular endurance exercise. Exercise in rats on high-fat diet significantly reduced visceral fat mass, blood pressure, and adipocyte size (each p < 0.05). Adipocyte hypertrophy induced by high-fat diet was accompanied by increased CB1 expression in adipose tissue, whereas exercise significantly reduced CB1 expression (each p < 0.05). CB1 receptor expression and adipocyte differentiation were directly regulated by PPAR-{delta}. Adipocyte hypertrophy induced by high-fat diet was accompanied by reduced PPAR-{delta}. Furthermore, selective silencing of PPAR-{delta} by RNA interference in 3T3-L1-preadipocyte cells significantly increased CB1 expression from 1.00 {+-} 0.06 (n = 3) to 1.91 {+-} 0.06 (n = 3; p < 0.01) and increased adipocyte differentiation, whereas adenovirus-mediated overexpression of PPAR-{delta} significantly reduced CB1 expression to 0.39 {+-} 0.03 (n = 3; p < 0.01) and reduced adipocyte differentiation. In the presence of the CB1 antagonist rimonabant adipocyte differentiation in stimulated 3T3 L1 preadipocyte cells was significantly reduced. The study indicates that high-fat diet-induced hypertrophy of adipocytes is associated with increased CB1 receptor expression which is directly regulated by PPAR-{delta}. Both CB1 and PPAR-{delta} are intimately involved in therapeutic interventions against a most important cardiovascular risk factor.

  20. Momordica charantia (Bitter Melon) reduces obesity-associated macrophage and mast cell infiltration as well as inflammatory cytokine expression in adipose tissues.

    PubMed

    Bao, Bin; Chen, Yan-Guang; Zhang, Lei; Na Xu, Yan Lin; Wang, Xin; Liu, Jian; Qu, Wei

    2013-01-01

    Obesity is a world-wide epidemic disease that correlates closely with type 2 diabetes and cardiovascular diseases. Obesity-induced chronic adipose tissue inflammation is now considered as a critical contributor to the above complications. Momordica charantia (bitter melon, BM) is a traditional Chinese food and well known for its function of reducing body weight gain and insulin resistance. However, it is unclear whether BM could alleviate adipose tissue inflammation caused by obesity. In this study, C57BL/6 mice were fed high fat diet (HFD) with or without BM for 12 weeks. BM-contained diets ameliorated HFD-induced obesity and insulin resistance. Histological and real-time PCR analysis demonstrated BM not only reduced macrophage infiltration into epididymal adipose tissues (EAT) and brown adipose tissues (BAT). Flow cytometry show that BM could modify the M1/M2 phenotype ratio of macrophages in EAT. Further study showed that BM lowered mast cell recruitments in EAT, and depressed pro-inflammatory cytokine monocyte chemotactic protein-1 (MCP-1) expression in EAT and BAT as well as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression in EAT. Finally, ELISA analysis showed BM-contained diets also normalized serum levels of the cytokines. In summary, in concert with ameliorated insulin resistance and fat deposition, BM reduced adipose tissue inflammation in diet-induced obese (DIO) mice.

  1. Momordica charantia (Bitter Melon) Reduces Obesity-Associated Macrophage and Mast Cell Infiltration as well as Inflammatory Cytokine Expression in Adipose Tissues

    PubMed Central

    Zhang, Lei; Na Xu, Yan Lin; Wang, Xin; Liu, Jian; Qu, Wei

    2013-01-01

    Obesity is a world-wide epidemic disease that correlates closely with type 2 diabetes and cardiovascular diseases. Obesity-induced chronic adipose tissue inflammation is now considered as a critical contributor to the above complications. Momordica charantia (bitter melon, BM) is a traditional Chinese food and well known for its function of reducing body weight gain and insulin resistance. However, it is unclear whether BM could alleviate adipose tissue inflammation caused by obesity. In this study, C57BL/6 mice were fed high fat diet (HFD) with or without BM for 12 weeks. BM-contained diets ameliorated HFD-induced obesity and insulin resistance. Histological and real-time PCR analysis demonstrated BM not only reduced macrophage infiltration into epididymal adipose tissues (EAT) and brown adipose tissues (BAT). Flow cytometry show that BM could modify the M1/M2 phenotype ratio of macrophages in EAT. Further study showed that BM lowered mast cell recruitments in EAT, and depressed pro-inflammatory cytokine monocyte chemotactic protein-1 (MCP-1) expression in EAT and BAT as well as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression in EAT. Finally, ELISA analysis showed BM-contained diets also normalized serum levels of the cytokines. In summary, in concert with ameliorated insulin resistance and fat deposition, BM reduced adipose tissue inflammation in diet-induced obese (DIO) mice. PMID:24358329

  2. Chemical chaperones reduce ER stress and adipose tissue inflammation in high fat diet-induced mouse model of obesity

    PubMed Central

    Chen, Yaqin; Wu, Zhihong; Zhao, Shuiping; Xiang, Rong

    2016-01-01

    Obesity, which is characteristic by chronic inflammation, is defined as abnormal or excessive fat accumulation in adipose tissues. Endoplasmic reticulum (ER) stress is increased in adipose tissue of obese state and is known to be strongly associated with chronic inflammation. The aim of this study was to investigate the effect of ER stress on adipokine secretion in obese mice and explore the potential mechanisms. In this study, we found high-fat diet induced-obesity contributed to strengthened ER stress and triggered chronic inflammation in adipose tissue. Chemical chaperones, 4-PBA and TUDCA, modified metabolic disorders and decreased the levels of inflammatory cytokines in obese mice fed a high-fat diet. The alleviation of ER stress is in accordance with the decrease of free cholesterol in adipose tissue. Furthermore chemical chaperones suppress NF-κB activity in adipose tissue of obese mice in vivo. In vitro studies showed IKK/NF-κB may be involved in the signal transduction of adipokine secretion dysfunction induced by ER stress. The present study revealed the possibility that inhibition of ER stress may be a novel drug target for metabolic abnormalities associated with obesity. Further studies are now needed to characterize the initial incentive of sustained ER stress in obese. PMID:27271106

  3. Adipose tissues and thyroid hormones

    PubMed Central

    Obregon, Maria-Jesus

    2014-01-01

    The maintenance of energy balance is regulated by complex homeostatic mechanisms, including those emanating from adipose tissue. The main function of the adipose tissue is to store the excess of metabolic energy in the form of fat. The energy stored as fat can be mobilized during periods of energy deprivation (hunger, fasting, diseases). The adipose tissue has also a homeostatic role regulating energy balance and functioning as endocrine organ that secretes substances that control body homeostasis. Two adipose tissues have been identified: white and brown adipose tissues (WAT and BAT) with different phenotype, function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown and white adipocytes have different ontogenetic origin and lineage and specific markers of WAT and BAT have been identified. “Brite” or beige adipose tissue has been identified in WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating the differentiation process in many tissues including the adipose tissue. Adipogenesis gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs, PPARs) that coordinately activate specific genes, resulting in the adipocyte phenotype. T3 regulates several genes involved in lipid mobilization and storage and in thermogenesis. Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function, transcription factors, the availability of nutrients. T3 acts directly through specific TREs in the gene promoters, regulating transcription factors. The deiodinases D3, D2, and D1 regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis. We examine the differences between BAT, WAT and brite/beige adipocytes and the process that lead to activation of UCP1 in WAT

  4. Secretory function of adipose tissue.

    PubMed

    Kuryszko, J; Sławuta, P; Sapikowski, G

    2016-01-01

    There are two kinds of adipose tissue in mammals: white adipose tissue - WAT and brown adipose tissue - BAT. The main function of WAT is accumulation of triacylglycerols whereas the function of BAT is heat generation. At present, WAT is also considered to be an endocrine gland that produces bioactive adipokines, which take part in glucose and lipid metabolism. Considering its endocrine function, the adipose tissue is not a homogeneous gland but a group of a few glands which act differently. Studies on the secretory function of WAT began in 1994 after discovery of leptin known as the satiation hormone, which regulates body energy homeostasis and maintainence of body mass. Apart from leptin, the following belong to adipokines: adiponectin, resistin, apelin, visfatin and cytokines: TNF and IL 6. Adiponectin is a polypeptide hormone of antidiabetic, anti-inflammatory and anti-atherogenic activity. It plays a key role in carbohydrate and fat metabolism. Resistin exerts a counter effect compared to adiponectin and its physiological role is to maintain fasting glycaemia. Visfatin stimulates insulin secretion and increases insulin sensitivity and glucose uptake by muscle cells and adipocytes. Apelin probably increases the insulin sensitivity of tissues. TNF evokes insulin resistance by blocking insulin receptors and inhibits insulin secretion. Approximately 30% of circulating IL 6 comes from adipose tissue. It causes insulin resistance by decreasing the expression of insulin receptors, decreases adipogenesis and adiponectin and visfatin secretion, and stimulates hepatic gluconeogenesis. In 2004, Bays introduced the notion of adiposopathy, defined as dysfunction of the adipose tissue, whose main feature is insulin and leptin resistance as well as the production of inflammatory cytokines: TNF and IL 6 and monocyte chemoattractant protein. This means that excess of adipose tissue, especially visceral adipose tissue, leads to the development of a chronic subclinical

  5. Chronic treatment with myo-inositol reduces white adipose tissue accretion and improves insulin sensitivity in female mice.

    PubMed

    Croze, Marine L; Vella, Roxane E; Pillon, Nicolas J; Soula, Hédi A; Hadji, Lilas; Guichardant, Michel; Soulage, Christophe O

    2013-02-01

    Type 2 diabetes is a complex disease characterized by a state of insulin resistance in peripheral tissues such as skeletal muscle, adipose tissue or liver. Some inositol isomers have been reported to possess insulin-mimetic activity and to be efficient in lowering blood glucose level. The aim of the present study was to assess in mice the metabolic effects of a chronic treatment with myo-inositol, the most common stereoisomer of inositol. Mice given myo-inositol treatment (0.9 or 1.2 mg g(-1) day(-1), 15 days, orally or intraperitoneally) exhibited an improved glucose tolerance due to a greater insulin sensitivity. Mice treated with myo-inositol exhibited a decreased white adipose tissue accretion (-33%, P<.005) compared with controls. The decrease in white adipose tissue deposition was due to a decrease in adipose cell volume (-33%, P<.05), while no change was noticed in total adipocyte number. In skeletal muscle, in vivo as well as ex vivo myo-inositol treatment increased protein kinase B/Akt phosphorylation under baseline and insulin-stimulated conditions, suggesting a synergistic action of myo-inositol treatment and insulin on proteins of the insulin signalling pathway. Myo-inositol could therefore constitute a viable nutritional strategy for the prevention and/or treatment of insulin resistance and type 2 diabetes.

  6. Maternal low protein diet reduces birth weight and increases brown adipose tissue UCP-1 and FNDC5 gene expression in male neonatal Sprague-Dawley rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown adipose tissue (BAT) plays an important role in regulating body weight (BW) by modifying thermogenesis. Maternal low protein (LP) diets reduce offspring birth weight. Increased BAT thermogenesis in utero may be one mechanism for the lower BW. However, whether maternal LP nutrition alters BAT...

  7. Adipose tissue macrophages: amicus adipem?

    PubMed Central

    Odegaard, Justin I.; Ganeshan, Kirthana; Chawla, Ajay

    2014-01-01

    Chronic overnutrition drives complex adaptations within both professional metabolic and bystander tissues that, despite intense investigation, are still poorly understood. Xu et al. (2013) now describe the unexpected ability of adipose tissue macrophages to buffer lipids released from obese adipocytes in a manner independent of inflammatory macrophage activation. PMID:24315364

  8. Adiposity is associated with DNA methylation profile in adipose tissue

    PubMed Central

    Agha, Golareh; Houseman, E Andres; Kelsey, Karl T; Eaton, Charles B; Buka, Stephen L; Loucks, Eric B

    2015-01-01

    Background: Adiposity is a risk factor for type 2 diabetes and cardiovascular disease, suggesting an important role for adipose tissue in the development of these conditions. The epigenetic underpinnings of adiposity are not well understood, and studies of DNA methylation in relation to adiposity have rarely focused on target adipose tissue. Objectives were to evaluate whether genome-wide DNA methylation profiles in subcutaneous adipose tissue and peripheral blood leukocytes are associated with measures of adiposity, including central fat mass, body fat distribution and body mass index. Methods: Participants were 106 men and women (mean age 47 years) from the New England Family Study. DNA methylation was evaluated using the Infinium HumanMethylation450K BeadChip. Adiposity phenotypes included dual-energy X-ray absorptiometry-assessed android fat mass, android:gynoid fat ratio and trunk:limb fat ratio, as well as body mass index. Results: Adipose tissue genome-wide DNA methylation profiles were associated with all four adiposity phenotypes, after adjusting for race, sex and current smoking (omnibus p-values <0.001). After further adjustment for adipose cell-mixture effects, associations with android fat mass, android:gynoid fat ratio, and trunk:limb fat ratio remained. In gene-specific analyses, adiposity phenotypes were associated with adipose tissue DNA methylation in several genes that are biologically relevant to the development of adiposity, such as AOC3, LIPE, SOD3, AQP7 and CETP. Blood DNA methylation profiles were not associated with adiposity, before or after adjustment for blood leukocyte cell mixture effects. Conclusion: Findings show that DNA methylation patterns in adipose tissue are associated with adiposity. PMID:25541553

  9. Triacylglycerol metabolism in adipose tissue

    PubMed Central

    Ahmadian, Maryam; Duncan, Robin E; Jaworski, Kathy; Sarkadi-Nagy, Eszter; Sul, Hei Sook

    2009-01-01

    Triacylglycerol (TAG) in adipose tissue serves as the major energy storage form in higher eukaryotes. Obesity, resulting from excess white adipose tissue, has increased dramatically in recent years resulting in a serious public health problem. Understanding of adipocyte-specific TAG synthesis and hydrolysis is critical to the development of strategies to treat and prevent obesity and its closely associated diseases, for example, Type 2 diabetes, hypertension and atherosclerosis. In this review, we present an overview of the major enzymes in TAG synthesis and lipolysis, including the recent discovery of a novel adipocyte TAG hydrolase. PMID:19194515

  10. Cholesterol-induced inflammation and macrophage accumulation in adipose tissue is reduced by a low carbohydrate diet in guinea pigs

    PubMed Central

    Aguilar, David; deOgburn, Ryan C; Volek, Jeff S

    2014-01-01

    BACKGROUND/OBJECTIVES The main objective of this study was to evaluate the effects of a high cholesterol (HC) dietary challenge on cholesterol tissue accumulation, inflammation, adipocyte differentiation, and macrophage infiltration in guinea pigs. A second objective was to assess whether macronutrient manipulation would reverse these metabolic alterations. MATERIALS/METHODS Male Hartley guinea pigs (10/group) were assigned to either low cholesterol (LC) (0.04g/100g) or high cholesterol (HC) (0.25g/100g) diets for six weeks. For the second experiment, 20 guinea pigs were fed the HC diet for six weeks and then assigned to either a low carbohydrate (CHO) diet (L-CHO) (10% energy from CHO) or a high CHO diet (H-CHO) (54% CHO) for an additional six weeks. RESULTS Higher concentrations of total (P < 0.005) and free (P < 0.05) cholesterol were observed in both adipose tissue and aortas of guinea pigs fed the HC compared to those in the LC group. In addition, higher concentrations of pro-inflammatory cytokines in the adipose tissue (P < 0.005) and lower concentrations of anti-inflammatory interleukin (IL)-10 were observed in the HC group (P < 0.05) compared to the LC group. Of particular interest, adipocytes in the HC group were smaller in size (P < 0.05) and showed increased macrophage infiltration compared to the LC group. When compared to the H-CHO group, lower concentrations of cholesterol in both adipose and aortas as well as lower concentrations of inflammatory cytokines in adipose tissue were observed in the L-CHO group (P < 0.05). In addition, guinea pigs fed the L-CHO exhibited larger adipose cells and lower macrophage infiltration compared to the H-CHO group. CONCLUSIONS The results of this study strongly suggest that HC induces metabolic dysregulation associated with inflammation in adipose tissue and that L-CHO is more effective than H-CHO in attenuating these detrimental effects. PMID:25489401

  11. Obesity and inflammation: reduced cytokine expression due to resveratrol in a human in vitro model of inflamed adipose tissue

    PubMed Central

    Zagotta, Ivana; Dimova, Elitsa Y.; Debatin, Klaus-Michael; Wabitsch, Martin; Kietzmann, Thomas; Fischer-Posovszky, Pamela

    2015-01-01

    Obesity is associated with an inflammatory status and linked with a number of pathophysiological complications among them cardiovascular disease, type 2 diabetes mellitus, or the metabolic syndrome. Resveratrol was proposed to improve obesity-related inflammatory problems, but the effect of resveratrol on cytokine expression in obesity is not completely understood. In this study, we used an in vitro model of human adipose tissue inflammation to examine the effects of resveratrol on the production of the inflammatory cytokines interleukin 6 (IL-6), IL-8, and monocyte chemoattractant protein 1 (MCP-1). We found that resveratrol reduced IL-6, IL-8, and MCP-1 levels in a concentration-dependent manner in adipocytes under inflammatory conditions. Further experiments showed that the action of resveratrol was mainly due to its NFκB inhibitory potential. Thus, our data support the concept that resveratrol can alleviate obesity-induced up-regulation of inflammatory cytokines providing a new insight toward novel treatment options in obesity. PMID:25926797

  12. [Adipose tissue inflammation and atherosclerosis].

    PubMed

    Shwarts, V

    2009-01-01

    Adipose tissue is an endocrine organ secreting more than 30 various adipokines which regulate wide spectrum of metabolic and immune processes. Obesity is associated with development of adipose tissue inflammation. This inflammation is characterized by infiltration with macrophages, alterations of adipokine secretion, development of insulin resistance. All these factors promote atherosclerosis. Inflammation of perivascular adipose tissue is especially important. Adipokines damage vascular endothelium via paracrine pathway. Cytokines released by macrophages as well as changes of adipokine secretion lead to endothelial dysfunction - the first stage of atherogenesis. Besides specific action curative factors used in obesity, metabolic syndrome, and diabetes mellitus also produce anti-inflammatory effect and thus diminish risk factors of cardiovascular diseases, rate of their development, and alleviate manifestations of atherosclerosis. Inflammation of adipose tissue is a connecting link between obesity and atherosclerosis. This review contains an outline of roles of various major adipokines in development of atherosclerosis as well as synopsis of anti-inflammatory and antiatherogenic effects of glytazones , metformin, rimonabant, statins, and of lowering of body weight.

  13. Hypothalamic control of adipose tissue.

    PubMed

    Stefanidis, A; Wiedmann, N M; Adler, E S; Oldfield, B J

    2014-10-01

    A detailed appreciation of the control of adipose tissue whether it be white, brown or brite/beige has never been more important to the development of a framework on which to build therapeutic strategies to combat obesity. This is because 1) the rate of fatty acid release into the circulation from lipolysis in white adipose tissue (WAT) is integrally important to the development of obesity, 2) brown adipose tissue (BAT) has now moved back to center stage with the realization that it is present in adult humans and, in its activated form, is inversely proportional to levels of obesity and 3) the identification and characterization of "brown-like" or brite/beige fat is likely to be one of the most exciting developments in adipose tissue biology in the last decade. Central to all of these developments is the role of the CNS in the control of different fat cell functions and central to CNS control is the integrative capacity of the hypothalamus. In this chapter we will attempt to detail key issues relevant to the structure and function of hypothalamic and downstream control of WAT and BAT and highlight the importance of developing an understanding of the neural input to brite/beige fat cells as a precursor to its recruitment as therapeutic target.

  14. Carotenoids in Adipose Tissue Biology and Obesity.

    PubMed

    Bonet, M Luisa; Canas, Jose A; Ribot, Joan; Palou, Andreu

    2016-01-01

    Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are β-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with β-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition. PMID:27485231

  15. Quantification of adipose tissue insulin sensitivity.

    PubMed

    Søndergaard, Esben; Jensen, Michael D

    2016-06-01

    In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and weaknesses.

  16. Assessment of brown adipose tissue function

    PubMed Central

    Virtue, Sam; Vidal-Puig, Antonio

    2013-01-01

    In this review we discuss practical considerations for the assessment of brown adipose tissue in rodent models, focusing on mice. The central aim of the review is to provide a critical appraisal of the utility of specialized techniques for assessing brown adipose tissue function in vivo. We cover several of the most common specialized methods for analysing brown adipose tissue function in vivo, including assessment of maximal thermogenic capacity by indirect calorimetry and the measurement of sympathetic tone to brown adipose tissue. While these techniques are powerful, they are not readily available to all laboratories; therefore we also cover several simple measurements that, particularly in combination, can be used to determine if a mouse model is likely to have alterations in brown adipose tissue function. Such techniques include: pair feeding, analysis of brown adipose tissue lipid content and mRNA and protein markers of brown adipose tissue activation. PMID:23760815

  17. Acute myocardial infarction does not affect functional characteristics of adipose-derived stem cells in rats, but reduces the number of stem cells in adipose tissue.

    PubMed

    Naaijkens, B A; Krijnen, P A J; Meinster, E; ter Horst, E N; Vo, K; Musters, R J P; Kamp, O; Niessen, H W M; Juffermans, L J M; van Dijk, A

    2015-12-01

    In most pre-clinical animal studies investigating stem cell therapy in acute myocardial infarction (AMI), the administered stem cells are isolated from healthy donors. In clinical practice, however, patients who suffer from AMI will receive autologous cells, for example using adipose-derived stem cells (ASC). During AMI, inflammation is induced and we hypothesized that this might affect characteristics of ASC. To investigate this, ASC were isolated from rat adipose tissue 1 day (1D group, n = 5) or 7 days (7D group, n = 6) post-AMI, and were compared with ASC from healthy control rats (Control group, n = 6) and sham-operated rats (Sham 1D group, n = 5). We found that significantly fewer ASC were present 1 day post-AMI in the stromal vascular fraction (SVF), determined by a colony-forming-unit assay (p < 0.001 vs. Control and 7D). These data were confirmed by flow cytometry, showing fewer CD90-positive cells in SVF of the 1D group. When cultured, no differences were found in proliferation rate and cell size between the groups in the first three passages. Also, no difference in the differentiation capacity of ASC was found. In conclusion, it was shown that significantly fewer stem cells were present in the SVF 1 day post-AMI; however, the stem cells that were present showed no functional differences.

  18. Selective suppression of adipose tissue apoE expression impacts systemic metabolic phenotype and adipose tissue inflammation.

    PubMed

    Huang, Zhi H; Reardon, Catherine A; Getz, Godfrey S; Maeda, Nobuyo; Mazzone, Theodore

    2015-02-01

    apoE is a multi-functional protein expressed in several cell types and in several organs. It is highly expressed in adipose tissue, where it is important for modulating adipocyte lipid flux and gene expression in isolated adipocytes. In order to investigate a potential systemic role for apoE that is produced in adipose tissue, mice were generated with selective suppression of adipose tissue apoE expression and normal circulating apoE levels. These mice had less adipose tissue with smaller adipocytes containing fewer lipids, but no change in adipocyte number compared with control mice. Adipocyte TG synthesis in the presence of apoE-containing VLDL was markedly impaired. Adipocyte caveolin and leptin gene expression were reduced, but adiponectin, PGC-1, and CPT-1 gene expression were increased. Mice with selective suppression of adipose tissue apoE had lower fasting lipid, insulin, and glucose levels, and glucose and insulin tolerance tests were consistent with increased insulin sensitivity. Lipid storage in muscle, heart, and liver was significantly reduced. Adipose tissue macrophage inflammatory activation was markedly diminished with suppression of adipose tissue apoE expression. Our results establish a novel effect of adipose tissue apoE expression, distinct from circulating apoE, on systemic substrate metabolism and adipose tissue inflammatory state.

  19. Adipose tissue immunity and cancer.

    PubMed

    Catalán, Victoria; Gómez-Ambrosi, Javier; Rodríguez, Amaia; Frühbeck, Gema

    2013-10-02

    Inflammation and altered immune response are important components of obesity and contribute greatly to the promotion of obesity-related metabolic complications, especially cancer development. Adipose tissue expansion is associated with increased infiltration of various types of immune cells from both the innate and adaptive immune systems. Thus, adipocytes and infiltrating immune cells secrete pro-inflammatory adipokines and cytokines providing a microenvironment favorable for tumor growth. Accumulation of B and T cells in adipose tissue precedes macrophage infiltration causing a chronic low-grade inflammation. Phenotypic switching toward M1 macrophages and Th1 T cells constitutes an important mechanism described in the obese state correlating with increased tumor growth risk. Other possible synergic mechanisms causing a dysfunctional adipose tissue include fatty acid-induced inflammation, oxidative stress, endoplasmic reticulum stress, and hypoxia. Recent investigations have started to unravel the intricacy of the cross-talk between tumor cell/immune cell/adipocyte. In this sense, future therapies should take into account the combination of anti-inflammatory approaches that target the tumor microenvironment with more sophisticated and selective anti-tumoral drugs.

  20. Adipose tissue as an endocrine organ.

    PubMed

    Galic, Sandra; Oakhill, Jon S; Steinberg, Gregory R

    2010-03-25

    Obesity is characterized by increased storage of fatty acids in an expanded adipose tissue mass and is closely associated with the development of insulin resistance in peripheral tissues such as skeletal muscle and the liver. In addition to being the largest source of fuel in the body, adipose tissue and resident macrophages are also the source of a number of secreted proteins. Cloning of the obese gene and the identification of its product, leptin, was one of the first discoveries of an adipocyte-derived signaling molecule and established an important role for adipose tissue as an endocrine organ. Since then, leptin has been found to have a profound role in the regulation of whole-body metabolism by stimulating energy expenditure, inhibiting food intake and restoring euglycemia, however, in most cases of obesity leptin resistance limits its biological efficacy. In contrast to leptin, adiponectin secretion is often diminished in obesity. Adiponectin acts to increase insulin sensitivity, fatty acid oxidation, as well as energy expenditure and reduces the production of glucose by the liver. Resistin and retinol binding protein-4 are less well described. Their expression levels are positively correlated with adiposity and they are both implicated in the development of insulin resistance. More recently it has been acknowledged that macrophages are an important part of the secretory function of adipose tissue and the main source of inflammatory cyokines, such as TNFalpha and IL-6. An increase in circulating levels of these macrophage-derived factors in obesity leads to a chronic low-grade inflammatory state that has been linked to the development of insulin resistance and diabetes. These proteins commonly known as adipokines are central to the dynamic control of energy metabolism, communicating the nutrient status of the organism with the tissues responsible for controlling both energy intake and expenditure as well as insulin sensitivity. PMID:19723556

  1. Adipose tissues as endocrine target organs.

    PubMed

    Lanthier, Nicolas; Leclercq, Isabelle A

    2014-08-01

    In the context of obesity, white adipocyte hypertrophy and adipose tissue macrophage infiltration result in the production of pro-inflammatory adipocytokines inducing insulin resistance locally but also in distant organs and contributing to low grade inflammatory status associated with the metabolic syndrome. Visceral adipose tissue is believed to play a prominent role. Brown and beige adipose tissues are capable of energy dissipation, but also of cytokine production and their role in dysmetabolic syndrome is emerging. This review focuses on metabolic and inflammatory changes in these adipose depots and contribution to metabolic syndrome. Also we will review surgical and pharmacological procedures to target adiposity as therapeutic interventions to treat obesity-associated disorders.

  2. Regulation of systemic energy homeostasis by serotonin in adipose tissues.

    PubMed

    Oh, Chang-Myung; Namkung, Jun; Go, Younghoon; Shong, Ko Eun; Kim, Kyuho; Kim, Hyeongseok; Park, Bo-Yoon; Lee, Ho Won; Jeon, Yong Hyun; Song, Junghan; Shong, Minho; Yadav, Vijay K; Karsenty, Gerard; Kajimura, Shingo; Lee, In-Kyu; Park, Sangkyu; Kim, Hail

    2015-01-01

    Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis. PMID:25864946

  3. Regulation of systemic energy homeostasis by serotonin in adipose tissues.

    PubMed

    Oh, Chang-Myung; Namkung, Jun; Go, Younghoon; Shong, Ko Eun; Kim, Kyuho; Kim, Hyeongseok; Park, Bo-Yoon; Lee, Ho Won; Jeon, Yong Hyun; Song, Junghan; Shong, Minho; Yadav, Vijay K; Karsenty, Gerard; Kajimura, Shingo; Lee, In-Kyu; Park, Sangkyu; Kim, Hail

    2015-04-13

    Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis.

  4. Sex differences in adipose tissue

    PubMed Central

    Fuente-Martín, Esther; Argente-Arizón, Pilar; Ros, Purificación; Argente, Jesús; Chowen, Julie A

    2013-01-01

    Obesity and its associated secondary complications are active areas of investigation in search of effective treatments. As a result of this intensified research numerous differences between males and females at all levels of metabolic control have come to the forefront. These differences include not only the amount and distribution of adipose tissue, but also differences in its metabolic capacity and functions between the sexes. Here, we review some of the recent advances in our understanding of these dimorphisms and emphasize the fact that these differences between males and females must be taken into consideration in hopes of obtaining successful treatments for both sexes. PMID:23991358

  5. Non-invasive Assessments of Adipose Tissue Metabolism In Vitro.

    PubMed

    Abbott, Rosalyn D; Borowsky, Francis E; Quinn, Kyle P; Bernstein, David L; Georgakoudi, Irene; Kaplan, David L

    2016-03-01

    Adipose tissue engineering is a diverse area of research where the developed tissues can be used to study normal adipose tissue functions, create disease models in vitro, and replace soft tissue defects in vivo. Increasing attention has been focused on the highly specialized metabolic pathways that regulate energy storage and release in adipose tissues which affect local and systemic outcomes. Non-invasive, dynamic measurement systems are useful to track these metabolic pathways in the same tissue model over time to evaluate long term cell growth, differentiation, and development within tissue engineering constructs. This approach reduces costs and time in comparison to more traditional destructive methods such as biochemical and immunochemistry assays and proteomics assessments. Towards this goal, this review will focus on important metabolic functions of adipose tissues and strategies to evaluate them with non-invasive in vitro methods. Current non-invasive methods, such as measuring key metabolic markers and endogenous contrast imaging will be explored.

  6. [Cancer cachexia and white adipose tissue browning].

    PubMed

    Zhang, S T; Yang, H M

    2016-08-01

    Cancer cachexia occurs in a majority of advanced cancer patients. These patients with impaired physical function are unable to tolerance cancer treatment well and have a significantly reduced survival rate. Currently, there is no effective clinical treatment available for cancer cachexia, therefore, it is necessary to clarify the molecular mechanisms of cancer cachexia, moreover, new therapeutic targets for cancer cachexia treatment are urgently needed. Very recent studies suggest that, during cancer cachexia, white adipose tissue undergo a 'browning' process, resulting in increased lipid mobilization and energy expenditure, which may be necessary for the occurrence of cancer cachexia. In this article, we summarize the definition and characteristics of cancer cachexia and adipose tissue 'browning', then, we discuss the new study directions presented in latest research. PMID:27531474

  7. Characterization and comparison of adipose tissue-derived cells from human subcutaneous and omental adipose tissues.

    PubMed

    Toyoda, Mito; Matsubara, Yoshinori; Lin, Konghua; Sugimachi, Keizou; Furue, Masutaka

    2009-10-01

    Different fat depots contribute differently to disease and function. These differences may be due to the regional variation in cell types and inherent properties of fat cell progenitors. To address the differences of cell types in the adipose tissue from different depots, the phenotypes of freshly isolated adipose tissue-derived cells (ATDCs) from subcutaneous (SC) and omental (OM) adipose tissues were compared using flow cytometry. Our results showed that CD31(-)CD34(+)CD45(-)CD90(-)CD105(-)CD146(+) population, containing vascular smooth muscle cells and pericytes, was specifically defined in the SC adipose tissue while no such population was observed in OM adipose tissue. On the other hand, CD31(-)CD34(+)CD45(-)CD90(-)CD105(-)CD146(-) population, which is an undefined cell population, were found solely in OM adipose tissue. Overall, the SC adipose tissue contained more ATDCs than OM adipose tissue, while OM adipose tissue contained more blood-derived cells. Regarding to the inherent properties of fat cell progenitors from the two depots, adipose-derived stem cells (ADSCs) from SC had higher capacity to differentiate into both adipogenic and osteogenic lineages than those from OM, regardless of that the proliferation rates of ADSCs from both depots were similar. The higher differentiation capacity of ADSCs from SC adipose tissue suggests that SC tissue is more suitable cell source for regenerative medicine than OM adipose tissue.

  8. Adipose Tissue: Sanctuary for HIV/SIV Persistence and Replication.

    PubMed

    Pallikkuth, Suresh; Mohan, Mahesh

    2015-12-01

    This commentary highlights new findings from a recent study identifying adipose tissue as a potential HIV reservoir and a major site of inflammation during chronic human/simian immunodeficiency virus (HIV/SIV) infection. A concise discussion about upcoming challenges and new research avenues for reducing chronic adipose inflammation during HIV/SIV infection is presented.

  9. Brown adipose tissue and bone

    PubMed Central

    Lidell, M E; Enerbäck, S

    2015-01-01

    Brown adipose tissue (BAT) is capable of transforming chemically stored energy, in the form of triglycerides, into heat. Recent studies have shown that metabolically active BAT is present in a large proportion of adult humans, where its activity correlates with a favorable metabolic status. Hence, the tissue is now regarded as an interesting target for therapies against obesity and associated diseases such as type 2 diabetes, the hypothesis being that an induction of BAT would be beneficial for these disease states. Apart from the association between BAT activity and a healthier metabolic status, later studies have also shown a positive correlation between BAT volume and both bone cross-sectional area and bone mineral density, suggesting that BAT might stimulate bone anabolism. The aim of this review is to give the reader a brief overview of the BAT research field and to summarize and discuss recent findings regarding BAT being a potential player in bone metabolism. PMID:27152171

  10. Adipose tissue: cell heterogeneity and functional diversity.

    PubMed

    Esteve Ràfols, Montserrat

    2014-02-01

    There are two types of adipose tissue in the body whose function appears to be clearly differentiated. White adipose tissue stores energy reserves as fat, whereas the metabolic function of brown adipose tissue is lipid oxidation to produce heat. A good balance between them is important to maintain energy homeostasis. The concept of white adipose tissue has radically changed in the past decades, and is now considered as an endocrine organ that secretes many factors with autocrine, paracrine, and endocrine functions. In addition, we can no longer consider white adipose tissue as a single tissue, because it shows different metabolic profiles in its different locations, with also different implications. Although the characteristic cell of adipose tissue is the adipocyte, this is not the only cell type present in adipose tissue, neither the most abundant. Other cell types in adipose tissue described include stem cells, preadipocytes, macrophages, neutrophils, lymphocytes, and endothelial cells. The balance between these different cell types and their expression profile is closely related to maintenance of energy homeostasis. Increases in adipocyte size, number and type of lymphocytes, and infiltrated macrophages are closely related to the metabolic syndrome diseases. The study of regulation of proliferation and differentiation of preadipocytes and stem cells, and understanding of the interrelationship between the different cell types will provide new targets for action against these diseases. PMID:23834768

  11. Adipose tissue: cell heterogeneity and functional diversity.

    PubMed

    Esteve Ràfols, Montserrat

    2014-02-01

    There are two types of adipose tissue in the body whose function appears to be clearly differentiated. White adipose tissue stores energy reserves as fat, whereas the metabolic function of brown adipose tissue is lipid oxidation to produce heat. A good balance between them is important to maintain energy homeostasis. The concept of white adipose tissue has radically changed in the past decades, and is now considered as an endocrine organ that secretes many factors with autocrine, paracrine, and endocrine functions. In addition, we can no longer consider white adipose tissue as a single tissue, because it shows different metabolic profiles in its different locations, with also different implications. Although the characteristic cell of adipose tissue is the adipocyte, this is not the only cell type present in adipose tissue, neither the most abundant. Other cell types in adipose tissue described include stem cells, preadipocytes, macrophages, neutrophils, lymphocytes, and endothelial cells. The balance between these different cell types and their expression profile is closely related to maintenance of energy homeostasis. Increases in adipocyte size, number and type of lymphocytes, and infiltrated macrophages are closely related to the metabolic syndrome diseases. The study of regulation of proliferation and differentiation of preadipocytes and stem cells, and understanding of the interrelationship between the different cell types will provide new targets for action against these diseases.

  12. Adipose and mammary epithelial tissue engineering.

    PubMed

    Zhu, Wenting; Nelson, Celeste M

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast.

  13. Mitochondria and endocrine function of adipose tissue.

    PubMed

    Medina-Gómez, Gema

    2012-12-01

    Excess of adipose tissue is accompanied by an increase in the risk of developing insulin resistance, type 2 diabetes (T2D) and other complications. Nevertheless, total or partial absence of fat or its accumulation in other tissues (lipotoxicity) is also associated to these complications. White adipose tissue (WAT) was traditionally considered a metabolically active storage tissue for lipids while brown adipose tissue (BAT) was considered as a thermogenic adipose tissue with higher oxidative capacity. Nowadays, WAT is also considered an endocrine organ that contributes to energy homeostasis. Experimental evidence tends to link the malfunction of adipose mitochondria with the development of obesity and T2D. This review discusses the importance of mitochondrial function in adipocyte biology and the increased evidences of mitochondria dysfunction in these epidemics. New strategies targeting adipocyte mitochondria from WAT and BAT are also discussed as therapies against obesity and its complications in the near future. PMID:23168280

  14. Adipose and mammary epithelial tissue engineering

    PubMed Central

    Zhu, Wenting; Nelson, Celeste M.

    2013-01-01

    Breast reconstruction is a type of surgery for women who have had a mastectomy, and involves using autologous tissue or prosthetic material to construct a natural-looking breast. Adipose tissue is the major contributor to the volume of the breast, whereas epithelial cells comprise the functional unit of the mammary gland. Adipose-derived stem cells (ASCs) can differentiate into both adipocytes and epithelial cells and can be acquired from autologous sources. ASCs are therefore an attractive candidate for clinical applications to repair or regenerate the breast. Here we review the current state of adipose tissue engineering methods, including the biomaterials used for adipose tissue engineering and the application of these techniques for mammary epithelial tissue engineering. Adipose tissue engineering combined with microfabrication approaches to engineer the epithelium represents a promising avenue to replicate the native structure of the breast. PMID:23628872

  15. Hepatic oleate regulates adipose tissue lipogenesis and fatty acid oxidation.

    PubMed

    Burhans, Maggie S; Flowers, Matthew T; Harrington, Kristin R; Bond, Laura M; Guo, Chang-An; Anderson, Rozalyn M; Ntambi, James M

    2015-02-01

    Hepatic steatosis is associated with detrimental metabolic phenotypes including enhanced risk for diabetes. Stearoyl-CoA desaturases (SCDs) catalyze the synthesis of MUFAs. In mice, genetic ablation of SCDs reduces hepatic de novo lipogenesis (DNL) and protects against diet-induced hepatic steatosis and adiposity. To understand the mechanism by which hepatic MUFA production influences adipose tissue stores, we created two liver-specific transgenic mouse models in the SCD1 knockout that express either human SCD5 or mouse SCD3, that synthesize oleate and palmitoleate, respectively. We demonstrate that hepatic de novo synthesized oleate, but not palmitoleate, stimulate hepatic lipid accumulation and adiposity, reversing the protective effect of the global SCD1 knockout under lipogenic conditions. Unexpectedly, the accumulation of hepatic lipid occurred without induction of the hepatic DNL program. Changes in hepatic lipid composition were reflected in plasma and in adipose tissue. Importantly, endogenously synthesized hepatic oleate was associated with suppressed DNL and fatty acid oxidation in white adipose tissue. Regression analysis revealed a strong correlation between adipose tissue lipid fuel utilization and hepatic and adipose tissue lipid storage. These data suggest an extrahepatic mechanism where endogenous hepatic oleate regulates lipid homeostasis in adipose tissues.

  16. Imaging white adipose tissue with confocal microscopy.

    PubMed

    Martinez-Santibañez, Gabriel; Cho, Kae Won; Lumeng, Carey N

    2014-01-01

    Adipose tissue is composed of a variety of cell types that include mature adipocytes, endothelial cells, fibroblasts, adipocyte progenitors, and a range of inflammatory leukocytes. These cells work in concert to promote nutrient storage in adipose tissue depots and vary widely based on location. In addition, overnutrition and obesity impart significant changes in the architecture of adipose tissue that are strongly associated with metabolic dysfunction. Recent studies have called attention to the importance of adipose tissue microenvironments in regulating adipocyte function and therefore require techniques that preserve cellular interactions and permit detailed analysis of three-dimensional structures in fat. This chapter summarizes our experience with the use of laser scanning confocal microscopy for imaging adipose tissue in rodents.

  17. Agonists of the G protein-coupled receptor 109A-mediated pathway promote antilipolysis by reducing serine residue 563 phosphorylation of hormone-sensitive lipase in bovine adipose tissue explants.

    PubMed

    Kenéz, A; Locher, L; Rehage, J; Dänicke, S; Huber, K

    2014-01-01

    A balanced lipolytic regulation in adipose tissues based on fine-tuning of prolipolytic and antilipolytic pathways is of vital importance to maintain the metabolic health in dairy cows. Antilipolytic pathways, such as the G protein-coupled receptor 109A (GPR109A)-mediated pathway and the insulin signaling pathway in bovine adipose tissues may be involved in prohibiting excessive lipomobilization by reducing triglycerol hydrolysis. This study aimed to evaluate the in vitro antilipolytic potential of the mentioned pathways in bovine adipose tissue explants. Therefore, subcutaneous and retroperitoneal adipose tissue samples (approximately 100mg) of German Holstein cows were treated for 90 min ex vivo with nicotinic acid (2, 8, or 32 μM), nicotinamide (2, 8, or 32 μM), β-hydroxybutyrate (0.2, 1, or 5mM), or insulin (12 mU/L), with a concurrent lipolytic challenge provoked with 1 μM isoproterenol. Lipolytic and antilipolytic responses of the adipose tissues were assessed by measuring free glycerol and nonesterified fatty acid release. To identify molecular components of the investigated antilipolytic pathways, protein abundance of GPR109A and the extent of hormone-sensitive lipase (HSL) phosphorylation at serine residue 563 were detected by Western blotting. Treatment with nicotinic acid or β-hydroxybutyrate decreased the lipolytic response in adipose tissue explants and concurrently reduced the extent of HSL phosphorylation, but treatment with nicotinamide or insulin did not. Subcutaneous adipose tissue constitutively expressed more GPR109A protein, but no other depot-specific differences were observed. This study provides evidence that the GPR109A-mediated pathway is functionally existent in bovine adipose tissues, and confirms that HSL phosphorylation at serine residue 563 is also important in antilipolytic regulation in vitro. This antilipolytic pathway may be involved in a balanced lipid mobilization in the dairy cow.

  18. Adipose tissue and skeletal muscle blood flow during mental stress

    SciTech Connect

    Linde, B.; Hjemdahl, P.; Freyschuss, U.; Juhlin-Dannfelt, A.

    1989-01-01

    Mental stress (a modified Stroop color word conflict test (CWT)) increased adipose tissue blood flow (ATBF; 133Xe clearance) by 70% and reduced adipose tissue vascular resistance (ATR) by 25% in healthy male volunteers. The vasculatures of adipose tissue (abdomen as well as thigh), skeletal muscle of the calf (133Xe clearance), and the entire calf (venous occlusion plethysmography) responded similarly. Arterial epinephrine (Epi) and glycerol levels were approximately doubled by stress. Beta-Blockade by metoprolol (beta 1-selective) or propranolol (nonselective) attenuated CWT-induced tachycardia similarly. Metoprolol attenuated stress-induced vasodilation in the calf and tended to do so in adipose tissue. Propranolol abolished vasodilation in the calf and resulted in vasoconstriction during CWT in adipose tissue. Decreases in ATR, but not in skeletal muscle or calf vascular resistances, were correlated to increases in arterial plasma glycerol (r = -0.42, P less than 0.05), whereas decreases in skeletal muscle and calf vascular resistances, but not in ATR, were correlated to increases in arterial Epi levels (r = -0.69, P less than 0.01; and r = -0.43, P less than 0.05, respectively). The results suggest that mental stress increases nutritive blood flow in adipose tissue and skeletal muscle considerably, both through the elevation of perfusion pressure and via vasodilatation. Withdrawal of vasoconstrictor nerve activity, vascular beta 2-adrenoceptor stimulation by circulating Epi, and metabolic mechanisms (in adipose tissue) may contribute to the vasodilatation.

  19. Proline oxidase–adipose triglyceride lipase pathway restrains adipose cell death and tissue inflammation

    PubMed Central

    Lettieri Barbato, D; Aquilano, K; Baldelli, S; Cannata, S M; Bernardini, S; Rotilio, G; Ciriolo, M R

    2014-01-01

    The nutrient-sensing lipolytic enzyme adipose triglyceride lipase (ATGL) has a key role in adipose tissue function, and alterations in its activity have been implicated in many age-related metabolic disorders. In adipose tissue reduced blood vessel density is related to hypoxia state, cell death and inflammation. Here we demonstrate that adipocytes of poorly vascularized enlarged visceral adipose tissue (i.e. adipose tissue of old mice) suffer from limited nutrient delivery. In particular, nutrient starvation elicits increased activity of mitochondrial proline oxidase/dehydrogenase (POX/PRODH) that is causal in triggering a ROS-dependent induction of ATGL. We demonstrate that ATGL promotes the expression of genes related to mitochondrial oxidative metabolism (peroxisome proliferator-activated receptor-α, peroxisome proliferator-activated receptor-γ coactivator-1α), thus setting a metabolic switch towards fat utilization that supplies energy to starved adipocytes and prevents cell death, as well as adipose tissue inflammation. Taken together, these results identify ATGL as a stress resistance mediator in adipocytes, restraining visceral adipose tissue dysfunction typical of age-related metabolic disorders. PMID:24096872

  20. Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications

    PubMed Central

    Togliatto, G; Dentelli, P; Gili, M; Gallo, S; Deregibus, C; Biglieri, E; Iavello, A; Santini, E; Rossi, C; Solini, A; Camussi, G; Brizzi, M F

    2016-01-01

    Background/Objectives: Soluble factors and cell-derived extracellular vesicles (EVs) are crucial tissue repair mediators in cell-based therapy. In the present study, we investigate the therapeutic impact of EVs released by adipose tissue-derived stem cells (ASCs) recovered from obese subjects' visceral and subcutaneous tissues. Methods: ASCs were recovered from 10 obese (oASCs) and 6 non-obese (nASCs) participants and characterized. In selected experiments, nASCs and oASCs were cultured with palmitic acid (PA) or high glucose (HG), respectively. EVs from obese (oEVs) and non-obese (nEVs) subjects' visceral and subcutaneous ASCs were collected after ultracentrifugation and analyzed for their cargo: microRNA-126 (miR-126), vascular endothelial growth factor (VEGF), and matrix metalloproteinase 2 (MMP-2), and for their biological effects on endothelial cells (ECs). Western blotting analysis and loss- and gain-of function experiments were performed. Results: oEVs show impaired angiogenic potential compared with nEVs. This effect depends on EV cargo: reduced content of VEGF, MMP-2 and, more importantly, miR-126. We demonstrate, using gain- and loss-of-function experiments, that this reduced miR-126 content leads to Spred1 upregulation and the inhibition of the extracellular signal–regulated kinase 1/2 mitogen-activated protein kinase pathway in ECs. We also show that PA treatment of nASCs translates into the release of EVs that recapitulate oEV cargo. Moreover, HG treatment of oASCs further reduces miR-126 EV content and EV-mediated in vitro angiogenesis. Finally, impaired pro-angiogenic potential is also detected in EVs released from obese subcutaneous adipose tissue-derived ASCs. Conclusions: These results indicate that obesity impacts on EV pro-angiogenic potential and may raise concerns about the use of adipose tissue-derived EVs in cell-based therapy in the obese setting. PMID:26122028

  1. The adipose organ: morphological perspectives of adipose tissues.

    PubMed

    Cinti, S

    2001-08-01

    Anatomically, an organ is defined as a series of tissues which jointly perform one or more interconnected functions. The adipose organ qualifies for this definition as it is made up of two tissue types, the white and brown adipose tissues, which collaborate in partitioning the energy contained in lipids between thermogenesis and the other metabolic functions. In rats and mice the adipose organ consists of several subcutaneous and visceral depots. Some areas of these depots are brown and correspond to brown adipose tissue, while many are white and correspond to white adipose tissue. The number of brown adipocytes found in white areas varies with age, strain of animal and environmental conditions. Brown and white adipocyte precursors are morphologically dissimilar. Together with a rich vascular supply, brown areas receive abundant noradrenergic parenchymal innervation. The gross anatomy and histology of the organ vary considerably in different physiological (cold acclimation, warm acclimation, fasting) and pathological conditions such as obesity; many important genes, such as leptin and uncoupling protein-1, are also expressed very differently in the two cell types. These basic mechanisms should be taken into account when addressing the physiopathology of obesity and its treatment. PMID:11681806

  2. Macrophage Migration Inhibitory Factor in Acute Adipose Tissue Inflammation.

    PubMed

    Kim, Bong-Sung; Rongisch, Robert; Hager, Stephan; Grieb, Gerrit; Nourbakhsh, Mahtab; Rennekampff, Hans-Oliver; Bucala, Richard; Bernhagen, Juergen; Pallua, Norbert

    2015-01-01

    Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine and has been implicated in inflammatory diseases. However, little is known about the regulation of MIF in adipose tissue and its impact on wound healing. The aim of this study was to investigate MIF expression in inflamed adipose and determine its role in inflammatory cell recruitment and wound healing. Adipose tissue was harvested from subcutaneous adipose tissue layers of 24 healthy subjects and from adipose tissue adjacent to acutely inflamed wounds of 21 patients undergoing wound debridement. MIF protein and mRNA expression were measured by ELISA and RT-PCR. Cell-specific MIF expression was visualized by immunohistochemistry. The functional role of MIF in cell recruitment was investigated by a chemotaxis assay and by flow cytometry of labeled macrophages that were injected into Mif-/-and wildtype mice. Wound healing was evaluated by an in vitro scratch assay on human fibroblast monolayers. MIF protein levels of native adipose tissue and supernatants from acutely inflamed wounds were significantly elevated when compared to healthy controls. MIF mRNA expression was increased in acutely inflamed adipose tissue indicating the activation of MIF gene transcription in response to adipose tissue inflammation. MIF is expressed in mature adipocytes and in infiltrated macrophages. Peripheral blood mononuclear cell migration was significantly increased towards supernatants derived from inflamed adipose tissue. This effect was partially abrogated by MIF-neutralizing antibodies. Moreover, when compared to wildtype mice, Mif-/-mice showed reduced infiltration of labeled macrophages into LPS-stimulated epididymal fat pads in vivo. Finally, MIF antibodies partially neutralized the detrimental effect of MIF on fibroblast wound healing. Our results indicate that increased MIF expression and rapid activation of the MIF gene in fat tissue adjacent to acute wound healing disorders may play a role in cell

  3. Brown adipose tissue, thermogenesis, angiogenesis: pathophysiological aspects.

    PubMed

    Honek, Jennifer; Lim, Sharon; Fischer, Carina; Iwamoto, Hideki; Seki, Takahiro; Cao, Yihai

    2014-07-01

    The number of obese and overweight individuals is globally rising, and obesity-associated disorders such as type 2 diabetes, cardiovascular disease and certain types of cancer are among the most common causes of death. While white adipose tissue is the key player in the storage of energy, active brown adipose tissue expends energy due to its thermogenic capacity. Expanding and activating brown adipose tissue using pharmacological approaches therefore might offer an attractive possibility for therapeutic intervention to counteract obesity and its consequences for metabolic health.

  4. Adipose tissue as an endocrine organ.

    PubMed

    McGown, Christine; Birerdinc, Aybike; Younossi, Zobair M

    2014-02-01

    Obesity is one of the most important health challenges faced by developed countries and is increasingly affecting adolescents and children. Obesity is also a considerable risk factor for the development of numerous other chronic diseases, such as insulin resistance, type 2 diabetes, heart disease and nonalcoholic fatty liver disease. The epidemic proportions of obesity and its numerous comorbidities are bringing into focus the highly complex and metabolically active adipose tissue. Adipose tissue is increasingly being considered as a functional endocrine organ. This article discusses the endocrine effects of adipose tissue during obesity and the systemic impact of this signaling.

  5. Burdock fermented by Aspergillus awamori elevates cecal Bifidobacterium, and reduces fecal deoxycholic acid and adipose tissue weight in rats fed a high-fat diet.

    PubMed

    Okazaki, Yukako; Sitanggang, Novita Vivi; Sato, Satoko; Ohnishi, Nanae; Inoue, Junji; Iguchi, Takafumi; Watanabe, Toshiro; Tomotake, Hiroyuki; Harada, Kazuki; Kato, Norihisa

    2013-01-01

    This study investigated the effects of dietary supplementation with burdock powder and Aspergillus awamori-fermented burdock powder at 5% on the intestinal luminal environment and body fat in rats fed a high-fat (HF) diet. Food intake and growth were unaffected by dietary manipulation. Consumption of the burdock and fermented burdock diets significantly elevated fecal IgA and mucins (indices of intestinal immune and barrier functions) and reduced fecal lithocholic acid (a risk factor for colon cancer) (p<0.05). The fermented burdock diet markedly elevated cecal Bifidobacterium and organic acids, including lactate, acetate, propionate, and butyrate, and reduced fecal deoxycholic acid (a risk factor for colon cancer) and perirenal adipose tissue weight (p<0.05), but the burdock diet did not. These results suggest that consumption of fermented burdock improves the intestinal luminal environment and suppresses obesity in rats fed a HF diet. PMID:23291748

  6. Brown adipose tissue and its therapeutic potential.

    PubMed

    Lidell, M E; Betz, M J; Enerbäck, S

    2014-10-01

    Obesity and related diseases are a major cause of human morbidity and mortality and constitute a substantial economic burden for society. Effective treatment regimens are scarce, and new therapeutic targets are needed. Brown adipose tissue, an energy-expending tissue that produces heat, represents a potential therapeutic target. Its presence is associated with low body mass index, low total adipose tissue content and a lower risk of type 2 diabetes mellitus. Knowledge about the development and function of thermogenic adipocytes in brown adipose tissue has increased substantially in the last decade. Important transcriptional regulators have been identified, and hormones able to modulate the thermogenic capacity of the tissue have been recognized. Intriguingly, it is now clear that humans, like rodents, possess two types of thermogenic adipocytes: the classical brown adipocytes found in the interscapular brown adipose organ and the so-called beige adipocytes primarily found in subcutaneous white adipose tissue after adrenergic stimulation. The presence of two distinct types of energy-expending adipocytes in humans is conceptually important because these cells might be stimulated and recruited by different signals, raising the possibility that they might be separate potential targets for therapeutic intervention. In this review, we will discuss important features of the energy-expending brown adipose tissue and highlight those that may serve as potential targets for pharmacological intervention aimed at expanding the tissue and/or enhancing its function to counteract obesity.

  7. Increased Expression of EGR-1 in Diabetic Human Adipose Tissue-Derived Mesenchymal Stem Cells Reduces Their Wound Healing Capacity.

    PubMed

    Trinh, Nhu-Thuy; Yamashita, Toshiharu; Ohneda, Kinuko; Kimura, Kenichi; Salazar, Georgina To'a; Sato, Fujio; Ohneda, Osamu

    2016-05-15

    The prevalence of type 2 diabetes mellitus (T2DM), which leads to diabetic complications, has been increasing worldwide. The possible applications of T2DM-derived stem cells in cell therapy are limited because their characteristics are still not fully understood. In this study, we characterized adipose tissue-derived mesenchymal stem cells (AT-MSCs) from diabetic patients (dAT-MSCs) and found that insulin receptor substrate-1 (IRS-1) was highly phosphorylated at serine 636/639 in dAT-MSCs. Moreover, we found that early growth response factor-1 (EGR-1) and its target genes of PTEN and GGPS1 were highly expressed in dAT-MSCs in comparison to healthy donor-derived AT-MSCs (nAT-MSCs). We observed impaired wound healing after the injection of dAT-MSCs in the ischemic flap mouse model. The expressions of EGR-1 and its target genes were diminished by small hairpin RNA-targeted EGR-1 (shEGR-1) and treatment with a mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) inhibitor (PD98059). Importantly, dAT-MSCs with shEGR-1 were able to restore the wound healing ability in the mouse model. Interestingly, under hypoxic conditions, hypoxia-inducible factor-1α (HIF-1α) can bind to the EGR-1 promoter in dAT-MSCs, but not in nAT-MSCs. Together, these results demonstrate that the expression of EGR-1 was upregulated in dAT-MSCs through two pathways: the main regulatory pathway is the MAPK/ERK pathway, the other is mediated by HIF-1α through direct transcriptional activation at the promoter region of the EGR1 gene. Our study suggests that dAT-MSCs may contribute to microvascular damage and delay wound healing through the overexpression of EGR-1. Interrupting the expression of EGR-1 in dAT-MSCs may be a useful treatment for chronic wounds in diabetic patients. PMID:26988763

  8. n-3 PUFA: bioavailability and modulation of adipose tissue function.

    PubMed

    Kopecky, Jan; Rossmeisl, Martin; Flachs, Pavel; Kuda, Ondrej; Brauner, Petr; Jilkova, Zuzana; Stankova, Barbora; Tvrzicka, Eva; Bryhn, Morten

    2009-11-01

    Adipose tissue has a key role in the development of metabolic syndrome (MS), which includes obesity, type 2 diabetes, dyslipidaemia, hypertension and other disorders. Systemic insulin resistance represents a major factor contributing to the development of MS in obesity. The resistance is precipitated by impaired adipose tissue glucose and lipid metabolism, linked to a low-grade inflammation of adipose tissue and secretion of pro-inflammatory adipokines. Development of MS could be delayed by lifestyle modifications, while both dietary and pharmacological interventions are required for the successful therapy of MS. The n-3 long-chain (LC) PUFA, EPA and DHA, which are abundant in marine fish, act as hypolipidaemic factors, reduce cardiac events and decrease the progression of atherosclerosis. Thus, n-3 LC PUFA represent healthy constituents of diets for patients with MS. In rodents n-3 LC PUFA prevent the development of obesity and impaired glucose tolerance. The effects of n-3 LC PUFA are mediated transcriptionally by AMP-activated protein kinase and by other mechanisms. n-3 LC PUFA activate a metabolic switch toward lipid catabolism and suppression of lipogenesis, i.e. in the liver, adipose tissue and small intestine. This metabolic switch improves dyslipidaemia and reduces ectopic deposition of lipids, resulting in improved insulin signalling. Despite a relatively low accumulation of n-3 LC PUFA in adipose tissue lipids, adipose tissue is specifically linked to the beneficial effects of n-3 LC PUFA, as indicated by (1) the prevention of adipose tissue hyperplasia and hypertrophy, (2) the induction of mitochondrial biogenesis in adipocytes, (3) the induction of adiponectin and (4) the amelioration of adipose tissue inflammation by n-3 LC PUFA. PMID:19698199

  9. Immunological contributions to adipose tissue homeostasis.

    PubMed

    DiSpirito, Joanna R; Mathis, Diane

    2015-09-01

    Adipose tissue is composed of many functionally and developmentally distinct cell types, the metabolic core of which is the adipocyte. The classification of "adipocyte" encompasses three primary types - white, brown, and beige - with distinct origins, anatomic distributions, and homeostatic functions. The ability of adipocytes to store and release lipids, respond to insulin, and perform their endocrine functions (via secretion of adipokines) is heavily influenced by the immune system. Various cell populations of the innate and adaptive arms of the immune system can resist or exacerbate the development of the chronic, low-grade inflammation associated with obesity and metabolic dysfunction. Here, we discuss these interactions, with a focus on their consequences for adipocyte and adipose tissue function in the setting of chronic overnutrition. In addition, we will review the effects of diet composition on adipose tissue inflammation and recent evidence suggesting that diet-driven disruption of the gut microbiota can trigger pathologic inflammation of adipose tissue.

  10. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues

    PubMed Central

    Hausman, Gary J; Basu, Urmila; Du, Min; Fernyhough-Culver, Melinda; Dodson, Michael V

    2014-01-01

    Human studies of the influence of aging and other factors on intermuscular fat (INTMF) were reviewed. Intermuscular fat increased with weight loss, weight gain, or with no weight change with age in humans. An increase in INTMF represents a similar threat to type 2 diabetes and insulin resistance as does visceral adipose tissue (VAT). Studies of INTMF in animals covered topics such as quantitative deposition and genetic relationships with other fat depots. The relationship between leanness and higher proportions of INTMF fat in pigs was not observed in human studies and was not corroborated by other pig studies. In humans, changes in muscle mass, strength and quality are associated with INTMF accretion with aging. Gene expression profiling and intrinsic methylation differences in pigs demonstrated that INTMF and VAT are primarily associated with inflammatory and immune processes. It seems that in the pig and humans, INTMF and VAT share a similar pattern of distribution and a similar association of components dictating insulin sensitivity. Studies on intramuscular (IM) adipocyte development in meat animals were reviewed. Gene expression analysis and genetic analysis have identified candidate genes involved in IM adipocyte development. Intramuscular (IM) adipocyte development in human muscle is only seen during aging and some pathological circumstance. Several genetic links between human and meat animal adipogenesis have been identified. In pigs, the Lipin1 and Lipin 2 gene have strong genetic effects on IM accumulation. Lipin1 deficiency results in immature adipocyte development in human lipodystrophy. In humans, overexpression of Perilipin 2 (PLIN2) facilitates intramyocellular lipid accretion whereas in pigs PLIN2 gene expression is associated with IM deposition. Lipins and perilipins may influence intramuscular lipid regardless of species. PMID:26317048

  11. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues.

    PubMed

    Hausman, Gary J; Basu, Urmila; Du, Min; Fernyhough-Culver, Melinda; Dodson, Michael V

    2014-01-01

    Human studies of the influence of aging and other factors on intermuscular fat (INTMF) were reviewed. Intermuscular fat increased with weight loss, weight gain, or with no weight change with age in humans. An increase in INTMF represents a similar threat to type 2 diabetes and insulin resistance as does visceral adipose tissue (VAT). Studies of INTMF in animals covered topics such as quantitative deposition and genetic relationships with other fat depots. The relationship between leanness and higher proportions of INTMF fat in pigs was not observed in human studies and was not corroborated by other pig studies. In humans, changes in muscle mass, strength and quality are associated with INTMF accretion with aging. Gene expression profiling and intrinsic methylation differences in pigs demonstrated that INTMF and VAT are primarily associated with inflammatory and immune processes. It seems that in the pig and humans, INTMF and VAT share a similar pattern of distribution and a similar association of components dictating insulin sensitivity. Studies on intramuscular (IM) adipocyte development in meat animals were reviewed. Gene expression analysis and genetic analysis have identified candidate genes involved in IM adipocyte development. Intramuscular (IM) adipocyte development in human muscle is only seen during aging and some pathological circumstance. Several genetic links between human and meat animal adipogenesis have been identified. In pigs, the Lipin1 and Lipin 2 gene have strong genetic effects on IM accumulation. Lipin1 deficiency results in immature adipocyte development in human lipodystrophy. In humans, overexpression of Perilipin 2 (PLIN2) facilitates intramyocellular lipid accretion whereas in pigs PLIN2 gene expression is associated with IM deposition. Lipins and perilipins may influence intramuscular lipid regardless of species.

  12. Influencing Factors of Thermogenic Adipose Tissue Activity

    PubMed Central

    Zhang, Guoqing; Sun, Qinghua; Liu, Cuiqing

    2016-01-01

    Obesity is an escalating public health challenge and contributes tremendously to the disease burden globally. New therapeutic strategies are required to alleviate the health impact of obesity-related metabolic dysfunction. Brown adipose tissue (BAT) is specialized for dissipating chemical energy for thermogenesis as a defense against cold environment. Intriguingly, the brown-fat like adipocytes that dispersed throughout white adipose tissue (WAT) in rodents and humans, called “brite” or “beige” adipocytes, share similar thermogenic characteristics to brown adipocytes. Recently, researchers have focused on cognition of these thermogenic adipose tissues. Some factors have been identified to regulate the development and function of thermogenic adipose tissues. Cold exposure, pharmacological conditions, and lifestyle can enhance non-shivering thermogenesis and metabolism via some mechanisms. However, environmental pollutants, such as ambient fine particulates and ozone, may impair the function of these thermogenic adipose tissues and thereby induce metabolic dysfunction. In this review, the origin, function and influencing factors of thermogenic adipose tissues were summarized and it will provide insights into identifying new therapeutic strategies for the treatment of obesity and obesity-related diseases. PMID:26903879

  13. Influencing Factors of Thermogenic Adipose Tissue Activity.

    PubMed

    Zhang, Guoqing; Sun, Qinghua; Liu, Cuiqing

    2016-01-01

    Obesity is an escalating public health challenge and contributes tremendously to the disease burden globally. New therapeutic strategies are required to alleviate the health impact of obesity-related metabolic dysfunction. Brown adipose tissue (BAT) is specialized for dissipating chemical energy for thermogenesis as a defense against cold environment. Intriguingly, the brown-fat like adipocytes that dispersed throughout white adipose tissue (WAT) in rodents and humans, called "brite" or "beige" adipocytes, share similar thermogenic characteristics to brown adipocytes. Recently, researchers have focused on cognition of these thermogenic adipose tissues. Some factors have been identified to regulate the development and function of thermogenic adipose tissues. Cold exposure, pharmacological conditions, and lifestyle can enhance non-shivering thermogenesis and metabolism via some mechanisms. However, environmental pollutants, such as ambient fine particulates and ozone, may impair the function of these thermogenic adipose tissues and thereby induce metabolic dysfunction. In this review, the origin, function and influencing factors of thermogenic adipose tissues were summarized and it will provide insights into identifying new therapeutic strategies for the treatment of obesity and obesity-related diseases. PMID:26903879

  14. Adipose tissue plasticity from WAT to BAT and in between.

    PubMed

    Lee, Yun-Hee; Mottillo, Emilio P; Granneman, James G

    2014-03-01

    Adipose tissue plays an essential role in regulating energy balance through its metabolic, cellular and endocrine functions. Adipose tissue has been historically classified into anabolic white adipose tissue and catabolic brown adipose tissue. An explosion of new data, however, points to the remarkable heterogeneity among the cells types that can become adipocytes, as well as the inherent metabolic plasticity of mature cells. These data indicate that targeting cellular and metabolic plasticity of adipose tissue might provide new avenues for treatment of obesity-related diseases. This review will discuss the developmental origins of adipose tissue, the cellular complexity of adipose tissues, and the identification of progenitors that contribute to adipogenesis throughout development. We will touch upon the pathological remodeling of adipose tissue and discuss how our understanding of adipose tissue remodeling can uncover new therapeutic targets. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.

  15. Adipose tissue and metabolic syndrome: too much, too little or neither.

    PubMed

    Grundy, Scott M

    2015-11-01

    Obesity is strongly associated with metabolic syndrome. Recent research suggests that excess adipose tissue plays an important role in development of the syndrome. On the other hand, persons with a deficiency of adipose tissue (e.g. lipodystrophy) also manifest the metabolic syndrome. In some animal models, expansion of adipose tissue pools mitigates adverse metabolic components (e.g. insulin resistance, hyperglycaemia and dyslipidemia). Hence, there are conflicting data as to whether adipose tissue worsens the metabolic syndrome or protects against it. This conflict may relate partly to locations of adipose tissue pools. For instance, lower body adipose tissue may be protective whereas upper body adipose tissue may promote the syndrome. One view holds that in either case, the accumulation of ectopic fat in muscle and liver is the driving factor underlying the syndrome. If so, there may be some link between adipose tissue fat and ectopic fat. But the mechanisms underlying this connection are not clear. A stronger association appears to exist between excessive caloric intake and ectopic fat accumulation. Adipose tissue may act as a buffer to reduce the impact of excess energy consumption by fat storage; but once a constant weight has been achieved, it is unclear whether adipose tissue influences levels of ectopic fat. Another mechanism whereby adipose tissue could worsen the metabolic syndrome is through release of adipokines. This is an intriguing mechanism, but the impact of adipokines on metabolic syndrome risk factors is uncertain. Thus, many potential connections between adipose tissue and metabolic syndrome remain to unravelled.

  16. Ghrelin receptor regulates adipose tissue inflammation in aging

    PubMed Central

    Buras, Eric D.; Yu, Kaijiang; Wang, Ruitao; Smith, C. Wayne; Wu, Huaizhu; Sheikh-Hamad, David; Sun, Yuxiang

    2016-01-01

    Aging is commonly associated with low-grade adipose inflammation, which is closely linked to insulin resistance. Ghrelin is the only circulating orexigenic hormone which is known to increase obesity and insulin resistance. We previously reported that the expression of the ghrelin receptor, growth hormone secretagogue receptor (GHS-R), increases in adipose tissues during aging, and old Ghsr−/− mice exhibit a lean and insulin-sensitive phenotype. Macrophages are major mediators of adipose tissue inflammation, which consist of pro-inflammatory M1 and anti-inflammatory M2 subtypes. Here, we show that in aged mice, GHS-R ablation promotes macrophage phenotypical shift toward anti-inflammatory M2. Old Ghsr−/− mice have reduced macrophage infiltration, M1/M2 ratio, and pro-inflammatory cytokine expression in white and brown adipose tissues. We also found that peritoneal macrophages of old Ghsr−/− mice produce higher norepinephrine, which is in line with increased alternatively-activated M2 macrophages. Our data further reveal that GHS-R has cell-autonomous effects in macrophages, and GHS-R antagonist suppresses lipopolysaccharide (LPS)-induced inflammatory responses in macrophages. Collectively, our studies demonstrate that ghrelin signaling has an important role in macrophage polarization and adipose tissue inflammation during aging. GHS-R antagonists may serve as a novel and effective therapeutic option for age-associated adipose tissue inflammation and insulin resistance. PMID:26837433

  17. Brown adipose tissue growth and development.

    PubMed

    Symonds, Michael E

    2013-01-01

    Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP) 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle.

  18. Tissue engineering chamber promotes adipose tissue regeneration in adipose tissue engineering models through induced aseptic inflammation.

    PubMed

    Peng, Zhangsong; Dong, Ziqing; Chang, Qiang; Zhan, Weiqing; Zeng, Zhaowei; Zhang, Shengchang; Lu, Feng

    2014-11-01

    Tissue engineering chamber (TEC) makes it possible to generate significant amounts of mature, vascularized, stable, and transferable adipose tissue. However, little is known about the role of the chamber in tissue engineering. Therefore, to investigate the role of inflammatory response and the change in mechanotransduction started by TEC after implantation, we placed a unique TEC model on the surface of the groin fat pads in rats to study the expression of cytokines and tissue development in the TEC. The number of infiltrating cells was counted, and vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) expression levels in the chamber at multiple time points postimplantation were analyzed by enzyme-linked immunosorbent assay. Tissue samples were collected at various time points and labeled for specific cell populations. The result showed that new adipose tissue formed in the chamber at day 60. Also, the expression of MCP-1 and VEGF in the chamber decreased slightly from an early stage as well as the number of the infiltrating cells. A large number of CD34+/perilipin- perivascular cells could be detected at day 30. Also, the CD34+/perilipin+ adipose precursor cell numbers increased sharply by day 45 and then decreased by day 60. CD34-/perilipin+ mature adipocytes were hard to detect in the chamber content at day 30, but their number increased and then peaked at day 60. Ki67-positive cells could be found near blood vessels and their number decreased sharply over time. Masson's trichrome showed that collagen was the dominant component of the chamber content at early stage and was replaced by newly formed small adipocytes over time. Our findings suggested that the TEC implantation could promote the proliferation of adipose precursor cells derived from local adipose tissue, increase angiogenesis, and finally lead to spontaneous adipogenesis by inducing aseptic inflammation and changing local mechanotransduction.

  19. Adipose Tissue - Adequate, Accessible Regenerative Material

    PubMed Central

    Kolaparthy, Lakshmi Kanth.; Sanivarapu, Sahitya; Moogla, Srinivas; Kutcham, Rupa Sruthi

    2015-01-01

    The potential use of stem cell based therapies for the repair and regeneration of various tissues offers a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. The use of either embryonic stem cells (ESCs) or induced pluripotent stem cells in clinical situations is limited due to cell regulations and to technical and ethical considerations involved in genetic manipulation of human ESCs, even though these cells are highly beneficial. Mesenchymal stem cells seen to be an ideal population of stem cells in particular, Adipose derived stem cells (ASCs) which can be obtained in large number and easily harvested from adipose tissue. It is ubiquitously available and has several advantages compared to other sources as easily accessible in large quantities with minimal invasive harvesting procedure, and isolation of adipose derived mesenchymal stem cells yield a high amount of stem cells which is essential for stem cell based therapies and tissue engineering. Recently, periodontal tissue regeneration using ASCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because various secreted growth factors from ASCs might not only promote the regeneration of periodontal tissues but also encourage neovascularization of the damaged tissues. This review summarizes the sources, isolation and characteristics of adipose derived stem cells and its potential role in periodontal regeneration is discussed. PMID:26634060

  20. Adipose Tissue - Adequate, Accessible Regenerative Material.

    PubMed

    Kolaparthy, Lakshmi Kanth; Sanivarapu, Sahitya; Moogla, Srinivas; Kutcham, Rupa Sruthi

    2015-11-01

    The potential use of stem cell based therapies for the repair and regeneration of various tissues offers a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. The use of either embryonic stem cells (ESCs) or induced pluripotent stem cells in clinical situations is limited due to cell regulations and to technical and ethical considerations involved in genetic manipulation of human ESCs, even though these cells are highly beneficial. Mesenchymal stem cells seen to be an ideal population of stem cells in particular, Adipose derived stem cells (ASCs) which can be obtained in large number and easily harvested from adipose tissue. It is ubiquitously available and has several advantages compared to other sources as easily accessible in large quantities with minimal invasive harvesting procedure, and isolation of adipose derived mesenchymal stem cells yield a high amount of stem cells which is essential for stem cell based therapies and tissue engineering. Recently, periodontal tissue regeneration using ASCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because various secreted growth factors from ASCs might not only promote the regeneration of periodontal tissues but also encourage neovascularization of the damaged tissues. This review summarizes the sources, isolation and characteristics of adipose derived stem cells and its potential role in periodontal regeneration is discussed. PMID:26634060

  1. [Use of adipose tissue in regenerative medicine].

    PubMed

    Casteilla, L; Planat-Benard, V; Bourin, P; Laharrague, P; Cousin, B

    2011-04-01

    Adipose tissue is abundant and well known for its involvement in obesity and associated metabolic disorders. Its uses in regenerative medicine recently attracted many investigators, as large amounts of this tissue can be easily obtained using liposuction and it contains several populations of immature cells. The largest pool of such cells corresponds to immature stromal cells, called adipose-derived stromal cells (ADSCs). These cells are purified after proteolytic digestion of adipose tissue and selection by an adherent step. ADSCs display many common features with mesenchymal stem cells derived from bone marrow, including paracrine activity, but with some specific features, among which a greater angiogenic potential. This potential is now investigating at clinical level to treat critical ischemic hindlimb by autologous cells. Other potentials are also investigated and the treatment of fistula associated or not with Crohn's disease is reaching now phase III level.

  2. Reduction of obesity-associated white adipose tissue inflammation by rosiglitazone is associated with reduced non-alcoholic fatty liver disease in LDLr-deficient mice

    PubMed Central

    Mulder, Petra; Morrison, Martine C.; Verschuren, Lars; Liang, Wen; van Bockel, J. Hajo; Kooistra, Teake; Wielinga, Peter Y.; Kleemann, Robert

    2016-01-01

    Obesity is associated with chronic low-grade inflammation that drives the development of metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). We recently showed that white adipose tissue (WAT) constitutes an important source of inflammatory factors. Hence, interventions that attenuate WAT inflammation may reduce NAFLD development. Male LDLr−/− mice were fed a high-fat diet (HFD) for 9 weeks followed by 7 weeks of HFD with or without rosiglitazone. Effects on WAT inflammation and NAFLD development were analyzed using biochemical and (immuno)histochemical techniques, combined with gene expression analyses. Nine weeks of HFD feeding induced obesity and WAT inflammation, which progressed gradually until the end of the study. Rosiglitazone fully blocked progression of WAT inflammation and activated PPARγ significantly in WAT. Rosiglitazone intervention did not activate PPARγ in liver, but improved liver histology and counteracted the expression of genes associated with severe NAFLD in humans. Rosiglitazone reduced expression of pro-inflammatory factors in WAT (TNF-α, leptin) and increased expression of adiponectin, which was reflected in plasma. Furthermore, rosiglitazone lowered circulating levels of pro-inflammatory saturated fatty acids. Together, these observations provide a rationale for the observed indirect hepatoprotective effects and suggest that WAT represents a promising therapeutic target for the treatment of obesity-associated NAFLD. PMID:27545964

  3. Reduction of obesity-associated white adipose tissue inflammation by rosiglitazone is associated with reduced non-alcoholic fatty liver disease in LDLr-deficient mice.

    PubMed

    Mulder, Petra; Morrison, Martine C; Verschuren, Lars; Liang, Wen; van Bockel, J Hajo; Kooistra, Teake; Wielinga, Peter Y; Kleemann, Robert

    2016-01-01

    Obesity is associated with chronic low-grade inflammation that drives the development of metabolic diseases, including non-alcoholic fatty liver disease (NAFLD). We recently showed that white adipose tissue (WAT) constitutes an important source of inflammatory factors. Hence, interventions that attenuate WAT inflammation may reduce NAFLD development. Male LDLr-/- mice were fed a high-fat diet (HFD) for 9 weeks followed by 7 weeks of HFD with or without rosiglitazone. Effects on WAT inflammation and NAFLD development were analyzed using biochemical and (immuno)histochemical techniques, combined with gene expression analyses. Nine weeks of HFD feeding induced obesity and WAT inflammation, which progressed gradually until the end of the study. Rosiglitazone fully blocked progression of WAT inflammation and activated PPARγ significantly in WAT. Rosiglitazone intervention did not activate PPARγ in liver, but improved liver histology and counteracted the expression of genes associated with severe NAFLD in humans. Rosiglitazone reduced expression of pro-inflammatory factors in WAT (TNF-α, leptin) and increased expression of adiponectin, which was reflected in plasma. Furthermore, rosiglitazone lowered circulating levels of pro-inflammatory saturated fatty acids. Together, these observations provide a rationale for the observed indirect hepatoprotective effects and suggest that WAT represents a promising therapeutic target for the treatment of obesity-associated NAFLD. PMID:27545964

  4. The development and endocrine functions of adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    White adipose tissue is a mesenchymal tissue that begins developing in the fetus. Classically known for storing the body’s fuel reserves, adipose tissue is now recognized as an endocrine organ. As such, the secretions from adipose tissue are known to affect several systems such as the vascular and...

  5. Injectable Biomaterials for Adipose Tissue Engineering

    PubMed Central

    Young, D. Adam; Christman, Karen L.

    2012-01-01

    Adipose tissue engineering has recently gained significant attention from materials scientists as a result of the exponential growth of soft tissue filler procedures being performed within the clinic. While several injectable materials are currently being marketed for filling subcutaneous voids, they often face limited longevity due to rapid resorption. Their inability to encourage natural adipose formation or ingrowth necessitates repeated injections for a prolonged effect, and thus classifies them as temporary fillers. As a result, a significant need for injectable materials that not only act as fillers, but also promote in vivo adipogenesis is beginning to be realized. This review will discuss the advantages and disadvantages of commercially available soft tissue fillers. It will then summarize the current state of research using injectable synthetic materials, biopolymers, and extracellular matrix-derived materials for adipose tissue engineering. Furthermore, the successful attributes observed across each of these materials will be outlined along with a discussion of the current difficulties and future directions for adipose tissue engineering. PMID:22456805

  6. Developmental Programming of Fetal Skeletal Muscle and Adipose Tissue Development

    PubMed Central

    Yan, Xu; Zhu, Mei-Jun; Dodson, Michael V.; Du, Min

    2013-01-01

    All important developmental milestones are accomplished during the fetal stage, and nutrient fluctuation during this stage produces lasting effects on offspring health, so called fetal programming or developmental programming. The fetal stage is critical for skeletal muscle development, as well as adipose and connective tissue development. Maternal under-nutrition at this stage affects the proliferation of myogenic precursor cells and reduces the number of muscle fibers formed. Maternal over-nutrition results in impaired myogenesis and elevated adipogenesis. Because myocytes, adipocytes and fibrocytes are all derived from mesenchymal stem cells, molecular events which regulate the commitment of stem cells to different lineages directly impact fetal muscle and adipose tissue development. Recent studies indicate that microRNA is intensively involved in myogenic and adipogenic differentiation from mesenchymal stem cells, and epigenetic changes such as DNA methylation are expected to alter cell lineage commitment during fetal muscle and adipose tissue development. PMID:25031653

  7. Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects.

    PubMed

    Bruun, Jens M; Helge, Jørn W; Richelsen, Bjørn; Stallknecht, Bente

    2006-05-01

    Obesity is associated with low-grade inflammation, insulin resistance, type 2 diabetes, and cardiovascular disease. This study investigated the effect of a 15-wk lifestyle intervention (hypocaloric diet and daily exercise) on inflammatory markers in plasma, adipose tissue (AT), and skeletal muscle (SM) in 27 severely obese subjects (mean body mass index: 45.8 kg/m2). Plasma samples, subcutaneous abdominal AT biopsies, and vastus lateralis SM biopsies were obtained before and after the intervention and analyzed by ELISA and RT-PCR. The intervention reduced body weight (P < 0.001) and increased insulin sensitivity (homeostasis model assessment; P < 0.05). Plasma adiponectin (P < 0.001) increased, and C-reactive protein (P < 0.05), IL-6 (P < 0.01), IL-8 (P < 0.05), and monocyte chemoattractant protein-1 (P < 0.01) decreased. AT inflammation was reduced, determined from an increased mRNA expression of adiponectin (P < 0.001) and a decreased expression of macrophage-specific markers (CD14, CD68), IL-6, IL-8, and tumor necrosis factor-alpha (P < 0.01). After adjusting for macrophage infiltration in AT, only IL-6 mRNA was decreased (P < 0.05). Only very low levels of inflammatory markers were found in SM. The intervention had no effect on adiponectin receptor 1 and 2 mRNA in AT or SM. Thus hypocaloric diet and increased physical activity improved insulin sensitivity and reduced low-grade inflammation. Markers of inflammation were particularly reduced in AT, whereas SM does not contribute to this attenuation of whole body inflammation.

  8. [White adipose tissue dysfunction observed in obesity].

    PubMed

    Lewandowska, Ewa; Zieliński, Andrzej

    2016-05-01

    Obesity is a disease with continuingly increasing prevalence. It occurs worldwide independently of age group, material status or country of origin. At these times the most common reasons for obesity are bad eating habits and dramatic reduction of physical activity, which cause the energy imbalance of organism. Fundamental alteration observed in obese subjects is white adipose tissue overgrowth, which is linked to increased incidence of obesity-related comorbidities, such as: cardiovascular diseases, type 2 diabetes or digestive tract diseases. What is more, obesity is also a risk factor for some cancers. Special risk for diseases linked to excessive weight is associated with overgrowth of visceral type of adipose tissue. Adipose tissue, which is the main energy storehouse in body and acts also as an endocrine organ, undergoes both the morphological and the functional changes in obesity, having a negative impact on whole body function. In this article we summarize the most important alterations in morphology and function of white adipose tissue, observed in obese subjects.

  9. Does bariatric surgery improve adipose tissue function?

    PubMed

    Frikke-Schmidt, H; O'Rourke, R W; Lumeng, C N; Sandoval, D A; Seeley, R J

    2016-09-01

    Bariatric surgery is currently the most effective treatment for obesity. Not only do these types of surgeries produce significant weight loss but also they improve insulin sensitivity and whole body metabolic function. The aim of this review is to explore how altered physiology of adipose tissue may contribute to the potent metabolic effects of some of these procedures. This includes specific effects on various fat depots, the function of individual adipocytes and the interaction between adipose tissue and other key metabolic tissues. Besides a dramatic loss of fat mass, bariatric surgery shifts the distribution of fat from visceral to the subcutaneous compartment favoring metabolic improvement. The sensitivity towards lipolysis controlled by insulin and catecholamines is improved, adipokine secretion is altered and local adipose inflammation as well as systemic inflammatory markers decreases. Some of these changes have been shown to be weight loss independent, and novel hypothesis for these effects includes include changes in bile acid metabolism, gut microbiota and central regulation of metabolism. In conclusion bariatric surgery is capable of improving aspects of adipose tissue function and do so in some cases in ways that are not entirely explained by the potent effect of surgery. © 2016 World Obesity.

  10. [White adipose tissue dysfunction observed in obesity].

    PubMed

    Lewandowska, Ewa; Zieliński, Andrzej

    2016-05-01

    Obesity is a disease with continuingly increasing prevalence. It occurs worldwide independently of age group, material status or country of origin. At these times the most common reasons for obesity are bad eating habits and dramatic reduction of physical activity, which cause the energy imbalance of organism. Fundamental alteration observed in obese subjects is white adipose tissue overgrowth, which is linked to increased incidence of obesity-related comorbidities, such as: cardiovascular diseases, type 2 diabetes or digestive tract diseases. What is more, obesity is also a risk factor for some cancers. Special risk for diseases linked to excessive weight is associated with overgrowth of visceral type of adipose tissue. Adipose tissue, which is the main energy storehouse in body and acts also as an endocrine organ, undergoes both the morphological and the functional changes in obesity, having a negative impact on whole body function. In this article we summarize the most important alterations in morphology and function of white adipose tissue, observed in obese subjects. PMID:27234867

  11. Sustainable three-dimensional tissue model of human adipose tissue.

    PubMed

    Bellas, Evangelia; Marra, Kacey G; Kaplan, David L

    2013-10-01

    The need for physiologically relevant sustainable human adipose tissue models is crucial for understanding tissue development, disease progression, in vitro drug development and soft tissue regeneration. The coculture of adipocytes differentiated from human adipose-derived stem cells, with endothelial cells, on porous silk protein matrices for at least 6 months is reported, while maintaining adipose-like outcomes. Cultures were assessed for structure and morphology (Oil Red O content and CD31 expression), metabolic functions (leptin, glycerol production, gene expression for GLUT4, and PPARγ) and cell replication (DNA content). The cocultures maintained size and shape over this extended period in static cultures, while increasing in diameter by 12.5% in spinner flask culture. Spinner flask cultures yielded improved adipose tissue outcomes overall, based on structure and function, when compared to the static cultures. This work establishes a tissue model system that can be applied to the development of chronic metabolic dysfunction systems associated with human adipose tissue, such as obesity and diabetes, due to the long term sustainable functions demonstrated here.

  12. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    PubMed

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-01

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. PMID:27246738

  13. Laminin α4 deficient mice exhibit decreased capacity for adipose tissue expansion and weight gain.

    PubMed

    Vaicik, Marcella K; Thyboll Kortesmaa, Jill; Movérare-Skrtic, Sofia; Kortesmaa, Jarkko; Soininen, Raija; Bergström, Göran; Ohlsson, Claes; Chong, Li Yen; Rozell, Björn; Emont, Margo; Cohen, Ronald N; Brey, Eric M; Tryggvason, Karl

    2014-01-01

    Obesity is a global epidemic that contributes to the increasing medical burdens related to type 2 diabetes, cardiovascular disease and cancer. A better understanding of the mechanisms regulating adipose tissue expansion could lead to therapeutics that eliminate or reduce obesity-associated morbidity and mortality. The extracellular matrix (ECM) has been shown to regulate the development and function of numerous tissues and organs. However, there is little understanding of its function in adipose tissue. In this manuscript we describe the role of laminin α4, a specialized ECM protein surrounding adipocytes, on weight gain and adipose tissue function. Adipose tissue accumulation, lipogenesis, and structure were examined in mice with a null mutation of the laminin α4 gene (Lama4-/-) and compared to wild-type (Lama4+/+) control animals. Lama4-/- mice exhibited reduced weight gain in response to both age and high fat diet. Interestingly, the mice had decreased adipose tissue mass and altered lipogenesis in a depot-specific manner. In particular, epididymal adipose tissue mass was specifically decreased in knock-out mice, and there was also a defect in lipogenesis in this depot as well. In contrast, no such differences were observed in subcutaneous adipose tissue at 14 weeks. The results suggest that laminin α4 influences adipose tissue structure and function in a depot-specific manner. Alterations in laminin composition offers insight into the roll the ECM potentially plays in modulating cellular behavior in adipose tissue expansion.

  14. TCDD (2,3,7,8-tetrachlorodibenzo-P-dioxin) reduces lipoprotein lipase activity in the adipose tissue of the guinea pig

    SciTech Connect

    Brewster, D.W.; Matsumura, F.

    1984-07-31

    TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) adminstered to young male guinea pigs at a dose of 1 ..mu..g/kg (single intraperitoneal injection) caused a large reduction in adipose tissue lipoprotein lipase (LPL) activity. This effect occurred rapidly; a 70% decrease was noticed after 24 hour and 80% of LPL activity was lost by 48 hours when the serum triglyceride levels increased to 175% of control levels. LPL is known to play an important role in controlling the amount of free fatty acids supplied to adipose tissues. Administration of a large dose of glucose to fasted guinea pigs, which have shown a similar weight loss, but less LPL loss than TCDD-treated animals, had the effect of elevating their adipose LPL levels back to a near normal level, whereas the same treatment caused no significant increase in the LPL levels of TCDD-treated animals. Evidence indicates that the TCDD-caused decline in LPL activity is irreversible. As a consequence, the affected guinea pigs are incapable of responding to changes in nutritional status. 36 references, 2 figures, 1 table.

  15. Proteomic characterization of adipose tissue constituents, a necessary step for understanding adipose tissue complexity.

    PubMed

    Peinado, Juan R; Pardo, María; de la Rosa, Olga; Malagón, Maria M

    2012-02-01

    The original concept of adipose tissue as an inert storage depot for the excess of energy has evolved over the last years and it is now considered as one of the most important organs regulating body homeostasis. This conceptual change has been supported by the demonstration that adipose tissue serves as a major endocrine organ, producing a wide variety of bioactive molecules, collectively termed adipokines, with endocrine, paracrine and autocrine activities. Adipose tissue is indeed a complex organ wherein mature adipocytes coexist with the various cell types comprising the stromal-vascular fraction (SVF), including preadipocytes, adipose-derived stem cells, perivascular cells, and blood cells. It is known that not only mature adipocytes but also the components of SVF produce adipokines. Furthermore, adipokine production, proliferative and metabolic activities and response to regulatory signals (i.e. insulin, catecholamines) differ between the different fat depots, which have been proposed to underlie their distinct association to specific diseases. Herein, we discuss the recent proteomic studies on adipose tissue focused on the analysis of the separate cellular components and their secretory products, with the aim of identifying the basic features and the contribution of each component to different adipose tissue-associated pathologies.

  16. Myocardial regeneration potential of adipose tissue-derived stem cells

    SciTech Connect

    Bai, Xiaowen; Alt, Eckhard

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  17. Enzymatic intracrine regulation of white adipose tissue

    PubMed Central

    DiSilvestro, David; Petrosino, Jennifer; Aldoori, Ayat; Melgar-Bermudez, Emiliano; Wells, Alexandra; Ziouzenkova, Ouliana

    2015-01-01

    Abdominal fat formation has become a permanent risk factor for metabolic syndrome and various cancers in one-third of the world's population of obese and even lean patients. Formation of abdominal fat involves additional mechanisms beyond an imbalance in energy intake and expenditure, which explains systemic obesity. In this review, we briefly summarized autonomous regulatory circuits that locally produce hormones from inactive precursors or nutrients for intra-/auto-/paracrine signaling in white adipose depots. Enzymatic pathways activating steroid and thyroid hormones in adipose depots were compared with enzymatic production of retinoic acid from vitamin A. We discussed the role of intracrine circuits in fat-depot functions and strategies to reduce abdominal adiposity through thermogenic adipocytes with interrupted generation of retinoic acid. PMID:25390015

  18. Functions of AMP-activated protein kinase in adipose tissue

    PubMed Central

    Daval, Marie; Foufelle, Fabienne; Ferré, Pascal

    2006-01-01

    AMP-activated protein kinase (AMPK) is involved in cellular energy homeostasis. Its functions have been extensively studied in muscles and liver. AMPK stimulates pathways which increase energy production (glucose transport, fatty acid oxidation) and switches off pathways which consume energy (lipogenesis, protein synthesis, gluconeogenesis). This has led to the concept that AMPK has an interesting pharmaceutical potential in situations of insulin resistance and it is indeed the target of existing drugs and hormones which improve insulin sensitivity. Adipose tissue is a key player in energy metabolism through the release of substrates and hormones involved in metabolism and insulin sensitivity. Activation of AMPK in adipose tissue can be achieved through situations such as fasting and exercise. Leptin and adiponectin as well as hypoglycaemic drugs are activators of adipose tissue AMPK. This activation probably involves changes in the AMP/ATP ratio and the upstream kinase LKB1. When activated, AMPK limits fatty acid efflux from adipocytes and favours local fatty acid oxidation. Since fatty acids have a key role in insulin resistance, especially in muscles, activating AMPK in adipose tissue might be found to be beneficial in insulin-resistant states, particularly as AMPK activation also reduces cytokine secretion in adipocytes. PMID:16709632

  19. Sex dimorphism and depot differences in adipose tissue function.

    PubMed

    White, Ursula A; Tchoukalova, Yourka D

    2014-03-01

    Obesity, characterized by excessive adiposity, is a risk factor for many metabolic pathologies, such as type 2 diabetes mellitus (T2DM). Numerous studies have shown that adipose tissue distribution may be a greater predictor of metabolic health. Upper-body fat (visceral and subcutaneous abdominal) is commonly associated with the unfavorable complications of obesity, while lower-body fat (gluteal-femoral) may be protective. Current research investigations are focused on analyzing the metabolic properties of adipose tissue, in order to better understand the mechanisms that regulate fat distribution in both men and women. This review will highlight the adipose tissue depot- and sex-dependent differences in white adipose tissue function, including adipogenesis, adipose tissue developmental patterning, the storage and release of fatty acids, and secretory function. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.

  20. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis.

    PubMed

    Park, Byung Young; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Hong, Yeonhee; Lee, Hee Suk; Park, Eun Kyu; Hahm, Jong Cheon; Kim, Jin Woo; Shin, Soon Shik; Kim, Min-Young; Yoon, Michung

    2015-01-01

    It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS) prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP) activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9), whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors.

  1. Reduction of Adipose Tissue Mass by the Angiogenesis Inhibitor ALS-L1023 from Melissa officinalis

    PubMed Central

    Park, Byung Young; Lee, Hyunghee; Woo, Sangee; Yoon, Miso; Kim, Jeongjun; Hong, Yeonhee; Lee, Hee Suk; Park, Eun Kyu; Hahm, Jong Cheon; Kim, Jin Woo; Shin, Soon Shik; Kim, Min-Young; Yoon, Michung

    2015-01-01

    It has been suggested that angiogenesis modulates adipogenesis and obesity. This study was undertaken to determine whether ALS-L1023 (ALS) prepared by a two-step organic solvent fractionation from Melissa leaves, which exhibits antiangiogenic activity, can regulate adipose tissue growth. The effects of ALS on angiogenesis and extracellular matrix remodeling were measured using in vitro assays. The effects of ALS on adipose tissue growth were investigated in high fat diet-induced obese mice. ALS inhibited VEGF- and bFGF-induced endothelial cell proliferation and suppressed matrix metalloproteinase (MMP) activity in vitro. Compared to obese control mice, administration of ALS to obese mice reduced body weight gain, adipose tissue mass and adipocyte size without affecting appetite. ALS treatment decreased blood vessel density and MMP activity in adipose tissues. ALS reduced the mRNA levels of angiogenic factors (VEGF-A and FGF-2) and MMPs (MMP-2 and MMP-9), whereas ALS increased the mRNA levels of angiogenic inhibitors (TSP-1, TIMP-1, and TIMP-2) in adipose tissues. The protein levels of VEGF, MMP-2 and MMP-9 were also decreased by ALS in adipose tissue. Metabolic changes in plasma lipids, liver triglycerides, and hepatic expression of fatty acid oxidation genes occurred during ALS-induced weight loss. These results suggest that ALS, which has antiangiogenic and MMP inhibitory activities, reduces adipose tissue mass in nutritionally obese mice, demonstrating that adipose tissue growth can be regulated by angiogenesis inhibitors. PMID:26599360

  2. Hyperglycemic Challenge and Distribution of Adipose Tissue in Obese Baboons

    PubMed Central

    Kulkarni, Tanmay; Slaughter, Gymama; Ego-Osuala, Chimdi; Kochunov, Peter; Bastarrachea, Raul A.; Mattern, Vicki; Andrade, Marcia; Higgins, Paul B.; Comuzzie, Anthony G.; Voruganti, V. Saroja

    2014-01-01

    Background Blood glucose levels regulate the rate of insulin secretion, which is the body’s mechanism for preventing excessive elevation in blood glucose. Impaired glucose metabolism and insulin resistance have been linked to excess body fat composition. Here, we quantify abdominal muscle and abdominal adipose tissue compartments in a large nonhuman primate, the baboon, and investigate their relationship with serum glucose response to a hyperglycemic challenge. Methods Five female baboons were fasted for 16 hours prior to 90 minute body imaging experiment that consisted of a 20-min baseline, followed by a bolus infusion of glucose (500mg/kg). The blood glucose was sampled at regular intervals. The total volumes of the muscle, visceral and subcutaneous adipose tissue were measured. Results and discussion We found that adipose tissue composition predicted fluctuations in glucose responses to a hyperglycemic challenge of a non-human primate. Animals with higher visceral adiposity showed significantly reduced glucose elimination. The glucose responses were positively correlated with body weight, visceral and muscle fat (p < 0.005). Polynomial regression analysis showed that body weight, visceral and muscle were significant Conclusions These results reveal the similarity between humans and baboons with respect to glucose metabolism and strengthen the utility of baboon for biomedical research. PMID:25429366

  3. Adipose tissue angiogenesis: impact on obesity and type-2 diabetes.

    PubMed

    Corvera, Silvia; Gealekman, Olga

    2014-03-01

    The growth and function of tissues are critically dependent on their vascularization. Adipose tissue is capable of expanding many-fold during adulthood, therefore requiring the formation of new vasculature to supply growing and proliferating adipocytes. The expansion of the vasculature in adipose tissue occurs through angiogenesis, where new blood vessels develop from those pre-existing within the tissue. Inappropriate angiogenesis may underlie adipose tissue dysfunction in obesity, which in turn increases type-2 diabetes risk. In addition, genetic and developmental factors involved in vascular patterning may define the size and expandability of diverse adipose tissue depots, which are also associated with type-2 diabetes risk. Moreover, the adipose tissue vasculature appears to be the niche for pre-adipocyte precursors, and factors that affect angiogenesis may directly impact the generation of new adipocytes. Here we review recent advances on the basic mechanisms of angiogenesis, and on the role of angiogenesis in adipose tissue development and obesity. A substantial amount of data points to a deficit in adipose tissue angiogenesis as a contributing factor to insulin resistance and metabolic disease in obesity. These emerging findings support the concept of the adipose tissue vasculature as a source of new targets for metabolic disease therapies. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.

  4. Adipose tissue and its role in organ crosstalk.

    PubMed

    Romacho, T; Elsen, M; Röhrborn, D; Eckel, J

    2014-04-01

    The discovery of adipokines has revealed adipose tissue as a central node in the interorgan crosstalk network, which mediates the regulation of multiple organs and tissues. Adipose tissue is a true endocrine organ that produces and secretes a wide range of mediators regulating adipose tissue function in an auto-/paracrine manner and important distant targets, such as the liver, skeletal muscle, the pancreas and the cardiovascular system. In metabolic disorders such as obesity, enlargement of adipocytes leads to adipose tissue dysfunction and a shift in the secretory profile with an increased release of pro-inflammatory adipokines. Adipose tissue dysfunction has a central role in the development of insulin resistance, type 2 diabetes, and cardiovascular diseases. Besides the well-acknowledged role of adipokines in metabolic diseases, and the increasing number of adipokines being discovered in the last years, the mechanisms underlying the release of many adipokines from adipose tissue remain largely unknown. To combat metabolic diseases, it is crucial to better understand how adipokines can modulate adipose tissue growth and function. Therefore, we will focus on adipokines with a prominent role in auto-/paracrine crosstalk within the adipose tissue such as RBP4, HO-1, WISP2, SFRPs and chemerin. To depict the endocrine crosstalk between adipose tissue with skeletal muscle, the cardiovascular system and the pancreas, we will report the main findings regarding the direct effects of adiponectin, leptin, DPP4 and visfatin on skeletal muscle insulin resistance, cardiovascular function and β-cell growth and function.

  5. Adipose tissue-derived cells: from physiology to regenerative medicine.

    PubMed

    Casteilla, L; Dani, C

    2006-11-01

    During the last past years, the importance and the role of adipose tissues have been greatly expanded. After finding that adipose tissues are metabolically very active, the discovery of leptin moved the status of adipose tissue towards an endocrine tissue able to interact with all major organs via secretion of adipokines. Some years ago, the presence of adipocyte precursors, termed preadipocytes, has been described in all adipose tissue depots from various species of different age. More recently, the discovery that different phenotypes can be obtained from stroma cells of adipose tissue has largely emphazised the concept of adipose tissue plasticity. Therefore, raising great hope in regenerative medicine as adipose tissue can be easily harvested in adults it could represent an abundant source of therapeutic cells. Thus, adipose tissue plays the dual role of Mr Obese Hyde as a main actor of obesity and of Dr Regenerative Jekyll as a source of therapeutic cells. Adipose tissue has not yet revealed all its mysteries although one facet could not be well understood without the other one. PMID:17110894

  6. Inhibition of Sam68 triggers adipose tissue browning

    PubMed Central

    Zhou, Junlan; Cheng, Min; Boriboun, Chan; Ardehali, Mariam Mina; Jiang, Changfei; Liu, Qinghua; Han, Shuling; Goukassian, David A.; Tang, Yao-Liang; Zhao, Ting C.; Zhao, Ming; Cai, Lu; Richard, Stéphane; Kishore, Raj; Qin, Gangjian

    2015-01-01

    Obesity is associated with insulin resistance and type 2 diabetes; molecular mechanisms promoting energy expenditure may be utilized for effective therapy. Src-associated-in-mitosis-of-68kDa (Sam68) is potentially significant because knockout (KO) of Sam68 leads to markedly-reduced adiposity. Here we sought to determine the mechanism by which Sam68 regulates adiposity and energy homeostasis. We firstly found in Sam68-KO mice a significantly-reduced body weight with the difference explained entirely by decreased adiposity. Interestingly, these effects were not mediated by a difference in food intake, but rather associated with enhanced physical activity. When fed high-fat diet, Sam68-KO mice gained much lesser body weight and fat mass as compared to wild-type (WT) littermates and displayed an improved glucose and insulin tolerance. The brown adipose tissue (BAT), inguinal and epididymal depots are smaller and their adipocytes less hypertrophy in Sam68-KO mice than in WT littermates. The BAT of Sam68-KO mice exhibited reduced lipid stores and expressed higher levels of Ucp1 and key thermogenic and fatty-acid-oxidation genes. Similarly, depots of inguinal and epididymal white adipose tissue (WAT) in Sam68-KO mice appeared browner, their multilocular Ucp1-positive cells were much more abundant, and the expression of Ucp1, Cidea, Prdm16 and Ppargc1a genes was greater as compared to WT controls, suggesting that loss of Sam68 also promotes WAT browning. Furthermore, in all fat depots of Sam68-KO mice, the expression of M2 macrophage markers were upregulated and M1 markers downregulated. Thus Sam68 plays a crucial role in the control of thermogenesis and may be targeted to combat obesity and associated disorders. PMID:25934704

  7. Inhibition of Sam68 triggers adipose tissue browning.

    PubMed

    Zhou, Junlan; Cheng, Min; Boriboun, Chan; Ardehali, Mariam M; Jiang, Changfei; Liu, Qinghua; Han, Shuling; Goukassian, David A; Tang, Yao-Liang; Zhao, Ting C; Zhao, Ming; Cai, Lu; Richard, Stéphane; Kishore, Raj; Qin, Gangjian

    2015-06-01

    Obesity is associated with insulin resistance and type 2 diabetes; molecular mechanisms that promote energy expenditure can be utilized for effective therapy. Src-associated in mitosis of 68 kDa (Sam68) is potentially significant, because knockout (KO) of Sam68 leads to markedly reduced adiposity. In the present study, we sought to determine the mechanism by which Sam68 regulates adiposity and energy homeostasis. We first found that Sam68 KO mice have a significantly reduced body weight as compared to controls, and the difference is explained entirely by decreased adiposity. Interestingly, these effects were not mediated by a difference in food intake; rather, they were associated with enhanced physical activity. When they were fed a high-fat diet, Sam68 KO mice gained much less body weight and fat mass than their WT littermates did, and they displayed an improved glucose and insulin tolerance. In Sam68 KO mice, the brown adipose tissue (BAT), inguinal, and epididymal depots were smaller, and their adipocytes were less hypertrophied as compared to their WT littermates. The BAT of Sam68 KO mice exhibited reduced lipid stores and expressed higher levels of Ucp1 and key thermogenic and fatty acid oxidation genes. Similarly, depots of inguinal and epididymal white adipose tissue (WAT) in Sam68 KO mice appeared browner, their multilocular Ucp1-positive cells were much more abundant, and the expression of Ucp1, Cidea, Prdm16, and Ppargc1a genes was greater as compared to WT controls, which suggests that the loss of Sam68 also promotes WAT browning. Furthermore, in all of the fat depots of the Sam68 KO mice, the expression of M2 macrophage markers was up-regulated, and that of M1 markers was down-regulated. Thus, Sam68 plays a crucial role in controlling thermogenesis and may be targeted to combat obesity and associated disorders.

  8. FGF receptor antagonism does not affect adipose tissue development in nutritionally induced obesity.

    PubMed

    Scroyen, Ilse; Vranckx, Christine; Lijnen, Henri Roger

    2014-01-01

    The fibroblast growth factor (FGF)-FGF receptor (FGFR) system plays a role in angiogenesis and maintenance of vascular integrity, but its potential role in adipose tissue related angiogenesis and development is still unknown. Administration of SSR, a low molecular weight inhibitor of multiple FGFRs, did not significantly affect body weight nor weight of subcutaneous or gonadal (GON) fat, as compared with pair-fed control mice. Adipocyte hypertrophy and reduced adipocyte density were only observed in GON adipose tissues of treated mice. Adipose tissue angiogenesis was not affected by SSR treatment, as normalized blood vessel density was comparable in adipose tissues of both groups. Blocking the FGF-FGFR system in vivo does not markedly affect adipose tissue development in mice with nutritionally induced obesity.

  9. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    PubMed

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues

  10. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    PubMed

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone-fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues - subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT - is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat tissues

  11. Bone Marrow Adipose Tissue: To Be or Not To Be a Typical Adipose Tissue?

    PubMed Central

    Hardouin, Pierre; Rharass, Tareck; Lucas, Stéphanie

    2016-01-01

    Bone marrow adipose tissue (BMAT) emerges as a distinct fat depot whose importance has been proved in the bone–fat interaction. Indeed, it is well recognized that adipokines and free fatty acids released by adipocytes can directly or indirectly interfere with cells of bone remodeling or hematopoiesis. In pathological states, such as osteoporosis, each of adipose tissues – subcutaneous white adipose tissue (WAT), visceral WAT, brown adipose tissue (BAT), and BMAT – is differently associated with bone mineral density (BMD) variations. However, compared with the other fat depots, BMAT displays striking features that makes it a substantial actor in bone alterations. BMAT quantity is well associated with BMD loss in aging, menopause, and other metabolic conditions, such as anorexia nervosa. Consequently, BMAT is sensed as a relevant marker of a compromised bone integrity. However, analyses of BMAT development in metabolic diseases (obesity and diabetes) are scarce and should be, thus, more systematically addressed to better apprehend the bone modifications in that pathophysiological contexts. Moreover, bone marrow (BM) adipogenesis occurs throughout the whole life at different rates. Following an ordered spatiotemporal expansion, BMAT has turned to be a heterogeneous fat depot whose adipocytes diverge in their phenotype and their response to stimuli according to their location in bone and BM. In vitro, in vivo, and clinical studies point to a detrimental role of BM adipocytes (BMAs) throughout the release of paracrine factors that modulate osteoblast and/or osteoclast formation and function. However, the anatomical dissemination and the difficulties to access BMAs still hamper our understanding of the relative contribution of BMAT secretions compared with those of peripheral adipose tissues. A further characterization of the phenotype and the functional regulation of BMAs are ever more required. Based on currently available data and comparison with other fat

  12. Identification and characterization of CTRP9, a novel secreted glycoprotein, from adipose tissue that reduces serum glucose in mice and forms heterotrimers with adiponectin.

    PubMed

    Wong, G William; Krawczyk, Sarah A; Kitidis-Mitrokostas, Claire; Ge, Guangtao; Spooner, Eric; Hug, Christopher; Gimeno, Ruth; Lodish, Harvey F

    2009-01-01

    Adiponectin is a major insulin-sensitizing, multimeric hormone derived from adipose tissue that acts on muscle and liver to regulate whole-body glucose and lipid metabolism. Here, we describe a novel and highly conserved paralog of adiponectin designated as C1q/TNF-related protein (CTRP) 9. Of all the CTRP paralogs, CTRP9 shows the highest degree of amino acid identity to adiponectin in its globular C1q domain. CTRP9 is expressed predominantly in adipose tissue and females expresses higher levels of the transcript than males. Moreover, its expression levels in ob/ob mice changed in an age-dependent manner, with significant up-regulation in younger mice. CTRP9 is a secreted glycoprotein with multiple post-translational modifications in its collagen domain that include hydroxylated prolines and hydroxylated and glycosylated lysines. It is secreted as multimers (predominantly trimers) from transfected cells and circulates in the mouse serum with levels varying according to sex and metabolic state of mice. Furthermore, CTRP9 and adiponectin can be secreted as heterooligomers when cotransfected into mammalian cells, and in vivo, adiponectin/CTRP9 complexes can be reciprocally coimmunoprecipitated from the serum of adiponectin and CTRP9 transgenic mice. Biochemical analysis demonstrates that adiponectin and CTRP9 associate via their globular C1q domain, and this interaction does not require their conserved N-terminal cysteines or their collagen domains. Furthermore, we show that adiponectin and CTRP9 form heterotrimers. In cultured myotubes, CTRP9 specifically activates AMPK, Akt, and p44/42 MAPK signaling pathways. Adenovirus-mediated overexpression of CTRP9 in obese (ob/ob) mice significantly lowered serum glucose levels. Collectively, these results suggest that CTRP9 is a novel adipokine, and further study of CTRP9 will yield novel mechanistic insights into its physiological and metabolic function.

  13. Brown Adipose Tissue in Cetacean Blubber

    PubMed Central

    Hashimoto, Osamu; Ohtsuki, Hirofumi; Kakizaki, Takehiko; Amou, Kento; Sato, Ryo; Doi, Satoru; Kobayashi, Sara; Matsuda, Ayaka; Sugiyama, Makoto; Funaba, Masayuki; Matsuishi, Takashi; Terasawa, Fumio; Shindo, Junji; Endo, Hideki

    2015-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall’s and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during

  14. Brown adipose tissue in cetacean blubber.

    PubMed

    Hashimoto, Osamu; Ohtsuki, Hirofumi; Kakizaki, Takehiko; Amou, Kento; Sato, Ryo; Doi, Satoru; Kobayashi, Sara; Matsuda, Ayaka; Sugiyama, Makoto; Funaba, Masayuki; Matsuishi, Takashi; Terasawa, Fumio; Shindo, Junji; Endo, Hideki

    2015-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall's and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during

  15. Brown adipose tissue in cetacean blubber.

    PubMed

    Hashimoto, Osamu; Ohtsuki, Hirofumi; Kakizaki, Takehiko; Amou, Kento; Sato, Ryo; Doi, Satoru; Kobayashi, Sara; Matsuda, Ayaka; Sugiyama, Makoto; Funaba, Masayuki; Matsuishi, Takashi; Terasawa, Fumio; Shindo, Junji; Endo, Hideki

    2015-01-01

    Brown adipose tissue (BAT) plays an important role in thermoregulation in species living in cold environments, given heat can be generated from its chemical energy reserves. Here we investigate the existence of BAT in blubber in four species of delphinoid cetacean, the Pacific white-sided and bottlenose dolphins, Lagenorhynchus obliquidens and Tursiops truncates, and Dall's and harbour porpoises, Phocoenoides dalli and Phocoena phocoena. Histology revealed adipocytes with small unilocular fat droplets and a large eosinophilic cytoplasm intermingled with connective tissue in the innermost layers of blubber. Chemistry revealed a brown adipocyte-specific mitochondrial protein, uncoupling protein 1 (UCP1), within these same adipocytes, but not those distributed elsewhere throughout the blubber. Western blot analysis of extracts from the inner blubber layer confirmed that the immunohistochemical positive reaction was specific to UCP1 and that this adipose tissue was BAT. To better understand the distribution of BAT throughout the entire cetacean body, cadavers were subjected to computed tomography (CT) scanning. Resulting imagery, coupled with histological corroboration of fine tissue structure, revealed adipocytes intermingled with connective tissue in the lowest layer of blubber were distributed within a thin, highly dense layer that extended the length of the body, with the exception of the rostrum, fin and fluke regions. As such, we describe BAT effectively enveloping the cetacean body. Our results suggest that delphinoid blubber could serve a role additional to those frequently attributed to it: simple insulation blanket, energy storage, hydrodynamic streamlining or contributor to positive buoyancy. We believe delphinoid BAT might also function like an electric blanket, enabling animals to frequent waters cooler than blubber as an insulator alone might otherwise allow an animal to withstand, or allow animals to maintain body temperature in cool waters during

  16. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    SciTech Connect

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi; Nakaoka, Hirotomo; Moritani, Tomozo; Horiuchi, Masatsugu

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with a high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.

  17. Macrophage elastase suppresses white adipose tissue expansion with cigarette smoking.

    PubMed

    Tsuji, Takao; Kelly, Neil J; Takahashi, Saeko; Leme, Adriana S; Houghton, A McGarry; Shapiro, Steven D

    2014-12-01

    Macrophage elastase (MMP12) is a key mediator of cigarette smoke (CS)-induced emphysema, yet its role in other smoking related pathologies remains unclear. The weight suppressing effects of smoking are a major hindrance to cessation efforts, and MMP12 is known to suppress the vascularization on which adipose tissue growth depends by catalyzing the formation of antiangiogenic peptides endostatin and angiostatin. The goal of this study was to determine the role of MMP12 in adipose tissue growth and smoking-related suppression of weight gain. Whole body weights and white adipose depots from wild-type and Mmp12-deficient mice were collected during early postnatal development and after chronic CS exposure. Adipose tissue specimens were analyzed for angiogenic and adipocytic markers and for content of the antiangiogenic peptides endostatin and angiostatin. Cultured 3T3-L1 adipocytes were treated with adipose tissue homogenate to examine its effects on vascular endothelial growth factor (VEGF) expression and secretion. MMP12 content and activity were increased in the adipose tissue of wild-type mice at 2 weeks of age, leading to elevated endostatin production, inhibition of VEGF secretion, and decreased adipose tissue vascularity. By 8 weeks of age, adipose MMP12 levels subsided, and the protein was no longer detectable. However, chronic CS exposure led to macrophage accumulation and restored adipose MMP12 activity, thereby suppressing adipose tissue mass and vascularity. Our results reveal a novel systemic role for MMP12 in postnatal adipose tissue expansion and smoking-associated weight loss by suppressing vascularity within the white adipose tissue depots.

  18. Macrophage Elastase Suppresses White Adipose Tissue Expansion with Cigarette Smoking

    PubMed Central

    Tsuji, Takao; Kelly, Neil J.; Takahashi, Saeko; Leme, Adriana S.; McGarry Houghton, A.

    2014-01-01

    Macrophage elastase (MMP12) is a key mediator of cigarette smoke (CS)-induced emphysema, yet its role in other smoking related pathologies remains unclear. The weight suppressing effects of smoking are a major hindrance to cessation efforts, and MMP12 is known to suppress the vascularization on which adipose tissue growth depends by catalyzing the formation of antiangiogenic peptides endostatin and angiostatin. The goal of this study was to determine the role of MMP12 in adipose tissue growth and smoking-related suppression of weight gain. Whole body weights and white adipose depots from wild-type and Mmp12-deficient mice were collected during early postnatal development and after chronic CS exposure. Adipose tissue specimens were analyzed for angiogenic and adipocytic markers and for content of the antiangiogenic peptides endostatin and angiostatin. Cultured 3T3-L1 adipocytes were treated with adipose tissue homogenate to examine its effects on vascular endothelial growth factor (VEGF) expression and secretion. MMP12 content and activity were increased in the adipose tissue of wild-type mice at 2 weeks of age, leading to elevated endostatin production, inhibition of VEGF secretion, and decreased adipose tissue vascularity. By 8 weeks of age, adipose MMP12 levels subsided, and the protein was no longer detectable. However, chronic CS exposure led to macrophage accumulation and restored adipose MMP12 activity, thereby suppressing adipose tissue mass and vascularity. Our results reveal a novel systemic role for MMP12 in postnatal adipose tissue expansion and smoking-associated weight loss by suppressing vascularity within the white adipose tissue depots. PMID:24914890

  19. The role of adipose tissue in mediating the beneficial effects of dietary fish oil

    PubMed Central

    Puglisi, Michael J.; Hasty, Alyssa H.; Saraswathi, Viswanathan

    2010-01-01

    Fish oil improves several features of metabolic syndrome such as dyslipidemia, insulin resistance and hepatic steatosis. Fish oil may mediate some of its beneficial effects by modulating the storage and/or secretory functions of adipose tissue. The storage of triglycerides in adipose tissue is regulated by the availability of free fatty acids as well as the degree of lipolysis in adipose tissue. Fish oil has been shown to reduce lipolysis in several studies indicating improved triglyceride storage. Importantly, adipose tissue secretes a variety of adipokines and fish oil feeding is associated with remarkable changes in the plasma levels of two key adipokines, adiponectin and leptin. Much attention has been focused on the contribution of adiponectin in fish oil mediated improvements in metabolic syndrome. However, emerging evidence also indicates a role of leptin in modulating the components of the metabolic syndrome upon fish oil feeding. In addition to improving the storage and secretory functions of adipose tissue, fish oil, and the n-3 fatty acids found in fish oil, has been shown to reduce inflammation in adipose tissue. These effects may be in part a result of activation of peroxisome proliferator-activated receptor γ or inhibition of toll-like receptor 4. Thus, there is compelling evidence that fish oil mediates its beneficial effects on metabolic syndrome by improving adipose tissue storage and secretory functions and by reducing inflammation. PMID:21145721

  20. Adipokines and the Endocrine Role of Adipose Tissues.

    PubMed

    Giralt, Marta; Cereijo, Rubén; Villarroya, Francesc

    2016-01-01

    The last two decades have witnessed a shift in the consideration of white adipose tissue as a mere repository of fat to be used when food becomes scarce to a true endocrine tissue releasing regulatory signals, the so-called adipokines, to the whole body. The control of eating behavior, the peripheral insulin sensitivity, and even the development of the female reproductive system are among the physiological events controlled by adipokines. Recently, the role of brown adipose tissue in human physiology has been recognized. The metabolic role of brown adipose tissue is opposite to white fat; instead of storing fat, brown adipose tissue is a site of energy expenditure via adaptive thermogenesis. There is growing evidence that brown adipose tissue may have its own pattern of secreted hormonal factors, the so-called brown adipokines, having distinctive biological actions on the overall physiological adaptations to enhance energy expenditure.

  1. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice.

    PubMed

    Seale, Patrick; Conroe, Heather M; Estall, Jennifer; Kajimura, Shingo; Frontini, Andrea; Ishibashi, Jeff; Cohen, Paul; Cinti, Saverio; Spiegelman, Bruce M

    2011-01-01

    The white adipose organ is composed of both subcutaneous and several intra-abdominal depots. Excess abdominal adiposity is a major risk factor for metabolic disease in rodents and humans, while expansion of subcutaneous fat does not carry the same risks. Brown adipose produces heat as a defense against hypothermia and obesity, and the appearance of brown-like adipocytes within white adipose tissue depots is associated with improved metabolic phenotypes. Thus, understanding the differences in cell biology and function of these different adipose cell types and depots may be critical to the development of new therapies for metabolic disease. Here, we found that Prdm16, a brown adipose determination factor, is selectively expressed in subcutaneous white adipocytes relative to other white fat depots in mice. Transgenic expression of Prdm16 in fat tissue robustly induced the development of brown-like adipocytes in subcutaneous, but not epididymal, adipose depots. Prdm16 transgenic mice displayed increased energy expenditure, limited weight gain, and improved glucose tolerance in response to a high-fat diet. shRNA-mediated depletion of Prdm16 in isolated subcutaneous adipocytes caused a sharp decrease in the expression of thermogenic genes and a reduction in uncoupled cellular respiration. Finally, Prdm16 haploinsufficiency reduced the brown fat phenotype in white adipose tissue stimulated by β-adrenergic agonists. These results demonstrate that Prdm16 is a cell-autonomous determinant of a brown fat-like gene program and thermogenesis in subcutaneous adipose tissues.

  2. Altered autophagy in human adipose tissues in obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Context: Autophagy is a housekeeping mechanism, involved in metabolic regulation and stress response, shown recently to regulate lipid droplets biogenesis/breakdown and adipose tissue phenotype. Objective: We hypothesized that in human obesity autophagy may be altered in adipose tissue in a fat d...

  3. Involvement of mast cells in adipose tissue fibrosis.

    PubMed

    Hirai, Shizuka; Ohyane, Chie; Kim, Young-Il; Lin, Shan; Goto, Tsuyoshi; Takahashi, Nobuyuki; Kim, Chu-Sook; Kang, Jihey; Yu, Rina; Kawada, Teruo

    2014-02-01

    Recently, fibrosis is observed in obese adipose tissue; however, the pathogenesis remains to be clarified. Obese adipose tissue is characterized by chronic inflammation with massive accumulation of immune cells including mast cells. The objective of the present study was to clarify the relationship between fibrosis and mast cells in obese adipose tissue, as well as to determine the origin of infiltrating mast cells. We observed the enhancement of mast cell accumulation and fibrosis in adipose tissue of severely obese diabetic db/db mice. Furthermore, adipose tissue-conditioned medium (ATCM) from severely obese diabetic db/db mice significantly enhanced collagen 5 mRNA expression in NIH-3T3 fibroblasts, and this enhancement was suppressed by the addition of an anti-mast cell protease 6 (MCP-6) antibody. An in vitro study showed that only collagen V among various types of collagen inhibited preadipocyte differentiation. Moreover, we found that ATCM from the nonobese but not obese stages of db/db mice significantly enhanced the migration of bone marrow-derived mast cells (BMMCs). These findings suggest that immature mast cells that infiltrate into adipose tissue at the nonobese stage gradually mature with the progression of obesity and diabetes and that MCP-6 secreted from mature mast cells induces collagen V expression in obese adipose tissue, which may contribute to the process of adipose tissue fibrosis. Induction of collagen V by MCP-6 might accelerate insulin resistance via the suppression of preadipocyte differentiation.

  4. Cell supermarket: Adipose tissue as a source of stem cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  5. Obesity and prostate cancer: gene expression signature of human periprostatic adipose tissue

    PubMed Central

    2012-01-01

    Background Periprostatic (PP) adipose tissue surrounds the prostate, an organ with a high predisposition to become malignant. Frequently, growing prostatic tumor cells extend beyond the prostatic organ towards this fat depot. This study aimed to determine the genome-wide expression of genes in PP adipose tissue in obesity/overweight (OB/OW) and prostate cancer patients. Methods Differentially expressed genes in human PP adipose tissue were identified using microarrays. Analyses were conducted according to the donors' body mass index characteristics (OB/OW versus lean) and prostate disease (extra prostatic cancer versus organ confined prostate cancer versus benign prostatic hyperplasia). Selected genes with altered expression were validated by real-time PCR. Ingenuity Pathway Analysis (IPA) was used to investigate gene ontology, canonical pathways and functional networks. Results In the PP adipose tissue of OB/OW subjects, we found altered expression of genes encoding molecules involved in adipogenic/anti-lipolytic, proliferative/anti-apoptotic, and mild immunoinflammatory processes (for example, FADS1, down-regulated, and LEP and ANGPT1, both up-regulated). Conversely, in the PP adipose tissue of subjects with prostate cancer, altered genes were related to adipose tissue cellular activity (increased cell proliferation/differentiation, cell cycle activation and anti-apoptosis), whereas a downward impact on immunity and inflammation was also observed, mostly related to the complement (down-regulation of CFH). Interestingly, we found that the microRNA MIRLET7A2 was overexpressed in the PP adipose tissue of prostate cancer patients. Conclusions Obesity and excess adiposity modified the expression of PP adipose tissue genes to ultimately foster fat mass growth. In patients with prostate cancer the expression profile of PP adipose tissue accounted for hypercellularity and reduced immunosurveillance. Both findings may be liable to promote a favorable environment for

  6. The Ontogeny of Brown Adipose Tissue.

    PubMed

    Symonds, Michael E; Pope, Mark; Budge, Helen

    2015-01-01

    There are three different types of adipose tissue (AT)-brown, white, and beige-that differ with stage of development, species, and anatomical location. Of these, brown AT (BAT) is the least abundant but has the greatest potential impact on energy balance. BAT is capable of rapidly producing large amounts of heat through activation of the unique uncoupling protein 1 (UCP1) located within the inner mitochondrial membrane. White AT is an endocrine organ and site of lipid storage, whereas beige AT is primarily white but contains some cells that possess UCP1. BAT first appears in the fetus around mid-gestation and is then gradually lost through childhood, adolescence, and adulthood. We focus on the interrelationships between adipocyte classification, anatomical location, and impact of diet in early life together with the extent to which fat development differs between the major species examined. Ultimately, novel dietary interventions designed to reactivate BAT could be possible.

  7. The Ontogeny of Brown Adipose Tissue.

    PubMed

    Symonds, Michael E; Pope, Mark; Budge, Helen

    2015-01-01

    There are three different types of adipose tissue (AT)-brown, white, and beige-that differ with stage of development, species, and anatomical location. Of these, brown AT (BAT) is the least abundant but has the greatest potential impact on energy balance. BAT is capable of rapidly producing large amounts of heat through activation of the unique uncoupling protein 1 (UCP1) located within the inner mitochondrial membrane. White AT is an endocrine organ and site of lipid storage, whereas beige AT is primarily white but contains some cells that possess UCP1. BAT first appears in the fetus around mid-gestation and is then gradually lost through childhood, adolescence, and adulthood. We focus on the interrelationships between adipocyte classification, anatomical location, and impact of diet in early life together with the extent to which fat development differs between the major species examined. Ultimately, novel dietary interventions designed to reactivate BAT could be possible. PMID:26076904

  8. High intensity interval training improves liver and adipose tissue insulin sensitivity

    PubMed Central

    Marcinko, Katarina; Sikkema, Sarah R.; Samaan, M. Constantine; Kemp, Bruce E.; Fullerton, Morgan D.; Steinberg, Gregory R.

    2015-01-01

    Objective Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. Methods In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine–alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. Results HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. Conclusions These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC. PMID:26909307

  9. Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue.

    PubMed

    Šram, Miroslav; Vrselja, Zvonimir; Lekšan, Igor; Ćurić, Goran; Selthofer-Relatić, Kristina; Radić, Radivoje

    2015-01-01

    Introduction. Adipose tissue is the largest endocrine organ, composed of subcutaneous (SAT) and visceral adipose tissue (VAT), the latter being highly associated with coronary artery disease (CAD). Expansion of epicardial adipose tissue (EAT) is linked to CAD. One way of assessing the CAD risk is with low-cost anthropometric measures, although they are inaccurate and cannot discriminate between VAT and SAT. The aim of this study is to evaluate (1) the relationship between EAT thickness, SAT thickness and anthropometric measures in a cohort of patients assessed at the cardiology unit and (2) determine predictive power of anthropometric measures and EAT and SAT thickness in establishment of CAD. Methods. Anthropometric measures were obtained from 53 CAD and 42 non-CAD patients. Vascular and structural statuses were obtained with coronarography and echocardiography, as well as measurements of the EAT and SAT thickness. Results. Anthropometric measures showed moderate positive correlation with EAT and SAT thickness. Anthropometric measures and SAT follow nonlinear S curve relationship with EAT. Strong nonlinear power curve relationship was observed between EAT and SAT thinner than 10 mm. Anthropometric measures and EAT and SAT were poor predictors of CAD. Conclusion. Anthropometric measures and SAT have nonlinear relationship with EAT. EAT thickness and anthropometric measures have similar CAD predictive value. PMID:26124828

  10. Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue

    PubMed Central

    Šram, Miroslav; Vrselja, Zvonimir; Lekšan, Igor; Ćurić, Goran; Selthofer-Relatić, Kristina; Radić, Radivoje

    2015-01-01

    Introduction. Adipose tissue is the largest endocrine organ, composed of subcutaneous (SAT) and visceral adipose tissue (VAT), the latter being highly associated with coronary artery disease (CAD). Expansion of epicardial adipose tissue (EAT) is linked to CAD. One way of assessing the CAD risk is with low-cost anthropometric measures, although they are inaccurate and cannot discriminate between VAT and SAT. The aim of this study is to evaluate (1) the relationship between EAT thickness, SAT thickness and anthropometric measures in a cohort of patients assessed at the cardiology unit and (2) determine predictive power of anthropometric measures and EAT and SAT thickness in establishment of CAD. Methods. Anthropometric measures were obtained from 53 CAD and 42 non-CAD patients. Vascular and structural statuses were obtained with coronarography and echocardiography, as well as measurements of the EAT and SAT thickness. Results. Anthropometric measures showed moderate positive correlation with EAT and SAT thickness. Anthropometric measures and SAT follow nonlinear S curve relationship with EAT. Strong nonlinear power curve relationship was observed between EAT and SAT thinner than 10 mm. Anthropometric measures and EAT and SAT were poor predictors of CAD. Conclusion. Anthropometric measures and SAT have nonlinear relationship with EAT. EAT thickness and anthropometric measures have similar CAD predictive value. PMID:26124828

  11. Epicardial Adipose Tissue Is Nonlinearly Related to Anthropometric Measures and Subcutaneous Adipose Tissue.

    PubMed

    Šram, Miroslav; Vrselja, Zvonimir; Lekšan, Igor; Ćurić, Goran; Selthofer-Relatić, Kristina; Radić, Radivoje

    2015-01-01

    Introduction. Adipose tissue is the largest endocrine organ, composed of subcutaneous (SAT) and visceral adipose tissue (VAT), the latter being highly associated with coronary artery disease (CAD). Expansion of epicardial adipose tissue (EAT) is linked to CAD. One way of assessing the CAD risk is with low-cost anthropometric measures, although they are inaccurate and cannot discriminate between VAT and SAT. The aim of this study is to evaluate (1) the relationship between EAT thickness, SAT thickness and anthropometric measures in a cohort of patients assessed at the cardiology unit and (2) determine predictive power of anthropometric measures and EAT and SAT thickness in establishment of CAD. Methods. Anthropometric measures were obtained from 53 CAD and 42 non-CAD patients. Vascular and structural statuses were obtained with coronarography and echocardiography, as well as measurements of the EAT and SAT thickness. Results. Anthropometric measures showed moderate positive correlation with EAT and SAT thickness. Anthropometric measures and SAT follow nonlinear S curve relationship with EAT. Strong nonlinear power curve relationship was observed between EAT and SAT thinner than 10 mm. Anthropometric measures and EAT and SAT were poor predictors of CAD. Conclusion. Anthropometric measures and SAT have nonlinear relationship with EAT. EAT thickness and anthropometric measures have similar CAD predictive value.

  12. Role of adipose tissue in the pathogenesis of cardiac arrhythmias.

    PubMed

    Samanta, Rahul; Pouliopoulos, Jim; Thiagalingam, Aravinda; Kovoor, Pramesh

    2016-01-01

    Epicardial adipose tissue is present in normal healthy individuals. It is a unique fat depot that, under physiologic conditions, plays a cardioprotective role. However, excess epicardial adipose tissue has been shown to be associated with prevalence and severity of atrial fibrillation. In arrhythmogenic right ventricular cardiomyopathy and myotonic dystrophy, fibrofatty infiltration of the myocardium is associated with ventricular arrhythmias. In the ovine model of ischemic cardiomyopathy, the presence of intramyocardial adipose or lipomatous metaplasia has been associated with increased propensity to ventricular tachycardia. These observations suggest a role of adipose tissue in the pathogenesis of cardiac arrhythmias. In this article, we review the role of cardiac adipose tissue in various cardiac arrhythmias and discuss the possible pathophysiologic mechanisms.

  13. The impact of adiposity on adipose tissue-resident lymphocyte activation in humans

    PubMed Central

    Travers, R L; Motta, A C; Betts, J A; Bouloumié, A; Thompson, D

    2015-01-01

    Background/objectives: The presence of T lymphocytes in human adipose tissue has only recently been demonstrated and relatively little is known of their potential relevance in the development of obesity-related diseases. We aimed to further characterise these cells and in particular to investigate how they interact with modestly increased levels of adiposity typical of common overweight and obesity. Subjects/methods: Subcutaneous adipose tissue and fasting blood samples were obtained from healthy males aged 35–55 years with waist circumferences in lean (<94 cm), overweight (94–102 cm) and obese (>102 cm) categories. Adipose tissue-resident CD4+ and CD8+ T lymphocytes together with macrophages were identified by gene expression and flow cytometry. T lymphocytes were further characterised by their expression of activation markers CD25 and CD69. Adipose tissue inflammation was investigated using gene expression analysis and tissue culture. Results: Participants reflected a range of adiposity from lean to class I obesity. Expression of CD4 (T-helper cells) and CD68 (macrophage), as well as FOXP3 RNA transcripts, was elevated in subcutaneous adipose tissue with increased levels of adiposity (P<0.001, P<0.001 and P=0.018, respectively). Flow cytometry revealed significant correlations between waist circumference and levels of CD25 and CD69 expression per cell on activated adipose tissue-resident CD4+ and CD8+ T lymphocytes (P-values ranging from 0.053 to <0.001). No such relationships were found with blood T lymphocytes. This increased T lymphocyte activation was related to increased expression and secretion of various pro- and anti-inflammatory cytokines from subcutaneous whole adipose tissue explants. Conclusions: This is the first study to demonstrate that even modest levels of overweight/obesity elicit modifications in adipose tissue immune function. Our results underscore the importance of T lymphocytes during adipose tissue expansion, and the presence of

  14. Adipose tissue lipolysis and energy metabolism in early cancer cachexia in mice.

    PubMed

    Kliewer, Kara L; Ke, Jia-Yu; Tian, Min; Cole, Rachel M; Andridge, Rebecca R; Belury, Martha A

    2015-01-01

    Cancer cachexia is a progressive metabolic disorder that results in depletion of adipose tissue and skeletal muscle. A growing body of literature suggests that maintaining adipose tissue mass in cachexia may improve quality-of-life and survival outcomes. Studies of lipid metabolism in cachexia, however, have generally focused on later stages of the disorder when severe loss of adipose tissue has already occurred. Here, we investigated lipid metabolism in adipose, liver and muscle tissues during early stage cachexia - before severe fat loss - in the colon-26 murine model of cachexia. White adipose tissue mass in cachectic mice was moderately reduced (34-42%) and weight loss was less than 10% of initial body weight in this study of early cachexia. In white adipose depots of cachectic mice, we found evidence of enhanced protein kinase A - activated lipolysis which coincided with elevated total energy expenditure and increased expression of markers of brown (but not white) adipose tissue thermogenesis and the acute phase response. Total lipids in liver and muscle were unchanged in early cachexia while markers of fatty oxidation were increased. Many of these initial metabolic responses contrast with reports of lipid metabolism in later stages of cachexia. Our observations suggest intervention studies to preserve fat mass in cachexia should be tailored to the stage of cachexia. Our observations also highlight a need for studies that delineate the contribution of cachexia stage and animal model to altered lipid metabolism in cancer cachexia and identify those that most closely mimic the human condition.

  15. Role of inflammatory factors and adipose tissue in pathogenesis of rheumatoid arthritis and osteoarthritis. Part I: Rheumatoid adipose tissue.

    PubMed

    Sudoł-Szopińska, Iwona; Kontny, Ewa; Zaniewicz-Kaniewska, Katarzyna; Prohorec-Sobieszek, Monika; Saied, Fadhil; Maśliński, Włodzimierz

    2013-06-01

    For many years, it was thought that synovial cells and chondrocytes are the only sources of proinflammatory cytokines and growth factors found in the synovial fluid in patients suffering from osteoarthritis and rheumatoid arthritis. Currently, it is more and more frequently indicated that adipose tissue plays a significant role in the pathogenesis of these diseases as well as that a range of pathological processes that take place in the adipose tissue, synovial membrane and cartilage are interconnected. The adipose tissue is considered a specialized form of the connective tissue containing various types of cells which produce numerous biologically active factors. The latest studies reveal that, similarly to the synovial membrane, articular adipose tissue may take part in the local inflammatory response and affect the metabolism of the cartilage and subchondral osseous tissue. In in vitro conditions, the explants of this tissue obtained from patients suffering from osteoarthritis and rheumatoid arthritis produce similar pro- and anti-inflammatory cytokines to the explants of the synovial membrane. At this stage already, knowledge translates into imaging diagnostics. In radiological images, the shadowing of the periarticular soft tissues may not only reflect synovial membrane pathologies or joint effusion, but may also suggest inflammatory edema of the adipose tissue. On ultrasound examinations, abnormal presentation of the adipose tissue, i.e. increased echogenicity and hyperemia, may indicate its inflammation. Such images have frequently been obtained during ultrasound scanning and have been interpreted as inflammation, edema, hypertrophy or fibrosis of the adipose tissue. At present, when the knowledge concerning pathogenic mechanisms is taken into account, abnormal echogenicity and hyperemia of the adipose tissue may be considered as a proof of its inflammation. In the authors' own practice, the inflammation of the adipose tissue usually accompanies synovitis

  16. Cell Supermarket: Adipose Tissue as a Source of Stem Cells

    PubMed Central

    Dodson, M.V.; Wei, S.; Duarte, M.; Du, M.; Jiang, Z.; Hausman, G.J.; Bergen, W.G.

    2013-01-01

    Adipose tissue is derived from numerous sources, and in recent years this tissue has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical and scientific applications. The focus of this paper is to reflect on this area of research and to provide a list of potential (future) research areas. PMID:25031654

  17. Characteristics of mouse adipose tissue-derived stem cells and therapeutic comparisons between syngeneic and allogeneic adipose tissue-derived stem cell transplantation in experimental autoimmune thyroiditis.

    PubMed

    Choi, Eun Wha; Shin, Il Seob; Park, So Young; Yoon, Eun Ji; Kang, Sung Keun; Ra, Jeong Chan; Hong, Sung Hwa

    2014-01-01

    Previously, we found that the intravenous administration of human adipose tissue-derived mesenchymal stem cells was a promising therapeutic option for autoimmune thyroiditis even when the cells were transplanted into a xenogeneic model without an immunosuppressant. Therefore, we explored the comparison between the therapeutic effects of syngeneic and allogeneic adipose tissue-derived stem cells on an experimental autoimmune thyroiditis mouse model. Experimental autoimmune thyroiditis was induced in C57BL/6 mice by immunization with porcine thyroglobulin. Adipose tissue-derived stem cells derived from C57BL/6 mice (syngeneic) or BALB/c mice (allogeneic) or saline as a vehicle control were administered intravenously four times weekly. Blood and tissue samples were collected 1 week after the last transplantation. Adipose tissue-derived stem cells from mice were able to differentiate into multiple lineages in vitro; however, mouse adipose tissue-derived stem cells did not have immunophenotypes identical to those from humans. Syngeneic and allogeneic administrations of adipose tissue-derived stem cells reduced thyroglobulin autoantibodies and the inflammatory immune response, protected against lymphocyte infiltration into the thyroid, and restored the Th1/Th2 balance without any adverse effects. However, different humoral immune responses were observed for infused cells from different stem cell sources. The strongest humoral immune response was induced by xenogeneic transplantation, followed by allogeneic and syngeneic administration, in that order. The stem cells were mostly found in the spleen, not the thyroid. This migration might be because the stem cells primarily function in systemic immune modulation, due to being given prior to disease induction. In this study, we confirmed that there were equal effects of adipose tissue-derived stem cells in treating autoimmune thyroiditis between syngeneic and allogeneic transplantations.

  18. Hypoxia and adipose tissue function and dysfunction in obesity.

    PubMed

    Trayhurn, Paul

    2013-01-01

    The rise in the incidence of obesity has led to a major interest in the biology of white adipose tissue. The tissue is a major endocrine and signaling organ, with adipocytes, the characteristic cell type, secreting a multiplicity of protein factors, the adipokines. Increases in the secretion of a number of adipokines occur in obesity, underpinning inflammation in white adipose tissue and the development of obesity-associated diseases. There is substantial evidence, particularly from animal studies, that hypoxia develops in adipose tissue as the tissue mass expands, and the reduction in Po(2) is considered to underlie the inflammatory response. Exposure of white adipocytes to hypoxic conditions in culture induces changes in the expression of >1,000 genes. The secretion of a number of inflammation-related adipokines is upregulated by hypoxia, and there is a switch from oxidative metabolism to anaerobic glycolysis. Glucose utilization is increased in hypoxic adipocytes with corresponding increases in lactate production. Importantly, hypoxia induces insulin resistance in fat cells and leads to the development of adipose tissue fibrosis. Many of the responses of adipocytes to hypoxia are initiated at Po(2) levels above the normal physiological range for adipose tissue. The other cell types within the tissue also respond to hypoxia, with the differentiation of preadipocytes to adipocytes being inhibited and preadipocytes being transformed into leptin-secreting cells. Overall, hypoxia has pervasive effects on the function of adipocytes and appears to be a key factor in adipose tissue dysfunction in obesity.

  19. Total DDT and dieldrin content of human adipose tissue

    SciTech Connect

    Ahmad, N.; Harsas, W.; Marolt, R.S.; Morton, M.; Pollack, J.K.

    1988-12-01

    As far as the authors could ascertain only 4 well-documented analytical studies have been carried out in Australia determining the total DDT and dieldrin content of human adipose tissue. The latest of these studies was published over 16 years ago. Therefore it is timely and important to re-examine the total DDT and dieldrin concentration within the adipose tissue of the Australian population. The present investigation has analyzed 290 samples of human adipose tissue obtained from Westmead Hospital situated in an outer suburb of Sydney, New South Wales for their content of total DDT and dieldrin.

  20. Self-synthesized extracellular matrix contributes to mature adipose tissue regeneration in a tissue engineering chamber.

    PubMed

    Zhan, Weiqing; Chang, Qiang; Xiao, Xiaolian; Dong, Ziqing; Zeng, Zhaowei; Gao, Jianhua; Lu, Feng

    2015-01-01

    The development of an engineered adipose tissue substitute capable of supporting reliable, predictable, and complete fat tissue regeneration would be of value in plastic and reconstructive surgery. For adipogenesis, a tissue engineering chamber provides an optimized microenvironment that is both efficacious and reproducible; however, for reasons that remain unclear, tissues regenerated in a tissue engineering chamber consist mostly of connective rather than adipose tissue. Here, we describe a chamber-based system for improving the yield of mature adipose tissue and discuss the potential mechanism of adipogenesis in tissue-chamber models. Adipose tissue flaps with independent vascular pedicles placed in chambers were implanted into rabbits. Adipose volume increased significantly during the observation period (week 1, 2, 3, 4, 16). Histomorphometry revealed mature adipose tissue with signs of adipose tissue remolding. The induced engineered constructs showed high-level expression of adipogenic (peroxisome proliferator-activated receptor γ), chemotactic (stromal cell-derived factor 1a), and inflammatory (interleukin 1 and 6) genes. In our system, the extracellular matrix may have served as a scaffold for cell migration and proliferation, allowing mature adipose tissue to be obtained in a chamber microenvironment without the need for an exogenous scaffold. Our results provide new insights into key elements involved in the early development of adipose tissue regeneration.

  1. Isoliquiritigenin Attenuates Adipose Tissue Inflammation in vitro and Adipose Tissue Fibrosis through Inhibition of Innate Immune Responses in Mice

    PubMed Central

    Watanabe, Yasuharu; Nagai, Yoshinori; Honda, Hiroe; Okamoto, Naoki; Yamamoto, Seiji; Hamashima, Takeru; Ishii, Yoko; Tanaka, Miyako; Suganami, Takayoshi; Sasahara, Masakiyo; Miyake, Kensuke; Takatsu, Kiyoshi

    2016-01-01

    Isoliquiritigenin (ILG) is a flavonoid derived from Glycyrrhiza uralensis and potently suppresses NLRP3 inflammasome activation resulting in the improvement of diet-induced adipose tissue inflammation. However, whether ILG affects other pathways besides the inflammasome in adipose tissue inflammation is unknown. We here show that ILG suppresses adipose tissue inflammation by affecting the paracrine loop containing saturated fatty acids and TNF-α by using a co-culture composed of adipocytes and macrophages. ILG suppressed inflammatory changes induced by the co-culture through inhibition of NF-κB activation. This effect was independent of either inhibition of inflammasome activation or activation of peroxisome proliferator-activated receptor-γ. Moreover, ILG suppressed TNF-α-induced activation of adipocytes, coincident with inhibition of IκBα phosphorylation. Additionally, TNF-α-mediated inhibition of Akt phosphorylation under insulin signaling was alleviated by ILG in adipocytes. ILG suppressed palmitic acid-induced activation of macrophages, with decreasing the level of phosphorylated Jnk expression. Intriguingly, ILG improved high fat diet-induced fibrosis in adipose tissue in vivo. Finally, ILG inhibited TLR4- or Mincle-stimulated expression of fibrosis-related genes in stromal vascular fraction from obese adipose tissue and macrophages in vitro. Thus, ILG can suppress adipose tissue inflammation by both inflammasome-dependent and -independent manners and attenuate adipose tissue fibrosis by targeting innate immune sensors. PMID:26975571

  2. Role of adipose tissue in haemostasis, coagulation and fibrinolysis.

    PubMed

    Faber, D R; de Groot, Ph G; Visseren, F L J

    2009-09-01

    Obesity is associated with an increased incidence of insulin resistance (IR), type 2 diabetes mellitus and cardiovascular diseases. The increased risk for cardiovascular diseases could partly be caused by a prothrombotic state that exists because of abdominal obesity. Adipose tissue induces thrombocyte activation by the production of adipose tissue-derived hormones, often called adipokines, of which some such as leptin and adiponectin have been shown to directly interfere with platelet function. Increased adipose tissue mass induces IR and systemic low-grade inflammation, also affecting platelet function. It has been demonstrated that adipose tissue directly impairs fibrinolysis by the production of plasminogen activator inhibitor-1 and possibly thrombin-activatable fibrinolysis inhibitor. Adipose tissue may contribute to enhanced coagulation by direct tissue factor production, but hypercoagulability is likely to be primarily caused by affecting hepatic synthesis of the coagulation factors fibrinogen, factor VII, factor VIII and tissue factor, by releasing free fatty acids and pro-inflammatory cytokines (tumour necrosis factor-alpha, interleukin-1beta and interleukin-6) into the portal circulation and by inducing hepatic IR. Adipose tissue dysfunction could thus play a causal role in the prothrombotic state observed in obesity, by directly and indirectly affecting haemostasis, coagulation and fibrinolysis. PMID:19460118

  3. Cidea controls lipid droplet fusion and lipid storage in brown and white adipose tissue.

    PubMed

    Wu, Lizhen; Zhou, Linkang; Chen, Cheng; Gong, Jingyi; Xu, Li; Ye, Jing; Li, De; Li, Peng

    2014-01-01

    Excess lipid storage in adipose tissue results in the development of obesity and other metabolic disorders including diabetes, fatty liver and cardiovascular diseases. The lipid droplet (LD) is an important subcellular organelle responsible for lipid storage. We previously observed that Fsp27, a member of the CIDE family proteins, is localized to LD-contact sites and promotes atypical LD fusion and growth. Cidea, a close homolog of Fsp27, is expressed at high levels in brown adipose tissue. However, the exact role of Cidea in promoting LD fusion and lipid storage in adipose tissue remains unknown. Here, we expressed Cidea in Fsp27-knockdown adipocytes and observed that Cidea has similar activity to Fsp27 in promoting lipid storage and LD fusion and growth. Next, we generated Cidea and Fsp27 double-deficient mice and observed that these animals had drastically reduced adipose tissue mass and a strong lean phenotype. In addition, Cidea/Fsp27 double-deficient mice had improved insulin sensitivity and were intolerant to cold. Furthermore, we observed that the brown and white adipose tissues of Cidea/Fsp27 double-deficient mice had significantly reduced lipid storage and contained smaller LDs compared to those of Cidea or Fsp27 single deficient mice. Overall, these data reveal an important role of Cidea in controlling lipid droplet fusion, lipid storage in brown and white adipose tissue, and the development of obesity.

  4. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues.

    PubMed

    Chen, Yu-Jen; Liu, Hui-Yu; Chang, Yun-Tsui; Cheng, Ying-Hung; Mersmann, Harry J; Kuo, Wen-Hung; Ding, Shih-Torng

    2016-03-31

    Obesity is an unconstrained worldwide epidemic. Unraveling molecular controls in adipose tissue development holds promise to treat obesity or diabetes. Although numerous immortalized adipogenic cell lines have been established, adipose-derived stem cells from the stromal vascular fraction of subcutaneous white adipose tissues provide a reliable cellular system ex vivo much closer to adipose development in vivo. Pig adipose-derived stem cells (pADSC) are isolated from 7- to 9-day old piglets. The dorsal white fat depot of porcine subcutaneous adipose tissues is sliced, minced and collagenase digested. These pADSC exhibit strong potential to differentiate into adipocytes. Moreover, the pADSC also possess multipotency, assessed by selective stem cell markers, to differentiate into various mesenchymal cell types including adipocytes, osteocytes, and chondrocytes. These pADSC can be used for clarification of molecular switches in regulating classical adipocyte differentiation or in direction to other mesenchymal cell types of mesodermal origin. Furthermore, extended lineages into cells of ectodermal and endodermal origin have recently been achieved. Therefore, pADSC derived in this protocol provide an abundant and assessable source of adult mesenchymal stem cells with full multipotency for studying adipose development and application to tissue engineering of regenerative medicine.

  5. Isolation and Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues

    PubMed Central

    Chen, Yu-Jen; Liu, Hui-Yu; Chang, Yun-Tsui; Cheng, Ying-Hung; Mersmann, Harry J.; Kuo, Wen-Hung; Ding, Shih-Torng

    2016-01-01

    Obesity is an unconstrained worldwide epidemic. Unraveling molecular controls in adipose tissue development holds promise to treat obesity or diabetes. Although numerous immortalized adipogenic cell lines have been established, adipose-derived stem cells from the stromal vascular fraction of subcutaneous white adipose tissues provide a reliable cellular system ex vivo much closer to adipose development in vivo. Pig adipose-derived stem cells (pADSC) are isolated from 7- to 9-day old piglets. The dorsal white fat depot of porcine subcutaneous adipose tissues is sliced, minced and collagenase digested. These pADSC exhibit strong potential to differentiate into adipocytes. Moreover, the pADSC also possess multipotency, assessed by selective stem cell markers, to differentiate into various mesenchymal cell types including adipocytes, osteocytes, and chondrocytes. These pADSC can be used for clarification of molecular switches in regulating classical adipocyte differentiation or in direction to other mesenchymal cell types of mesodermal origin. Furthermore, extended lineages into cells of ectodermal and endodermal origin have recently been achieved. Therefore, pADSC derived in this protocol provide an abundant and assessable source of adult mesenchymal stem cells with full multipotency for studying adipose development and application to tissue engineering of regenerative medicine. PMID:27077225

  6. Decellularized Extracellular Matrix Derived from Porcine Adipose Tissue as a Xenogeneic Biomaterial for Tissue Engineering

    PubMed Central

    Choi, Young Chan; Choi, Ji Suk; Kim, Beob Soo; Kim, Jae Dong; Yoon, Hwa In

    2012-01-01

    Cells in tissues are surrounded by the extracellular matrix (ECM), a gel-like material of proteins and polysaccharides that are synthesized and secreted by cells. Here we propose that the ECM can be isolated from porcine adipose tissue and holds great promise as a xenogeneic biomaterial for tissue engineering and regenerative medicine. Porcine adipose tissue is easily obtained in large quantities from commonly discarded food waste. Decellularization protocols have been developed for extracting an intact ECM while effectively eliminating xenogeneic epitopes and minimally disrupting the ECM composition. Porcine adipose tissue was defatted by homogenization and centrifugation. It was then decellularized via chemical (1.5 M sodium chloride and 0.5% sodium dodecyl sulfate) and enzymatic treatments (DNase and RNase) with temperature control. After decellularization, immunogenic components such as nucleic acids and α-Gal were significantly reduced. However, abundant ECM components, such as collagen (332.9±12.1 μg/mg ECM dry weight), sulfated glycosaminoglycan (GAG, 85±0.7 μg/mg ECM dry weight), and elastin (152.6±4.5 μg/mg ECM dry weight), were well preserved in the decellularized material. The biochemical and mechanical features of a decellularized ECM supported the adhesion and growth of human cells in vitro. Moreover, the decellularized ECM exhibited biocompatibility, long-term stability, and bioinductivity in vivo. The overall results suggest that the decellularized ECM derived from porcine adipose tissue could be useful as an alternative biomaterial for xenograft tissue engineering. PMID:22559904

  7. Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue.

    PubMed

    Schafer, Marissa J; White, Thomas A; Evans, Glenda; Tonne, Jason M; Verzosa, Grace C; Stout, Michael B; Mazula, Daniel L; Palmer, Allyson K; Baker, Darren J; Jensen, Michael D; Torbenson, Michael S; Miller, Jordan D; Ikeda, Yasuhiro; Tchkonia, Tamara; van Deursen, Jan M; Kirkland, James L; LeBrasseur, Nathan K

    2016-06-01

    Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the hypothesis that exercise prevents premature senescent cell accumulation and systemic metabolic dysfunction induced by a fast-food diet (FFD). Using transgenic mice that express EGFP in response to activation of the senescence-associated p16(INK4a) promoter, we demonstrate that FFD consumption causes deleterious changes in body weight and composition as well as in measures of physical, cardiac, and metabolic health. The harmful effects of the FFD were associated with dramatic increases in several markers of senescence, including p16, EGFP, senescence-associated β-galactosidase, and the senescence-associated secretory phenotype (SASP) specifically in visceral adipose tissue. We show that exercise prevents the accumulation of senescent cells and the expression of the SASP while nullifying the damaging effects of the FFD on parameters of health. We also demonstrate that exercise initiated after long-term FFD feeding reduces senescent phenotype markers in visceral adipose tissue while attenuating physical impairments, suggesting that exercise may provide restorative benefit by mitigating accrued senescent burden. These findings highlight a novel mechanism by which exercise mediates its beneficial effects and reinforces the effect of modifiable lifestyle choices on health span. PMID:26983960

  8. New concepts in white adipose tissue physiology.

    PubMed

    Proença, A R G; Sertié, R A L; Oliveira, A C; Campaña, A B; Caminhotto, R O; Chimin, P; Lima, F B

    2014-02-01

    Numerous studies address the physiology of adipose tissue (AT). The interest surrounding the physiology of AT is primarily the result of the epidemic outburst of obesity in various contemporary societies. Briefly, the two primary metabolic activities of white AT include lipogenesis and lipolysis. Throughout the last two decades, a new model of AT physiology has emerged. Although AT was considered to be primarily an abundant energy source, it is currently considered to be a prolific producer of biologically active substances, and, consequently, is now recognized as an endocrine organ. In addition to leptin, other biologically active substances secreted by AT, generally classified as cytokines, include adiponectin, interleukin-6, tumor necrosis factor-alpha, resistin, vaspin, visfatin, and many others now collectively referred to as adipokines. The secretion of such biologically active substances by AT indicates its importance as a metabolic regulator. Cell turnover of AT has also recently been investigated in terms of its biological role in adipogenesis. Consequently, the objective of this review is to provide a comprehensive critical review of the current literature concerning the metabolic (lipolysis, lipogenesis) and endocrine actions of AT.

  9. Hypothalamic control of brown adipose tissue thermogenesis

    PubMed Central

    Labbé, Sebastien M.; Caron, Alexandre; Lanfray, Damien; Monge-Rofarello, Boris; Bartness, Timothy J.; Richard, Denis

    2015-01-01

    It has long been known, in large part from animal studies, that the control of brown adipose tissue (BAT) thermogenesis is insured by the central nervous system (CNS), which integrates several stimuli in order to control BAT activation through the sympathetic nervous system (SNS). SNS-mediated BAT activity is governed by diverse neurons found in brain structures involved in homeostatic regulations and whose activity is modulated by various factors including oscillations of energy fluxes. The characterization of these neurons has always represented a challenging issue. The available literature suggests that the neuronal circuits controlling BAT thermogenesis are largely part of an autonomic circuitry involving the hypothalamus, brainstem and the SNS efferent neurons. In the present review, we recapitulate the latest progresses in regards to the hypothalamic regulation of BAT metabolism. We briefly addressed the role of the thermoregulatory pathway and its interactions with the energy balance systems in the control of thermogenesis. We also reviewed the involvement of the brain melanocortin and endocannabinoid systems as well as the emerging role of steroidogenic factor 1 (SF1) neurons in BAT thermogenesis. Finally, we examined the link existing between these systems and the homeostatic factors that modulate their activities. PMID:26578907

  10. Timed-daily ingestion of whey protein and exercise training reduces visceral adipose tissue mass and improves insulin resistance: the PRISE study.

    PubMed

    Arciero, Paul J; Baur, Daniel; Connelly, Scott; Ormsbee, Michael J

    2014-07-01

    The present study examined the effects of timed ingestion of supplemental protein (20-g servings of whey protein, 3×/day), added to the habitual diet of free-living overweight/obese adults and subsequently randomized to either whey protein only (P; n = 24), whey protein and resistance exercise (P + RT; n = 27), or a whey protein and multimode exercise training program [protein and resistance exercise, intervals, stretching/yoga/Pilates, endurance exercise (PRISE); n = 28]. Total and regional body composition and visceral adipose tissue (VAT) mass (dual-energy X-ray absorptiometry), insulin sensitivity [homeostasis model assessment-estimated insulin resistance (HOMA-IR)], plasma lipids and adipokines, and feelings of hunger and satiety (visual analog scales) were measured before and after the 16-wk intervention. All groups lost body weight, fat mass (FM), and abdominal fat; however, PRISE lost significantly (P < 0.01) more body weight (3.3 ± 0.7 vs. 1.1 ± 0.7 kg, P + RT) and FM (2.8 ± 0.7 vs. 0.9 ± 0.5 kg, P + RT) and gained (P < 0.05) a greater percentage of lean body mass (2 ± 0.5 vs. 0.9 ± 0.3 and 0.6 ± 0.4%, P + RT and P, respectively). Only P + RT (0.1 ± 0.04 kg) and PRISE (0.21 ± 0.07 kg) lost VAT mass (P < 0.05). Fasting glucose decreased only in P + RT (5.1 ± 2.5 mg/dl) and PRISE (15.3 ± 2.1 mg/dl), with the greatest decline occurring in PRISE (P < 0.05). Similarly, HOMA-IR improved (0.6 ± 0.3, 0.6 ± 0.4 units), and leptin decreased (4.7 ± 2.2, 4.7 ± 3.1 ng/dl), and adiponectin increased (3.8 ± 1.1, 2.4 ± 1.1 μg/ml) only in P + RT and PRISE, respectively, with no change in P. In conclusion, we find evidence to support exercise training and timed ingestion of whey protein added to the habitual diet of free-living overweight/obese adults, independent of caloric restriction on total and regional body fat distribution, insulin resistance, and adipokines. PMID:24833780

  11. Timed-daily ingestion of whey protein and exercise training reduces visceral adipose tissue mass and improves insulin resistance: the PRISE study.

    PubMed

    Arciero, Paul J; Baur, Daniel; Connelly, Scott; Ormsbee, Michael J

    2014-07-01

    The present study examined the effects of timed ingestion of supplemental protein (20-g servings of whey protein, 3×/day), added to the habitual diet of free-living overweight/obese adults and subsequently randomized to either whey protein only (P; n = 24), whey protein and resistance exercise (P + RT; n = 27), or a whey protein and multimode exercise training program [protein and resistance exercise, intervals, stretching/yoga/Pilates, endurance exercise (PRISE); n = 28]. Total and regional body composition and visceral adipose tissue (VAT) mass (dual-energy X-ray absorptiometry), insulin sensitivity [homeostasis model assessment-estimated insulin resistance (HOMA-IR)], plasma lipids and adipokines, and feelings of hunger and satiety (visual analog scales) were measured before and after the 16-wk intervention. All groups lost body weight, fat mass (FM), and abdominal fat; however, PRISE lost significantly (P < 0.01) more body weight (3.3 ± 0.7 vs. 1.1 ± 0.7 kg, P + RT) and FM (2.8 ± 0.7 vs. 0.9 ± 0.5 kg, P + RT) and gained (P < 0.05) a greater percentage of lean body mass (2 ± 0.5 vs. 0.9 ± 0.3 and 0.6 ± 0.4%, P + RT and P, respectively). Only P + RT (0.1 ± 0.04 kg) and PRISE (0.21 ± 0.07 kg) lost VAT mass (P < 0.05). Fasting glucose decreased only in P + RT (5.1 ± 2.5 mg/dl) and PRISE (15.3 ± 2.1 mg/dl), with the greatest decline occurring in PRISE (P < 0.05). Similarly, HOMA-IR improved (0.6 ± 0.3, 0.6 ± 0.4 units), and leptin decreased (4.7 ± 2.2, 4.7 ± 3.1 ng/dl), and adiponectin increased (3.8 ± 1.1, 2.4 ± 1.1 μg/ml) only in P + RT and PRISE, respectively, with no change in P. In conclusion, we find evidence to support exercise training and timed ingestion of whey protein added to the habitual diet of free-living overweight/obese adults, independent of caloric restriction on total and regional body fat distribution, insulin resistance, and adipokines.

  12. Morphological and inflammatory changes in visceral adipose tissue during obesity.

    PubMed

    Revelo, Xavier S; Luck, Helen; Winer, Shawn; Winer, Daniel A

    2014-03-01

    Obesity is a major health burden worldwide and is a major factor in the development of insulin resistance and metabolic complications such as type II diabetes. Chronic nutrient excess leads to visceral adipose tissue (VAT) expansion and dysfunction in an active process that involves the adipocytes, their supporting matrix, and immune cell infiltrates. These changes contribute to adipose tissue hypoxia, adipocyte cell stress, and ultimately cell death. Accumulation of lymphocytes, macrophages, and other immune cells around dying adipocytes forms the so-called "crown-like structure", a histological hallmark of VAT in obesity. Cross talk between immune cells in adipose tissue dictates the overall inflammatory response, ultimately leading to the production of pro-inflammatory mediators which directly induce insulin resistance in VAT. In this review, we summarize recent studies demonstrating the dramatic changes that occur in visceral adipose tissue during obesity leading to low-grade chronic inflammation and metabolic disease.

  13. Nutritional manipulations in the perinatal period program adipose tissue in offspring.

    PubMed

    Lukaszewski, Marie-Amélie; Eberlé, Delphine; Vieau, Didier; Breton, Christophe

    2013-11-15

    Epidemiological studies demonstrated initially that maternal undernutrition results in low birth weight with increased risk for long-lasting energy balance disorders. Maternal obesity and diabetes associated with high birth weight, excessive nutrition in neonates, and rapid catchup growth also increase the risk of adult-onset obesity. As stated by the Developmental Origin of Health and Disease concept, nutrient supply perturbations in the fetus or neonate result in long-term programming of individual body weight set point. Adipose tissue is a key fuel storage unit involved mainly in the maintenance of energy homeostasis. Studies in numerous animal models have demonstrated that the adipose tissue is the focus of developmental programming events in a sex- and depot-specific manner. In rodents, adipose tissue development is particularly active during the perinatal period, especially during the last week of gestation and during early postnatal life. In contrast to rodents, this process essentially takes place before birth in bigger mammals. Despite these different developmental time windows, altricial and precocial species share several mechanisms of adipose tissue programming. Offspring from malnourished dams present adipose tissue with a series of alterations: impaired glucose uptake, insulin and leptin resistance, low-grade inflammation, modified sympathetic activity with reduced noradrenergic innervations, and thermogenesis. These modifications reprogram adipose tissue metabolism by changing fat distribution and composition and by enhancing adipogenesis, predisposing the offspring to fat accumulation. Subtle adipose tissue circadian rhythm changes are also observed. Inappropriate hormone levels, modified tissue sensitivity (especially glucocorticoid system), and epigenetic mechanisms are key factors for adipose tissue programming during the perinatal period.

  14. Adipose-derived stem cells and periodontal tissue engineering.

    PubMed

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  15. The adipose tissue in farm animals: a proteomic approach.

    PubMed

    Sauerwein, Helga; Bendixen, Emoke; Restelli, Laura; Ceciliani, Fabrizio

    2014-03-01

    Adipose tissue is not only a tissue where energy is stored but is also involved in regulating several body functions such as appetite and energy expenditure via its endocrine activity. Moreover, it thereby modulates complex processes like reproduction, inflammation and immune response. The products secreted from adipose tissue comprise hormones and cytokines that are collectively termed as adipocytokines or "adipokines"; the discovery and characterization of new proteins secreted by adipose tissue is still ongoing and their number is thus increasing. Adipokines act in both endocrine manner as well as locally, as autocrine or paracrine effectors. Proteomics has emerged as a valuable technique to characterize both cellular and secreted proteomes from adipose tissues, including those of main cellular fractions, i.e. the adipocytes or the stromal vascular fraction containing mainly adipocyte precursors and immune cells. The scientific interest in adipose tissue is largely based on the worldwide increasing prevalence of obesity in humans; in contrast, obesity is hardly an issue for farmed animals that are fed according to their well-defined needs. Adipose tissue is nevertheless of major importance in these animals, as the adipose percentage of the bodyweight is a major determinant for the efficiency of transferring nutrients from feed into food products and thus for the economic value from meat producing animals. In dairy animals, the importance of adipose tissue is based on its function as stromal structure for the mammary gland and on its role in participating in and regulating of energy metabolism and other functions. Moreover, as pig has recently become an important model organism to study human diseases, the knowledge of adipose tissue metabolism in pig is relevant for the study of obesity and metabolic disorders. We herein provide a general overview of adipose tissue functions and its importance in farm animals. This review will summarize recent achievements in

  16. Endoplasmic reticulum stress in adipose tissue augments lipolysis.

    PubMed

    Bogdanovic, Elena; Kraus, Nicole; Patsouris, David; Diao, Li; Wang, Vivian; Abdullahi, Abdikarim; Jeschke, Marc G

    2015-01-01

    The endoplasmic reticulum (ER) is an organelle important for protein synthesis and folding, lipid synthesis and Ca(2+) homoeostasis. Consequently, ER stress or dysfunction affects numerous cellular processes and has been implicated as a contributing factor in several pathophysiological conditions. Tunicamycin induces ER stress in various cell types in vitro as well as in vivo. In mice, a hallmark of tunicamycin administration is the development of fatty livers within 24-48 hrs accompanied by hepatic ER stress. We hypothesized that tunicamycin would induce ER stress in adipose tissue that would lead to increased lipolysis and subsequently to fatty infiltration of the liver and hepatomegaly. Our results show that intraperitoneal administration of tunicamycin rapidly induced an ER stress response in adipose tissue that correlated with increased circulating free fatty acids (FFAs) and glycerol along with decreased adipose tissue mass and lipid droplet size. Furthermore, we found that in addition to fatty infiltration of the liver as well as hepatomegaly, lipid accumulation was also present in the heart, skeletal muscle and kidney. To corroborate our findings to a clinical setting, we examined adipose tissue from burned patients where increases in lipolysis and the development of fatty livers have been well documented. We found that burned patients displayed significant ER stress within adipose tissue and that ER stress augments lipolysis in cultured human adipocytes. Our results indicate a possible role for ER stress induced lipolysis in adipose tissue as an underlying mechanism contributing to increases in circulating FFAs and fatty infiltration into other organs.

  17. Exercise and Adipose Tissue Macrophages: New Frontiers in Obesity Research?

    PubMed

    Goh, Jorming; Goh, Kian Peng; Abbasi, Asghar

    2016-01-01

    Obesity is a major public health problem in the twenty-first century. Mutations in genes that regulate substrate metabolism, subsequent dysfunction in their protein products, and other factors, such as increased adipose tissue inflammation, are some underlying etiologies of this disease. Increased inflammation in the adipose tissue microenvironment is partly mediated by the presence of cells from the innate and adaptive immune system. A subset of the innate immune population in adipose tissue include macrophages, termed adipose tissue macrophages (ATMs), which are central players in adipose tissue inflammation. Being extremely plastic, their responses to diverse molecular signals in the microenvironment dictate their identity and functional properties, where they become either pro-inflammatory (M1) or anti-inflammatory (M2). Endurance exercise training exerts global anti-inflammatory responses in multiple organs, including skeletal muscle, liver, and adipose tissue. The purpose of this review is to discuss the different mechanisms that drive ATM-mediated inflammation in obesity and present current evidence of how exercise training, specifically endurance exercise training, modulates the polarization of ATMs from an M1 to an M2 anti-inflammatory phenotype. PMID:27379017

  18. Gene Expression Signature in Adipose Tissue of Acromegaly Patients.

    PubMed

    Hochberg, Irit; Tran, Quynh T; Barkan, Ariel L; Saltiel, Alan R; Chandler, William F; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly.

  19. Gene Expression Signature in Adipose Tissue of Acromegaly Patients

    PubMed Central

    Hochberg, Irit; Tran, Quynh T.; Barkan, Ariel L.; Saltiel, Alan R.; Chandler, William F.; Bridges, Dave

    2015-01-01

    To study the effect of chronic excess growth hormone on adipose tissue, we performed RNA sequencing in adipose tissue biopsies from patients with acromegaly (n = 7) or non-functioning pituitary adenomas (n = 11). The patients underwent clinical and metabolic profiling including assessment of HOMA-IR. Explants of adipose tissue were assayed ex vivo for lipolysis and ceramide levels. Patients with acromegaly had higher glucose, higher insulin levels and higher HOMA-IR score. We observed several previously reported transcriptional changes (IGF1, IGFBP3, CISH, SOCS2) that are known to be induced by GH/IGF-1 in liver but are also induced in adipose tissue. We also identified several novel transcriptional changes, some of which may be important for GH/IGF responses (PTPN3 and PTPN4) and the effects of acromegaly on growth and proliferation. Several differentially expressed transcripts may be important in GH/IGF-1-induced metabolic changes. Specifically, induction of LPL, ABHD5, and NRIP1 can contribute to enhanced lipolysis and may explain the elevated adipose tissue lipolysis in acromegalic patients. Higher expression of TCF7L2 and the fatty acid desaturases FADS1, FADS2 and SCD could contribute to insulin resistance. Ceramides were not different between the two groups. In summary, we have identified the acromegaly gene expression signature in human adipose tissue. The significance of altered expression of specific transcripts will enhance our understanding of the metabolic and proliferative changes associated with acromegaly. PMID:26087292

  20. Adipose Natural Killer Cells Regulate Adipose Tissue Macrophages to Promote Insulin Resistance in Obesity.

    PubMed

    Lee, Byung-Cheol; Kim, Myung-Sunny; Pae, Munkyong; Yamamoto, Yasuhiko; Eberlé, Delphine; Shimada, Takeshi; Kamei, Nozomu; Park, Hee-Sook; Sasorith, Souphatta; Woo, Ju Rang; You, Jia; Mosher, William; Brady, Hugh J M; Shoelson, Steven E; Lee, Jongsoon

    2016-04-12

    Obesity-induced inflammation mediated by immune cells in adipose tissue appears to participate in the pathogenesis of insulin resistance. We show that natural killer (NK) cells in adipose tissue play an important role. High-fat diet (HFD) increases NK cell numbers and the production of proinflammatory cytokines, notably TNFα, in epididymal, but not subcutaneous, fat depots. When NK cells were depleted either with neutralizing antibodies or genetic ablation in E4bp4(+/-) mice, obesity-induced insulin resistance improved in parallel with decreases in both adipose tissue macrophage (ATM) numbers, and ATM and adipose tissue inflammation. Conversely, expansion of NK cells following IL-15 administration or reconstitution of NK cells into E4bp4(-/-) mice increased both ATM numbers and adipose tissue inflammation and exacerbated HFD-induced insulin resistance. These results indicate that adipose NK cells control ATMs as an upstream regulator potentially by producing proinflammatory mediators, including TNFα, and thereby contribute to the development of obesity-induced insulin resistance.

  1. Profiling of chicken adipose tissue gene expression by genome array

    PubMed Central

    Wang, Hong-Bao; Li, Hui; Wang, Qi-Gui; Zhang, Xin-Yu; Wang, Shou-Zhi; Wang, Yu-Xiang; Wang, Xiu-Ping

    2007-01-01

    Background Excessive accumulation of lipids in the adipose tissue is a major problem in the present-day broiler industry. However, few studies have analyzed the expression of adipose tissue genes that are involved in pathways and mechanisms leading to adiposity in chickens. Gene expression profiling of chicken adipose tissue could provide key information about the ontogenesis of fatness and clarify the molecular mechanisms underlying obesity. In this study, Chicken Genome Arrays were used to construct an adipose tissue gene expression profile of 7-week-old broilers, and to screen adipose tissue genes that are differentially expressed in lean and fat lines divergently selected over eight generations for high and low abdominal fat weight. Results The gene expression profiles detected 13,234–16,858 probe sets in chicken adipose tissue at 7 weeks, and genes involved in lipid metabolism and immunity such as fatty acid binding protein (FABP), thyroid hormone-responsive protein (Spot14), lipoprotein lipase(LPL), insulin-like growth factor binding protein 7(IGFBP7) and major histocompatibility complex (MHC), were highly expressed. In contrast, some genes related to lipogenesis, such as leptin receptor, sterol regulatory element binding proteins1 (SREBP1), apolipoprotein B(ApoB) and insulin-like growth factor 2(IGF2), were not detected. Moreover, 230 genes that were differentially expressed between the two lines were screened out; these were mainly involved in lipid metabolism, signal transduction, energy metabolism, tumorigenesis and immunity. Subsequently, real-time RT-PCR was performed to validate fifteen differentially expressed genes screened out by the microarray approach and high consistency was observed between the two methods. Conclusion Our results establish the groundwork for further studies of the basic genetic control of growth and development of chicken adipose tissue, and will be beneficial in clarifying the molecular mechanism of obesity in chickens. PMID

  2. The Ubiquitin Ligase Siah2 Regulates Obesity-induced Adipose Tissue Inflammation

    PubMed Central

    Kilroy, Gail; Carter, Lauren E.; Newman, Susan; Burk, David H.; Manuel, Justin; Möller, Andreas; Bowtell, David D.; Mynatt, Randall L.; Ghosh, Sujoy; Floyd, Z. Elizabeth

    2015-01-01

    Objective Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, we examined the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation. Methods Wild-type and Siah2KO mice were fed a low or high fat diet for 16 weeks. Indirect calorimetry, body composition, glucose and insulin tolerance were assayed along with glucose and insulin levels. Gene and protein expression, immunohistochemistry, adipocyte size distribution and lipolysis were also analyzed. Results Enlarged adipocytes in obese Siah2KO mice are not associated with obesity-induced insulin resistance. Proinflammatory gene expression, stress kinase signaling, fibrosis and crown-like structures are reduced in the Siah2KO adipose tissue and Siah2KO adipocytes are more responsive to insulin-dependent inhibition of lipolysis. Loss of Siah2 increases expression of PPARγ target genes involved in lipid metabolism and decreases expression of proinflammatory adipokines regulated by PPARγ. Conclusions Siah2 links adipocyte hypertrophy with adipocyte dysfunction and recruitment of proinflammatory immune cells to adipose tissue. Selective regulation of PPARγ activity is a Siah2-mediated mechanism contributing to obesity-induced adipose tissue inflammation. PMID:26380945

  3. Hypertrophy and/or Hyperplasia: Dynamics of Adipose Tissue Growth.

    PubMed

    Jo, Junghyo; Gavrilova, Oksana; Pack, Stephanie; Jou, William; Mullen, Shawn; Sumner, Anne E; Cushman, Samuel W; Periwal, Vipul

    2009-03-01

    Adipose tissue grows by two mechanisms: hyperplasia (cell number increase) and hypertrophy (cell size increase). Genetics and diet affect the relative contributions of these two mechanisms to the growth of adipose tissue in obesity. In this study, the size distributions of epididymal adipose cells from two mouse strains, obesity-resistant FVB/N and obesity-prone C57BL/6, were measured after 2, 4, and 12 weeks under regular and high-fat feeding conditions. The total cell number in the epididymal fat pad was estimated from the fat pad mass and the normalized cell-size distribution. The cell number and volume-weighted mean cell size increase as a function of fat pad mass. To address adipose tissue growth precisely, we developed a mathematical model describing the evolution of the adipose cell-size distributions as a function of the increasing fat pad mass, instead of the increasing chronological time. Our model describes the recruitment of new adipose cells and their subsequent development in different strains, and with different diet regimens, with common mechanisms, but with diet- and genetics-dependent model parameters. Compared to the FVB/N strain, the C57BL/6 strain has greater recruitment of small adipose cells. Hyperplasia is enhanced by high-fat diet in a strain-dependent way, suggesting a synergistic interaction between genetics and diet. Moreover, high-fat feeding increases the rate of adipose cell size growth, independent of strain, reflecting the increase in calories requiring storage. Additionally, high-fat diet leads to a dramatic spreading of the size distribution of adipose cells in both strains; this implies an increase in size fluctuations of adipose cells through lipid turnover.

  4. Adipose-derived stem cell differentiation as a basic tool for vascularized adipose tissue engineering.

    PubMed

    Volz, Ann-Cathrin; Huber, Birgit; Kluger, Petra J

    2016-01-01

    The development of in vitro adipose tissue constructs is highly desired to cope with the increased demand for substitutes to replace damaged soft tissue after high graded burns, deformities or tumor removal. To achieve clinically relevant dimensions, vascularization of soft tissue constructs becomes inevitable but still poses a challenge. Adipose-derived stem cells (ASCs) represent a promising cell source for the setup of vascularized fatty tissue constructs as they can be differentiated into adipocytes and endothelial cells in vitro and are thereby available in sufficiently high cell numbers. This review summarizes the currently known characteristics of ASCs and achievements in adipogenic and endothelial differentiation in vitro. Further, the interdependency of adipogenesis and angiogenesis based on the crosstalk of endothelial cells, stem cells and adipocytes is addressed at the molecular level. Finally, achievements and limitations of current co-culture conditions for the construction of vascularized adipose tissue are evaluated. PMID:26976717

  5. The role of adipose cell size and adipose tissue insulin sensitivity in the carbohydrate intolerance of human obesity.

    PubMed

    Salans, L B; Knittle, J L; Hirsch, J

    1968-01-01

    Glucose metabolism and insulin sensitivity of isolated human adipose tissue was studied as a function of adipose cell size and number. Glucose metabolism by these tissues was closely related to the number of cells in the fragment, irrespective of cell size. Adipose cells of obese individuals metabolized glucose to carbon dioxide and triglyceride at rates similar to adipose cells of nonobese subjects. In contrast, insulin responsiveness of adipose tissue was dependent upon adipose cell size. The larger its adipose cells the less insulin sensitive was the tissue. Thus, adipose tissue of obese subjects, with enlarged cells, showed a diminished response to insulin. After weight loss and reduction in adipose cell size, insulin sensitivity of the adipose tissue of obese patients was restored to normal. When adipose tissue of obese individuals showed impaired responsiveness to insulin, their plasma insulin levels, after oral glucose, were elevated. Weight loss and reduction in adipose cell size restored plasma insulin concentration to normal, concomitant with the return of normal tissue insulin sensitivity.

  6. From neutrophils to macrophages: differences in regional adipose tissue depots.

    PubMed

    Dam, V; Sikder, T; Santosa, S

    2016-01-01

    Currently, we do not fully understand the underlying mechanisms of how regional adiposity promotes metabolic dysregulation. As adipose tissue expands, there is an increase in chronic systemic low-grade inflammation due to greater infiltration of immune cells and production of cytokines. This chronic inflammation is thought to play a major role in the development of metabolic complications and disease such as insulin resistance and diabetes. We know that different adipose tissue depots contribute differently to the risk of metabolic disease. People who have an upper body fat distribution around the abdomen are at greater risk of disease than those who tend to store fat in their lower body around the hips and thighs. Thus, it is conceivable that adipose tissue depots contribute differently to the inflammatory milieu as a result of varied infiltration of immune cell types. In this review, we describe the role and function of major resident immune cells in the development of adipose tissue inflammation and discuss their regional differences in the context of metabolic disease risk. We find that although initial studies have found regional differences, a more comprehensive understanding of how immune cells interrupt adipose tissue homeostasis is needed.

  7. Ultrastructure of the adipose tissue matrix in children with malnutrition.

    PubMed

    Alexa, A; Drăgan, M; Popa, I; Raica, M; Dema, E

    1995-01-01

    Bioptic fragments of adipose white tissue taken from trochanterian area from children of 2-22 months old were ultrastructurally investigated. Children were of both sexes, 5 normal and 22 with clinical diagnosis of malnutrition. There were studied many interadipocyte spaces signalling out in cases with malnutrition modifications of different components, some of them related with the degree of malnutrition. There were noted: disorganisation and disappearance of basal membranes of capillaries and glycolema; modifications of endothelial cells with lesions of the capillary wall and free degraded red blood cells; disorganization of the ground substance in small areas or sometimes extended to all matrix of the space; collagen fibres reduced in number and size, and in two cases the presence of collagen fibrils with severe lesions, realeasing an electrondense material, fibrinoid-like; matrix infiltration, in some cases with lipids. In only one interadipocyte space a synaptic button was noted in contact with capillary. In malnutrition lesions of cellular elements of the white adipose tissue the following were observed: adipocytes, fibroblasts, fibrocytes, endothelial cells, mast cells--which in their turn are responsible for modifications of macromolecular structures of the extracellular matrix--glycosaminoglycans, proteoglycans, components of which biosyntheses are cell-dependent. PMID:8772367

  8. Organotypic culture of human bone marrow adipose tissue.

    PubMed

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Shigematsu, Masamori; Kamochi, Noriyuki; Sonoda, Emiko; Soejima, Hidenobu; Fukudome, Kenji; Sugihara, Hajime; Hotokebuchi, Takao; Toda, Shuji

    2010-04-01

    The precise role of bone marrow adipose tissue (BMAT) in the marrow remains unknown. The purpose of the present study was therefore to describe a novel method for studying BMAT using 3-D collagen gel culture of BMAT fragments, immunohistochemistry, ELISA and real-time reverse transcription-polymerase chain reaction. Mature adipocytes and CD45+ leukocytes were retained for >3 weeks. Bone marrow stromal cells (BMSC) including a small number of lipid-laden preadipocytes and CD44+/CD105+ mesenchymal stem cell (MSC)-like cells, developed from BMAT. Dexamethasone (10 micromol/L), but not insulin (20 mU/mL), significantly increased the number of preadipocytes. Dexamethasone and insulin also promoted leptin production and gene expression in BMAT. Adiponectin production by BMAT was <0.8 ng/mL under all culture conditions. Dexamethasone promoted adiponectin gene expression, while insulin inhibited it. This finding suggests that dexamethasone, but not insulin, may serve as a powerful adipogenic factor for BMAT, in which adiponectin protein secretion is normally very low, and that BMAT may exhibit a different phenotype from that of the visceral and subcutaneous adipose tissues. BMAT-osteoblast interactions were also examined, and it was found that osteoblasts inhibited the development of BMSC and reduced leptin production, while BMAT inhibited the growth and differentiation of osteoblasts. The present novel method proved to be useful for the study of BMAT biology.

  9. The Gq signalling pathway inhibits brown and beige adipose tissue

    PubMed Central

    Klepac, Katarina; Kilić, Ana; Gnad, Thorsten; Brown, Loren M.; Herrmann, Beate; Wilderman, Andrea; Balkow, Aileen; Glöde, Anja; Simon, Katharina; Lidell, Martin E.; Betz, Matthias J.; Enerbäck, Sven; Wess, Jürgen; Freichel, Marc; Blüher, Matthias; König, Gabi; Kostenis, Evi; Insel, Paul A.; Pfeifer, Alexander

    2016-01-01

    Brown adipose tissue (BAT) dissipates nutritional energy as heat via the uncoupling protein-1 (UCP1) and BAT activity correlates with leanness in human adults. Here we profile G protein-coupled receptors (GPCRs) in brown adipocytes to identify druggable regulators of BAT. Twenty-one per cent of the GPCRs link to the Gq family, and inhibition of Gq signalling enhances differentiation of human and murine brown adipocytes. In contrast, activation of Gq signalling abrogates brown adipogenesis. We further identify the endothelin/Ednra pathway as an autocrine activator of Gq signalling in brown adipocytes. Expression of a constitutively active Gq protein in mice reduces UCP1 expression in BAT, whole-body energy expenditure and the number of brown-like/beige cells in white adipose tissue (WAT). Furthermore, expression of Gq in human WAT inversely correlates with UCP1 expression. Thus, our data indicate that Gq signalling regulates brown/beige adipocytes and inhibition of Gq signalling may be a novel therapeutic approach to combat obesity. PMID:26955961

  10. Cold-Induced Changes in Gene Expression in Brown Adipose Tissue, White Adipose Tissue and Liver

    PubMed Central

    Shore, Andrew M.; Karamitri, Angeliki; Kemp, Paul; Speakman, John R.; Graham, Neil S.; Lomax, Michael A.

    2013-01-01

    Cold exposure imposes a metabolic challenge to mammals that is met by a coordinated response in different tissues to prevent hypothermia. This study reports a transcriptomic analysis in brown adipose tissue (BAT), white adipose (WAT) and liver of mice in response to 24 h cold exposure at 8°C. Expression of 1895 genes were significantly (P<0.05) up- or down-regulated more than two fold by cold exposure in all tissues but only 5 of these genes were shared by all three tissues, and only 19, 14 and 134 genes were common between WAT and BAT, WAT and liver, and BAT and liver, respectively. We confirmed using qRT-PCR, the increased expression of a number of characteristic BAT genes during cold exposure. In both BAT and the liver, the most common direction of change in gene expression was suppression (496 genes in BAT and 590 genes in liver). Gene ontology analysis revealed for the first time significant (P<0.05) down regulation in response to cold, of genes involved in oxidoreductase activity, lipid metabolic processes and protease inhibitor activity, in both BAT and liver, but not WAT. The results reveal an unexpected importance of down regulation of cytochrome P450 gene expression and apolipoprotein, in both BAT and liver, but not WAT, in response to cold exposure. Pathway analysis suggests a model in which down regulation of the nuclear transcription factors HNF4α and PPARα in both BAT and liver may orchestrate the down regulation of genes involved in lipoprotein and steroid metabolism as well as Phase I enzymes belonging to the cytochrome P450 group in response to cold stress in mice. We propose that the response to cold stress involves decreased gene expression in a range of cellular processes in order to maximise pathways involved in heat production. PMID:23894377

  11. Eicosapentaenoic acid regulates brown adipose tissue gene expression and metabolism in high fat fed mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown adipose tissue (BAT) is a thermogenic tissue, a key regulator of energy balance and a potential therapeutic target for obesity. We previously reported that eicosapentaenoic acid (EPA) reduced high fat (HF) diet-induced obesity and insulin resistance in mice, independent of energy intake. We hy...

  12. Obesity and cardiovascular disease: role of adipose tissue, inflammation, and the renin-angiotensin-aldosterone system.

    PubMed

    Lastra, Guido; Sowers, James R

    2013-09-01

    Obesity is a leading contributor to morbidity and mortality worldwide. Chronic overnutrition and lack of physical activity result in excess deposition of adipose tissue and insulin resistance, which plays a key role in the pathophysiology of type 2 diabetes mellitus (DM2) and associated cardiovascular disease (CVD). Dysfunctional adipose tissue in obese individuals is characterized by chronic low-grade inflammation that spreads to several tissues as well as systemically and is able to impact the cardiovascular system, resulting in both functional and anatomical abnormalities. Inflammation is characterized by abnormalities in both innate and adaptive immunity including adipose tissue infiltration by CD4+ T lymphocytes, pro-inflammatory (M1) macrophages, and increased production of adipokines. The renin-angiotensin-aldosterone system (RAAS) is inappropriately activated in adipose tissue and contributes to originating and perpetuating inflammation and excessive oxidative stress by increasing production of reactive oxygen species (ROS). In turn, ROS and pro-inflammatory adipokines cause resistance to the metabolic actions of insulin in several tissues including cardiovascular and adipose tissue. Insulin resistance in cardiovascular tissues is characterized by impaired vascular reactivity and abnormal cardiac contractility as well as hypertrophy, fibrosis, and remodeling, which ultimately result in CVD. In this context, weight loss through caloric restriction, regular physical activity, and surgery as well as pharmacologic RAAS blockade all play a key role in reducing obesity-related cardiovascular morbidity and mortality.

  13. [Interests and potentials of adipose tissue in scleroderma].

    PubMed

    Daumas, A; Eraud, J; Hautier, A; Sabatier, F; Magalon, G; Granel, B

    2013-12-01

    Systemic sclerosis is a disorder involving the connective tissue, arterioles and microvessels. It is characterized by skin and visceral fibrosis and ischemic phenomena. Currently, therapy is limited and no antifibrotic treatment has proven its efficacy. Beyond some severe organ lesions (pulmonary arterial hypertension, pulmonary fibrosis, scleroderma renal crisis), which only concern a minority of patients, the skin sclerosis of hands and face and the vasculopathy lead to physical and psychological disability in most patients. Thus, functional improvement of hand motion and face represents a priority for patient therapy. Due to its easy obtention by fat lipopaspirate and adipocytes survival, re injection of adipose tissue is a common therapy used in plastic surgery for its voluming effect. Identification and characterization of the adipose tissue-derived stroma vascular fraction, mainly including mesenchymal stem cells, have revolutionized the science showing that adipose tissue is a valuable source of multipotent stem cells, able to migrate to site of injury and to differentiate according to the receiver tissue's needs. Due to easy harvest by liposuction, its abundance in mesenchymal cells far higher that the bone marrow, and stroma vascular fraction's ability to differentiate and secrete growth angiogenic and antiapoptotic factors, the use of adipose tissue is becoming more attractive in regenerative medicine. We here present the interest of adipose tissue use in the treatment of the hands and face in scleroderma. PMID:24050783

  14. Inflammation and adipose tissue macrophages in lipodystrophic mice.

    PubMed

    Herrero, Laura; Shapiro, Hagit; Nayer, Ali; Lee, Jongsoon; Shoelson, Steven E

    2010-01-01

    Lipodystrophy and obesity are opposites in terms of a deficiency versus excess of adipose tissue mass, yet these conditions are accompanied by similar metabolic consequences, including insulin resistance, dyslipidemia, hepatic steatosis, and increased risk for diabetes and atherosclerosis. Hepatic and myocellular steatosis likely contribute to metabolic dysregulation in both states. Inflammation and macrophage infiltration into adipose tissue also appear to participate in the pathogenesis of obesity-induced insulin resistance, but their contributions to lipodystrophy-induced insulin resistance have not been evaluated. We used aP2-nSREBP-1c transgenic (Tg) mice, an established model of lipodystrophy, to ask this question. Circulating cytokine elevations suggested systemic inflammation but even more dramatic was the number of infiltrating macrophages in all white and brown adipose tissue depots of the Tg mice; in contrast, there was no evidence of inflammatory infiltrates or responses in any other tissue including liver. Despite there being overt evidence of adipose tissue inflammation, antiinflammatory strategies including salicylate treatment and genetic suppression of myeloid NF-kappaB signaling that correct insulin resistance in obesity were ineffective in the lipodystrophic mice. We further showed that adipose tissue macrophages (ATMs) in lipodystrophy and obesity are very different in terms of activation state, gene expression patterns, and response to lipopolysaccharide. Although ATMs are even more abundant in lipodystrophy than in obesity, they have distinct phenotypes and likely roles in tissue remodeling, but do not appear to be involved in the pathogenesis of insulin resistance.

  15. Inflammation and adipose tissue macrophages in lipodystrophic mice

    PubMed Central

    Herrero, Laura; Shapiro, Hagit; Nayer, Ali; Lee, Jongsoon; Shoelson, Steven E.

    2009-01-01

    Lipodystrophy and obesity are opposites in terms of a deficiency versus excess of adipose tissue mass, yet these conditions are accompanied by similar metabolic consequences, including insulin resistance, dyslipidemia, hepatic steatosis, and increased risk for diabetes and atherosclerosis. Hepatic and myocellular steatosis likely contribute to metabolic dysregulation in both states. Inflammation and macrophage infiltration into adipose tissue also appear to participate in the pathogenesis of obesity-induced insulin resistance, but their contributions to lipodystrophy-induced insulin resistance have not been evaluated. We used aP2-nSREBP-1c transgenic (Tg) mice, an established model of lipodystrophy, to ask this question. Circulating cytokine elevations suggested systemic inflammation but even more dramatic was the number of infiltrating macrophages in all white and brown adipose tissue depots of the Tg mice; in contrast, there was no evidence of inflammatory infiltrates or responses in any other tissue including liver. Despite there being overt evidence of adipose tissue inflammation, antiinflammatory strategies including salicylate treatment and genetic suppression of myeloid NF-κB signaling that correct insulin resistance in obesity were ineffective in the lipodystrophic mice. We further showed that adipose tissue macrophages (ATMs) in lipodystrophy and obesity are very different in terms of activation state, gene expression patterns, and response to lipopolysaccharide. Although ATMs are even more abundant in lipodystrophy than in obesity, they have distinct phenotypes and likely roles in tissue remodeling, but do not appear to be involved in the pathogenesis of insulin resistance. PMID:20007767

  16. Exercise Regulation of Marrow Adipose Tissue

    PubMed Central

    Pagnotti, Gabriel M.; Styner, Maya

    2016-01-01

    Despite association with low bone density and skeletal fractures, marrow adipose tissue (MAT) remains poorly understood. The marrow adipocyte originates from the mesenchymal stem cell (MSC) pool that also gives rise to osteoblasts, chondrocytes, and myocytes, among other cell types. To date, the presence of MAT has been attributed to preferential biasing of MSC into the adipocyte rather than osteoblast lineage, thus negatively impacting bone formation. Here, we focus on understanding the physiology of MAT in the setting of exercise, dietary interventions, and pharmacologic agents that alter fat metabolism. The beneficial effect of exercise on musculoskeletal strength is known: exercise induces bone formation, encourages growth of skeletally supportive tissues, inhibits bone resorption, and alters skeletal architecture through direct and indirect effects on a multiplicity of cells involved in skeletal adaptation. MAT is less well studied due to the lack of reproducible quantification techniques. In recent work, osmium-based 3D quantification shows a robust response of MAT to both dietary and exercise intervention in that MAT is elevated in response to high-fat diet and can be suppressed following daily exercise. Exercise-induced bone formation correlates with suppression of MAT, such that exercise effects might be due to either calorie expenditure from this depot or from mechanical biasing of MSC lineage away from fat and toward bone, or a combination thereof. Following treatment with the anti-diabetes drug rosiglitazone – a PPARγ-agonist known to increase MAT and fracture risk – mice demonstrate a fivefold higher femur MAT volume compared to the controls. In addition to preventing MAT accumulation in control mice, exercise intervention significantly lowers MAT accumulation in rosiglitazone-treated mice. Importantly, exercise induction of trabecular bone volume is unhindered by rosiglitazone. Thus, despite rosiglitazone augmentation of MAT, exercise

  17. Exercise Regulation of Marrow Adipose Tissue.

    PubMed

    Pagnotti, Gabriel M; Styner, Maya

    2016-01-01

    Despite association with low bone density and skeletal fractures, marrow adipose tissue (MAT) remains poorly understood. The marrow adipocyte originates from the mesenchymal stem cell (MSC) pool that also gives rise to osteoblasts, chondrocytes, and myocytes, among other cell types. To date, the presence of MAT has been attributed to preferential biasing of MSC into the adipocyte rather than osteoblast lineage, thus negatively impacting bone formation. Here, we focus on understanding the physiology of MAT in the setting of exercise, dietary interventions, and pharmacologic agents that alter fat metabolism. The beneficial effect of exercise on musculoskeletal strength is known: exercise induces bone formation, encourages growth of skeletally supportive tissues, inhibits bone resorption, and alters skeletal architecture through direct and indirect effects on a multiplicity of cells involved in skeletal adaptation. MAT is less well studied due to the lack of reproducible quantification techniques. In recent work, osmium-based 3D quantification shows a robust response of MAT to both dietary and exercise intervention in that MAT is elevated in response to high-fat diet and can be suppressed following daily exercise. Exercise-induced bone formation correlates with suppression of MAT, such that exercise effects might be due to either calorie expenditure from this depot or from mechanical biasing of MSC lineage away from fat and toward bone, or a combination thereof. Following treatment with the anti-diabetes drug rosiglitazone - a PPARγ-agonist known to increase MAT and fracture risk - mice demonstrate a fivefold higher femur MAT volume compared to the controls. In addition to preventing MAT accumulation in control mice, exercise intervention significantly lowers MAT accumulation in rosiglitazone-treated mice. Importantly, exercise induction of trabecular bone volume is unhindered by rosiglitazone. Thus, despite rosiglitazone augmentation of MAT, exercise significantly

  18. White Adipose Tissue Resilience to Insulin Deprivation and Replacement

    PubMed Central

    Hadji, Lilas; Berger, Emmanuelle; Soula, Hédi; Vidal, Hubert; Géloën, Alain

    2014-01-01

    Introduction Adipocyte size and body fat distribution are strongly linked to the metabolic complications of obesity. The aim of the present study was to test the plasticity of white adipose tissue in response to insulin deprivation and replacement. We have characterized the changes of adipose cell size repartition and gene expressions in type 1 diabetes Sprague-Dawley rats and type 1 diabetic supplemented with insulin. Methods Using streptozotocin (STZ)-induced diabetes, we induced rapid changes in rat adipose tissue weights to study the changes in the distribution of adipose cell sizes in retroperitoneal (rWAT), epididymal (eWAT) and subcutaneous adipose tissues (scWAT). Adipose tissue weights of type 1 diabetic rats were then rapidly restored by insulin supplementation. Cell size distributions were analyzed using multisizer IV (Beckman Coulter). Cell size changes were correlated to transcriptional regulation of genes coding for proteins involved in lipid and glucose metabolisms and adipocytokines. Results The initial body weight of the rats was 465±5.2 g. Insulin privation was stopped when rats lost 100 g which induced reductions in fat mass of 68% for rWAT, 42% for eWAT and 59% for scWAT corresponding to decreased mode cell diameters by 31.1%, 20%, 25.3%, respectively. The most affected size distribution by insulin deprivation was observed in rWAT. The bimodal distribution of adipose cell sizes disappeared in response to insulin deprivation in rWAT and scWAT. The most important observation is that cell size distribution returned close to control values in response to insulin treatment. mRNAs coding for adiponectin, leptin and apelin were more stimulated in scWAT compared to other depots in diabetic plus insulin group. Conclusion Fat depots have specific responses to insulin deprivation and supplementation. The results show that insulin is a major determinant of bimodal cell repartition in adipose tissues. PMID:25170835

  19. Control of adipose tissue lipolysis in ectotherm vertebrates.

    PubMed

    Migliorini, R H; Lima-Verde, J S; Machado, C R; Cardona, G M; Garofalo, M A; Kettelhut, I C

    1992-10-01

    Lipolytic activity of fish (Hoplias malabaricus), toad (Bufo paracnemis), and snake (Philodryas patagoniensis) adipose tissue was investigated in vivo and in vitro. Catecholamines or glucagon did not affect the release of free fatty acids (FFA) by incubated fish and toad adipose tissue. Catecholamines also failed to activate snake adipose tissue lipolysis, which even decreased in the presence of epinephrine. However, glucagon stimulated both the lipolytic activity of reptilian tissue in vitro and the mobilization of FFA to plasma when administered to snakes in vivo. The release of FFA from incubated fish, amphibian, and reptilian adipose tissue increased markedly in the presence of cAMP or xanthine derivatives, inhibitors of phosphodiesterase. Forskolin or fluoride, activators of specific components of the adenylate cyclase system, strongly stimulated toad adipose tissue lipolysis. The data suggest that adipocyte triacylglycerol lipase of ectotherm vertebrates is activated by a cAMP-mediated phosphorylation and that the organization of the membrane-bound adenylate cyclase system is similar to that of mammals.

  20. Studies of human adipose tissue. Adipose cell size and number in nonobese and obese patients.

    PubMed

    Salans, L B; Cushman, S W; Weismann, R E

    1973-04-01

    The cellular character of the adipose tissue of 21 nonobese and 78 obese patients has been examined. Adipose cell size (lipid per cell) was determined in three different subcutaneous and deep fat depots in each patient and the total number of adipose cells in the body estimated by division of total body fat by various combinations of the adipose cell sizes at six different sites. Cell number has also been estimated on the basis of various assumed distribution of total fat between the subcutaneous and deep fat depots. Obese patients, as a group, have larger adipose cells than do nonobese patients; cell size, however, varies considerably among the fat depots of individuals of either group. The variation in cell size exists not only between, but also within subcutaneous and deep sites. Estimates of total adipose cell number for a given individual based upon cell size can, therefore, vary by as much as 85%. On the basis of these studies it is suggested that the total adipose number of an individual is best and most practically estimated, at this time, by division of total body fat by the mean of the adipose cell sizes of at least three subcutaneous sites. IRRESPECTIVE OF THE METHOD BY WHICH TOTAL ADIPOSE CELL NUMBER IS ESTIMATED, TWO PATTERNS OF OBESITY EMERGE WITH RESPECT TO THE CELLULAR CHARACTER OF THE ADIPOSE TISSUE MASS OF THESE PATIENTS: hyperplastic, with increased adipose cell number and normal or increased size, and hypertrophic, with increased cell size alone. These two cellular patterns of obesity are independent of a variety of assumed distributions of fat among the subcutaneous and deep depots. When these different cellular patterns are examined in terms of various aspects of body size, body composition, and the degree, duration, and age of onset of obesity, only the latter uniquely distinguishes the hyperplastic from the hypertrophic: hyperplastic obesity is characterized by an early age of onset, hypertrophic, by a late age of onset. These studies

  1. Adipose Tissue Residing Progenitors (Adipocyte Lineage Progenitors and Adipose Derived Stem Cells (ADSC)

    PubMed Central

    Berry, Ryan; Rodeheffer, Matthew S.; Rosen, Clifford J.; Horowitz, Mark C.

    2015-01-01

    The formation of brown, white and beige adipocytes have been a subject of intense scientific interest in recent years due to the growing obesity epidemic in the United States and around the world. This interest has led to the identification and characterization of specific tissue resident progenitor cells that give rise to each adipocyte population in vivo. However, much still remains to be discovered about each progenitor population in terms of their “niche” within each tissue and how they are regulated at the cellular and molecular level during healthy and diseased states. While our knowledge of brown, white and beige adipose tissue is rapidly increasing, little is still known about marrow adipose tissue and its progenitor despite recent studies demonstrating possible roles for marrow adipose tissue in regulating the hematopoietic space and systemic metabolism at large. This chapter focuses on our current knowledge of brown, white, beige and marrow adipose tissue with a specific focus on the formation of each tissue from tissue resident progenitor cells. PMID:26526875

  2. Characteristic expression of extracellular matrix in subcutaneous adipose tissue development and adipogenesis; comparison with visceral adipose tissue.

    PubMed

    Mori, Shinobu; Kiuchi, Satomi; Ouchi, Atsushi; Hase, Tadashi; Murase, Takatoshi

    2014-01-01

    Adipose tissue is a connective tissue specified for energy metabolism and endocrines, but functional differences between subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) have not been fully elucidated. To reveal the physiological role of SAT, we characterized in vivo tissue development and in vitro adipocyte differentiation. In a DNA microarray analysis of SAT and VAT in Wistar rats, functional annotation clusters of extracellular matrix (ECM)-related genes were found in SAT, and major ECM molecules expressed in adipose tissues were profiled. In a histological analysis and quantitative expression analysis, ECM expression patterns could be classified into two types: (i) a histogenesis-correlated type such as type IV and XV collagen, and laminin subunits, (ii) a high-SAT expression type such as type I, III, and V collagen and minor characteristic collagens. Type (i) was related to basal membrane and up-regulated in differentiated 3T3-L1 cells and in histogenesis at depot-specific timings. In contrast, type (ii) was related to fibrous forming and highly expressed in 3T3-L1 preadipocytes. Exceptionally, fibronectin was abundant in developed adipose tissue, although it was highly expressed in 3T3-L1 preadipocytes. The present study showed that adipose tissues site-specifically regulate molecular type and timing of ECM expression, and suggests that these characteristic ECM molecules provide a critical microenvironment, which may affect bioactivity of adipocyte itself and interacts with other tissues. It must be important to consider the depot-specific property for the treatment of obesity-related disorders, dermal dysfunction and for the tissue regeneration.

  3. EBF2 promotes the recruitment of beige adipocytes in white adipose tissue

    PubMed Central

    Stine, Rachel R.; Shapira, Suzanne N.; Lim, Hee-Woong; Ishibashi, Jeff; Harms, Matthew; Won, Kyoung-Jae; Seale, Patrick

    2015-01-01

    Objective The induction of beige/brite adipose cells in white adipose tissue (WAT) is associated with protection against high fat diet-induced obesity and insulin resistance in animals. The helix-loop-helix transcription factor Early B-Cell Factor-2 (EBF2) regulates brown adipose tissue development. Here, we asked if EBF2 regulates beige fat cell biogenesis and protects animals against obesity. Methods In addition to primary cell culture studies, we used ​Ebf2 knockout mice and mice overexpressing EBF2 in the adipose tissue to study the necessity and sufficiency of EBF2 to induce beiging in vivo. Results We found that EBF2 is required for beige adipocyte development in mice. Subcutaneous WAT or primary adipose cell cultures from Ebf2 knockout mice did not induce Uncoupling Protein 1 (UCP1) or a thermogenic program following adrenergic stimulation. Conversely, over-expression of EBF2 in adipocyte cultures induced UCP1 expression and a brown-like/beige fat-selective differentiation program. Transgenic expression of Ebf2 in adipose tissues robustly stimulated beige adipocyte development in the WAT of mice, even while housed at thermoneutrality. EBF2 overexpression was sufficient to increase mitochondrial function in WAT and protect animals against high fat diet-induced weight gain. Conclusions Taken together, our results demonstrate that EBF2 controls the beiging process and suggest that activation of EBF2 in WAT could be used to reduce obesity. PMID:26844207

  4. Adipose tissue-liver axis in alcoholic liver disease.

    PubMed

    Wang, Zhi-Gang; Dou, Xiao-Bing; Zhou, Zhan-Xiang; Song, Zhen-Yuan

    2016-02-15

    Alcoholic liver disease (ALD) remains an important health problem worldwide. The disease spectrum is featured by early steatosis, steatohepatitis (steatosis with inflammatory cells infiltration and necrosis), with some individuals ultimately progressing to fibrosis/cirrhosis. Although the disease progression is well characterized, no effective therapies are currently available for the treatment in humans. The mechanisms underlying the initiation and progression of ALD are multifactorial and complex. Emerging evidence supports that adipose tissue dysfunction contributes to the pathogenesis of ALD. In the first part of this review, we discuss the mechanisms whereby chronic alcohol exposure contributed to adipose tissue dysfunction, including cell death, inflammation and insulin resistance. It has been long known that aberrant hepatic methionine metabolism is a major metabolic abnormality induced by chronic alcohol exposure and plays an etiological role in the pathogenesis of ALD. The recent studies in our group documented the similar metabolic effect of chronic alcohol drinking on methionine in adipose tissue. In the second part of this review, we also briefly discuss the recent research progress in the field with a focus on how abnormal methionine metabolism in adipose tissue contributes to adipose tissue dysfunction and liver damage. PMID:26909225

  5. A stringent validation of mouse adipose tissue identity markers.

    PubMed

    de Jong, Jasper M A; Larsson, Ola; Cannon, Barbara; Nedergaard, Jan

    2015-06-15

    The nature of brown adipose tissue in humans is presently debated: whether it is classical brown or of brite/beige nature. The dissimilar developmental origins and proposed distinct functions of the brown and brite/beige tissues make it essential to ascertain the identity of human depots with the perspective of recruiting and activating them for the treatment of obesity and type 2 diabetes. For identification of the tissues, a number of marker genes have been proposed, but the validity of the markers has not been well documented. We used established brown (interscapular), brite (inguinal), and white (epididymal) mouse adipose tissues and corresponding primary cell cultures as validators and examined the informative value of a series of suggested markers earlier used in the discussion considering the nature of human brown adipose tissue. Most of these markers unexpectedly turned out to be noninformative concerning tissue classification (Car4, Cited1, Ebf3, Eva1, Fbxo31, Fgf21, Lhx8, Hoxc8, and Hoxc9). Only Zic1 (brown), Cd137, Epsti1, Tbx1, Tmem26 (brite), and Tcf21 (white) proved to be informative in these three tissues. However, the expression of the brite markers was not maintained in cell culture. In a more extensive set of adipose depots, these validated markers provide new information about depot identity. Principal component analysis supported our single-gene conclusions. Furthermore, Zic1, Hoxc8, Hoxc9, and Tcf21 displayed anteroposterior expression patterns, indicating a relationship between anatomic localization and adipose tissue identity (and possibly function). Together, the observed expression patterns of these validated marker genes necessitates reconsideration of adipose depot identity in mice and humans.

  6. Reducing the Dietary Omega-6:Omega-3 Utilizing α-Linolenic Acid; Not a Sufficient Therapy for Attenuating High-Fat-Diet-Induced Obesity Development Nor Related Detrimental Metabolic and Adipose Tissue Inflammatory Outcomes

    PubMed Central

    Enos, Reilly T.; Velázquez, Kandy T.; McClellan, Jamie L.; Cranford, Taryn L.; Walla, Michael D.; Murphy, E. Angela

    2014-01-01

    Aims To examine the effect of manipulating the omega-6:omega-3 (1∶1, 5∶1, 10∶1, and 20∶1) utilizing only α-linolenic and linoleic acid within a clinically-relevant high-fat diet (HFD) composed of up to seven sources of fat and designed to be similar to the standard American diet (MUFA∶PUFA of 2∶1, 12% and 40% of calories from saturated and total fat, respectively) on body composition, macrophage polarization, inflammation, and metabolic dysfunction in mice. Methods Diets were administered for 20 weeks. Body composition and metabolism (HOMA index and lipid profile) were examined monthly. GC-MS was utilized to determine the eicosapentaenoic acid (EPA):arachidonic acid (AA) and the docosahexaenoic acid (DHA):AA in AT phospholipids. Adipose tissue (AT) mRNA expression of chemokines (MCP-1, Fetuin-A, CXCL14), marker genes for M1 and M2 macrophages (CD11c and CD206, respectively) and inflammatory markers (TNF-α, IL-6, IL-1β, TLR-2, TLR-4, IL-10, GPR120) were measured along with activation of NFκB, JNK, and STAT-3. Macrophage infiltration into AT was examined using F4/80 immunohistochemistry. Results Any therapeutic benefit produced by reducing the omega-6:omega-3 was evident only when comparing the 1∶1 to 20∶1 HFD; the 1∶1 HFD resulted in a lower TC:HDL-C and decreased AT CXCL14 gene expression and AT macrophage infiltration, which was linked to a higher EPA:AA and DHA:AA in AT phospholipids. However, despite these effects, and independent of the omega-6:omega-3, all HFDs, in general, led to similar levels of adiposity, insulin resistance, and AT inflammation. Conclusion Reducing the omega-6:omega-3 using α-linolenic acid is not an effective therapy for attenuating obesity and type II diabetes mellitus development. PMID:24733548

  7. Differential Role of Adipose Tissues in Obesity and Related Metabolic and Vascular Complications

    PubMed Central

    Beneit, Nuria; Díaz-Castroverde, Sabela

    2016-01-01

    This review focuses on the contribution of white, brown, and perivascular adipose tissues to the pathophysiology of obesity and its associated metabolic and vascular complications. Weight gain in obesity generates excess of fat, usually visceral fat, and activates the inflammatory response in the adipocytes and then in other tissues such as liver. Therefore, low systemic inflammation responsible for insulin resistance contributes to atherosclerotic process. Furthermore, an inverse relationship between body mass index and brown adipose tissue activity has been described. For these reasons, in recent years, in order to combat obesity and its related complications, as a complement to conventional treatments, a new insight is focusing on the role of the thermogenic function of brown and perivascular adipose tissues as a promising therapy in humans. These lines of knowledge are focused on the design of new drugs, or other approaches, in order to increase the mass and/or activity of brown adipose tissue or the browning process of beige cells from white adipose tissue. These new treatments may contribute not only to reduce obesity but also to prevent highly prevalent complications such as type 2 diabetes and other vascular alterations, such as hypertension or atherosclerosis. PMID:27766104

  8. Adipose tissue glycogen accumulation is associated with obesity-linked inflammation in humans

    PubMed Central

    Ceperuelo-Mallafré, Victòria; Ejarque, Miriam; Serena, Carolina; Duran, Xavier; Montori-Grau, Marta; Rodríguez, Miguel Angel; Yanes, Oscar; Núñez-Roa, Catalina; Roche, Kelly; Puthanveetil, Prasanth; Garrido-Sánchez, Lourdes; Saez, Enrique; Tinahones, Francisco J.; Garcia-Roves, Pablo M.; Gómez-Foix, Anna Ma; Saltiel, Alan R.; Vendrell, Joan; Fernández-Veledo, Sonia

    2015-01-01

    Objective Glycogen metabolism has emerged as a mediator in the control of energy homeostasis and studies in murine models reveal that adipose tissue might contain glycogen stores. Here we investigated the physio(patho)logical role of glycogen in human adipose tissue in the context of obesity and insulin resistance. Methods We studied glucose metabolic flux of hypoxic human adipoctyes by nuclear magnetic resonance and mass spectrometry-based metabolic approaches. Glycogen synthesis and glycogen content in response to hypoxia was analyzed in human adipocytes and macrophages. To explore the metabolic effects of enforced glycogen deposition in adipocytes and macrophages, we overexpressed PTG, the only glycogen-associated regulatory subunit (PP1-GTS) reported in murine adipocytes. Adipose tissue gene expression analysis was performed on wild type and homozygous PTG KO male mice. Finally, glycogen metabolism gene expression and glycogen accumulation was analyzed in adipose tissue, mature adipocytes and resident macrophages from lean and obese subjects with different degrees of insulin resistance in 2 independent cohorts. Results We show that hypoxia modulates glucose metabolic flux in human adipocytes and macrophages and promotes glycogenesis. Enforced glycogen deposition by overexpression of PTG re-orients adipocyte secretion to a pro-inflammatory response linked to insulin resistance and monocyte/lymphocyte migration. Furthermore, glycogen accumulation is associated with inhibition of mTORC1 signaling and increased basal autophagy flux, correlating with greater leptin release in glycogen-loaded adipocytes. PTG-KO mice have reduced expression of key inflammatory genes in adipose tissue and PTG overexpression in M0 macrophages induces a pro-inflammatory and glycolytic M1 phenotype. Increased glycogen synthase expression correlates with glycogen deposition in subcutaneous adipose tissue of obese patients. Glycogen content in subcutaneous mature adipocytes is associated

  9. Epicardial adipose tissue in endocrine and metabolic diseases.

    PubMed

    Iacobellis, Gianluca

    2014-05-01

    Epicardial adipose tissue has recently emerged as new risk factor and active player in metabolic and cardiovascular diseases. Albeit its physiological and pathological roles are not completely understood, a body of evidence indicates that epicardial adipose tissue is a fat depot with peculiar and unique features. Epicardial fat is able to synthesize, produce, and secrete bioactive molecules which are then transported into the adjacent myocardium through vasocrine and/or paracrine pathways. Based on these evidences, epicardial adipose tissue can be considered an endocrine organ. Epicardial fat is also thought to provide direct heating to the myocardium and protect the heart during unfavorable hemodynamic conditions, such as ischemia or hypoxia. Epicardial fat has been suggested to play an independent role in the development and progression of obesity- and diabetes-related cardiac abnormalities. Clinically, the thickness of epicardial fat can be easily and accurately measured. Epicardial fat thickness can serve as marker of visceral adiposity and visceral fat changes during weight loss interventions and treatments with drugs targeting the fat. The potential of modulating the epicardial fat with targeted pharmacological agents can open new avenues in the pharmacotherapy of endocrine and metabolic diseases. This review article will provide Endocrine's reader with a focus on epicardial adipose tissue in endocrinology. Novel, established, but also speculative findings on epicardial fat will be discussed from the unexplored perspective of both clinical and basic Endocrinologist.

  10. An alternative splicing program promotes adipose tissue thermogenesis.

    PubMed

    Vernia, Santiago; Edwards, Yvonne Jk; Han, Myoung Sook; Cavanagh-Kyros, Julie; Barrett, Tamera; Kim, Jason K; Davis, Roger J

    2016-01-01

    Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia. PMID:27635635

  11. Recent Advances in Proteomic Studies of Adipose Tissues and Adipocytes

    PubMed Central

    Kim, Eun Young; Kim, Won Kon; Oh, Kyoung-Jin; Han, Baek Soo; Lee, Sang Chul; Bae, Kwang-Hee

    2015-01-01

    Obesity is a chronic disease that is associated with significantly increased levels of risk of a number of metabolic disorders. Despite these enhanced health risks, the worldwide prevalence of obesity has increased dramatically over the past few decades. Obesity is caused by the accumulation of an abnormal amount of body fat in adipose tissue, which is composed mostly of adipocytes. Thus, a deeper understanding of the regulation mechanism of adipose tissue and/or adipocytes can provide a clue for overcoming obesity-related metabolic diseases. In this review, we describe recent advances in the study of adipose tissue and/or adipocytes, focusing on proteomic approaches. In addition, we suggest future research directions for proteomic studies which may lead to novel treatments of obesity and obesity-related diseases. PMID:25734986

  12. Natural killer T cells in adipose tissue are activated in lean mice.

    PubMed

    Kondo, Taisuke; Toyoshima, Yujiro; Ishii, Yoshiyuki; Kyuwa, Shigeru

    2013-01-01

    Adipose tissues are closely connected with the immune system. It has been suggested that metabolic syndromes such as type 2 diabetes, arteriosclerosis and liver steatosis can be attributed to adipose tissue inflammation characterized by macrophage infiltration. To understand a physiological and pathological role of natural killer T (NKT) cells on inflammation in adipose tissue, we characterized a subset of NKT cells in abdominal and subcutaneous adipose tissues in C57BL/6J mice fed normal or high-fat diets. NKT cells comprised a larger portion of lymphocytes in adipose tissues compared with the spleen and peripheral blood, with epididymal adipose tissue having the highest number of NKT cells. Furthermore, some NKT cells in adipose tissues expressed higher levels of CD69 and intracellular interferon-γ, whereas the Vβ repertoires of NKT cells in adipose tissues were similar to other cells. In obese mice fed a high-fat diet, adipose tissue inflammation had little effect on the Vβ repertoire of NKT cells in epididymal adipose tissues. We speculate that the NKT cells in adipose tissues may form an equivalent subset in other tissues and that these subsets are likely to participate in adipose tissue inflammation. Additionally, the high expression level of CD69 and intracellular IFN-γ raises the possibility that NKT cells in adipose tissue may be stimulated by some physiological mechanism.

  13. The browning of white adipose tissue: some burning issues.

    PubMed

    Nedergaard, Jan; Cannon, Barbara

    2014-09-01

    Igniting thermogenesis within white adipose tissue (i.e., promoting expression and activity of the uncoupling protein UCP1) has attracted much interest. Numerous "browning agents" have now been described (gene ablations, transgenes, food components, drugs, environments, etc.). The implied action of browning agents is that they increase UCP1 through this heat production, leading to slimming. Here, we particularly point to the possibility that cause and effect may on occasion be the reverse: browning agents may disrupt, for example, the fur, leading to increased heat loss, increased thermogenic demand to counteract this heat loss, and thus, through sympathetic nervous system activation, to enhanced UCP1 expression in white (and brown) adipose tissues.

  14. Transplantation of human adipose tissue to nude mice.

    PubMed

    Bach-Mortensen, N; Romert, P; Ballegaard, S

    1976-08-01

    Human adipose tissue was transplanted to the mouse mutant nude (nu/nu). All the grafts were accepted and contained fat cells easily distinguishable from those of the mouse. No detectable relation between the histological pictures before and after grafting was found. In some transplants nerve tissue, and in others macrophages containing fat droplets, were found. The fat tissue graft might be useful for investigation of the influence of various hormones on human fat cells.

  15. Persistent organic pollutants meet adipose tissue hypoxia: does cross-talk contribute to inflammation during obesity?

    PubMed

    Myre, M; Imbeault, P

    2014-01-01

    Lipophilic persistent organic pollutants (POPs) accumulate in lipid-rich tissues such as human adipose tissue. This is particularly problematic in individuals with excess adiposity, a physiological state that may be additionally characterized by local adipose tissue hypoxia. Hypoxic patches occur when oxygen diffusion is insufficient to reach all hypertrophic adipocytes. POPs and hypoxia independently contribute to the development of adipose tissue-specific and systemic inflammation often associated with obesity. Inflammation is induced by increased proinflammatory mediators such as tumour necrosis factor-alpha, interleukin-6, and monocyte chemotactic protein-1, as well as reduced adiponectin release, an anti-inflammatory and insulin-sensitizing adipokine. The aryl hydrocarbon receptor (AhR) mediates the cellular response to some pollutants, while hypoxia responses occur through the oxygen-sensitive transcription factor hypoxia-inducible factor (HIF)-1. There is some overlap between the two signalling pathways since both require a common subunit called the AhR nuclear translocator. As such, it is unclear how adipocytes respond to simultaneous POP and hypoxia exposure. This brief review explores the independent contribution of POPs and adipose tissue hypoxia as factors underlying the inflammatory response from adipocytes during obesity. It also highlights that the combined effect of POPs and hypoxia through the AhR and HIF-1 signalling pathways remains to be tested. PMID:23998203

  16. Estrogen deficiency in ovariectomized rats: can resistance training re-establish angiogenesis in visceral adipose tissue?

    PubMed Central

    do Valle Gomes-Gatto, Camila; Duarte, Fernanda Oliveira; Stotzer, Uliana Sbeguen; Rodrigues, Maria Fernanda Cury; de Andrade Perez, Sérgio Eduardo; Selistre-de-Araujo, Heloisa Sobreiro

    2016-01-01

    OBJECTIVE: The purpose of this study was to investigate the effects of resistance training on angiogenesis markers of visceral adipose tissue in ovariectomized rats. METHOD: Adult Sprague-Dawley female rats were divided into four groups (n=6 per group): sham-sedentary, ovariectomized sedentary, sham-resistance training and ovariectomized resistance training. The rats were allowed to climb a 1.1-m vertical ladder with weights attached to their tails and the weights were progressively increased. Sessions were performed three times per week for 10 weeks. Visceral adipose tissue angiogenesis and morphology were analyzed by histology. VEGF-A mRNA and protein levels were analyzed by real-time PCR and ELISA, respectively. RESULTS: Ovariectomy resulted in higher body mass (p=0.0003), adipocyte hypertrophy (p=0.0003), decreased VEGF-A mRNA (p=0.0004) and protein levels (p=0.0009), and decreased micro-vascular density (p=0.0181) in the visceral adipose tissue of the rats. Resistance training for 10 weeks was not able to attenuate the reduced angiogenesis in the visceral adipose tissue of the ovariectomized rats. CONCLUSION: Our findings indicate that the resistance training program used in this study could not ameliorate low angiogenesis in the visceral adipose tissue of ovariectomized rats. PMID:27652835

  17. Adipose tissue extracts plasma ammonia after sprint exercise in women and men.

    PubMed

    Esbjörnsson, Mona; Bülow, Jens; Norman, Barbara; Simonsen, Lene; Nowak, Jacek; Rooyackers, Olav; Kaijser, Lennart; Jansson, Eva

    2006-12-01

    This study evaluates a possible contribution of adipose tissue to the elimination of plasma ammonia (NH(3)) after high-intensity sprint exercise. In 14 healthy men and women, repeated blood samples for plasma NH(3) analyses were obtained from brachial artery and from a subcutaneous abdominal vein before and after three repeated 30-s cycle sprints separated by 20 min of recovery. Biopsies from subcutaneous abdominal adipose tissue were obtained and analyzed for glutamine and glutamate content. After exercise, both arterial and abdominal venous plasma NH(3) concentrations were lower in women than in men (P < 0.01 and P < 0.001, respectively). All postexercise measurements showed sex-independent positive arterio-subcutaneous abdominal venous plasma NH(3) concentration differences (a-v(abd)), indicating a net uptake of NH(3) from blood to adipose tissue. However, the fractional extraction (a-v(abd)/a) of NH(3) was higher in women than in men (P < 0.05). The glutamine-to-glutamate ratio in adipose tissue was increased after the second and third bout of sprint exercise (2.2 +/- 0.7 and 1.6 +/- 0.8, respectively) compared with the value at rest (1.2 +/- 0.6), suggesting a reaction of the extracted NH(3) with glutamate resulting in its conversion to glutamine. Adipose tissue may thus play an important physiological role in eliminating plasma NH(3) and thereby reducing the risk of NH(3) intoxication after high-intensity exercise. PMID:16282425

  18. Adipose tissue extracts plasma ammonia after sprint exercise in women and men.

    PubMed

    Esbjörnsson, Mona; Bülow, Jens; Norman, Barbara; Simonsen, Lene; Nowak, Jacek; Rooyackers, Olav; Kaijser, Lennart; Jansson, Eva

    2006-12-01

    This study evaluates a possible contribution of adipose tissue to the elimination of plasma ammonia (NH(3)) after high-intensity sprint exercise. In 14 healthy men and women, repeated blood samples for plasma NH(3) analyses were obtained from brachial artery and from a subcutaneous abdominal vein before and after three repeated 30-s cycle sprints separated by 20 min of recovery. Biopsies from subcutaneous abdominal adipose tissue were obtained and analyzed for glutamine and glutamate content. After exercise, both arterial and abdominal venous plasma NH(3) concentrations were lower in women than in men (P < 0.01 and P < 0.001, respectively). All postexercise measurements showed sex-independent positive arterio-subcutaneous abdominal venous plasma NH(3) concentration differences (a-v(abd)), indicating a net uptake of NH(3) from blood to adipose tissue. However, the fractional extraction (a-v(abd)/a) of NH(3) was higher in women than in men (P < 0.05). The glutamine-to-glutamate ratio in adipose tissue was increased after the second and third bout of sprint exercise (2.2 +/- 0.7 and 1.6 +/- 0.8, respectively) compared with the value at rest (1.2 +/- 0.6), suggesting a reaction of the extracted NH(3) with glutamate resulting in its conversion to glutamine. Adipose tissue may thus play an important physiological role in eliminating plasma NH(3) and thereby reducing the risk of NH(3) intoxication after high-intensity exercise.

  19. Estrogen deficiency in ovariectomized rats: can resistance training re-establish angiogenesis in visceral adipose tissue?

    PubMed Central

    do Valle Gomes-Gatto, Camila; Duarte, Fernanda Oliveira; Stotzer, Uliana Sbeguen; Rodrigues, Maria Fernanda Cury; de Andrade Perez, Sérgio Eduardo; Selistre-de-Araujo, Heloisa Sobreiro

    2016-01-01

    OBJECTIVE: The purpose of this study was to investigate the effects of resistance training on angiogenesis markers of visceral adipose tissue in ovariectomized rats. METHOD: Adult Sprague-Dawley female rats were divided into four groups (n=6 per group): sham-sedentary, ovariectomized sedentary, sham-resistance training and ovariectomized resistance training. The rats were allowed to climb a 1.1-m vertical ladder with weights attached to their tails and the weights were progressively increased. Sessions were performed three times per week for 10 weeks. Visceral adipose tissue angiogenesis and morphology were analyzed by histology. VEGF-A mRNA and protein levels were analyzed by real-time PCR and ELISA, respectively. RESULTS: Ovariectomy resulted in higher body mass (p=0.0003), adipocyte hypertrophy (p=0.0003), decreased VEGF-A mRNA (p=0.0004) and protein levels (p=0.0009), and decreased micro-vascular density (p=0.0181) in the visceral adipose tissue of the rats. Resistance training for 10 weeks was not able to attenuate the reduced angiogenesis in the visceral adipose tissue of the ovariectomized rats. CONCLUSION: Our findings indicate that the resistance training program used in this study could not ameliorate low angiogenesis in the visceral adipose tissue of ovariectomized rats.

  20. Vitamin D and adipose tissue-more than storage.

    PubMed

    Mutt, Shivaprakash J; Hyppönen, Elina; Saarnio, Juha; Järvelin, Marjo-Riitta; Herzig, Karl-Heinz

    2014-01-01

    The pandemic increase in obesity is inversely associated with vitamin D levels. While a higher BMI was causally related to lower 25-hydroxyvitamin D (25(OH)D), no evidence was obtained for a BMI lowering effect by higher 25(OH)D. Some of the physiological functions of 1,25(OH)2D3 (1,25-dihydroxycholecalciferol or calcitriol) via its receptor within the adipose tissue have been investigated such as its effect on energy balance, adipogenesis, adipokine, and cytokine secretion. Adipose tissue inflammation has been recognized as the key component of metabolic disorders, e.g., in the metabolic syndrome. The adipose organ secretes more than 260 different proteins/peptides. However, the molecular basis of the interactions of 1,25(OH)2D3, vitamin D binding proteins (VDBPs) and nuclear vitamin D receptor (VDR) after sequestration in adipose tissue and their regulations are still unclear. 1,25(OH)2D3 and its inactive metabolites are known to inhibit the formation of adipocytes in mouse 3T3-L1 cell line. In humans, 1,25(OH)2D3 promotes preadipocyte differentiation under cell culture conditions. Further evidence of its important functions is given by VDR knock out (VDR(-/-)) and CYP27B1 knock out (CYP27B1 (-/-)) mouse models: Both VDR(-/-) and CYP27B1(-/-) models are highly resistant to the diet induced weight gain, while the specific overexpression of human VDR in adipose tissue leads to increased adipose tissue mass. The analysis of microarray datasets from human adipocytes treated with macrophage-secreted products up-regulated VDR and CYP27B1 genes indicating the capacity of adipocytes to even produce active 1,25(OH)2D3. Experimental studies demonstrate that 1,25(OH)2D3 has an active role in adipose tissue by modulating inflammation, adipogenesis and adipocyte secretion. Yet, further in vivo studies are needed to address the effects and the effective dosages of vitamin D in human adipose tissue and its relevance in the associated diseases. PMID:25009502

  1. b-Series gangliosides crucially regulate leptin secretion in adipose tissues.

    PubMed

    Ji, Shuting; Ohkawa, Yuki; Tokizane, Kyohei; Ohmi, Yuhsuke; Banno, Ryoichi; Furukawa, Keiko; Kiyama, Hiroshi; Furukawa, Koichi

    2015-04-01

    Gangliosides are widely involved in the regulation of cells and organs. However, little is known about their roles in leptin secretion from adipose tissues. Genetic deletion of b-series gangliosides resulted in the marked reduction of serum leptin. Expression analysis of leptin revealed that leptin accumulated in the adipose tissues of GD3 synthase-knockout (GD3S KO) mice. Analysis of primary cultured stromal vascular fractions (SVF) derived from GD3S KO mice revealed that leptin secretion was reduced, although leptin amounts in cells were increased compared with those of wild type. Interestingly, addition of b-series gangliosides to the culture medium of differentiated SVF resulted in the restoration of leptin secretion. Results of methyl-β-cyclodextrin treatment of differentiated 3T3-L1 cells as well as immunocytostaining of leptin and caveolin-1 suggested that b-series gangliosides regulate the leptin secretion from adipose tissues in lipid rafts.

  2. Simple and longstanding adipose tissue engineering in rabbits.

    PubMed

    Tsuji, Wakako; Inamoto, Takashi; Ito, Ran; Morimoto, Naoki; Tabata, Yasuhiko; Toi, Masakazu

    2013-03-01

    Adipose tissue engineering for breast reconstruction can be performed for patients who have undergone breast surgery. We have previously confirmed adipogenesis in mice implanted with type I collagen sponge with controlled release of fibroblast growth factor 2 (FGF2) and human adipose tissue-derived stem cells. However, in order to use this approach to treat breast cancer patients, a large amount of adipose tissue is needed, and FGF2 is not readily available. Thus, we aimed to regenerate large amounts of adipose tissue without FGF2 for a long period. Under general anesthesia, cages made of polypropylene mesh were implanted into the rabbits' bilateral fat pads. Each cage was 10 mm in radius and 10 mm in height. Minced type I collagen sponge was injected as a scaffold into the cage. Regenerated tissue in the cage was examined with ultrasonography, and the cages were harvested 3, 6, and 12 months after the implantation. Ultrasonography revealed a gradually increasing homogeneous high-echo area in the cage. Histology of the specimen was assessed with hematoxylin and eosin staining. The percentages of regenerated adipose tissue area were 76.2 ± 13.0 and 92.8 ± 6.6 % at 6 and 12 months after the implantation, respectively. Our results showed de novo adipogenesis 12 months after the implantation of only type I collagen sponge inside the space. Ultrasonography is a noninvasive and useful method of assessing the growth of the tissue inside the cage. This simple method could be a promising clinical modality in breast reconstruction. PMID:23114565

  3. Browning of white adipose tissue: role of hypothalamic signaling.

    PubMed

    Bi, Sheng; Li, Lin

    2013-10-01

    Two types of fat, white adipose tissue (WAT) and brown adipose tissue (BAT), exist in mammals including adult humans. While WAT stores excess calories and an excessive accumulation of fat causes obesity, BAT dissipates energy to produce heat through nonshivering thermogenesis for protection against cold environments and provides the potential for the development of novel anti-obesity treatments. The hypothalamus plays a central role in the control of energy balance. Specifically, recent observations indicate the importance of the dorsomedial hypothalamus (DMH) in thermoregulation. We have found that the orexigenic neuropeptide Y (NPY) in the DMH has distinct actions in modulating adiposity and BAT thermogenesis. Knockdown of NPY in the DMH elevates the thermogenic activity of classic BAT and promotes the development of brown adipocytes in WAT, leading to increased thermogenesis. These findings identify a novel potential target for combating obesity.

  4. Physiological and pathological impact of exosomes of adipose tissue.

    PubMed

    Zhang, Yan; Yu, Mei; Tian, Weidong

    2016-02-01

    Exosomes are nanovesicles that have emerged as a new intercellular communication system for transporting proteins and RNAs; recent studies have shown that they play a role in many physiological and pathological processes such as immune regulation, cell differentiation, infection and cancer. By transferring proteins, mRNAs and microRNAs, exosomes act as information vehicles that alter the behavior of recipient cells. Compared to direct cell-cell contact or secreted factors, exosomes can affect recipient cells in more efficient ways. In whole adipose tissues, it has been shown that exosomes exist in supernatants of adipocytes and adipose stromal cells (ADSCs). Adipocyte exosomes are linked to lipid metabolism and obesity-related insulin resistance and exosomes secreted by ADSCs are involved in angiogenesis, immunomodulation and tumor development. This review introduces characteristics of exosomes in adipose tissue, summarizes their functions in different physiological and pathological processes and provides the further insight into potential application of exosomes to disease diagnosis and treatment.

  5. Hypoxia-Inducible Factor 1α Induces Fibrosis and Insulin Resistance in White Adipose Tissue ▿ §

    PubMed Central

    Halberg, Nils; Khan, Tayeba; Trujillo, Maria E.; Wernstedt-Asterholm, Ingrid; Attie, Alan D.; Sherwani, Shariq; Wang, Zhao V.; Landskroner-Eiger, Shira; Dineen, Sean; Magalang, Ulysses J.; Brekken, Rolf A.; Scherer, Philipp E.

    2009-01-01

    Adipose tissue can undergo rapid expansion during times of excess caloric intake. Like a rapidly expanding tumor mass, obese adipose tissue becomes hypoxic due to the inability of the vasculature to keep pace with tissue growth. Consequently, during the early stages of obesity, hypoxic conditions cause an increase in the level of hypoxia-inducible factor 1α (HIF1α) expression. Using a transgenic model of overexpression of a constitutively active form of HIF1α, we determined that HIF1α fails to induce the expected proangiogenic response. In contrast, we observed that HIF1α initiates adipose tissue fibrosis, with an associated increase in local inflammation. “Trichrome- and picrosirius red-positive streaks,” enriched in fibrillar collagens, are a hallmark of adipose tissue suffering from the early stages of hypoxia-induced fibrosis. Lysyl oxidase (LOX) is a transcriptional target of HIF1α and acts by cross-linking collagen I and III to form the fibrillar collagen fibers. Inhibition of LOX activity by β-aminoproprionitrile treatment results in a significant improvement in several metabolic parameters and further reduces local adipose tissue inflammation. Collectively, our observations are consistent with a model in which adipose tissue hypoxia serves as an early upstream initiator for adipose tissue dysfunction by inducing a local state of fibrosis. PMID:19546236

  6. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders.

    PubMed

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

  7. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders

    PubMed Central

    Choe, Sung Sik; Huh, Jin Young; Hwang, In Jae; Kim, Jong In; Kim, Jae Bum

    2016-01-01

    The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue functions as a key energy reservoir for other organs, whereas the brown adipose tissue accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secrete various hormones, cytokines, and metabolites (termed as adipokines) that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue-resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic overnutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response. PMID:27148161

  8. Dermal white adipose tissue: a new component of the thermogenic response

    PubMed Central

    Alexander, Caroline M.; Kasza, Ildiko; Yen, C-L. Eric; Reeder, Scott B.; Hernando, Diego; Gallo, Richard L.; Jahoda, Colin A. B.; Horsley, Valerie; MacDougald, Ormond A.

    2015-01-01

    Recent literature suggests that the layer of adipocytes embedded in the skin below the dermis is far from being an inert spacer material. Instead, this layer of dermal white adipose tissue (dWAT) is a regulated lipid layer that comprises a crucial environmental defense. Among all the classes of biological molecules, lipids have the lowest thermal conductance and highest insulation potential. This property can be exploited by mammals to reduce heat loss, suppress brown adipose tissue activation, reduce the activation of thermogenic programs, and increase metabolic efficiency. Furthermore, this layer responds to bacterial challenge to provide a physical barrier and antimicrobial disinfection, and its expansion supports the growth of hair follicles and regenerating skin. In sum, this dWAT layer is a key defensive player with remarkable potential for modifying systemic metabolism, immune function, and physiology. In this review, we discuss the key literature illustrating the properties of this recently recognized adipose depot. PMID:26405076

  9. Molecular pathways regulating the formation of brown-like adipocytes in white adipose tissue.

    PubMed

    Fu, Jianfei; Li, Zhen; Zhang, Huiqin; Mao, Yushan; Wang, Anshi; Wang, Xin; Zou, Zuquan; Zhang, Xiaohong

    2015-07-01

    Adipose tissue is functionally composed of brown adipose tissue and white adipose tissue. The unique thermogenic capacity of brown adipose tissue results from expression of uncoupling protein 1 in the mitochondrial inner membrane. On the basis of recent findings that adult humans have functionally active brown adipose tissue, it is now recognized as playing a much more important role in human metabolism than was previously thought. More importantly, brown-like adipocytes can be recruited in white adipose tissue upon environmental stimulation and pharmacologic treatment, and this change is associated with increased energy expenditure, contributing to a lean and healthy phenotype. Thus, the promotion of brown-like adipocyte development in white adipose tissue offers novel possibilities for the development of therapeutic strategies to combat obesity and related metabolic diseases. In this review, we summarize recent advances in understanding the molecular mechanisms involved in the recruitment of brown-like adipocyte in white adipose tissue.

  10. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity.

    PubMed

    Heilbronn, Leonie K; Campbell, Lesley V

    2008-01-01

    Obesity was first described as a low-grade inflammatory condition more than a decade ago. However, it is only relatively recently that obese individuals have been described with increased macrophage infiltration of adipose tissue, as well as an increase in the number of "M1" or "classically activated" macrophages. Furthermore, macrophages have been identified as the primary source of many of the circulating inflammatory molecules that are detected in the obese state and are postulated to be causal both in the development of insulin resistance and in the progression to type 2 diabetes. There is also novel evidence to suggest that macrophages inhibit adipocyte differentiation, potentially leading to adipocyte hypertrophy, altered secretion of adipokines and ectopic storage of lipid within liver, muscle and other non-adipose tissues. Currently, it is not clear what causes increased macrophage infiltration of adipose tissue in obese individuals. Theories include altered signalling by adipocytes, nutritional induction of metabolic endotoxemia or reduced angiogenesis and local adipose cell hypoxia. Importantly, PPAR-gamma agonists have been shown to alter macrophage phenotype to "M2" or an "alternatively activated" anti-inflammatory phenotype and may induce macrophage specific cell death. Consequently, excitement surrounds the potential for specific inhibition of macrophage infiltration of adipose tissue via pharmacotherapy for obese patients and more particularly as adjunct therapy to improve insulin sensitivity in obese individuals with insulin resistance and overt type 2 diabetes.

  11. Colonic Macrophages "Remote Control" Adipose Tissue Inflammation and Insulin Resistance.

    PubMed

    Biswas, Subhra K; Bonecchi, Raffaella

    2016-08-01

    The early events linking diet-induced adipose tissue inflammation and insulin resistance remain poorly understood. In this issue of Cell Metabolism, Kawano et al. (2016) show that infiltration of colonic pro-inflammatory macrophages orchestrated by the intestinal CCL2/CCR2 axis kick-starts this process during high-fat-diet feeding. PMID:27508866

  12. Browning attenuates murine white adipose tissue expansion during postnatal development.

    PubMed

    Lasar, D; Julius, A; Fromme, T; Klingenspor, M

    2013-05-01

    During postnatal development of mice distinct white adipose tissue depots display a transient appearance of brown-like adipocytes. These brite (brown in white) adipocytes share characteristics with classical brown adipocytes including a multilocular appearance and the expression of the thermogenic protein uncoupling protein 1. In this study, we compared two inbred mouse strains 129S6sv/ev and C57BL6/N known for their different propensity to diet-induced obesity. We observed transient browning in retroperitoneal and inguinal adipose tissue depots of these two strains. From postnatal day 10 to 20 the increase in the abundance of multilocular adipocytes and uncoupling protein 1 expression was higher in 129S6sv/ev than in C57BL6/N pups. The parallel increase in the mass of the two fat depots was attenuated during this browning period. Conversely, epididymal white and interscapular brown adipose tissue displayed a steady increase in mass during the first 30 days of life. In this period, 129S6sv/ev mice developed a significantly higher total body fat mass than C57BL6/N. Thus, while on a local depot level a high number of brite cells is associated with the attenuation of adipose tissue expansion the strain comparison reveals no support for a systemic impact on energy balance. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  13. Endocrine modulators of mouse subcutaneous adipose tissue beige adipocyte markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stromal vascular fraction (SVF) of subcutaneous adipose tissue contains precursors that can give rise to beige adipocytes. Beige adipocytes are characterized by the expression of specific markers, but it is not clear which markers best evaluate beige adipocyte differentiation. Both regulators of...

  14. Human omental and subcutaneous adipose tissue exhibit specific lipidomic signatures.

    PubMed

    Jové, Mariona; Moreno-Navarrete, José María; Pamplona, Reinald; Ricart, Wifredo; Portero-Otín, Manuel; Fernández-Real, José Manuel

    2014-03-01

    Despite their differential effects on human metabolic pathophysiology, the differences in omental and subcutaneous lipidomes are largely unknown. To explore this field, liquid chromatography coupled with mass spectrometry was used for lipidome analyses of adipose tissue samples (visceral and subcutaneous) selected from a group of obese subjects (n=38). Transcriptomics and in vitro studies in adipocytes were used to confirm the pathways affected by location. The analyses revealed the existence of obesity-related specific lipidome signatures in each of these locations, attributed to selective enrichment of specific triglycerides, glycerophospholipids, and sphingolipids, because these were not observed in adipose tissues from nonobese individuals. The changes were compatible with subcutaneous enrichment in pathways involved in adipogenesis, triacylglyceride synthesis, and lipid droplet formation, as well as increased α-oxidation. Marked differences between omental and subcutaneous depots in obese individuals were seen in the association of lipid species with metabolic traits (body mass index and insulin sensitivity). Targeted studies also revealed increased cholesterol (Δ56%) and cholesterol epoxide (Δ34%) concentrations in omental adipose tissue. In view of the effects of cholesterol epoxide, which induced enhanced expression of adipocyte differentiation and α-oxidation genes in human omental adipocytes, a novel role for cholesterol epoxide as a signaling molecule for differentiation is proposed. In summary, in obesity, adipose tissue exhibits a location-specific differential lipid profile that may contribute to explaining part of its distinct pathogenic role.

  15. Spice Up Your Life: Adipose Tissue and Inflammation

    PubMed Central

    Agarwal, Anil K.

    2014-01-01

    Cells of the immune system are now recognized in the adipose tissue which, in obesity, produces proinflammatory chemokines and cytokines. Several herbs and spices have been in use since ancient times which possess anti-inflammatory properties. In this perspective, I discuss and propose the usage of these culinary delights for the benefit of human health. PMID:24701352

  16. Adipose tissue hyperplasia with enhanced adipocyte-derived stem cell activity in Tc1(C8orf4)-deleted mice

    PubMed Central

    Jang, Hayoung; Kim, Minsung; Lee, Soyoung; Kim, Jungtae; Woo, Dong-Cheol; Kim, Kyung Won; Song, Kyuyoung; Lee, Inchul

    2016-01-01

    Adipose tissue hyperplasia with increased number of adipocytes is implicated in a protective rather than deleterious effect on obesity-associated metabolic disorder. It is poorly understood how the adipose tissue cellularity is regulated. Tc1 is a gene of vertebrates that regulates diverse downstream genes. Young Tc1-deleted mice fed on standard chow diet show expanded adipose tissue with smaller adipocytes in size compared to wild type controls, representing adipose tissue hyperplasia. Tc1−/− mice show enhanced glucose tolerance and reduced serum lipids. Adipocyte-derived stem cells (ADSCs) from Tc1−/− mice show enhanced proliferative and adipogenic capacity compared to wild type controls, suggesting that the adipose hyperplasia is regulated at the stem cell level. PPARγ and CEBPα are up-regulated robustly in Tc1−/− ADSCs upon induction for adipogenesis. Wisp2 and Dlk1, inhibitors of adipogenesis, are down-regulated in Tc1−/− ADSCs compared to controls. Tc1-transfected NIH3T3 cells show higher β-catenin reporter signals than vector transfected controls, suggesting a role of canonical Wnt signaling in the Tc1-dependent adipose regulation. Our data support that Tc1 is a novel regulator for adipose stem cells. Adipose tissue hyperplasia may be implicated in the metabolic regulation of Tc1−/− mice. PMID:27775060

  17. Differential effects of reduced protein diets on fatty acid composition and gene expression in muscle and subcutaneous adipose tissue of Alentejana purebred and Large White × Landrace × Pietrain crossbred pigs.

    PubMed

    Madeira, Marta S; Pires, Virgínia M R; Alfaia, Cristina M; Costa, Ana S H; Luxton, Richard; Doran, Olena; Bessa, Rui J B; Prates, José A M

    2013-07-28

    The present study assessed the effect of pig genotype (fatty v. lean) and dietary protein and lysine (Lys) levels (normal v. reduced) on intramuscular fat (IMF) content, subcutaneous adipose tissue (SAT) deposition, fatty acid composition and mRNA levels of genes controlling lipid metabolism. The experiment was conducted on sixty intact male pigs (thirty Alentejana purebred and thirty Large White × Landrace × Pietrain crossbred), from 60 to 93 kg of live weight. Animals were divided into three groups fed with the following diets: control diet equilibrated for Lys (17·5 % crude protein (CP) and 0·7 % Lys), reduced protein diet (RPD) equilibrated for Lys (13·2 % CP and 0·6 % Lys) and RPD not equilibrated for Lys (13·1 % CP and 0·4 % Lys). It was shown that the RPD increased fat deposition in the longissimus lumborum muscle in the lean but not in the fatty pig genotype. It is strongly suggested that the effect of RPD on the longissimus lumborum muscle of crossbred pigs is mediated via Lys restriction. The increase in IMF content under the RPD was accompanied by increased stearoyl-CoA desaturase (SCD) and PPARG mRNA levels. RPD did not alter backfat thickness, but increased the total fatty acid content in both lean and fatty pig genotype. The higher amount of SAT in fatty pigs, when compared with the lean ones, was associated with the higher expression levels of ACACA, CEBPA, FASN and SCD genes. Taken together, the data indicate that the mechanisms regulating fat deposition in pigs are genotype and tissue specific, and are associated with the expression regulation of the key lipogenic genes. PMID:23286604

  18. Human mediastinal adipose tissue displays certain characteristics of brown fat

    PubMed Central

    Cheung, L; Gertow, J; Werngren, O; Folkersen, L; Petrovic, N; Nedergaard, J; Franco-Cereceda, A; Eriksson, P; Fisher, R M

    2013-01-01

    Background: The amount of intra-thoracic fat, of which mediastinal adipose tissue comprises the major depot, is related to various cardiometabolic risk factors. Autopsy and imaging studies indicate that the mediastinal depot in adult humans could contain brown adipose tissue (BAT). To gain a better understanding of this intra-thoracic fat depot, we examined possible BAT characteristics of human mediastinal in comparison with subcutaneous adipose tissue. Materials and methods: Adipose tissue biopsies from thoracic subcutaneous and mediastinal depots were obtained during open-heart surgery from 33 subjects (26 male, 63.7±13.8 years, body mass index 29.3±5.1 kg m−2). Microarray analysis was performed on 10 patients and genes of interest confirmed by quantitative PCR (qPCR) in samples from another group of 23 patients. Adipocyte size was determined and uncoupling protein 1 (UCP1) protein expression investigated with immunohistochemistry. Results: The microarray data showed that a number of BAT-specific genes had significantly higher expression in the mediastinal depot than in the subcutaneous depot. Higher expression of UCP1 (24-fold, P<0.001) and PPARGC1A (1.7-fold, P=0.0047), and lower expression of SHOX2 (0.12-fold, P<0.001) and HOXC8 (0.14-fold, P<0.001) in the mediastinal depot was confirmed by qPCR. Gene set enrichment analysis identified two gene sets related to mitochondria, which were significantly more highly expressed in the mediastinal than in the subcutaneous depot (P<0.01). No significant changes in UCP1 gene expression were observed in the subcutaneous or mediastinal depots following lowering of body temperature during surgery. UCP1 messenger RNA levels in the mediastinal depot were lower than those in murine BAT and white adipose tissue. In some mediastinal adipose tissue biopsies, a small number of multilocular adipocytes that stained positively for UCP1 were observed. Adipocytes were significantly smaller in the mediastinal than the

  19. Linoleic acid content in adipose tissue and coronary heart disease.

    PubMed Central

    Riemersma, R A; Wood, D A; Butler, S; Elton, R A; Oliver, M; Salo, M; Nikkari, T; Vartiainen, E; Puska, P; Gey, F

    1986-01-01

    The possibility of an inverse relation between essential fatty acids in adipose tissue, in particular linoleic acid, and mortality from coronary heart disease was studied by a cross sectional survey of random population samples of apparently healthy men aged 40-49 from four European regions with differing mortality from coronary heart disease. The proportion of linoleic acid in adipose tissue was lowest in men from north Karelia, Finland, where mortality from coronary heart disease is highest, and highest in men from Italy, where mortality is lowest, with intermediate proportions in men from Scotland and south west Finland. Similar gradients were observed for the desaturation and elongation products dihomo-gamma-linolenic and arachidonic acid. The proportion of saturated fatty acids in adipose tissue was highest in Finland, intermediate in Scotland, and lowest in Italy. Italian men also had the highest proportion of oleate in their adipose tissue and the lowest proportion of myristoleate and palmitoleate. Finnish men were more obese and had a higher blood pressure. Serum cholesterol concentration was higher in north Karelia and south west Finland than in Scotland or Italy. High density lipoprotein (HDL) cholesterol concentrations reflected the regional differences in serum cholesterol, being higher in Finland and lower in Italy. The ratios of HDL cholesterol to total cholesterol, however, did not differ. The regional differences in linoleic acid in adipose tissue remained highly significant when the observed differences in other known risk factors for coronary heart disease among the four areas were taken into account by multivariate analysis. The gradients in proportions of polyunsaturated fatty acids probably reflect differences in dietary intake of linoleic acid. PMID:3087455

  20. Pharmacological and nutritional agents promoting browning of white adipose tissue.

    PubMed

    Bonet, M Luisa; Oliver, Paula; Palou, Andreu

    2013-05-01

    The role of brown adipose tissue in the regulation of energy balance and maintenance of body weight is well known in rodents. Recently, interest in this tissue has re-emerged due to the realization of active brown-like adipose tissue in adult humans and inducible brown-like adipocytes in white adipose tissue depots in response to appropriate stimuli ("browning process"). Brown-like adipocytes that appear in white fat depots have been called "brite" (from brown-in-white) or "beige" adipocytes and have characteristics similar to brown adipocytes, in particular the capacity for uncoupled respiration. There is controversy as to the origin of these brite/beige adipocytes, but regardless of this, induction of the browning of white fat represents an attractive potential strategy for the management and treatment of obesity and related complications. Here, the different physiological, pharmacological and dietary determinants that have been linked to white-to-brown fat remodeling and the molecular mechanisms involved are reviewed in detail. In the light of available data, interesting therapeutic perspectives can be expected from the use of specific drugs or food compounds able to induce a program of brown fat differentiation including uncoupling protein 1 expression and enhancing oxidative metabolism in white adipose cells. However, additional research is needed, mainly focused on the physiological relevance of browning and its dietary control, where the use of ferrets and other non-rodent animal models with a more similar adipose tissue organization and metabolism to humans could be of much help. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  1. Exercise Effects on White Adipose Tissue: Beiging and Metabolic Adaptations.

    PubMed

    Stanford, Kristin I; Middelbeek, Roeland J W; Goodyear, Laurie J

    2015-07-01

    Regular physical activity and exercise training have long been known to cause adaptations to white adipose tissue (WAT), including decreases in cell size and lipid content and increases in mitochondrial proteins. In this article, we discuss recent studies that have investigated the effects of exercise training on mitochondrial function, the "beiging" of WAT, regulation of adipokines, metabolic effects of trained adipose tissue on systemic metabolism, and depot-specific responses to exercise training. The major WAT depots in the body are found in the visceral cavity (vWAT) and subcutaneously (scWAT). In rodent models, exercise training increases mitochondrial biogenesis and activity in both these adipose tissue depots. Exercise training also increases expression of the brown adipocyte marker uncoupling protein 1 (UCP1) in both adipose tissue depots, although these effects are much more pronounced in scWAT. Consistent with the increase in UCP1, exercise training increases the presence of brown-like adipocytes in scWAT, also known as browning or beiging. Training results in changes in the gene expression of thousands of scWAT genes and an altered adipokine profile in both scWAT and vWAT. Transplantation of trained scWAT in sedentary recipient mice results in striking improvements in skeletal muscle glucose uptake and whole-body metabolic homeostasis. Human and rodent exercise studies have indicated that exercise training can alter circulating adipokine concentration as well as adipokine expression in adipose tissue. Thus, the profound changes to WAT in response to exercise training may be part of the mechanism by which exercise improves whole-body metabolic health.

  2. Caspase Induction and BCL2 Inhibition in Human Adipose Tissue

    PubMed Central

    Tinahones, Francisco José; Coín Aragüez, Leticia; Murri, Mora; Oliva Olivera, Wilfredo; Mayas Torres, María Dolores; Barbarroja, Nuria; Gomez Huelgas, Ricardo; Malagón, Maria M.; El Bekay, Rajaa

    2013-01-01

    OBJECTIVE Cell death determines the onset of obesity and associated insulin resistance. Here, we analyze the relationship among obesity, adipose tissue apoptosis, and insulin signaling. RESEARCH DESIGN AND METHODS The expression levels of initiator (CASP8/9) and effector (CASP3/7) caspases as well as antiapoptotic B-cell lymphoma (BCL)2 and inflammatory markers were assessed in visceral (VAT) and subcutaneous (SAT) adipose tissue from patients with different degrees of obesity and without insulin resistance or diabetes. Adipose tissue explants from lean subjects were cultured with TNF-α or IL-6, and the expression of apoptotic and insulin signaling components was analyzed and compared with basal expression levels in morbidly obese subjects. RESULTS SAT and VAT exhibited increased CASP3/7 and CASP8/9 expression levels and decreased BCL2 expression with BMI increase. These changes were accompanied by increased inflammatory cytokine mRNA levels and macrophage infiltration markers. In obese subjects, CASP3/7 activation and BCL2 downregulation correlated with the IRS-1/2–expression levels. Expression levels of caspases, BCL2, p21, p53, IRS-1/2, GLUT4, protein tyrosine phosphatase 1B, and leukocyte antigen-related phosphatase in TNF-α– or IL-6–treated explants from lean subjects were comparable with those found in adipose tissue samples from morbidly obese subjects. These insulin component expression levels were reverted with CASP3/7 inhibition in these TNF-α– or IL-6–treated explants. CONCLUSIONS Body fat mass increase is associated with CASP3/7 and BCL2 expression in adipose tissue. Moreover, this proapoptotic state correlated with insulin signaling, suggesting its potential contribution to the development of insulin resistance. PMID:23193206

  3. Flow cytometry on the stromal-vascular fraction of white adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue contains cell types other than adipocytes that may contribute to complications linked to obesity. For example, macrophages have been shown to infiltrate adipose tissue in response to a high-fat diet. Isolation of the stromal-vascular fraction of adipose tissue allows one to use flow c...

  4. Association between subcutaneous white adipose tissue and serum 25-hydroxyvitamin D in overweight and obese adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Cholecalciferol is known to be deposited in human adipose tissue, but the distribution of 25-hydroxyvitamin D (25(OH)D) in adipose tissue is not known. Objectives: To determine whether 25(OH)D is detectable in subcutaneous white adipose tissue (SWAT) in overweight and obese persons an...

  5. Gene expression profiling in developing pig adipose tissue: non-secreted regulatory proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The expression of many genes encoding secreted and non-secreted factors have been studied in human and rodent adipose tissue with cDNA microarrays, but few such studies in adipose tissue from growing pigs have been reported. Total RNA was collected at slaughter from outer subcutaneous adipose tissue...

  6. The effect of insulin on porcine adipose tissue lipogenesis.

    PubMed

    Mersmann, H J

    1989-01-01

    1. This laboratory and others have not been able to demonstrate consistent insulin stimulation of glucose incorporation into lipid by porcine adipose tissue in vitro. 2. A multiplicity of tissue handling procedures, additions to the incubation medium, and pig size (age) did not allow the expression of a consistent and substantial insulin stimulation. 3. It is suggested that the twofold or greater stimulation of glucose metabolism observed occasionally in this laboratory results from pig genetics, husbandry, or seasonal effects. PMID:2514071

  7. The effect of insulin on porcine adipose tissue lipogenesis.

    PubMed

    Mersmann, H J

    1989-01-01

    1. This laboratory and others have not been able to demonstrate consistent insulin stimulation of glucose incorporation into lipid by porcine adipose tissue in vitro. 2. A multiplicity of tissue handling procedures, additions to the incubation medium, and pig size (age) did not allow the expression of a consistent and substantial insulin stimulation. 3. It is suggested that the twofold or greater stimulation of glucose metabolism observed occasionally in this laboratory results from pig genetics, husbandry, or seasonal effects.

  8. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our data demonstrate that estrogens, estrogen receptor-alpha (ERalpha), and estrogen receptor-ßeta (ERßeta) regulate adipose tissue distribution, inflammation, fibrosis, and glucose homeostasis, by determining that alphaERKO mice have increased adipose tissue inflammation and fibrosis prior to obesi...

  9. Fat liquefaction: effect of low-level laser energy on adipose tissue.

    PubMed

    Neira, Rodrigo; Arroyave, José; Ramirez, Hugo; Ortiz, Clara Lucía; Solarte, Efrain; Sequeda, Federico; Gutierrez, Maria Isabel

    2002-09-01

    Low-level laser energy has been increasingly used in the treatment of a broad range of conditions and has improved wound healing, reduced edema, and relieved pain of various etiologies. This study examined whether 635-nm low-level lasers had an effect on adipose tissue in vivo and the procedural implementation of lipoplasty/liposuction techniques. The experiment investigated the effect of 635-nm, 10-mW diode laser radiation with exclusive energy dispersing optics. Total energy values of 1.2 J/cm(2), 2.4 J/cm(2), and 3.6 J/cm(2) were applied on human adipose tissue taken from lipectomy samples of 12 healthy women. The tissue samples were irradiated for 0, 2, 4, and 6 minutes with and without tumescent solution and were studied using the protocols of transmission electron microscopy and scanning electron microscopy. Nonirradiated tissue samples were taken for reference. More than 180 images were recorded and professionally evaluated. All microscopic results showed that without laser exposure the normal adipose tissue appeared as a grape-shaped node. After 4 minutes of laser exposure, 80 percent of the fat was released from the adipose cells; at 6 minutes of laser exposure, 99 percent of the fat was released from the adipocyte. The released fat was collected in the interstitial space. Transmission electron microscopic images of the adipose tissue taken at x60,000 showed a transitory pore and complete deflation of the adipocytes. The low-level laser energy affected the adipose cell by causing a transitory pore in the cell membrane to open, which permitted the fat content to go from inside to outside the cell. The cells in the interstitial space and the capillaries remained intact. Low-level laser-assisted lipoplasty has a significant impact on the procedural implementation of lipoplasty techniques. PMID:12172159

  10. Changes in white adipose tissue metabolism induced by resveratrol in rats

    PubMed Central

    2011-01-01

    Background A remarkable range of biological functions have been ascribed to resveratrol. Recently, this polyphenol has been shown to have body fat lowering effects. The aim of the present study was to assess some of the potential underlying mechanisms of action which take place in adipose tissue. Methods Sixteen male Sprague-Dawley rats were randomly divided into two groups: control and treated with 30 mg resveratrol/kg body weight/d. All rats were fed an obesogenic diet and after six weeks of treatment white adipose tissues were dissected. Lipoprotein lipase activity was assessed by fluorimetry, acetyl-CoA carboxylase by radiometry, and malic enzyme, glucose-6P-dehydrogenase and fatty acid synthase by spectrophotometry. Gene expression levels of acetyl-CoA carboxylase, fatty acid synthase, lipoprotein lipase, hormone-sensitive lipase, adipose triglyceride lipase, PPAR-gamma, SREBP-1c and perilipin were assessed by Real time RT-PCR. The amount of resveratrol metabolites in adipose tissue was measured by chromatography. Results There was no difference in the final body weight of the rats; however, adipose tissues were significantly decreased in the resveratrol-treated group. Resveratrol reduced the activity of lipogenic enzymes, as well as that of heparin-releasable lipoprotein lipase. Moreover, a significant reduction was induced by this polyphenol in hormone-sensitive lipase mRNA levels. No significant changes were observed in other genes. Total amount of resveratrol metabolites in adipose tissue was 2.66 ± 0.55 nmol/g tissue. Conclusions It can be proposed that the body fat-lowering effect of resveratrol is mediated, at least in part, by a reduction in fatty acid uptake from circulating triacylglycerols and also in de novo lipogenesis. PMID:21569266

  11. Circadian Regulation of Lipid Mobilization in White Adipose Tissues

    PubMed Central

    Shostak, Anton; Meyer-Kovac, Judit; Oster, Henrik

    2013-01-01

    In mammals, a network of circadian clocks regulates 24-h rhythms of behavior and physiology. Circadian disruption promotes obesity and the development of obesity-associated disorders, but it remains unclear to which extent peripheral tissue clocks contribute to this effect. To reveal the impact of the circadian timing system on lipid metabolism, blood and adipose tissue samples from wild-type, ClockΔ19, and Bmal1−/− circadian mutant mice were subjected to biochemical assays and gene expression profiling. We show diurnal variations in lipolysis rates and release of free fatty acids (FFAs) and glycerol into the blood correlating with rhythmic regulation of two genes encoding the lipolysis pacemaker enzymes, adipose triglyceride (TG) lipase and hormone-sensitive lipase, by self-sustained adipocyte clocks. Circadian clock mutant mice show low and nonrhythmic FFA and glycerol blood content together with decreased lipolysis rates and increased sensitivity to fasting. Instead circadian clock disruption promotes the accumulation of TGs in white adipose tissue (WAT), leading to increased adiposity and adipocyte hypertrophy. In summary, circadian modulation of lipolysis rates regulates the availability of lipid-derived energy during the day, suggesting a role for WAT clocks in the regulation of energy homeostasis. PMID:23434933

  12. Subcutaneous adipose tissue fatty acid desaturation in adults with and without rare adipose disorders

    PubMed Central

    2012-01-01

    Background Elevated stearoyl-CoA desaturase activity has been described in obese states, with an increased desaturation index (DI) suggesting enhanced lipogenesis. Differences in the DI among various phenotypes of abnormal adiposity have not been studied. Abnormal accumulation of subcutaneous adipose tissue occurs in rare adipose disorders (RADs) including Dercum's disease (DD), multiple symmetric lipomatosis (MSL), and familial multiple lipomatosis (FML). Examining the DI in subcutaneous fat of people with DD, MSL and FML may provide information on adipose tissue fatty acid metabolism in these disorders. The aims of this pilot study were: 1) to determine if differences in adipose tissue DIs are present among RADs, and 2) to determine if the DIs correlate to clinical or biochemical parameters. Methods Subcutaneous adipose tissue was obtained from human participants with DD (n = 6), MSL (n = 5), FML (n = 8) and obese Controls (n = 6). Fatty acid composition was determined by gas chromatography/mass spectrometry. The DIs (palmitoleic/palmitic, oleic/stearic, vaccenic/stearic ratios) were calculated from the gas chromatogram peak intensities. SCD1 gene expression was determined. Spearman's correlations between the DIs and available clinical or biochemical data were performed. Results In DD subjects, the vaccenic/stearic index was lower (p < 0.05) in comparison to Controls. Percent of total of the saturated fatty acid myristic acid was higher in DD compared with Controls and FML. Percent of monounsaturated vaccenic acid in DD trended lower when compared with Controls, and was decreased in comparison to FML. In MSL, total percent of the polyunsaturated fatty acids was significantly lower than in the Control group (p < 0.05). In the total cohort of subjects, the palmitoleic/palmitic and oleic/stearic DIs positively correlated with age, BMI, and percent body fat. Conclusions The positive associations between the DIs and measures of adiposity (BMI and percent body fat

  13. Metabolic remodeling of white adipose tissue in obesity

    PubMed Central

    Cummins, Timothy D.; Holden, Candice R.; Sansbury, Brian E.; Gibb, Andrew A.; Shah, Jasmit; Zafar, Nagma; Tang, Yunan; Hellmann, Jason; Rai, Shesh N.; Spite, Matthew; Bhatnagar, Aruni

    2014-01-01

    Adipose tissue metabolism is a critical regulator of adiposity and whole body energy expenditure; however, metabolic changes that occur in white adipose tissue (WAT) with obesity remain unclear. The purpose of this study was to understand the metabolic and bioenergetic changes occurring in WAT with obesity. Wild-type (C57BL/6J) mice fed a high-fat diet (HFD) showed significant increases in whole body adiposity, had significantly lower V̇o2, V̇co2, and respiratory exchange ratios, and demonstrated worsened glucose and insulin tolerance compared with low-fat-fed mice. Metabolomic analysis of WAT showed marked changes in lipid, amino acid, carbohydrate, nucleotide, and energy metabolism. Tissue levels of succinate and malate were elevated, and metabolites that could enter the Krebs cycle via anaplerosis were mostly diminished in high-fat-fed mice, suggesting altered mitochondrial metabolism. Despite no change in basal oxygen consumption or mitochondrial DNA abundance, citrate synthase activity was decreased by more than 50%, and responses to FCCP were increased in WAT from mice fed a high-fat diet. Moreover, Pgc1a was downregulated and Cox7a1 upregulated after 6 wk of HFD. After 12 wk of high-fat diet, the abundance of several proteins in the mitochondrial respiratory chain or matrix was diminished. These changes were accompanied by increased Parkin and Pink1, decreased p62 and LC3-I, and ultrastructural changes suggestive of autophagy and mitochondrial remodeling. These studies demonstrate coordinated restructuring of metabolism and autophagy that could contribute to the hypertrophy and whitening of adipose tissue in obesity. PMID:24918202

  14. Influence of betaine and arginine supplementation of reduced protein diets on fatty acid composition and gene expression in the muscle and subcutaneous adipose tissue of cross-bred pigs.

    PubMed

    Madeira, Marta S; Rolo, Eva S; Alfaia, Cristina M; Pires, Virgínia R; Luxton, Richard; Doran, Olena; Bessa, Rui J B; Prates, José A M

    2016-03-28

    The isolated or combined effects of betaine and arginine supplementation of reduced protein diets (RPD) on fat content, fatty acid composition and mRNA levels of genes controlling lipid metabolism in pig m. longissimus lumborum and subcutaneous adipose tissue (SAT) were assessed. The experiment was performed on forty intact male pigs (Duroc×Large White×Landrace cross-breed) with initial and final live weights of 60 and 93 kg, respectively. Pigs were randomly assigned to one of the following five diets (n 8): 16·0 % of crude protein (control), 13·0 % of crude protein (RPD), RPD supplemented with 0·33 % of betaine, RPD supplemented with 1·5 % of arginine and RPD supplemented with 0·33 % of betaine and 1·5 % of arginine. Data confirmed that RPD increase intramuscular fat (IMF) content and total fat content in SAT. The increased total fat content in SAT was accompanied by higher GLUT type 4, lipoprotein lipase and stearoyl-CoA desaturase mRNA expression levels. In addition, the supplementation of RPD with betaine and/or arginine did not affect either IMF or total fat in SAT. However, dietary betaine supplementation slightly affected fatty acid composition in both muscle and SAT. This effect was associated with an increase of carnitine O-acetyltransferase mRNA levels in SAT but not in muscle, which suggests that betaine might be involved in the differential regulation of some key genes of lipid metabolism in pig muscle and SAT. Although the arginine-supplemented diet decreased the mRNA expression level of PPARG in muscle and SAT, it did not influence fat content or fatty acid composition in any of these pig tissues.

  15. Epicardial Adipose Tissue Thickness in Patients With Subclinical Hypothyroidism and the Relationship Thereof With Visceral Adipose Tissue Thickness

    PubMed Central

    Arpaci, Dilek; Gurkan Tocoglu, Aysel; Yilmaz, Sabiye; Korkmaz, Sumeyye; Ergenc, Hasan; Gunduz, Huseyin; Keser, Nurgul; Tamer, Ali

    2016-01-01

    Background Subclinical hypothyroidism (SH) is associated with cardiovascular metabolic syndromes, especially dislipidemia and abdominal obesity. Visceral abdominal adipose tissue (VAAT) and epicardial adipose tissue (EAT) have the same ontogenic origin and produce many proinflammatory and proatherogenic cytokines. We evaluated EAT and VAAT thickness in patients with SH. Methods Forty-one patients with SH and 35 controls were included in the study. Demographical and anthropometric features of both patients and controls were recorded. Thyroid and metabolic parameters were measured. EAT was measured using 2D-transthoracic echocardiography. Results The age and gender distributions were similar in the two groups (P = 0.998 and P = 0.121, respectively). Body mass index (BMI), fat mass, waist circumference (WC), hip circumference (HC), the WC/HC ratio, and the thicknesses of VAAT and abdominal subcutaneous adipose tissue were higher in the case group than the control group (all P values < 0.01). However, both groups had similar EAT thickness (P = 0.532), which was positively correlated with BMI, fat mass, WC, HC, VAAT thickness, abdominal subcutaneous adipose tissue thickness, and serum triglyceride (TG) level (all P values < 0.01). We found no correlation between EAT thickness and thyroid-stimulating hormone (TSH) level, free thyroxine (FT4) level, or low-density lipoprotein-cholesterol (LDL-C) level, and anti-TPO level (all P values > 0.05). We found no difference between the two groups in fasting plasma glucose (FPG) level (P = 0.780), but the levels of LDL-C and TG differed significantly (P = 0.002 and P = 0.026, respectively). The serum TSH level was higher and the FT4 level was lower in the case than the control group (both P values <0.01). Conclusion Increased abdominal adipose tissue thickness in patients with SH is associated with atherosclerosis. To detemine the risk of atherosclerosis in such patients, EAT measurements are valuable; such assessment is simple to

  16. Regulation of body temperature and brown adipose tissue thermogenesis by bombesin receptor subtype-3.

    PubMed

    Lateef, Dalya M; Abreu-Vieira, Gustavo; Xiao, Cuiying; Reitman, Marc L

    2014-03-01

    Bombesin receptor subtype-3 (BRS-3) regulates energy homeostasis, with Brs3 knockout (Brs3(-/y)) mice being hypometabolic, hypothermic, and hyperphagic and developing obesity. We now report that the reduced body temperature is more readily detected if body temperature is analyzed as a function of physical activity level and light/dark phase. Physical activity level correlated best with body temperature 4 min later. The Brs3(-/y) metabolic phenotype is not due to intrinsically impaired brown adipose tissue function or in the communication of sympathetic signals from the brain to brown adipose tissue, since Brs3(-/y) mice have intact thermogenic responses to stress, acute cold exposure, and β3-adrenergic activation, and Brs3(-/y) mice prefer a cooler environment. Treatment with the BRS-3 agonist MK-5046 increased brown adipose tissue temperature and body temperature in wild-type but not Brs3(-/y) mice. Intrahypothalamic infusion of MK-5046 increased body temperature. These data indicate that the BRS-3 regulation of body temperature is via a central mechanism, upstream of sympathetic efferents. The reduced body temperature in Brs3(-/y) mice is due to altered regulation of energy homeostasis affecting higher center regulation of body temperature, rather than an intrinsic defect in brown adipose tissue.

  17. Secreted frizzled-related protein 1 regulates adipose tissue expansion and is dysregulated in severe obesity

    PubMed Central

    Lagathu, Claire; Christodoulides, Constantinos; Tan, Chong Yew; Virtue, Sam; Laudes, Matthias; Campbell, Mark; Ishikawa, Ko; Ortega, Francisco; Tinahones, Francisco J.; Fernández-Real, Jose-Manuel; Orešič, Matej; Sethi, Jaswinder K.; Vidal-Puig, Antonio

    2014-01-01

    Aim The Wnt/β-catenin signalling network offers potential targets to diagnose and uncouple obesity from its metabolic complications. Here we investigate the role of the Wnt antagonist, secreted Frizzled related protein 1 (SFRP1) in promoting adipogenesis in vitro and adipose tissue expansion in vivo. Methods We use a combination of human and murine, in vivo and in vitro models of adipogenesis, adipose tissue expansion and obesity-related metabolic syndrome to profile the involvement of SFRP1. Results Secreted Frizzled related protein 1 (SFRP1) is expressed in both murine and human mature adipocytes. The expression of SFRP1 is induced during in vitro adipogenesis and SFRP1 is preferentially expressed in mature adipocytes in human adipose tissue. Constitutive ectopic expression of SFRP1 is proadipogenic and inhibits the Wnt/β-catenin signalling pathway. In vivo endogenous levels of adipose SFRP1 are regulated in line with proadipogenic states. However, in longitudinal studies of high fat diet-fed mice we observed a dynamic temporal but biphasic regulation of endogenous SFRP1. In agreement with this profile we observed that SFRP1 expression in human tissues peaks in patients with mild obesity and gradually falls in morbidly obese subjects. Conclusions Our results suggest that SFRP1 is an endogenous modulator of Wnt/β-catenin signalling and participates in the paracrine regulation of human adipogenesis. The reduced adipose expression of SFRP1 in morbid obesity and its knock-on effect to prevent further adipose tissue expansion may contribute to the development of metabolic complications in these individuals. PMID:20514047

  18. Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) deficiencies affect expression of lipolytic activities in mouse adipose tissues.

    PubMed

    Morak, Maria; Schmidinger, Hannes; Riesenhuber, Gernot; Rechberger, Gerald N; Kollroser, Manfred; Haemmerle, Guenter; Zechner, Rudolf; Kronenberg, Florian; Hermetter, Albin

    2012-12-01

    Adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are key enzymes involved in intracellular degradation of triacylglycerols. It was the aim of this study to elucidate how the deficiency in one of these proteins affects the residual lipolytic proteome in adipose tissue. For this purpose, we compared the lipase patterns of brown and white adipose tissue from ATGL (-/-) and HSL (-/-) mice using differential activity-based gel electrophoresis. This method is based on activity-recognition probes possessing the same substrate analogous structure but carrying different fluorophores for specific detection of the enzyme patterns of two different tissues in one electrophoresis gel. We found that ATGL-deficiency in brown adipose tissue had a profound effect on the expression levels of other lipolytic and esterolytic enzymes in this tissue, whereas HSL-deficiency hardly showed any effect in brown adipose tissue. Neither ATGL- nor HSL-deficiency greatly influenced the lipase patterns in white adipose tissue. Enzyme activities of mouse tissues on acylglycerol substrates were analyzed as well, showing that ATGL-and HSL-deficiencies can be compensated for at least in part by other enzymes. The proteins that responded to ATGL-deficiency in brown adipose tissue were overexpressed and their activities on acylglycerols were analyzed. Among these enzymes, Es1, Es10, and Es31-like represent lipase candidates as they catalyze the hydrolysis of long-chain acylglycerols.

  19. Differential effects of a gelatinase inhibitor on adipocyte differentiation and adipose tissue development.

    PubMed

    Van Hul, Matthias; Bauters, Dries; Lijnen, Roger H

    2013-10-01

    (1) A potential role for the gelatinases in adipocyte differentiation in vitro and adipose tissue development in vivo was investigated using the gelatinase inhibitor tolylsam ((R)-3-methyl-2-[4-(3-p-tolyl-[1,2,4]oxadiazol-5-yl)-benzenesulphonylamino]-butyric acid). (2) Differentiation of murine 3T3-F442A preadipocytes (12 days after reaching confluence) into mature adipocytes in vitro was promoted in the presence of tolylsam (10-100 μmol/L). (3) De novo development of fat tissue in nude mice injected with preadipocytes and kept on a high-fat diet was significantly impaired following treatment with tolylsam (100 mg/kg per day for 4 weeks). (4) Adipose tissue development in matrix metalloproteinase (MMP)-2 deficient mice, kept on a high-fat diet, was significantly impaired following administration of tolylsam (100 mg/kg per day for 15 weeks). This was associated with markedly enhanced metabolic rate. (5) Treatment of MMP-2-deficient mice with tolylsam (100 mg/kg per day, 15 weeks) was associated with the preservation of collagen and a reduction in blood vessel size in adipose tissues in vivo. (6) Furthermore, plasma levels of triglycerides and free fatty acids were reduced by tolylsam treatment of MMP-2-deficient mice (100 mg/kg per day, 15 weeks), whereas nutrient adsorption in the intestine was not affected. (7) The results of the present study indicate that tolylsam promotes preadipocyte differentiation in vitro, but impairs adipose tissue development in vivo.

  20. Unique transcriptomic signature of omental adipose tissue in Ossabaw swine: a model of childhood obesity.

    PubMed

    Toedebusch, Ryan G; Roberts, Michael D; Wells, Kevin D; Company, Joseph M; Kanosky, Kayla M; Padilla, Jaume; Jenkins, Nathan T; Perfield, James W; Ibdah, Jamal A; Booth, Frank W; Rector, R Scott

    2014-05-15

    To better understand the impact of childhood obesity on intra-abdominal adipose tissue phenotype, a complete transcriptomic analysis using deep RNA-sequencing (RNA-seq) was performed on omental adipose tissue (OMAT) obtained from lean and Western diet-induced obese juvenile Ossabaw swine. Obese animals had 88% greater body mass, 49% greater body fat content, and a 60% increase in OMAT adipocyte area (all P < 0.05) compared with lean pigs. RNA-seq revealed a 37% increase in the total transcript number in the OMAT of obese pigs. Ingenuity Pathway Analysis showed transcripts in obese OMAT were primarily enriched in the following categories: 1) development, 2) cellular function and maintenance, and 3) connective tissue development and function, while transcripts associated with RNA posttranslational modification, lipid metabolism, and small molecule biochemistry were reduced. DAVID and Gene Ontology analyses showed that many of the classically recognized gene pathways associated with adipose tissue dysfunction in obese adults including hypoxia, inflammation, angiogenesis were not altered in OMAT in our model. The current study indicates that obesity in juvenile Ossabaw swine is characterized by increases in overall OMAT transcript number and provides novel data describing early transcriptomic alterations that occur in response to excess caloric intake in visceral adipose tissue in a pig model of childhood obesity.

  1. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-{kappa}B pathway

    SciTech Connect

    Wang, Zhiquan; Xue, Liqiong; Guo, Cuicui; Han, Bing; Pan, Chunming; Zhao, Shuangxia; Song, Huaidong; Ma, Qinyun

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Stevioside ameliorates high-fat diet-induced insulin resistance. Black-Right-Pointing-Pointer Stevioside alleviates the adipose tissue inflammation. Black-Right-Pointing-Pointer Stevioside reduces macrophages infiltration into the adipose tissue. Black-Right-Pointing-Pointer Stevioside suppresses the activation of NF-{kappa}B in the adipose tissue. -- Abstract: Accumulating evidence suggests that adipose tissue is the main source of pro-inflammatory molecules that predispose individuals to insulin resistance. Stevioside (SVS) is a widely used sweetener with multiple beneficial effects for diabetic patients. In this study, we investigated the effect of SVS on insulin resistance and the pro-inflammatory state of adipose tissue in mice fed with a high-fat diet (HFD). Oral administration of SVS for 1 month had no effect on body weight, but it significantly improved fasting glucose, basal insulin levels, glucose tolerance and whole body insulin sensitivity. Interestingly, these changes were accompanied with decreased expression levels of several inflammatory cytokines in adipose tissue, including TNF-{alpha}, IL6, IL10, IL1{beta}, KC, MIP-1{alpha}, CD11b and CD14. Moreover, macrophage infiltration in adipose tissue was remarkably reduced by SVS. Finally, SVS significantly suppressed the nuclear factor-kappa b (NF-{kappa}B) signaling pathway in adipose tissue. Collectively, these results suggested that SVS may ameliorate insulin resistance in HFD-fed mice by attenuating adipose tissue inflammation and inhibiting the NF-{kappa}B pathway.

  2. Ovariectomy in mature mice does not increase food intake, but increases adiposity and adipose tissue inflammation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Menopause, characterized by reduced estrogen (E2), is associated with increased adiposity and metabolic pathology. Molecular mechanisms underlying this association between low E2 status and metabolic disease are not fully elucidated. When mice are fed a high fat diet (HFD) to induce obesity and diab...

  3. Brown adipose tissue development and metabolism in ruminants.

    PubMed

    Smith, S B; Carstens, G E; Randel, R D; Mersmann, H J; Lunt, D K

    2004-03-01

    We conducted several experiments to better understand the relationship between brown adipose tissue (BAT) metabolism and thermogenesis. In Exp. 1, we examined perirenal (brown) and sternum s.c. adipose tissue in 14 Wagyu x Angus neonates infused with norepinephrine (NE). Perirenal adipocytes contained numerous large mitochondria with well-differentiated cristae; sternum s.c. adipocytes contained a few, small mitochondria, with poorly developed cristae. Lipogenesis from acetate was high in BAT but barely detectable in sternum s.c. adipose tissue. In Exp. 2, we compared perirenal and tailhead adipose tissues between NE-infused Angus (n = 6) and Brahman (n = 7) newborn calves. Brahman BAT contained two-to-three times as many total beta-receptors as Angus BAT. The mitochondrial UCP1:28S rRNA ratio was greater in Brahman BAT than in BAT from Angus calves. Lipogenesis from acetate and glucose again was high, but lipogenesis from palmitate was barely detectable. Tail-head s.c. adipose tissue from both breed types contained adipocytes with distinct brown adipocyte morphology. In Exp. 3, three fetuses of each breed type were taken at 96, 48, 24, 14, and 6 d before expected parturition, and at parturition. Lipogenesis from acetate and glucose in vitro decreased 97% during the last 96 d of gestation in both breed types, whereas the UCP1 gene expression tripled during gestation in both breed types. At birth, palmitate esterification was twice as high in Angus than in Brahman BAT and was at least 100-fold higher than in BAT from NE-infused calves from Exp. 2. Uncoupling protein-1 mRNA was readily detectable in tailhead s.c. adipose tissue in all fetal samples. In Exp. 4, male Brahman and Angus calves (n = 5 to 7 per group) were assigned to 1) newborn treatment (15 h of age), 2) 48 h of warm exposure (22 degrees C) starting at 15 h of age, or 3) 48 h of cold exposure (4 degrees C) starting at 15 h of age. Brahman BAT adipocytes shrank with cold exposure, whereas Angus BAT

  4. Adiposity-Dependent Regulatory Effects on Multi-tissue Transcriptomes.

    PubMed

    Glastonbury, Craig A; Viñuela, Ana; Buil, Alfonso; Halldorsson, Gisli H; Thorleifsson, Gudmar; Helgason, Hannes; Thorsteinsdottir, Unnur; Stefansson, Kari; Dermitzakis, Emmanouil T; Spector, Tim D; Small, Kerrin S

    2016-09-01

    Obesity is a global epidemic that is causally associated with a range of diseases, including type 2 diabetes and cardiovascular disease, at the population-level. However, there is marked heterogeneity in obesity-related outcomes among individuals. This might reflect genotype-dependent responses to adiposity. Given that adiposity, measured by BMI, is associated with widespread changes in gene expression and regulatory variants mediate the majority of known complex trait loci, we sought to identify gene-by-BMI (G × BMI) interactions on the regulation of gene expression in a multi-tissue RNA-sequencing (RNA-seq) dataset from the TwinsUK cohort (n = 856). At a false discovery rate of 5%, we identified 16 cis G × BMI interactions (top cis interaction: CHURC1, rs7143432, p = 2.0 × 10(-12)) and one variant regulating 53 genes in trans (top trans interaction: ZNF423, rs3851570, p = 8.2 × 10(-13)), all in adipose tissue. The interactions were adipose-specific and enriched for variants overlapping adipocyte enhancers, and regulated genes were enriched for metabolic and inflammatory processes. We replicated a subset of the interactions in an independent adipose RNA-seq dataset (deCODE genetics, n = 754). We also confirmed the interactions with an alternate measure of obesity, dual-energy X-ray absorptiometry (DXA)-derived visceral-fat-volume measurements, in a subset of TwinsUK individuals (n = 682). The identified G × BMI regulatory effects demonstrate the dynamic nature of gene regulation and reveal a functional mechanism underlying the heterogeneous response to obesity. Additionally, we have provided a web browser allowing interactive exploration of the dataset, including of association between expression, BMI, and G × BMI regulatory effects in four tissues. PMID:27588447

  5. The Circulatory and Metabolic Responses to Hypoxia in Humans – With Special Reference to Adipose Tissue Physiology and Obesity

    PubMed Central

    Heinonen, Ilkka H. A.; Boushel, Robert; Kalliokoski, Kari K.

    2016-01-01

    Adipose tissue metabolism and circulation play an important role in human health. It is well-known that adipose tissue mass is increased in response to excess caloric intake leading to obesity and further to local hypoxia and inflammatory signaling. Acute exercise increases blood supply to adipose tissue and mobilization of fat stores for energy. However, acute exercise during systemic hypoxia reduces subcutaneous blood flow in healthy young subjects, but the response in overweight or obese subjects remains to be investigated. Emerging evidence also indicates that exercise training during hypoxic exposure may provide additive benefits with respect to many traditional cardiovascular risk factors as compared to exercise performed in normoxia, but unfavorable effects of hypoxia have also been documented. These topics will be covered in this brief review dealing with hypoxia and adipose tissue physiology.

  6. The Circulatory and Metabolic Responses to Hypoxia in Humans - With Special Reference to Adipose Tissue Physiology and Obesity.

    PubMed

    Heinonen, Ilkka H A; Boushel, Robert; Kalliokoski, Kari K

    2016-01-01

    Adipose tissue metabolism and circulation play an important role in human health. It is well-known that adipose tissue mass is increased in response to excess caloric intake leading to obesity and further to local hypoxia and inflammatory signaling. Acute exercise increases blood supply to adipose tissue and mobilization of fat stores for energy. However, acute exercise during systemic hypoxia reduces subcutaneous blood flow in healthy young subjects, but the response in overweight or obese subjects remains to be investigated. Emerging evidence also indicates that exercise training during hypoxic exposure may provide additive benefits with respect to many traditional cardiovascular risk factors as compared to exercise performed in normoxia, but unfavorable effects of hypoxia have also been documented. These topics will be covered in this brief review dealing with hypoxia and adipose tissue physiology. PMID:27621722

  7. The Circulatory and Metabolic Responses to Hypoxia in Humans – With Special Reference to Adipose Tissue Physiology and Obesity

    PubMed Central

    Heinonen, Ilkka H. A.; Boushel, Robert; Kalliokoski, Kari K.

    2016-01-01

    Adipose tissue metabolism and circulation play an important role in human health. It is well-known that adipose tissue mass is increased in response to excess caloric intake leading to obesity and further to local hypoxia and inflammatory signaling. Acute exercise increases blood supply to adipose tissue and mobilization of fat stores for energy. However, acute exercise during systemic hypoxia reduces subcutaneous blood flow in healthy young subjects, but the response in overweight or obese subjects remains to be investigated. Emerging evidence also indicates that exercise training during hypoxic exposure may provide additive benefits with respect to many traditional cardiovascular risk factors as compared to exercise performed in normoxia, but unfavorable effects of hypoxia have also been documented. These topics will be covered in this brief review dealing with hypoxia and adipose tissue physiology. PMID:27621722

  8. Ontogenetic development of adipose tissue in grass carp (Ctenopharyngodon idellus).

    PubMed

    Liu, Pin; Ji, Hong; Li, Chao; Tian, Jingjing; Wang, Yifei; Yu, Ping

    2015-08-01

    To investigate the adipose tissue development process during the early stages of grass carp (Ctenopharyngodon idellus) development, samples were collected from fertilized eggs to 30 days post-fertilization (dpf) of fish. Paraffin and frozen sections were taken to observe the characteristics of adipocytes in vivo by different staining methods, including hematoxylin and eosin (H&E), Oil red O, and BODIPY. The expression of lipogenesis-related genes of the samples at different time points was detected by real-time qPCR. In addition, protein expression level of peroxisome proliferator-activated receptors γ (PPAR γ) was detected by immunohistochemistry. The results showed that the neutral lipid droplets accumulated first in the hepatocytes of 14-dpf fish larvae, and visceral adipocytes appeared around the hepatopancreas on 16 dpf. As grass carp grew, the adipocytes increased in number and spread to other tissues. In 20-dpf fish larvae, the intestine was observed to be covered by adipose tissue. However, there was no significant change in the average size (30.40-40.01 μm) of adipocytes during this period. Accordingly, the gene expression level of PPAR γ and CCAAT/enhancer-binding proteins α (C/EBP α) was significantly elevated after fertilization for 12 days (p < 0.05), but C/EBP α declined at 20 dpf. Expression of lipoprotein lipase (LPL) increased from 2 to 16 dpf and then declined. In addition, immunoreaction of PPAR γ was positive on hepatocytes after fertilization for 15 days. These results implied that the early developmental stage of adipose tissue is caused by active recruitment of adipocytes as opposed to hypertrophy of the cell. In addition, our study indicated that lipogenesis-related genes might regulate the ongoing development of adipose tissue.

  9. [The adipose tissue as a regulatory center of the metabolism].

    PubMed

    Fonseca-Alaniz, Miriam H; Takada, Julie; Alonso-Vale, Maria Isabel C; Lima, Fabio Bessa

    2006-04-01

    The recent progress in the research about the metabolic properties of the adipose tissue and the discovery of its ability to produce hormones that are very active in pathophysiologic as well as physiologic processes is rebuilding the concepts about its biology. Its involvement in conditions like obesity, type 2 diabetes mellitus, arterial hypertension, arteriosclerosis, dislipidemias and chronic and acute inflammatory processes indicate that the understanding of its functional capacities may contribute to improve the prognosis of those diseases whose prevalence increased in a preoccupying manner. Here we review some functional aspects of adipocytes, such as the metabolism, its influence on energy homeostasis, its endocrine ability and the adipogenesis, i.e., the potential of pre-adipocytes present in adipose tissue stroma to differentiate into new adipocytes and regenerate the tissue. In addition, we are including some studies on the relationship between the adipose tissue and the pineal gland, a new and poorly known, although, as will be seen, very promising aspect of adipocyte physiology together with its possible favorable repercussions to the therapy of the obesity related diseases.

  10. CREBH-FGF21 axis improves hepatic steatosis by suppressing adipose tissue lipolysis

    PubMed Central

    Park, Jong-Gil; Xu, Xu; Cho, Sungyun; Hur, Kyu Yeon; Lee, Myung-Shik; Kersten, Sander; Lee, Ann-Hwee

    2016-01-01

    Adipose tissue lipolysis produces glycerol and nonesterified fatty acids (NEFA) that serve as energy sources during nutrient scarcity. Adipose tissue lipolysis is tightly regulated and excessive lipolysis causes hepatic steatosis, as NEFA released from adipose tissue constitutes a major source of TG in the liver of patients with nonalcoholic fatty liver diseases. Here we show that the liver-enriched transcription factor CREBH is activated by TG accumulation and induces FGF21, which suppresses adipose tissue lipolysis, ameliorating hepatic steatosis. CREBH-deficient mice developed severe hepatic steatosis due to increased adipose tissue lipolysis, when fasted or fed a high-fat low-carbohydrate ketogenic diet. FGF21 production was impaired in CREBH-deficient mice, and adenoviral overexpression of FGF21 suppressed adipose tissue lipolysis and improved hepatic steatosis in these mice. Thus, our results uncover a negative feedback loop in which CREBH regulates NEFA flux from adipose tissue to the liver via FGF21. PMID:27301791

  11. Hydrogenated fat intake during pregnancy and lactation caused increase in TRAF-6 and reduced AdipoR1 in white adipose tissue, but not in muscle of 21 days old offspring rats

    PubMed Central

    2011-01-01

    Background Although lipids transfer through placenta is very limited, modification in dietary fatty acids can lead to implications in fetal and postnatal development. Trans fatty acid (TFA) intake during gestation and lactation have been reported to promote dyslipidemia and increase in pro- inflammatory adipokines in offspring. The aim of this study was to evaluate whether the alterations on pro-inflammatory cytokines and dyslipidemia observed previously in 21-d-old offspring of rats fed a diet containing hydrogenated vegetable fat during gestation and lactation were related to alterations in TLR-4, TRAF-6 and adipo-R1 receptor in white adipose tissue and muscle. On the first day of gestation, rats were randomly divided into two groups: (C) received a control diet, and (T) received a diet enriched with hydrogenated vegetable fat, rich in trans fatty acids. The diets were maintained throughout gestation and lactation. Each mother was given eight male pups. On the 21st day of life the offspring were killed. Blood, soleus and extensor digital longus (EDL) muscles, and retroperitoneal (RET) white adipose tissue were collected. Results 21-d-old of T rats had higher serum triacylglycerols, cholesterol, and insulin. The Adipo R1 protein expression was lower in RET and higher in EDL of T group than C. TLR-4 protein content in all studied tissues were similar between groups, the same was verified in TRAF-6 protein expression in soleus and EDL. However, TRAF-6 protein expression in RET was higher in T than C. Conclusion These results demonstrated that maternal ingestion of hydrogenated vegetable fat rich in TFAs during gestation and lactation decrease in Adipo R1 protein expression and increase in TRAF-6 protein expression in retroperitoneal adipose tissue, but not in skeletal muscle, which could contributed for hyperinsulinemia and dyslipidemia observed in their 21-d-old offspring. PMID:21266050

  12. Adipose tissue development in extramuscular and intramuscular depots in meat animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cellular and metabolic aspects of developing intramuscular adipose tissue and other adipose tissue depots have been studied including examination of the expression of a number of genes. Depot dependent or depot “marker” genes such as stearoyl-CoA desaturase and leptin for subcutaneous adipose ti...

  13. Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism.

    PubMed

    Tang, Yuefeng; Wallace, Martina; Sanchez-Gurmaches, Joan; Hsiao, Wen-Yu; Li, Huawei; Lee, Peter L; Vernia, Santiago; Metallo, Christian M; Guertin, David A

    2016-01-01

    Adipose tissue de novo lipogenesis (DNL) positively influences insulin sensitivity, is reduced in obesity, and predicts insulin resistance. Therefore, elucidating mechanisms controlling adipose tissue DNL could lead to therapies for type 2 diabetes. Here, we report that mechanistic target of rapamycin complex 2 (mTORC2) functions in white adipose tissue (WAT) to control expression of the lipogenic transcription factor ChREBPβ. Conditionally deleting the essential mTORC2 subunit Rictor in mature adipocytes decreases ChREBPβ expression, which reduces DNL in WAT, and impairs hepatic insulin sensitivity. Mechanistically, Rictor/mTORC2 promotes ChREBPβ expression in part by controlling glucose uptake, but without impairing pan-AKT signalling. High-fat diet also rapidly decreases adipose tissue ChREBPβ expression and insulin sensitivity in wild-type mice, and does not further exacerbate insulin resistance in adipose tissue Rictor knockout mice, implicating adipose tissue DNL as an early target in diet-induced insulin resistance. These data suggest mTORC2 functions in WAT as part of an extra-hepatic nutrient-sensing mechanism to control glucose homeostasis. PMID:27098609

  14. Defective adipose tissue development associated with hepatomegaly in cathepsin E-deficient mice fed a high-fat diet.

    PubMed

    Kadowaki, Tomoko; Kido, Mizuho A; Hatakeyama, Junko; Okamoto, Kuniaki; Tsukuba, Takayuki; Yamamoto, Kenji

    2014-03-28

    Cathepsin E is an intracellular aspartic proteinase, which is predominantly distributed in immune-related and epithelial cells. However, the role of the enzyme in adipose tissues remains unknown. In this study, we investigated the characteristics of cathepsin E-deficient (CatE(-/-)) mice fed a high-fat diet (HFD), as a mouse model of obesity. HFD-fed CatE(-/-) mice displayed reduced body weight gain and defective development of white adipose tissue (WAT) and brown adipose tissue (BAT), compared with HFD-fed wild-type mice. Moreover, fat-induced CatE(-/-) mice showed abnormal lipid accumulation in non-adipose tissues characterized by hepatomegaly, which is probably due to defective adipose tissue development. Detailed pathological and biochemical analyses showed that hepatomegaly was accompanied by hepatic steatosis and hypercholesterolemia in HFD-induced CatE(-/-) mice. In fat-induced CatE(-/-) mice, the number of macrophages infiltrating into WAT was significantly lower than in fat-induced wild-type mice. Thus, the impaired adipose tissue development in HFD-induced CatE(-/-) mice was probably due to reduced infiltration of macrophages and may lead to hepatomegaly accompanied by hepatic steatosis and hypercholesterolemia.

  15. Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism

    PubMed Central

    Tang, Yuefeng; Wallace, Martina; Sanchez-Gurmaches, Joan; Hsiao, Wen-Yu; Li, Huawei; Lee, Peter L.; Vernia, Santiago; Metallo, Christian M.; Guertin, David A.

    2016-01-01

    Adipose tissue de novo lipogenesis (DNL) positively influences insulin sensitivity, is reduced in obesity, and predicts insulin resistance. Therefore, elucidating mechanisms controlling adipose tissue DNL could lead to therapies for type 2 diabetes. Here, we report that mechanistic target of rapamycin complex 2 (mTORC2) functions in white adipose tissue (WAT) to control expression of the lipogenic transcription factor ChREBPβ. Conditionally deleting the essential mTORC2 subunit Rictor in mature adipocytes decreases ChREBPβ expression, which reduces DNL in WAT, and impairs hepatic insulin sensitivity. Mechanistically, Rictor/mTORC2 promotes ChREBPβ expression in part by controlling glucose uptake, but without impairing pan-AKT signalling. High-fat diet also rapidly decreases adipose tissue ChREBPβ expression and insulin sensitivity in wild-type mice, and does not further exacerbate insulin resistance in adipose tissue Rictor knockout mice, implicating adipose tissue DNL as an early target in diet-induced insulin resistance. These data suggest mTORC2 functions in WAT as part of an extra-hepatic nutrient-sensing mechanism to control glucose homeostasis. PMID:27098609

  16. Heterogeneity of white adipose tissue: molecular basis and clinical implications

    PubMed Central

    Kwok, Kelvin H M; Lam, Karen S L; Xu, Aimin

    2016-01-01

    Adipose tissue is a highly heterogeneous endocrine organ. The heterogeneity among different anatomical depots stems from their intrinsic differences in cellular and physiological properties, including developmental origin, adipogenic and proliferative capacity, glucose and lipid metabolism, insulin sensitivity, hormonal control, thermogenic ability and vascularization. Additional factors that influence adipose tissue heterogeneity are genetic predisposition, environment, gender and age. Under obese condition, these depot-specific differences translate into specific fat distribution patterns, which are closely associated with differential cardiometabolic risks. For instance, individuals with central obesity are more susceptible to developing diabetes and cardiovascular complications, whereas those with peripheral obesity are more metabolically healthy. This review summarizes the clinical and mechanistic evidence for the depot-specific differences that give rise to different metabolic consequences, and provides therapeutic insights for targeted treatment of obesity. PMID:26964831

  17. Brown adipose tissue: physiological function and evolutionary significance.

    PubMed

    Oelkrug, R; Polymeropoulos, E T; Jastroch, M

    2015-08-01

    In modern eutherian (placental) mammals, brown adipose tissue (BAT) evolved as a specialized thermogenic organ that is responsible for adaptive non-shivering thermogenesis (NST). For NST, energy metabolism of BAT mitochondria is increased by activation of uncoupling protein 1 (UCP1), which dissipates the proton motive force as heat. Despite the presence of UCP1 orthologues prior to the divergence of teleost fish and mammalian lineages, UCP1's significance for thermogenic adipose tissue emerged at later evolutionary stages. Recent studies on the presence of BAT in metatherians (marsupials) and eutherians of the afrotherian clade provide novel insights into the evolution of adaptive NST in mammals. In particular studies on the 'protoendothermic' lesser hedgehog tenrec (Afrotheria) suggest an evolutionary scenario linking BAT to the onset of eutherian endothermy. Here, we review the physiological function and distribution of BAT in an evolutionary context by focusing on the latest research on phylogenetically distinct species.

  18. A role of active brown adipose tissue in cancer cachexia?

    PubMed Central

    Beijer, Emiel; Schoenmakers, Janna; Vijgen, Guy; Kessels, Fons; Dingemans, Anne-Marie; Schrauwen, Patrick; Wouters, Miel; van Marken Lichtenbelt, Wouter; Teule, Jaap; Brans, Boudewijn

    2012-01-01

    Until a few years ago, adult humans were not thought to have brown adipose tissue (BAT). Now, this is a rapidly evolving field of research with perspectives in metabolic syndromes such as obesity and new therapies targeting its bio-energetic pathways. White, brown and so-called brite adipose fat seem to be able to trans-differentiate into each other, emphasizing the dynamic nature of fat tissue for metabolism. Human and animal data in cancer cachexia to date provide some evidence for BAT activation, but its quantitative impact on energy expenditure and weight loss is controversial. Prospective clinical studies can address the potential role of BAT in cancer cachexia using 18F-fluoro- deoxyglucose positron emission tomography-computed tomography scanning, with careful consideration of co-factors such as diet, exposure to the cold, physical activity and body mass index, that all seem to act on BAT recruitment and activity. PMID:25992201

  19. Levels of chlordane, oxychlordane, and nonachlor in human adipose tissues

    SciTech Connect

    Hirai, Yukio; Tomokuni, Katsumaro )

    1991-08-01

    Chlordane was used as a termiticide for more than twenty years in Japan. Chlordane is stable in the environment such as sediment and its bioaccumulation in some species of bacteria, freshwater invertebrates, and marine fish is large. Many researches were done to elucidate the levels of chlordane and/or its metabolite oxychlordane in human adipose tissues. A comprehensive review concerning chlordane was recently provided by USEPA. On the other hand, Japan authorities banned the use of chlordane in September 1986. In the last paper, the authors reported that both water and sediment of the rivers around Saga city were slightly contaminated with chlordane. In the present study, they investigated the levels of chlordane, oxychlordane and nonachlor in human adipose tissues.

  20. Heterogeneity of white adipose tissue: molecular basis and clinical implications.

    PubMed

    Kwok, Kelvin H M; Lam, Karen S L; Xu, Aimin

    2016-03-11

    Adipose tissue is a highly heterogeneous endocrine organ. The heterogeneity among different anatomical depots stems from their intrinsic differences in cellular and physiological properties, including developmental origin, adipogenic and proliferative capacity, glucose and lipid metabolism, insulin sensitivity, hormonal control, thermogenic ability and vascularization. Additional factors that influence adipose tissue heterogeneity are genetic predisposition, environment, gender and age. Under obese condition, these depot-specific differences translate into specific fat distribution patterns, which are closely associated with differential cardiometabolic risks. For instance, individuals with central obesity are more susceptible to developing diabetes and cardiovascular complications, whereas those with peripheral obesity are more metabolically healthy. This review summarizes the clinical and mechanistic evidence for the depot-specific differences that give rise to different metabolic consequences, and provides therapeutic insights for targeted treatment of obesity.

  1. Prolactin (PRL) in adipose tissue: regulation and functions.

    PubMed

    Ben-Jonathan, Nira; Hugo, Eric

    2015-01-01

    New information concerning the effects of prolactin (PRL) on metabolic processes warrants reevaluation of its overall metabolic actions. PRL affects metabolic homeostasis by regulating key enzymes and transporters associated with glucose and lipid metabolism in several target organs. In the lactating mammary gland, PRL increases the production of milk proteins, lactose, and lipids. In adipose tissue, PRL generally suppresses lipid storage and adipokine release and affect adipogenesis. A specific case is made for PRL in the human breast and adipose tissues, where it acts as a circulating hormone and an autocrine/paracrine factor. Although its overall effects on body composition are both modest and species-specific, PRL may be involved in the manifestation of insulin resistance.

  2. Fully automated adipose tissue measurement on abdominal CT

    NASA Astrophysics Data System (ADS)

    Yao, Jianhua; Sussman, Daniel L.; Summers, Ronald M.

    2011-03-01

    Obesity has become widespread in America and has been associated as a risk factor for many illnesses. Adipose tissue (AT) content, especially visceral AT (VAT), is an important indicator for risks of many disorders, including heart disease and diabetes. Measuring adipose tissue (AT) with traditional means is often unreliable and inaccurate. CT provides a means to measure AT accurately and consistently. We present a fully automated method to segment and measure abdominal AT in CT. Our method integrates image preprocessing which attempts to correct for image artifacts and inhomogeneities. We use fuzzy cmeans to cluster AT regions and active contour models to separate subcutaneous and visceral AT. We tested our method on 50 abdominal CT scans and evaluated the correlations between several measurements.

  3. Nutrition-/diet-induced changes in gene expression in white adipose tissue.

    PubMed

    Al-Hasani, Hadi; Joost, Hans-Georg

    2005-12-01

    Nutrients regulate metabolic fluxes and homeostasis through transcriptional and translational control of enzyme concentrations and allosteric modulation of enzyme activity. Dietary omega-3 polyunsaturated fatty acids (PUFAs) have been shown to exert a variety of beneficial health effects such as reducing adiposity and increasing insulin sensitivity in rodents. It is now clear that PUFAs regulate fundamental adipose cell and liver functions through modulation of activity and abundance of key transcription factors that act as nutrient sensors, including peroxisome proliferator-activated receptors (PPARalpha/delta/gamma), sterol regulatory element binding proteins (SREBP-1/2), and liver X receptors (LXRalpha/beta). However, in the state of obesity, where adipose tissue shows elevated storage of triglycerides, many lipogenic genes that are essential for adipose cell function including PPARgamma, SREBP-1c, CCAAT-enhancer binding protein alpha and stearoyl-CoA desaturase-1 are downregulated, apparently due to desensitization of the very same crucial nutrient sensors. This chapter will summarize recent studies of PUFA- and obesity-induced changes in gene expression in white adipose tissue.

  4. Visceral adipose tissue differences in black and white women.

    PubMed

    Conway, J M; Yanovski, S Z; Avila, N A; Hubbard, V S

    1995-04-01

    Fat distribution and metabolic variables were studied in 8 black and 10 white age- and weight-matched obese women undergoing a 6-mo weight-reducing regimen. Fat patterning was determined by using anthropometry and computed tomography to quantitate total, subcutaneous, and visceral adipose tissue (VAT) areas at the L2-L3 and L4-L5 levels of the lumbar spine, before, during, and after a modified fast. Black women had smaller depots of VAT than white women at both the L2-L3 (P = 0.004) and L4-L5 (P = 0.054) sites. Differences persisted after an average 17.2-kg weight loss. Although waist-hip ratio was similar in both groups, black women had 23% less VAT than white women (P = 0.007). Black women had significantly lower plasma glucose (P = 0.031) and triglycerides (P = 0.006) with significantly higher plasma high-density-lipoprotein concentrations (P < 0.001). Data from this study suggest that racial differences exist in VAT and metabolic risk factors for obesity-related illness. PMID:7702017

  5. The formation of brown adipose tissue induced by transgenic over-expression of PPARγ2.

    PubMed

    Zhou, Ying; Yang, Jinzeng; Huang, Jinliang; Li, Ting; Xu, Dequan; Zuo, Bo; Hou, Liming; Wu, Wangjun; Zhang, Lin; Xia, Xiaoliang; Ma, Zhiyuan; Ren, Zhuqing; Xiong, Yuanzhu

    2014-04-18

    Brown adipose tissue (BAT) is specialized to dissipate energy as heat, therefore reducing fat deposition and counteracting obesity. Brown adipocytes arise from myoblastic progenitors during embryonic development by the action of transcription regulator PRDM16 binding to PPARγ, which promotes BAT-like phenotype in white adipose tissue. To investigate the capability of converting white adipose tissue to BAT or browning by PPARγ in vivo, we generated transgenic mice with over-expressed PPARγ2. The transgenic mice showed strong brown fat features in subcutaneous fat in morphology and histology. To provide molecular evidences on browning characteristics of the adipose tissue, we employed quantitative real-time PCR to determine BAT-specific gene expressions. The transgenic mice had remarkably elevated mRNA level of UCP1, Elovl3, PGC1α and Cebpα in subcutaneous fat. Compared with wild-type mice, UCP1 protein levels were increased significantly in transgenic mice. ATP concentration was slightly decreased in the subcutaneous fat of transgenic mice. Western blotting analysis also confirmed that phosphorylated AMPK and ACC proteins were significantly (P<0.01) increased in the transgenic mice. Therefore, this study demonstrated that over-expression of PPARγ2 in skeletal muscle can promote conversion of subcutaneous fat to brown fat formation, which can have beneficial effects on increasing energy metabolisms and combating obesity.

  6. 4E-BP1 regulates the differentiation of white adipose tissue.

    PubMed

    Tsukiyama-Kohara, Kyoko; Katsume, Asao; Kimura, Kazuhiro; Saito, Masayuki; Kohara, Michinori

    2013-07-01

    4E Binding protein 1 (4E-BP1) suppresses translation initiation. The absence of 4E-BP1 drastically reduces the amount of adipose tissue in mice. To address the role of 4E-BP1 in adipocyte differentiation, we characterized 4E-BP1(-/-) mice in this study. The lack of 4E-BP1 decreased the amount of white adipose tissue and increased the amount of brown adipose tissue. In 4E-BP1(-/-) MEF cells, PPARγ coactivator 1 alpha (PGC-1α) expression increased and exogenous 4E-BP1 expression suppressed PGC-1α expression. The level of 4E-BP1 expression was higher in white adipocytes than in brown adipocytes and showed significantly greater up-regulation in white adipocytes than in brown adipocytes during preadipocyte differentiation into mature adipocytes. The amount of PGC-1α was consistently higher in HB cells (a brown preadipocyte cell line) than in HW cells (a white preadipocyte cell line) during differentiation. Moreover, the ectopic over-expression of 4E-BP1 suppressed PGC-1α expression in white adipocytes, but not in brown adipocytes. Thus, the results of our study indicate that 4E-BP1 may suppress brown adipocyte differentiation and PGC-1α expression in white adipose tissues.

  7. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance

    PubMed Central

    Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka

    2016-01-01

    Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9−/−) macrophages. Fat-fed Tlr9−/− mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9−/− mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography–determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance. PMID:27051864

  8. An alternative splicing program promotes adipose tissue thermogenesis

    PubMed Central

    Vernia, Santiago; Edwards, Yvonne JK; Han, Myoung Sook; Cavanagh-Kyros, Julie; Barrett, Tamera; Kim, Jason K; Davis, Roger J

    2016-01-01

    Alternative pre-mRNA splicing expands the complexity of the transcriptome and controls isoform-specific gene expression. Whether alternative splicing contributes to metabolic regulation is largely unknown. Here we investigated the contribution of alternative splicing to the development of diet-induced obesity. We found that obesity-induced changes in adipocyte gene expression include alternative pre-mRNA splicing. Bioinformatics analysis associated part of this alternative splicing program with sequence specific NOVA splicing factors. This conclusion was confirmed by studies of mice with NOVA deficiency in adipocytes. Phenotypic analysis of the NOVA-deficient mice demonstrated increased adipose tissue thermogenesis and improved glycemia. We show that NOVA proteins mediate a splicing program that suppresses adipose tissue thermogenesis. Together, these data provide quantitative analysis of gene expression at exon-level resolution in obesity and identify a novel mechanism that contributes to the regulation of adipose tissue function and the maintenance of normal glycemia. DOI: http://dx.doi.org/10.7554/eLife.17672.001 PMID:27635635

  9. Positive Association Between Adipose Tissue and Bone Stiffness.

    PubMed

    Berg, R M; Wallaschofski, H; Nauck, M; Rettig, R; Markus, M R P; Laqua, R; Friedrich, N; Hannemann, A

    2015-07-01

    Obesity is often considered to have a protective effect against osteoporosis. On the other hand, several recent studies suggest that adipose tissue may have detrimental effects on bone quality. We therefore aimed to investigate the associations between body mass index (BMI), waist circumference (WC), visceral adipose tissue (VAT) or abdominal subcutaneous adipose tissue (SAT), and bone stiffness. The study involved 2685 German adults aged 20-79 years, who participated in either the second follow-up of the population-based Study of Health in Pomerania (SHIP-2) or the baseline examination of the SHIP-Trend cohort. VAT and abdominal SAT were quantified by magnetic resonance imaging. Bone stiffness was assessed by quantitative ultrasound (QUS) at the heel (Achilles InSight, GE Healthcare). The individual risk for osteoporotic fractures was determined based on the QUS-derived stiffness index and classified in low, medium, and high risk. Linear regression models, adjusted for sex, age, physical activity, smoking status, risky alcohol consumption, diabetes, and height (in models with VAT or abdominal SAT as exposure), revealed positive associations between BMI, WC, VAT or abdominal SAT, and the QUS variables broadband-ultrasound attenuation or stiffness index. Moreover, BMI was positively associated with speed of sound. Our study shows that all anthropometric measures including BMI and, WC as well as abdominal fat volume are positively associated with bone stiffness in the general population. As potential predictors of bone stiffness, VAT and abdominal SAT are not superior to easily available measures like BMI or WC.

  10. Deep sequencing of the transcriptome reveals inflammatory features of porcine visceral adipose tissue.

    PubMed

    Wang, Tao; Jiang, Anan; Guo, Yanqin; Tan, Ya; Tang, Guoqing; Mai, Miaomiao; Liu, Haifeng; Xiao, Jian; Li, Mingzhou; Li, Xuewei

    2013-01-01

    Functional differences in the different types of adipose tissue and the impact of their dysfunction on metabolism are associated with the regional distribution of adipose depots. Here we show a genome-wide comparison between the transcriptomes of one source of subcutaneous and two sources of visceral adipose tissue in the pig using an RNA-seq approach. We obtained ~32.3 million unique mapped reads which covered ~80.2% of the current annotated transcripts across these three sources of adipose tissue. We identified various genes differentially expressed between subcutaneous and visceral adipose tissue, which are potentially associated with the inflammatory features of visceral adipose tissue. These results are of benefit for understanding the phenotypic, metabolic and functional differences between different types of adipose tissue that are deposited in different body sites.

  11. Magnetic Resonance Imaging of Human Tissue-Engineered Adipose Substitutes.

    PubMed

    Proulx, Maryse; Aubin, Kim; Lagueux, Jean; Audet, Pierre; Auger, Michèle; Fortin, Marc-André; Fradette, Julie

    2015-07-01

    Adipose tissue (AT) substitutes are being developed to answer the strong demand in reconstructive surgery. To facilitate the validation of their functional performance in vivo, and to avoid resorting to excessive number of animals, it is crucial at this stage to develop biomedical imaging methodologies, enabling the follow-up of reconstructed AT substitutes. Until now, biomedical imaging of AT substitutes has scarcely been reported in the literature. Therefore, the optimal parameters enabling good resolution, appropriate contrast, and graft delineation, as well as blood perfusion validation, must be studied and reported. In this study, human adipose substitutes produced from adipose-derived stem/stromal cells using the self-assembly approach of tissue engineering were implanted into athymic mice. The fate of the reconstructed AT substitutes implanted in vivo was successfully followed by magnetic resonance imaging (MRI), which is the imaging modality of choice for visualizing soft ATs. T1-weighted images allowed clear delineation of the grafts, followed by volume integration. The magnetic resonance (MR) signal of reconstructed AT was studied in vitro by proton nuclear magnetic resonance ((1)H-NMR). This confirmed the presence of a strong triglyceride peak of short longitudinal proton relaxation time (T1) values (200 ± 53 ms) in reconstructed AT substitutes (total T1=813 ± 76 ms), which establishes a clear signal difference between adjacent muscle, connective tissue, and native fat (total T1 ~300 ms). Graft volume retention was followed up to 6 weeks after implantation, revealing a gradual resorption rate averaging at 44% of initial substitute's volume. In addition, vascular perfusion measured by dynamic contrast-enhanced-MRI confirmed the graft's vascularization postimplantation (14 and 21 days after grafting). Histological analysis of the grafted tissues revealed the persistence of numerous adipocytes without evidence of cysts or tissue necrosis. This study

  12. Hypothalamus-adipose tissue crosstalk: neuropeptide Y and the regulation of energy metabolism.

    PubMed

    Zhang, Wei; Cline, Mark A; Gilbert, Elizabeth R

    2014-01-01

    Neuropeptide Y (NPY) is an orexigenic neuropeptide that plays a role in regulating adiposity by promoting energy storage in white adipose tissue and inhibiting brown adipose tissue activation in mammals. This review describes mechanisms underlying NPY's effects on adipose tissue energy metabolism, with an emphasis on cellular proliferation, adipogenesis, lipid deposition, and lipolysis in white adipose tissue, and brown fat activation and thermogenesis. In general, NPY promotes adipocyte differentiation and lipid accumulation, leading to energy storage in adipose tissue, with effects mediated mainly through NPY receptor sub-types 1 and 2. This review highlights hypothalamus-sympathetic nervous system-adipose tissue innervation and adipose tissue-hypothalamus feedback loops as pathways underlying these effects. Potential sources of NPY that mediate adipose effects include the bloodstream, sympathetic nerve terminals that innervate the adipose tissue, as well as adipose tissue-derived cells. Understanding the role of central vs. peripherally-derived NPY in whole-body energy balance could shed light on mechanisms underlying the pathogenesis of obesity. This information may provide some insight into searching for alternative therapeutic strategies for the treatment of obesity and associated diseases.

  13. Impact of Doxorubicin Treatment on the Physiological Functions of White Adipose Tissue.

    PubMed

    Biondo, Luana Amorim; Lima Junior, Edson Alves; Souza, Camila Oliveira; Cruz, Maysa Mariana; Cunha, Roberta D C; Alonso-Vale, Maria Isabel; Oyama, Lila Missae; Nascimento, Claudia M Oller; Pimentel, Gustavo Duarte; Dos Santos, Ronaldo V T; Lira, Fabio Santos; Rosa Neto, José Cesar

    2016-01-01

    White adipose tissue (WAT) plays a fundamental role in maintaining energy balance and important endocrine functions. The loss of WAT modifies adipokine secretion and disrupts homeostasis, potentially leading to severe metabolic effects and a reduced quality of life. Doxorubicin is a chemotherapeutic agent used clinically because of its good effectiveness against various types of cancer. However, doxorubicin has deleterious effects in many healthy tissues, including WAT, liver, and skeletal and cardiac muscles. Our objective was to investigate the effects of doxorubicin on white adipocytes through in vivo and in vitro experiments. Doxorubicin reduced the uptake of glucose by retroperitoneal adipocytes and 3T3-L1 cells via the inhibition of AMP-activated protein kinase Thr172 phosphorylation and glucose transporter 4 content. Doxorubicin also reduced the serum level of adiponectin and, to a greater extent, the expression of genes encoding lipogenic (Fas and Acc) and adipogenic factors (Pparg, C/ebpa, and Srebp1c) in retroperitoneal adipose tissue. In addition, doxorubicin inhibited both lipogenesis and lipolysis and reduced the hormone-sensitive lipase and adipose tissue triacylglycerol lipase protein levels. Therefore, our results demonstrate the impact of doxorubicin on WAT. These results are important to understand some side effects observed in patients receiving chemotherapy and should encourage new adjuvant treatments that aim to inhibit these side effects. PMID:27015538

  14. Impact of Doxorubicin Treatment on the Physiological Functions of White Adipose Tissue.

    PubMed

    Biondo, Luana Amorim; Lima Junior, Edson Alves; Souza, Camila Oliveira; Cruz, Maysa Mariana; Cunha, Roberta D C; Alonso-Vale, Maria Isabel; Oyama, Lila Missae; Nascimento, Claudia M Oller; Pimentel, Gustavo Duarte; Dos Santos, Ronaldo V T; Lira, Fabio Santos; Rosa Neto, José Cesar

    2016-01-01

    White adipose tissue (WAT) plays a fundamental role in maintaining energy balance and important endocrine functions. The loss of WAT modifies adipokine secretion and disrupts homeostasis, potentially leading to severe metabolic effects and a reduced quality of life. Doxorubicin is a chemotherapeutic agent used clinically because of its good effectiveness against various types of cancer. However, doxorubicin has deleterious effects in many healthy tissues, including WAT, liver, and skeletal and cardiac muscles. Our objective was to investigate the effects of doxorubicin on white adipocytes through in vivo and in vitro experiments. Doxorubicin reduced the uptake of glucose by retroperitoneal adipocytes and 3T3-L1 cells via the inhibition of AMP-activated protein kinase Thr172 phosphorylation and glucose transporter 4 content. Doxorubicin also reduced the serum level of adiponectin and, to a greater extent, the expression of genes encoding lipogenic (Fas and Acc) and adipogenic factors (Pparg, C/ebpa, and Srebp1c) in retroperitoneal adipose tissue. In addition, doxorubicin inhibited both lipogenesis and lipolysis and reduced the hormone-sensitive lipase and adipose tissue triacylglycerol lipase protein levels. Therefore, our results demonstrate the impact of doxorubicin on WAT. These results are important to understand some side effects observed in patients receiving chemotherapy and should encourage new adjuvant treatments that aim to inhibit these side effects.

  15. Impact of Doxorubicin Treatment on the Physiological Functions of White Adipose Tissue

    PubMed Central

    Cruz, Maysa Mariana; Cunha, Roberta D. C.; Alonso-Vale, Maria Isabel; Oyama, Lila Missae; Nascimento, Claudia M. Oller; Pimentel, Gustavo Duarte; dos Santos, Ronaldo V. T.; Lira, Fabio Santos

    2016-01-01

    White adipose tissue (WAT) plays a fundamental role in maintaining energy balance and important endocrine functions. The loss of WAT modifies adipokine secretion and disrupts homeostasis, potentially leading to severe metabolic effects and a reduced quality of life. Doxorubicin is a chemotherapeutic agent used clinically because of its good effectiveness against various types of cancer. However, doxorubicin has deleterious effects in many healthy tissues, including WAT, liver, and skeletal and cardiac muscles. Our objective was to investigate the effects of doxorubicin on white adipocytes through in vivo and in vitro experiments. Doxorubicin reduced the uptake of glucose by retroperitoneal adipocytes and 3T3-L1 cells via the inhibition of AMP-activated protein kinase Thr172 phosphorylation and glucose transporter 4 content. Doxorubicin also reduced the serum level of adiponectin and, to a greater extent, the expression of genes encoding lipogenic (Fas and Acc) and adipogenic factors (Pparg, C/ebpa, and Srebp1c) in retroperitoneal adipose tissue. In addition, doxorubicin inhibited both lipogenesis and lipolysis and reduced the hormone-sensitive lipase and adipose tissue triacylglycerol lipase protein levels. Therefore, our results demonstrate the impact of doxorubicin on WAT. These results are important to understand some side effects observed in patients receiving chemotherapy and should encourage new adjuvant treatments that aim to inhibit these side effects. PMID:27015538

  16. Laser light propagation in adipose tissue and laser effects on adipose cell membranes

    NASA Astrophysics Data System (ADS)

    Solarte, Efraín; Rebolledo, Aldo; Gutierrez, Oscar; Criollo, William; Neira, Rodrigo; Arroyave, José; Ramírez, Hugo

    2006-01-01

    Recently Neira et al. have presented a new liposuction technique that demonstrated the movement of fat from inside to outside of the cell, using a low-level laser device during a liposuction procedure with Ultrawet solution. The clinical observations, allowed this new surgical development, started a set of physical, histological and pharmacological studies aimed to determine the mechanisms involved in the observed fat mobilization concomitant to external laser application in liposuction procedures. Scanning and Transmission Electron Microscopy, studies show that the cellular arrangement of normal adipose tissue changes when laser light from a diode laser: 10 mW, 635 nm is applied. Laser exposures longer than 6 minutes cause the total destruction of the adipocyte panicles. Detailed observation of the adipose cells show that by short irradiation times (less than four minutes) the cell membrane exhibits dark zones, that collapse by longer laser exposures. Optical measurements show that effective penetration length depends on the laser intensity. Moreover, the light scattering is enhanced by diffraction and subsequent interference effects, and the tumescent solution produces a clearing of the tissue optical medium. Finally, isolate adipose cell observation show that fat release from adipocytes is a concomitant effect between the tumescent solution (adrenaline) and laser light, revealing a synergism which conduces to the aperture, and maybe the disruption, of the cell membrane. All these studies were consistent with a laser induced cellular process, which causes fat release from inside the adipocytes into the intercellular space, besides a strong modification of the cellular membranes.

  17. Adipose-derived stromal cells mediate in vivo adipogenesis, angiogenesis and inflammation in decellularized adipose tissue bioscaffolds.

    PubMed

    Han, Tim Tian Y; Toutounji, Sandra; Amsden, Brian G; Flynn, Lauren E

    2015-12-01

    Decellularized adipose tissue (DAT) has shown promise as an adipogenic bioscaffold for soft tissue augmentation and reconstruction. The objective of the current study was to investigate the effects of allogeneic adipose-derived stem/stromal cells (ASCs) on in vivo fat regeneration in DAT bioscaffolds using an immunocompetent rat model. ASC seeding significantly enhanced angiogenesis and adipogenesis, with cell tracking studies indicating that the newly-forming tissues were host-derived. Incorporating ASCs also mediated the inflammatory response and promoted a more constructive macrophage phenotype. A fraction of the CD163(+) macrophages in the implants expressed adipogenic markers, with higher levels of this "adipocyte-like" phenotype in proximity to the developing adipose tissues. Our results indicate that the combination of ASCs and adipose extracellular matrix (ECM) provides an inductive microenvironment for adipose regeneration mediated by infiltrating host cell populations. The DAT scaffolds are a useful tissue-specific model system for investigating the mechanisms of in vivo adipogenesis that may help to develop a better understanding of this complex process in the context of both regeneration and disease. Overall, combining adipose-derived matrices with ASCs is a highly promising approach for the in situ regeneration of host-derived adipose tissue.

  18. Adipose-derived stromal cells mediate in vivo adipogenesis, angiogenesis and inflammation in decellularized adipose tissue bioscaffolds.

    PubMed

    Han, Tim Tian Y; Toutounji, Sandra; Amsden, Brian G; Flynn, Lauren E

    2015-12-01

    Decellularized adipose tissue (DAT) has shown promise as an adipogenic bioscaffold for soft tissue augmentation and reconstruction. The objective of the current study was to investigate the effects of allogeneic adipose-derived stem/stromal cells (ASCs) on in vivo fat regeneration in DAT bioscaffolds using an immunocompetent rat model. ASC seeding significantly enhanced angiogenesis and adipogenesis, with cell tracking studies indicating that the newly-forming tissues were host-derived. Incorporating ASCs also mediated the inflammatory response and promoted a more constructive macrophage phenotype. A fraction of the CD163(+) macrophages in the implants expressed adipogenic markers, with higher levels of this "adipocyte-like" phenotype in proximity to the developing adipose tissues. Our results indicate that the combination of ASCs and adipose extracellular matrix (ECM) provides an inductive microenvironment for adipose regeneration mediated by infiltrating host cell populations. The DAT scaffolds are a useful tissue-specific model system for investigating the mechanisms of in vivo adipogenesis that may help to develop a better understanding of this complex process in the context of both regeneration and disease. Overall, combining adipose-derived matrices with ASCs is a highly promising approach for the in situ regeneration of host-derived adipose tissue. PMID:26360790

  19. Increased peroxisome proliferator-activated receptor γ expression levels in visceral adipose tissue, and serum CCL2 and interleukin-6 levels during visceral adipose tissue accumulation.

    PubMed

    Yogarajah, Thaneswary; Bee, Yvonne-Tee Get; Noordin, Rahmah; Yin, Khoo Boon

    2015-01-01

    This study was conducted to determine the mRNA and protein expression levels of peroxisome proliferator-activated receptors (PPARs) in visceral adipose tissue, as well as serum adipokine levels, in Sprague Dawley rats. The rats were fed either a normal (control rats) or excessive (experimental rats) intake of food for 8 or 16 weeks, then sacrificed, at which time visceral and subcutaneous adipose tissues, as well as blood samples, were collected. The mRNA and protein expression levels of PPARs in the visceral adipose tissues were determined using reverse transcription-polymerase chain reaction and Western blotting, respectively. In addition, the levels of adipokines in the serum samples were determined using commercial ELISA kits. The results revealed that at 8 weeks, the mass of subcutaneous adipose tissue was higher than that of the visceral adipose tissue in the experimental rats, but the reverse occurred at 16 weeks. Furthermore, at 16 weeks the experimental rats exhibited an upregulation of PPARγ mRNA and protein expression levels in the visceral adipose tissues, and significant increases in the serum levels of CCL2 and interleukin (IL)-6 were observed, compared with those measured at 8 weeks. In conclusion, this study demonstrated that the PPARγ expression level was likely correlated with serum levels of CCL2 and IL-6, molecules that may facilitate visceral adipose tissue accumulation. In addition, the levels of the two adipokines in the serum may be useful as surrogate biomarkers for the expression levels of PPARγ in accumulated visceral adipose tissues.

  20. Adipose tissue n-3 fatty acids and metabolic syndrome

    PubMed Central

    Cespedes, Elizabeth; Baylin, Ana; Campos, Hannia

    2014-01-01

    Background Evidence regarding the relationship of n-3 fatty acids (FA) to type 2 diabetes (T2D) and metabolic syndrome components (MetS) is inconsistent. Objective To examine associations of adipose tissue n-3 FA with MetS. Design We studied 1611 participants without prior history of diabetes or heart disease who were participants in a population-based case-control study of diet and heart disease (The Costa Rica Heart Study). We calculated prevalence ratios (PR) and 95% confidence intervals (CI) for MetS by quartile of n-3 FA in adipose tissue derived mainly from plants [α-Linolenic acid (ALA)], fish [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)], or metabolism [docosapentaenoic acid (DPA), as well as the EPA:ALA ratio, a surrogate marker of delta-6 desaturase activity]. Results N-3 FA levels in adipose tissue were associated with MetS prevalence in opposite directions. The PR (95% CI) for the highest compared to the lowest quartile adjusted for age, sex, BMI, residence, lifestyle, diet and other fatty acids were 0.60 (0.44, 0.81) for ALA, 1.43 (1.12, 1.82) for EPA, 1.63 (1.22, 2.18) for DPA, and 1.47 (1.14, 1.88) for EPA:ALA, all p for trend <0.05. Although these associations were no longer significant (except DPA) after adjustment for BMI, ALA and DPA were associated with lower glucose and higher triglyceride levels, p<0.05 (respectively). Conclusions These results suggest that ALA could exert a modest protective benefit, while EPA and DHA are not implicated in MetS. The positive associations for DPA and MetS could reflect higher delta-6 desaturase activity caused by increased adiposity. PMID:25097001

  1. Deficiency of Interleukin-15 Confers Resistance to Obesity by Diminishing Inflammation and Enhancing the Thermogenic Function of Adipose Tissues

    PubMed Central

    Lacraz, Gregory; Rakotoarivelo, Volatiana; Labbé, Sebastien M.; Vernier, Mathieu; Noll, Christophe; Mayhue, Marian; Stankova, Jana; Schwertani, Adel; Grenier, Guillaume; Carpentier, André; Richard, Denis; Ferbeyre, Gerardo; Fradette, Julie; Rola-Pleszczynski, Marek; Menendez, Alfredo; Langlois, Marie-France; Ilangumaran, Subburaj; Ramanathan, Sheela

    2016-01-01

    Objective IL-15 is an inflammatory cytokine secreted by many cell types. IL-15 is also produced during physical exercise by skeletal muscle and has been reported to reduce weight gain in mice. Contrarily, our findings on IL-15 knockout (KO) mice indicate that IL-15 promotes obesity. The aim of this study is to investigate the mechanisms underlying the pro-obesity role of IL-15 in adipose tissues. Methods Control and IL-15 KO mice were maintained on high fat diet (HFD) or normal control diet. After 16 weeks, body weight, adipose tissue and skeletal mass, serum lipid levels and gene/protein expression in the adipose tissues were evaluated. The effect of IL-15 on thermogenesis and oxygen consumption was also studied in primary cultures of adipocytes differentiated from mouse preadipocyte and human stem cells. Results Our results show that IL-15 deficiency prevents diet-induced weight gain and accumulation of lipids in visceral and subcutaneous white and brown adipose tissues. Gene expression analysis also revealed elevated expression of genes associated with adaptive thermogenesis in the brown and subcutaneous adipose tissues of IL-15 KO mice. Accordingly, oxygen consumption was increased in the brown adipocytes from IL-15 KO mice. In addition, IL-15 KO mice showed decreased expression of pro-inflammatory mediators in their adipose tissues. Conclusions Absence of IL-15 results in decreased accumulation of fat in the white adipose tissues and increased lipid utilization via adaptive thermogenesis. IL-15 also promotes inflammation in adipose tissues that could sustain chronic inflammation leading to obesity-associated metabolic syndrome. PMID:27684068

  2. Regulation of glucose homoeostasis by brown adipose tissue.

    PubMed

    Peirce, Vivian; Vidal-Puig, Antonio

    2013-12-01

    Brown adipose tissue (BAT) has emerged as a therapeutic target for the treatment of obesity. Activation of BAT in human beings could also have beneficial metabolic effects that might resolve common complications of obesity, such as type 2 diabetes, by ameliorating the glucolipotoxic pathological changes that underlie the development of peripheral insulin resistance and impaired insulin secretion due to pancreatic β-cell failure. Evidence from rodent models suggests that BAT activation improves glucose homoeostasis through several mechanisms, which could point to new strategies to optimise stimulation of BAT in human beings and reverse insulin resistance in peripheral tissues.

  3. Compromised responses to dietary methionine restriction in adipose tissue but not liver of ob/ob mice

    PubMed Central

    Stone, Kirsten P.; Wanders, Desiree; Calderon, Lucie F.; Spurgin, Stephen B.; Scherer, Philipp E.; Gettys, Thomas W.

    2015-01-01

    Objective Dietary methionine restriction (MR) reduces adiposity, hepatic lipids, and increases overall insulin sensitivity in part by reducing lipogenic gene expression in liver, inducing browning of white adipose tissue (WAT), and enhancing the lipogenic and oxidative capacity of the remodeled WAT. Methods Ob/ob mice have compromised β-adrenergic receptor expression in adipose tissue, and were used to test whether MR could ameliorate obesity, insulin resistance, and disordered lipid metabolism. Results In contrast to responses in wild type-mice, MR failed to slow accumulation of adiposity, increase lipogenic and thermogenic gene expression in adipose tissue, reduce serum insulin, or increase serum adiponectin in ob/ob mice. However, MR produced comparable reductions in hepatic lipids and lipogenic gene expression in both genotypes. In addition, MR was fully effective in increasing insulin sensitivity in adiponectin−/− mice. Conclusions These findings show that diet-induced changes in hepatic lipid metabolism are independent of weight loss and remodeling of WAT, and are not required for insulin sensitization. In contrast, the failure of ob/ob mice to mount a normal thermogenic response to MR suggests that the compromised responsiveness of adipose tissue to SNS input is an important component of the inability of the diet to correct their obesity and insulin resistance. PMID:26237535

  4. Developmental regulation of adipose tissue growth through hyperplasia and hypertrophy in the embryonic Leghorn and broiler.

    PubMed

    Chen, Paula; Suh, Yeunsu; Choi, Young Min; Shin, Sangsu; Lee, Kichoon

    2014-07-01

    The United States is a world leader in poultry production, which is the reason why achieving better performance and muscle growth each year is a necessity. Reducing accretion of adipose tissue is another important factor for poultry producers because this allows more nutrients to be directed toward muscle growth, but the effect of embryonic adipose growth on posthatch development has not been fully understood. The purpose of this study was to investigate the total DNA mass, morphological characteristics, differentiation markers, and triglyceride breakdown factors of embryonic adipose tissue, and their relation to hyperplastic and hypertrophic growth within layers (Leghorn) and meat-type chickens (broilers). After embryonic day (E) 12, broiler weight was significantly higher than Leghorn, and this trend continued throughout the rest of incubation and posthatch (P < 0.05). Neck and leg fat pad weights between the 2 breeds did not differ at most of the time points. A remarkable increase in total DNA mass was observed between E12 and E14 in both Leghorn and broilers (P < 0.05), indicating a high potential for hyperplastic growth during this time. Histological analysis revealed clusters of preadipocytes at E12; however, the majority of these cells differentiated by E14 and continued to grow until the time of hatch. The adipocyte sizes between both breeds did not generally differ, even though broilers are known to have larger adipocytes posthatch. Fatty acid-binding protein 4 expression levels in Leghorn and broilers continued to rise with each time point, which paralleled the expansion of mature adipocytes. Adipose triglyceride lipase was highly expressed at E20 and d 1 posthatch to mobilize triglyceride degradation for energy during hatching. Thus, embryonic chicken adipose tissue was found to develop by hyperplastic mechanisms followed by hypertrophy. At embryonic stages and early posthatch, layer- and meat-type chicken adipose growth does not differ, which suggests

  5. Myostatin Inhibition in Muscle, but Not Adipose Tissue, Decreases Fat Mass and Improves Insulin Sensitivity

    PubMed Central

    Guo, Tingqing; Jou, William; Chanturiya, Tatyana; Portas, Jennifer; Gavrilova, Oksana; McPherron, Alexandra C.

    2009-01-01

    Myostatin (Mstn) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Mstn−/− mice have a dramatic increase in muscle mass, reduction in fat mass, and resistance to diet-induced and genetic obesity. To determine how Mstn deletion causes reduced adiposity and resistance to obesity, we analyzed substrate utilization and insulin sensitivity in Mstn−/− mice fed a standard chow. Despite reduced lipid oxidation in skeletal muscle, Mstn−/− mice had no change in the rate of whole body lipid oxidation. In contrast, Mstn−/− mice had increased glucose utilization and insulin sensitivity as measured by indirect calorimetry, glucose and insulin tolerance tests, and hyperinsulinemic-euglycemic clamp. To determine whether these metabolic effects were due primarily to the loss of myostatin signaling in muscle or adipose tissue, we compared two transgenic mouse lines carrying a dominant negative activin IIB receptor expressed specifically in adipocytes or skeletal muscle. We found that inhibition of myostatin signaling in adipose tissue had no effect on body composition, weight gain, or glucose and insulin tolerance in mice fed a standard diet or a high-fat diet. In contrast, inhibition of myostatin signaling in skeletal muscle, like Mstn deletion, resulted in increased lean mass, decreased fat mass, improved glucose metabolism on standard and high-fat diets, and resistance to diet-induced obesity. Our results demonstrate that Mstn−/− mice have an increase in insulin sensitivity and glucose uptake, and that the reduction in adipose tissue mass in Mstn−/− mice is an indirect result of metabolic changes in skeletal muscle. These data suggest that increasing muscle mass by administration of myostatin antagonists may be a promising therapeutic target for treating patients with obesity or diabetes. PMID:19295913

  6. Adjustment of directly measured adipose tissue volume in infants

    PubMed Central

    Gale, C; Santhakumaran, S; Wells, J C K; Modi, N

    2014-01-01

    Background: Direct measurement of adipose tissue (AT) using magnetic resonance imaging is increasingly used to characterise infant body composition. Optimal techniques for adjusting direct measures of infant AT remain to be determined. Objectives: To explore the relationships between body size and direct measures of total and regional AT, the relationship between AT depots representing the metabolic load of adiposity and to determine optimal methods of adjusting adiposity in early life. Design: Analysis of regional AT volume (ATV) measured using magnetic resonance imaging in longitudinal and cross-sectional studies. Subjects: Healthy term infants; 244 in the first month (1–31 days), 72 in early infancy (42–91 days). Methods: The statistical validity of commonly used indices adjusting adiposity for body size was examined. Valid indices, defined as mathematical independence of the index from its denominator, to adjust ATV for body size and metabolic load of adiposity were determined using log-log regression analysis. Results: Indices commonly used to adjust ATV are significantly correlated with body size. Most regional AT depots are optimally adjusted using the index ATV/(height)3 in the first month and ATV/(height)2 in early infancy. Using these indices, height accounts for<2% of the variation in the index for almost all AT depots. Internal abdominal (IA) ATV was optimally adjusted for subcutaneous abdominal (SCA) ATV by calculating IA/SCA0.6. Conclusions: Statistically optimal indices for adjusting directly measured ATV for body size are ATV/height3 in the neonatal period and ATV/height2 in early infancy. The ratio IA/SCA ATV remains significantly correlated with SCA in both the neonatal period and early infancy; the index IA/SCA0.6 is statistically optimal at both of these ages. PMID:24662695

  7. The effect of adipose cell size on the measurement of GLUT 4 in white adipose tissue of obese mice.

    PubMed

    Fabres-Machado, U; Saito, M

    1995-03-01

    Glucose transporter (GLUT 4) was assessed in subcellular membrane fractions of white adipose tissue (WAT) from obese insulin-resistant aurothioglucose (AuTG)- or monosodium glutamate (MSG)-treated mice. Obesity was demonstrated by increased body weight and/or Lee index, as well as by the heavier WAT and brown adipose tissue in relation to similar weights of gastrocnemius and heart. In vivo insulin-resistance in obese animals was suggested by moderate hyperglycemia and severe hyperinsulinemia. Morphological analyses of adipose cells showed a > 10-fold increase in cell volume of obese mice. Subcellular fractionation indicated a reduced (P < 0.01) protein membrane content in the fat-free extract (FFE) from obese mice. However, the specific activity of 5'nucleotidase, a plasma membrane (PM) marker, in FFE and PM did not differ among groups. In addition, the total PM enzyme activity per unit of cell surface area was also unchanged. The GLUT 4 content, assessed by Western blotting and expressed per microgram membrane protein, was reduced by approximately 50% (P < 0.01) in all membrane fractions from obese animals. However, the total FFE GLUT 4 content per cell was increased (P < 0.01), from 23.5 +/- 1.8 in controls to 62.4 +/- 7.6 and 47.4 +/- 5.9 cpm cell-1 10(-3) in AuTG and MSG, respectively, but the total PM GLUT 4 content per unit of cell surface area was highly reduced (P < 0.01), from 165.1 +/- 16.7 in controls to 53.8 +/- 10.9 and 32.0 +/- 5.3 cpm microns-2 10(-9) in AuTG and MSG, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Expression of ceramide-metabolising enzymes in subcutaneous and intra-abdominal human adipose tissue

    PubMed Central

    2012-01-01

    Background Inflammation and increased ceramide concentrations characterise adipose tissue of obese women with high liver fat content compared to equally obese women with normal liver fat content. The present study characterises enzymes involved in ceramide metabolism in subcutaneous and intra-abdominal adipose tissue. Methods Pathways leading to increased ceramide concentrations in inflamed versus non-inflamed adipose tissue were investigated by quantifying expression levels of key enzymes involved in ceramide metabolism. Sphingomyelinases (sphingomyelin phosphodiesterases SMPD1-3) were investigated further using immunohistochemistry to establish their location within adipose tissue, and their mRNA expression levels were determined in subcutaneous and intra-abdominal adipose tissue from both non-obese and obese subject. Results Gene expression levels of sphingomyelinases, enzymes that hydrolyse sphingomyelin to ceramide, rather than enzymes involved in de novo ceramide synthesis, were higher in inflamed compared to non-inflamed adipose tissue of obese women (with high and normal liver fat contents respectively). Sphingomyelinases were localised to both macrophages and adipocytes, but also to blood vessels and to extracellular regions surrounding vessels within adipose tissue. Expression levels of SMPD3 mRNA correlated significantly with concentrations of different ceramides and sphingomyelins. In both non-obese and obese subjects SMPD3 mRNA levels were higher in the more inflamed intra-abdominal compared to the subcutaneous adipose tissue depot. Conclusions Generation of ceramides within adipose tissue as a result of sphingomyelinase action may contribute to inflammation in human adipose tissue. PMID:22974251

  9. Forkhead box A3 mediates glucocorticoid receptor function in adipose tissue.

    PubMed

    Ma, Xinran; Xu, Lingyan; Mueller, Elisabetta

    2016-03-22

    Glucocorticoids (GCs) are widely prescribed anti-inflammatory agents, but their chronic use leads to undesirable side effects such as excessive expansion of adipose tissue. We have recently shown that the forkhead box protein A3 (Foxa3) is a calorie-hoarding factor that regulates the selective enlargement of epididymal fat depots and suppresses energy expenditure in a nutritional- and age-dependent manner. It has been demonstrated that Foxa3 levels are elevated in adipose depots in response to high-fat diet regimens and during the aging process; however no studies to date have elucidated the mechanisms that control Foxa3's expression in fat. Given the established effects of GCs in increasing visceral adiposity and in reducing thermogenesis, we assessed the existence of a possible link between GCs and Foxa3. Computational prediction analysis combined with molecular studies revealed that Foxa3 is regulated by the glucocorticoid receptor (GR) in preadipocytes, adipocytes, and adipose tissues and is required to facilitate the binding of the GR to its target gene promoters in fat depots. Analysis of the long-term effects of dexamethasone treatment in mice revealed that Foxa3 ablation protects mice specifically against fat accretion but not against other pathological side effects elicited by this synthetic GC in tissues such as liver, muscle, and spleen. In conclusion our studies provide the first demonstration, to our knowledge, that Foxa3 is a direct target of GC action in adipose tissues and point to a role of Foxa3 as a mediator of the side effects induced in fat tissues by chronic treatment with synthetic steroids.

  10. Efficient Targeting of Adipose Tissue Macrophages in Obesity with Polysaccharide Nanocarriers.

    PubMed

    Ma, Liang; Liu, Tzu-Wen; Wallig, Matthew A; Dobrucki, Iwona T; Dobrucki, Lawrence W; Nelson, Erik R; Swanson, Kelly S; Smith, Andrew M

    2016-07-26

    Obesity leads to an increased risk for type 2 diabetes, heart disease, stroke, and cancer. The causal link between obesity and these pathologies has recently been identified as chronic low-grade systemic inflammation initiated by pro-inflammatory macrophages in visceral adipose tissue. Current medications based on small-molecule drugs yield significant off-target side effects with long-term use, and therefore there is a major need for targeted therapies. Here we report that nanoscale polysaccharides based on biocompatible glucose polymers can efficiently target adipose macrophages in obese mice. We synthesized a series of dextran conjugates with tunable size linked to contrast agents for positron emission tomography, fluorophores for optical microscopy, and anti-inflammatory drugs for therapeutic modulation of macrophage phenotype. We observed that larger conjugates efficiently distribute to visceral adipose tissue and selectively associate with macrophages after regional peritoneal administration. Up to 63% of the injected dose remained in visceral adipose tissue 24 h after administration, resulting in >2-fold higher local concentration compared to liver, the dominant site of uptake for most nanomedicines. Furthermore, a single-dose treatment of anti-inflammatory conjugates significantly reduced pro-inflammatory markers in adipose tissue of obese mice. Importantly, all components of these therapeutic agents are approved for clinical use. This work provides a promising nanomaterials-based delivery strategy to inhibit critical factors leading to obesity comorbidities and demonstrates a unique transport mechanism for drug delivery to visceral tissues. This approach may be further applied for high-efficiency targeting of other inflammatory diseases of visceral organs. PMID:27281538

  11. Characterization of major elements of insulin signaling cascade in chicken adipose tissue: apparent insulin refractoriness.

    PubMed

    Dupont, Joëlle; Métayer-Coustard, Sonia; Ji, Bo; Ramé, Christelle; Gespach, Christian; Voy, Brynn; Simon, Jean

    2012-03-01

    The role of insulin in chicken adipose tissue appears weak or questionable. In a first study, proximal and distal components of the insulin signaling cascade were characterized in abdominal adipose tissue of fasted or fed chickens for the first time. Similar measurements were performed on epididymal adipose tissue from fasted or fed rats for comparison. Tyrosine phosphorylation of IR beta subunit, IRS-1 and Shc and phosphorylation of downstream components (Akt and MAPK ERK1/2) were significantly reduced as expected by fasting in rat, but not in chicken. Phosphorylation of MAPK P38 was increased by fasting in chicken but not in rat. Phosphorylation of AMPK was not affected in the conditions investigated in either species. Whatever the nutritional state, the protein levels of IR and IRS-1 were lower in chicken than in rat, whereas those of Shc, Akt, AMPK, MAPK ERK2 and MAPK P38 were similar in both species. In fed state, PI3K activity was higher in chicken than in rat. Insulin sensitivity of insulin cascade was further investigated in chicken adipose tissue following in vivo insulin neutralization for 1 or 5h in fed chickens. Insulin privation did not alter early insulin signaling steps (IRβ, IRS-1 and Shc) or downstream elements (Akt, P70S6K, S6 ribosomal protein, AMPK, MAPK ERK2 and MAPK P38). Finally, phosphorylation of the transcription factor Creb was increased by 2-fold by 5h fasting or 5h insulin privation, most likely in response to an increase in plasma glucagon levels. Thus, insulin signaling is markedly different in chicken abdominal adipose tissue from that operating in mammals making chicken an interesting model of insulin resistance or refractoriness. PMID:22233773

  12. Forkhead box A3 mediates glucocorticoid receptor function in adipose tissue

    PubMed Central

    Ma, Xinran; Xu, Lingyan; Mueller, Elisabetta

    2016-01-01

    Glucocorticoids (GCs) are widely prescribed anti-inflammatory agents, but their chronic use leads to undesirable side effects such as excessive expansion of adipose tissue. We have recently shown that the forkhead box protein A3 (Foxa3) is a calorie-hoarding factor that regulates the selective enlargement of epididymal fat depots and suppresses energy expenditure in a nutritional- and age-dependent manner. It has been demonstrated that Foxa3 levels are elevated in adipose depots in response to high-fat diet regimens and during the aging process; however no studies to date have elucidated the mechanisms that control Foxa3’s expression in fat. Given the established effects of GCs in increasing visceral adiposity and in reducing thermogenesis, we assessed the existence of a possible link between GCs and Foxa3. Computational prediction analysis combined with molecular studies revealed that Foxa3 is regulated by the glucocorticoid receptor (GR) in preadipocytes, adipocytes, and adipose tissues and is required to facilitate the binding of the GR to its target gene promoters in fat depots. Analysis of the long-term effects of dexamethasone treatment in mice revealed that Foxa3 ablation protects mice specifically against fat accretion but not against other pathological side effects elicited by this synthetic GC in tissues such as liver, muscle, and spleen. In conclusion our studies provide the first demonstration, to our knowledge, that Foxa3 is a direct target of GC action in adipose tissues and point to a role of Foxa3 as a mediator of the side effects induced in fat tissues by chronic treatment with synthetic steroids. PMID:26957608

  13. The role of GH in adipose tissue: lessons from adipose-specific GH receptor gene-disrupted mice.

    PubMed

    List, Edward O; Berryman, Darlene E; Funk, Kevin; Gosney, Elahu S; Jara, Adam; Kelder, Bruce; Wang, Xinyue; Kutz, Laura; Troike, Katie; Lozier, Nicholas; Mikula, Vincent; Lubbers, Ellen R; Zhang, Han; Vesel, Clare; Junnila, Riia K; Frank, Stuart J; Masternak, Michal M; Bartke, Andrzej; Kopchick, John J

    2013-03-01

    GH receptor (GHR) gene-disrupted mice (GHR-/-) have provided countless discoveries as to the numerous actions of GH. Many of these discoveries highlight the importance of GH in adipose tissue. For example GHR-/- mice are insulin sensitive yet obese with preferential enlargement of the sc adipose depot. GHR-/- mice also have elevated levels of leptin, resistin, and adiponectin, compared with controls leading some to suggest that GH may negatively regulate certain adipokines. To help clarify the role that GH exerts specifically on adipose tissue in vivo, we selectively disrupted GHR in adipose tissue to produce Fat GHR Knockout (FaGHRKO) mice. Surprisingly, FaGHRKOs shared only a few characteristics with global GHR-/- mice. Like the GHR-/- mice, FaGHRKO mice are obese with increased total body fat and increased adipocyte size. However, FaGHRKO mice have increases in all adipose depots with no improvements in measures of glucose homeostasis. Furthermore, resistin and adiponectin levels in FaGHRKO mice are similar to controls (or slightly decreased) unlike the increased levels found in GHR-/- mice, suggesting that GH does not regulate these adipokines directly in adipose tissue in vivo. Other features of FaGHRKO mice include decreased levels of adipsin, a near-normal GH/IGF-1 axis, and minimal changes to a large assortment of circulating factors that were measured such as IGF-binding proteins. In conclusion, specific removal of GHR in adipose tissue is sufficient to increase adipose tissue and decrease circulating adipsin. However, removal of GHR in adipose tissue alone is not sufficient to increase levels of resistin or adiponectin and does not alter glucose metabolism. PMID:23349524

  14. Central Nervous System Regulation of Brown Adipose Tissue

    PubMed Central

    Morrison, Shaun F.; Madden, Christopher J.

    2015-01-01

    Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior. PMID:25428857

  15. Mechanobiology and Mechanotherapy of Adipose Tissue-Effect of Mechanical Force on Fat Tissue Engineering

    PubMed Central

    Yuan, Yi

    2015-01-01

    Summary: Our bodies are subjected to various mechanical forces, which in turn affect both the structure and function of our bodies. In particular, these mechanical forces play an important role in tissue growth and regeneration. Adipocytes and adipose-derived stem cells are both mechanosensitive and mechanoresponsive. The aim of this review is to summarize the relationship between mechanobiology and adipogenesis. PubMed was used to search for articles using the following keywords: mechanobiology, adipogenesis, adipose-derived stem cells, and cytoskeleton. In vitro and in vivo experiments have shown that adipogenesis is strongly promoted/inhibited by various internal and external mechanical forces, and that these effects are mediated by changes in the cytoskeleton of adipose-derived stem cells and/or various signaling pathways. Thus, adipose tissue engineering could be enhanced by the careful application of mechanical forces. It was shown recently that mature adipose tissue regenerates in an adipose tissue-engineering chamber. This observation has great potential for the reconstruction of soft tissue deficiencies, but the mechanisms behind it remain to be elucidated. On the basis of our understanding of mechanobiology, we hypothesize that the chamber removes mechanical force on the fat that normally impose high cytoskeletal tension. The reduction in tension in adipose stem cells triggers their differentiation into adipocytes. The improvement in our understanding of the relationship between mechanobiology and adipogenesis means that in the near future, we may be able to increase or decrease body fat, as needed in the clinic, by controlling the tension that is loaded onto fat. PMID:26894003

  16. Mechanobiology and Mechanotherapy of Adipose Tissue-Effect of Mechanical Force on Fat Tissue Engineering.

    PubMed

    Yuan, Yi; Gao, Jianhua; Ogawa, Rei

    2015-12-01

    Our bodies are subjected to various mechanical forces, which in turn affect both the structure and function of our bodies. In particular, these mechanical forces play an important role in tissue growth and regeneration. Adipocytes and adipose-derived stem cells are both mechanosensitive and mechanoresponsive. The aim of this review is to summarize the relationship between mechanobiology and adipogenesis. PubMed was used to search for articles using the following keywords: mechanobiology, adipogenesis, adipose-derived stem cells, and cytoskeleton. In vitro and in vivo experiments have shown that adipogenesis is strongly promoted/inhibited by various internal and external mechanical forces, and that these effects are mediated by changes in the cytoskeleton of adipose-derived stem cells and/or various signaling pathways. Thus, adipose tissue engineering could be enhanced by the careful application of mechanical forces. It was shown recently that mature adipose tissue regenerates in an adipose tissue-engineering chamber. This observation has great potential for the reconstruction of soft tissue deficiencies, but the mechanisms behind it remain to be elucidated. On the basis of our understanding of mechanobiology, we hypothesize that the chamber removes mechanical force on the fat that normally impose high cytoskeletal tension. The reduction in tension in adipose stem cells triggers their differentiation into adipocytes. The improvement in our understanding of the relationship between mechanobiology and adipogenesis means that in the near future, we may be able to increase or decrease body fat, as needed in the clinic, by controlling the tension that is loaded onto fat.

  17. Regional differences in perivascular adipose tissue impacting vascular homeostasis.

    PubMed

    Gil-Ortega, Marta; Somoza, Beatriz; Huang, Yu; Gollasch, Maik; Fernández-Alfonso, Maria S

    2015-07-01

    Perivascular adipose tissue (PVAT) releases several important vasoactive factors with physiological and pathophysiological paracrine effects. A large body of evidence suggests regional phenotypic and functional differences among PVAT depots, depending on the specific vascular bed or different regions in the vascular bed where the PVAT is located. These non-uniform and separate PVATs exert various paracrine effects on vascular structure and function that largely impact disease states, such as endothelial dysfunction, atherosclerosis, or insulin resistance. This emerging view of PVAT function requires considering heterogeneous PVAT as a specialized organ that can differentially regulate vascular function depending on its anatomical location. In this context, the adipose-vascular axis may represent a novel target for pharmacological intervention in vasculopathy in cardiometabolic disorders.

  18. Estradiol effects on subcutaneous adipose tissue lipolysis in premenopausal women are adipose tissue depot specific and treatment dependent.

    PubMed

    Gavin, Kathleen M; Cooper, Elizabeth E; Raymer, Dustin K; Hickner, Robert C

    2013-06-01

    Estrogen has direct effects within adipose tissue and has been implicated in regional adiposity; however, the influence of estrogen on in vivo lipolysis is unclear. The purpose of this study was to investigate the effect of local 17β-estradiol (E(2)) on subcutaneous adipose tissue (SAT) lipolysis in premenopausal women. In vivo lipolysis (dialysate glycerol) was measured in 17 women (age 27.4 ± 2.0 yr, BMI 29.7 ± 0.5 kg/m(2)) via microdialysis of abdominal (AB) and gluteal (GL) SAT. Glycerol was measured at baseline and during acute interventions to increase lipolysis including local perfusion of isoproterenol (ISO, β-adrenergic agonist, 1.0 μmol/l), phentolamine (PHEN, α-adrenergic antagonist, 0.1 mmol/l), and submaximal exercise (60% Vo(2peak), 30 min); all with and without coperfusion of E(2) (500 nmol/l). E(2) coperfusion blunted the lipolytic response to ISO in AB (E(2) 196 ± 31%, control 258 ± 26%, P = 0.003) but not in GL (E(2) 113 ± 14%, control 111 ± 12%, P = 0.43) adipose tissue. At rest, perfusion of PHEN with ISO did not change dialysate glycerol. Submaximal exercise during ISO + PHEN increased dialysate glycerol in the AB (56 ± 9%) and GL (62 ± 12%) regions. Probes perfused with E(2) during exercise and ISO + PHEN had an increased lipolytic response in AB (90 ± 9%, P = 0.007) but a lower response in GL (35 ± 7%, P = 0.05) SAT compared with no-E(2) conditions. E(2) effects on lipolysis are region specific and may work through both adrenergic and adrenergic-independent mechanisms to potentiate and/or blunt SAT lipolysis in premenopausal women. PMID:23531620

  19. Diversity of lipid mediators in human adipose tissue depots

    PubMed Central

    Clària, Joan; Nguyen, Binh T.; Madenci, Arin L.; Ozaki, C. Keith

    2013-01-01

    Adipose tissue is a heterogeneous organ with remarkable variations in fat cell metabolism depending on the anatomical location. However, the pattern and distribution of bioactive lipid mediators between different fat depots and their relationships in complex diseases have not been investigated. Using LC-MS/MS-based metabolo-lipidomics, here we report that human subcutaneous (SC) adipose tissues possess a range of specialized proresolving mediators (SPM) including resolvin (Rv) D1, RvD2, protectin (PD) 1, lipoxin (LX) A4, and the monohydroxy biosynthetic pathway markers of RvD1 and PD1 (17-HDHA), RvE1 (18-HEPE), and maresin 1 (14-HDHA). The “classic” eicosanoids prostaglandin (PG) E2, PGD2, PGF2α, leukotriene (LT) B4, 5-hydroxyeicosatetraenoic acid (5-HETE), 12-HETE, and 15-HETE were also identified in SC fat. SC fat from patients with peripheral vascular disease (PVD) exhibited a marked deficit in PD1 and 17-HDHA levels. Compared with SC, perivascular adipose tissue displayed higher SPM levels, suggesting an enhanced resolution capacity in this fat depot. In addition, augmented levels of eicosanoids and SPM were observed in SC fat surrounding foot wounds. Notably, the profile of SC PGF2α differed significantly when patients were grouped by body mass index (BMI). In the case of peri-wound SC fat, BMI negatively correlated with PGE2. In this tissue, proresolving mediators RvD2 and LXA4 were identified in lower levels than the proinflammatory LTB4. Collectively, these findings demonstrate a diverse distribution of bioactive lipid mediators depending on the localization of human fat depots and uncover a specific SPM pattern closely associated with PVD. PMID:23364264

  20. The effect of diabetes on the wound healing potential of adipose-tissue derived stem cells.

    PubMed

    Kim, Sue Min; Kim, Yun Ho; Jun, Young Joon; Yoo, Gyeol; Rhie, Jong Won

    2016-03-01

    To investigate whether diabetes mellitus affects the wound-healing-promoting potential of adipose tissue-derived stem cells, we designed a wound-healing model using diabetic mice. We compared the degree of wound healing between wounds treated with normal adipose tissue-derived stem cells and wounds treated with diabetic adipose tissue-derived stem cells. We evaluated the wound-healing rate, the epithelial tongue distance, the area of granulation tissue, the number of capillary and the number of Ki-67-stained cells. The wound-healing rate was significantly higher in the normal adipose tissue-derived stem cells group than in the diabetic adipose tissue-derived stem cells group; it was also significantly higher in the normal adipose tissue-derived stem cells group than in the control group. Although the diabetic adipose tissue-derived stem cells group showed a better wound-healing rate than the control group, the difference was not statistically significant. Similar trends were observed for the other parameters examined: re-epithelisation and keratinocyte proliferation; granulation tissue formation; and dermal regeneration. However, with regard to the number of capillary, diabetic adipose tissue-derived stem cells retained their ability to promote neovasculisation and angiogenesis. These results reflect the general impairment of the therapeutic potential of diabetic adipose tissue-derived stem cells in vivo.

  1. Two types of brown adipose tissue in humans.

    PubMed

    Lidell, Martin E; Betz, Matthias J; Enerbäck, Sven

    2014-01-01

    During the last years the existence of metabolically active brown adipose tissue in adult humans has been widely accepted by the research community. Its unique ability to dissipate chemical energy stored in triglycerides as heat makes it an attractive target for new drugs against obesity and its related diseases. Hence the tissue is now subject to intense research, the hypothesis being that an expansion and/or activation of the tissue is associated with a healthy metabolic phenotype. Animal studies provide evidence for the existence of at least two types of brown adipocytes. Apart from the classical brown adipocyte that is found primarily in the interscapular region where it constitutes a thermogenic organ, a second type of brown adipocyte, the so-called beige adipocyte, can appear within white adipose tissue depots. The fact that the two cell types develop from different precursors suggests that they might be recruited and stimulated by different cues and therefore represent two distinct targets for therapeutic intervention. The aim of this commentary is to discuss recent work addressing the question whether also humans possess two types of brown adipocytes and to highlight some issues when looking for molecular markers for such cells.

  2. The contribution of arachidonate 15-lipoxygenase in tissue macrophages to adipose tissue remodeling.

    PubMed

    Kwon, H-J; Kim, S-N; Kim, Y-A; Lee, Y-H

    2016-01-01

    Cellular plasticity in adipose tissue involves adipocyte death, its clearance, and de novo adipogenesis, enabling homeostatic turnover and adaptation to metabolic challenges; however, mechanisms regulating these serial events are not fully understood. The present study investigated the roles of arachidonate 15-lipoxygenase (Alox15) in the clearance of dying adipocytes by adipose tissue macrophages. First, upregulation of Alox15 expression and apoptotic adipocyte death in gonadal white adipose tissue (gWAT) were characterized during adipose tissue remodeling induced by β3-adrenergic receptor stimulation. Next, an in vitro reconstruction of adipose tissue macrophages and apoptotic adipocytes recapitulated adipocyte clearance by macrophages and demonstrated that macrophages co-cultured with apoptotic adipocytes increased the expression of efferocytosis-related genes. Genetic deletion and pharmacological inhibition of Alox15 diminished the levels of adipocyte clearance by macrophages in a co-culture system. Gene expression profiling of macrophages isolated from gWAT of Alox15 knockout (KO) mice demonstrated distinct phenotypes, especially downregulation of genes involved in lipid uptake and metabolism compared to wild-type mice. Finally, in vivo β3-adrenergic stimulation in Alox15 KO mice failed to recruit crown-like structures, a macrophage network clearing dying adipocytes in gWAT. Consequently, in Alox15 KO mice, proliferation/differentiation of adipocyte progenitors and β3-adrenergic remodeling of gWAT were impaired compared to wild-type control mice. Collectively, our data established a pivotal role of Alox15 in the resolution of adipocyte death and in adipose tissue remodeling. PMID:27362803

  3. Resveratrol attenuates visfatin and vaspin genes expression in adipose tissue of rats with type 2 diabetes

    PubMed Central

    Asadi, Soheila; Goodarzi, Mohammad Taghi; Saidijam, Massoud; Karimi, Jamshid; Azari, Reza Yadgar; Farimani, Azam Rezaei; Salehi, Iraj

    2015-01-01

    Objective(s): Visfatin and vaspin are secreted by adipose tissue and play key roles in glucose homeostasis and subsequently are potential targets for diabetes treatment. Resveratrol (RVS) corrects insulin secretion and improves insulin sensitivity. We investigated the RVS effects on serum antioxidants, insulin and glucose levels, also visfatin and vaspin genes expression in adipose tissue of streptozotocin-nicotinamide (STZ-NA) induced type 2 diabetic rats. Materials and Methods: Diabetes was induced in Wistar rats (n=32) using STZ (60 mg/kg body weight) and NA (120 mg/kg body weight); rats were divided into 4 groups (n=8). Eight untreated normal rats were used as control group; four diabetic rat groups (2–5) were treated with 0, 1, 5 and 10 mg/kg body weight of RVS, respectively for 30 days. After treatment blood and adipose tissue were prepared from all animals. Serum glucose, insulin, HOMA index, total antioxidant capacity (TAC), and malondialdehyde (MDA) were measured. Visfatin and vaspin genes expression in adipose tissue were evaluated using real-time PCR. Results: RVS reduced blood glucose significantly and increased insulin level, resulting in insulin sensitivity improvement. Furthermore RVS increased weight and TAC, while reducing serum MDA in the diabetic groups. Visfatin gene expression increased in the diabetic group, and RVS treatment reduced it. Vaspin gene expression was reduced in RVS receiving diabetic groups. Conclusion: The results indicated that RVS has potential hypoglycemic effect, probably by increasing insulin level and changing gene expression of visfatin and vaspin. Moreover RVS showed antioxidant effects through reduction in peroxidiation products and augmented antioxidant capacity. PMID:26221476

  4. Effects of adipocyte lipoprotein lipase on de novo lipogenesis and white adipose tissue browning.

    PubMed

    Bartelt, Alexander; Weigelt, Clara; Cherradi, M Lisa; Niemeier, Andreas; Tödter, Klaus; Heeren, Joerg; Scheja, Ludger

    2013-05-01

    Efficient storage of dietary and endogenous fatty acids is a prerequisite for a healthy adipose tissue function. Lipoprotein lipase (LPL) is the master regulator of fatty acid uptake from triglyceride-rich lipoproteins. In addition to LPL-mediated fatty acid uptake, adipocytes are able to synthesize fatty acids from non-lipid precursor, a process called de novo lipogenesis (DNL). As the physiological relevance of fatty acid uptake versus DNL for brown and white adipocyte function remains unclear, we studied the role of adipocyte LPL using adipocyte-specific LPL knockout animals (aLKO). ALKO mice displayed a profound increase in DNL-fatty acids, especially palmitoleate and myristoleate in brown adipose tissue (BAT) and white adipose tissue (WAT) depots while essential dietary fatty acids were markedly decreased. Consequently, we found increased expression in adipose tissues of genes encoding DNL enzymes (Fasn, Scd1, and Elovl6) as well as the lipogenic transcription factor carbohydrate response element binding protein-β. In a high-fat diet (HFD) study aLKO mice were characterized by reduced adiposity and improved plasma insulin and adipokines. However, neither glucose tolerance nor inflammatory markers were ameliorated in aLKO mice compared to controls. No signs of increased BAT activation or WAT browning were detected in aLKO mice either on HFD or after 1 week of β3-adrenergic stimulation using CL316,243. We conclude that despite a profound increase in DNL-derived fatty acids, proposed to be metabolically favorable, aLKO mice are not protected from metabolic disease per se. In addition, induction of DNL alone is not sufficient to promote browning of WAT. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  5. Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents.

    PubMed

    Bayes-Genis, Antoni; Soler-Botija, Carolina; Farré, Jordi; Sepúlveda, Pilar; Raya, Angel; Roura, Santiago; Prat-Vidal, Cristina; Gálvez-Montón, Carolina; Montero, José Anastasio; Büscher, Dirk; Izpisúa Belmonte, Juan Carlos

    2010-11-01

    Myocardial infarction caused by vascular occlusion results in the formation of nonfunctional fibrous tissue. Cumulative evidence indicates that cell therapy modestly improves cardiac function; thus, novel cell sources with the potential to repair injured tissue are actively sought. Here, we identify and characterize a cell population of cardiac adipose tissue-derived progenitor cells (ATDPCs) from biopsies of human adult cardiac adipose tissue. Cardiac ATDPCs express a mesenchymal stem cell-like marker profile (strongly positive for CD105, CD44, CD166, CD29 and CD90) and have immunosuppressive capacity. Moreover, cardiac ATDPCs have an inherent cardiac-like phenotype and were able to express de novo myocardial and endothelial markers in vitro but not to differentiate into adipocytes. In addition, when cardiac ATDPCs were transplanted into injured myocardium in mouse and rat models of myocardial infarction, the engrafted cells expressed cardiac (troponin I, sarcomeric α-actinin) and endothelial (CD31) markers, vascularization increased, and infarct size was reduced in mice and rats. Moreover, significant differences between control and cell-treated groups were found in fractional shortening and ejection fraction, and the anterior wall remained significantly thicker 30days after cardiac delivery of ATDPCs. Finally, cardiac ATDPCs secreted proangiogenic factors under in vitro hypoxic conditions, suggesting a paracrine effect to promote local vascularization. Our results indicate that the population of progenitor cells isolated from human cardiac adipose tissue (cardiac ATDPCs) may be valid candidates for future use in cell therapy to regenerate injured myocardium. PMID:20713059

  6. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues

    PubMed Central

    2011-01-01

    Background Prior studies have demonstrated a link between air pollution and metabolic diseases such as type II diabetes. Changes in adipose tissue and its mitochondrial content/function are closely associated with the development of insulin resistance and attendant metabolic complications. We investigated changes in adipose tissue structure and function in brown and white adipose depots in response to chronic ambient air pollutant exposure in a rodent model. Methods Male ApoE knockout (ApoE-/-) mice inhaled concentrated fine ambient PM (PM < 2.5 μm in aerodynamic diameter; PM2.5) or filtered air (FA) for 6 hours/day, 5 days/week, for 2 months. We examined superoxide production by dihydroethidium staining; inflammatory responses by immunohistochemistry; and changes in white and brown adipocyte-specific gene profiles by real-time PCR and mitochondria by transmission electron microscopy in response to PM2.5 exposure in different adipose depots of ApoE-/- mice to understand responses to chronic inhalational stimuli. Results Exposure to PM2.5 induced an increase in the production of reactive oxygen species (ROS) in brown adipose depots. Additionally, exposure to PM2.5 decreased expression of uncoupling protein 1 in brown adipose tissue as measured by immunohistochemistry and Western blot. Mitochondrial number was significantly reduced in white (WAT) and brown adipose tissues (BAT), while mitochondrial size was also reduced in BAT. In BAT, PM2.5 exposure down-regulated brown adipocyte-specific genes, while white adipocyte-specific genes were differentially up-regulated. Conclusions PM2.5 exposure triggers oxidative stress in BAT, and results in key alterations in mitochondrial gene expression and mitochondrial alterations that are pronounced in BAT. We postulate that exposure to PM2.5 may induce imbalance between white and brown adipose tissue functionality and thereby predispose to metabolic dysfunction. PMID:21745393

  7. Intermuscular Adipose Tissue and Metabolic Associations in HIV Infection

    PubMed Central

    Scherzer, Rebecca; Shen, Wei; Heymsfield, Steven B.; Lewis, Cora E.; Kotler, Donald P.; Punyanitya, Mark; Bacchetti, Peter; Shlipak, Michael G.; Grunfeld, Carl

    2013-01-01

    Intermuscular adipose tissue (IMAT) is associated with metabolic abnormalities similar to those associated with visceral adipose tissue (VAT). Increased IMAT has been found in obese human immunodeficiency virus (HIV)-infected women. We hypothesized that IMAT, like VAT, would be similar or increased in HIV-infected persons compared with healthy controls, despite decreases in subcutaneous adipose tissue (SAT) found in HIV infection. In the second FRAM (Study of Fat Redistribution and Metabolic Change in HIV infection) exam, we studied 425 HIV-infected subjects and 211 controls (from the Coronary Artery Risk Development in Young Adults study) who had regional AT and skeletal muscle (SM) measured by magnetic resonance imaging (MRI). Multivariable linear regression identified factors associated with IMAT and its association with metabolites. Total IMAT was 51% lower in HIV-infected participants compared with controls (P = 0.003). The HIV effect was attenuated after multivariable adjustment (to −28%, P < 0.0001 in men and −3.6%, P = 0.70 in women). Higher quantities of leg SAT, upper-trunk SAT, and VAT were associated with higher IMAT in HIV-infected participants, with weaker associations in controls. Stavudine use was associated with lower IMAT and SAT, but showed little relationship with VAT. In multivariable analyses, regional IMAT was associated with insulin resistance and triglycerides (TGs). Contrary to expectation, IMAT is not increased in HIV infection; after controlling for demographics, lifestyle, VAT, SAT, and SM, HIV+ men have lower IMAT compared with controls, whereas values for women are similar. Stavudine exposure is associated with both decreased IMAT and SAT, suggesting that IMAT shares cellular origins with SAT. PMID:20539305

  8. Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue.

    PubMed

    Zhao, Wenjun; Li, Aiyun; Feng, Xin; Hou, Ting; Liu, Kang; Liu, Baolin; Zhang, Ning

    2016-09-01

    This study aims to investigate the effects of metformin and resveratrol on muscle insulin resistance with emphasis on the regulation of lipolysis in hypoxic adipose tissue. ICR mice were fed with high fat diet (HFD) for 10days with administration of metformin, resveratrol, or intraperitoneal injection of digoxin. Adipose hypoxia, inflammation and cAMP/PKA-dependent lipolysis were investigated. Moreover, lipid deposition and insulin resistance were examined in the muscle. Metformin and resveratrol attenuated adipose hypoxia, inhibited HIF-1α expression and inflammation in the adipose tissue of HFD-fed mice. Metformin and resveratrol inhibited lipolysis through prevention of PKA/HSL activation by decreasing the accumulation of cAMP via preserving PDE3B. Metformin and resveratrol reduced FFAs influx and DAG accumulation, and thus improved insulin signaling in the muscle by inhibiting PKCθ translocation. This study presents a new view of regulating lipid metabolism to ameliorate insulin resistance and provides the clinical guiding significance for obesity and type 2 diabetes with metformin and resveratrol treatment. PMID:27343375

  9. Iron homeostasis: a new job for macrophages in adipose tissue?

    PubMed

    Hubler, Merla J; Peterson, Kristin R; Hasty, Alyssa H

    2015-02-01

    Elevated serum ferritin and increased cellular iron concentrations are risk factors for diabetes; however, the etiology of this association is unclear. Metabolic tissues such as pancreas, liver, and adipose tissue (AT), as well as the immune cells resident in these tissues, may be involved. Recent studies demonstrate that the polarization status of macrophages has important relevance to their iron-handling capabilities. Furthermore, a subset of macrophages in AT have elevated iron concentrations and a gene expression profile indicative of iron handling, a capacity diminished in obesity. Because iron overload in adipocytes increases systemic insulin resistance, iron handling by AT macrophages may have relevance not only to adipocyte iron stores but also to local and systemic insulin sensitivity.

  10. Iron homeostasis: a new job for macrophages in adipose tissue?

    PubMed Central

    Hubler, Merla J.; Peterson, Kristin R.; Hasty, Alyssa H.

    2015-01-01

    Elevated serum ferritin and increased cellular iron concentrations are risk factors for diabetes; however, the etiology of this association is unclear. Metabolic tissues such as pancreas, liver, and adipose tissue (AT), as well as the immune cells resident in these tissues, may be involved. Recent studies demonstrate that the polarization status of macrophages has important relevance to their iron handling capabilities. Furthermore, a subset of macrophages in AT have elevated iron concentrations and a gene expression profile indicative of iron handling, a capacity diminished in obesity. Because iron overload in adipocytes increases systemic insulin resistance, iron handling by AT macrophages may have relevance not only to adipocyte iron stores but also to local and systemic insulin sensitivity. PMID:25600948

  11. Hepatic ANGPTL3 regulates adipose tissue energy homeostasis

    PubMed Central

    Wang, Yan; McNutt, Markey C.; Banfi, Serena; Levin, Michael G.; Holland, William L.; Gusarova, Viktoria; Gromada, Jesper; Cohen, Jonathan C.; Hobbs, Helen H.

    2015-01-01

    Angiopoietin-like protein 3 (ANGPTL3) is a circulating inhibitor of lipoprotein and endothelial lipase whose physiological function has remained obscure. Here we show that ANGPTL3 plays a major role in promoting uptake of circulating very low density lipoprotein-triglycerides (VLDL-TGs) into white adipose tissue (WAT) rather than oxidative tissues (skeletal muscle, heart brown adipose tissue) in the fed state. This conclusion emerged from studies of Angptl3−/− mice. Whereas feeding increased VLDL-TG uptake into WAT eightfold in wild-type mice, no increase occurred in fed Angptl3−/− animals. Despite the reduction in delivery to and retention of TG in WAT, fat mass was largely preserved by a compensatory increase in de novo lipogenesis in Angptl3−/− mice. Glucose uptake into WAT was increased 10-fold in KO mice, and tracer studies revealed increased conversion of glucose to fatty acids in WAT but not liver. It is likely that the increased uptake of glucose into WAT explains the increased insulin sensitivity associated with inactivation of ANGPTL3. The beneficial effects of ANGPTL3 deficiency on both glucose and lipoprotein metabolism make it an attractive therapeutic target. PMID:26305978

  12. Hepatic ANGPTL3 regulates adipose tissue energy homeostasis.

    PubMed

    Wang, Yan; McNutt, Markey C; Banfi, Serena; Levin, Michael G; Holland, William L; Gusarova, Viktoria; Gromada, Jesper; Cohen, Jonathan C; Hobbs, Helen H

    2015-09-15

    Angiopoietin-like protein 3 (ANGPTL3) is a circulating inhibitor of lipoprotein and endothelial lipase whose physiological function has remained obscure. Here we show that ANGPTL3 plays a major role in promoting uptake of circulating very low density lipoprotein-triglycerides (VLDL-TGs) into white adipose tissue (WAT) rather than oxidative tissues (skeletal muscle, heart brown adipose tissue) in the fed state. This conclusion emerged from studies of Angptl3(-/-) mice. Whereas feeding increased VLDL-TG uptake into WAT eightfold in wild-type mice, no increase occurred in fed Angptl3(-/-) animals. Despite the reduction in delivery to and retention of TG in WAT, fat mass was largely preserved by a compensatory increase in de novo lipogenesis in Angptl3(-/-) mice. Glucose uptake into WAT was increased 10-fold in KO mice, and tracer studies revealed increased conversion of glucose to fatty acids in WAT but not liver. It is likely that the increased uptake of glucose into WAT explains the increased insulin sensitivity associated with inactivation of ANGPTL3. The beneficial effects of ANGPTL3 deficiency on both glucose and lipoprotein metabolism make it an attractive therapeutic target. PMID:26305978

  13. Characterization of microRNA expression in bovine adipose tissues: a potential regulatory mechanism of subcutaneous adipose tissue development

    PubMed Central

    2010-01-01

    Background MicroRNAs (miRNAs), a family of small non-coding RNA molecules, appear to regulate animal lipid metabolism and preadipocyte conversion to form lipid-assimilating adipocytes (i.e. adipogenesis). However, no miRNA to date has been reported to modulate adipogenesis and lipid deposition in beef cattle. Results The expression patterns of 89 miRNAs including four bovine specific miRNAs in subcutaneous adipose tissues from three groups of crossbred steers differing in backfat thickness were compared using qRT-PCR analysis. Eighty-six miRNAs were detectable in all samples, with 42 miRNAs differing among crossbreds (P < 0.05) and 15 miRNAs differentially expressed between tissues with high and low backfat thickness (P < 0.05). The expression levels of 18 miRNAs were correlated with backfat thickness (P < 0.05). The miRNA most differentially expressed and the most strongly associated with backfat thickness was miR-378, with a 1.99-fold increase in high backfat thickness tissues (r = 0.72). Conclusions MiRNA expression patterns differed significantly in response to host genetic components. Approximately 20% of the miRNAs in this study were identified as being correlated with backfat thickness. This result suggests that miRNAs may play a regulatory role in white adipose tissue development in beef animals. PMID:20423511

  14. Adipose Tissue-Derived Stem Cells From Obese Subjects Contribute to Inflammation and Reduced Insulin Response in Adipocytes Through Differential Regulation of the Th1/Th17 Balance and Monocyte Activation.

    PubMed

    Eljaafari, Assia; Robert, Maud; Chehimi, Marwa; Chanon, Stephanie; Durand, Christine; Vial, Guillaume; Bendridi, Nadia; Madec, Anne-Marie; Disse, Emmanuel; Laville, Martine; Rieusset, Jennifer; Lefai, Etienne; Vidal, Hubert; Pirola, Luciano

    2015-07-01

    Obesity, through low-grade inflammation, can drive insulin resistance and type 2 diabetes. While infiltration of adipose tissue (AT) with mononuclear cells (MNCs) is well established in obesity, the functional consequences of these interactions are less understood. Herein, we cocultured human adipose-derived stem cells (ASCs) from obese individuals with MNCs and analyzed their reciprocal behavior. Presence of ASCs 1) enhanced interleukin (IL)-17A secretion by Th17 cells, 2) inhibited γ-interferon and tumor necrosis factor α secretion by Th1 cells, and 3) increased monocyte-mediated IL-1β secretion. IL-17A secretion also occurred in stromal vascular fractions issued from obese but not lean individuals. Th17 polarization mostly depended on physical contacts between ASCs and MNCs-with a contribution of intracellular adhesion molecule-1-and occurred through activation of the inflammasome and phosphatidylinositol 3-kinase pathways. ASCs favored STAT3 over STAT5 transcription factor binding on STAT binding sites within the IL-17A/F gene locus. Finally, conditioned media from activated ASC-MNC cocultures inhibited adipocyte differentiation mRNA markers and impaired insulin-mediated Akt phosphorylation and lipolysis inhibition. In conclusion, we report that obese- but not lean-derived ASCs induce Th17 promotion and monocyte activation. This proinflammatory environment, in turn, inhibits adipogenesis and adipocyte insulin response. The demonstration of an ASC-Th17-monocyte cell axis reveals a novel proinflammatory process taking place in AT during obesity and defines novel putative therapeutic targets.

  15. A chromatin immunoprecipitation (ChIP) protocol for use in whole human adipose tissue.

    PubMed

    Haim, Yulia; Tarnovscki, Tanya; Bashari, Dana; Rudich, Assaf

    2013-11-01

    Chromatin immunoprecipitation (ChIP) has become a central method when studying in vivo protein-DNA interactions, with the major challenge being the hope to capture "authentic" interactions. While ChIP protocols have been optimized for use with specific cell types and tissues including adipose tissue-derived cells, a working ChIP protocol addressing the challenges imposed by fresh whole human adipose tissue has not been described. Utilizing human paired omental and subcutaneous adipose tissue obtained during elective abdominal surgeries, we have carefully identified and optimized individual steps in the ChIP protocol employed directly on fresh tissue fragments. We describe a complete working protocol for using ChIP on whole adipose tissue fragments. Specific steps required adaptation of the ChIP protocol to human whole adipose tissue. In particular, a cross-linking step was performed directly on fresh small tissue fragments. Nuclei were isolated before releasing chromatin, allowing better management of fat content; a sonication protocol to obtain fragmented chromatin was optimized. We also demonstrate the high sensitivity of immunoprecipitated chromatin from adipose tissue to freezing. In conclusion, we describe the development of a ChIP protocol optimized for use in studying whole human adipose tissue, providing solutions for the unique challenges imposed by this tissue. Unraveling protein-DNA interaction in whole human adipose tissue will likely contribute to elucidating molecular pathways contributing to common human diseases such as obesity and type 2 diabetes.

  16. Patterns of gene expression in pig adipose tissue: transforming growth factors, interferons, interleukins and apolipoproteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Total RNA was collected at slaughter from outer s.c. adipose tissue (OSQ), middle s.c. adipose tissue (MSQ), ovary, uterus, hypothalamus, and pituitary tissues samples from gilts at 90, 150, and 210 d ( n =5 / age). Dye labeled cDNA probes were hybridized to custom microarrays (70 mer oligonucleotid...

  17. Modal response of a computational vocal fold model with a substrate layer of adipose tissue.

    PubMed

    Jones, Cameron L; Achuthan, Ajit; Erath, Byron D

    2015-02-01

    This study demonstrates the effect of a substrate layer of adipose tissue on the modal response of the vocal folds, and hence, on the mechanics of voice production. Modal analysis is performed on the vocal fold structure with a lateral layer of adipose tissue. A finite element model is employed, and the first six mode shapes and modal frequencies are studied. The results show significant changes in modal frequencies and substantial variation in mode shapes depending on the strain rate of the adipose tissue. These findings highlight the importance of considering adipose tissue in computational vocal fold modeling.

  18. Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues.

    PubMed

    Ramseyer, Vanesa D; Granneman, James G

    2016-01-01

    The discovery of brown adipose tissue in adult humans along with the recognition of adipocyte heterogeneity and plasticity of white fat depots has renewed the interest in targeting adipose tissue for therapeutic benefit. Adrenergic activation is a well-established means of recruiting catabolic adipocyte phenotypes in brown and white adipose tissues. In this article, we review mechanisms of brown adipocyte recruitment by the sympathetic nervous system and by direct β-adrenergic receptor activation. We highlight the distinct modes of brown adipocyte recruitment in brown, beige/brite, and white adipose tissues, UCP1-independent thermogenesis, and potential non-thermogenic, metabolically beneficial effects of brown adipocytes.

  19. Targeting adipose tissue in the treatment of obesity-associated diabetes.

    PubMed

    Kusminski, Christine M; Bickel, Perry E; Scherer, Philipp E

    2016-09-01

    Adipose tissue regulates numerous physiological processes, and its dysfunction in obese humans is associated with disrupted metabolic homeostasis, insulin resistance and type 2 diabetes mellitus (T2DM). Although several US-approved treatments for obesity and T2DM exist, these are limited by adverse effects and a lack of effective long-term glucose control. In this Review, we provide an overview of the role of adipose tissue in metabolic homeostasis and assess emerging novel therapeutic strategies targeting adipose tissue, including adipokine-based strategies, promotion of white adipose tissue beiging as well as reduction of inflammation and fibrosis. PMID:27256476

  20. Adipose tissue chromium and vanadium disbalance in high-fat fed Wistar rats.

    PubMed

    Tinkov, Alexey A; Popova, Elizaveta V; Polyakova, Valentina S; Kwan, Olga V; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-01-01

    The primary objective of the current study is to investigate the relationship between adipose tissue chromium and vanadium content and adipose tissue dysfunction in a model of diet-induced obesity. A total of 26 female Wistar rats were fed either standard or high-fat diet (31.6% of fat from total caloric content) for 3 months. High-fat-feeding resulted in 21 and 33% decrease in adipose tissue chromium and vanadium content, respectively. No change was seen in hair chromium or vanadium levels. Statistical analysis revealed a significant inverse correlation of adipose tissue Cr and V with animal morphometric parameters and adipocyte size. Significant inverse dependence was observed between adipose tissue Cr and V and serum leptin and proinflammatory cytokines' levels. At the same time, adipose tissue Cr and V levels were characterized by positive correlation between serum adiponectin and adiponectin/leptin ratio. Adipose tissue Cr and V were inversely correlated (p<0.05) with insulin and homeostatic model assessment insulin resistance index (HOMA-IR) levels. Cr and V concentrations were not correlated with serum glucose in either high-fat fed or control rats; however, both serum glucose and HOMA-IR levels were significantly higher in high-fat fed, compared to control, rats. The results allow to hypothesize that impairment of adipose tissue Cr and V content plays a certain role in the development of adipose tissue endocrine dysfunction in obesity.

  1. M1-M2 balancing act in white adipose tissue browning - a new role for RIP140.

    PubMed

    Liu, Pu-Ste; Lin, Yi-Wei; Burton, Frank H; Wei, Li-Na

    2015-01-01

    A "Holy Grail" sought in medical treatment of obesity is to be able to biologically reprogram their adipose tissues to burn fat rather than store it. White adipose tissue (WAT) stores fuel and its expansion underlines insulin resistance (IR) whereas brown adipose tissue (BAT) burns fuel and stimulates insulin sensitivity. These two types of fats seesaw within our bodies via a regulatory mechanism that involves intricate communication between adipocytes and blood cells, particularly macrophages that migrate into adipose deposits. The coregulator, Receptor Interacting Protein 140 (RIP140), plays a key role in regulating this communication. In mice on a high-fat diet, the level of RIP140 in macrophages is dramatically elevated to activate their inflammatory M1 polarization and enhance their recruitment into WAT, facilitating IR. Conversely, lowering the level of RIP140 in macrophages not only reduces M1 macrophages but also expands alternatively polarized, anti-inflammatory M2 macrophages, triggering white adipose tissue browning, fat burning, and restoration of insulin sensitivity. This suggests a potential therapeutic strategy for reversing IR, obesity, and atherosclerotic or even cosmetic fat deposits: therapeutic browning of white adipose deposits by diminishing RIP140 levels in macrophages.

  2. M1-M2 balancing act in white adipose tissue browning - a new role for RIP140.

    PubMed

    Liu, Pu-Ste; Lin, Yi-Wei; Burton, Frank H; Wei, Li-Na

    2015-01-01

    A "Holy Grail" sought in medical treatment of obesity is to be able to biologically reprogram their adipose tissues to burn fat rather than store it. White adipose tissue (WAT) stores fuel and its expansion underlines insulin resistance (IR) whereas brown adipose tissue (BAT) burns fuel and stimulates insulin sensitivity. These two types of fats seesaw within our bodies via a regulatory mechanism that involves intricate communication between adipocytes and blood cells, particularly macrophages that migrate into adipose deposits. The coregulator, Receptor Interacting Protein 140 (RIP140), plays a key role in regulating this communication. In mice on a high-fat diet, the level of RIP140 in macrophages is dramatically elevated to activate their inflammatory M1 polarization and enhance their recruitment into WAT, facilitating IR. Conversely, lowering the level of RIP140 in macrophages not only reduces M1 macrophages but also expands alternatively polarized, anti-inflammatory M2 macrophages, triggering white adipose tissue browning, fat burning, and restoration of insulin sensitivity. This suggests a potential therapeutic strategy for reversing IR, obesity, and atherosclerotic or even cosmetic fat deposits: therapeutic browning of white adipose deposits by diminishing RIP140 levels in macrophages. PMID:26167418

  3. Sugar-sweetened and diet beverages in relation to visceral adipose tissue.

    PubMed

    Odegaard, Andrew O; Choh, Audrey C; Czerwinski, Stefan A; Towne, Bradford; Demerath, Ellen W

    2012-03-01

    Frequent sugar-sweetened beverage (SSB) intake has been consistently associated with increased adiposity and cardio-metabolic risk, whereas the association with diet beverages is more mixed. We examined how these beverages associate with regional abdominal adiposity measures, specifically visceral adipose tissue (VAT). In a cross-sectional analysis of 791 non-Hispanic white men and women aged 18-70 we examined how beverage consumption habits obtained from a food frequency questionnaire associate with overall and abdominal adiposity measures from MRI. With increasing frequency of SSB intake, we observed increases in waist circumference (WC) and the proportion of visceral to subcutaneous abdominal adipose tissue (VAT%), with no change in total body fat (TBF%) or BMI. Greater frequency of diet beverage intake was associated with greater WC, BMI, and TBF%, but was not associated with variation in visceral adiposity We conclude that increased frequency of SSB consumption is associated with a more adverse abdominal adipose tissue deposition pattern.

  4. Undernutrition and stage of gestation influence fetal adipose tissue gene expression

    PubMed Central

    Wallace, Jacqueline M.; Milne, John S.; Aitken, Raymond P.; Redmer, Dale A.; Reynolds, Lawrence P.; Luther, Justin S.; Horgan, GW; Adam, Clare L.

    2015-01-01

    Low birthweight is a risk factor for neonatal mortality and adverse metabolic health, both associated with inadequate prenatal adipose tissue development. Here we investigated the impact of maternal undernutrition on expression of genes regulating fetal perirenal adipose tissue (PAT) development and function at gestation days 89 and 130 (term=145d). Singleton fetuses were taken from adolescent ewes fed control (C) intake to maintain adiposity throughout pregnancy or undernourished (UN) to maintain conception weight but deplete maternal reserves (n=7/group). Fetal weight was independent of maternal intake at day 89 but by day 130 fetuses from UN dams were 17% lighter with lower PAT mass containing fewer unilocular adipocytes. Relative PAT expression of IGF1, IGF2, IGF2R and peroxisome-proliferator-activated receptor-gamma (PPARG) mRNA was lower in UN than in C, predominantly at day 89. Independent of maternal nutrition, PAT gene expression of PPARG, glycerol-3-phosphate dehydrogenase, hormone sensitive lipase, leptin, uncoupling protein-1 and prolactin receptor increased and IGF1, IGF2, IGF1R, IGF2R decreased between 89 and 130 days. Fatty acid synthase and lipoprotein lipase (LPL) mRNAs were not influenced by nutrition or stage of pregnancy. Females had greater LPL and leptin mRNA than males, and LPL, leptin and PPARG mRNAs were decreased by UN at day 89 in females only. PAT gene expression correlations with PAT mass were stronger at day 89 than day 130. These data suggest that key genes regulating adipose tissue development and function are active from mid-gestation when they are sensitive to maternal undernutrition. This leads to reduced fetal adiposity by late pregnancy. PMID:25917833

  5. Free Fatty Acid Storage in Human Visceral and Subcutaneous Adipose Tissue

    PubMed Central

    Ali, Asem H.; Koutsari, Christina; Mundi, Manpreet; Stegall, Mark D.; Heimbach, Julie K.; Taler, Sandra J.; Nygren, Jonas; Thorell, Anders; Bogachus, Lindsey D.; Turcotte, Lorraine P.; Bernlohr, David; Jensen, Michael D.

    2011-01-01

    OBJECTIVE Because direct adipose tissue free fatty acid (FFA) storage may contribute to body fat distribution, we measured FFA (palmitate) storage rates and fatty acid (FA) storage enzymes/proteins in omental and abdominal subcutaneous fat. RESEARCH DESIGN AND METHODS Elective surgery patients received a bolus of [1-14C]palmitate followed by omental and abdominal subcutaneous fat biopsies to measure direct FFA storage. Long chain acyl-CoA synthetase (ACS) and diacylglycerol acyltransferase activities, CD36, fatty acid-binding protein, and fatty acid transport protein 1 were measured. RESULTS Palmitate tracer storage (dpm/g adipose lipid) and calculated palmitate storage rates were greater in omental than abdominal subcutaneous fat in women (1.2 ± 0.8 vs. 0.7 ± 0.4 μmol ⋅ kg adipose lipid−1 ⋅ min−1, P = 0.005) and men (0.7 ± 0.2 vs. 0.2 ± 0.1, P < 0.001), and both were greater in women than men (P < 0.0001). Abdominal subcutaneous adipose tissue palmitate storage rates correlated with ACS activity (women: r = 0.66, P = 0.001; men: r = 0.70, P = 0.007); in men, CD36 was also independently related to palmitate storage rates. The content/activity of FA storage enzymes/proteins in omental fat was dramatically lower in those with more visceral fat. In women, only omental palmitate storage rates were correlated (r = 0.54, P = 0.03) with ACS activity. CONCLUSIONS Some adipocyte FA storage factors correlate with direct FFA storage, but sex differences in this process in visceral fat do not account for sex differences in visceral fatness. The reduced storage proteins in those with greater visceral fat suggest that the storage factors we measured are not a predominant cause of visceral adipose tissue accumulation. PMID:21810594

  6. Nutrient Regulation: Conjugated Linoleic Acid's Inflammatory and Browning Properties in Adipose Tissue.

    PubMed

    Shen, Wan; McIntosh, Michael K

    2016-07-17

    Obesity is the most widespread nutritional disease in the United States. Developing effective and safe strategies to manage excess body weight is therefore of paramount importance. One potential strategy to reduce obesity is to consume conjugated linoleic acid (CLA) supplements containing isomers cis-9, trans-11 and trans-10, cis-12, or trans-10, cis-12 alone. Proposed antiobesity mechanisms of CLA include regulation of (a) adipogenesis, (b) lipid metabolism, (c) inflammation, (d) adipocyte apoptosis, (e) browning or beiging of adipose tissue, and (f) energy metabolism. However, causality of CLA-mediated responses to body fat loss, particularly the linkage between inflammation, thermogenesis, and energy metabolism, is unclear. This review examines whether CLA's antiobesity properties are due to inflammatory signaling and considers CLA's linkage with lipogenesis, lipolysis, thermogenesis, and browning of white and brown adipose tissue. We propose a series of questions and studies to interrogate the role of the sympathetic nervous system in mediating CLA's antiobesity properties. PMID:27431366

  7. Obesity Alters Adipose Tissue Macrophage Iron Content and Tissue Iron Distribution

    PubMed Central

    Orr, Jeb S.; Kennedy, Arion; Anderson-Baucum, Emily K.; Webb, Corey D.; Fordahl, Steve C.; Erikson, Keith M.; Zhang, Yaofang; Etzerodt, Anders; Moestrup, Søren K.; Hasty, Alyssa H.

    2014-01-01

    Adipose tissue (AT) expansion is accompanied by the infiltration and accumulation of AT macrophages (ATMs), as well as a shift in ATM polarization. Several studies have implicated recruited M1 ATMs in the metabolic consequences of obesity; however, little is known regarding the role of alternatively activated resident M2 ATMs in AT homeostasis or how their function is altered in obesity. Herein, we report the discovery of a population of alternatively activated ATMs with elevated cellular iron content and an iron-recycling gene expression profile. These iron-rich ATMs are referred to as MFehi, and the remaining ATMs are referred to as MFelo. In lean mice, ~25% of the ATMs are MFehi; this percentage decreases in obesity owing to the recruitment of MFelo macrophages. Similar to MFelo cells, MFehi ATMs undergo an inflammatory shift in obesity. In vivo, obesity reduces the iron content of MFehi ATMs and the gene expression of iron importers as well as the iron exporter, ferroportin, suggesting an impaired ability to handle iron. In vitro, exposure of primary peritoneal macrophages to saturated fatty acids also alters iron metabolism gene expression. Finally, the impaired MFehi iron handling coincides with adipocyte iron overload in obese mice. In conclusion, in obesity, iron distribution is altered both at the cellular and tissue levels, with AT playing a predominant role in this change. An increased availability of fatty acids during obesity may contribute to the observed changes in MFehi ATM phenotype and their reduced capacity to handle iron. PMID:24130337

  8. Visceral adipose tissue inflammation is associated with age-related brain changes and ischemic brain damage in aged mice.

    PubMed

    Shin, Jin A; Jeong, Sae Im; Kim, Minsuk; Yoon, Joo Chun; Kim, Hee-Sun; Park, Eun-Mi

    2015-11-01

    Visceral adipose tissue is accumulated with aging. An increase in visceral fat accompanied by low-grade inflammation is associated with several adult-onset diseases. However, the effects of visceral adipose tissue inflammation on the normal and ischemic brains of aged are not clearly defined. To examine the role of visceral adipose tissue inflammation, we evaluated inflammatory cytokines in the serum, visceral adipose tissue, and brain as well as blood-brain barrier (BBB) permeability in aged male mice (20 months) underwent sham or visceral fat removal surgery compared with the young mice (2.5 months). Additionally, ischemic brain injury was compared in young and aged mice with sham and visceral fat removal surgery. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels in examined organs were increased in aged mice compared with the young mice, and these levels were reduced in the mice with visceral fat removal. Increased BBB permeability with reduced expression of tight junction proteins in aged sham mice were also decreased in mice with visceral fat removal. After focal ischemic injury, aged mice with visceral fat removal showed a reduction in infarct volumes, BBB permeability, and levels of proinflammatory cytokines in the ischemic brain compared with sham mice, although the neurological outcomes were not significantly improved. In addition, further upregulated visceral adipose tissue inflammation in response to ischemic brain injury was attenuated in mice with visceral fat removal. These results suggest that visceral adipose tissue inflammation is associated with age-related changes in the brain and contributes to the ischemic brain damage in the aged mice. We suggest that visceral adiposity should be considered as a factor affecting brain health and ischemic brain damage in the aged population.

  9. CDKN2B expression in adipose tissue of familial combined hyperlipidemia patients[S

    PubMed Central

    Horswell, Stuart D.; Fryer, Lee G. D.; Hutchison, Claire E.; Zindrou, Dlear; Speedy, Helen E.; Town, Margaret-M.; Duncan, Emma J.; Sivapackianathan, Rasheeta; Patel, Hetal N.; Jones, Emma L.; Braithwaite, Adam; Salm, Max P. A.; Neuwirth, Claire K. Y.; Potter, Elizabeth; Anderson, Jonathan R.; Taylor, Kenneth M.; Seed, Mary; Betteridge, D. John; Crook, Martin A.; Wierzbicki, Anthony S.; Scott, James; Naoumova, Rossi P.; Shoulders, Carol C.

    2013-01-01

    The purpose of this study was to determine the core biological processes perturbed in the subcutaneous adipose tissue of familial combined hyperlipidemia (FCHL) patients. Annotation of FCHL and control microarray datasets revealed a distinctive FCHL transcriptome, characterized by gene expression changes regulating five overlapping systems: the cytoskeleton, cell adhesion and extracellular matrix; vesicular trafficking; lipid homeostasis; and cell cycle and apoptosis. Expression values for the cell-cycle inhibitor CDKN2B were increased, replicating data from an independent FCHL cohort. In 3T3-L1 cells, CDKN2B knockdown induced C/EBPα expression and lipid accumulation. The minor allele at SNP site rs1063192 (C) was predicted to create a perfect seed for the human miRNA-323b-5p. A miR-323b-5p mimic significantly reduced endogenous CDKN2B protein levels and the activity of a CDKN2B 3′UTR luciferase reporter carrying the rs1063192 C allele. Although the allele displayed suggestive evidence of association with reduced CDKN2B mRNA in the MuTHER adipose tissue dataset, family studies suggest the association between increased CDKN2B expression and FCHL-lipid abnormalities is driven by factors external to this gene locus. In conclusion, from a comparative annotation analysis of two separate FCHL adipose tissue transcriptomes and a subsequent focus on CDKN2B, we propose that dysfunctional adipogenesis forms an integral part of FCHL pathogenesis. PMID:24103848

  10. Diet-induced changes in subcutaneous adipose tissue blood flow in man: effect of beta-adrenoceptor inhibition.

    PubMed

    Simonsen, L; Bülow, J; Astrup, A; Madsen, J; Christensen, N J

    1990-06-01

    The effect of a carbohydrate-rich meal on subcutaneous adipose tissue blood flow was studied with and without continuous i.v. infusion of propranolol in healthy volunteers. The subcutaneous adipose tissue blood flow was measured with the 133Xe washout method in three different locations: the forearm, the thigh and the abdomen. The subjects were given a meal consisting of white bread, jam, honey and apple juice (about 2300 kJ). The meal induced a twofold increase in blood flow in the examined tissues. Propranolol abolished the flow increase in the thigh and the abdomen and reduced it in the forearm. This indicates that the mechanism for the flow increase is elicited by a stimulation of vascular beta-adrenoceptors in the subcutaneous adipose tissue, since the beta-adrenoceptor inhibition did not affect the overall metabolic and hormonal responses to the meal.

  11. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity.

    PubMed

    Bi, Pengpeng; Shan, Tizhong; Liu, Weiyi; Yue, Feng; Yang, Xin; Liang, Xin-Rong; Wang, Jinghua; Li, Jie; Carlesso, Nadia; Liu, Xiaoqi; Kuang, Shihuan

    2014-08-01

    Beige adipocytes in white adipose tissue (WAT) are similar to classical brown adipocytes in that they can burn lipids to produce heat. Thus, an increase in beige adipocyte content in WAT browning would raise energy expenditure and reduce adiposity. Here we report that adipose-specific inactivation of Notch1 or its signaling mediator Rbpj in mice results in browning of WAT and elevated expression of uncoupling protein 1 (Ucp1), a key regulator of thermogenesis. Consequently, as compared to wild-type mice, Notch mutants exhibit elevated energy expenditure, better glucose tolerance and improved insulin sensitivity and are more resistant to high fat diet-induced obesity. By contrast, adipose-specific activation of Notch1 leads to the opposite phenotypes. At the molecular level, constitutive activation of Notch signaling inhibits, whereas Notch inhibition induces, Ppargc1a and Prdm16 transcription in white adipocytes. Notably, pharmacological inhibition of Notch signaling in obese mice ameliorates obesity, reduces blood glucose and increases Ucp1 expression in white fat. Therefore, Notch signaling may be therapeutically targeted to treat obesity and type 2 diabetes.

  12. Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells.

    PubMed

    Cheung, Hoi Ki; Han, Tim Tian Y; Marecak, Dale M; Watkins, John F; Amsden, Brian G; Flynn, Lauren E

    2014-02-01

    An injectable tissue-engineered adipose substitute that could be used to deliver adipose-derived stem cells (ASCs), filling irregular defects and stimulating natural soft tissue regeneration, would have significant value in plastic and reconstructive surgery. With this focus, the primary aim of the current study was to characterize the response of human ASCs encapsulated within three-dimensional bioscaffolds incorporating decellularized adipose tissue (DAT) as a bioactive matrix within photo-cross-linkable methacrylated glycol chitosan (MGC) or methacrylated chondroitin sulphate (MCS) delivery vehicles. Stable MGC- and MCS-based composite scaffolds were fabricated containing up to 5 wt% cryomilled DAT through initiation with long-wavelength ultraviolet light. The encapsulation strategy allows for tuning of the 3-D microenvironment and provides an effective method of cell delivery with high seeding efficiency and uniformity, which could be adapted as a minimally-invasive in situ approach. Through in vitro cell culture studies, human ASCs were assessed over 14 days in terms of viability, glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, adipogenic gene expression and intracellular lipid accumulation. In all of the composites, the DAT functioned as a cell-supportive matrix that enhanced ASC viability, retention and adipogenesis within the gels. The choice of hydrogel also influenced the cell response, with significantly higher viability and adipogenic differentiation observed in the MCS composites containing 5 wt% DAT. In vivo analysis in a subcutaneous Wistar rat model at 1, 4 and 12 weeks showed superior implant integration and adipogenesis in the MCS-based composites, with allogenic ASCs promoting cell infiltration, angiogenesis and ultimately, fat formation. PMID:24331712

  13. Critical illness induces alternative activation of M2 macrophages in adipose tissue

    PubMed Central

    2011-01-01

    Introduction We recently reported macrophage accumulation in adipose tissue of critically ill patients. Classically activated macrophage accumulation in adipose tissue is a known feature of obesity, where it is linked with increasing insulin resistance. However, the characteristics of adipose tissue macrophage accumulation in critical illness remain unknown. Methods We studied macrophage markers with immunostaining and gene expression in visceral and subcutaneous adipose tissue from healthy control subjects (n = 20) and non-surviving prolonged critically ill patients (n = 61). For comparison, also subcutaneous in vivo adipose tissue biopsies were studied from 15 prolonged critically ill patients. Results Subcutaneous and visceral adipose tissue biopsies from non-surviving prolonged critically ill patients displayed a large increase in macrophage staining. This staining corresponded with elevated gene expression of "alternatively activated" M2 macrophage markers arginase-1, IL-10 and CD163 and low levels of the "classically activated" M1 macrophage markers tumor necrosis factor (TNF)-α and inducible nitric-oxide synthase (iNOS). Immunostaining for CD163 confirmed positive M2 macrophage staining in both visceral and subcutaneous adipose tissue biopsies from critically ill patients. Surprisingly, circulating levels and tissue gene expression of the alternative M2 activators IL-4 and IL-13 were low and not different from controls. In contrast, adipose tissue protein levels of peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor required for M2 differentiation and acting downstream of IL-4, was markedly elevated in illness. In subcutaneous abdominal adipose tissue biopsies from surviving critically ill patients, we could confirm positive macrophage staining with CD68 and CD163. We also could confirm elevated arginase-1 gene expression and elevated PPARγ protein levels. Conclusions Unlike obesity, critical illness evokes adipose tissue

  14. Comparison of human adipose-derived stem cells isolated from subcutaneous, omental, and intrathoracic adipose tissue depots for regenerative applications.

    PubMed

    Russo, Valerio; Yu, Claire; Belliveau, Paul; Hamilton, Andrew; Flynn, Lauren E

    2014-02-01

    Adipose tissue is an abundant source of multipotent progenitor cells that have shown promise in regenerative medicine. In humans, fat is primarily distributed in the subcutaneous and visceral depots, which have varying biochemical and functional properties. In most studies to date, subcutaneous adipose tissue has been investigated as the adipose-derived stem cell (ASC) source. In this study, we sought to develop a broader understanding of the influence of specific adipose tissue depots on the isolated ASC populations through a systematic comparison of donor-matched abdominal subcutaneous fat and omentum, and donor-matched pericardial adipose tissue and thymic remnant samples. We found depot-dependent and donor-dependent variability in the yield, viability, immunophenotype, clonogenic potential, doubling time, and adipogenic and osteogenic differentiation capacities of the ASC populations. More specifically, ASCs isolated from both intrathoracic depots had a longer average doubling time and a significantly higher proportion of CD34(+) cells at passage 2, as compared with cells isolated from subcutaneous fat or the omentum. Furthermore, ASCs from subcutaneous and pericardial adipose tissue demonstrated enhanced adipogenic differentiation capacity, whereas ASCs isolated from the omentum displayed the highest levels of osteogenic markers in culture. Through cell culture analysis under hypoxic (5% O(2)) conditions, oxygen tension was shown to be a key mediator of colony-forming unit-fibroblast number and osteogenesis for all depots. Overall, our results suggest that depot selection is an important factor to consider when applying ASCs in tissue-specific cell-based regenerative therapies, and also highlight pericardial adipose tissue as a potential new ASC source. PMID:24361924

  15. The metabolic syndrome as a concept of adipose tissue disease.

    PubMed

    Oda, Eiji

    2008-07-01

    The metabolic syndrome is a constellation of interrelated metabolic risk factors that appear to directly promote the development of diabetes and cardiovascular disease. However, in 2005, the American Diabetes Association and the European Association for the Study of Diabetes jointly stated that no existing definition of the metabolic syndrome meets the criteria of a syndrome, and there have been endless debates on the pros and cons of using the concept of this syndrome. The controversy may stem from confusion between the syndrome and obesity. Obesity is an epidemic, essentially contagious disease caused by an environment of excess nutritional energy and reinforced by deeply rooted social norms. The epidemic of obesity should be prevented or controlled by social and political means, similar to the approaches now being taken to combat global warming. The diagnosis of metabolic syndrome is useless for this public purpose. The purpose of establishing criteria for diagnosing metabolic syndrome is to find individuals who are at increased risk of diabetes and cardiovascular disease and who require specific therapy including diet and exercise. The syndrome may be an adipose tissue disease different from obesity; in that case, it would be characterized by inflammation clinically detected through systemic inflammatory markers such as high-sensitivity C-reactive protein and insulin resistance reflecting histological changes in adipose tissue. However, many problems in defining the optimal diagnostic criteria remain unresolved.

  16. Adipose tissue: from lipid storage compartment to endocrine organ.

    PubMed

    Scherer, Philipp E

    2006-06-01

    Adipose tissue, when carried around in excessive amounts, predisposes to a large number of diseases. Epidemiological data show that the prevalence of obesity has significantly increased over the past 20 years and continues to do so at an alarming rate. Here, some molecular aspects of the key constituent of adipose tissue, the adipocyte, are reviewed. While the adipocyte has been studied for many years and remarkable insights have been gained about some processes, many areas of the physiology of the fat cell remain unexplored. Our understanding of how cellular events in the adipocyte affect the local environment through paracrine interactions and how systemic effects are achieved through endocrine interactions is rudimentary. While storage and release of lipids are major functions of adipocytes, the adipocyte also uses specific lipid molecules for intracellular signaling and uses a host of protein factors to communicate with essentially every organ system in the body. The intensity and complexity of these signals are highly regulated, differ in each fat pad, and are dramatically affected by various disease states. PMID:16731815

  17. Local proliferation initiates macrophage accumulation in adipose tissue during obesity.

    PubMed

    Zheng, C; Yang, Q; Cao, J; Xie, N; Liu, K; Shou, P; Qian, F; Wang, Y; Shi, Y

    2016-01-01

    Obesity-associated chronic inflammation is characterized by an accumulation of adipose tissue macrophages (ATMs). It is generally believed that those macrophages are derived from peripheral blood monocytes. However, recent studies suggest that local proliferation of macrophages is responsible for ATM accumulation. In the present study, we revealed that both migration and proliferation contribute to ATM accumulation during obesity development. We show that there is a significant increase in ATMs at the early stage of obesity, which is largely due to an enhanced in situ macrophage proliferation. This result was obtained by employing fat-shielded irradiation and bone marrow reconstitution. Additionally, the production of CCL2, a pivotal chemoattractant of monocytes, was not found to be increased at this stage, corroborating with a critical role of proliferation. Nonetheless, as obesity proceeds, the role of monocyte migration into adipose tissue becomes more significant and those new immigrants further proliferate locally. These proliferating ATMs mainly reside in crown-like structures formed by macrophages surrounding dead adipocytes. We further showed that IL-4/STAT6 is a driving force for ATM proliferation. Therefore, we demonstrated that local proliferation of resident macrophages contributes to ATM accumulation during obesity development and has a key role in obesity-associated inflammation. PMID:27031964

  18. Adipose Tissue-Derived Stem Cells in Regenerative Medicine

    PubMed Central

    Frese, Laura; Dijkman, Petra E.; Hoerstrup, Simon P.

    2016-01-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted. PMID:27721702

  19. Hypothalamic Regulation of Brown Adipose Tissue Thermogenesis and Energy Homeostasis

    PubMed Central

    Zhang, Wei; Bi, Sheng

    2015-01-01

    Obesity and diabetes are increasing at an alarming rate worldwide, but the strategies for the prevention and treatment of these disorders remain inadequate. Brown adipose tissue (BAT) is important for cold protection by producing heat using lipids and glucose as metabolic fuels. This thermogenic action causes increased energy expenditure and significant lipid/glucose disposal. In addition, BAT in white adipose tissue (WAT) or beige cells have been found and they also exhibit the thermogenic action similar to BAT. These data provide evidence indicating BAT/beige cells as a potential target for combating obesity and diabetes. Recent discoveries of active BAT and beige cells in adult humans have further highlighted this potential. Growing studies have also shown the importance of central nervous system in the control of BAT thermogenesis and WAT browning using animal models. This review is focused on central neural thermoregulation, particularly addressing our current understanding of the importance of hypothalamic neural signaling in the regulation of BAT/beige thermogenesis and energy homeostasis. PMID:26379628

  20. Tissue/blood partition coefficients for xenon in various adipose tissue depots in man.

    PubMed

    Bülow, J; Jelnes, R; Astrup, A; Madsen, J; Vilmann, P

    1987-02-01

    Tissue/blood partition coefficients (lambda) for xenon were calculated for subcutaneous adipose tissue from the abdominal wall and the thigh, and for the perirenal adipose tissue after chemical analysis of the tissues for lipid, water and protein content. The lambda in the perirenal tissue was found to correlate linearly to the relative body weight (RBW) in per cent with the regression equation lambda = 0.045 . RBW + 0.99. The subcutaneous lambda on the abdomen correlated linearly to the local skinfold thickness (SFT) with the equation lambda = 0.22 SFT + 2.99. Similarly lambda on the thigh correlated to SFT with the equation lambda = 0.20 . SFT + 4.63. It is concluded that the previously accepted lambda value of 10 is generally too high in perirenal as well as in subcutaneous tissue. Thus, by application of the present regression equations, it is possible to obtain more exact estimates of the adipose tissue blood flow measured with the 133Xe wash-out method.

  1. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  2. Encapsulation Thermogenic Preadipocytes for Transplantation into Adipose Tissue Depots

    PubMed Central

    Xu, Lu; Shen, Qiwen; Mao, Zhongqi; Lee, L. James; Ziouzenkova, Ouliana

    2015-01-01

    Cell encapsulation was developed to entrap viable cells within semi-permeable membranes. The engrafted encapsulated cells can exchange low molecular weight metabolites in tissues of the treated host to achieve long-term survival. The semipermeable membrane allows engrafted encapsulated cells to avoid rejection by the immune system. The encapsulation procedure was designed to enable a controlled release of bioactive compounds, such as insulin, other hormones, and cytokines. Here we describe a method for encapsulation of catabolic cells, which consume lipids for heat production and energy dissipation (thermogenesis) in the intra-abdominal adipose tissue of obese mice. Encapsulation of thermogenic catabolic cells may be potentially applicable to the prevention and treatment of obesity and type 2 diabetes. Another potential application of catabolic cells may include detoxification from alcohols or other toxic metabolites and environmental pollutants. PMID:26066392

  3. Lipid Profiling of In Vitro Cell Models of Adipogenic Differentiation: Relationships With Mouse Adipose Tissues.

    PubMed

    Liaw, Lucy; Prudovsky, Igor; Koza, Robert A; Anunciado-Koza, Rea V; Siviski, Matthew E; Lindner, Volkhard; Friesel, Robert E; Rosen, Clifford J; Baker, Paul R S; Simons, Brigitte; Vary, Calvin P H

    2016-09-01

    Our objective was to characterize lipid profiles in cell models of adipocyte differentiation in comparison to mouse adipose tissues in vivo. A novel lipid extraction strategy was combined with global lipid profiling using direct infusion and sequential precursor ion fragmentation, termed MS/MS(ALL) . Perirenal and inguinal white adipose tissue and interscapular brown adipose tissues from adult C57BL/6J mice were analyzed. 3T3-L1 preadipocytes, ear mesenchymal progenitor cells, and brown adipose-derived BAT-C1 cells were also characterized. Over 3000 unique lipid species were quantified. Principal component analysis showed that perirenal versus inguinal white adipose tissues varied in lipid composition of triacyl- and diacylglycerols, sphingomyelins, glycerophospholipids and, notably, cardiolipin CL 72:3. In contrast, hexosylceramides and sphingomyelins distinguished brown from white adipose. Adipocyte differentiation models showed broad differences in lipid composition among themselves, upon adipogenic differentiation, and with adipose tissues. Palmitoyl triacylglycerides predominate in 3T3-L1 differentiation models, whereas cardiolipin CL 72:1 and SM 45:4 were abundant in brown adipose-derived cell differentiation models, respectively. MS/MS(ALL) data suggest new lipid biomarkers for tissue-specific lipid contributions to adipogenesis, thus providing a foundation for using in vitro models of adipogenesis to reflect potential changes in adipose tissues in vivo. J. Cell. Biochem. 117: 2182-2193, 2016. © 2016 Wiley Periodicals, Inc.

  4. Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues.

    PubMed

    Shan, Tizhong; Liu, Weiyi; Kuang, Shihuan

    2013-01-01

    Adipose tissues regulate metabolism, reproduction, and life span. The development and growth of adipose tissue are due to increases of both adipocyte cell size and cell number; the latter is mediated by adipocyte progenitors. Various markers have been used to identify either adipocyte progenitors or mature adipocytes. The fatty acid binding protein 4 (FABP4), commonly known as adipocyte protein 2 (aP2), has been extensively used as a marker for differentiated adipocytes. However, whether aP2 is expressed in adipogenic progenitors is controversial. Using Cre/LoxP-based cell lineage tracing in mice, we have identified a population of aP2-expressing progenitors in the stromal vascular fraction (SVF) of both white and brown adipose tissues. The aP2-lineage progenitors reside in the adipose stem cell niche and express adipocyte progenitor markers, including CD34, Sca1, Dlk1, and PDGFRα. When isolated and grown in culture, the aP2-expressing SVF cells proliferate and differentiate into adipocytes upon induction. Conversely, ablation of the aP2 lineage greatly reduces the adipogenic potential of SVF cells. When grafted into wild-type mice, the aP2-lineage progenitors give rise to adipose depots in recipient mice. Therefore, the expression of aP2 is not limited to mature adipocytes, but also marks a pool of undifferentiated progenitors associated with the vasculature of adipose tissues. Our finding adds to the repertoire of adipose progenitor markers and points to a new regulator of adipose plasticity.

  5. Paracrine and intracrine contributions of androgens and estrogens to adipose tissue biology: physiopathological aspects.

    PubMed

    Waraich, Rizwana S; Mauvais-Jarvis, Franck

    2013-08-01

    In mammals, the male and female hormones androgen and estrogen act as endocrine regulators of energy metabolism. However, adipose tissue is also a site of androgen and estrogen synthesis; androgens convert to estrogens in these tissues, and adipose tissue is also a reservoir of steroids that act locally in a paracrine and intracrine manner. Thus, in adipose tissue, the local output of sex hormones is more complex than would be suggested by routine measurement of serum hormone concentrations. This review integrates studies on the effects of androgens and estrogens in the developmental programming of adipose tissue function in early life and addresses the contributions of local androgen and estrogen metabolism on adipose tissue function in adults.

  6. Dietary whole cottonseed depresses lipogenesis but has no effect on stearoyl coenzyme desaturase activity in bovine subcutaneous adipose tissue.

    PubMed

    Page, A M; Sturdivant, C A; Lunt, D K; Smith, S B

    1997-09-01

    The primary objective of this study was to determine the effect of long-term feeding of whole cottonseed (WCS) on lipogenesis and stearoyl-coenzyme A desaturase activity in growing steers. Brangus steers were fed either a control, cornbased diet (n = 11) or 30% WCS (n = 12). The 30% WCS contributed an estimated 6.6% additional lipid to the diet. Steers fed the added WCS had greater live weights (P = 0.04) and kidney, pelvic, and heart fat (P = 0.005). Subcutaneous fat thickness was not different (P = 0.20) between treatment groups, although WCS elicited an increase in the proportion of large diameter subcutaneous adipocytes. The rate of [U-14C]acetate incorporation into fatty acids in subcutaneous adipose tissue was reduced by dietary WCS (171.4 vs 122.1 nmol x 100 mg adipose tissue-1 x 2 hr-1, P = 0.03), indicating that the increased dietary fat depressed de novo lipogenesis. Hepatic desaturase activity was much lower than that of subcutaneous adipose tissue, a feature common to cattle. We anticipated that added WCS also would depress stearoyl-coenzyme A desaturase activity in subcutaneous adipose tissue and liver due to its cyclopropene fatty acid content. Instead, desaturase activity was numerically (although not significantly) greater in liver (P = 0.37) and adipose tissue (P = 0.23). PMID:9417995

  7. Arginine nutrition and fetal brown adipose tissue development in nutrient-restricted sheep.

    PubMed

    Satterfield, M Carey; Dunlap, Kathrin A; Keisler, Duane H; Bazer, Fuller W; Wu, Guoyao

    2013-09-01

    Intrauterine growth restriction is a significant problem worldwide, resulting in increased rates of neonatal morbidity and mortality, as well as increased risks for metabolic and cardiovascular disease. The present study investigated the role of maternal undernutrition and L-arginine administration on fetal growth and development. Embryo transfer was utilized to generate genetically similar singleton pregnancies. On Day 35 of gestation, ewes were assigned to receive either 50 or 100% of their nutritional requirements. Ewes received i.v. injections of either saline or L-arginine three times daily from Day 100 to Day 125. Fetal growth was assessed at necropsy on Day 125. Maternal dietary manipulation altered circulating concentrations of leptin, progesterone, and amino acids in maternal plasma. Fetal weight was reduced in nutrient-restricted ewes on Day 125 compared with 100% fed ewes. Compared with saline-treated underfed ewes, maternal L-arginine administration did not affect fetal weight but increased weight of the fetal pancreas by 32% and fetal peri-renal brown adipose tissue mass by 48%. These results indicate that L-arginine administration enhanced fetal pancreatic and brown adipose tissue development. The postnatal effects of increased pancreatic and brown adipose tissue growth warrant further study.

  8. Connexin 43 Mediates White Adipose Tissue Beiging by Facilitating the Propagation of Sympathetic Neuronal Signals.

    PubMed

    Zhu, Yi; Gao, Yong; Tao, Caroline; Shao, Mengle; Zhao, Shangang; Huang, Wei; Yao, Ting; Johnson, Joshua A; Liu, Tiemin; Cypess, Aaron M; Gupta, Olga; Holland, William L; Gupta, Rana K; Spray, David C; Tanowitz, Herbert B; Cao, Lei; Lynes, Matthew D; Tseng, Yu-Hua; Elmquist, Joel K; Williams, Kevin W; Lin, Hua V; Scherer, Philipp E

    2016-09-13

    "Beige" adipocytes reside in white adipose tissue (WAT) and dissipate energy as heat. Several studies have shown that cold temperature can activate pro-opiomelanocortin-expressing (POMC) neurons and increase sympathetic neuronal tone to regulate WAT beiging. WAT, however, is traditionally known to be sparsely innervated. Details regarding the neuronal innervation and, more importantly, the propagation of the signal within the population of "beige" adipocytes are sparse. Here, we demonstrate that beige adipocytes display an increased cell-to-cell coupling via connexin 43 (Cx43) gap junction channels. Blocking of Cx43 channels by 18α-glycyrrhetinic acid decreases POMC-activation-induced adipose tissue beiging. Adipocyte-specific deletion of Cx43 reduces WAT beiging to a level similar to that observed in denervated fat pads. In contrast, overexpression of Cx43 is sufficient to promote beiging even with mild cold stimuli. These data reveal the importance of cell-to-cell communication, effective in cold-induced WAT beiging, for the propagation of limited neuronal inputs in adipose tissue. PMID:27626200

  9. Conjugated linoleic acid supplementation caused reduction of perilipin1 and aberrant lipolysis in epididymal adipose tissue

    SciTech Connect

    Cai, Demin; Li, Hongji; Zhou, Bo; Han, Liqiang; Zhang, Xiaomei; Yang, Guoyu; Yang, Guoqing

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Conjugated linoleic acid supplementation suppresses perilipin1 in epididymal fat. Black-Right-Pointing-Pointer Conjugated linoleic acid inhibits promoter activity of perilipin1 in 3T3-L1 cells. Black-Right-Pointing-Pointer Conjugated linoleic acids elevate basal but blunt hormone-stimulated lipolysis. -- Abstract: Perilipin1, a coat protein of lipid droplet, plays a key role in adipocyte lipolysis and fat formation of adipose tissues. However, it is not clear how the expression of perilipin1 is affected in the decreased white adipose tissues (WAT) of mice treated with dietary supplement of conjugated linoleic acids (CLA). Here we obtained lipodystrophic mice by dietary administration of CLA which exhibited reduced epididymal (EPI) WAT, aberrant adipocytes and decreased expression of leptin in this tissue. We found both transcription and translation of perilipin1 was suppressed significantly in EPI WAT of CLA-treated mice compared to that of control mice. The gene expression of negative regulator tumor necrosis factor {alpha} (TNF{alpha}) and the positive regulator Peroxisome Proliferator-Activated Receptor-{gamma} (PPAR{gamma}) of perilipin1 was up-regulated and down-regulated, respectively. In cultured 3T3-L1 cells the promoter activity of perilipin1 was dramatically inhibited in the presence of CLA. Using ex vivo experiment we found that the basal lipolysis was elevated but the hormone-stimulated lipolysis blunted in adipose explants of CLA-treated mice compared to that of control mice, suggesting that the reduction of perilipin1 in white adipose tissues may at least in part contribute to CLA-mediated alternation of lipolysis of WAT.

  10. Myeloid Heme Oxygenase-1 Haploinsufficiency Reduces High Fat Diet-Induced Insulin Resistance by Affecting Adipose Macrophage Infiltration in Mice

    PubMed Central

    Huang, Jun-Yuan; Chiang, Ming-Tsai; Yet, Shaw-Fang; Chau, Lee-Young

    2012-01-01

    Increased adipose tissue macrophages contribute to obesity-induced metabolic syndrome. Heme oxygenase-1 (HO-1) is a stress-inducible enzyme with potent anti-inflammatory and proangiogenic activities in macrophages. However, the role of macrophage HO-1 on obesity-induced adipose inflammation and metabolic syndrome remains unclear. Here we show that high-fat diet (HFD) feeding in C57BL/6J mice induced HO-1 expression in the visceral adipose tissue, particularly the stromal vascular fraction. When the irradiated C57BL/6J mice reconstituted with wild-type or HO-1+/− bone marrow were fed with HFD for over 24 weeks, the HO-1+/− chimeras were protected from HFD-induced insulin resistance and this was associated with reduced adipose macrophage infiltration and angiogenesis, suggesting that HO-1 affects myeloid cell migration toward adipose tissue during obesity. In vivo and in vitro migration assays revealed that HO-1+/− macrophages exhibited an impaired migration response. Chemoattractant-induced phosphorylation of p38 and focal adhesion kinase (FAK) declined faster in HO-1+/− macrophages. Further experiments demonstrated that carbon monoxide and bilirubin, the byproducts derived from heme degradation by HO-1, enhanced macrophage migration by increasing phosphorylation of p38 and FAK, respectively. These data disclose a novel role of hematopoietic cell HO-1 in promoting adipose macrophage infiltration and the development of insulin resistance during obesity. PMID:22761690

  11. A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice.

    PubMed

    Bargut, Thereza Cristina Lonzetti; Mandarim-de-Lacerda, Carlos Alberto; Aguila, Marcia Barbosa

    2015-09-01

    Fish oil improves obesity and its comorbidities, but its mechanisms of action remain unknown. We evaluate the effects of a diet rich in fish oil in white adipose tissue (WAT) inflammation pathways, renin-angiotensin system (RAS) and mitogen-activated protein kinases (MAPKs). To achieve our aims, four groups of male C57BL/6 mice were fed different diets: standard chow diet (SC; 10% energy from fat), SC+fish oil diet (SC-FO; 10% energy from fat), high-fat lard diet (HF-L; 50% energy from lard) and HF fish oil diet (HF-FO; 50% energy from fish oil). We evaluated body mass, epididymal fat pad mass, food intake and glucose tolerance. In WAT, we assessed adipocyte hypertrophy, monocyte chemotactic protein-1 immunofluorescence, and gene and protein expression of insulin signaling, inflammation, MAPKs, RAS, peroxisome proliferator-activated receptors (PPARs) and AMP-activated protein kinase (AMPK). In relation to the results, the HF-L group, as expected, showed elevated body mass and adiposity, glucose intolerance and hypertrophied adipocytes. In WAT, we found a defect in insulin signaling, infiltration of macrophages and inflammatory markers with the associated activation of MAPKs and local RAS. On the contrary, the HF-FO group did not present increased body mass, adiposity or glucose intolerance. In this group, insulin signaling, macrophage infiltration and inflammation were reduced in WAT in comparison with the HF-L group. We also observed decreases of MAPKs and local RAS and elevation of PPAR and AMPK. In summary, fish oil activates PPAR (the three isoforms) and AMPK, decreases WAT insulin resistance and inflammation, and inhibits MAPK and RAS pathways activation.

  12. Adipose tissue fatty acid chain length and mono-unsaturation increases with obesity and insulin resistance

    PubMed Central

    Yew Tan, Chong; Virtue, Samuel; Murfitt, Steven; Robert, Lee D.; Phua, Yi Hui; Dale, Martin; Griffin, Julian L.; Tinahones, Francisco; Scherer, Philipp E.; Vidal-Puig, Antonio

    2015-01-01

    The non-essential fatty acids, C18:1n9, C16:0, C16:1n7, C18:0 and C18:1n7 account for over 75% of fatty acids in white adipose (WAT) triacylglycerol (TAG). The relative composition of these fatty acids (FA) is influenced by the desaturases, SCD1-4 and the elongase, ELOVL6. In knock-out models, loss of SCD1 or ELOVL6 results in reduced Δ9 desaturated and reduced 18-carbon non-essential FA respectively. Both Elovl6 KO and SCD1 KO mice exhibit improved insulin sensitivity. Here we describe the relationship between WAT TAG composition in obese mouse models and obese humans stratified for insulin resistance. In mouse models with increasing obesity and insulin resistance, there was an increase in scWAT Δ9 desaturated FAs (SCD ratio) and FAs with 18-carbons (Elovl6 ratio) in mice. Data from mouse models discordant for obesity and insulin resistance (AKT2 KO, Adiponectin aP2-transgenic), suggested that scWAT TAG Elovl6 ratio was associated with insulin sensitivity, whereas SCD1 ratio was associated with fat mass. In humans, a greater SCD1 and Elovl6 ratio was found in metabolically more harmful visceral adipose tissue when compared to subcutaneous adipose tissue. PMID:26679101

  13. Methyl-ß-cyclodextrin alters adipokine gene expression and glucose metabolism in swine adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was designed to determine if metabolic stress as induced by methyl-ß-cyclodextrin (MCD) can alter cytokine expression in neonatal swine adipose tissue explants. Subcutaneous adipose tissue explants (100 ± 10 mg) were prepared from 21 day old pigs. Explants were incubated in medium 199 s...

  14. Delivery of basic fibroblast growth factors from heparinized decellularized adipose tissue stimulates potent de novo adipogenesis.

    PubMed

    Lu, Qiqi; Li, Mingming; Zou, Yu; Cao, Tong

    2014-01-28

    Scaffolds based on decellularized adipose tissue (DAT) are gaining popularity in adipose tissue engineering due to their high biocompatibility and adipogenic inductive property. However, previous studies involving DAT-derived scaffolds have not fully revealed their potentials for in vivo adipose tissue construction. With the aim of developing a more efficient adipose tissue engineering technique based on DAT, in this study, we investigated the in vivo adipogenic potential of a basic fibroblast growth factor (bFGF) delivery system based on heparinized DAT (Hep-DAT). To generate this system, heparins were cross-linked to mouse DATs by using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide and N-Hydroxysuccinimide. The bFGF-binding Hep-DATs were first tested for controlled release ability in vitro and then transplanted subcutaneously. Highly vascularized adipose tissues were formed 6weeks after transplantation. Histology and gene expression analysis revealed that majority of the Hep-DAT scaffolds were infiltrated with host-derived adipose tissues that possessed similar adipogenic and inflammatory gene expression as endogenous adipose tissues. Additionally, strong de novo adipogenesis could also be induced when bFGF-binding Hep-DATs were thoroughly minced and injected subcutaneously. In conclusion, our study demonstrated that bFGF-binding Hep-DAT could be an efficient, biocompatible and injectable adipogenic system for in vivo adipose tissue engineering.

  15. Metabolic inflammation in inflammatory bowel disease: crosstalk between adipose tissue and bowel.

    PubMed

    Gonçalves, Pedro; Magro, Fernando; Martel, Fátima

    2015-02-01

    Epidemiological studies show that both the incidence of inflammatory bowel disease (IBD) and the proportion of people with obesity and/or obesity-associated metabolic syndrome increased markedly in developed countries during the past half century. Obesity is also associated with the development of more active IBD and requirement for hospitalization and with a decrease in the time span between diagnosis and surgery. Patients with IBD, especially Crohn's disease, present fat-wrapping or "creeping fat," which corresponds to ectopic adipose tissue extending from the mesenteric attachment and covering the majority of the small and large intestinal surface. Mesenteric adipose tissue in patients with IBD presents several morphological and functional alterations, e.g., it is more infiltrated with immune cells such as macrophages and T cells. All these lines of evidence clearly show an association between obesity, adipose tissue, and functional bowel disorders. In this review, we will show that the mesenteric adipose tissue and creeping fat are not innocent by standers but actively contribute to the intestinal and systemic inflammatory responses in patients with IBD. More specifically, we will review evidence showing that adipose tissue in IBD is associated with major alterations in the secretion of cytokines and adipokines involved in inflammatory process, in adipose tissue mesenchymal stem cells and adipogenesis, and in the interaction between adipose tissue and other intestinal components (immune, lymphatic, neuroendocrine, and intestinal epithelial systems). Collectively, these studies underline the importance of adipose tissue for the identification of novel therapeutic approaches for IBD.

  16. Adipogenesis: new insights into brown adipose tissue differentiation.

    PubMed

    Carobbio, Stefania; Rosen, Barry; Vidal-Puig, Antonio

    2013-12-01

    Confirmation of the presence of functional brown adipose tissue (BAT) in humans has renewed interest in investigating the potential therapeutic use of this tissue. The finding that its activity positively correlates with decreased BMI, decreased fat content, and augmented energy expenditure suggests that increasing BAT mass/activity or browning of white adipose tissue (WAT) could be a strategy to prevent or treat obesity and its associated morbidities. The challenge now is to find a safe and efficient way to develop this idea. Whereas BAT has being widely studied in murine models both in vivo and in vitro, there is an urgent need for human cellular models to investigate BAT physiology and functionality from a molecular point of view. In this review, we focus on the latest insights surrounding BAT development and activation in rodents and humans. Then, we discuss how the availability of murine models has been essential to identify BAT progenitors and trace their lineage. Finally, we address how this information can be exploited to develop human cellular models for BAT differentiation/activation. In this context, human embryonic stem and induced pluripotent stem cells-based cellular models represent a resource of great potential value, as they can provide a virtually inexhaustible supply of starting material for functional genetic studies, -omics based analysis and validation of therapeutic approaches. Moreover, these cells can be readily genetically engineered, opening the possibility of generating patient-specific cellular models, allowing the investigation of the influence of different genetic backgrounds on BAT differentiation in pathological or in physiological states.

  17. Model of adipose tissue cellularity dynamics during food restriction.

    PubMed

    Soula, H A; Géloën, A; Soulage, C O

    2015-01-01

    Adipose tissue and adipocytes play a central role in the pathogenesis of metabolic diseases related to obesity. Size of fat cells depends on the balance of synthesis and mobilization of lipids and can undergo important variations throughout the life of the organism. These variations usually occur when storing and releasing lipids according to energy demand. In particular when confronted to severe food restriction, adipocyte releases its lipid content via a process called lipolysis. We propose a mathematical model that combines cell diameter distribution and lipolytic response to show that lipid release is a surface (radius squared) limited mechanism. Since this size-dependent rate affects the cell׳s shrinkage speed, we are able to predict the cell size distribution evolution when lipolysis is the only factor at work: such as during an important food restriction. Performing recurrent surgical biopsies on rats, we measured the evolution of adipose cell size distribution for the same individual throughout the duration of the food restriction protocol. We show that our microscopic model of size dependent lipid release can predict macroscopic size distribution evolution.

  18. Identification of cyclopropaneoctanoic acid 2-hexyl in human adipose tissue and serum.

    PubMed

    Sledzinski, Tomasz; Mika, Adriana; Stepnowski, Piotr; Proczko-Markuszewska, Monika; Kaska, Lukasz; Stefaniak, Tomasz; Swierczynski, Julian

    2013-08-01

    Fatty acids containing a cyclopropane ring in their structure (cyclopropane FA) have been found in a wide variety of bacteria, a number of protozoa, and Myriapoda. Little is known about cyclopropane FA in mammal, especially in human tissues. The present study deals with the identification of cyclopropane FA in adipose tissue and serum of humans and rats. Fatty acids extracted from the adipose tissue and serum obtained from obese women during bariatric surgery were methylated and analyzed on GC-MS. We have identified: cyclopropaneoctanoic acid 2-hexyl, cyclopropaneoctanoic acid 2-octyl, cyclopropanenonanoic acid, and 2-[[2-[(2-ethylcyclopropyl)methyl]cyclopropyl]methyl] acid in human adipose tissue. We confirmed the presence of cyclopropaneoctanoic acid 2-hexyl by derivatization of FA extracted from human adipose tissue to picolinyl esters. Cyclopropaneoctanoic acid 2-hexyl was the main cyclopropane FA (approximately 0.4 % of total fatty acids in human adipose tissue, and about 0.2 % of total fatty acids in the serum). In adipose tissue cyclopropaneoctanoic acid 2-hexyl was found mainly in triacylglycerols, whereas in serum in phospholipids and triacylglycerols. The cyclopropaneoctanoic acid 2-hexyl has also been found in serum, and adipose tissue of rats in amounts comparable to humans. The content of cyclopropaneoctanoic acid 2-hexyl decreased in adipose tissue of rats maintained on a restricted diet for 1 month. In conclusion, we demonstrated that cyclopropaneoctanoic acid 2-hexyl is present in human adipose tissue and serum. Adipose tissue cyclopropaneoctanoic acid 2-hexyl is stored mainly in triacylglycerols and the storage of this cyclopropane FA is affected by food restriction.

  19. Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue.

    PubMed

    Watt, Matthew J; Holmes, Anna G; Pinnamaneni, Srijan K; Garnham, Andrew P; Steinberg, Gregory R; Kemp, Bruce E; Febbraio, Mark A

    2006-03-01

    Hormone-sensitive lipase (HSL) is important for the degradation of triacylglycerol in adipose and muscle tissue, but the tissue-specific regulation of this enzyme is not fully understood. We investigated the effects of adrenergic stimulation and AMPK activation in vitro and in circumstances where AMPK activity and catecholamines are physiologically elevated in humans in vivo (during physical exercise) on HSL activity and phosphorylation at Ser(563) and Ser(660), the PKA regulatory sites, and Ser(565), the AMPK regulatory site. In human experiments, skeletal muscle, subcutaneous adipose and venous blood samples were obtained before, at 15 and 90 min during, and 120 min after exercise. Skeletal muscle HSL activity was increased by approximately 80% at 15 min compared with rest and returned to resting rates at the cessation of and 120 min after exercise. Consistent with changes in plasma epinephrine, skeletal muscle HSL Ser(563) and Ser(660) phosphorylation were increased by 27% at 15 min (P < 0.05), remained elevated at 90 min, and returned to preexercise values postexercise. Skeletal muscle HSL Ser(565) phosphorylation and AMPK signaling were increased at 90 min during, and after, exercise. Phosphorylation of adipose tissue HSL paralleled changes in skeletal muscle in vivo, except HSL Ser(660) was elevated 80% in adipose compared with 35% in skeletal muscle during exercise. Studies in L6 myotubes and 3T3-L1 adipocytes revealed important tissue differences in the regulation of HSL. AMPK inhibited epinephrine-induced HSL activity in L6 myotubes and was associated with reduced HSL Ser(660) but not Ser(563) phosphorylation. HSL activity was reduced in L6 myotubes expressing constitutively active AMPK, confirming the inhibitory effects of AMPK on HSL activity. Conversely, in 3T3-L1 adipocytes, AMPK activation after epinephrine stimulation did not prevent HSL activity or glycerol release, which coincided with maintenance of HSL Ser(660) phosphorylation. Taken together

  20. Adipose tissue engineering: state of the art, recent advances and innovative approaches.

    PubMed

    Tanzi, Maria Cristina; Farè, Silvia

    2009-09-01

    Adipose tissue is a highly specialized connective tissue found either in white or brown forms, the white form being the most abundant in adult humans. Loss or damage of white adipose tissue due to aging or pathological conditions needs reconstructive approaches. To date, two main strategies are being investigated for generating functional adipose tissue: autologous tissue/cell transplantation and adipose tissue engineering. Free-fat transplantation rarely achieves sufficient tissue augmentation owing to delayed neovascularization, with subsequent cell necrosis and graft volume shrinkage. Tissue engineering approaches represent, instead, a more suitable alternative for adipose tissue regeneration; they can be performed either with in situ or de novo adipogenesis. In situ adipogenesis or transplantation of encapsulated cells can be useful in healing small-volume defects, whereas restoration of large defects, where vascularization and a rapid volumetric gain are strict requirements, needs de novo strategies with 3D scaffold/filling matrix combinations. For adipose tissue engineering, the use of adult mesenchymal stem cells (both adipose- and bone marrow-derived stem cells) or of preadipocytes is preferred to the use of mature adipocytes, which have low expandability and poor ability for volume retention. This review intends to assemble and describe recent work on this topic, critically presenting successes obtained and drawbacks faced to date.

  1. The role of brown adipose tissue in temperature regulation. [of hibernating and hypothermic mammals

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1973-01-01

    The thermogenetic capacities of brown adipose tissue were studied on marmots, rats and monkeys in response to cold exposure. All experiments indicated that the brown fat produced heat and slowed the cooling of tissues.

  2. Insulin Mediated 14C-Glucose Incorporation Into Adipose Tissue: An Undergraduate Biochemistry Experiment

    ERIC Educational Resources Information Center

    Landman, A. D.; Eskin, N. A. M.

    1975-01-01

    Describes an experiment in which rat adipose tissue samples are exposed to labeled glucose; insulin is added to one sample. Subsequent scintillation counting demonstrates the ability of insulin to facilitate the entry of glucose into the tissue. (MLH)

  3. Calcium Sensing Receptor (CaSR) activation elevates proinflammatory factor expression in human adipose cells and adipose tissue

    PubMed Central

    Cifuentes, Mariana; Fuentes, Cecilia; Acevedo, Ingrid; Villalobos, Elisa; Hugo, Eric; Ben Jonathan, Nira; Reyes, Marcela

    2013-01-01

    We have previously established that human adipose cells and the human adipose cell line LS14 express the calcium sensing receptor (CaSR) and that its expression is elevated upon exposure to inflammatory cytokines that are typically elevated in obese humans. Research in recent years has established that an important part of the adverse metabolic and cardiovascular consequences of obesity derive from a dysfunction of the tissue, one of the mechanisms being a disordered secretion pattern leading to an excess of proinflammatory cytokines and chemokines. Given the reported association of the CaSR to inflammatory processes in other tissues, we sought to evaluate its role elevating the adipose expression of inflammatory factors. We exposed adipose tissue and in-vitro cultured LS14 preadipocytes and differentiated adipocytes to the calcimimetic cinacalcet and evaluated the expression or production of the proinflammatory cytokines IL6, IL1β and TNFα as well as the chemoattractant factor CCL2. CaSR activation elicited an elevation in the expression of the inflammatory factors, which was in part reverted by SN50, an inhibitor of the inflammatory mediator NFκB. Our observations suggest that CaSR activation elevates cytokine and chemokine production through a signaling pathway involving activation of NFκB nuclear translocation. These findings confirm the relevance of the CaSR in the pathophysiology of obesity-induced adipose tissue dysfunction, with an interesting potential for pharmacological manipulation in the fight against obesity- associated diseases. PMID:22449852

  4. Glycerolipid biosynthesis in rat adipose tissue. Influence of adipose-cell size and site of adipose tissue on triacylglycerol formation in lean and obese rats.

    PubMed

    Jamdar, S C

    1978-01-15

    The rates of lipid formation were compared in different fat-depots from lean and obese rats by using [14C]glycerol 3-phosphate, [14C]glucose or [14C]acetate as substrates. In lean animals, subcutaneous adipose tissue showed significantly lower rates of lipid synthesis than did perirenal and gonadal fat-tissue. In obese animals, the rates of lipid synthesis were significantly higher and did not vary from one fat-depot to another. Differences in the rates of lipid formation between lean and obese rats disappeared during dietary restriction of obese animals. The isolated adipocyte preparation did not reflect the true metabolic activity of the adipose organ, since this preparation was mainly derived from smaller adipocytes that were metabolically less active than larger adipocytes. The present study suggests that it is better to use whole tissue preparations to measure lipogenesis and esterification reactions, because these measurements represent the contribution of both larger and smaller adipocytes towards lipid formation.

  5. Functional characteristics of mesenchymal stem cells derived from the adipose tissue of a patient with achondroplasia.

    PubMed

    Park, Jeong-Ran; Lee, Hanbyeol; Kim, Chung-Hyo; Hong, Seok-Ho; Ha, Kwon-Soo; Yang, Se-Ran

    2016-05-01

    Mesenchymal stem cells (MSCs) can be isolated from various tissues including bone marrow, adipose tissue, skin dermis, and umbilical Wharton's jelly as well as injured tissues. MSCs possess the capacity for self-renewal and the potential for differentiation into adipogenic, osteogenic, and chondrogenic lineages. However, the characteristics of MSCs in injured tissues, such as achondroplasia (ACH), are not well known. In this study, we isolated MSCs from human subcutaneous adipose (ACH-SAMSCs) tissue and circumjacent human adipose tissue of the cartilage (ACH-CAMSCs) from a patient with ACH. We then analyzed the characterization of ACH-SAMSCs and ACH-CAMSCs, compared with normal human dermis-derived MSCs (hDMSCs). In flow cytometry analysis, the isolated ACH-MSCs expressed low levels of CD73, CD90, and CD105, compared with hDMSCs. Moreover, both ACH- SAMSCs and ACH-CAMSCs had constitutionally overactive fibroblast growth factor receptor 3 (FGFR3) and exhibited significantly reduced osteogenic differentiation, compared to enhanced adipogenic differentiation. The activity of extracellular signal-regulated kinases 1/2 (ERK1/2) and p38 mitogen-activated protein kinases (p38 MAPK) was increased in ACH-MSCs. In addition, the efficacy of osteogenic differentiation was slightly restored in osteogenic differentiation medium with MAPKs inhibitors. These results suggest that they play essential roles in MSC differentiation toward adipogenesis in ACH pathology. In conclusion, the identification of the characteristics of ACH-MSCs and the favoring of adipogenic differentiation via the FGFR3/MAPK axis might help to elucidate the pathogenic mechanisms relevant to other skeletal diseases and could provide targets for therapeutic interventions.

  6. Protein turnover in adipose tissue from fasted or diabetic rats

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Ost, Alan H.; Coffman, Julia

    1986-01-01

    Protein synthesis and degradation in vitro were compared in epididymal fat pads from animals deprived of food for 48 h or treated 6 or 12 days prior with streptozotocin to induce diabetes. Although both fasting and diabetes led to depressed (-24 to -57 percent) protein synthesis, the diminution in protein degradation (-63 to -72 percent) was even greater, so that net in vitro protein balance improved dramatically. Insulin failed to inhibit protein degradation in fat pads of these rats as it does for fed animals. Although insulin stimulated protein synthesis in fat pads of fasted and 12 day diabetic rats, the absolute change was much smaller than that seen in the fed state. The inhibition of protein degradation by leucine also seems to be less in fasted animals, probably because leucine catabolism is slower in fasting. These results show that fasting and diabetes may improve protein balance in adipose tissue but diminish the regulatory effects of insulin.

  7. Epicardial adipose tissue: far more than a fat depot

    PubMed Central

    Talman, Andrew H.; Psaltis, Peter J.; Cameron, James D.; Meredith, Ian T.; Seneviratne, Sujith K.

    2014-01-01

    Epicardial adipose tissue (EAT) refers to the fat depot that exists on the surface of the myocardium and is contained entirely beneath the pericardium, thus surrounding and in direct contact with the major coronary arteries and their branches. EAT is a biologically active organ that may play a role in the association between obesity and coronary artery disease (CAD). Given recent advances in non-invasive imaging modalities such a multidetector computed tomography (MDCT), EAT can be accurately measured and quantified. In this review, we focus on the evidence suggesting a role for EAT as a quantifiable risk marker in CAD, as well as describe the role EAT may play in the development and vulnerability of coronary artery plaque. PMID:25610800

  8. Evidence for two types of brown adipose tissue in humans.

    PubMed

    Lidell, Martin E; Betz, Matthias J; Dahlqvist Leinhard, Olof; Heglind, Mikael; Elander, Louise; Slawik, Marc; Mussack, Thomas; Nilsson, Daniel; Romu, Thobias; Nuutila, Pirjo; Virtanen, Kirsi A; Beuschlein, Felix; Persson, Anders; Borga, Magnus; Enerbäck, Sven

    2013-05-01

    The previously observed supraclavicular depot of brown adipose tissue (BAT) in adult humans was commonly believed to be the equivalent of the interscapular thermogenic organ of small mammals. This view was recently disputed on the basis of the demonstration that this depot consists of beige (also called brite) brown adipocytes, a newly identified type of brown adipocyte that is distinct from the classical brown adipocytes that make up the interscapular thermogenic organs of other mammals. A combination of high-resolution imaging techniques and histological and biochemical analyses showed evidence for an anatomically distinguishable interscapular BAT (iBAT) depot in human infants that consists of classical brown adipocytes, a cell type that has so far not been shown to exist in humans. On the basis of these findings, we conclude that infants, similarly to rodents, have the bona fide iBAT thermogenic organ consisting of classical brown adipocytes that is essential for the survival of small mammals in a cold environment.

  9. Brown adipose tissue: The heat is on the heart.

    PubMed

    Thoonen, Robrecht; Hindle, Allyson G; Scherrer-Crosbie, Marielle

    2016-06-01

    The study of brown adipose tissue (BAT) has gained significant scientific interest since the discovery of functional BAT in adult humans. The thermogenic properties of BAT are well recognized; however, data generated in the last decade in both rodents and humans reveal therapeutic potential for BAT against metabolic disorders and obesity. Here we review the current literature in light of a potential role for BAT in beneficially mediating cardiovascular health. We focus mainly on BAT's actions in obesity, vascular tone, and glucose and lipid metabolism. Furthermore, we discuss the recently discovered endocrine factors that have a potential beneficial role in cardiovascular health. These BAT-secreted factors may have a favorable effect against cardiovascular risk either through their metabolic role or by directly affecting the heart. PMID:27084389

  10. Comparison of different fabrication techniques for human adipose tissue engineering in severe combined immunodeficient mice.

    PubMed

    Frerich, Bernhard; Winter, Karsten; Scheller, Konstanze; Braumann, Ulf-Dietrich

    2012-03-01

    Adipose tissue engineering has been advocated for soft-tissue augmentation and for the treatment of soft tissue defects. The efficacy in terms of persistence of the engineered fat is, however, not yet understood and could depend on the nature of fabrication and application. The high metabolic demand of adipose tissue also points to the problem of vascularization. Endothelial cell (EC) cotransplantation could be a solution. Human adipose tissue-derived stromal cells were seeded on collagen microcarriers and submitted to adipogenic differentiation ("microparticles"). In a first run of experiments, these microparticles were implanted under the skin of severe combined immunodeficient (SCID) mice (n = 45) with and without the addition of human umbilical vein ECs (HUVECs). A group of carriers without any cells served as control. In a second run, adipose tissue constructs were fabricated by embedding microparticles in fibrin matrix with and without the addition of HUVEC, and were also implanted in SCID mice (n = 30). The mice were sacrificed after 12 days, 4 weeks, and 4 months. Mature adipose tissue, fibrous tissue, and acellular regions were quantified on whole-specimen histological sections. The implantation of microparticles showed a better sustainment of tissue volume and a higher degree of mature adipose tissue compared with adipose tissue constructs. Immunohistology proved obviously perfused human tissue-engineered vessels. There was a limited but not significant advantage in EC cotransplantation after 4 weeks in terms of tissue volume. In groups with EC cotransplantation, there were significantly fewer acellular/necrotic areas after 4 weeks and 4 months. In conclusion, the size of the implanted tissue equivalents is a crucial parameter, affecting volume maintenance and the gain of mature adipose tissue. EC cotransplantation leads to functional stable vascular networks connecting in part to the host vasculature and contributing to tissue perfusion; however

  11. A Methionine Deficient Diet Enhances Adipose Tissue Lipid Metabolism and Alters Anti-Oxidant Pathways in Young Growing Pigs

    PubMed Central

    Castellano, Rosa; Perruchot, Marie-Hélène; Conde-Aguilera, José Alberto; van Milgen, Jaap; Collin, Anne; Tesseraud, Sophie; Mercier, Yves; Gondret, Florence

    2015-01-01

    Methionine is a rate-limiting amino-acid for protein synthesis but non-proteinogenic roles on lipid metabolism and oxidative stress have been demonstrated. Contrary to rodents where a dietary methionine deficiency led to a lower adiposity, an increased lipid accretion rate has been reported in growing pigs fed a methionine deficient diet. This study aimed to clarify the effects of a dietary methionine deficiency on different aspects of tissue lipid metabolism and anti-oxidant pathways in young pigs. Post-weaned pigs (9.8 kg initial body weight) were restrictively-fed diets providing either an adequate (CTRL) or a deficient methionine supply (MD) during 10 days (n=6 per group). At the end of the feeding trial, pigs fed the MD diet had higher lipid content in subcutaneous adipose tissue. Expression levels of genes involved in glucose uptake, lipogenesis but also lipolysis, and activities of NADPH enzyme suppliers were generally higher in subcutaneous and perirenal adipose tissues of MD pigs, suggesting an increased lipid turnover in those pigs. Activities of the anti-oxidant enzymes superoxide dismutase, catalase and glutathione reductase were increased in adipose tissues and muscle of MD pigs. Expression level and activity of the glutathione peroxidase were also higher in liver of MD pigs, but hepatic contents in the reduced and oxidized forms of glutathione and glutathione reductase activity were lower compared with control pigs. In plasma, superoxide dismutase activity was higher but total anti-oxidant power was lower in MD pigs. These results show that a dietary methionine deficiency resulted in increased levels of lipogenesis and lipolytic indicators in porcine adipose tissues. Decreased glutathione content in the liver and coordinated increase of enzymatic antioxidant activities in adipose tissues altered the cellular redox status of young pigs fed a methionine-deficient diet. These findings illustrate that a rapidly growing animal differently adapts tissue

  12. A Methionine Deficient Diet Enhances Adipose Tissue Lipid Metabolism and Alters Anti-Oxidant Pathways in Young Growing Pigs.

    PubMed

    Castellano, Rosa; Perruchot, Marie-Hélène; Conde-Aguilera, José Alberto; van Milgen, Jaap; Collin, Anne; Tesseraud, Sophie; Mercier, Yves; Gondret, Florence

    2015-01-01

    Methionine is a rate-limiting amino-acid for protein synthesis but non-proteinogenic roles on lipid metabolism and oxidative stress have been demonstrated. Contrary to rodents where a dietary methionine deficiency led to a lower adiposity, an increased lipid accretion rate has been reported in growing pigs fed a methionine deficient diet. This study aimed to clarify the effects of a dietary methionine deficiency on different aspects of tissue lipid metabolism and anti-oxidant pathways in young pigs. Post-weaned pigs (9.8 kg initial body weight) were restrictively-fed diets providing either an adequate (CTRL) or a deficient methionine supply (MD) during 10 days (n=6 per group). At the end of the feeding trial, pigs fed the MD diet had higher lipid content in subcutaneous adipose tissue. Expression levels of genes involved in glucose uptake, lipogenesis but also lipolysis, and activities of NADPH enzyme suppliers were generally higher in subcutaneous and perirenal adipose tissues of MD pigs, suggesting an increased lipid turnover in those pigs. Activities of the anti-oxidant enzymes superoxide dismutase, catalase and glutathione reductase were increased in adipose tissues and muscle of MD pigs. Expression level and activity of the glutathione peroxidase were also higher in liver of MD pigs, but hepatic contents in the reduced and oxidized forms of glutathione and glutathione reductase activity were lower compared with control pigs. In plasma, superoxide dismutase activity was higher but total anti-oxidant power was lower in MD pigs. These results show that a dietary methionine deficiency resulted in increased levels of lipogenesis and lipolytic indicators in porcine adipose tissues. Decreased glutathione content in the liver and coordinated increase of enzymatic antioxidant activities in adipose tissues altered the cellular redox status of young pigs fed a methionine-deficient diet. These findings illustrate that a rapidly growing animal differently adapts tissue

  13. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    SciTech Connect

    Fujii, Masakazu; Inoguchi, Toyoshi; Batchuluun, Battsetseg; Sugiyama, Naonobu; Kobayashi, Kunihisa; Sonoda, Noriyuki; Takayanagi, Ryoichi

    2013-08-16

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophage polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.

  14. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

    PubMed

    Carrasco-Benso, Maria P; Rivero-Gutierrez, Belen; Lopez-Minguez, Jesus; Anzola, Andrea; Diez-Noguera, Antoni; Madrid, Juan A; Lujan, Juan A; Martínez-Augustin, Olga; Scheer, Frank A J L; Garaulet, Marta

    2016-09-01

    In humans, insulin sensitivity varies according to time of day, with decreased values in the evening and at night. Mechanisms responsible for the diurnal variation in insulin sensitivity are unclear. We investigated whether human adipose tissue (AT) expresses intrinsic circadian rhythms in insulin sensitivity that could contribute to this phenomenon. Subcutaneous and visceral AT biopsies were obtained from extremely obese participants (body mass index, 41.8 ± 6.3 kg/m(2); 46 ± 11 y) during gastric-bypass surgery. To assess the rhythm in insulin signaling, AKT phosphorylation was determined every 4 h over 24 h in vitro in response to different insulin concentrations (0, 1, 10, and 100 nM). Data revealed that subcutaneous AT exhibited robust circadian rhythms in insulin signaling (P < 0.00001). Insulin sensitivity reached its maximum (acrophase) around noon, being 54% higher than during midnight (P = 0.009). The amplitude of the rhythm was positively correlated with in vivo sleep duration (r = 0.53; P = 0.023) and negatively correlated with in vivo bedtime (r = -0.54; P = 0.020). No circadian rhythms were detected in visceral AT (P = 0.643). Here, we demonstrate the relevance of the time of the day for how sensitive AT is to the effects of insulin. Subcutaneous AT shows an endogenous circadian rhythm in insulin sensitivity that could provide an underlying mechanism for the daily rhythm in systemic insulin sensitivity.-Carrasco-Benso, M. P., Rivero-Gutierrez, B., Lopez-Minguez, J., Anzola, A., Diez-Noguera, A., Madrid, J. A., Lujan, J. A., Martínez-Augustin, O., Scheer, F. A. J. L., Garaulet, M. Human adipose tissue expresses intrinsic circadian rhythm in insulin sensitivity.

  15. Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering.

    PubMed

    Tan, Huaping; Ramirez, Christina M; Miljkovic, Natasa; Li, Han; Rubin, J Peter; Marra, Kacey G

    2009-12-01

    A series of thermosensitive copolymer hydrogels, aminated hyaluronic acid-g-poly(N-isopropylacrylamide) (AHA-g-PNIPAAm), were synthesized by coupling carboxylic end-capped PNIPAAm (PNIPAAm-COOH) to AHA through amide bond linkages. AHA was prepared by grafting adipic dihydrazide to the HA backbone and PNIPAAm-COOH copolymer was synthesized via a facile thermo-radical polymerization technique by polymerization of NIPAAm using 4,4'-azobis(4-cyanovaleric acid) as an initiator, respectively. The structure of AHA and AHA-g-PNIPAAm copolymer was determined by (1)H NMR. Two AHA-g-PNIPAAm copolymers with different weight ratios of PNIPAAm on the applicability of injectable hydrogels were characterized. The lower critical solution temperature (LCST) of AHA-g-PNIPAAm copolymers in PBS were measured as approximately 30 degrees C by rheological analysis, regardless of the grafting degrees. Enzymatic resistance of AHA-g-PNIPAAm hydrogels with 28% and 53% of PNIPAAm in 100U/mL hyaluronidase/PBS at 37 degrees C was 12.3% and 37.6% over 28 days, respectively. Equilibrium swelling ratios of AHA-g-PNIPAAm hydrogels with 28% of PNIPAAm were 21.5, and significantly decreased to 13.3 with 53% of PNIPAAm in PBS at 37 degrees C. Results from SEM observations confirm a porous 3D AHA-g-PNIPAAm hydrogel structure with interconnected pores after freeze-drying and the pore diameter depends on the weight ratios of PNIPAAm. Encapsulation of human adipose-derived stem cells (ASCs) within hydrogels showed the AHA-g-PNIPAAm copolymers were noncytotoxic and preserved the viability of the entrapped cells. A preliminary in vivo study demonstrated the usefulness of the AHA-g-PNIPAAm copolymer as an injectable hydrogel for adipose tissue engineering. This newly described thermoresponsive AHA-g-PNIPAAm copolymer demonstrated attractive properties to serve as cell or pharmaceutical delivery vehicles for a variety of tissue engineering applications. PMID:19783043

  16. Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering

    PubMed Central

    Tan, Huaping; Ramirez, Christina M.; Miljkovic, Natasa; Li, Han; Rubin, J. Peter; Marra, Kacey G.

    2009-01-01

    A series of thermosensitive copolymer hydrogels, aminated hyaluronic acid-g-poly(N-isopropylacrylamide) (AHA-g-PNIPAAm), were synthesized by coupling carboxylic end-capped PNIPAAm (PNIPAAm-COOH) to AHA through amide bond linkages. AHA was prepared by grafting adipic dihydrazide to the HA backbone and PNIPAAm-COOH copolymer was synthesized via a facile thermo-radical polymerization technique by polymerization of NIPAAm using 4,4′-azobis(4-cyanovaleric acid) as an initiator, respectively. The structure of AHA and AHA-g-PNIPAAm copolymer was determined by 1H NMR. Two AHA-g-PNIPAAm copolymers with different weight ratios of PNIPAAm on the applicability of injectable hydrogels were characterized. The lower critical solution temperature (LCST) of AHA-g-PNIPAAm copolymers in PBS were measured as ~30°C by rheological analysis, regardless of the grafting degrees. Enzymatic resistance of AHA-g-PNIPAAm hydrogels with 28% and 53% of PNIPAAm in 100U/mL hyaluronidase/PBS at 37°C was 12.3% and 37.6% over 28 days, respectively. Equilibrium swelling ratios of AHA-g-PNIPAAm hydrogels with 28% of PNIPAAm were 21.5, and significantly decreased to 13.3 with 53% of PNIPAAm in PBS at 37°C. Results from SEM observations confirm a porous 3D AHA-g-PNIPAAm hydrogel structure with interconnected pores after freeze-drying and the pore diameter depends on the weight ratios of PNIPAAm. Encapsulation of human adipose-derived stem cells (ASCs) within hydrogels showed the AHA-g-PNIPAAm copolymers were noncytotoxic and preserved the viability of the entrapped cells. A preliminary in vivo study demonstrated the usefulness of the AHA-g-PNIPAAm copolymer as an injectable hydrogel for adipose tissue engineering. This newly described thermoresponsive AHA-g-PNIPAAm copolymer demonstrated attractive properties to serve as cell or pharmaceutical delivery vehicles for a variety of tissue engineering applications. PMID:19783043

  17. The Use of Adipose Tissue-Derived Progenitors in Bone Tissue Engineering - a Review

    PubMed Central

    Bhattacharya, Indranil; Ghayor, Chafik; Weber, Franz E.

    2016-01-01

    2500 years ago, Hippocrates realized that bone can heal without scaring. The natural healing potential of bone is, however, restricted to small defects. Extended bone defects caused by trauma or during tumor resections still pose a huge problem in orthopedics and cranio-maxillofacial surgery. Bone tissue engineering strategies using stem cells, growth factors, and scaffolds could overcome the problems with the treatment of extended bone defects. In this review, we give a short overview on bone tissue engineering with emphasis on the use of adipose tissue-derived stem cells and small molecules. PMID:27781021

  18. Immune response in the adipose tissue of lean mice infected with the protozoan parasite Neospora caninum.

    PubMed

    Teixeira, Luzia; Moreira, João; Melo, Joana; Bezerra, Filipa; Marques, Raquel M; Ferreirinha, Pedro; Correia, Alexandra; Monteiro, Mariana P; Ferreira, Paula G; Vilanova, Manuel

    2015-06-01

    The adipose tissue can make important contributions to immune function. Nevertheless, only a limited number of reports have investigated in lean hosts the immune response elicited in this tissue upon infection. Previous studies suggested that the intracellular protozoan Neospora caninum might affect adipose tissue physiology. Therefore, we investigated in mice challenged with this protozoan if immune cell populations within adipose tissue of different anatomical locations could be differently affected. Early in infection, parasites were detected in the adipose tissue and by 7 days of infection increased numbers of macrophages, regulatory T (Treg) cells and T-bet(+) cells were observed in gonadal, mesenteric, omental and subcutaneous adipose tissue. Increased expression of interferon-γ was also detected in gonadal adipose tissue of infected mice. Two months after infection, parasite DNA was no longer detected in these tissues, but T helper type 1 (Th1) cell numbers remained above control levels in the infected mice. Moreover, the Th1/Treg cell ratio was higher than that of controls in the mesenteric and subcutaneous adipose tissue. Interestingly, chronically infected mice presented a marked increase of serum leptin, a molecule that plays a role in energy balance regulation as well as in promoting Th1-type immune responses. Altogether, we show that an apicomplexa parasitic infection influences immune cellular composition of adipose tissue throughout the body as well as adipokine production, still noticed at a chronic phase of infection when parasites were already cleared from that particular tissue. This strengthens the emerging view that infections can have long-term consequences for the physiology of adipose tissue.

  19. Immune response in the adipose tissue of lean mice infected with the protozoan parasite Neospora caninum

    PubMed Central

    Teixeira, Luzia; Moreira, João; Melo, Joana; Bezerra, Filipa; Marques, Raquel M; Ferreirinha, Pedro; Correia, Alexandra; Monteiro, Mariana P; Ferreira, Paula G; Vilanova, Manuel

    2015-01-01

    The adipose tissue can make important contributions to immune function. Nevertheless, only a limited number of reports have investigated in lean hosts the immune response elicited in this tissue upon infection. Previous studies suggested that the intracellular protozoan Neospora caninum might affect adipose tissue physiology. Therefore, we investigated in mice challenged with this protozoan if immune cell populations within adipose tissue of different anatomical locations could be differently affected. Early in infection, parasites were detected in the adipose tissue and by 7 days of infection increased numbers of macrophages, regulatory T (Treg) cells and T-bet+ cells were observed in gonadal, mesenteric, omental and subcutaneous adipose tissue. Increased expression of interferon-γ was also detected in gonadal adipose tissue of infected mice. Two months after infection, parasite DNA was no longer detected in these tissues, but T helper type 1 (Th1) cell numbers remained above control levels in the infected mice. Moreover, the Th1/Treg cell ratio was higher than that of controls in the mesenteric and subcutaneous adipose tissue. Interestingly, chronically infected mice presented a marked increase of serum leptin, a molecule that plays a role in energy balance regulation as well as in promoting Th1-type immune responses. Altogether, we show that an apicomplexa parasitic infection influences immune cellular composition of adipose tissue throughout the body as well as adipokine production, still noticed at a chronic phase of infection when parasites were already cleared from that particular tissue. This strengthens the emerging view that infections can have long-term consequences for the physiology of adipose tissue. PMID:25581844

  20. Role of developmental transcription factors in white, brown and beige adipose tissues.

    PubMed

    Hilton, Catriona; Karpe, Fredrik; Pinnick, Katherine E

    2015-05-01

    In this review we discuss the role of developmental transcription factors in adipose tissue biology with a focus on how these developmental genes may contribute to regional variation in adipose tissue distribution and function. Regional, depot-specific, differences in lipid handling and signalling (lipolysis, lipid storage and adipokine/lipokine signalling) are important determinants of metabolic health. At a cellular level, preadipocytes removed from their original depot and cultured in vitro retain depot-specific functional properties, implying that these are intrinsic to the cells and not a function of their environment in situ. High throughput screening has identified a number of developmental transcription factors involved in embryological development, including members of the Homeobox and T-Box gene families, that are strongly differentially expressed between regional white adipose tissue depots and also between brown and white adipose tissue. However, the significance of depot-specific developmental signatures remains unclear. Developmental transcription factors determine body patterning during embryogenesis. The divergent developmental origins of regional adipose tissue depots may explain their differing functional characteristics. There is evidence from human genetics that developmental genes determine adipose tissue distribution: in GWAS studies a number of developmental genes have been identified as being correlated with anthropometric measures of adiposity and fat distribution. Additionally, compelling functional studies have recently implicated developmental genes in both white adipogenesis and the so-called 'browning' of white adipose tissue. Understanding the genetic and developmental pathways in adipose tissue may help uncover novel ways to intervene with the function of adipose tissue in order to promote health.

  1. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells.

    PubMed

    He, Yunfan; Lu, Feng

    2016-01-01

    Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  2. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    PubMed Central

    He, Yunfan; Lu, Feng

    2016-01-01

    Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells. PMID:26977158

  3. Effects of running training on in vitro brown adipose tissue thermogenesis in rats

    NASA Astrophysics Data System (ADS)

    Nozu, Tsukasa; Kikuchi, Kazue; Ogawa, Koji; Kuroshima, Akihiro

    1992-06-01

    Brown adipose tissue (BAT) is a major site of nonshivering thermogenesis (NST) during cold acclimation for most mammals. Repetitive nonthermal stress such as immobilization has been shown to enhance the capacity of NST as cold acclimation. In the present study, the effects of running training, another type of nonthermal stress, were investigated on in vitro thermogenesis and the cellularity of interscapular BAT in rats. The rats were subjected to treadmill running for 30 min daily at 30 m/min under 8° inclination for 4 5 weeks. In vitro thermogenesis was then measured in minced tissue blocks incubated in a Krebs-Ringer phosphate buffer containing glucose and albumin at 37° C, using a Clark type oxygen electrode. The trained rats showed less body weight gain during the experiment. The weights of BAT and epididymal white adipose tissue were smaller in the trained rats. Noradrenaline- and glucagon-stimulated oxygen consumption were also significantly smaller in the trained rats. The tissue DNA level was greater in the trained rats, but the DNA content per tissue pad did not significantly differ. The results indicate that running training reduces BAT thermogenesis, possibly as an adaptation to conserve energy substrates for physical work.

  4. Rorα deficiency and decreased adiposity are associated with induction of thermogenic gene expression in subcutaneous white adipose and brown adipose tissue.

    PubMed

    Lau, Patrick; Tuong, Zewen K; Wang, Shu-Ching; Fitzsimmons, Rebecca L; Goode, Joel M; Thomas, Gethin P; Cowin, Gary J; Pearen, Michael A; Mardon, Karine; Stow, Jennifer L; Muscat, George E O

    2015-01-15

    The Rar-related orphan receptor-α (Rorα) is a nuclear receptor that regulates adiposity and is a potential regulator of energy homeostasis. We have demonstrated that the Rorα-deficient staggerer (sg/sg) mice display a lean and obesity-resistant phenotype. Adaptive Ucp1-dependent thermogenesis in beige/brite and brown adipose tissue serves as a mechanism to increase energy expenditure and resist obesity. DEXA and MRI analysis demonstrated significantly decreased total fat mass and fat/lean mass tissue ratio in male chow-fed sg/sg mice relative to wt mice. In addition, we observed increased Ucp1 expression in brown adipose and subcutaneous white adipose tissue but not in visceral adipose tissue from Rorα-deficient mice. Moreover, this was associated with significant increases in the expression of the mRNAs encoding the thermogenic genes (i.e., markers of brown and beige adipose) Pparα, Errα, Dio2, Acot11/Bfit, Cpt1β, and Cidea in the subcutaneous adipose in the sg/sg relative to WT mice. These changes in thermogenic gene expression involved the significantly increased expression of the (cell-fate controlling) histone-lysine N-methyltransferase 1 (Ehmt1), which stabilizes the Prdm16 transcriptional complex. Moreover, primary brown adipocytes from sg/sg mice displayed a higher metabolic rate, and further analysis was consistent with increased uncoupling. Finally, core body temperature analysis and infrared thermography demonstrated that the sg/sg mice maintained greater thermal control and cold tolerance relative to the WT littermates. We suggest that enhanced Ucp1 and thermogenic gene expression/activity may be an important contributor to the lean, obesity-resistant phenotype in Rorα-deficient mice.

  5. Obesity alters adipose tissue macrophage iron content and tissue iron distribution.

    PubMed

    Orr, Jeb S; Kennedy, Arion; Anderson-Baucum, Emily K; Webb, Corey D; Fordahl, Steve C; Erikson, Keith M; Zhang, Yaofang; Etzerodt, Anders; Moestrup, Søren K; Hasty, Alyssa H

    2014-02-01

    Adipose tissue (AT) expansion is accompanied by the infiltration and accumulation of AT macrophages (ATMs), as well as a shift in ATM polarization. Several studies have implicated recruited M1 ATMs in the metabolic consequences of obesity; however, little is known regarding the role of alternatively activated resident M2 ATMs in AT homeostasis or how their function is altered in obesity. Herein, we report the discovery of a population of alternatively activated ATMs with elevated cellular iron content and an iron-recycling gene expression profile. These iron-rich ATMs are referred to as MFe(hi), and the remaining ATMs are referred to as MFe(lo). In lean mice, ~25% of the ATMs are MFe(hi); this percentage decreases in obesity owing to the recruitment of MFe(lo) macrophages. Similar to MFe(lo) cells, MFe(hi) ATMs undergo an inflammatory shift in obesity. In vivo, obesity reduces the iron content of MFe(hi) ATMs and the gene expression of iron importers as well as the iron exporter, ferroportin, suggesting an impaired ability to handle iron. In vitro, exposure of primary peritoneal macrophages to saturated fatty acids also alters iron metabolism gene expression. Finally, the impaired MFe(hi) iron handling coincides with adipocyte iron overload in obese mice. In conclusion, in obesity, iron distribution is altered both at the cellular and tissue levels, with AT playing a predominant role in this change. An increased availability of fatty acids during obesity may contribute to the observed changes in MFe(hi) ATM phenotype and their reduced capacity to handle iron.

  6. Adipose tissue distribution, plasma insulin, and cardiovascular disease.

    PubMed

    Björntorp, P

    1987-07-01

    Hyperinsulinaemia is of great importance, being a primary risk factor for cardiovascular disease and non-insulin dependent diabetes (NIDDM). Furthermore, unwanted effects of increased exposure of tissues to insulin are known. Hyperinsulinaemia may, in principle, be caused by primary hypersecretion, or be a secondary consequence of diminished effectiveness of insulin in the periphery. Obesity is the commonest condition characterized by insulin resistance, which is seen most frequently when excess adipose tissue is localized to the abdominal region. Insulin resistance in obesity is found in several tissues, however, with liver and muscle being quantitative the most important. Muscle insulin sensitivity is regulated by genetic factors, hormonal effects, and the influence of free fatty acids, as well as the state of physical activity. There is evidence for the action of each of these factors in obesity. The pathogenetic mechanisms linking hyperinsulinaemia with cardiovascular disease and NIDDM are unknown. Comparisons between development of NIDDM in experimental animal models and in humans in prospective studies however, provide useful hypotheses for further studies.

  7. The Adipose Tissue Microenvironment Regulates Depot-Specific Adipogenesis in Obesity.

    PubMed

    Jeffery, Elise; Wing, Allison; Holtrup, Brandon; Sebo, Zachary; Kaplan, Jennifer L; Saavedra-Peña, Rocio; Church, Christopher D; Colman, Laura; Berry, Ryan; Rodeheffer, Matthew S

    2016-07-12

    The sexually dimorphic distribution of adipose tissue influences the development of obesity-associated pathologies. The accumulation of visceral white adipose tissue (VWAT) that occurs in males is detrimental to metabolic health, while accumulation of subcutaneous adipose tissue (SWAT) seen in females may be protective. Here, we show that adipocyte hyperplasia contributes directly to the differential fat distribution between the sexes. In male mice, high-fat diet (HFD) induces adipogenesis specifically in VWAT, while in females HFD induces adipogenesis in both VWAT and SWAT in a sex hormone-dependent manner. We also show that the activation of adipocyte precursors (APs), which drives adipocyte hyperplasia in obesity, is regulated by the adipose depot microenvironment and not by cell-intrinsic mechanisms. These findings indicate that APs are plastic cells, which respond to both local and systemic signals that influence their differentiation potential independent of depot origin. Therefore, depot-specific AP niches coordinate adipose tissue growth and distribution. PMID:27320063

  8. PAFR in adipose tissue macrophages is associated with anti-inflammatory phenotype and metabolic homoeostasis.

    PubMed

    Filgueiras, Luciano Ribeiro; Koga, Marianna Mainardi; Quaresma, Paula G; Ishizuka, Edson Kiyotaka; Montes, Marlise B A; Prada, Patricia O; Saad, Mario J; Jancar, Sonia; Rios, Francisco J

    2016-04-01

    Metabolic dysfunction is associated with adipose tissue inflammation and macrophage infiltration. PAFR (platelet-activating factor receptor) is expressed in several cell types and binds to PAF (platelet-activating factor) and oxidized phospholipids. Engagement of PAFR in macrophages drives them towards the anti-inflammatory phenotype. In the present study, we investigated whether genetic deficiency of PAFR affects the phenotype of ATMs (adipose tissue macrophages) and its effect on glucose and insulin metabolism. PARFKO (PAFR-knockout) and WT (wild-type) mice were fed on an SD (standard diet) or an HFD (high-fat diet). Glucose and insulin tolerance tests were performed by blood monitoring. ATMs were evaluated by FACS for phenotypic markers. Gene and protein expression was investigated by real-time reverse transcription-quantitative PCR and Western blotting respectively. Results showed that the epididymal adipose tissue of PAFRKO mice had increased gene expression of Ccr7, Nos2, Il6 and Il12, associated with pro-inflammatory mediators, and reduced expression of the anti-inflammatory Il10. Moreover, the adipose tissue of PAFRKO mice presented more pro-inflammatory macrophages, characterized by an increased frequency of F4/80(+)CD11c(+) cells. Blood monocytes of PAFRKO mice also exhibited a pro-inflammatory phenotype (increased frequency of Ly6C(+) cells) and PAFR ligands were detected in the serum of both PAFRKO and WT mice. Regarding metabolic parameters, compared with WT, PAFRKO mice had: (i) higher weight gain and serum glucose concentration levels; (ii) decreased insulin-stimulated glucose disappearance; (iii) insulin resistance in the liver; (iv) increased expression of Ldlr in the liver. In mice fed on an HFD, some of these changes were potentiated, particularly in the liver. Thus it seems that endogenous ligands of PAFR are responsible for maintaining the anti-inflammatory profile of blood monocytes and ATMs under physiological conditions. In the absence of

  9. Essential role of CD11a in CD8+ T-cell accumulation and activation in adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    T-cells, particularly CD8+ T-cells, are major participants in obesity-linked adipose tissue inflammation. We examined the mechanisms of CD8+ T-cell accumulation and activation in adipose tissue and the role of CD11a, a beta2 integrin. CD8+ T-cells in adipose tissue of obese mice showed activated phe...

  10. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  11. Adipose tissue monomethyl branched chain fatty acids and insulin sensitivity: effects of obesity and weight loss

    PubMed Central

    Su, Xiong; Magkos, Faidon; Zhou, Dequan; Eagon, J. Christopher; Fabbrini, Elisa; Okunade, Adewole L.; Klein, Samuel

    2014-01-01

    Objective An increase in circulating branched-chain amino acids (BCAA) is associated with insulin resistance. Adipose tissue is a potentially important site for BCAA metabolism. We evaluated whether monomethyl branched chain fatty acids (mmBCFA) in adipose tissue, which are likely derived from BCAA catabolism, are associated with insulin sensitivity. Design and Methods Insulin-stimulated glucose disposal was determined by using the hyperinsulinemic-euglycemic clamp procedure with stable isotope glucose tracer infusion, in 9 lean and 9 obese subjects, and in a separate group of 9 obese subjects before and 1 year after Roux-en-Y gastric bypass (RYGB) surgery (38% weight loss). Adipose tissue mmBCFA content was measured in tissue biopsies taken in the basal state. Results Total adipose tissue mmBCFA content was ~30% lower in obese than lean subjects (P = 0.02), and increased by ~65% after weight loss in the RYGB group (P = 0.01). Adipose tissue mmBCFA content correlated positively with skeletal muscle insulin sensitivity (R2 = 35%, P = 0.01, n = 18). Conclusions These results demonstrate a novel association between adipose tissue mmBCFA content and obesity-related insulin resistance. Additional studies are needed to determine whether the association between adipose tissue mmBCFA and muscle insulin sensitivity is causal or a simple association. PMID:25328153

  12. n3 PUFAs do not affect adipose tissue inflammation in overweight to moderately obese men and women.

    PubMed

    Kratz, Mario; Kuzma, Jessica N; Hagman, Derek K; van Yserloo, Brian; Matthys, Colleen C; Callahan, Holly S; Weigle, David S

    2013-08-01

    Recent studies have indicated that omega-3 (n3) polyunsaturated fatty acids (PUFAs) decrease adipose tissue inflammation in rodents and in morbidly obese humans. We investigated whether a diet rich in n3 PUFAs from both marine and plant sources reduces adipose tissue and systemic inflammation in overweight to moderately obese adults. We conducted a randomized, single-blind, parallel-design, placebo-controlled feeding trial. Healthy men and women with a body mass index between 28 and 33 kg/m(2) consumed a diet rich in n3 PUFAs (3.5% of energy intake; n = 11) from plant and marine sources or a control diet (0.5% of energy intake from n3 PUFAs; n = 13). These diets were consumed for 14 wk (ad libitum for 12 wk). All foods were provided for the entire study period. Subcutaneous abdominal adipose tissue and fasting plasma were collected after the first 2 wk with the control diet and again at the end of the 14-wk dietary period. The primary outcome of this ex post analysis was the adipose tissue gene expression of 13 key mediators of inflammation. Adipose tissue gene expression of inflammatory mediators did not differ between the 2 groups, after adjustment for weight change. Furthermore, none of the 5 plasma markers of systemic inflammation differed significantly as an effect of diet treatment. We conclude that a relatively high dose of n3 PUFAs from plant and marine sources did not significantly lower adipose tissue or systemic inflammation in overweight to moderately obese healthy men and women over 14 wk.

  13. White adipose tissue genome wide-expression profiling and adipocyte metabolic functions after soy protein consumption in rats.

    PubMed

    Frigolet, Maria E; Torres, Nimbe; Uribe-Figueroa, Laura; Rangel, Claudia; Jimenez-Sanchez, Gerardo; Tovar, Armando R

    2011-02-01

    Obesity is associated with an increase in adipose tissue mass due to an imbalance between high dietary energy intake and low physical activity; however, the type of dietary protein may contribute to its development. The aim of the present work was to study the effect of soy protein versus casein on white adipose tissue genome profiling, and the metabolic functions of adipocytes in rats with diet-induced obesity. The results showed that rats fed a Soy Protein High-Fat (Soy HF) diet gained less weight and had lower serum leptin concentration than rats fed a Casein High-Fat (Cas HF) diet, despite similar energy intake. Histological studies indicated that rats fed the Soy HF diet had significantly smaller adipocytes than those fed the Cas HF diet, and this was associated with a lower triglyceride/DNA content. Fatty acid synthesis in isolated adipocytes was reduced by the amount of fat consumed but not by the type of protein ingested. Expression of genes of fatty acid oxidation increased in adipose tissue of rats fed Soy diets; microarray analysis revealed that Soy protein consumption modified the expression of 90 genes involved in metabolic functions and inflammatory response in adipose tissue. Network analysis showed that the expression of leptin was regulated by the type of dietary protein and it was identified as a central regulator of the expression of lipid metabolism genes in adipose tissue. Thus, soy maintains the size and metabolic functions of adipose tissue through biochemical adaptations, adipokine secretion, and global changes in gene expression.

  14. Effects of exercise and low-fat diet on adipose tissue inflammation and metabolic complications in obese mice.

    PubMed

    Vieira, Victoria J; Valentine, Rudy J; Wilund, Kenneth R; Antao, Nirav; Baynard, Tracy; Woods, Jeffrey A

    2009-05-01

    Adipose tissue inflammation causes metabolic disturbances, including insulin resistance and hepatic steatosis. Exercise training (EX) may decrease adipose tissue inflammation, thereby ameliorating such disturbances, even in the absence of fat loss. The purpose of this study was to 1) compare the effects of low-fat diet (LFD), EX, and their combination on inflammation, insulin resistance, and hepatic steatosis in high-fat diet-induced obese mice and 2) determine the effect of intervention duration (i.e., 6 vs. 12 wk). C57BL/6 mice (n = 109) fed a 45% fat diet (HFD) for 6 wk were randomly assigned to an EX (treadmill: 5 days/wk, 6 or 12 wk, 40 min/day, 65-70% Vo(2max)) or sedentary (SED) group. Mice remained on HFD or were placed on a 10% fat diet (LFD) for 6 or 12 wk. Following interventions, fat pads were weighed and expressed relative to body weight; hepatic steatosis was assessed by total liver triglyceride and insulin resistance by HOMA-IR and glucose AUC. RT-PCR was used to determine adipose gene expression of MCP-1, F4/80, TNF-alpha, and leptin. By 12 wk, MCP-1, F4/80, and TNF-alpha mRNA were reduced by EX and LFD. Exercise (P = 0.02), adiposity (P = 0.03), and adipose F4/80 (P = 0.02) predicted reductions in HOMA-IR (r(2) = 0.75, P < 0.001); only adiposity (P = 0.04) predicted improvements in hepatic steatosis (r(2) = 0.51, P < 0.001). Compared with LFD, EX attenuated increases in adiposity, hepatic steatosis, and adipose MCP-1 expression from 6 to 12 wk. There are unique metabolic consequences of a sedentary lifestyle and HFD that are most evident long term, highlighting the importance of both EX and LFD in preventing obesity-related metabolic disturbances.

  15. The influence of sex steroids on adipose tissue growth and function.

    PubMed

    Law, James; Bloor, Ian; Budge, Helen; Symonds, Michael E

    2014-07-01

    Obesity remains a major global health concern. Understanding the metabolic influences of the obesity epidemic in the human population on maintenance of a healthy weight and metabolic profile is still of great significance. The importance and role of white adipose tissue has been long established, particularly with excess adiposity. Brown adipose tissue (BAT), however, has only recently been shown to contribute significantly to the metabolic signature of mammals outside the previously recognised role in small mammals and neonates. BAT's detection in adults has led to a renewed interest and is now considered to be a potential therapeutic target to prevent excess white fat accumulation in obesity, a theory further promoted by the recent discovery of beige fat. Adipose tissue distribution varies significantly between genders. Pre-menopausal females often show enhanced lower and peripheral fat deposition in adiposity deposition compared to the male profile of central and visceral fat accumulation with obesity. This sex disparity is partly attributed to the different effects of sex hormone profiles and interactions on the adipose tissue system. In this review, we explore this intricate relationship and show how modifications in the effects of sex hormones impact on both brown and white adipose tissues. We also discuss the impact of sex hormones on activation of the hypothalamic-pituitary-adrenal (HPA) axis and how the three pathways between adiposity, HPA and sex steroids can have a major contribution to the prevention or maintenance of obesity and therefore on overall health.

  16. Thymidine Kinase 2 Deficiency-Induced Mitochondrial DNA Depletion Causes Abnormal Development of Adipose Tissues and Adipokine Levels in Mice

    PubMed Central

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R.; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. PMID:22216345

  17. Sexual dimorphism in relation to adipose tissue and intrahepatocellular lipid deposition in early infancy

    PubMed Central

    Gale, C; Logan, K M; Jeffries, S; Parkinson, J R C; Santhakumaran, S; Uthaya, S; Durighel, G; Alavi, A; Thomas, E L; Bell, J D; Modi, N

    2015-01-01

    Sexual dimorphism in adiposity is well described in adults, but the age at which differences first manifest is uncertain. Using a prospective cohort, we describe longitudinal changes in directly measured adiposity and intrahepatocellular lipid (IHCL) in relation to sex in healthy term infants. At median ages of 13 and 63 days, infants underwent quantification of adipose tissue depots by whole-body magnetic resonance imaging and measurement of IHCL by in vivo proton magnetic resonance spectroscopy. Longitudinal data were obtained from 70 infants (40 boys and 30 girls). In the neonatal period girls are more adipose in relation to body size than boys. At follow-up (median age 63 days), girls remained significantly more adipose. The greater relative adiposity that characterises girls is explained by more subcutaneous adipose tissue and this becomes increasingly apparent by follow-up. No significant sex differences were seen in IHCL. Sex-specific differences in infant adipose tissue distribution are in keeping with those described in later life, and suggest that sexual dimorphism in adiposity is established in early infancy. PMID:25614088

  18. The adipose tissue to serum dichlorodiphenyldichloroethane (DDE) ratio: Some methodological considerations

    SciTech Connect

    Lopez-Carrillo, L. . National Inst. of Public Health John D. and Catherine T. MacArthur Foundation ); Torres-Sanchez, L.; Lopez-Cervantes, M. . National Inst. of Public Health); Blair, A. ); Cebrian, M.E.; Uribe, M. . Center for Research and Advanced Studies)

    1999-08-01

    Dichlorodiphenyldichloroethane (DDE) adipose tissue level has been regarded as a preferred indicator of accumulated human exposure to DDT; however, blood sera are more feasible to obtain and analyze than adipose tissue samples. Inconsistent and scarce information exists in relation to the adipose tissue/serum DDE ratio. As a part of a hospital-based case-control study performed in Mexico City from 1994 to 1996, 198 paired serum and adipose tissue samples were obtained from 72 women with histologically confirmed breast cancer and 126 women with benign breast disease. Both adipose tissue and serum DDE levels were determined by gas-liquid chromatography and reported as ppb lipid weight (ng/g) as well as wet basis (ng/ml). Results showed that the adipose tissue/serum DDE ratio (ADSE) varies according to the type of information (lipid vs wet basis, arithmetic vs geometric means) used for its estimation. ADSE gets a value near 1 (1.1) only when the geometric DDE levels in lipid basis are used for its estimation. The correlation between DDE serum and adipose tissue levels was found (r = 0.364, P < 0.001). The ADSE did not vary by disease status, nor was it altered by parity, history of breast-feeding, and other reproductive characteristics. The authors endorse the use of venipuncture instead of biopsy as a way to estimate DDT body burden levels in further research.

  19. Preadipocyte and adipose tissue differentiation in meat animals: influence of species and anatomical location.

    PubMed

    Hausman, G J; Basu, U; Wei, S; Hausman, D B; Dodson, M V

    2014-02-01

    Early in porcine adipose tissue development, the stromal-vascular (SV) elements control and dictate the extent of adipogenesis in a depot-dependent manner. The vasculature and collagen matrix differentiate before overt adipocyte differentiation. In the fetal pig, subcutaneous (SQ) layer development is predictive of adipocyte development, as the outer, middle, and inner layers of dorsal SQ adipose tissue develop and maintain layered morphology throughout postnatal growth of SQ adipose tissue. Bovine and ovine fetuses contain brown adipose tissue but SQ white adipose tissue is poorly developed structurally. Fetal adipose tissue differentiation is associated with the precocious expression of several genes encoding secreted factors and key transcription factors like peroxisome proliferator activated receptor (PPAR)γ and CCAAT/-enhancer-binding protein. Identification of adipocyte-associated genes differentially expressed by age, depot, and species in vivo and in vitro has been achieved using single-gene analysis, microarrays, suppressive subtraction hybridization, and next-generation sequencing applications. Gene polymorphisms in PPARγ, cathepsins, and uncoupling protein 3 have been associated with back fat accumulation. Genome scans have mapped several quantitative trait loci (QTL) predictive of adipose tissue-deposition phenotypes in cattle and pigs.

  20. When fat becomes an ally of the enemy: adipose tissue as collaborator in human breast cancer.

    PubMed

    Lapeire, Lore; Denys, Hannelore; Cocquyt, Véronique; De Wever, Olivier

    2015-07-01

    Since the discovery of leptin in 1994, our vision of adipose tissue as a static organ regulating mainly lipid storage and release has been completely overthrown, and adipose tissue is now seen as an active and integral organ in human physiology. In the past years, extensive research has tremendously given us more insights in the mechanisms and pathways involved not only in normal but also in 'sick' adipose tissue, for example, in obesity and lipodystrophy. With growing evidence of a link between obesity and several types of cancer, research focusing on the interaction between adipose tissue and cancer has begun to unravel the interesting but complex multi-lateral communication between the different players. With breast cancer as one of the first cancer types where a positive correlation between obesity and breast cancer incidence and prognosis in post-menopausal women was found, we have focused this review on the paracrine and endocrine role of adipose tissue in breast cancer initiation and progression. As important inter-species differences in adipose tissue occur, we mainly selected human adipose tissue- and breast cancer-based studies with a short reflection on therapeutic possibilities. This review is part of the special issue on "Adiposopathy in Cancer and (Cardio)Metabolic Diseases".

  1. The effects of hydralazine on lipolysis in subcutaneous adipose tissue in humans.

    PubMed

    Boon, Niels; Goossens, Gijs H; Blaak, Ellen E; Saris, Wim H M

    2007-12-01

    Recent evidence from animal research and in vitro experiments indicates that changes in dietary calcium intake could cause changes in lipolysis through alterations of the intracellular calcium concentration in adipocytes. The objective of the study was to examine whether the calcium antagonist hydralazine affects blood flow and lipolysis in subcutaneous abdominal adipose tissue in vivo in humans. Three different concentrations of hydralazine (12.2, 24.4, and 48.8 micromol/L) were locally administered in adipose tissue using the microdialysis technique to assess effects on lipolysis and blood flow in subcutaneous adipose tissue in the abdominal region. Subjects from the general community were studied ambulatorily at a university hospital. Eight healthy men (age, 33.1 +/- 3.3 years; body mass index, 24.2 +/- 0.2 kg/m(2)) were recruited by local announcement. Subcutaneous adipose tissue in the abdominal region was perfused with increasing concentrations of hydralazine. The main outcome measures were adipose tissue lipolysis and blood flow. Hydralazine had no effect on ethanol outflow-inflow ratios, but significantly increased interstitial glycerol concentration at the highest concentration (P < .05). The present results indicate that hydralazine increases lipolysis in abdominal subcutaneous adipose tissue in healthy lean subjects, but hydralazine had no significant effects on local blood flow in adipose tissue.

  2. Panax red ginseng extract regulates energy expenditures by modulating PKA dependent lipid mobilization in adipose tissue.

    PubMed

    Cho, Hae-Mi; Kang, Young-Ho; Yoo, Hanju; Yoon, Seung-Yong; Kang, Sang-Wook; Chang, Eun-Ju; Song, Youngsup

    2014-05-16

    Regulation of balance between lipid accumulation and energy consumption is a critical step for the maintenance of energy homeostasis. Here, we show that Panax red ginseng extract treatments increased energy expenditures and prevented mice from diet induced obesity. Panax red ginseng extracts strongly activated Hormone Specific Lipase (HSL) via Protein Kinase A (PKA). Since activation of HSL induces lipolysis in WAT and fatty acid oxidation in brown adipose tissue (BAT), these results suggest that Panax red ginseng extracts reduce HFD induced obesity by regulating lipid mobilization.

  3. IL-21 is a major negative regulator of IRF4-dependent lipolysis affecting Tregs in adipose tissue and systemic insulin sensitivity.

    PubMed

    Fabrizi, Marta; Marchetti, Valentina; Mavilio, Maria; Marino, Arianna; Casagrande, Viviana; Cavalera, Michele; Moreno-Navarrete, Josè Maria; Mezza, Teresa; Sorice, Gian Pio; Fiorentino, Loredana; Menghini, Rossella; Lauro, Renato; Monteleone, Giovanni; Giaccari, Andrea; Fernandez Real, José Manuel; Federici, Massimo

    2014-06-01

    Obesity elicits immune cell infiltration of adipose tissue provoking chronic low-grade inflammation. Regulatory T cells (Tregs) are specifically reduced in adipose tissue of obese animals. Since interleukin (IL)-21 plays an important role in inducing and maintaining immune-mediated chronic inflammatory processes and negatively regulates Treg differentiation/activity, we hypothesized that it could play a role in obesity-induced insulin resistance. We found IL-21 and IL-21R mRNA expression upregulated in adipose tissue of high-fat diet (HFD) wild-type (WT) mice and in stromal vascular fraction from human obese subjects in parallel to macrophage and inflammatory markers. Interestingly, a larger infiltration of Treg cells was seen in the adipose tissue of IL-21 knockout (KO) mice compared with WT animals fed both normal diet and HFD. In a context of diet-induced obesity, IL-21 KO mice, compared with WT animals, exhibited lower body weight, improved insulin sensitivity, and decreased adipose and hepatic inflammation. This metabolic phenotype is accompanied by a higher induction of interferon regulatory factor 4 (IRF4), a transcriptional regulator of fasting lipolysis in adipose tissue. Our data suggest that IL-21 exerts negative regulation on IRF4 and Treg activity, developing and maintaining adipose tissue inflammation in the obesity state.

  4. Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4.

    PubMed

    Wojciechowicz, Kamila; Gledhill, Karl; Ambler, Carrie A; Manning, Craig B; Jahoda, Colin A B

    2013-01-01

    The laboratory mouse is a key animal model for studies of adipose biology, metabolism and disease, yet the developmental changes that occur in tissues and cells that become the adipose layer in mouse skin have received little attention. Moreover, the terminology around this adipose body is often confusing, as frequently no distinction is made between adipose tissue within the skin, and so called subcutaneous fat. Here adipocyte development in mouse dorsal skin was investigated from before birth to the end of the first hair follicle growth cycle. Using Oil Red O staining, immunohistochemistry, quantitative RT-PCR and TUNEL staining we confirmed previous observations of a close spatio-temporal link between hair follicle development and the process of adipogenesis. However, unlike previous studies, we observed that the skin adipose layer was created from cells within the lower dermis. By day 16 of embryonic development (e16) the lower dermis was demarcated from the upper dermal layer, and commitment to adipogenesis in the lower dermis was signalled by expression of FABP4, a marker of adipocyte differentiation. In mature mice the skin adipose layer is separated from underlying subcutaneous adipose tissue by the panniculus carnosus. We observed that the skin adipose tissue did not combine or intermix with subcutaneous adipose tissue at any developmental time point. By transplanting skin isolated from e14.5 mice (prior to the start of adipogenesis), under the kidney capsule of adult mice, we showed that skin adipose tissue develops independently and without influence from subcutaneous depots. This study has reinforced the developmental link between hair follicles and skin adipocyte biology. We argue that because skin adipocytes develop from cells within the dermis and independently from subcutaneous adipose tissue, that it is accurately termed dermal adipose tissue and that, in laboratory mice at least, it represents a separate adipose depot.

  5. Loss of Oncostatin M Signaling in Adipocytes Induces Insulin Resistance and Adipose Tissue Inflammation in Vivo.

    PubMed

    Elks, Carrie M; Zhao, Peng; Grant, Ryan W; Hang, Hardy; Bailey, Jennifer L; Burk, David H; McNulty, Margaret A; Mynatt, Randall L; Stephens, Jacqueline M

    2016-08-12

    Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor β (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMR(FKO) mice). The effects of OSM on gene expression were also assessed in vitro and in vivo OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMR(FKO) mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMR(FKO) mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMR(FKO) mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation.

  6. Loss of Oncostatin M Signaling in Adipocytes Induces Insulin Resistance and Adipose Tissue Inflammation in Vivo.

    PubMed

    Elks, Carrie M; Zhao, Peng; Grant, Ryan W; Hang, Hardy; Bailey, Jennifer L; Burk, David H; McNulty, Margaret A; Mynatt, Randall L; Stephens, Jacqueline M

    2016-08-12

    Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor β (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMR(FKO) mice). The effects of OSM on gene expression were also assessed in vitro and in vivo OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMR(FKO) mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMR(FKO) mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMR(FKO) mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation. PMID:27325693

  7. Toxicological Function of Adipose Tissue: Focus on Persistent Organic Pollutants

    PubMed Central

    La Merrill, Michele; Emond, Claude; Kim, Min Ji; Antignac, Jean-Philippe; Le Bizec, Bruno; Clément, Karine; Birnbaum, Linda S.

    2012-01-01

    Background: Adipose tissue (AT) is involved in several physiological functions, including metabolic regulation, energy storage, and endocrine functions. Objectives: In this review we examined the evidence that an additional function of AT is to modulate persistent organic pollutant (POP) toxicity through several mechanisms. Methods: We reviewed the literature on the interaction of AT with POPs to provide a comprehensive model for this additional function of AT. Discussion: As a storage compartment for lipophilic POPs, AT plays a critical role in the toxicokinetics of a variety of drugs and pollutants, in particular, POPs. By sequestering POPs, AT can protect other organs and tissues from POPs overload. However, this protective function could prove to be a threat in the long run. The accumulation of lipophilic POPs will increase total body burden. These accumulated POPs are slowly released into the bloodstream, and more so during weight loss. Thus, AT constitutes a continual source of internal exposure to POPs. In addition to its buffering function, AT is also a target of POPs and may mediate part of their metabolic effects. This is particularly relevant because many POPs induce obesogenic effects that may lead to quantitative and qualitative alterations of AT. Some POPs also induce a proinflammatory state in AT, which may lead to detrimental metabolic effects. Conclusion: AT appears to play diverse functions both as a modulator and as a target of POPs toxicity. PMID:23221922

  8. 5. cap alpha. -reductase activity in rat adipose tissue

    SciTech Connect

    Zyirek, M.; Flood, C.; Longcope, C.

    1987-11-01

    We measured the 5 ..cap alpha..-reductase activity in isolated cell preparations of rat adipose tissue using the formation of (/sup 3/H) dihydrotestosterone from (/sup 3/H) testosterone as an endpoint. Stromal cells were prepared from the epididymal fat pad, perinephric fat, and subcutaneous fat of male rats and from perinephric fat of female rats. Adipocytes were prepared from the epididymal fat pad and perinephric fat of male rats. Stromal cells from the epididymal fat pad and perinephric fat contained greater 5..cap alpha..-reductase activity than did the adipocytes from these depots. Stromal cells from the epididymal fat pad contained greater activity than those from perinephric and subcutaneous depots. Perinephric stromal cells from female rats were slightly more active than those from male rats. Estradiol (10/sup -8/ M), when added to the medium, caused a 90% decrease in 5..cap alpha..-reductase activity. Aromatase activity was minimal, several orders of magnitude less than 5..cap alpha..-reductase activity in each tissue studied.

  9. Brown Adipose Tissue Transplantation Reverses Obesity in Ob/Ob Mice.

    PubMed

    Liu, Xiaomeng; Wang, Siping; You, Yilin; Meng, Minghui; Zheng, Zongji; Dong, Meng; Lin, Jun; Zhao, Qianwei; Zhang, Chuanhai; Yuan, Xiaoxue; Hu, Tao; Liu, Lieqin; Huang, Yuanyuan; Zhang, Lei; Wang, Dehua; Zhan, Jicheng; Jong Lee, Hyuek; Speakman, John R; Jin, Wanzhu

    2015-07-01

    Increasing evidence indicates that brown adipose tissue (BAT) transplantation enhances whole-body energy metabolism in a mouse model of diet-induced obesity. However, it remains unclear whether BAT also has such beneficial effects on genetically obese mice. To address this issue, we transplanted BAT from C57/BL6 mice into the dorsal subcutaneous region of age- and sex-matched leptin deficient Ob/Ob mice. Interestingly, BAT transplantation led to a significant reduction of body weight gain with increased oxygen consumption and decreased total body fat mass, resulting in improvement of insulin resistance and liver steatosis. In addition, BAT transplantation increased the level of circulating adiponectin, whereas it reduced the levels of circulating free T3 and T4, which regulate thyroid hormone sensitivity in peripheral tissues. BAT transplantation also increased β3-adrenergic receptor and fatty acid oxidation related gene expression in subcutaneous and epididymal (EP) white adipose tissue. Accordingly, BAT transplantation increased whole-body thermogenesis. Taken together our results demonstrate that BAT transplantation may reduce obesity and its related diseases by activating endogenous BAT.

  10. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation

    PubMed Central

    2014-01-01

    Background Human adipose tissue is an ideal autologous source of mesenchymal stem cells (MSCs) for various regenerative medicine and tissue engineering strategies. Aged patients are one of the primary target populations for many promising applications. It has long been known that advanced age is negatively correlated with an organism’s reparative and regenerative potential, but little and conflicting information is available about the effects of age on the quality of human adipose tissue derived MSCs (hAT-MSCs). Methods To study the influence of age, the expansion and in vitro differentiation potential of hAT-MSCs from young (<30 years), adult (35-50 years) and aged (>60 years) individuals were investigated. MSCs were characterized for expression of the genes p16INK4a and p21 along with measurements of population doublings (PD), superoxide dismutase (SOD) activity, cellular senescence and differentiation potential. Results Aged MSCs displayed senescent features when compared with cells isolated from young donors, concomitant with reduced viability and proliferation. These features were also associated with significantly reduced differentiation potential in aged MSCs compared to young MSCs. Conclusions In conclusion, advancing age negatively impacts stem cell function and such age related alterations may be detrimental for successful stem cell therapies. PMID:24397850

  11. Adiposity, lipogenesis, and fatty acid composition of subcutaneous and intramuscular adipose tissues of Brahman and Angus crossbred cattle.

    PubMed

    Campbell, E M G; Sanders, J O; Lunt, D K; Gill, C A; Taylor, J F; Davis, S K; Riley, D G; Smith, S B

    2016-04-01

    The objective of this study was to demonstrate differences in aspects of adipose tissue cellularity, lipid metabolism, and fatty and cholesterol composition in Angus and Brahman crossbred cattle. We hypothesized that in vitro measures of lipogenesis would be greater in three-fourths Angus progeny than in three-fourths Brahman progeny, especially in intramuscular (i.m.) adipose tissue. Progeny ( = 227) were fed a standard, corn-based diet for approximately 150 d before slaughter. Breed was considered to be the effect of interest and was forced into the model. There were 9 breed groups including all 4 kinds of three-fourths Angus calves: Angus bulls Angus-sired F cows ( = 32), Angus bulls Brahman-sired F cows ( = 20), Brahman-sired F bulls Angus cows ( = 24), and Angus-sired F bulls Angus cows ( = 20). There were all 4 kinds of three-fourths Brahman calves: Brahman bulls Brahman-sired F cows ( = 21), Brahman bulls Angus-sired F cows ( = 43), Brahman-sired F bulls Brahman cows ( = 26), and Angus-sired F bulls Brahman cows ( = 13). Additionally, F calves (one-half Brahman and one-half Angus) were produced only from Brahman-sired F bulls Angus-sired F cows ( = 28). Contrasts were calculated when breed was an important fixed effect, using the random effect family(breed) as the error term. Most contrasts were nonsignificant ( > 0.10). Those that were significant ( < 0.05) included cholesterol concentration of subcutaneous (s.c.) adipose tissue (three-fourths Angus > F, three-fourths Brahman > F, and three-fourths crossbred progeny combined > F), s.c. adipocyte volume (three-fourths Angus > F and three-fourths bloods combined > F), lipogenesis from acetate in s.c. adipose tissue (three-fourths Brahman calves from Brahman dams > three-fourths Brahman calves from F dams), and percentage 18:3-3 in s.c. adipose tissue (three-fourths Brahman calves from Brahman-sired F dams < three-fourths Brahman calves from Angus-sired F dams). Intramuscular adipocyte volume ( < 0.001) was

  12. A worm of one's own: how helminths modulate host adipose tissue function and metabolism.

    PubMed

    Guigas, Bruno; Molofsky, Ari B

    2015-09-01

    Parasitic helminths have coexisted with human beings throughout time. Success in eradicating helminths has limited helminth-induced morbidity and mortality but is also correlated with increasing rates of 'western' diseases, including metabolic syndrome and type 2 diabetes. Recent studies in mice describe how type 2 immune cells, traditionally associated with helminth infection, maintain adipose tissue homeostasis and promote adipose tissue beiging, protecting against obesity and metabolic dysfunction. Here, we review these studies and discuss how helminths and helminth-derived molecules may modulate these physiologic pathways to improve metabolic functions in specific tissues, such as adipose and liver, as well as at the whole-organism level.

  13. Differential modulation of the functionality of white adipose tissue of obese Zucker (fa/fa) rats by the type of protein and the amount and type of fat.

    PubMed

    Díaz-Villaseñor, Andrea; Granados, Omar; González-Palacios, Berenice; Tovar-Palacio, Claudia; Torre-Villalvazo, Ivan; Olivares-García, Verónica; Torres, Nimbe; Tovar, Armando R

    2013-11-01

    Recent evidence indicates that several metabolic abnormalities developed during obesity are associated with the presence of dysfunctional adipose tissue. Diet is a key factor that modulates several functions of adipose tissue; however, each nutrient in the diet produces specific changes. Thus, the aim of this work was to study the effect of the interaction of the type (coconut or soybean oil) and amount (5% or 10%) of fat with the type of dietary protein (casein or soy protein) on the functionality of white adipose tissue of Zucker (fa/fa) rats. The results showed that soybean oil reduced adipocyte size and decreased esterified saturated fatty acids in white adipose tissue. Excess dietary fat also modified the composition of esterified fatty acids in white adipose tissue, increased the secretion of saturated fatty acids to serum from white adipose tissue and reduced the process of fatty acids re-esterification. On the other hand, soy protein sensitized the activation of the hormone-sensitive lipase by increasing the phosphorylation of this enzyme (Ser 563) despite rats fed soy protein were normoglucagonemic, in contrast with rats fed casein that showed hyperglucagonemia but reduce