Science.gov

Sample records for adipose tissue-derived cells

  1. Myocardial regeneration potential of adipose tissue-derived stem cells

    SciTech Connect

    Bai, Xiaowen; Alt, Eckhard

    2010-10-22

    Research highlights: {yields} Various tissue resident stem cells are receiving tremendous attention from basic scientists and clinicians and hold great promise for myocardial regeneration. {yields} For practical reasons, human adipose tissue-derived stem cells are attractive stem cells for future clinical application in repairing damaged myocardium. {yields} This review summarizes the characteristics of cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential and the, underlying mechanisms, and safety issues. -- Abstract: Various tissue resident stem cells are receiving attention from basic scientists and clinicians as they hold promise for myocardial regeneration. For practical reasons, adipose tissue-derived stem cells (ASCs) are attractive cells for clinical application in repairing damaged myocardium based on the following advantages: abundant adipose tissue in most patients and easy accessibility with minimally invasive lipoaspiration procedure. Several recent studies have demonstrated that both cultured and freshly isolated ASCs could improve cardiac function in animal model of myocardial infarction. The mechanisms underlying the beneficial effect of ASCs on myocardial regeneration are not fully understood. Growing evidence indicates that transplantation of ASCs improve cardiac function via the differentiation into cardiomyocytes and vascular cells, and through paracrine pathways. Paracrine factors secreted by injected ASCs enhance angiogenesis, reduce cell apoptosis rates, and promote neuron sprouts in damaged myocardium. In addition, Injection of ASCs increases electrical stability of the injured heart. Furthermore, there are no reported cases of arrhythmia or tumorigenesis in any studies regarding myocardial regeneration with ASCs. This review summarizes the characteristics of both cultured and freshly isolated stem cells obtained from adipose tissue, their myocardial regeneration potential, and the

  2. Adipose Tissue-Derived Stem Cells for Myocardial Regeneration

    PubMed Central

    Joo, Hyung Joon; Kim, Jong-Ho

    2017-01-01

    Over the past decade, stem cell therapy has been extensively studied for clinical application for heart diseases. Among various stem cells, adipose tissue-derived stem cell (ADSC) is still an attractive stem cell resource due to its abundance and easy accessibility. In vitro studies showed the multipotent differentiation potentials of ADSC, even differentiation into cardiomyocytes. Many pre-clinical animal studies have also demonstrated promising therapeutic results of ADSC. Furthermore, there were several clinical trials showing the positive results in acute myocardial infarction using ADSC. The present article covers the brief introduction, the suggested therapeutic mechanisms, application methods including cell dose and delivery, and human clinical trials of ADSC for myocardial regeneration. PMID:28382066

  3. Adipose Tissue-Derived Stem Cells in Regenerative Medicine

    PubMed Central

    Frese, Laura; Dijkman, Petra E.; Hoerstrup, Simon P.

    2016-01-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted. PMID:27721702

  4. Adipose Tissue-Derived Stem Cells in Regenerative Medicine.

    PubMed

    Frese, Laura; Dijkman, Petra E; Hoerstrup, Simon P

    2016-07-01

    In regenerative medicine, adult stem cells are the most promising cell types for cell-based therapies. As a new source for multipotent stem cells, human adipose tissue has been introduced. These so called adipose tissue-derived stem cells (ADSCs) are considered to be ideal for application in regenerative therapies. Their main advantage over mesenchymal stem cells derived from other sources, e.g. from bone marrow, is that they can be easily and repeatable harvested using minimally invasive techniques with low morbidity. ADSCs are multipotent and can differentiate into various cell types of the tri-germ lineages, including e.g. osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Interestingly, ADSCs are characterized by immunosuppressive properties and low immunogenicity. Their secretion of trophic factors enforces the therapeutic and regenerative outcome in a wide range of applications. Taken together, these particular attributes of ADSCs make them highly relevant for clinical applications. Consequently, the therapeutic potential of ADSCs is enormous. Therefore, this review will provide a brief overview of the possible therapeutic applications of ADSCs with regard to their differentiation potential into the tri-germ lineages. Moreover, the relevant advancements made in the field, regulatory aspects as well as other challenges and obstacles will be highlighted.

  5. The effect of diabetes on the wound healing potential of adipose-tissue derived stem cells.

    PubMed

    Kim, Sue Min; Kim, Yun Ho; Jun, Young Joon; Yoo, Gyeol; Rhie, Jong Won

    2016-03-01

    To investigate whether diabetes mellitus affects the wound-healing-promoting potential of adipose tissue-derived stem cells, we designed a wound-healing model using diabetic mice. We compared the degree of wound healing between wounds treated with normal adipose tissue-derived stem cells and wounds treated with diabetic adipose tissue-derived stem cells. We evaluated the wound-healing rate, the epithelial tongue distance, the area of granulation tissue, the number of capillary and the number of Ki-67-stained cells. The wound-healing rate was significantly higher in the normal adipose tissue-derived stem cells group than in the diabetic adipose tissue-derived stem cells group; it was also significantly higher in the normal adipose tissue-derived stem cells group than in the control group. Although the diabetic adipose tissue-derived stem cells group showed a better wound-healing rate than the control group, the difference was not statistically significant. Similar trends were observed for the other parameters examined: re-epithelisation and keratinocyte proliferation; granulation tissue formation; and dermal regeneration. However, with regard to the number of capillary, diabetic adipose tissue-derived stem cells retained their ability to promote neovasculisation and angiogenesis. These results reflect the general impairment of the therapeutic potential of diabetic adipose tissue-derived stem cells in vivo.

  6. Adipose tissue-derived stem cells in neural regenerative medicine.

    PubMed

    Yeh, Da-Chuan; Chan, Tzu-Min; Harn, Horng-Jyh; Chiou, Tzyy-Wen; Chen, Hsin-Shui; Lin, Zung-Sheng; Lin, Shinn-Zong

    2015-01-01

    Adipose tissue-derived stem cells (ADSCs) have two essential characteristics with regard to regenerative medicine: the convenient and efficient generation of large numbers of multipotent cells and in vitro proliferation without a loss of stemness. The implementation of clinical trials has prompted widespread concern regarding safety issues and has shifted research toward the therapeutic efficacy of stem cells in dealing with neural degeneration in cases such as stroke, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, cavernous nerve injury, and traumatic brain injury. Most existing studies have reported that cell therapies may be able to replenish lost cells and promote neuronal regeneration, protect neuronal survival, and play a role in overcoming permanent paralysis and loss of sensation and the recovery of neurological function. The mechanisms involved in determining therapeutic capacity remain largely unknown; however, this concept can still be classified in a methodical manner by citing current evidence. Possible mechanisms include the following: 1) the promotion of angiogenesis, 2) the induction of neuronal differentiation and neurogenesis, 3) reductions in reactive gliosis, 4) the inhibition of apoptosis, 5) the expression of neurotrophic factors, 6) immunomodulatory function, and 7) facilitating neuronal integration. In this study, several human clinical trials using ADSCs for neuronal disorders were investigated. It is suggested that ADSCs are one of the choices among various stem cells for translating into clinical application in the near future.

  7. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells

    SciTech Connect

    Timper, Katharina; Seboek, Dalma; Eberhardt, Michael; Linscheid, Philippe; Christ-Crain, Mirjam; Keller, Ulrich; Mueller, Beat; Zulewski, Henryk . E-mail: henryk.zulewski@unibas.ch

    2006-03-24

    Mesenchymal stem cells (MSC) from mouse bone marrow were shown to adopt a pancreatic endocrine phenotype in vitro and to reverse diabetes in an animal model. MSC from human bone marrow and adipose tissue represent very similar cell populations with comparable phenotypes. Adipose tissue is abundant and easily accessible and could thus also harbor cells with the potential to differentiate in insulin producing cells. We isolated human adipose tissue-derived MSC from four healthy donors. During the proliferation period, the cells expressed the stem cell markers nestin, ABCG2, SCF, Thy-1 as well as the pancreatic endocrine transcription factor Isl-1. The cells were induced to differentiate into a pancreatic endocrine phenotype by defined culture conditions within 3 days. Using quantitative PCR a down-regulation of ABCG2 and up-regulation of pancreatic developmental transcription factors Isl-1, Ipf-1, and Ngn3 were observed together with induction of the islet hormones insulin, glucagon, and somatostatin.

  8. Advantages of Sheep Infrapatellar Fat Pad Adipose Tissue Derived Stem Cells in Tissue Engineering

    PubMed Central

    Vahedi, Parviz; Soleimanirad, Jafar; Roshangar, Leila; Shafaei, Hajar; Jarolmasjed, Seyedhosein; Nozad Charoudeh, Hojjatollah

    2016-01-01

    Purpose: The goal of this study has been to evaluate adipose tissue derived stem cells (ADSCs) from infrapatellar fat pad and characterize their cell surface markers using anti-human antibodies, as adipose tissue derived stem cells (ADSCs) have great potential for cellular therapies to restore injured tissues. Methods: Adipose tissue was obtained from infrapatellar fat pad of sheep. Surface markers evaluated by flow cytometry. In order to evaluate cell adhesion, the Polycaprolactone (PCL) was sterilized under Ultraviolet (UV) light and about 1×105 cells were seeded on PCL. Then, ASCs- PCL construct were evaluated by Scanning Electron Microscopy (Mira3 Te Scan, Czech Republic). Results: We showed that adipose tissue derived stem cells (ADSCs) maintain their fibroblastic-like morphology during different subcultures and cell adhesion. They were positive for CD44 and CD90 markers and negative for CD31 and Cd45 markers by human antibodies. Conclusion: Our results suggest that ASCs surface markers can be characterized by anti-human antibodies in sheep. As stem cells, they can be used in tissue engineering. PMID:27123425

  9. [Cultivation and morphological characteristics of rat adipose tissue-derived vascular endothelial cells in vitro].

    PubMed

    Lin, Yunfeng; Chen, Xizhe; Tian, Weidong; Yan, Zhengbin; Zheng, Xiaohui

    2006-08-01

    The subcutaneous adipose tissue from the inguen of four Sprague-Dawley rats was obtained, then digested with one volume of collagenase type I and cultured with BGJb medium. The obtained adipose stromal cells were induced in human endothelial-SFM for 7 d. The cells were observed under inverted microscope every day and identified by transmission electron microscope and immunocytochemical staining with factor VIII antigen. The results showed the induced cells uniformly had characteristic cobblestone morphology of endothelial cells. Factor VIII antigen staining was positive in cytoplasm. Under transmission electron microscope, the cells displayed many finger like microvilli and numerous lysosomes, mitochondria, a few coarse endoplasmic reticulum and Weibel-Palade bodies. The characteristics of the rat adipose tissue-derived endothelial cells were consistent with those of vascular endothelial cells derived from other tissues. It seems that subcutaneous adipose tissue may represent a new alternative source of endogenous vascular endothelial cells.

  10. Adipose tissue-derived stem cells show considerable promise for regenerative medicine applications.

    PubMed

    Harasymiak-Krzyżanowska, Izabela; Niedojadło, Alicja; Karwat, Jolanta; Kotuła, Lidia; Gil-Kulik, Paulina; Sawiuk, Magdalena; Kocki, Janusz

    2013-12-01

    The stromal-vascular cell fraction (SVF) of adipose tissue can be an abundant source of both multipotent and pluripotent stem cells, known as adipose-derived stem cells or adipose tissue-derived stromal cells (ADSCs). The SVF also contains vascular cells, targeted progenitor cells, and preadipocytes. Stromal cells isolated from adipose tissue express common surface antigens, show the ability to adhere to plastic, and produce forms that resemble fibroblasts. They are characterized by a high proliferation potential and the ability to differentiate into cells of meso-, ecto- and endodermal origin. Although stem cells obtained from an adult organism have smaller capabilities for differentiation in comparison to embryonic and induced pluripotent stem cells (iPSs), the cost of obtaining them is significantly lower. The 40 years of research that mainly focused on the potential of bone marrow stem cells (BMSCs) revealed a number of negative factors: the painful sampling procedure, frequent complications, and small cell yield. The number of stem cells in adipose tissue is relatively large, and obtaining them is less invasive. Sampling through simple procedures such as liposuction performed under local anesthesia is less painful, ensuring patient comfort. The isolated cells are easily grown in culture, and they retain their properties over many passages. That is why adipose tissue has recently been treated as an attractive alternative source of stem cells. Essential aspects of ADSC biology and their use in regenerative medicine will be analyzed in this article.

  11. Tbx18-dependent differentiation of brown adipose tissue-derived stem cells toward cardiac pacemaker cells.

    PubMed

    Chen, Lei; Deng, Zi-Jun; Zhou, Jian-Sheng; Ji, Rui-Juan; Zhang, Xi; Zhang, Chuan-Sen; Li, Yu-Quan; Yang, Xiang-Qun

    2017-04-05

    A cell-sourced biological pacemaker is a promising therapeutic approach for sick sinus syndrome (SSS) or severe atrial ventricular block (AVB). Adipose tissue-derived stem cells (ATSCs), which are optimal candidate cells for possible use in regenerative therapy for acute or chronic myocardial injury, have the potential to differentiate into spontaneous beating cardiomyocytes. However, the pacemaker characteristics of the beating cells need to be confirmed, and little is known about the underlying differential mechanism. In this study, we found that brown adipose tissue-derived stem cells (BATSCs) in mice could differentiate into spontaneous beating cells in 15% FBS Dulbecco's modified Eagle's medium (DMEM) without additional treatment. Subsequently, we provide additional evidence, including data regarding ultrastructure, protein expression, electrophysiology, and pharmacology, to support the differentiation of BATSCs into a cardiac pacemaker phenotype during the course of early cultivation. Furthermore, we found that silencing Tbx18, a key transcription factor in the development of pacemaker cells, terminated the differentiation of BATSCs into a pacemaker phenotype, suggesting that Tbx18 is required to direct BATSCs toward a cardiac pacemaker fate. The expression of Tbx3 and shox2, the other two important transcription factors in the development of pacemaker cells, was decreased by silencing Tbx18, which suggests that Tbx18 mediates the differentiation of BATSCs into a pacemaker phenotype via these two downstream transcription factors.

  12. Tracking of adipose tissue-derived progenitor cells using two magnetic nanoparticle types

    NASA Astrophysics Data System (ADS)

    Kasten, Annika; Siegmund, Birte J.; Grüttner, Cordula; Kühn, Jens-Peter; Frerich, Bernhard

    2015-04-01

    Magnetic resonance imaging (MRI) is to be considered as an emerging detection technique for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. Adipose tissue engineering using adipose tissue-derived progenitor cells has been advocated for the cure of soft tissue defects or for persistent soft tissue augmentation. Adipose tissue-derived progenitor cells were differentiated into the adipogenic lineage and labeled with two different types of magnetic iron oxide nanoparticles in varying concentrations which resulted in a concentration-dependent reduction of gene expression of adipogenic differentiation markers, adiponectin and fatty acid-binding protein 4 (FABP4), whereas the metabolic activity was not altered. As a result, only low nanoparticle concentrations for labeling were used for in vivo experiments. Cells were seeded onto collagen scaffolds and subcutaneously implanted into severe combined immunodeficient (SCID) mice. At 24 h as well as 28 days after implantation, MRI analyses were performed visualizing nanoparticle-labeled cells using T2-weighted sequences. The quantification of absolute volume of the scaffolds revealed a decrease of volume over time in all experimental groups. The distribution of nanoparticle-labeled cells within the scaffolds varied likewise over time.

  13. Adipose tissue derived mesenchymal stem cells for musculoskeletal repair in veterinary medicine

    PubMed Central

    Arnhold, Stefan; Wenisch, Sabine

    2015-01-01

    Adipose tissue derived stem cells (ASCs) are mesenchymal stem cells which can be obtained from different adipose tissue sources within the body. It is an abundant cell pool, which is easy accessible and the cells can be obtained in large numbers, cultivated and expanded in vitro and prepared for tissue engineering approaches, especially for skeletal tissue repair. In the recent years this cell population has attracted a great amount of attention among researchers in human as well as in veterinary medicine. In the meantime ASCs have been well characterized and their use in regenerative medicine is very well established. This review focuses on the characterization of ASCs for their use for tissue engineering approaches especially in veterinary medicine and also highlights a selection of clinical trials on the basis of ASCs as the relevant cell source. PMID:25973326

  14. Comparison of Characteristics of Human Amniotic Membrane and Human Adipose Tissue Derived Mesenchymal Stem Cells

    PubMed Central

    Dizaji Asl, Khadijeh; Shafaei, Hajar; Soleimani Rad, Jafar; Nozad, Hojjat Ollah

    2017-01-01

    BACKGROUND Mesenchymal stem cells (MSCs) are ideal candidates for treatment of diseases. Amniotic membranes are an inexpensive source of MSCs (AM-MSC) without any donor site morbidity in cell therapy. Adipose tissue derived stem cells (ASCs) are also suitable cells for cell therapy. There is discrepancy in CD271 expression among MSCs from different sources. In this study, the characteristics of AM-MSC and ASCs and CD271 expression were compared. METHODS Adult adipose tissue samples were obtained from patients undergoing elective surgical procedure, and samples of amniotic membrane were collected immediately after caesarean operation. After isolation and expansion of MSCs, the proliferation rate and viability of cells were evaluated through calculating DT and MTT assay. Expression of routine mesenchymal specific surface antigens of MSCs and CD271 was evaluated by flow cytometry for both types of cells. RESULTS The growth rate and viability of the MSCs from the amniotic membrane was significantly higher compared with the ASCs. The low expression of CD14 and CD45 indicated that AM-MSC and ASCs are non hematopoietic cells, and both cell types expressed high percentages of CD44, CD105. The results revealed that AM-MSC and ASCs expressed no CD271 on their surfaces. CONCLUSION This study showed that amniotic membrane is a suitable cell source for cell therapy, and CD271 is a negative marker for MSCs identification from amniotic membrane and adipose tissue. PMID:28289611

  15. Coculture with embryonic stem cells improves neural differentiation of adipose tissue-derived stem cells.

    PubMed

    Bahmani, L; Taha, M F; Javeri, A

    2014-07-11

    Embryonic stem (ES) cells secrete some soluble factors which may affect the differentiation potential of adult stem cells toward different lineages. In the present study, we evaluated neural differentiation of mouse adipose tissue-derived stem cells (ADSCs) following coculture with ES cells. For this purpose, ADSCs were induced in a medium supplemented with a synthetic serum replacement and various concentrations of retinoic acid (RA). Then, third-passaged ADSCs were indirectly cocultured with ES cells, and the expression levels of pluripotency markers, OCT4 and Sox2, mesenchymal stem cell markers, CD73 and CD105, and proliferating cell nuclear antigen (PCNA), were assessed in the cocultured ADSCs. Moreover, the control and cocultured ADSCs were differentiated with or without RA treatment. We showed here that 2-week differentiated ADSCs expressed several neuron-specific genes, and RA treatment improved neural differentiation of the ADSCs. The expression levels of OCT4, Sox2 and PCNA were upregulated in the cocultured ADSCs. Moreover, coculture with the ES cells significantly improved neural differentiation of the ADSCs. Treatment of the cocultured ADSCs with RA diminished the expression of neural maturation markers. Coculture with the ES cells efficiently improves neural differentiation of the ADSCs. Non-contact coculture with the ES cells may be used as an efficient strategy to improve differentiation potential of adult stem cells for developmental studies and regenerative medicine.

  16. Muscle regeneration by adipose tissue-derived adult stem cells attached to injectable PLGA spheres.

    PubMed

    Kim, MiJung; Choi, Yu Suk; Yang, Seung Hye; Hong, Hea-Nam; Cho, Sung-Woo; Cha, Sang Myun; Pak, Jhang Ho; Kim, Chan Wha; Kwon, Seog Woon; Park, Chan Jeoung

    2006-09-22

    The [corrected] use of adult stem cells for cell-based tissue engineering and regeneration strategies represents a promising approach for skeletal muscle repair. We have evaluated the combination of adipose tissue-derived adult stem cells (ADSCs) obtained from autologous liposuction and injectable poly(lactic-co-glycolic acid) (PLGA) spheres for muscle regeneration. ADSCs attached to PLGA spheres and PLGA spheres alone were cultured in myogenic medium for 21 days and injected subcutaneously into the necks of nude mice. After 30 and 60 days, the mice were sacrificed, and newly formed tissues were analyzed by immunostaining, H and E staining, and RT-PCR. We found that ADSCs attached to PLGA spheres, but not PLGA spheres alone, were able to generate muscle tissue. These findings suggest that ADSCs and PLGA spheres are useful materials for muscle tissue engineering and that their combination can be used in clinical settings for muscle regeneration.

  17. Adipose tissue-derived stem cells as a therapeutic tool for cardiovascular disease

    PubMed Central

    Suzuki, Etsu; Fujita, Daishi; Takahashi, Masao; Oba, Shigeyoshi; Nishimatsu, Hiroaki

    2015-01-01

    Adipose tissue-derived stem cells (ADSCs) are adult stem cells that can be easily harvested from subcutaneous adipose tissue. Many studies have demonstrated that ADSCs differentiate into vascular endothelial cells (VECs), vascular smooth muscle cells (VSMCs), and cardiomyocytes in vitro and in vivo. However, ADSCs may fuse with tissue-resident cells and obtain the corresponding characteristics of those cells. If fusion occurs, ADSCs may express markers of VECs, VSMCs, and cardiomyocytes without direct differentiation into these cell types. ADSCs also produce a variety of paracrine factors such as vascular endothelial growth factor, hepatocyte growth factor, and insulin-like growth factor-1 that have proangiogenic and/or antiapoptotic activities. Thus, ADSCs have the potential to regenerate the cardiovascular system via direct differentiation into VECs, VSMCs, and cardiomyocytes, fusion with tissue-resident cells, and the production of paracrine factors. Numerous animal studies have demonstrated the efficacy of ADSC implantation in the treatment of acute myocardial infarction (AMI), ischemic cardiomyopathy (ICM), dilated cardiomyopathy, hindlimb ischemia, and stroke. Clinical studies regarding the use of autologous ADSCs for treating patients with AMI and ICM have recently been initiated. ADSC implantation has been reported as safe and effective so far. Therefore, ADSCs appear to be useful for the treatment of cardiovascular disease. However, the tumorigenic potential of ADSCs requires careful evaluation before their safe clinical application. PMID:26322185

  18. Electrospinning adipose tissue-derived extracellular matrix for adipose stem cell culture.

    PubMed

    Francis, Michael P; Sachs, Patrick C; Madurantakam, Parthasarathy A; Sell, Scott A; Elmore, Lynne W; Bowlin, Gary L; Holt, Shawn E

    2012-07-01

    Basement membrane-rich extracellular matrices, particularly murine sarcoma-derived Matrigel, play important roles in regenerative medicine research, exhibiting marked cellular responses in vitro and in vivo, although with limited clinical applications. We find that a human-derived matrix from lipoaspirate fat, a tissue rich in basement membrane components, can be fabricated by electrospinning and used to support cell culture. We describe practical applications and purification of extracellular matrix (ECM) from adipose tissue (At-ECM) and its use in electrospinning scaffolds and adipose stem cell (ASC) culture. The matrix composition of this purified and electrospun At-ECM was assessed histochemically for basement membrane, connective tissue, collagen, elastic fibers/elastin, glycoprotein, and proteoglycans. Each histochemical stain was positive in fat tissue, purified At-ECM, and electrospun At-ECM, and to some extent positive in a 10:90 blend with polydioxanone (PDO). We also show that electrospun At-ECM, alone and blended with PDO, supports ASC attachment and growth, suggesting that electrospun At-ECM scaffolds support ASC cultivation. These studies show that At-ECM can be isolated and electrospun as a basement membrane-rich tissue engineering matrix capable of supporting stem cells, providing the groundwork for an array of future regenerative medicine advances.

  19. Autologous transplantation of adipose tissue-derived stromal cells ameliorates pulmonary emphysema.

    PubMed

    Shigemura, N; Okumura, M; Mizuno, S; Imanishi, Y; Nakamura, T; Sawa, Y

    2006-11-01

    Adipose tissue is a useful tool for management of most complex cardiothoracic problems, including the reinforcement of damaged lungs, and adipose tissue-derived stromal cells (ASCs) have been suggested to secrete hepatocyte growth factor (HGF), a multipotent regenerative factor that contributes to the repair process after lung injury. The goal of this study was to demonstrate the therapeutic impact of autologous transplantation of ASCs through HGF supplementation for the enhancement of alveolar repair in a rat model of emphysema. ASCs were isolated from inguinal subcutaneous fat pads and characterized by flow cytometry. Cultured ASC were found to secrete significantly larger amounts of HGF (15 112 +/- 1628 pg per 10(6) cells) than other angiogenic factors. Transplantation of ASCs into elastase-treated emphysema models induced a significant increase in endogenous HGF expression in lung tissues with a small amount of increase in other organs, with the high levels lasting for up to 4 weeks after transplantation. Further, alveolar and vascular regeneration were significantly enhanced via inhibition of alveolar cell apoptosis, enhancement of epithelial cell proliferation and promotion of angiogenesis in pulmonary vasculature, leading to restoration of pulmonary function affected by emphysema. These data suggest that autologous ASC cell therapy may have a therapeutic potential for pulmonary emphysema, through inducing HGF expression selectively in injured lung tissues.

  20. Electrical stimulation of cardiac adipose tissue-derived progenitor cells modulates cell phenotype and genetic machinery.

    PubMed

    Llucià-Valldeperas, A; Sanchez, B; Soler-Botija, C; Gálvez-Montón, C; Prat-Vidal, C; Roura, S; Rosell-Ferrer, J; Bragos, R; Bayes-Genis, A

    2015-11-01

    A major challenge of cardiac tissue engineering is directing cells to establish the physiological structure and function of the myocardium being replaced. Our aim was to examine the effect of electrical stimulation on the cardiodifferentiation potential of cardiac adipose tissue-derived progenitor cells (cardiac ATDPCs). Three different electrical stimulation protocols were tested; the selected protocol consisted of 2 ms monophasic square-wave pulses of 50 mV/cm at 1 Hz over 14 days. Cardiac and subcutaneous ATDPCs were grown on biocompatible patterned surfaces. Cardiomyogenic differentiation was examined by real-time PCR and immunocytofluorescence. In cardiac ATDPCs, MEF2A and GATA-4 were significantly upregulated at day 14 after stimulation, while subcutaneous ATDPCs only exhibited increased Cx43 expression. In response to electrical stimulation, cardiac ATDPCs elongated, and both cardiac and subcutaneous ATDPCs became aligned following the linear surface pattern of the construct. Cardiac ATDPC length increased by 11.3%, while subcutaneous ATDPC length diminished by 11.2% (p = 0.013 and p = 0.030 vs unstimulated controls, respectively). Compared to controls, electrostimulated cells became aligned better to the patterned surfaces when the pattern was perpendicular to the electric field (89.71 ± 28.47º for cardiac ATDPCs and 92.15 ± 15.21º for subcutaneous ATDPCs). Electrical stimulation of cardiac ATDPCs caused changes in cell phenotype and genetic machinery, making them more suitable for cardiac regeneration approaches. Thus, it seems advisable to use electrical cell training before delivery as a cell suspension or within engineered tissue.

  1. Enzymatically crosslinked gelatin hydrogel promotes the proliferation of adipose tissue-derived stromal cells

    PubMed Central

    Ren, Xiaomei; Long, Haiyan; Qian, Hong; Ma, Kunlong

    2016-01-01

    Gelatin hydrogel crosslinked by microbial transglutaminase (mTG) exhibits excellent performance in cell adhesion, proliferation, and differentiation. We examined the gelation time and gel strength of gelatin/mTG hydrogels in various proportions to investigate their physical properties and tested their degradation performances in vitro. Cell morphology and viability of adipose tissue-derived stromal cells (ADSCs) cultured on the 2D gel surface or in 3D hydrogel encapsulation were evaluated by immunofluorescence staining. Cell proliferation was tested via Alamar Blue assay. To investigate the hydrogel effect on cell differentiation, the cardiac-specific gene expression levelsof Nkx2.5, Myh6, Gja1, and Mef2c in encapsulated ADSCs with or without cardiac induction medium were detected by real-time RT-PCR. Cell release from the encapsulated status and cell migration in a 3D hydrogel model were assessed in vitro. Results show that the gelatin/mTG hydrogels are not cytotoxic and that their mechanical properties are adjustable. Hydrogel degradation is related to gel concentration and the resident cells. Cell growth morphology and proliferative capability in both 2D and 3D cultures were mainly affected by gel concentration. PCR result shows that hydrogel modulus together with induction medium affects the cardiac differentiation of ADSCs. The cell migration experiment and subcutaneous implantation show that the hydrogels are suitable for cell delivery. PMID:27703850

  2. Enzymatically crosslinked gelatin hydrogel promotes the proliferation of adipose tissue-derived stromal cells.

    PubMed

    Yang, Gang; Xiao, Zhenghua; Ren, Xiaomei; Long, Haiyan; Qian, Hong; Ma, Kunlong; Guo, Yingqiang

    2016-01-01

    Gelatin hydrogel crosslinked by microbial transglutaminase (mTG) exhibits excellent performance in cell adhesion, proliferation, and differentiation. We examined the gelation time and gel strength of gelatin/mTG hydrogels in various proportions to investigate their physical properties and tested their degradation performances in vitro. Cell morphology and viability of adipose tissue-derived stromal cells (ADSCs) cultured on the 2D gel surface or in 3D hydrogel encapsulation were evaluated by immunofluorescence staining. Cell proliferation was tested via Alamar Blue assay. To investigate the hydrogel effect on cell differentiation, the cardiac-specific gene expression levelsof Nkx2.5, Myh6, Gja1, and Mef2c in encapsulated ADSCs with or without cardiac induction medium were detected by real-time RT-PCR. Cell release from the encapsulated status and cell migration in a 3D hydrogel model were assessed in vitro. Results show that the gelatin/mTG hydrogels are not cytotoxic and that their mechanical properties are adjustable. Hydrogel degradation is related to gel concentration and the resident cells. Cell growth morphology and proliferative capability in both 2D and 3D cultures were mainly affected by gel concentration. PCR result shows that hydrogel modulus together with induction medium affects the cardiac differentiation of ADSCs. The cell migration experiment and subcutaneous implantation show that the hydrogels are suitable for cell delivery.

  3. Growth Hormone Action Influences Adipogenesis of Mouse Adipose Tissue-Derived Mesenchymal Stem Cells

    PubMed Central

    Olarescu, Nicoleta C; Berryman, Darlene E; Householder, Lara A; Lubbers, Ellen R; List, Edward O; Benencia, Fabian; Kopchick, John J; Bollerslev, Jens

    2015-01-01

    Growth hormone (GH) influences adipocyte differentiation, but both stimulatory and inhibitory effects have been described. Adipose tissue-derived mesenchymal stem cells (AT-MSC) are multipotent, able to differentiate into adipocytes, among other cells. Canonical Wnt/β-catenin signaling activation impairs adipogenesis. The aim of this study was to elucidate the role of GH on AT-MSC adipogenesis using cells isolated from male GH receptor gene knockout (GHRKO), bovine GH transgenic (bGH) and wild-type littermate control (WT) mice. AT-MSC from subcutaneous (sc), epididiymal (epi), and mesenteric (mes) AT depots were identified and isolated by flow cytometry (PDGFRα+Sca-1+CD45−Ter119− cells). Their in vitro adipogenic differentiation capacity was determined by cell morphology and real-time RT-PCR. Using identical in vitro conditions, adipogenic differentiation of AT-MSC was only achieved in the sc depot, but not in epi and mes depots. Notably, we observed an increased differentiation in cells isolated from sc-GHRKO and an impaired differentiation of sc-bGH cells compared with sc-WT cells. Axin-2, a marker of Wnt/β-catenin activation, was increased in mature sc-bGH adipocytes suggesting that activation of this pathway may be responsible for the decreased adipogenesis. Thus, we demonstrate that 1) adipose tissue in mice has a well-defined population of Sca-1+PDGFRα+ MSC cells; 2) the differentiation capacity of AT-MSC varies from depot to depot regardless of GH genotype; 3) the lack of GH action increases adipogenesis in sc depot; and 4) activation of Wnt/β-catenin pathway might mediate the GH effect on AT-MSC. Taken together, our results suggest that GH diminishes fat mass, in part, by altering adipogenesis of MSC. PMID:25943560

  4. Characterization of human adipose tissue-derived stem cells with enhanced angiogenic and adipogenic properties.

    PubMed

    Lauvrud, Anne Therese; Kelk, Peyman; Wiberg, Mikael; Kingham, Paul J

    2016-02-02

    Autologous fat grafting is a popular method for soft tissue reconstructions but graft survival remains highly unpredictable. Supplementation of the graft with the stromal vascular fraction (SVF) or cultured adipose tissue-derived stem cells (ASCs) can enhance graft viability. In this study we have examined the phenotypic properties of a selected population of cells isolated from ASCs, with a view to determining their suitability for transplantation into grafts. ASCs were isolated from the SVF of human abdominal fat (n = 8 female patients) and CD146(+) cells were selected using immunomagnetic beads. The angiogenic and adipogenic properties of the positively selected cells were compared with the negative fraction. CD146(+) cells expressed the immunophenotypic characteristics of pericytes. With prolonged in vitro expansion, CD146(-) cells exhibited increased population doubling times and morphological signs of senescence, whereas CD146(+) cells did not. CD146(+) cells expressed higher levels of the angiogenic molecules VEGF-A, angiopoietin-1 and FGF-1. Conditioned medium taken from CD146(+) cells significantly increased formation of in vitro endothelial cell tube networks, whereas CD146(-) cells did not. CD146(+) cells could be differentiated into adipocytes in greater numbers than CD146(-) cells. Consistent with this, differentiated CD146(+) cells expressed higher levels of the adipocyte markers adiponectin and leptin. These results suggest that CD146(+) cells selected from a heterogeneous mix of ASCs have more favourable angiogenic and adipogenic properties, which might provide significant benefits for reconstructive and tissue-engineering applications. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Ultrasound -Assisted Gene Transfer to Adipose Tissue-Derived Stem/Progenitor Cells (ASCs)

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshitaka; Ueno, Hitomi; Hokari, Rei; Yuan, Wenji; Kuno, Shuichi; Kakimoto, Takashi; Enosawa, Shin; Negishi, Yoichi; Yoshinaka, Kiyoshi; Matsumoto, Yoichiro; Chiba, Toshio; Hayashi, Shuji

    2011-09-01

    In recent years, multilineage adipose tissue-derived stem cells (ASCs) have become increasingly attractive as a promising source for cell transplantation and regenerative medicine. Particular interest has been expressed in the potential to make tissue stem cells, such as ASCs and marrow stromal cells (MSCs), differentiate by gene transfection. Gene transfection using highly efficient viral vectors such as adeno- and sendai viruses have been developed for this purpose. Sonoporation, or ultrasound (US)-assisted gene transfer, is an alternative gene manipulation technique which employs the creation of a jet stream by ultrasonic microbubble cavitation. Sonoporation using non-viral vectors is expected to be a much safer, although less efficient, tool for prospective clinical gene therapy. In this report, we assessed the efficacy of the sonoporation technique for gene transfer to ASCs. We isolated and cultured adipocyets from mouse adipose tissue. ASCs that have the potential to differentiate with transformation into adipocytes or osteoblasts were obtained. Using the US-assisted system, plasmid DNA containing beta-galactosidase (beta-Gal) and green fluorescent protein (GFP) genes were transferred to the ASCs. For this purpose, a Sonopore 4000 (NEPAGENE Co.) and a Sonazoid (Daiichi Sankyo Co.) instrument were used in combination. ASCs were subjected to US (3.1 MHz, 50% duty cycle, burst rate 2.0 Hz, intensity 1.2 W/cm2, exposure time 30 sec). We observed that the gene was more efficiently transferred with increased concentrations of plasmid DNA (5-150 μg/mL). However, further optimization of the US parameters is required, as the gene transfer efficiency was still relatively low. In conclusion, we herein demonstrate that a gene can be transferred to ASCs using our US-assisted system. In regenerative medicine, this system might resolve the current issues surrounding the use of viral vectors for gene transfer.

  6. Adipose tissue-derived stem cell response to the differently processed 316L stainless steel substrates.

    PubMed

    Faghihi, Shahab; Zia, Sonia; Taha, Masoumeh Fakhr

    2012-12-01

    Stainless steel (SS) is one of the most applicable materials in fabrication of cardiac implants. The aim of this study is to investigate the effect of atomic structure of polycrystalline stainless steel on the response of adipose tissue-derived stem cells (ADSCs). Samples are prepared from differently processed extruded rod and rolled sheet of 316L SS having different crystallographic structure. X-ray diffraction analysis indicated (200) and (111) orientations with distinct volume fractions in the specimens. Morphology and ADSCs behavior including adhesion, proliferation and differentiation are assessed. The expression of cardiac specific protein (cardiac troponin I) and genes of differentiating cardiomyocytes is analyzed by immunofluorescence and RT-PCR. The number of attached and grown cells on the rod sample is higher than the sheet sample also the scanning electron microscopy (SEM) analysis of ADSCs grown on the samples demonstrates higher cell density and spreading pattern on the surface of rod sample. In differentiated ADSCs on the rod sample the expression of all genes except ANF are detectable, while on the sheet sample only the MEF2C and β-MHC are expressed. This study shows that the cellular response is influenced by the crystal structure of the substrate therefore; the skill to alter the structure of substrate may lend itself to engineer a biomaterial which could be suitable for differentiation of stem cells into a definite lineage.

  7. Cartilage Regeneration in Human with Adipose Tissue-Derived Stem Cells: Current Status in Clinical Implications

    PubMed Central

    Pak, Jaewoo; Lee, Jung Hun; Kartolo, Wiwi Andralia; Lee, Sang Hee

    2016-01-01

    Osteoarthritis (OA) is one of the most common debilitating disorders among the elderly population. At present, there is no definite cure for the underlying causes of OA. However, adipose tissue-derived stem cells (ADSCs) in the form of stromal vascular fraction (SVF) may offer an alternative at this time. ADSCs are one type of mesenchymal stem cells that have been utilized and have demonstrated an ability to regenerate cartilage. ADSCs have been shown to regenerate cartilage in a variety of animal models also. Non-culture-expanded ADSCs, in the form of SVF along with platelet rich plasma (PRP), have recently been used in humans to treat OA and other cartilage abnormalities. These ADSCs have demonstrated effectiveness without any serious side effects. However, due to regulatory issues, only ADSCs in the form of SVF are currently allowed for clinical uses in humans. Culture-expanded ADSCs, although more convenient, require clinical trials for a regulatory approval prior to uses in clinical settings. Here we present a systematic review of currently available clinical studies involving ADSCs in the form of SVF and in the culture-expanded form, with or without PRP, highlighting the clinical effectiveness and safety in treating OA. PMID:26881220

  8. Adipose tissue-derived stem cells display a proangiogenic phenotype on 3D scaffolds.

    PubMed

    Neofytou, Evgenios A; Chang, Edwin; Patlola, Bhagat; Joubert, Lydia-Marie; Rajadas, Jayakumar; Gambhir, Sanjiv S; Cheng, Zhen; Robbins, Robert C; Beygui, Ramin E

    2011-09-01

    Ischemic heart disease is the leading cause of death worldwide. Recent studies suggest that adipose tissue-derived stem cells (ASCs) can be used as a potential source for cardiovascular tissue engineering due to their ability to differentiate along the cardiovascular lineage and to adopt a proangiogenic phenotype. To understand better ASCs' biology, we used a novel 3D culture device. ASCs' and b.END-3 endothelial cell proliferation, migration, and vessel morphogenesis were significantly enhanced compared to 2D culturing techniques. ASCs were isolated from inguinal fat pads of 6-week-old GFP+/BLI+ mice. Early passage ASCs cells (P3-P4), PKH26-labeled murine b.END-3 cells or a co-culture of ASCs and b.END-3 cells were seeded at a density of 1 × 10(5) on three different surface configurations: (a) a 2D surface of tissue culture plastic, (b) Matrigel, and (c) a highly porous 3D scaffold fabricated from inert polystyrene. VEGF expression, cell proliferation, and tubulization, were assessed using optical microscopy, fluorescence microscopy, 3D confocal microscopy, and SEM imaging (n = 6). Increased VEGF levels were seen in conditioned media harvested from co-cultures of ASCs and b.END-3 on either Matrigel or a 3D matrix. Fluorescence, confocal, SEM, bioluminescence revealed improved cell, proliferation, and tubule formation for cells seeded on the 3D polystyrene matrix. Collectively, these data demonstrate that co-culturing ASCs with endothelial cells in a 3D matrix environment enable us to generate prevascularized tissue-engineered constructs. This can potentially help us to surpass the tissue thickness limitations faced by the tissue engineering community today.

  9. Do adipose tissue-derived mesenchymal stem cells ameliorate Parkinson's disease in rat model?

    PubMed

    Ahmed, Hh; Salem, Am; Atta, Hm; Ghazy, Ma; Aglan, Ha

    2014-12-01

    Parkinson's disease (PD) is a common neurodegenerative disorder in middle-aged and elderly people. This study aimed to elucidate the role of mesenchymal stem cells (MSCs) in management of PD in ovariectomized rat model. MSCs were excised from adipose tissue of both the omentum and the inguinal fat pad of male rats, grown, and propagated in culture; then characterized morphologically; and by the detection of surface markers gene expression. In this study, 40 ovariectomized animals were classified into 5 groups; group 1 was ovariectomized control, groups 2 to 5 were subcutaneously administered with rotenone for 14 days after 1 month of ovariectomy for induction of PD. Group 2 was left untreated; groups 3, 4, and 5 were treated with Sinemet(®), Cerebrolysin(®), and a single dose of adipose tissue-derived MSCs (ADMSCs), respectively. Y-chromosome gene (sry) was assessed by polymerase chain reaction (PCR) in brain tissue of the female rats. Serum transforming growth factor β (TGF-β), monocyte chemoattractant protein 1 (MCP-1), and brain-derived neurotrophic factor (BDNF) levels were assayed using enzyme-linked immunosorbent assay technique. Brain dopamine level was assayed fluorometrically, while brain tyrosine hydroxylase (TH) gene expression was detected by semiquantitative real-time PCR. The PD group showed significant increase in serum TGF-β and MCP-1 levels associated with significant decrease in serum BDNF, brain dopamine, and brain TH gene expression levels. In contrast, all treatments produce significant decrease in serum TGF-β and MCP-1 levels in concomitant with significant increase in serum BDNF, brain dopamine, and brain TH gene expression levels. In conclusion, the observed improvements in the studied biomarkers due to ADMSCs infusion might be attributed to their immunomodulatory, anti-inflammatory, and neurotrophic effects.

  10. L-carnitine significantly decreased aging of rat adipose tissue-derived mesenchymal stem cells.

    PubMed

    Mobarak, Halimeh; Fathi, Ezzatollah; Farahzadi, Raheleh; Zarghami, Nosratollah; Javanmardi, Sara

    2017-03-01

    Mesenchymal stem cells are undifferentiated cells that have the ability to divide continuously and tissue regeneration potential during the transplantation. Aging and loss of cell survival, is one of the main problems in cell therapy. Since the production of free radicals in the aging process is effective, the use of antioxidant compounds can help in scavenging free radicals and prevent the aging of cells. The aim of this study is evaluate the effects of L-carnitine (LC) on proliferation and aging of rat adipose tissue-derived mesenchymal stem cells (rADSC). rADSCs were isolated from inguinal region of 5 male Rattus rats. Oil red-O, alizarin red-S and toluidine blue staining were performed to evaluate the adipogenic, osteogenic and chondrogenic differentiation of rADSCs, respectively. Flow cytometric analysis was done for investigating the cell surface markers. The methyl thiazol tetrazolium (MTT) method was used to determine the cell proliferation of rADSCs following exposure to different concentrations of LC. rADSCs aging was evaluated by beta-galactosidase staining. The results showed significant proliferation of rADSCs 48 h after treatment with concentrations of 0.2 mM LC. In addition, in the presence of 0.2 mM LC, rADSCs appeared to be growing faster than control group and 0.2 mM LC supplementation could significantly decrease the population doubling time and aging of rADSCs. It seems that LC would be a good antioxidant to improve lifespan of rADSCs due to the decrease in aging.

  11. Effect of adipose tissue-derived stem cell injection in a rat model of urethral fibrosis

    PubMed Central

    Sangkum, Premsant; Yafi, Faysal A.; Kim, Hogyoung; Bouljihad, Mostafa; Ranjan, Manish; Datta, Amrita; Mandava, Sree Harsha; Sikka, Suresh C; Abdel-Mageed, Asim B.; Hellstrom, Wayne J.G.

    2016-01-01

    Introduction: We sought to evaluate the therapeutic effect of adi-pose tissue-derived stem cells (ADSCs) in a rat model of urethral fibrosis. Methods: Eighteen (18) male Sprague-Dawley rats (300‒350 g) were divided into three groups: (1) sham (saline injection); (2) urethral fibrosis group (10 μg transforming growth factor beta 1 (TGF-β1) injection); and (3) ADSCs group (10 μg TGF-β1 injection plus 2 × 105 ADSCs). Rat ADSCs were harvested from rat inguinal fat pads. All study animals were euthanized at two weeks after urethral injection. Following euthanasia, rat urethral tissue was harvested for histologic evaluation. Type I and III collagen levels were quantitated by Western blot analysis. Results: TGF-β1 injection induced significant urethral fibrosis and increased collagen type I and III expression (p<0.05). Significant decrease in submucosal fibrosis and collagen type I and III expression were noted in the ADSCs group compared with the urethral fibrosis group (p<0.05). TGF-β1 induced fibrotic changes were ameliorated by injection of ADSCs. Conclusions: Local injection of ADSCs in a rat model of urethral fibrosis significantly decreased collagen type I and III. These findings suggest that ADSC injection may prevent scar formation and potentially serve as an adjunct treatment to increase the success rate of primary treatment for urethral stricture disease. Further animal and clinical studies are needed to confirm these results. PMID:27790299

  12. Generation of embryonic stem cells from mouse adipose-tissue derived cells via somatic cell nuclear transfer

    PubMed Central

    Qin, Yiren; Qin, Jilong; Zhou, Chikai; Li, Jinsong; Gao, Wei-Qiang

    2015-01-01

    Somatic cells can be reprogrammed into embryonic stem cells (ESCs) by nuclear transfer (NT-ESCs), or into induced pluripotent stem cells (iPSCs) by the “Yamanaka method.” However, recent studies have indicated that mouse and human iPSCs are prone to epigenetic and transcriptional aberrations, and that NT-ESCs correspond more closely to ESCs derived from in vitro fertilized embryos than iPSCs. In addition, the procedure of NT-ESCs does not involve gene modification. Demonstration of generation of NT-ESCs using an easily-accessible source of adult cell types would be very important. Adipose tissue is a source of readily accessible donor cells and can be isolated from both males and females at different ages. Here we report that NT-ESCs can be generated from adipose tissue-derived cells (ADCs). At morphological, mRNA and protein levels, these NT-ESCs show classic ESC colonies, exhibit alkaline phosphatase (AP) activity, and display normal diploid karyotypes. Importantly, these cells express pluripotent markers including Oct4, Sox2, Nanog and SSEA-1. Furthermore, they can differentiate in vivo into various types of cells from 3 germinal layers by teratoma formation assays. This study demonstrates for the first time that ESCs can be generated from the adipose tissue by somatic cell nuclear transfer (SCNT) and suggests that ADCs can be a new donor-cell type for potential therapeutic cloning. PMID:25692793

  13. Generation of embryonic stem cells from mouse adipose-tissue derived cells via somatic cell nuclear transfer.

    PubMed

    Qin, Yiren; Qin, Jilong; Zhou, Chikai; Li, Jinsong; Gao, Wei-Qiang

    2015-01-01

    Somatic cells can be reprogrammed into embryonic stem cells (ESCs) by nuclear transfer (NT-ESCs), or into induced pluripotent stem cells (iPSCs) by the "Yamanaka method." However, recent studies have indicated that mouse and human iPSCs are prone to epigenetic and transcriptional aberrations, and that NT-ESCs correspond more closely to ESCs derived from in vitro fertilized embryos than iPSCs. In addition, the procedure of NT-ESCs does not involve gene modification. Demonstration of generation of NT-ESCs using an easily-accessible source of adult cell types would be very important. Adipose tissue is a source of readily accessible donor cells and can be isolated from both males and females at different ages. Here we report that NT-ESCs can be generated from adipose tissue-derived cells (ADCs). At morphological, mRNA and protein levels, these NT-ESCs show classic ESC colonies, exhibit alkaline phosphatase (AP) activity, and display normal diploid karyotypes. Importantly, these cells express pluripotent markers including Oct4, Sox2, Nanog and SSEA-1. Furthermore, they can differentiate in vivo into various types of cells from 3 germinal layers by teratoma formation assays. This study demonstrates for the first time that ESCs can be generated from the adipose tissue by somatic cell nuclear transfer (SCNT) and suggests that ADCs can be a new donor-cell type for potential therapeutic cloning.

  14. Cell density-dependent transcriptional activation of endocrine-related genes in human adipose tissue-derived stem cells.

    PubMed

    Ghosh, Sagar; Dean, Angela; Walter, Marc; Bao, Yongde; Hu, Yanfen; Ruan, Jianhua; Li, Rong

    2010-08-01

    Adipose tissue is recognized as an endocrine organ that plays an important role in human diseases such as type II diabetes and cancer. Human adipose tissue-derived stem cells (ASCs), a distinct cell population in adipose tissue, are capable of differentiating into multiple lineages including adipogenesis. When cultured in vitro under a confluent condition, ASCs reach a commitment stage for adipogenesis, which can be further induced into terminally differentiated adipocytes by a cocktail of adipogenic factors. Here we report that the confluent state of ASCs triggers transcriptional activation cascades for genes that are responsible for the endocrine function of adipose tissue. These include insulin-like growth factor 1 (IGF-1) and aromatase (Cyp19), a key enzyme in estrogen biosynthesis. Despite similar adipogenic potentials, ASCs from different individuals display huge variations in activation of these endocrine-related genes. Bioinformatics and experimental data suggest that transcription factor Foxo1 controls a large number of "early" confluency-response genes, which subsequently induce "late" response genes. Furthermore, siRNA-mediated knockdown of Foxo1 substantially compromises the ability of committed ASCs to stimulate tumor cell migration in vitro. Thus, our work suggests that cell density is an important determinant of the endocrine potential of ASCs.

  15. Potential application of extracellular vesicles of human adipose tissue-derived mesenchymal stem cells in Alzheimer's disease therapeutics.

    PubMed

    Katsuda, Takeshi; Oki, Katsuyuki; Ochiya, Takahiro

    2015-01-01

    In the last 20 years, extracellular vesicles (EVs) have attracted attention as a versatile cell-cell communication mediator. The biological significance of EVs remains to be fully elucidated, but many reports have suggested that the functions of EVs mirror, at least in part, those of the cells from which they originate. Mesenchymal stem cells (MSCs) are a type of adult stem cell that can be isolated from connective tissue including bone marrow and adipose tissue and have emerged as an attractive candidate for cell therapy applications. Accordingly, an increasing number of reports have shown that EVs derived from MSCs have therapeutic potential in multiple diseases. We recently reported a novel therapeutic potential of EVs secreted from human adipose tissue-derived MSCs (hADSCs) (also known as adipose tissue-derived stem cells; ASCs) against Alzheimer's disease (AD). We found that hADSCs secrete exosomes carrying enzymatically active neprilysin, the most important β-amyloid peptide (Aβ)-degrading enzyme in the brain. In this chapter, we describe a method by which to evaluate the therapeutic potential of hADSC-derived EVs against AD from the point of view of their Aβ-degrading capacity.

  16. GMP-compliant human adipose tissue-derived mesenchymal stem cells for cellular therapy.

    PubMed

    Aghayan, Hamid-Reza; Goodarzi, Parisa; Arjmand, Babak

    2015-01-01

    Stem cells, which can be derived from different sources, demonstrate promising therapeutic evidences for cellular therapies. Among various types of stem cell, mesenchymal stem cells are one of the most common stem cells that are used in cellular therapy. Human subcutaneous adipose tissue provides an easy accessible source of mesenchymal stem cells with some considerable advantages. Accordingly, various preclinical and clinical investigations have shown enormous potential of adipose-derived stromal cells in regenerative medicine. Consequently, increasing clinical applications of these cells has elucidated the importance of safety concerns regarding clinical transplantation. Therefore, clinical-grade preparation of adipose-derived stromal cells in accordance with current good manufacturing practice guidelines is an essential part of their clinical applications to ensure the safety, quality, characteristics, and identity of cell products. Additionally, GMP-compliant cell manufacturing involves several issues to provide a quality assurance system during translation from the basic stem cell sciences into clinical investigations and applications. On the other hand, advanced cellular therapy requires extensive validation, process control, and documentation. It also evidently elucidates the critical importance of production methods and probable risks. Therefore, implementation of a quality management and assurance system in accordance with GMP guidelines can greatly reduce these risks particularly in the higher-risk category or "more than minimally manipulated" products.

  17. Human eyelid adipose tissue-derived Schwann cells promote regeneration of a transected sciatic nerve

    PubMed Central

    Wang, Gangyang; Cao, Lingling; Wang, Yang; Hua, Yingqi; Cai, Zhengdong; Chen, Jun; Chen, Lulu; Jin, Yuqing; Niu, Lina; Shen, Hua; Lu, Yan; Shen, Zunli

    2017-01-01

    Schwann cells (SCs) can promote the regeneration of injured peripheral nerves while the clinical application is limited by donor site complications and the inability to generate an ample amount of cells. In this study, we have isolated human eyelid adipose-derived Schwann cells (hE-SCs) from human eyelid adipose tissue and identified the cell phenotype and function. Using immunofluorescence and H & E staining, we detected subtle nerve fibers and SCs in human eyelid adipose tissue. Immunofluorescence staining indicated that hE-SCs expressed glial markers, such as S100, p75NTR GFAP, Sox10 and Krox20. To explore whether hE-SCs promote the regeneration of injured peripheral nerves in vivo, a Balb/c-nu mice model was used in the study, and mice were randomly assigned to five groups: Matrigel; hE-SCs/P0; hE-SCs/P2; hE-FLCs/P2; and Autograft. After 12 weeks, functional and histological assessments of the regenerated nerves showed that sciatic nerve defect was more effectively repaired in the hE-SCs/P2 group which achieved 66.1 ± 6.5% purity, than the other three groups and recovered to similar level to the Autograft group. These results indicated that hE-SCs can promote the regeneration of injured peripheral nerve and the abundant, easily accessible supply of adipose tissue might be a promising source of SCs for peripheral nerve repair. PMID:28256528

  18. Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation.

    PubMed

    Knippenberg, Marlene; Helder, Marco N; Doulabi, Behrouz Zandieh; Semeins, Cornelis M; Wuisman, Paul I J M; Klein-Nulend, Jenneke

    2005-01-01

    To engineer bone tissue, mechanosensitive cells are needed that are able to perform bone cell-specific functions, such as (re)modeling of bone tissue. In vivo, local bone mass and architecture are affected by mechanical loading, which is thought to provoke a cellular response via loading-induced flow of interstitial fluid. Adipose tissue is an easily accessible source of mesenchymal stem cells for bone tissue engineering, and is available in abundant amounts compared with bone marrow. We studied whether adipose tissue-derived mesenchymal stem cells (AT-MSCs) are responsive to mechanical loading by pulsating fluid flow (PFF) on osteogenic stimulation in vitro. We found that ATMSCs show a bone cell-like response to fluid shear stress as a result of PFF after the stimulation of osteogenic differentiation by 1,25-dihydroxyvitamin D3. PFF increased nitric oxide production, as well as upregulated cyclooxygenase-2, but not cyclooxygenase-1, gene expression in osteogenically stimulated AT-MSCs. These data suggest that AT-MSCs acquire bone cell-like responsiveness to pulsating fluid shear stress on 1,25-dihydroxyvitamin D3-induced osteogenic differentiation. ATMSCs might be able to perform bone cell-specific functions during bone (re)modeling in vivo and, therefore, provide a promising new tool for bone tissue engineering.

  19. Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine.

    PubMed

    Wu, Ling; Cai, Xiaoxiao; Zhang, Shu; Karperien, Marcel; Lin, Yunfeng

    2013-05-01

    Adipose-derived stem cells (ASCs) have been discovered for more than a decade. Due to the large numbers of cells that can be harvested with relatively little donor morbidity, they are considered to be an attractive alternative to bone marrow derived mesenchymal stem cells. Consequently, isolation and differentiation of ASCs draw great attention in the research of tissue engineering and regenerative medicine. Cartilage defects cause big therapeutic problems because of their low self-repair capacity. Application of ASCs in cartilage regeneration gives hope to treat cartilage defects with autologous stem cells. In recent years, a lot of studies have been performed to test the possibility of using ASCs to re-construct damaged cartilage tissue. In this article, we have reviewed the most up-to-date articles utilizing ASCs for cartilage regeneration in basic and translational research. Our topic covers differentiation of adipose tissue derived mesenchymal stem cells into chondrocytes, increased cartilage formation by co-culture of ASCs with chondrocytes and enhancing chondrogenic differentiation of ASCs by gene manipulation.

  20. Diabetic human adipose tissue-derived mesenchymal stem cells fail to differentiate in functional adipocytes.

    PubMed

    Barbagallo, Ignazio; Li Volti, Giovanni; Galvano, Fabio; Tettamanti, Guido; Pluchinotta, Francesca R; Bergante, Sonia; Vanella, Luca

    2016-11-30

    Adipose tissue dysfunction represents a hallmark of diabetic patients and is a consequence of the altered homeostasis of this tissue. Mesenchymal stem cells (MSCs) and their differentiation into adipocytes contribute significantly in maintaining the mass and function of adult adipose tissue. The aim of this study was to evaluate the differentiation of MSCs from patients suffering type 2 diabetes (dASC) and how such process results in hyperplasia or rather a stop of adipocyte turnover resulting in hypertrophy of mature adipocytes. Our results showed that gene profile of all adipogenic markers is not expressed in diabetic cells after differentiation indicating that diabetic cells fail to differentiate into adipocytes. Interestingly, delta like 1, peroxisome proliferator-activated receptor alpha, and interleukin 1β were upregulated whereas Sirtuin 1 and insulin receptor substrate 1 gene expression were found downregulated in dASC compared to cells obtained from healthy subjects. Taken together our data indicate that dASC lose their ability to differentiate into mature and functional adipocytes. In conclusion, our in vitro study is the first to suggest that diabetic patients might develop obesity through a hypertrophy of existing mature adipocytes due to failure turnover of adipose tissue.

  1. Adipogenic differentiation potential of rat adipose tissue-derived subpopulations of stromal cells.

    PubMed

    Gierloff, M; Petersen, L; Oberg, H-H; Quabius, E S; Wiltfang, J; Açil, Y

    2014-10-01

    Adipose-derived stromal cells (ASCs) are mostly isolated by enzymatic digestion, centrifugation and adherent growth resulting in a very heterogeneous cell population. Therefore, other cell types in the cell culture can comprise the differentiation and proliferation potential of the ASC population. Recent studies indicated that an antibody-aided isolation of distinct ASC subpopulations provides advantages over the conventional method of ASC isolation. The aim of this study was to investigate the adipogenic differentiation potential of CD29-, CD71-, CD73- and CD90-selected ASCs in vitro. The stromal vascular fraction (SVF) was obtained from rat adipose tissue by enzymatic digestion and centrifugation. Subsequently, CD29(+)-, CD71(+)-, CD73(+)- and CD90(+) cells were isolated by magnetic activated cell sorting (MACS), seeded into culture plates and differentiated into the adipogenic lineage. ASCs isolated by adherent growth only served as controls. Adipogenic differentiation was assessed by Oil Red O staining and quantification of the adiponectin and leptin concentrations in the cell culture supernatants. Statistical analysis was carried out using one-way analysis of variance (ANOVA) followed by the Scheffe's post hoc procedure. The results showed that different subpopulations with different adipogenic differentiation potentials can be isolated by the MACS procedure. The highest adipogenic differentiation potential was determined in the CD29-selected ASC population followed by the unsorted ASC population. The CD71-, CD73- and CD90-selected cells exhibited significantly the lowest adipogenic differentiation potential. In conclusion, the CD29-selected ASCs and the unsorted ASCs exhibited a similar adipogenic differentiation potential. Therefore, we do not see a clear advantage in the application of an anti-CD29-based isolation of ASCs over the conventional technique using adherent growth. However, the research on isolation/purification methods of adipogenic ASCs should

  2. Regeneration of Cartilage in Human Knee Osteoarthritis with Autologous Adipose Tissue-Derived Stem Cells and Autologous Extracellular Matrix

    PubMed Central

    Pak, Jaewoo; Lee, Jung Hun; Park, Kwang Seung; Jeong, Byeong Chul; Lee, Sang Hee

    2016-01-01

    Abstract This clinical case series demonstrates that percutaneous injections of autologous adipose tissue-derived stem cells (ADSCs) and homogenized extracellular matrix (ECM) in the form of adipose stromal vascular fraction (SVF), along with hyaluronic acid (HA) and platelet-rich plasma (PRP) activated by calcium chloride, could regenerate cartilage-like tissue in human knee osteoarthritis (OA) patients. Autologous lipoaspirates were obtained from adipose tissue of the abdominal origin. Afterward, the lipoaspirates were minced to homogenize the ECM. These homogenized lipoaspirates were then mixed with collagenase and incubated. The resulting mixture of ADSCs and ECM in the form of SVF was injected, along with HA and PRP activated by calcium chloride, into knees of three Korean patients with OA. The same affected knees were reinjected weekly with additional PRP activated by calcium chloride for 3 weeks. Pretreatment and post-treatment magnetic resonance imaging (MRI) data, functional rating index, range of motion (ROM), and pain score data were then analyzed. All patients' MRI data showed cartilage-like tissue regeneration. Along with MRI evidence, the measured physical therapy outcomes in terms of ROM, subjective pain, and functional status were all improved. This study demonstrates that percutaneous injection of ADSCs with ECM contained in autologous adipose SVF, in conjunction with HA and PRP activated by calcium chloride, is a safe and potentially effective minimally invasive therapy for OA of human knees. PMID:27588219

  3. Canine adipose tissue-derived mesenchymal stem cells ameliorate severe acute pancreatitis by regulating T cells in rats

    PubMed Central

    Kim, Hyun-Wook; Song, Woo-Jin; Li, Qiang; Han, Sei-Myoung; Jeon, Kee-Ok; Park, Sang-Chul; Ryu, Min-Ok; Chae, Hyung-Kyu; Kyeong, Kweon

    2016-01-01

    Severe acute pancreatitis (SAP) is associated with systemic complications and high mortality rate in dogs. Mesenchymal stem cells (MSCs) have been investigated for their therapeutic potential in several inflammation models. In the present study, the effects of canine adipose tissue-derived (cAT)-MSCs in a rat model of SAP induced by retrograde injection of 3% sodium taurocholate solution into the pancreatic duct were investigated. cAT-MSCs labeled with dioctadecyl-3,3,3′-tetramethylindo-carbocyanine perchlorate (1 × 107 cells/kg) were systemically administered to rats and pancreatic tissue was collected three days later for histopathological, quantitative real-time polymerase chain reaction, and immunocytochemical analyses. Greater numbers of infused cAT-MSCs were detected in the pancreas of SAP relative to sham-operated rats. cAT-MSC infusion reduced pancreatic edema, inflammatory cell infiltration, and acinar cell necrosis, and decreased pancreatic expression of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1β, -6, -12, -17, and -23 and interferon-γ, while stimulating expression of the anti-inflammatory cytokines IL-4 and IL-10 in SAP rats. Moreover, cAT-MSCs decreased the number of clusters of differentiation 3-positive T cells and increased that of forkhead box P3-positive T cells in the injured pancreas. These results indicate that cAT-MSCs can be effective as a cell-based therapeutic strategy for treatment of SAP in dogs. PMID:27297425

  4. Transplantation of insulin-secreting cells differentiated from human adipose tissue-derived stem cells into type 2 diabetes mice.

    PubMed

    Nam, Ji Sun; Kang, Hyun Mi; Kim, Jiyoung; Park, Seah; Kim, Haekwon; Ahn, Chul Woo; Park, Jin Oh; Kim, Kyung Rae

    2014-01-10

    Currently, there are limited ways to preserve or recover insulin secretory capacity in human pancreas. We evaluated the efficacy of cell therapy using insulin-secreting cells differentiated from human eyelid adipose tissue-derived stem cells (hEAs) into type 2 diabetes mice. After differentiating hEAs into insulin-secreting cells (hEA-ISCs) in vitro, cells were transplanted into a type 2 diabetes mouse model. Serum levels of glucose, insulin and c-peptide were measured, and changes of metabolism and inflammation were assessed in mice that received undifferentiated hEAs (UDC group), differentiated hEA-ISCs (DC group), or sham operation (sham group). Human gene expression and immunohistochemical analysis were done. DC group mice showed improved glucose level, and survival up to 60 days compared to those of UDC and sham group. Significantly increased levels of human insulin and c-peptide were detected in sera of DC mice. RT-PCR and immunohistochemical analysis showed human gene expression and the presence of human cells in kidneys of DC mice. When compared to sham mice, DC mice exhibited lower levels of IL-6, triglyceride and free fatty acids as the control mice. Transplantation of hEA-ISCs lowered blood glucose level in type 2 diabetes mice by increasing circulating insulin level, and ameliorating metabolic parameters including IL-6.

  5. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells

    SciTech Connect

    Sawada, Keigo; Takedachi, Masahide; Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki; Lee, Chun Man; Okura, Hanayuki; Matsuyama, Akifumi; Kitamura, Masahiro; Murakami, Shinya

    2015-08-14

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration. - Highlights: • ADMPC-derived humoral factors stimulate cytodifferentiation of HPDLs. • ADMPCs secret growth factors including IGFBP6, VEGF and HGF. • IGFBP6 is involved in the promotion effect of ADMPC-CM on HPDL cytodifferentiation.

  6. Trophic factors from adipose tissue-derived multi-lineage progenitor cells promote cytodifferentiation of periodontal ligament cells.

    PubMed

    Sawada, Keigo; Takedachi, Masahide; Yamamoto, Satomi; Morimoto, Chiaki; Ozasa, Masao; Iwayama, Tomoaki; Lee, Chun Man; Okura, Hanayuki; Matsuyama, Akifumi; Kitamura, Masahiro; Murakami, Shinya

    2015-08-14

    Stem and progenitor cells are currently being investigated for their applicability in cell-based therapy for periodontal tissue regeneration. We recently demonstrated that the transplantation of adipose tissue-derived multi-lineage progenitor cells (ADMPCs) enhances periodontal tissue regeneration in beagle dogs. However, the molecular mechanisms by which transplanted ADMPCs induce periodontal tissue regeneration remain to be elucidated. In this study, trophic factors released by ADMPCs were examined for their paracrine effects on human periodontal ligament cell (HPDL) function. ADMPC conditioned medium (ADMPC-CM) up-regulated osteoblastic gene expression, alkaline phosphatase activity and calcified nodule formation in HPDLs, but did not significantly affect their proliferative response. ADMPCs secreted a number of growth factors, including insulin-like growth factor binding protein 6 (IGFBP6), hepatocyte growth factor and vascular endothelial growth factor. Among these, IGFBP6 was most highly expressed. Interestingly, the positive effects of ADMPC-CM on HPDL differentiation were significantly suppressed by transfecting ADMPCs with IGFBP6 siRNA. Our results suggest that ADMPCs transplanted into a defect in periodontal tissue release trophic factors that can stimulate the differentiation of HPDLs to mineralized tissue-forming cells, such as osteoblasts and cementoblasts. IGFBP6 may play crucial roles in ADMPC-induced periodontal regeneration.

  7. Stromal cell-derived factor-1 promotes human adipose tissue-derived stem cell survival and chronic wound healing

    PubMed Central

    LI, QIANG; GUO, YANPING; CHEN, FEIFEI; LIU, JING; JIN, PEISHENG

    2016-01-01

    Adipose tissue-derived stem cells (ADSCs) hold great potential for the stem cell-based therapy of cutaneous wound healing. Stromal cell-derived factor-1 (SDF-1) activates CXC chemokine receptor (CXCR)4+ and CXCR7+ cells and plays an important role in wound healing. Increasing evidence suggests a critical role for SDF-1 in cell apoptosis and the survival of mesenchymal stem cells. However, the function of SDF-1 in the apoptosis and wound healing ability of ADSCs is not well understood. The aim of this study was to analyze the effect of SDF-1 on the apoptosis and therapeutic effect of ADSCs in cutaneous chronic wounds in vitro and in vivos. By flow cytometric analysis, it was found that hypoxia and serum free promoted the apoptosis of ADSCs. When pretreated with SDF-1, the apoptosis of ADSCs induced by hypoxia and serum depletion was partly recovered. Furthermore, in vivo experiments established that the post-implantation cell survival and chronic wound healing ability of ADSCs were increased following pretreatment with SDF-1 in a diabetic mouse model of chronic wound healing. To explore the potential mechanism underlying the effect of SDF-1 on ADSC apoptosis, western blot analysis was employed and the results indicate that SDF-1 may protect against cell apoptosis in hypoxic and serum-free conditions through activation of the caspase signaling pathway in ADSCs. This study provides evidence that SDF-1 pretreatment can increase the therapeutic effect of ADSCs in cutaneous chronic wounds in vitro and in vivo. PMID:27347016

  8. Treatment of type 1 diabetes with adipose tissue-derived stem cells expressing pancreatic duodenal homeobox 1.

    PubMed

    Lin, Guiting; Wang, Guifang; Liu, Gang; Yang, Li-Jun; Chang, Lung-Ji; Lue, Tom F; Lin, Ching-Shwun

    2009-12-01

    Due to the limited supply of donor pancreas, it is imperative that we identify alternative cell sources that can be used to treat diabetes mellitus (DM). Multipotent adipose tissue-derived stem cells (ADSC) can be abundantly and safely isolated for autologous transplantation and therefore are an ideal candidate. Here, we report the derivation of insulin-producing cells from human or rat ADSC by transduction with the pancreatic duodenal homeobox 1 (Pdx1) gene. RT-PCR analyses showed that native ADSC expressed insulin, glucagon, and NeuroD genes that were up-regulated following Pdx1 transduction. ELISA analyses showed that the transduced cells secreted increasing amount of insulin in response to increasing concentration of glucose. Transplantation of these cells under the renal capsule of streptozotocin-induced diabetic rats resulted in lowered blood glucose, higher glucose tolerance, smoother fur, and less cataract. Histological examination showed that the transplanted cells formed tissue-like structures and expressed insulin. Thus, ADSC-expressing Pdx1 appear to be suitable for treatment of DM.

  9. Osteogenic potential of human adipose-tissue-derived mesenchymal stromal cells cultured on 3D-printed porous structured titanium.

    PubMed

    Lewallen, Eric A; Jones, Dakota L; Dudakovic, Amel; Thaler, Roman; Paradise, Christopher R; Kremers, Hilal M; Abdel, Matthew P; Kakar, Sanjeev; Dietz, Allan B; Cohen, Robert C; Lewallen, David G; van Wijnen, Andre J

    2016-05-01

    Integration of porous metal prosthetics, which restore form and function of irreversibly damaged joints, into remaining healthy bone is critical for implant success. We investigated the biological properties of adipose-tissue-derived mesenchymal stromal/stem cells (AMSCs) and addressed their potential to alter the in vitro microenvironment of implants. We employed human AMSCs as a practical source for musculoskeletal applications because these cells can be obtained in large quantities, are multipotent, and have trophic paracrine functions. AMSCs were cultured on surgical-grade porous titanium disks as a model for orthopedic implants. We monitored cell/substrate attachment, cell proliferation, multipotency, and differentiation phenotypes of AMSCs upon osteogenic induction. High-resolution scanning electron microscopy and histology revealed that AMSCs adhere to the porous metallic surface. Compared to standard tissue culture plastic, AMSCs grown in the porous titanium microenvironment showed differences in temporal expression for genes involved in cell cycle progression (CCNB2, HIST2H4), extracellular matrix production (COL1A1, COL3A1), mesenchymal lineage identity (ACTA2, CD248, CD44), osteoblastic transcription factors (DLX3, DLX5, ID3), and epigenetic regulators (EZH1, EZH2). We conclude that metal orthopedic implants can be effectively seeded with clinical-grade stem/stromal cells to create a pre-conditioned implant.

  10. Therapeutic effects of human adipose tissue-derived stem cell (hADSC) transplantation on experimental autoimmune encephalomyelitis (EAE) mice

    PubMed Central

    Li, Jia; Chen, Ying; Chen, Zhibo; Huang, Yuanyuan; Yang, Dehao; Su, Zhongqian; Weng, Yiyun; Li, Xiang; Zhang, Xu

    2017-01-01

    This study is to investigate the therapeutic effects of human adipose tissue-derived stem cell (hADSC) transplantation on experimental autoimmune encephalomyelitis (EAE) in mice. EAE mouse model was established by MOG35-55 immunization. Body weight and neurological function were assessed. H&E and LFB staining was performed to evaluate histopathological changes. Flow cytometry was used to detect Th17 and Treg cells. ELISA and real-time PCR were performed to determine transcription factor and pro-inflammatory cytokine levels. Transplantation of hADSCs significantly alleviated the body weight loss and neurological function impairment of EAE mice. Inflammatory cell infiltration and demyelination were significantly increased, which were relieved by hADSC transplantation. Moreover, the Th17 cells and the ROR-γt mRNA level were significantly elevated, while the Treg cells and the Foxp3 mRNA level were significantly declined, resulting in significantly increased Th17/Treg ratio. This was reversed by the transplantation of hADSCs. Furthermore, serum levels of IL-17A, IL-6, IL-23, and TGF-β, were significantly increased, which could be influenced by the hADSC transplantation. Transplantation of hADSCs alleviates the neurological function impairment and histological changes, and reduces the inflammatory cell infiltration and demyelination in EAE mice, which might be associated with the regulation of Th17/Treg balance. PMID:28198408

  11. Human adipose tissue-derived mesenchymal stem cells alleviate atopic dermatitis via regulation of B lymphocyte maturation

    PubMed Central

    Choi, Soon Won; Shin, Ji-Hee; Kang, Insung; Lee, Jin Young; Kim, Jae-Jun; Lee, Hong-Ki; Jung, Jae-Eon; Choi, Yong-Woon; Lee, Sung-Hoon; Yoon, Jin-Sang; Choi, Jin-Sub; Lee, Chi-Seung; Seo, Yoojin; Kim, Hyung-Sik; Kang, Kyung-Sun

    2017-01-01

    Mesenchymal stem cell (MSC) has been applied for the therapy of allergic disorders due to its beneficial immunomodulatory abilities. However, the underlying mechanisms for therapeutic efficacy are reported to be diverse according to the source of cell isolation or the route of administration. We sought to investigate the safety and the efficacy of human adipose tissue-derived MSCs (hAT-MSCs) in mouse atopic dermatitis (AD) model and to determine the distribution of cells after intravenous administration. Murine AD model was established by multiple treatment of Dermatophagoides farinae. AD mice were intravenously infused with hAT-MSCs and monitored for clinical symptoms. The administration of hAT-MSCs reduced the gross and histological signatures of AD, as well as serum IgE level. hAT-MSCs were mostly detected in lung and heart of mice within 3 days after administration and were hardly detectable at 2 weeks. All of mice administered with hAT-MSCs survived until sacrifice and did not demonstrate any adverse events. Co-culture experiments revealed that hAT-MSCs significantly inhibited the proliferation and the maturation of B lymphocytes via cyclooxygenase (COX)-2 signaling. Moreover, mast cell (MC) degranulation was suppressed by hAT-MSC. In conclusion, the intravenous infusion of hAT-MSCs can alleviate AD through the regulation of B cell function. PMID:27888809

  12. The cell-engineered construct of cartilage on the basis of biopolymer hydrogel matrix and human adipose tissue-derived mesenchymal stromal cells (in vitro study).

    PubMed

    Surguchenko, Valentina A; Ponomareva, Anna S; Kirsanova, Ljudmila A; Skaleckij, Nikolaj N; Sevastianov, Viktor I

    2015-02-01

    The study results of in vitro formation of tissue-engineered cartilage construct on the basis of cell-engineered construct composed of biopolymer hydrogel matrix and human adipose tissue-derived mesenchymal stromal cells (hADSCs) are presented. It was revealed that hADSCs in biopolymer hydrogel matrix Sphero®GEL under chondrogenic conditions generate three-dimensional structures and produce cartilaginous extracellular matrix components: collagen type II and glycosaminoglycans.

  13. Differentiation potential of human adipose tissue derived stem cells into photoreceptors through explants culture and enzyme methods

    PubMed Central

    Xu, Wei-Wei; Huang, Li; Chong, Kelvin K.L.; Leung, Doreen S.Y.; Li, Benjamin F.L.; Yin, Zheng-Qin; Huang, Yi-Fei; Pang, Chi Pui

    2017-01-01

    AIM To investigate the retinal photoreceptor differentiation potential of human orbital adipose tissue-derived stem cells (ADSCs) generated by enzyme (EN) and explant (EX) culture methods. METHODS We investigated potentials of human orbital ADSCs to differentiate into photoreceptors through EN and EX culture methods. EN and EX orbital ADSCs were obtained from the same donor during rehabilitative orbital decompression, and then were subject to a 3-step induction using Noggin, DKK-1, IGF-1 and b-FGF at different time points for 38d. Stem cell, eye-field and photoreceptor-related gene and protein markers were measured by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescent (IMF) staining. RESULTS Both EX and EN orbital ADSCs expressed CD133, a marker of cell differentiation. Moreover, PAX6 and rhodopsin, markers of the retinal progenitor cells, were detected from EX and EN orbital ADSCs. In EX orbital ADSCs, PAX6 mRNA was detected on the 17th day and then the rhodopsin mRNA was detected on the 24th day. In contrast, the EN orbital ADSCs expressed PAX6 and rhodopsin mRNA on the 31st day. EX orbital ADSCs expressed rhodopsin protein on the 24th day, while EN orbital ADSCs expressed rhodopsin protein on the 31st day. CONCLUSION Orbital ADSCs isolated by direct explants culture show earlier and stronger expressions of markers towards eye field and retinal photoreceptor differentiation than those generated by conventional EN method. PMID:28149772

  14. Adipose Tissue-Derived Stem Cells Ameliorate Diabetic Bladder Dysfunction in a Type II Diabetic Rat Model

    PubMed Central

    Zhang, Haiyang; Qiu, Xuefeng; Shindel, Alan W.; Ning, Hongxiu; Ferretti, Ludovic; Jin, Xunbo; Lin, Guiting; Lin, Ching-Shwun

    2012-01-01

    Diabetes mellitus is associated with a broad constellation of voiding complaints that are often multifactorial and resistant to currently available therapies. The leading causes of diabetic bladder dysfunction (DBD) include alterations in the bladder smooth muscle, neuronal degeneration, and urothelial dysfunction. Adipose tissue-derived stem cells (ADSCs), a type of mesenchymal stromal cells, have shown promise as a novel tissue regenerative technique that may have utility in DBD. The aim of this study is to determine the efficacy and mechanism by which ADSCs may ameliorate DBD in rats fed a high-fat diet and treated with low-dose streptozotocin to induce type II diabetes. Improved voiding function was noted in ADSCs-treated rats as compared with phosphate-buffered saline-treated rats. Though some ADSCs differentiated into smooth muscle cells, paracrine pathway seems to play a main role in this process, thus resulting in reduction of apoptosis and preservation of “suburothelial capillaries network.” PMID:22008016

  15. Simvastatin coating of TiO₂ scaffold induces osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells.

    PubMed

    Pullisaar, Helen; Reseland, Janne E; Haugen, Håvard J; Brinchmann, Jan E; Ostrup, Esben

    2014-04-25

    Bone tissue engineering requires an osteoconductive scaffold, multipotent cells with regenerative capacity and bioactive molecules. In this study we investigated the osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) on titanium dioxide (TiO2) scaffold coated with alginate hydrogel containing various concentrations of simvastatin (SIM). The mRNA expression of osteoblast-related genes such as collagen type I alpha 1 (COL1A1), alkaline phosphatase (ALPL), osteopontin (SPP1), osteocalcin (BGLAP) and vascular endothelial growth factor A (VEGFA) was enhanced in hAD-MSCs cultured on scaffolds with SIM in comparison to scaffolds without SIM. Furthermore, the secretion of osteoprotegerin (OPG), vascular endothelial growth factor A (VEGFA), osteopontin (OPN) and osteocalcin (OC) to the cell culture medium was higher from hAD-MSCs cultured on scaffolds with SIM compared to scaffolds without SIM. The TiO2 scaffold coated with alginate hydrogel containing SIM promote osteogenic differentiation of hAD-MSCs in vitro, and demonstrate feasibility as scaffold for hAD-MSC based bone tissue engineering.

  16. Propyl Gallate Inhibits Adipogenesis by Stimulating Extracellular Signal-Related Kinases in Human Adipose Tissue-Derived Mesenchymal Stem Cells

    PubMed Central

    Lee, Jeung-Eun; Kim, Jung-Min; Jang, Hyun-Jun; Lim, Se-young; Choi, Seon-Jeong; Lee, Nan-Hee; Suh, Pann-Ghill; Choi, Ung-Kyu

    2015-01-01

    Propyl gallate (PG) used as an additive in various foods has antioxidant and anti-inflammatory effects. Although the functional roles of PG in various cell types are well characterized, it is unknown whether PG has effect on stem cell differentiation. In this study, we demonstrated that PG could inhibit adipogenic differentiation in human adipose tissue-derived mesenchymal stem cells (hAMSCs) by decreasing the accumulation of intracellular lipid droplets. In addition, PG significantly reduced the expression of adipocyte-specific markers including peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT enhancer binding protein-α (C/EBP-α), lipoprotein lipase (LPL), and adipocyte fatty acid-binding protein 2 (aP2). PG inhibited adipogenesis in hAMSCs through extracellular regulated kinase (ERK) pathway. Decreased adipogenesis following PG treatment was recovered in response to ERK blocking. Taken together, these results suggest a novel effect of PG on adipocyte differentiation in hAMSCs, supporting a negative role of ERK1/2 pathway in adipogenic differentiation. PMID:25813451

  17. Adipose Tissue-Derived Mesenchymal Stem Cells Increase Skin Allograft Survival and Inhibit Th-17 Immune Response

    PubMed Central

    Larocca, Rafael Assumpção; Moraes-Vieira, Pedro Manoel; Bassi, Ênio José; Semedo, Patrícia; de Almeida, Danilo Candido; da Silva, Marina Burgos; Thornley, Thomas; Pacheco-Silva, Alvaro; Câmara, Niels Olsen Saraiva

    2013-01-01

    Adipose tissue-derived mesenchymal stem cells (ADSC) exhibit immunosuppressive capabilities both in vitro and in vivo. Their use for therapy in the transplant field is attractive as they could render the use of immunosuppressive drugs unnecessary. The aim of this study was to investigate the effect of ADSC therapy on prolonging skin allograft survival. Animals that were treated with a single injection of donor allogeneic ADSC one day after transplantation showed an increase in donor skin graft survival by approximately one week. This improvement was associated with preserved histological morphology, an expansion of CD4+ regulatory T cells (Treg) in draining lymph nodes, as well as heightened IL-10 expression and down-regulated IL-17 expression. In vitro, ADSC inhibit naïve CD4+ T cell proliferation and constrain Th-1 and Th-17 polarization. In summary, infusion of ADSC one day post-transplantation dramatically increases skin allograft survival by inhibiting the Th-17 pathogenic immune response and enhancing the protective Treg immune response. Finally, these data suggest that ADSC therapy will open new opportunities for promoting drug-free allograft survival in clinical transplantation. PMID:24124557

  18. Therapeutic potential of adipose tissue-derived stem cells for liver failure according to the transplantation routes

    PubMed Central

    Kim, Say-June; Park, Ki Cheol; Lee, Jung Uee; Kim, Kwan-Ju

    2011-01-01

    Purpose Even though adipose tissue-derived stem cells (ADSCs) have been spotlighted as a possible alternative for liver transplantation in an experimental setting, the mechanism by which ADSCs improve liver dysfunction remains poorly characterized. The objective of this study was to evaluate the therapeutic ability of undifferentiated ADSCs, and find a few clues on how ADSCs alleviate liver damage by comparing the transplantation routes. Methods In vitro generated human ADSCs were checked for surface markers and stage-specific genes for characterization. Afterwards, they were transplanted into C57BL/6 mice with CCl4-induced liver injury. The transplantations were made via tail vein, portal vein, and direct liver parenchymal injection. At 1 and 3 post-transplantation days, serum biochemical parameters and/or liver specimens were evaluated. Results We have shown here that ADSCs have the characteristics of mesenchymal stem cells, and belong to endodermal and/or early hepatic differentiation stage. After transplantation into the mice with acute liver failure, markers of liver injury, such as alanineaminotransferase, aspartateaminotransferase, as well as ammonia, decreased. Of these transplantation routes, transplantation via tail vein rendered the most prominent reduction in the biochemical parameters. Conclusion Undifferentiated ADSCs have the ability to improve hepatic function in mice with acute liver injury. Moreover, our transplantation route study supports the theory that ADSCs in systemic circulation can exert endocrine or paracrine effects to ameliorate the injured liver. PMID:22066119

  19. Vanillin attenuates negative effects of ultraviolet A on the stemness of human adipose tissue-derived mesenchymal stem cells.

    PubMed

    Lee, Sang Yeol; Park, See-Hyoung; Kim, Mi Ok; Lim, Inhwan; Kang, Mingyeong; Oh, Sae Woong; Jung, Kwangseon; Jo, Dong Gyu; Cho, Il-Hoon; Lee, Jongsung

    2016-10-01

    Ultraviolet A (UVA) irradiation induces various changes in cell biology. The objective of this study was to determine the effect of vanillin on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). UVA-antagonizing mechanisms of vanillin were also examined. The results revealed that vanillin attenuated UVA-induced reduction of the proliferative potential and stemness of hAMSCs evidenced by increased proliferative activity in BrdU incorporation assay and upregulation of stemness-related genes (OCT4, NANOG and SOX2) in response to vanillin treatment. UVA-induced reduction in mRNA level of hypoxia-inducible factor (HIF)-1α was significantly recovered by vanillin. In addition, the antagonizing effect of vanillin on UVA was found to be mediated by reduced production of PGE2 through inhibiting JNK and p38 MAPK. Taken together, these findings showed that vanillin could improve the reduced stemness of hAMSCs induced by UVA. The effect of vanillin is mediated by upregulating HIF-1α via inhibiting PGE2-cAMP signaling. Therefore, vanillin might be used as an antagonizing agent to mitigate the effects of UVA.

  20. Comparative In Vitro Study on Magnetic Iron Oxide Nanoparticles for MRI Tracking of Adipose Tissue-Derived Progenitor Cells

    PubMed Central

    Kasten, Annika; Grüttner, Cordula; Kühn, Jens-Peter; Bader, Rainer; Pasold, Juliane; Frerich, Bernhard

    2014-01-01

    Magnetic resonance imaging (MRI) using measurement of the transverse relaxation time (R2*) is to be considered as a promising approach for cell tracking experiments to evaluate the fate of transplanted progenitor cells and develop successful cell therapies for tissue engineering. While the relationship between core composition of nanoparticles and their MRI properties is well studied, little is known about possible effects on progenitor cells. This in vitro study aims at comparing two magnetic iron oxide nanoparticle types, single vs. multi-core nanoparticles, regarding their physico-chemical characteristics, effects on cellular behavior of adipose tissue-derived stem cells (ASC) like differentiation and proliferation as well as their detection and quantification by means of MRI. Quantification of both nanoparticle types revealed a linear correlation between labeling concentration and R2* values. However, according to core composition, different levels of labeling concentrations were needed to achieve comparable R2* values. Cell viability was not altered for all labeling concentrations, whereas the proliferation rate increased with increasing labeling concentrations. Likewise, deposition of lipid droplets as well as matrix calcification revealed to be highly dose-dependent particularly regarding multi-core nanoparticle-labeled cells. Synthesis of cartilage matrix proteins and mRNA expression of collagen type II was also highly dependent on nanoparticle labeling. In general, the differentiation potential was decreased with increasing labeling concentrations. This in vitro study provides the proof of principle for further in vivo tracking experiments of progenitor cells using nanoparticles with different core compositions but also provides striking evidence that combined testing of biological and MRI properties is advisable as improved MRI properties of multi-core nanoparticles may result in altered cell functions. PMID:25244560

  1. Transplantation of human adipose tissue-derived stem cells for repair of injured spiral ganglion neurons in deaf guinea pigs.

    PubMed

    Jang, Sujeong; Cho, Hyong-Ho; Kim, Song-Hee; Lee, Kyung-Hwa; Cho, Yong-Bum; Park, Jong-Seong; Jeong, Han-Seong

    2016-06-01

    Excessive noise, ototoxic drugs, infections, autoimmune diseases, and aging can cause loss of spiral ganglion neurons, leading to permanent sensorineural hearing loss in mammals. Stem cells have been confirmed to be able to differentiate into spiral ganglion neurons. Little has been reported on adipose tissue-derived stem cells (ADSCs) for repair of injured spiral ganglion neurons. In this study, we hypothesized that transplantation of neural induced-human ADSCs (NI-hADSCs) can repair the injured spiral ganglion neurons in guinea pigs with neomycin-induced sensorineural hearing loss. NI-hADSCs were induced with culture medium containing basic fibroblast growth factor and forskolin and then injected to the injured cochleae. Guinea pigs that received injection of Hanks' balanced salt solution into the cochleae were used as controls. Hematoxylin-eosin staining showed that at 8 weeks after cell transplantation, the number of surviving spiral ganglion neurons in the cell transplantation group was significantly increased than that in the control group. Also at 8 weeks after cell transplantation, immunohistochemical staining showed that a greater number of NI-hADSCs in the spiral ganglions were detected in the cell transplantation group than in the control group, and these NI-hADSCs expressed neuronal markers neurofilament protein and microtubule-associated protein 2. Within 8 weeks after cell transplantation, the guinea pigs in the cell transplantation group had a gradually decreased auditory brainstem response threshold, while those in the control group had almost no response to 80 dB of clicks or pure tone burst. These findings suggest that a large amount of NI-hADSCs migrated to the spiral ganglions, survived for a period of time, repaired the injured spiral ganglion cells, and thereby contributed to the recovery of sensorineural hearing loss in guinea pigs.

  2. Treatment of erectile dysfunction in the obese type 2 diabetic ZDF rat with adipose tissue-derived stem cells

    PubMed Central

    Garcia, MM; Fandel, TM; Lin, G; Shindel, AW; Banie, L; Lin, CS; Lue, TF

    2010-01-01

    Introduction Impotence, or erectile dysfunction (ED), is a major complication of type-II diabetes, and many diabetic men with ED are refractory to common ED therapies. Aim To determine whether autologous adipose tissue derived stem cells (ADSC) injected into the penis of impotent obese type-II diabetic rats survive and improve erectile function. Main outcome measures Intracorporal pressure (ICP) increase with cavernous nerve (CN) electrostimulation, immunohistochemistry, real-time PCR, and serum glucose and testosterone assays. Methods Twenty-two 10-week old male fatty type-II diabetic ZDF rats underwent weight and blood glucose measurement every 2 weeks. At age 22 weeks, all animals underwent unilateral CN electrostimulation and ICP measurement to confirm impotence, and paragonadal adipose tissue (5 grams) was harvested and digested to yield 1.5 million ADSC. Impotent animals were randomized to ADSC treatment and sham control groups. At age 23 weeks, treatment group animals underwent penile injection of 1.5 million ADSC; control group animals received only PBS. Erectile function studies were repeated at age 26 weeks, followed by harvest of tissue and serum. Results Pre- and post-treatment stimulation ICP increase was significantly different between groups (p<0.002). In the control group, mean (SD) pre- and post-treatment stimulation ICP increase was 33.8 (15.9) and 31.4 (24.3) cmH2O, respectively, whereas in the treatment group they were 27.4 (14.8) and 65.3 (15.4) cmH2O. BrdU-labeled ADSC were observed within corporal tissue of the treatment group. TUNEL staining (p<0.0001) and caspase-3 m-RNA expression (p<0.05) were significantly higher within corporal tissue of control group versus treatment group animals. Conclusion Autologous ADSCs injected into the penis appear to survive and improve erectile function. Autologous ADSC therapy is a promising approach to treat diabetic impotence. PMID:20104670

  3. Lysophosphatidic acid-induced ADAM12 expression mediates human adipose tissue-derived mesenchymal stem cell-stimulated tumor growth.

    PubMed

    Do, Eun Kyoung; Kim, Young Mi; Heo, Soon Chul; Kwon, Yang Woo; Shin, Sang Hun; Suh, Dong-Soo; Kim, Ki-Hyung; Yoon, Man-Soo; Kim, Jae Ho

    2012-11-01

    Lysophosphatidic acid (LPA) is involved in mesenchymal stem cell-stimulated tumor growth in vivo. However, the molecular mechanism by which mesenchymal stem cells promote tumorigenesis remains elusive. In the present study, we demonstrate that conditioned medium from A549 human lung adenocarcinoma cells (A549 CM) induced the expression of ADAM12, a disintegrin and metalloproteases family member, in human adipose tissue-derived mesenchymal stem cells (hASCs). A549 CM-stimulated ADAM12 expression was abrogated by pretreatment of hASCs with the LPA receptor 1 inhibitor Ki16425 or by small interfering RNA-mediated silencing of LPA receptor 1, suggesting a key role for the LPA-LPA receptor 1 signaling axis in A549 CM-stimulated ADAM12 expression. Silencing of ADAM12 expression using small interfering RNA or short hairpin RNA abrogated LPA-induced expression of both α-smooth muscle actin, a marker of carcinoma-associated fibroblasts, and ADAM12 in hASCs. Using a xenograft transplantation model of A549 cells, we demonstrated that silencing of ADAM12 inhibited the hASC-stimulated in vivo growth of A549 xenograft tumors and the differentiation of transplanted hASCs to α-smooth muscle actin-positive carcinoma-associated fibroblasts. LPA-conditioned medium from hASCs induced the adhesion of A549 cells and silencing of ADAM12 inhibited LPA-induced expression of extracellular matrix proteins, periostin and βig-h3, in hASCs and LPA-conditioned medium-stimulated adhesion of A549 cells. These results suggest a pivotal role for LPA-stimulated ADAM12 expression in tumor growth and the differentiation of hASCs to carcinoma-associated fibroblasts expressing α-smooth muscle actin, periostin, and βig-h3.

  4. [Establishment of induced pluripotent stem cells from adipose tissue-derived stem cells for dendritic cell-based cancer vaccines].

    PubMed

    Matsushita, Norimasa; Kobayashi, Hajime; Aruga, Atsushi; Yamamoto, Masakazu

    2014-04-01

    Recently, studies on regenerative stem cell therapy are being encouraged, and efforts to generate dendritic cells, which play important roles in cancer immunotherapy, from stem cells are being made in the field of tumor immunology. Therapeutic acquisition of stem cells has important clinical applications. Studies on induced pluripotent stem(iPS)cells generated from somatic cells with pluripotent genes have advanced in recent years. Stem cells are reported to be found in adipose tissue (adipose-derived stem cells, ADSC). Our goal is to develop a new cancer vaccine by using dendritic cells generated from ADSC. In a preliminary study, we examined whether iPS cells can be generated from ADSC to serve as a source of dendritic cells.We introduced a plasmid with pluripotent genes(OCT3/4, KLF4, SOX2, L-MYC, LIN28, p53-shRNA)into an ADSC strain derived from adipose tissue by electroporation and subsequently cultured the cells for further examination. A colony sugges- tive of iPS cells from ADSC was observed. OCT3/4, KLF4, SOX2, L-MYC, and LIN28 mRNAs were expressed in the cultured cells, as confirmed by reverse transcriptase-polymerase chain reaction(RT-PCR). On the basis of these results, we confirmed that iPS cells were generated from ADSC. The method of inducing dendritic cells from iPS cells has already been reported, and the results of this study suggest that ADSC is a potential source of dendritic cells.

  5. Autologous adipose tissue-derived mesenchymal stem cells are involved in rat liver regeneration following repeat partial hepatectomy

    PubMed Central

    LIU, TAO; MU, HONG; SHEN, ZHONGYANG; SONG, ZHUOLUN; CHEN, XIAOBO; WANG, YULIANG

    2016-01-01

    Adipose tissue-derived mesenchymal stem cells (ADSCs) have been considered to be attractive and readily available adult mesenchymal stem cells, and they are becoming increasingly popular for use in regenerative cell therapy, as they are readily accessible through minimally invasive techniques. The present study investigated whether autologous ADSC transplantation promoted liver regeneration following a repeat partial hepatectomy in rats. The rats were divided into three groups as follows: 70% partial hepatectomy (PH) group; repeat PH (R-PH) group and R-PH/ADSC group, subjected to R-PH and treated with autologous ADSCs via portal vein injection. In each group, the rats were sacrificed at different time points postoperatively in order to evaluate the changes in liver function and to estimate the liver regenerative response. The expression of proliferating cell nuclear antigen (PCNA) labeling index in the liver was measured using immunohistochemistry. The expression levels of hepatocyte growth factor (HGF) mRNA were measured using reverse transcription polymerase chain reaction. The results showed that regeneration of the remaining liver following R-PH was significantly promoted by ADSC transplantation, as shown by a significant increase in liver to body weight ratio and the PCNA labeling index at 24 h post-hepatectomy. Additionally, ADSC transplantation markedly inhibited the elevation of serum levels of alanine aminotransferase, aspartate aminotransferase and total bilirubin, increased HGF content and also attenuated hepatic vacuolar degeneration 24 h postoperatively. Furthermore, the liver was found to almost fully recover from hepatocellular damage due to hepatectomy among the three groups at 168 h postoperatively. These results indicated that autologous ADSC transplantation enhanced the regenerative capacity of the remnant liver tissues in the early phase following R-PH. PMID:26783183

  6. Cardiosphere conditioned media influence the plasticity of human mediastinal adipose tissue-derived mesenchymal stem cells.

    PubMed

    Siciliano, Camilla; Chimenti, Isotta; Ibrahim, Mohsen; Napoletano, Chiara; Mangino, Giorgio; Scafetta, Gaia; Zoccai, Giuseppe Biondi; Rendina, Erino Angelo; Calogero, Antonella; Frati, Giacomo; De Falco, Elena

    2015-01-01

    Nowadays, cardiac regenerative medicine is facing many limitations because of the complexity to find the most suitable stem cell source and to understand the regenerative mechanisms involved. Mesenchymal stem cells (MSCs) have shown great regenerative potential due to their intrinsic properties and ability to restore cardiac functionality, directly by transdifferentiation and indirectly by paracrine effects. Yet, how MSCs could respond to definite cardiac-committing microenvironments, such as that created by resident cardiac progenitor cells in the form of cardiospheres (CSs), has never been addressed. Recently, a putative MSC pool has been described in the mediastinal fat (hmADMSCs), but both its biology and function remain hitherto unexplored. Accordingly, we investigated the potential of hmADMSCs to be committed toward a cardiovascular lineage after preconditioning with CS-conditioned media (CCM). Results indicated that CCM affects cell proliferation. Gene expression levels of multiple cardiovascular and stemness markers (MHC, KDR, Nkx2.5, Thy-1, c-kit, SMA) are significantly modulated, and the percentage of hmADMSCs preconditioned with CCM and positive for Nkx2.5, MHC, and KDR is significantly higher relative to FBS and explant-derived cell conditioned media (EDCM, the unselected stage before CS formation). Growth factor-specific and survival signaling pathways (i.e., Erk1/2, Akt, p38, mTOR, p53) present in CCM are all equally regulated. Nonetheless, earlier BAD phosphorylation (Ser112) occurs associated with the CS microenvironment (and to a lesser extent to EDCM), whereas faster phosphorylation of PRAS40 in FBS, and of Akt (Ser473) in EDCM and 5-azacytidine occurs compared to CCM. For the first time, we demonstrated that the MSC pool held in the mediastinal fat is adequately plastic to partially differentiate in vitro toward a cardiac-like lineage. Besides, we have provided novel evidence of the potent inductive niche-like microenvironment that the CS

  7. Effect of human adipose tissue-derived mesenchymal-stem-cell bioactive materials on porcine embryo development.

    PubMed

    Park, Hyo-Young; Kim, Eun-Young; Lee, Seung-Eun; Choi, Hyun-Yong; Moon, Jeremiah Jiman; Park, Min-Jee; Son, Yeo-Jin; Lee, Jun-Beom; Jeong, Chang-Jin; Lee, Dong-Sun; Riu, Key-Jung; Park, Se-Pill

    2013-12-01

    Human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) secrete bioactive materials that are beneficial for tissue repair and regeneration. In this study, we characterized human hAT-MSC bioactive material (hAT-MSC-BM), and examined the effect of hAT-MSC-BM on porcine embryo development. hAT-MSC-BM was enriched with several growth factors and cytokines, including fibroblast growth factor 2 (FGF2), vascular endothelial growth factor A (VEGFA), and interleukin 6 (IL6). Among the various concentrations and days of treatment tested, 10% hAT-MSC-BM treatment beginning on culture Day 4 provided the best environment for the in vitro growth of parthenogenetic porcine embryos. While the addition of 10% fetal bovine serum (FBS) increased the hatching rate and the total cell number of parthenogenetic porcine embryos compared with the control and hAT-MSC culture medium group, the best results were from the group cultured with 10% hAT-MSC-BM. Mitochondrial activity was also higher in the 10% hAT-MSC-BM-treated group. Moreover, the relative mRNA expression levels of development and anti-apoptosis genes were significantly higher in the 10% hAT-MSC-BM-treated group than in control, hAT-MSC culture medium, or 10% FBS groups, whereas the transcript abundance of an apoptosis gene was slightly lower. Treatment with 10% hAT-MSC-BM starting on Day 4 also improved the development rate and the total cell number of in vitro-fertilized embryos. This is the first report on the benefits of hAT-MSC-BM in a porcine embryo in vitro culture system. We conclude that hAT-MSC-BM is a new, alternative supplement that can improve the development of porcine embryos during both parthenogenesis and fertilization in vitro.

  8. Autologous adipose tissue-derived stem cells treatment demonstrated favorable and sustainable therapeutic effect for Crohn's fistula.

    PubMed

    Lee, Woo Yong; Park, Kyu Joo; Cho, Yong Beom; Yoon, Sang Nam; Song, Kee Ho; Kim, Do Sun; Jung, Sang Hun; Kim, Mihyung; Yoo, Hee-Won; Kim, Inok; Ha, Hunjoo; Yu, Chang Sik

    2013-11-01

    Fistula is a representative devastating complication in Crohn's patients due to refractory to conventional therapy and high recurrence. In our phase I clinical trial, adipose tissue-derived stem cells (ASCs) demonstrated their safety and therapeutic potential for healing fistulae associated with Crohn's disease. This study was carried out to evaluate the efficacy and safety of ASCs in patients with Crohn's fistulae. In this phase II study, forty-three patients were treated with ASCs. The amount of ASCs was proportioned to fistula size and fistula tract was filled with ASCs in combination with fibrin glue after intralesional injection of ASCs. Patients without complete closure of fistula at 8 weeks received a second injection of ASCs containing 1.5 times more cells than the first injection. Fistula healing at week 8 after final dose injection and its sustainability for 1-year were evaluated. Healing was defined as a complete closure of external opening without any sign of drainage and inflammation. A modified per-protocol analysis showed that complete fistula healing was observed in 27/33 patients (82%) by 8 weeks after ASC injection. Of 27 patients with fistula healing, 26 patients completed additional observation study for 1-year and 23 patients (88%) sustained complete closure. There were no adverse events related to ASC administration. ASC treatment for patients with Crohn's fistulae was well tolerated, with a favorable therapeutic outcome. Furthermore, complete closure was well sustained. These results strongly suggest that autologous ASC could be a novel treatment option for the Crohn's fistula with high-risk of recurrence.

  9. Engraftment Potential of Adipose Tissue-Derived Human Mesenchymal Stem Cells After Transplantation in the Fetal Rabbit

    PubMed Central

    Martínez-González, Itziar; Moreno, Rafael; Petriz, Jordi; Gratacós, Eduard

    2012-01-01

    Due to their favorable intrinsic features, including engraftment, differentiation, and immunomodulatory potential, adult mesenchymal stem cells (MSCs) have been proposed for therapeutic in utero intervention. Further improvement of such attributes for particular diseases might merely be achieved by ex vivo MSC genetic engineering previous to transplantation. Here, we evaluated for the first time the feasibility, biodistribution, long-term engraftment, and transgenic enhanced green fluorescent protein (EGFP) expression of genetically engineered human adipose tissue-derived MSCs (EGFP+-ASCs) after intra-amniotic xenotransplantation at E17 of gestation into our validated pregnant rabbit model. Overall, the procedure was safe (86.4% survival rate; absence of anatomical defects). Stable, low-level engraftment of EGFP+-ASCs was confirmed by assessing the presence of the pWT-EGFP lentiviral provirus in the young transplanted rabbit tissues. Accordingly, similar frequencies of provirus-positive animals were found at both 8 weeks (60%) and 16 weeks (66.7%) after in utero intervention. The presence of EGFP+-ASCs was more frequent in respiratory epithelia (lung and trachea), according to the route of administration. However, we were unable to detect EGFP expression, neither by real-time polymerase chain reaction nor by immunohistochemistry, in the provirus-positive tissues, suggesting EGFP transgene silencing mediated by epigenetic events. Moreover, we noticed lack of both host cellular immune responses against xenogeneic ASCs and humoral immune responses against transgenic EGFP. Therefore, the fetal microchimerism achieved by the EGFP+-ASCs in the young rabbit hosts indicates induction of donor-specific tolerance after fetal rabbit xenotransplantation, which should boost postnatal transplantation for the early treatment/prevention of many devastating congenital disorders. PMID:22738094

  10. Preclinical Biosafety Evaluation of Genetically Modified Human Adipose Tissue-Derived Mesenchymal Stem Cells for Clinical Applications to Brainstem Glioma.

    PubMed

    Choi, Seung Ah; Yun, Jun-Won; Joo, Kyeung Min; Lee, Ji Yeoun; Kwak, Pil Ae; Lee, Young Eun; You, Ji-Ran; Kwon, Euna; Kim, Woo Ho; Wang, Kyu-Chang; Phi, Ji Hoon; Kang, Byeong-Cheol; Kim, Seung-Ki

    2016-06-15

    Stem-cell based gene therapy is a promising novel therapeutic approach for inoperable invasive tumors, including brainstem glioma. Previously, we demonstrated the therapeutic potential of human adipose tissue-derived mesenchymal stem cells (hAT-MSC) genetically engineered to express a secreted form of tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL) against brainstem glioma. However, safety concerns should be comprehensively investigated before clinical applications of hAT-MSC.sTRAIL. At first, we injected stereotactically low (1.2 × 10(5) cells/18 μL), medium (2.4 × 10(5)/18 μL), or high dose (3.6 × 10(5)/18 μL) of hAT-MSC.sTRAIL into the brainstems of immunodeficient mice reflecting the plan of the future clinical trial. Local toxicity, systemic toxicity, secondary tumor formation, and biodistribution of hAT-MSC.sTRAIL were investigated. Next, presence of hAT-MSC.sTRAIL was confirmed in the brain and major organs at 4, 9, and 14 weeks in brainstem glioma-bearing mice. In the 15-week subchronic toxicity test, no serious adverse events in terms of body weight, food consumption, clinical symptom, urinalysis, hematology, clinical chemistry, organ weight, and histopathology were observed. In the 26-week tumorigenicity test, hAT-MSC.sTRAIL made no detectable tumors, whereas positive control U-87 MG cells made huge tumors in the brainstem. No remaining hAT-MSC.sTRAIL was observed in any organs examined, including the brainstem at 15 or 26 weeks. In brainstem glioma-bearing mice, injected hAT-MSC.sTRAIL was observed, but gradually decreased over time in the brain. The mRNA of human specific GAPDH and TRAIL was not detected in all major organs. These results indicate that the hAT-MSC.sTRAIL could be applicable to the future clinical trials in terms of biosafety.

  11. Immunomodulatory effects of OX40Ig gene-modified adipose tissue-derived mesenchymal stem cells on rat kidney transplantation

    PubMed Central

    Liu, Tao; Zhang, Yue; Shen, Zhongyang; Zou, Xunfeng; Chen, Xiaobo; Chen, Li; Wang, Yuliang

    2017-01-01

    Recent studies have suggested that adipose tissue-derived mesenchymal stem cell (ADSC) therapy and OX40 costimulation blockade are two immunomodulatory strategies used to suppress the immune response to alloantigens. However, relatively little has been reported regarding the immunomodulatory potential of the abilityof these two strategies to synergize. Thus, in the present study, we aimed to investigate OX40-Ig fusion protein (OX40Ig) expression in ADSCs and to validate their more potent immunosuppressive activity in preventing renal allograft rejection. For this purpose, ADSCs from Lewis rats were transfected with the recombinant plasmid, pcDNA3.1(−)OX40Ig, by nucleofection. The ADSCs transduced with the plasmid (termed ADSCsOX40Ig) or untransduced ADSCs (termed ADSCsnative) were added to allostimulated mixed lymphocyte reaction (MLR) in vitro. In vivo, ADSCsOX40Ig, ADSCsnative, or PBS were administered to an allogeneic renal transplantation model, and the therapeutic effects, as well as the underlying mechanisms were examined. The results revealed that both the ADSCsnative and ADSCsOX40Ig significantly suppressed T cell proliferation and increased the percentage of CD4+CD25+ regulatory T cells in allogeneic MLR assays, with the ADSCsOX40Ig being more effective. Furthermore, the results from our in vivo experiments revealed that compared with the ADSCsnative or PBS group, the administration of autologous ADSCsOX40Ig markedly prolonged the mean survival time of renal grafts, reduced allograft rejection, and significantly downregulated the mRNA expression of intragraft interferon-γ (IFN-γ), and upregulated the mRNA expression of interleukin (IL)-10, transforming growth factor-β (TGF-β) and forkhead box protein 3 (Foxp3). The findings of our study indicate that the use of ADSCsOX40Ig is a promising strategy for preventing renal allograft rejection. This strategy provides the synergistic benefits of ADSC immune modulation and OX40-OX40L pathway blockade, and may

  12. Human adipose tissue-derived mesenchymal stem cells abrogate plasmablast formation and induce regulatory B cells independently of T helper cells.

    PubMed

    Franquesa, M; Mensah, F K; Huizinga, R; Strini, T; Boon, L; Lombardo, E; DelaRosa, O; Laman, J D; Grinyó, J M; Weimar, W; Betjes, M G H; Baan, C C; Hoogduijn, M J

    2015-03-01

    Mesenchymal or stromal stem cells (MSC) interact with cells of the immune system in multiple ways. Modulation of the immune system by MSC is believed to be a therapeutic option for autoimmune disease and transplant rejection. In recent years, B cells have moved into the focus of the attention as targets for the treatment of immune disorders. Current B-cell targeting treatment is based on the indiscriminate depletion of B cells. The aim of this study was to examine whether human adipose tissue-derived MSC (ASC) interact with B cells to affect their proliferation, differentiation, and immune function. ASC supported the survival of quiescent B cells predominantly via contact-dependent mechanisms. Coculture of B cells with activated T helper cells led to proliferation and differentiation of B cells into CD19(+) CD27(high) CD38(high) antibody-producing plasmablasts. ASC inhibited the proliferation of B cells and this effect was dependent on the presence of T cells. In contrast, ASC directly targeted B-cell differentiation, independently of T cells. In the presence of ASC, plasmablast formation was reduced and IL-10-producing CD19(+) CD24(high) CD38(high) B cells, known as regulatory B cells, were induced. These results demonstrate that ASC affect B cell biology in vitro, suggesting that they can be a tool for the modulation of the B-cell response in immune disease.

  13. Injectable alginate-microencapsulated canine adipose tissue-derived mesenchymal stem cells for enhanced viable cell retention

    PubMed Central

    KOH, Eunji; JUNG, Yun Chan; WOO, Heung-Myong; KANG, Byung-Jae

    2017-01-01

    The purpose of this study was to establish an optimized protocol for the production of alginate-encapsulated canine adipose-derived mesenchymal stem cells (cASCs) and evaluate their suitability for clinical use, including viability, proliferation and in vivo cell retention. Alginate microbeads were formed by vibrational technology and the production of injectable microbeads was performed using various parameters with standard methodology. Microbead toxicity was tested in an animal model. Encapsulated cASCs were evaluated for viability and proliferation in vitro. HEK-293 cells, with or without microencapsulation, were injected into the subcutaneous tissue of mice and were tracked using in vivo bioluminescent imaging to evaluate the retention of transplanted cells. The optimized injectable microbeads were of uniform size and approximately 250 µm in diameter. There was no strong evidence of in vivo toxicity for the alginate beads. The cells remained viable after encapsulation, and there was evidence of in vitro proliferation within the microcapsules. In vivo bioluminescent imaging showed that alginate encapsulation improved the retention of transplanted cells and the encapsulated cells remained viable in vivo for 7 days. Encapsulation enhances the retention of viable cells in vivo and might represent a potential strategy to increase the therapeutic potency and efficacy of stem cells. PMID:28070061

  14. L-carnitine Effectively Induces hTERT Gene Expression of Human Adipose Tissue-derived Mesenchymal Stem Cells Obtained from the Aged Subjects

    PubMed Central

    Farahzadi, Raheleh; Mesbah-Namin, Seyed Alireza; Zarghami, Nosratollah; Fathi, Ezzatollah

    2016-01-01

    Background and Objectives Human mesenchymal stem cells (hMSCs) are attractive candidates for cell therapy and regenerative medicine due to their multipotency and ready availability, but their application can be complicated by the factors such as age of the donors and senescence-associated growth arrest during culture conditions. The latter most likely reflects the fact that aging of hMSCs is associated with a rise in intracellular reactive oxygen species, loss of telomerase activity, decrease in human telomerase reverse transcriptase (hTERT) expression and finally eroded telomere ends. Over-expression of telomerase in hMSCs leads to telomere elongation and may help to maintain replicative life–span of these cells. The aim of this study was to evaluate of the effect of L-carnitine (LC) as an antioxidant on the telomerase gene expression and telomere length in aged adipose tissue-derived hMSCs. Methods For this purpose, cells were isolated from healthy aged volunteers and their viabilities were assessed by MTT assay. Quantitative gene expression of hTERT and absolute telomere length measurement were also performed by real-time PCR in the absence and presence of different doses of LC (0.1, 0.2 and 0.4 mM). Results The results indicated that LC could significantly increase the hTERT gene expression and telomere length, especially in dose of 0.2 mM of LC and in 48 h treatment for the aged adipose tissue-derived hMSCs samples. Conclusion It seems that LC would be a good candidate to improve the lifespan of the aged adipose tissue-derived hMSCs due to over-expression of telomerase and lengthening of the telomeres. PMID:27426092

  15. Adipose Tissue-Derived Stem Cell in Vitro Differentiation in a Three-Dimensional Dental Bud Structure

    PubMed Central

    Ferro, Federico; Spelat, Renza; Falini, Giuseppe; Gallelli, Annarita; D'Aurizio, Federica; Puppato, Elisa; Pandolfi, Maura; Beltrami, Antonio Paolo; Cesselli, Daniela; Beltrami, Carlo Alberto; Ambesi-Impiombato, Francesco Saverio; Curcio, Francesco

    2011-01-01

    Tooth morphogenesis requires sequential and reciprocal interactions between the cranial neural crest–derived mesenchymal cells and the stomadial epithelium, which regulate tooth morphogenesis and differentiation. We show how mesenchyme-derived single stem cell populations can be induced to transdifferentiate in vitro in a structure similar to a dental bud. The presence of stem cells in the adipose tissue has been previously reported. We incubated primary cultures of human adipose tissue–derived stem cells in a dental-inducing medium and cultured the aggregates in three-dimensional conditions. Four weeks later, cells formed a three-dimensional organized structure similar to a dental bud. Expression of dental tissue–related markers was tested assaying lineage-specific mRNA and proteins by RT-PCR, immunoblot, IHC, and physical-chemical analysis. In the induction medium, cells were positive for ameloblastic and odontoblastic markers as both mRNAs and proteins. Also, cells expressed epithelial, mesenchymal, and basement membrane markers with a positional relationship similar to the physiologic dental morphogenesis. Physical-chemical analysis revealed 200-nm and 50-nm oriented hydroxyapatite crystals as displayed in vivo by enamel and dentin, respectively. In conclusion, we show that adipose tissue–derived stem cells in vitro can transdifferentiate to produce a specific three-dimensional organization and phenotype resembling a dental bud even in the absence of structural matrix or scaffold to guide the developmental process. PMID:21514442

  16. Gene Expression Profiles of Human Adipose Tissue-Derived Mesenchymal Stem Cells Are Modified by Cell Culture Density

    PubMed Central

    Yoo, Keon Hee; Lee, Tae-Hee; Kim, Hye Jin; Jang, In Keun; Chun, Yong Hoon; Kim, Hyung Joon; Park, Seung Jo; Lee, Soo Hyun; Son, Meong Hi; Jung, Hye Lim; Sung, Ki Woong; Koo, Hong Hoe

    2014-01-01

    Previous studies conducted cell expansion ex vivo using low initial plating densities for optimal expansion and subsequent differentiation of mesenchymal stem cells (MSCs). However, MSC populations are heterogeneous and culture conditions can affect the characteristics of MSCs. In this study, differences in gene expression profiles of adipose tissue (AT)-derived MSCs were examined after harvesting cells cultured at different densities. AT-MSCs from three different donors were plated at a density of 200 or 5,000 cells/cm2. After 7 days in culture, detailed gene expression profiles were investigated using a DNA chip microarray, and subsequently validated using a reverse transcription polymerase chain reaction (RT-PCR) analysis. Gene expression profiles were influenced primarily by the level of cell confluence at harvest. In MSCs harvested at ∼90% confluence, 177 genes were up-regulated and 102 genes down-regulated relative to cells harvested at ∼50% confluence (P<0.05, FC>2). Proliferation-related genes were highly expressed in MSCs harvested at low density, while genes that were highly expressed in MSCs harvested at high density (∼90% confluent) were linked to immunity and defense, cell communication, signal transduction and cell motility. Several cytokine, chemokine and growth factor genes involved in immunosuppression, migration, and reconstitution of damaged tissues were up-regulated in MSCs harvested at high density compared with MSCs harvested at low density. These results imply that cell density at harvest is a critical factor for modulating the specific gene-expression patterns of heterogeneous MSCs. PMID:24400072

  17. Altered Metabolic and Stemness Capacity of Adipose Tissue-Derived Stem Cells from Obese Mouse and Human

    PubMed Central

    Pérez, Laura M.; Bernal, Aurora; de Lucas, Beatriz; San Martin, Nuria; Mastrangelo, Annalaura; García, Antonia; Barbas, Coral; Gálvez, Beatriz G.

    2015-01-01

    Adipose stem cells (ASCs) are an appealing source of cells for therapeutic intervention; however, the environment from which ASCs are isolated may impact their usefulness. Using a range of functional assays, we have evaluated whether ASCs isolated from an obese environment are comparable to cells from non-obese adipose tissue. Results showed that ASCs isolated from obese tissue have a reduced proliferative ability and a loss of viability together with changes in telomerase activity and DNA telomere length, suggesting a decreased self-renewal capacity. Metabolic analysis demonstrated that mitochondrial content and function was impaired in obese-derived ASCs resulting in changes in favored oxidative substrates. These findings highlight the impact of obesity on adult stem properties. Hence, caution should be exercised when considering the source of ASCs for cellular therapies since their therapeutic potential may be impaired. PMID:25875023

  18. Altered metabolic and stemness capacity of adipose tissue-derived stem cells from obese mouse and human.

    PubMed

    Pérez, Laura M; Bernal, Aurora; de Lucas, Beatriz; San Martin, Nuria; Mastrangelo, Annalaura; García, Antonia; Barbas, Coral; Gálvez, Beatriz G

    2015-01-01

    Adipose stem cells (ASCs) are an appealing source of cells for therapeutic intervention; however, the environment from which ASCs are isolated may impact their usefulness. Using a range of functional assays, we have evaluated whether ASCs isolated from an obese environment are comparable to cells from non-obese adipose tissue. Results showed that ASCs isolated from obese tissue have a reduced proliferative ability and a loss of viability together with changes in telomerase activity and DNA telomere length, suggesting a decreased self-renewal capacity. Metabolic analysis demonstrated that mitochondrial content and function was impaired in obese-derived ASCs resulting in changes in favored oxidative substrates. These findings highlight the impact of obesity on adult stem properties. Hence, caution should be exercised when considering the source of ASCs for cellular therapies since their therapeutic potential may be impaired.

  19. Endothelial Differentiation of Adipose Tissue-Derived Mesenchymal Stromal Cells in Glioma Tumors: Implications for Cell-Based Therapy

    PubMed Central

    Bagó, Juli R; Alieva, Maria; Soler, Carolina; Rubio, Núria; Blanco, Jerónimo

    2013-01-01

    Multipotent human adipose tissue mesenchymal stromal cells (hAMSCs) are promising therapy vehicles with tumor-homing capacity that can be easily modified to deliver cytotoxicity activating systems in the proximity of tumors. In a previous work, we observed that hAMSCs are very effective delivering cytotoxicity to glioma tumors. However, these results were difficult to reconcile with the relatively few hAMSCs surviving implantation. We use a bioluminescence imaging (BLI) platform to analyze the behavior of bioluminescent hAMSCs expressing HSV-tTK in a U87 glioma model and gain insight into the therapeutic mechanisms. Tumor-implanted hAMSCs express the endothelial marker PECAM1(CD31), integrate in tumor vessels and associate with CD133-expressing glioma stem cells (GSC). Inhibition of endothelial lineage differentiation in hAMSCs by Notch1 shRNA had no effect on their tumor homing and growth-promoting capacity but abolished the association of hAMSCs with tumor vessels and CD133+ tumor cells and significantly reduced their tumor-killing capacity. The current strategy allowed the study of tumor/stroma interactions, showed that tumor promotion and tumor-killing capacities of hAMSCs are based on different mechanisms. Our data strongly suggest that the therapeutic effectiveness of hAMSCs results from their association with special tumor vascular structures that also contain GSCs. PMID:23760448

  20. Chitosan-assisted differentiation of porcine adipose tissue-derived stem cells into glucose-responsive insulin-secreting clusters

    PubMed Central

    Lin, Yuan-Yu; Chen, Yu-Jen; Liu, Bing-Hsien; Wong, Shiu-Chung; Wu, Cheng-Yu; Chang, Yun-Tsui; Chou, Han-Yi E.

    2017-01-01

    The unique advantage of easy access and abundance make the adipose-derived stem cells (ADSCs) a promising system of multipotent cells for transplantation and regenerative medicine. Among the available sources, porcine ADSCs (pADSCs) deserve especial attention due to the close resemblance of human and porcine physiology, as well as for the upcoming availability of humanized porcine models. Here, we report on the isolation and conversion of pADSCs into glucose-responsive insulin-secreting cells. We used the stromal-vascular fraction of the dorsal subcutaneous adipose from 9-day-old male piglets to isolate pADSCs, and subjected the cells to an induction scheme for differentiation on chitosan-coated plates. This one-step procedure promoted differentiation of pADSCs into pancreatic islet-like clusters (PILC) that are characterized by the expression of a repertoire of pancreatic proteins, including pancreatic and duodenal homeobox (Pdx-1), insulin gene enhancer protein (ISL-1) and insulin. Upon glucose challenge, these PILC secreted high amounts of insulin in a dose-dependent manner. Our data also suggest that chitosan plays roles not only to enhance the differentiation potential of pADSCs, but also to increase the glucose responsiveness of PILCs. Our novel approach is, therefore, of great potential for transplantation-based amelioration of type 1 diabetes. PMID:28253305

  1. The 6-chromanol derivate SUL-109 enables prolonged hypothermic storage of adipose tissue-derived stem cells.

    PubMed

    Hajmousa, Ghazaleh; Vogelaar, Pieter; Brouwer, Linda A; van der Graaf, Adrianus C; Henning, Robert H; Krenning, Guido

    2017-03-01

    Encouraging advances in cell therapy research with adipose derived stem cells (ASC) require an effective short-term preservation method that provides time for quality control and transport of cells from their manufacturing facility to their clinical destination. Hypothermic storage of cells in their specific growth media offers an alternative and simple preservation method to liquid nitrogen cryopreservation or commercial preservation fluids for short-term storage and transport. However, accumulation of cell damage during hypothermia may result in cell injury and death upon rewarming through the production of excess reactive oxygen species (ROS). Here, the ability of the cell culture medium additive SUL-109, a modified 6-chromanol, to protect ASC from hypothermia and rewarming damage is examined. SUL-109 conveys protective effects against cold-induced damage in ASC as is observed by preservation of cell viability, adhesion properties and growth potential. SUL-109 does not reduce the multilineage differentiation capacity of ASC. SUL-109 conveys its protection against hypothermic damage by the preservation of the mitochondrial membrane potential through the activation of mitochondrial membrane complexes I and IV, and increases maximal oxygen consumption in FCCP uncoupled mitochondria. Consequently, SUL-109 alleviates mitochondrial ROS production and preserves ATP production. In summary, here we describe the generation of a single molecule cell preservation agent that protects ASC from hypothermic damage associated with short-term cell preservation that does not affect the differentiation capacity of ASC.

  2. Pluripotent Nontumorigenic Adipose Tissue-Derived Muse Cells have Immunomodulatory Capacity Mediated by Transforming Growth Factor-β1.

    PubMed

    Gimeno, María L; Fuertes, Florencia; Barcala Tabarrozzi, Andres E; Attorressi, Alejandra I; Cucchiani, Rodolfo; Corrales, Luis; Oliveira, Talita C; Sogayar, Mari C; Labriola, Leticia; Dewey, Ricardo A; Perone, Marcelo J

    2017-01-01

    Adult mesenchymal stromal cell-based interventions have shown promising results in a broad range of diseases. However, their use has faced limited effectiveness owing to the low survival rates and susceptibility to environmental stress on transplantation. We describe the cellular and molecular characteristics of multilineage-differentiating stress-enduring (Muse) cells derived from adipose tissue (AT), a subpopulation of pluripotent stem cells isolated from human lipoaspirates. Muse-AT cells were efficiently obtained using a simple, fast, and affordable procedure, avoiding cell sorting and genetic manipulation methods. Muse-AT cells isolated under severe cellular stress, expressed pluripotency stem cell markers and spontaneously differentiated into the three germ lineages. Muse-AT cells grown as spheroids have a limited proliferation rate, a diameter of ∼15 µm, and ultrastructural organization similar to that of embryonic stem cells. Muse-AT cells evidenced high stage-specific embryonic antigen-3 (SSEA-3) expression (∼60% of cells) after 7-10 days growing in suspension and did not form teratomas when injected into immunodeficient mice. SSEA-3(+) -Muse-AT cells expressed CD105, CD29, CD73, human leukocyte antigen (HLA) class I, CD44, and CD90 and low levels of HLA class II, CD45, and CD34. Using lipopolysaccharide-stimulated macrophages and antigen-challenged T-cell assays, we have shown that Muse-AT cells have anti-inflammatory activities downregulating the secretion of proinflammatory cytokines, such as interferon-γ and tumor necrosis factor-α. Muse-AT cells spontaneously gained transforming growth factor-β1 expression that, in a phosphorylated SMAD2-dependent manner, might prove pivotal in their observed immunoregulatory activity through decreased expression of T-box transcription factor in T cells. Collectively, the present study has demonstrated the feasibility and efficiency of obtaining Muse-AT cells that can potentially be harnessed as

  3. Pluripotent Nontumorigenic Adipose Tissue-Derived Muse Cells Have Immunomodulatory Capacity Mediated by Transforming Growth Factor-β1.

    PubMed

    Gimeno, María L; Fuertes, Florencia; Barcala Tabarrozzi, Andres E; Attorressi, Alejandra I; Cucchiani, Rodolfo; Corrales, Luis; Oliveira, Talita C; Sogayar, Mari C; Labriola, Leticia; Dewey, Ricardo A; Perone, Marcelo J

    2016-08-02

    : Adult mesenchymal stromal cell-based interventions have shown promising results in a broad range of diseases. However, their use has faced limited effectiveness owing to the low survival rates and susceptibility to environmental stress on transplantation. We describe the cellular and molecular characteristics of multilineage-differentiating stress-enduring (Muse) cells derived from adipose tissue (AT), a subpopulation of pluripotent stem cells isolated from human lipoaspirates. Muse-AT cells were efficiently obtained using a simple, fast, and affordable procedure, avoiding cell sorting and genetic manipulation methods. Muse-AT cells isolated under severe cellular stress, expressed pluripotency stem cell markers and spontaneously differentiated into the three germ lineages. Muse-AT cells grown as spheroids have a limited proliferation rate, a diameter of ∼15 µm, and ultrastructural organization similar to that of embryonic stem cells. Muse-AT cells evidenced high stage-specific embryonic antigen-3 (SSEA-3) expression (∼60% of cells) after 7-10 days growing in suspension and did not form teratomas when injected into immunodeficient mice. SSEA-3(+)-Muse-AT cells expressed CD105, CD29, CD73, human leukocyte antigen (HLA) class I, CD44, and CD90 and low levels of HLA class II, CD45, and CD34. Using lipopolysaccharide-stimulated macrophages and antigen-challenged T-cell assays, we have shown that Muse-AT cells have anti-inflammatory activities downregulating the secretion of proinflammatory cytokines, such as interferon-γ and tumor necrosis factor-α. Muse-AT cells spontaneously gained transforming growth factor-β1 expression that, in a phosphorylated SMAD2-dependent manner, might prove pivotal in their observed immunoregulatory activity through decreased expression of T-box transcription factor in T cells. Collectively, the present study has demonstrated the feasibility and efficiency of obtaining Muse-AT cells that can potentially be harnessed as

  4. Differential Mechanisms of Myocardial Conduction Slowing by Adipose Tissue-Derived Stromal Cells Derived from Different Species.

    PubMed

    Ten Sande, Judith N; Smit, Nicoline W; Parvizi, Mojtaba; van Amersfoorth, Shirley C M; Plantinga, Josée A; van Dessel, Pascal F H M; de Bakker, Jacques M T; Harmsen, Marco C; Coronel, Ruben

    2017-01-01

    Stem cell therapy is a promising therapeutic option to treat patients after myocardial infarction. However, the intramyocardial administration of large amounts of stem cells might generate a proarrhythmic substrate. Proarrhythmic effects can be explained by electrotonic and/or paracrine mechanisms. The narrow therapeutic time window for cell therapy and the presence of comorbidities limit the application of autologous cell therapy. The use of allogeneic or xenogeneic stem cells is a potential alternative to autologous cells, but differences in the proarrhythmic effects of adipose-derived stromal cells (ADSCs) across species are unknown. Using microelectrode arrays and microelectrode recordings, we obtained local unipolar electrograms and action potentials from monolayers of neonatal rat ventricular myocytes (NRVMs) that were cocultured with rat, human, or pig ADSCs (rADSCs, hADSCs, pADSCs, respectively). Monolayers of NRVMs were cultured in the respective conditioned medium to investigate paracrine effects. We observed significant conduction slowing in all cardiomyocyte cultures containing ADSCs, independent of species used (p < .01). All cocultures were depolarized compared with controls (p < .01). Only conditioned medium taken from cocultures with pADSCs and applied to NRVM monolayers demonstrated similar electrophysiological changes as the corresponding cocultures. We have shown that independent of species used, ADSCs cause conduction slowing in monolayers of NRVMs. In addition, pADSCs exert conduction slowing mainly by a paracrine effect, whereas the influence on conduction by hADSCs and rADSCs is preferentially by electrotonic interaction. Stem Cells Translational Medicine 2017;6:22-30.

  5. Differential Mechanisms of Myocardial Conduction Slowing by Adipose Tissue-Derived Stromal Cells Derived From Different Species.

    PubMed

    Ten Sande, Judith N; Smit, Nicoline W; Parvizi, Mojtaba; van Amersfoorth, Shirley C M; Plantinga, Josée A; van Dessel, Pascal F H M; de Bakker, Jacques M T; Harmsen, Marco C; Coronel, Ruben

    2016-08-02

    : Stem cell therapy is a promising therapeutic option to treat patients after myocardial infarction. However, the intramyocardial administration of large amounts of stem cells might generate a proarrhythmic substrate. Proarrhythmic effects can be explained by electrotonic and/or paracrine mechanisms. The narrow therapeutic time window for cell therapy and the presence of comorbidities limit the application of autologous cell therapy. The use of allogeneic or xenogeneic stem cells is a potential alternative to autologous cells, but differences in the proarrhythmic effects of adipose-derived stromal cells (ADSCs) across species are unknown. Using microelectrode arrays and microelectrode recordings, we obtained local unipolar electrograms and action potentials from monolayers of neonatal rat ventricular myocytes (NRVMs) that were cocultured with rat, human, or pig ADSCs (rADSCs, hADSCs, pADSCs, respectively). Monolayers of NRVMs were cultured in the respective conditioned medium to investigate paracrine effects. We observed significant conduction slowing in all cardiomyocyte cultures containing ADSCs, independent of species used (p < .01). All cocultures were depolarized compared with controls (p < .01). Only conditioned medium taken from cocultures with pADSCs and applied to NRVM monolayers demonstrated similar electrophysiological changes as the corresponding cocultures. We have shown that independent of species used, ADSCs cause conduction slowing in monolayers of NRVMs. In addition, pADSCs exert conduction slowing mainly by a paracrine effect, whereas the influence on conduction by hADSCs and rADSCs is preferentially by electrotonic interaction.

  6. Differentiation of rat adipose tissue-derived stem cells into neuron-like cells by valproic acid, a histone deacetylase inhibitor.

    PubMed

    Okubo, Takumi; Hayashi, Daiki; Yaguchi, Takayuki; Fujita, Yudai; Sakaue, Motoharu; Suzuki, Takehito; Tsukamoto, Atsushi; Murayama, Ohoshi; Lynch, Jonathan; Miyazaki, Yoko; Tanaka, Kazuaki; Takizawa, Tatsuya

    2016-01-01

    Valproic acid (VPA) is a widely used antiepileptic drug, which has recently been reported to modulate the neuronal differentiation of adipose tissue-derived stem cells (ASCs) in humans and dogs. However, controversy exists as to whether VPA really acts as an inducer of neuronal differentiation of ASCs. The present study aimed to elucidate the effect of VPA in neuronal differentiation of rat ASCs. One or three days of pretreatment with VPA (2 mM) followed by neuronal induction enhanced the ratio of immature neuron marker βIII-tubulin-positive cells in a time-dependent manner, where the majority of cells also had a positive signal for neurofilament medium polypeptide (NEFM), a mature neuron marker. RT-PCR analysis revealed increases in the mRNA expression of microtubule-associated protein 2 (MAP2) and NEFM mature neuron markers, even without neuronal induction. Three-days pretreatment of VPA increased acetylation of histone H3 of ASCs as revealed by immunofluorescence staining. Chromatin immunoprecipitation assay also showed that the status of histone acetylation at H3K9 correlated with the gene expression of TUBB3 in ASCs by VPA. These results indicate that VPA significantly promotes the differentiation of rat ASCs into neuron-like cells through acetylation of histone H3, which suggests that VPA may serve as a useful tool for producing transplantable cells for future applications in clinical treatments.

  7. miR-34a inhibits differentiation of human adipose tissue-derived stem cells by regulating cell cycle and senescence induction.

    PubMed

    Park, Ho; Park, Hyeon; Pak, Ha-Jin; Yang, Dong-Yun; Kim, Yun-Hong; Choi, Won-Jun; Park, Se-Jin; Cho, Jung-Ah; Lee, Kyo-Won

    2015-01-01

    MicroRNAs (miRNAs) are critical in the maintenance, differentiation, and lineage commitment of stem cells. Stem cells have the unique property to differentiate into tissue-specific cell types (lineage commitment) during cell division (self-renewal). In this study, we investigated whether miR-34a, a cell cycle-regulating microRNA, could control the stem cell properties of adipose tissue-derived stem cells (ADSCs). First, we found that the expression level of miR-34a was increased as the cell passage number was increased. This finding, however, was inversely correlated with our finding that the overexpression of miR-34a induced the decrease of cell proliferation. In addition, miR-34a overexpression decreased the expression of various cell cycle regulators such as CDKs (-2, -4, -6) and cyclins (-E, -D), but not p21 and p53. The cell cycle analysis showed accumulation of dividing cells at S phase by miR-34a, which was reversible by co-treatment with anti-miR-34a. The potential of adipogenesis and osteogenesis of ADSCs was also decreased by miR-34a overexpression, which was recovered by co-treatment with anti-miR-34a. The surface expression of stem cell markers including CD44 was also down-regulated by miR-34a overexpression as similar to that elicited by cell cycle inhibitors. miR-34a also caused a significant decrease in mRNA expression of stem cell transcription factors as well as STAT-3 expression and phosphorylation. Cytokine profiling revealed that miR-34a significantly modulated IL-6 and -8 production, which was strongly related to cellular senescence. These data suggest the importance of miR-34a for the fate of ADSCs toward senescence rather than differentiation.

  8. Infusion of autologous adipose tissue derived neuronal differentiated mesenchymal stem cells and hematopoietic stem cells in post-traumatic paraplegia offers a viable therapeutic approach

    PubMed Central

    Thakkar, Umang G.; Vanikar, Aruna V.; Trivedi, Hargovind L.; Shah, Veena R.; Dave, Shruti D.; Dixit, Satyajit B.; Tiwari, Bharat B.; Shah, Harda H.

    2016-01-01

    Background: Spinal cord injury (SCI) is not likely to recover by current therapeutic modalities. Stem cell (SC) therapy (SCT) has promising results in regenerative medicine. We present our experience of co-infusion of autologous adipose tissue derived mesenchymal SC differentiated neuronal cells (N-Ad-MSC) and hematopoietic SCs (HSCs) in a set of patients with posttraumatic paraplegia. Materials and Methods: Ten patients with posttraumatic paraplegia of mean age 3.42 years were volunteered for SCT. Their mean age was 28 years, and they had variable associated complications. They were subjected to adipose tissue resection for in vitro generation of N-Ad-MSC and bone marrow aspiration for generation of HSC. Generated SCs were infused into the cerebrospinal fluid (CSF) below injury site in all patients. Results: Total mean quantum of SC infused was 4.04 ml with a mean nucleated cell count of 4.5 × 104/μL and mean CD34+ of 0.35%, CD45−/90+ and CD45−/73+ of 41.4%, and 10.04%, respectively. All of them expressed transcription factors beta-3 tubulin and glial fibrillary acid protein. No untoward effect of SCT was noted. Variable and sustained improvement in Hauser's index and American Spinal Injury Association score was noted in all patients over a mean follow-up of 2.95 years. Mean injury duration was 3.42 years against the period of approximately 1-year required for natural recovery, suggesting a positive role of SCs. Conclusion: Co-infusion of N-Ad-MSC and HSC in CSF is safe and viable therapeutic approach for SCIs. PMID:27110548

  9. Pulsed electromagnetic fields stimulate osteogenic differentiation in human bone marrow and adipose tissue derived mesenchymal stem cells.

    PubMed

    Ongaro, Alessia; Pellati, Agnese; Bagheri, Leila; Fortini, Cinzia; Setti, Stefania; De Mattei, Monica

    2014-09-01

    Pulsed electromagnetic fields (PEMFs) play a regulatory role on osteoblast activity and are clinically beneficial during fracture healing. Human mesenchymal stem cells (MSCs) derived from different sources have been extensively used in bone tissue engineering. Compared with MSCs isolated from bone marrow (BMSCs), those derived from adipose tissue (ASCs) are easier to obtain and available in larger amounts, although they show a less osteogenic differentiation potential than BMSCs. The hypothesis tested in this study was to evaluate whether PEMFs favor osteogenic differentiation both in BMSCs and in ASCs and to compare the role of PEMFs alone and in combination with the biochemical osteogenic stimulus bone morphogenetic protein (BMP)-2. Early and later osteogenic markers, such as alkaline phosphatase (ALP) activity, osteocalcin levels, and matrix mineralization, were analyzed at different times during osteogenic differentiation. Results showed that PEMFs induced osteogenic differentiation by increasing ALP activity, osteocalcin, and matrix mineralization in both BMSCs and ASCs, suggesting that PEMF activity is maintained during the whole differentiation period. The addition of BMP-2 in PEMF exposed cultures further increased all the osteogenic markers in BMSCs, while in ASCs, the stimulatory role of PEMFs was independent of BMP-2. Our results indicate that PEMFs may stimulate an early osteogenic induction in both BMSCs and ASCs and they suggest PEMFs as a bioactive factor to enhance the osteogenesis of ASCs, which are an attractive cell source for clinical applications. In conclusion, PEMFs may be considered a possible tool to improve autologous cell-based regeneration of bone defects in orthopedics.

  10. Effects of FGF-2 on human adipose tissue derived adult stem cells morphology and chondrogenesis enhancement in Transwell culture

    SciTech Connect

    Kabiri, Azadeh; Esfandiari, Ebrahim; Hashemibeni, Batool; Kazemi, Mohammad; Mardani, Mohammad; Esmaeili, Abolghasem

    2012-07-27

    Highlights: Black-Right-Pointing-Pointer We investigated effects of FGF-2 on hADSCs. Black-Right-Pointing-Pointer We examine changes in the level of gene expressions of SOX-9, aggrecan and collagen type II and type X. Black-Right-Pointing-Pointer FGF-2 induces chondrogenesis in hADSCs, which Bullet Increasing information will decrease quality if hospital costs are very different. Black-Right-Pointing-Pointer The result of this study may be beneficial in cartilage tissue engineering. -- Abstract: Injured cartilage is difficult to repair due to its poor vascularisation. Cell based therapies may serve as tools to more effectively regenerate defective cartilage. Both adult mesenchymal stem cells (MSCs) and human adipose derived stem cells (hADSCs) are regarded as potential stem cell sources able to generate functional cartilage for cell transplantation. Growth factors, in particular the TGF-b superfamily, influence many processes during cartilage formation, including cell proliferation, extracellular matrix synthesis, maintenance of the differentiated phenotype, and induction of MSCs towards chondrogenesis. In the current study, we investigated the effects of FGF-2 on hADSC morphology and chondrogenesis in Transwell culture. hADSCs were obtained from patients undergoing elective surgery, and then cultured in expansion medium alone or in the presence of FGF-2 (10 ng/ml). mRNA expression levels of SOX-9, aggrecan and collagen type II and type X were quantified by real-time polymerase chain reaction. The morphology, doubling time, trypsinization time and chondrogenesis of hADSCs were also studied. Expression levels of SOX-9, collagen type II, and aggrecan were all significantly increased in hADSCs expanded in presence of FGF-2. Furthermore FGF-2 induced a slender morphology, whereas doubling time and trypsinization time decreased. Our results suggest that FGF-2 induces hADSCs chondrogenesis in Transwell culture, which may be beneficial in cartilage tissue engineering.

  11. Regenerative effect of adipose tissue-derived stem cells transplantation using nerve conduit therapy on sciatic nerve injury in rats.

    PubMed

    Liu, Bai-Shuan; Yang, Yi-Chin; Shen, Chiung-Chyi

    2014-05-01

    This study proposed a biodegradable GGT nerve conduit containing genipin crosslinked gelatin annexed with tricalcium phosphate (TCP) ceramic particles for the regeneration of peripheral nerves. Cytotoxicity tests revealed that GGT-extracts were non-toxic and promoted proliferation and neuronal differentiation in the induction of stem cells (i-ASCs) derived from adipose tissue. Furthermore, the study confirmed the effectiveness of a GGT/i-ASCs nerve conduit as a guidance channel in the repair of a 10-mm gap in the sciatic nerve of rats. At eight weeks post-implantation, walking track analysis showed a significantly higher sciatic function index (SFI) (P < 0.05) in the GGT/i-ASC group than in the autograft group. Furthermore, the mean recovery index of compound muscle action potential (CMAP) differed significantly between GGT/i-ASCs and autograft groups (P < 0.05), both of which were significantly superior to the GGT group (P < 0.05). No severe inflammatory reaction in the peripheral nerve tissue at the site of implantation was observed in either group. Histological observation and immunohistochemistry revealed that the morphology and distribution patterns of nerve fibers in the GGT/i-ASCs nerve conduits were similar to those of the autografts. These promising results achieved through a combination of regenerative cells and GGT nerve conduits suggest the potential value in the future development of clinical applications for the treatment of peripheral nerve injury.

  12. miR-21 modulates tumor outgrowth induced by human adipose tissue-derived mesenchymal stem cells in vivo

    SciTech Connect

    Shin, Keun Koo; Lee, Ae Lim; Kim, Jee Young; Lee, Sun Young; Bae, Yong Chan; Jung, Jin Sup

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer miR-21 modulates hADSC-induced increase of tumor growth. Black-Right-Pointing-Pointer The action is mostly mediated by the modulation of TGF-{beta} signaling. Black-Right-Pointing-Pointer Inhibition of miR-21 enhances the blood flow recovery in hindlimb ischemia. -- Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in clinical situations, due principally to their potential use in regenerative medicine and tissue engineering applications. However, the therapeutic application of MSCs remains limited, unless the favorable effects of MSCs on tumor growth in vivo, and the long-term safety of the clinical applications of MSCs, can be more thoroughly understood. In this study, we determined whether microRNAs can modulate MSC-induced tumor outgrowth in BALB/c nude mice. Overexpression of miR-21 in human adipose-derived stem cells (hADSCs) inhibited hADSC-induced tumor growth, and inhibition of miR-21 increased it. Downregulation of transforming growth factor beta receptor II (TGFBR2), but not of signal transducer and activator of transcription 3, in hADSCs showed effects similar to those of miR-21 overexpression. Downregulation of TGFBR2 and overexpression of miR21 decreased tumor vascularity. Inhibition of miR-21 and the addition of TGF-{beta} increased the levels of vascular endothelial growth factor and interleukin-6 in hADSCs. Transplantation of miR-21 inhibitor-transfected hADSCs increased blood flow recovery in a hind limb ischemia model of nude mice, compared with transplantation of control oligo-transfected cells. These findings indicate that MSCs might favor tumor growth in vivo. Thus, it is necessary to study the long-term safety of this technique before MSCs can be used as therapeutic tools in regenerative medicine and tissue engineering.

  13. Regulation of adipose-tissue-derived stromal cell orientation and motility in 2D- and 3D-cultures by direct-current electrical field.

    PubMed

    Yang, Gang; Long, Haiyan; Ren, Xiaomei; Ma, Kunlong; Xiao, Zhenghua; Wang, Ying; Guo, Yingqiang

    2017-02-01

    Cell alignment and motility play a critical role in a variety of cell behaviors, including cytoskeleton reorganization, membrane-protein relocation, nuclear gene expression, and extracellular matrix remodeling. Direct current electric field (EF) in vitro can direct many types of cells to align vertically to EF vector. In this work, we investigated the effects of EF stimulation on rat adipose-tissue-derived stromal cells (ADSCs) in 2D-culture on plastic culture dishes and in 3D-culture on various scaffold materials, including collagen hydrogels, chitosan hydrogels and poly(L-lactic acid)/gelatin electrospinning fibers. Rat ADSCs were exposed to various physiological-strength EFs in a homemade EF-bioreactor. Changes of morphology and movements of cells affected by applied EFs were evaluated by time-lapse microphotography, and cell survival rates and intracellular calcium oscillations were also detected. Results showed that EF facilitated ADSC morphological changes, under 6 V/cm EF strength, and that ADSCs in 2D-culture aligned vertically to EF vector and kept a good cell survival rate. In 3D-culture, cell galvanotaxis responses were subject to the synergistic effect of applied EF and scaffold materials. Fast cell movement and intracellular calcium activities were observed in the cells of 3D-culture. We believe our research will provide some experimental references for the future study in cell galvanotaxis behaviors.

  14. Effects of Intracoronary Administration of Autologous Adipose Tissue-Derived Stem Cells on Acute Myocardial Infarction in a Porcine Model

    PubMed Central

    Lee, Hye Won; Park, Jong Ha; Kim, Bo Won; Ahn, Jinhee; Kim, Jin Hee; Park, Jin Sup; Oh, Jun-Hyok; Choi, Jung Hyun; Cha, Kwang Soo; Hong, Taek Jong; Park, Tae Sik; Kim, Sang-Pil; Song, Seunghwan; Kim, Ji Yeon; Park, Mi Hwa; Jung, Jin Sup

    2015-01-01

    Purpose Adipose-derived stem cells (ADSCs) are known to be potentially effective in regeneration of damaged tissue. We aimed to assess the effectiveness of intracoronary administration of ADSCs in reducing the infarction area and improving function after acute transmural myocardial infarction (MI) in a porcine model. Materials and Methods ADSCs were obtained from each pig's abdominal subcutaneous fat tissue by simple liposuction. After 3 passages of 14-days culture, 2 million ADSCs were injected into the coronary artery 30 min after acute transmural MI. At baseline and 4 weeks after the ADSC injection, 99mTc methoxyisobutylisonitrile-single photon emission computed tomography (MIBI-SPECT) was performed to evaluate the left ventricular volume, left ventricular ejection fraction (LVEF; %), and perfusion defects as well as the myocardial salvage (%) and salvage index. At 4 weeks, each pig was sacrificed, and the heart was extracted and dissected. Gross and microscopic analyses with specific immunohistochemistry staining were then performed. Results Analysis showed improvement in the perfusion defect, but not in the LVEF in the ADSC group (n=14), compared with the control group (n=14) (perfusion defect, -13.0±10.0 vs. -2.6±12.0, p=0.019; LVEF, -8.0±15.4 vs. -15.9±14.8, p=0.181). There was a tendency of reducing left ventricular volume in ADSC group. The ADSCs identified by stromal cell-derived factor-1 (SDF-1) staining were well co-localized by von Willebrand factor and Troponin T staining. Conclusion Intracoronary injection of cultured ADSCs improved myocardial perfusion in this porcine acute transmural MI model. PMID:26446632

  15. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells

    SciTech Connect

    Park, Yoon Shin; Lim, Goh-Woon; Cho, Kyung-Ah; Woo, So-Youn; Shin, Meeyoung; Yoo, Eun-Sun; Chan Ra, Jeong; Ryu, Kyung-Ha

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Neutropenia is a principal complication of cancer treatment. Black-Right-Pointing-Pointer Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. Black-Right-Pointing-Pointer AD-MSC increased functions of neutrophil. Black-Right-Pointing-Pointer AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Black-Right-Pointing-Pointer AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cells by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-{alpha}, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-{beta} in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.

  16. Serum-free isolation and culture system to enhance the proliferation and bone regeneration of adipose tissue-derived mesenchymal stem cells.

    PubMed

    Sato, Kazutoshi; Itoh, Takehiro; Kato, Toshiki; Kitamura, Yukiko; Kaul, Sunil C; Wadhwa, Renu; Sato, Fujio; Ohneda, Osamu

    2015-05-01

    Cell therapy using human mesenchymal stem cells (MSCs) is an attractive approach for many refractory diseases. Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are considered as a favorable tool due to its abundance in the body, easy proliferation, and high cytokine production potency. In order to avoid the risks associated with the use of fetal bovine serum (FBS) in culture that includes batch variations and contamination with pathogens, development of serum-free culture system has been initiated. We have formulated a completely serum-free culture medium (SFM) that could be used not only for the expansion of AT-MSCs but also for initial isolation. We demonstrate that the AT-MSCs isolated and cultured in serum-free medium (AT-MSCs/SFM) possess high proliferation capacity and differentiation potency to osteoblast, adipocyte, and chondrocyte lineages in vitro. In in vivo bone fraction model analysis, AT-MSCs/SFM showed higher bone repair potency and quality of the regenerated bone than the cells cultured in serum-containing medium (AT-MSCs/SCM). This was attributed to the (i) presence of translated cells in the bone, as evidenced by in vivo imaging of the illuminated translated cells and (ii) high level of expression and induction capacity of AT-MSCs/SFM for cytokine BMP2, CCL2, and CCL5. Taken together, we report a new serum-free culture system for AT-MSCs that is suitable for cell therapy.

  17. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells

    PubMed Central

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-01

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo. PMID:26728448

  18. Poly (dopamine) coated superparamagnetic iron oxide nanocluster for noninvasive labeling, tracking, and targeted delivery of adipose tissue-derived stem cells

    NASA Astrophysics Data System (ADS)

    Liao, Naishun; Wu, Ming; Pan, Fan; Lin, Jiumao; Li, Zuanfang; Zhang, Da; Wang, Yingchao; Zheng, Youshi; Peng, Jun; Liu, Xiaolong; Liu, Jingfeng

    2016-01-01

    Tracking and monitoring of cells in vivo after transplantation can provide crucial information for stem cell therapy. Magnetic resonance imaging (MRI) combined with contrast agents is believed to be an effective and non-invasive technique for cell tracking in living bodies. However, commercial superparamagnetic iron oxide nanoparticles (SPIONs) applied to label cells suffer from shortages such as potential toxicity, low labeling efficiency, and low contrast enhancing. Herein, the adipose tissue-derived stem cells (ADSCs) were efficiently labeled with SPIONs coated with poly (dopamine) (SPIONs cluster@PDA), without affecting their viability, proliferation, apoptosis, surface marker expression, as well as their self-renew ability and multi-differentiation potential. The labeled cells transplanted into the mice through tail intravenous injection exhibited a negative enhancement of the MRI signal in the damaged liver-induced by carbon tetrachloride, and subsequently these homed ADSCs with SPIONs cluster@PDA labeling exhibited excellent repair effects to the damaged liver. Moreover, the enhanced target-homing to tissue of interest and repair effects of SPIONs cluster@PDA-labeled ADSCs could be achieved by use of external magnetic field in the excisional skin wound mice model. Therefore, we provide a facile, safe, noninvasive and sensitive method for external magnetic field targeted delivery and MRI based tracking of transplanted cells in vivo.

  19. Establishment of Efficacy and Safety Assessment of Human Adipose Tissue-Derived Mesenchymal Stem Cells (hATMSCs) in a Nude Rat Femoral Segmental Defect Model

    PubMed Central

    Choi, Hyung Jun; Kim, Jong Min; Kwon, Euna; Che, Jeong-Hwan; Lee, Jae-Il; Cho, Seong-Ryul; Kang, Sung Keun; Ra, Jeong Chan

    2011-01-01

    Human adipose tissue-derived mesenchymal stem cell (hATMSC) have emerged as a potentially powerful tool for bone repair, but an appropriate evaluation system has not been established. The purpose of this study was to establish a preclinical assessment system to evaluate the efficacy and safety of cell therapies in a nude rat bone defect model. Segmental defects (5 mm) were created in the femoral diaphyses and transplanted with cell media (control), hydroxyapatite/tricalcium phosphate scaffolds (HA/TCP, Group I), hATMSCs (Group II), or three cell-loading density of hATMSC-loaded HA/TCP (Group III-V). Healing response was evaluated by serial radiography, micro-computed tomography and histology at 16 weeks. To address safety-concerns, we conducted a GLP-compliant toxicity study. Scanning electron microscopy studies showed that hATMSCs filled the pores/surfaces of scaffolds in a cell-loading density-dependent manner. We detected significant increases in bone formation in the hATMSC-loaded HA/TCP groups compared with other groups. The amount of new bone formation increased with increases in loaded cell number. In a toxicity study, no significant hATMSC-related changes were found in body weights, clinical signs, hematological/biochemical values, organ weights, or histopathological findings. In conclusion, hATMSCs loaded on HA/TCP enhance the repair of bone defects and was found to be safe under our preclinical efficacy/safety hybrid assessment system. PMID:21468254

  20. Anti-tumor effect of adipose tissue derived-mesenchymal stem cells expressing interferon-β and treatment with cisplatin in a xenograft mouse model for canine melanoma.

    PubMed

    Ahn, Jin ok; Lee, Hee woo; Seo, Kyoung won; Kang, Sung keun; Ra, Jeong chan; Youn, Hwa young

    2013-01-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are attractive cell-therapy vehicles for the delivery of anti-tumor molecules into the tumor microenvironment. The innate tropism of AT-MSCs for tumors has important implications for effective cellular delivery of anti-tumor molecules, including cytokines, interferon, and pro-drugs. The present study was designed to determine the possibility that the combination of stem cell-based gene therapy with low-dose cisplatin would improve therapeutic efficacy against canine melanoma. The IFN-β transduced canine AT-MSCs (cAT-MSC-IFN-β) inhibited the growth of LMeC canine melanoma cells in direct and indirect in vitro co-culture systems. In animal experiments using BALB/c nude mouse xenografts, which developed by injecting LMeC cells, the combination treatment of cAT-MSC-IFN-β and low-dose cisplatin significantly reduced tumor volume compared with the other treatment groups. Fluorescent microscopic analysis with a TUNEL (terminal deoxynucleotidyl transferase-mediated nick-end labeling) assay of tumor section provided evidence for homing of cAT-MSC-IFN-β to the tumor site and revealed that the combination treatment of cAT-MSC-IFN-β with low-dose cisplatin induced high levels of cell apoptosis. These findings may prove useful in further explorations of the application of these combined approaches to the treatment of malignant melanoma and other tumors.

  1. Stimulatory effect of HGF-overexpressing adipose tissue-derived mesenchymal stem cells on thymus regeneration in a rat thymus involution model.

    PubMed

    Jung, Woo-Sung; Han, Sei-Myoung; Kim, Sung-Min; Kim, Mi-Eun; Lee, Jun-Sik; Seo, Kyoung-Won; Youn, Hwa-Young; Lee, Hee-Woo

    2014-10-01

    The thymus is the central lymphoid organ providing a unique and essential microenvironment for T-cell precursor development into mature functionally competent T-lymphocytes. Thus, it is important to develop the strategies for enhancing thymic regeneration from involution induced by a variety of clinical treatments and conditions. Hepatocyte growth factor (HGF) promotes proliferation in a variety of cell types. We have used stem cell-based HGF gene therapy to enhance regeneration from acute thymic involution. HGF-overexpressing human adipose tissue-derived mesenchymal stem cells (HGF-hATMSCs) were generated by liposomal transfection with the pMEX expression vector, constructed by inserting the HGF gene. Significantly increased HGF expression in these cells was confirmed by reverse transcription-polymerase chain reaction and an enzyme-linked immunosorbent assay. HGF produced by HGF-hATMSCs enhanced the proliferation of a mouse thymic epithelial cell line and the expression of interleukin-7 in vitro. We also examined the effect of HGF-hATMSCs on thymic regeneration in rats with acute thymic involution. Significant increases in thymus size and weight, as well as the number of thymocytes (especially, early thymocyte progenitors), were seen in the HGF-hATMSCs-treated rats compared to saline-treated control animals. A stimulatory effect of HGF-hATMSCs on thymic regeneration has therefore been shown, highlighting the clinical value of HGF-hATMSCs for treating thymic involution.

  2. The role of SDF-1-CXCR4/CXCR7 axis in biological behaviors of adipose tissue-derived mesenchymal stem cells in vitro.

    PubMed

    Li, Qiang; Zhang, Aijun; Tao, Changbo; Li, Xueyang; Jin, Peisheng

    2013-11-22

    Numerous studies have reported that CXCR4 and CXCR7 play an essential, but differential role in stromal cell-derived factor-1 (SDF-1)-inducing cell chemotaxis, viability and paracrine actions of BMSCs. Adipose tissue-derived mesenchymal stem cells (ADSCs) have been suggested to be potential seed cells for clinical application instead of bone marrow derived stroma cell (BMSCs). However, the function of SDF-1/CXCR4 and SDF-1/CXCR7 in ADSCs is not well understood. This study was designed to analyze the effect of SDF-1/CXCR4 and SDF-1/CXCR7 axis on ADSCs biological behaviors in vitro. Using Flow cytometry and Western blot methods, we found for the first time that CXCR4/CXCR7 expression was increased after treatment with SDF-1 in ADSCs. SDF-1 promoted ADSCs paracrine, proliferation and migration abilities. CXCR4 or CXCR7 antibody suppressed ADSCs paracrine action induced by SDF-1. The migration of ADSCs can be abolished by CXCR4 antibody, while the proliferation of ADSCs was only downregulated by CXCR7 antibody. Our study indicated that the angiogenesis of ADSCs is, at least partly, mediated by SDF-1/CXCR4 and SDF-1/CXCR7 axis. However, only binding of SDF-1/CXCR7 was required for proliferation of ADSCs, and CXCR7 was required for migration of ADSCs induced by SDF-1. Our studies provide evidence that the activation of either axis may be helpful to improve the effectiveness of ADSCs-based stem cell therapy.

  3. The effect of leukocyte-reduced platelet-rich plasma on the proliferation of autologous adipose-tissue derived mesenchymal stem cells.

    PubMed

    Loibl, Markus; Lang, Siegmund; Brockhoff, Gero; Gueorguiev, Boyko; Hilber, Franz; Worlicek, Michael; Baumann, Florian; Grechenig, Stephan; Zellner, Johannes; Huber, Michaela; Valderrabano, Victor; Angele, Peter; Nerlich, Michael; Prantl, Lukas; Gehmert, Sebastian

    2016-01-01

    Clinical application of platelet-rich plasma (PRP) and stem cells has become more and more important in regenerative medicine during the last decade. However, differences in PRP preparations may contribute to variable PRP compositions with unpredictable effects on a cellular level. In the present study, we modified the centrifugation settings in order to provide a leukocyte-reduced PRP and evaluated the interactions between PRP and adipose-tissue derived mesenchymal stem cells (ASCs).PRP was obtained after modification of three different centrifugation settings and investigated by hemogram analysis, quantification of protein content and growth factor concentration. ASCs were cultured in serum-free α-MEM supplemented with autologous 10% or 20% leukocyte-reduced PRP. Cell cycle kinetics of ASCs were analyzed using flow cytometric analyses after 48 hours.Thrombocytes in PRP were concentrated, whereas erythrocytes, and white blood cells (WBC) were reduced, independent of centrifugation settings. Disabling the brake further reduced the number of WBCs. A higher percentage of cells in the S-phase in the presence of 20% PRP in comparison to 10% PRP and 20% fetal calf serum (FCS) advocates the proliferation stimulation of ASCs.These findings clearly demonstrate considerable differences between three PRP separation settings and assist in safeguarding the combination of leukocyte-reduced PRP and stem cells for regenerative therapies.

  4. Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system.

    PubMed

    Choi, Jeein; Kim, Sohyeun; Jung, Jinsun; Lim, Youngbin; Kang, Kyungsun; Park, Seungsu; Kang, Sookyung

    2011-10-01

    In stem cell biology, cell plasticity refers to the ability of stem cells to differentiate into a variety of cell lineages. Recently, cell plasticity has been used to refer to the ability of a given cell type to reversibly de-differentiate, re-differentiate, or transdifferentiate in response to specific stimuli. These processes are regulated by multiple intracellular and extracellular growth and differentiation factors, including low oxygen. Our recent study showed that 3D microfluidic cell culture induces activation of the Wnt5A/β-catenin signaling pathway in hATSCs (human Adipose Tissue-derived Stem Cells). This resulted in self renewal and transdifferentiation of hATSCs into neurons. To improve neurogenic potency of hATSCs in response to low oxygen and other unknown physical factors, we developed a gel-free 3D microfluidic cell culture system (3D-μFCCS). The functional structure was developed for the immobilization of 3D multi-cellular aggregates in a microfluidic channel without the use of a matrix on the chip. Growth of hATSCs neurosphere grown on a chip was higher than the growth of control cells grown in a culture dish. Induction of differentiation in the Chip system resulted in a significant increase in the induction of neuronal-like cell structures and the presentation of TuJ or NF160 positive long neuritis compared to control cells after active migration from the center of the microfluidic channel layer to the outside of the microfluidic channel layer. We also observed that the chip neurogenesis system induced a significantly higher level of GABA secreting neurons and, in addition, almost 60% of cells were GABA + cells. Finally, we observed that 1 month of after the transplantation of each cell type in a mouse SCI lesion, chip cultured and neuronal differentiated hATSCs exhibited the ability to effectively transdifferentiate into NF160 + motor neurons at a high ratio. Interestingly, our CHIP/PCR analysis revealed that HIF1α-induced hATSCs neurogenesis

  5. Injections of adipose tissue-derived stem cells and stem cell lysate improve recovery of erectile function in a rat model of cavernous nerve injury

    PubMed Central

    Albersen, Maarten; Fandel, Thomas M.; Lin, Guiting; Wang, Guifang; Banie, Lia; Lin, Ching-Shwun; Lue, Tom F.

    2013-01-01

    Introduction Erectile dysfunction (ED) remains a major complication after radical prostatectomy. The use of adipose tissue-derived stem cells (ADSC) has shown promising results for the treatment of ED. However, the mechanisms of action for stem cell therapy remain controversial, with increasing evidence pointing to paracrine pathways. Aim To determine the effects and to identify the mechanism of action of ADSC and ADSC-derived lysate in a rat model of cavernous nerve (CN) crush injury. Methods Thirty-two male Sprague-Dawley rats were randomly divided into four equal groups: one group underwent sham operation, while three groups underwent bilateral CN crush. Crush-injury groups were treated at the time of injury with intracavernous injection of ADSC, lysate, or vehicle only (injured controls). Erectile function was assessed by cavernous nerve electrostimulation at 4 weeks. Penile tissue was collected for histology. Main Outcome Measures Intracavernous pressure increase upon CN stimulation; neuronal nitric oxide synthase (nNOS) content in the dorsal penile nerve; smooth muscle content, collagen content, and number of apoptotic cells in the corpus cavernosum. Results Both ADSC and lysate treatments resulted in significant recovery of erectile function, as compared to vehicle treatment. nNOS content was preserved in both the ADSC and lysate group, with significantly higher expression compared to vehicle-treated animals. There was significantly less fibrosis and a significant preservation of smooth muscle content in the ADSC and lysate groups compared to injured controls. The observed functional improvement after lysate injection supports the hypothesis that ADSC act through release of intracellular preformed substances or by active secretion of certain biomolecules. The underlying mechanism of recovery appears to involve neuron preservation and cytoprotection by inhibition of apoptosis. Conclusions Penile injection of both ADSC and ADSC-derived lysate can improve

  6. in vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells.

    PubMed

    Castells-Sala, Cristina; Martínez-Ramos, Cristina; Vallés-Lluch, Ana; Monleón Pradas, Manuel; Semino, Carlos

    2015-11-01

    Myocardial tissue lacks the ability to regenerate itself significantly following a myocardial infarction. Thus, new strategies that could compensate this lack are of high interest. Cardiac tissue engineering (CTE) strategies are a relatively new approach that aims to compensate the tissue loss using combination of biomaterials, cells and bioactive molecules. The goal of the present study was to evaluate cell survival and growth, seeding capacity and cellular phenotype maintenance of subcutaneous adipose tissue-derived progenitor cells in a new synthetic biomaterial scaffold platform. Specifically, here we tested the effect of the RAD16-I peptide gel in microporous poly(ethyl acrylate) polymers using two-dimensional PEA films as controls. Results showed optimal cell adhesion efficiency and growth in the polymers coated with the self-assembling peptide RAD16-I. Importantly, subATDPCs seeded into microporous PEA scaffolds coated with RAD16-I maintained its phenotype and were able to migrate outwards the bioactive patch, hopefully toward the infarcted area once implanted. These data suggest that this bioimplant (scaffold/RAD16-I/cells) can be suitable for further in vivo implantation with the aim to improve the function of affected tissue after myocardial infarction.

  7. Antioxidants inhibit advanced glycosylation end-product-induced apoptosis by downregulation of miR-223 in human adipose tissue-derived stem cells

    PubMed Central

    Wang, Zhe; Li, Hongqiu; Guo, Ran; Wang, Qiushi; Zhang, Dianbao

    2016-01-01

    Advanced glycosylation end products (AGEs) are endogenous inflammatory mediators that induce apoptosis of mesenchymal stem cells. A potential mechanism includes increased generation of reactive oxygen species (ROS). MicroRNA-223 (miR-223) is implicated in the regulation of cell growth and apoptosis in several cell types. Here, we tested the hypothesis that antioxidants N-acetylcysteine (NAC) and ascorbic acid 2-phosphate (AAP) inhibit AGE-induced apoptosis via a microRNA-dependent mechanism in human adipose tissue-derived stem cells (ADSCs). Results showed that AGE-HSA enhanced apoptosis and caspase-3 activity in ADSCs. AGE-HSA also increased ROS generation and upregulated the expression of miR-223. Interestingly, reductions in ROS generation and apoptosis, and upregulation of miR-223 were found in ADSCs treated with antioxidants NAC and AAP. Furthermore, miR-223 mimics blocked antioxidant inhibition of AGE-induced apoptosis and ROS generation. Knockdown of miR-223 amplified the protective effects of antioxidants on apoptosis induced by AGE-HSA. miR-223 acted by targeting fibroblast growth factor receptor 2. These results indicate that NAC and AAP suppress AGE-HSA-induced apoptosis of ADSCs, possibly through downregulation of miR-223. PMID:26964642

  8. Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells

    SciTech Connect

    Yanez, Rosa Oviedo, Alberto Aldea, Montserrat Bueren, Juan A. Lamana, Maria L.

    2010-11-15

    Mesenchymal stromal cells (MSCs) have important immunosuppressive properties, but the mechanisms and soluble factors involved in these effects remain unclear. We have studied prostaglandin-E2 (PGE2) as a possible candidate implied in adipose tissue-derived MSCs (Ad-MSCs) immunosuppressive properties over dendritic cells and T lymphocytes, compared to bone marrow derived MSCs (BM-MSCs). We found that both MSCs inhibited the maturation of myeloid-DCs and plasmocytoid-DCs. High levels of PGE2 were detected in DCs/MSCs co-cultures. Its blockade with indomethacin (IDM) allowed plasmocytoid-DCs but not myeloid-DCs maturation. Additionally, high levels of PGE2 were found in co-cultures in which Ad-MSCs or BM-MSCs inhibited activated T cells proliferation and pro-inflammatory cytokines production. PGE2 blockade by IDM preserved T lymphocytes proliferation but did not restore the pro-inflammatory cytokines secretion. However, an increased expression of transcription factors and cytokines genes involved in the Th1/Th2 differentiation pathway was detected in the T cells co-cultured with Ad-MSCs, but not with BM-MSCs. In conclusion, we propose that PGE2 is a soluble factor mediating most of the immunosuppressive effects of Ad-MSCs and BM-MSCs over p-DCs maturation and activated T lymphocytes proliferation and cytokine secretion.

  9. Osteogenic differentiation of adipose tissue-derived mesenchymal stem cells on nanostructured Ti6Al4V and Ti13Nb13Zr

    PubMed Central

    Marini, Francesca; Luzi, Ettore; Fabbri, Sergio; Ciuffi, Simone; Sorace, Sabina; Tognarini, Isabella; Galli, Gianna; Zonefrati, Roberto; Sbaiz, Fausto; Brandi, Maria Luisa

    2015-01-01

    Summary Bone tissue engineering and nanotechnology enable the design of suitable substitutes to restore and maintain the function of human bone tissues in complex fractures and other large skeletal defects. Long-term stability and functionality of prostheses depend on integration between bone cells and biocompatible implants. Human adipose tissue-derived mesenchymal stem cells (hAMSCs) have been shown to possess the same ability to differentiate into osteoblasts and to produce bone matrix of classical bone marrow derived stem cells (BMMSCs). Ti6A14V and Ti13Nb13Zr are two different biocompatible titanium alloys suitable for medical bone transplantation. Preliminary results from our Research Group demonstrated that smooth Ti6Al4V surfaces exhibit an osteoconductive action on hAMSCs, granting their differentiation into functional osteoblasts and sustaining bone matrix synthesis and calcification. The purpose of this study is to assay the ability of nanostructured Ti6Al4V and Ti13Nb13Zr alloys to preserve the growth and adhesion of hAMSCs and, mostly, to sustain and maintain their osteogenic differentiation and osteoblast activity. The overall results showed that both nanostructured titanium alloys are capable of sustaining cell adhesion and proliferation, to promote their differentiation into osteoblast lineage, and to support the activity of mature osteoblasts in terms of calcium deposition and bone extracellular matrix protein production. PMID:26811701

  10. High-mobility group protein HMGA2-derived fragments stimulate the proliferation of chondrocytes and adipose tissue-derived stem cells.

    PubMed

    Richter, A; Lübbing, M; Frank, H G; Nolte, I; Bullerdiek, J C; von Ahsen, I

    2011-04-11

    In previous research, it was shown that recombinant HMGA2 protein enhances the proliferation of porcine chondrocytes grown in vitro, opening up promising applications of this embryonic architectural transcription factor for tissue engineering, such as in cartilage repair. In this paper, we describe the development and analyses of two synthetic fragments comprising the functional AT-hook motifs of the HMGA2 protein, as well as the nuclear transport domain. They can be synthesised up to large scales, while eliminating some of the problems of recombinant protein production, including unwanted modification or contamination by the expression hosts, or of gene therapy approaches such as uncontrolled viral integration and transgene expression even after therapy. Application of one of these peptides onto porcine hyaline cartilage chondrocytes, grown in in vitro monolayer cell culture, showed a growth-promoting effect similar to that of the wild type HMGA2 protein. Furthermore, it also promoted cell growth of adult adipose tissue derived stem cells. Due to its proliferation inducing function and vast availability, this peptide is thus suitable for further application and investigation in various fields such as tissue engineering and stem cell research.

  11. Platelet-Rich Plasma Increases Growth and Motility of Adipose Tissue-Derived Mesenchymal Stem Cells and Controls Adipocyte Secretory Function.

    PubMed

    D'Esposito, Vittoria; Passaretti, Federica; Perruolo, Giuseppe; Ambrosio, Maria Rosaria; Valentino, Rossella; Oriente, Francesco; Raciti, Gregory A; Nigro, Cecilia; Miele, Claudia; Sammartino, Gilberto; Beguinot, Francesco; Formisano, Pietro

    2015-10-01

    Adipose tissue-derived mesenchymal stem cells (Ad-MSC) and platelet derivatives have been used alone or in combination to achieve regeneration of injured tissues. We have tested the effect of platelet-rich plasma (PRP) on Ad-MSC and adipocyte function. PRP increased Ad-MSC viability, proliferation rate and G1-S cell cycle progression, by at least 7-, 2-, and 2.2-fold, respectively, and reduced caspase 3 cleavage. Higher PRP concentrations or PRPs derived from individuals with higher platelet counts were more effective in increasing Ad-MSC growth. PRP also accelerated cell migration by at least 1.5-fold. However, PRP did not significantly affect mature adipocyte viability, differentiation and expression levels of PPAR-γ and AP-2 mRNAs, while it increased leptin production by 3.5-fold. Interestingly, PRP treatment of mature adipocytes also enhanced the release of Interleukin (IL)-6, IL-8, IL-10, Interferon-γ, and Vascular Endothelial Growth Factor. Thus, data are consistent with a stimulatory effect of platelet derivatives on Ad-MSC growth and motility. Moreover, PRP did not reduce mature adipocyte survival and increased the release of pro-angiogenic factors, which may facilitate tissue regeneration processes.

  12. The potential of GMP-compliant platelet lysate to induce a permissive state for cardiovascular transdifferentiation in human mediastinal adipose tissue-derived mesenchymal stem cells.

    PubMed

    Siciliano, Camilla; Chimenti, Isotta; Bordin, Antonella; Ponti, Donatella; Iudicone, Paola; Peruzzi, Mariangela; Rendina, Erino Angelo; Calogero, Antonella; Pierelli, Luca; Ibrahim, Mohsen; De Falco, Elena

    2015-01-01

    Human adipose tissue-derived mesenchymal stem cells (ADMSCs) are considered eligible candidates for cardiovascular stem cell therapy applications due to their cardiac transdifferentiation potential and immunotolerance. Over the years, the in vitro culture of ADMSCs by platelet lysate (PL), a hemoderivate containing numerous growth factors and cytokines derived from platelet pools, has allowed achieving a safe and reproducible methodology to obtain high cell yield prior to clinical administration. Nevertheless, the biological properties of PL are still to be fully elucidated. In this brief report we show the potential ability of PL to induce a permissive state of cardiac-like transdifferentiation and to cause epigenetic modifications. RTPCR results indicate an upregulation of Cx43, SMA, c-kit, and Thy-1 confirmed by immunofluorescence staining, compared to standard cultures with foetal bovine serum. Moreover, PL-cultured ADMSCs exhibit a remarkable increase of both acetylated histones 3 and 4, with a patient-dependent time trend, and methylation at lysine 9 on histone 3 preceding the acetylation. Expression levels of p300 and SIRT-1, two major regulators of histone 3, are also upregulated after treatment with PL. In conclusion, PL could unravel novel biological properties beyond its routine employment in noncardiac applications, providing new insights into the plasticity of human ADMSCs.

  13. Non-Thermal Atmospheric Pressure Plasma Efficiently Promotes the Proliferation of Adipose Tissue-Derived Stem Cells by Activating NO-Response Pathways

    PubMed Central

    Park, Jeongyeon; Lee, Hyunyoung; Lee, Hae June; Kim, Gyoo Cheon; Kim, Do Young; Han, Sungbum; Song, Kiwon

    2016-01-01

    Non-thermal atmospheric pressure plasma (NTAPP) is defined as a partially ionized gas with electrically charged particles at atmospheric pressure. Our study showed that exposure to NTAPP generated in a helium-based dielectric barrier discharge (DBD) device increased the proliferation of adipose tissue-derived stem cells (ASCs) by 1.57-fold on an average, compared with untreated cells at 72 h after initial NTAPP exposure. NTAPP-exposed ASCs maintained their stemness, capability to differentiate into adipocytes but did not show cellular senescence. Therefore, we suggested that NTAPP can be used to increase the proliferation of ASCs without affecting their stem cell properties. When ASCs were exposed to NTAPP in the presence of a nitric oxide (NO) scavenger, the proliferation-enhancing effect of NTAPP was not obvious. Meanwhile, the proliferation of NTAPP-exposed ASCs was not much changed in the presence of scavengers for reactive oxygen species (ROS). Also, Akt, ERK1/2, and NF-κB were activated in ASCs after NTAPP exposure. These results demonstrated that NO rather than ROS is responsible for the enhanced proliferation of ASCs following NTAPP exposure. Taken together, this study suggests that NTAPP would be an efficient tool for use in the medical application of ASCs both in vitro and in vivo. PMID:27991548

  14. Human Adipose-Tissue Derived Stromal Cells in Combination with Hypoxia Effectively Support Ex Vivo Expansion of Cord Blood Haematopoietic Progenitors

    PubMed Central

    Andreeva, Elena R.; Buravkov, Sergey V.; Romanov, Yury A.; Buravkova, Ludmila B.

    2015-01-01

    The optimisation of haematopoietic stem and progenitor cell expansion is on demand in modern cell therapy. In this work, haematopoietic stem/progenitor cells (HSPCs) have been selected from unmanipulated cord blood mononuclear cells (cbMNCs) due to adhesion to human adipose-tissue derived stromal cells (ASCs) under standard (20%) and tissue-related (5%) oxygen. ASCs efficiently maintained viability and supported further HSPC expansion at 20% and 5% O2. During co-culture with ASCs, a new floating population of differently committed HSPCs (HSPCs-1) grew. This suspension was enriched with СD34+ cells up to 6 (20% O2) and 8 (5% O2) times. Functional analysis of HSPCs-1 revealed cobble-stone area forming cells (CAFCs) and lineage-restricted colony-forming cells (CFCs). The number of CFCs was 1.6 times higher at tissue-related O2, than in standard cultivation (20% O2). This increase was related to a rise in the number of multipotent precursors - BFU-E, CFU-GEMM and CFU-GM. These changes were at least partly ensured by the increased concentration of MCP-1 and IL-8 at 5% O2. In summary, our data demonstrated that human ASCs enables the selection of functionally active HSPCs from unfractionated cbMNCs, the further expansion of which without exogenous cytokines provides enrichment with CD34+ cells. ASCs efficiently support the viability and proliferation of cord blood haematopoietic progenitors of different commitment at standard and tissue-related O2 levels at the expense of direct and paracrine cell-to-cell interactions. PMID:25919031

  15. CXCR4 Overexpression in Human Adipose Tissue-Derived Stem Cells Improves Homing and Engraftment in an Animal Limb Ischemia Model.

    PubMed

    Kim, MiJung; Kim, Dong-Ik; Kim, Eun Key; Kim, Chan-Wha

    2017-02-16

    We investigated the effects of transplantation of CXCR4-overexpressing adipose tissue-derived stem cells (ADSCs) into a mouse diabetic hindlimb ischemia model on homing and engraftment as early as 48 h after transplant. CXCR4-overexpressing ADSCs were intramuscularly or intravenously injected into diabetic mice with hindlimb ischemia. After 48 h, muscle tissues in the femur and tibia were collected, and the CXCR4 expression pattern was analyzed by immunofluorescence staining. The homing and engraftment of transplanted CXCR4-overexpressing ADSCs into the ischemic area were significantly increased, and intravenous (systemic) injection resulted in the more effective delivery of stem cells to the target site 48 h posttransplantation. Furthermore, CXCR4-overexpressing ADSCs more efficiently contributed to long-term engraftment and muscle tissue regeneration than normal ADSCs in a limb ischemia model. In addition, the homing and engraftment of ADSCs were correlated with the CXCR4 transfection efficiency. These results demonstrated that enhanced CXCR4 signaling could significantly improve the early homing and engraftment of ADSCs into ischemic areas as well as the long-term engraftment and ultimate muscle tissue regeneration.

  16. Antagonizing Effects of Aspartic Acid against Ultraviolet A-Induced Downregulation of the Stemness of Human Adipose Tissue-Derived Mesenchymal Stem Cells.

    PubMed

    Jung, Kwangseon; Cho, Jae Youl; Soh, Young-Jin; Lee, Jienny; Shin, Seoung Woo; Jang, Sunghee; Jung, Eunsun; Kim, Min Hee; Lee, Jongsung

    2015-01-01

    Ultraviolet A (UVA) irradiation is responsible for a variety of changes in cell biology. The purpose of this study was to investigate effects of aspartic acid on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). Furthermore, we elucidated the UVA-antagonizing mechanisms of aspartic acid. The results of this study showed that aspartic acid attenuated the UVA-induced reduction of the proliferative potential and stemness of hAMSCs, as evidenced by increased proliferative activity in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and upregulation of stemness-related genes OCT4, NANOG, and SOX2 in response to the aspartic acid treatment. UVA-induced reduction in the mRNA level of hypoxia-inducible factor (HIF)-1α was also significantly recovered by aspartic acid. In addition, the antagonizing effects of aspartic acid against the UVA effects were found to be mediated by reduced production of PGE2 through the inhibition of JNK and p42/44 MAPK. Taken together, these findings show that aspartic acid improves reduced stemness of hAMSCs induced by UVA and its effects are mediated by upregulation of HIF-1α via the inhibition of PGE2-cAMP signaling. In addition, aspartic acid may be used as an antagonizing agent to mitigate the effects of UVA.

  17. Antagonizing Effects of Aspartic Acid against Ultraviolet A-Induced Downregulation of the Stemness of Human Adipose Tissue-Derived Mesenchymal Stem Cells

    PubMed Central

    Lee, Jienny; Shin, Seoung Woo; Jang, Sunghee; Jung, Eunsun; Kim, Min Hee; Lee, Jongsung

    2015-01-01

    Ultraviolet A (UVA) irradiation is responsible for a variety of changes in cell biology. The purpose of this study was to investigate effects of aspartic acid on UVA irradiation-induced damages in the stemness properties of human adipose tissue-derived mesenchymal stem cells (hAMSCs). Furthermore, we elucidated the UVA-antagonizing mechanisms of aspartic acid. The results of this study showed that aspartic acid attenuated the UVA-induced reduction of the proliferative potential and stemness of hAMSCs, as evidenced by increased proliferative activity in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and upregulation of stemness-related genes OCT4, NANOG, and SOX2 in response to the aspartic acid treatment. UVA-induced reduction in the mRNA level of hypoxia-inducible factor (HIF)-1α was also significantly recovered by aspartic acid. In addition, the antagonizing effects of aspartic acid against the UVA effects were found to be mediated by reduced production of PGE2 through the inhibition of JNK and p42/44 MAPK. Taken together, these findings show that aspartic acid improves reduced stemness of hAMSCs induced by UVA and its effects are mediated by upregulation of HIF-1α via the inhibition of PGE2-cAMP signaling. In addition, aspartic acid may be used as an antagonizing agent to mitigate the effects of UVA. PMID:25909857

  18. Combined effects of electromagnetic field and low-level laser increase proliferation and alter the morphology of human adipose tissue-derived mesenchymal stem cells.

    PubMed

    Nurković, Jasmin; Zaletel, Ivan; Nurković, Selmina; Hajrović, Šefćet; Mustafić, Fahrudin; Isma, Jovan; Škevin, Aleksandra Jurišić; Grbović, Vesna; Filipović, Milica Kovačević; Dolićanin, Zana

    2017-01-01

    In recent years, electromagnetic field (EMF) and low-level laser (LLL) have been found to affect various biological processes, the growth and proliferation of cells, and especially that of stem cells. The aim of this study was to investigate the effects of EMF and LLL on proliferation of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) and thus to examine the impact of these therapeutic physical modalities on stem cell engraftment. hAT-MSCs were isolated from subcutaneous adipose tissue of six persons ranging in age from 21 to 56 years. EMF was applied for a period of 7 days, once a day for 30 min, via a magnetic cushion surface at a frequency of 50 Hz and an intensity of 3 mT. LLL was applied also for 7 days, once a day for 5 min, at radiation energies of 3 J/cm(2), with a wavelength of 808 nm, power output of 200 mW, and power density of 0.2 W/cm(2). Nonexposed cells (control) were cultivated under the same culture conditions. Seven days after treatment, the cells were examined for cell viability, proliferation, and morphology. We found that after 7 days, the number of EMF-treated hAT-MSCs was significantly higher than the number of the untreated cells, LLL-treated hAT-MSCs were more numerous than EMF-treated cells, and hAT-MSCs that were treated with the combination of EMF and LLL were the most numerous. EMF and/or LLL treatment did not significantly affect hAT-MSC viability by itself. Changes in cell morphology were also observed, in terms of an increase in cell surface area and fractal dimension in hAT-MSCs treated with EMF and the combination of EMF and LLL. In conclusion, EMF and/or LLL treatment accelerated the proliferation of hAT-MSCs without compromising their viability, and therefore, they may be used in stem cell tissue engineering.

  19. Effective myotube formation in human adipose tissue-derived stem cells expressing dystrophin and myosin heavy chain by cellular fusion with mouse C2C12 myoblasts

    SciTech Connect

    Eom, Young Woo; Lee, Jong Eun; Yang, Mal Sook; Jang, In Keun; Kim, Hyo Eun; Lee, Doo Hoon; Kim, Young Jin; Park, Won Jin; Kong, Jee Hyun; Shim, Kwang Yong; Lee, Jong In; Kim, Hyun Soo

    2011-04-29

    Highlights: {yields} hASCs were differentiated into skeletal muscle cells by treatment with 5-azacytidine, FGF-2, and the supernatant of cultured hASCs. {yields} Dystrophin and MyHC were expressed in late differentiation step by treatment with the supernatant of cultured hASCs. {yields} hASCs expressing dystrophin and MyHC contributed to myotube formation during co-culture with mouse myoblast C2C12 cells. -- Abstract: Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.

  20. Transplantation of adipose tissue-derived stem cells overexpressing heme oxygenase-1 improves functions and remodeling of infarcted myocardium in rabbits.

    PubMed

    Yang, Jun-jie; Yang, Xia; Liu, Zhi-qiang; Hu, Shun-yin; Du, Zhi-yan; Feng, Lan-lan; Liu, Jian-feng; Chen, Yun-dai

    2012-01-01

    Adipose tissue-derived stem cells (ADSCs) are a promising source of autologous stem cells that are used for regeneration and repair of infracted heart. However, the efficiency of their transplantation is under debate. One of the possible reasons for marginal improvement in ADSCs transplantation is the significant cell death rate of implanted cells after being grafted into injured heart. Therefore, overcoming the poor survival rate of implanted cells may improve stem cell therapy. Due to limited improvement concerning direct stem cell therapy, gene-transfer methods are used to enhance cellular cardiomyoplasty efficacy. Heme oxygenase-1 (HO-1) can provide various types of cells with protection against oxidative injury and apoptosis. However, exact effects of autologous ADSCs combined with HO-1 on cardiac performance remains unknown. In this study, rabbits were treated with ADSCs transduced with HO-1 (HO-1-ADSCs), treated with non-transduced ADSCs, or injected with phosphate buffered saline 14 days after experimental myocardial infarction was induced, when autologous ADSCs were obtained simultaneously. Four weeks after injection, echocardiography showed significant improvements for cardiac functions and left ventricular dimensions in HO-1-ADSCs-treated animals. Structural consequences of transplantation were determined by detailed histological analysis, which showed differentiation of HO-1-ADSCs to cardiomyocyte-like tissues and lumen-like structure organizations. Apart from improvement in angiogenesis and scar areas, more connexin 43-positive gap junction and greater tyrosine hydroxylase-positive cardiac sympathetic nerves sprouting were observed in the HO-1-ADSCs-treated group compared with ADSCs group. These data suggest that the transplantation of autologous ADSCs combined with HO-1 transduction is a feasible and efficacious method for improving infarcted myocardium.

  1. Ligament Tissue Engineering Using a Novel Porous Polycaprolactone Fumarate Scaffold and Adipose Tissue-Derived Mesenchymal Stem Cells Grown in Platelet Lysate

    PubMed Central

    Wagner, Eric R.; Bravo, Dalibel; Dadsetan, Mahrokh; Riester, Scott M.; Chase, Steven; Westendorf, Jennifer J.; Dietz, Allan B.; van Wijnen, Andre J.; Yaszemski, Michael J.

    2015-01-01

    Purpose: Surgical reconstruction of intra-articular ligament injuries is hampered by the poor regenerative potential of the tissue. We hypothesized that a novel composite polymer “neoligament” seeded with progenitor cells and growth factors would be effective in regenerating native ligamentous tissue. Methods: We synthesized a fumarate-derivative of polycaprolactone fumarate (PCLF) to create macro-porous scaffolds to allow cell–cell communication and nutrient flow. Clinical grade human adipose tissue-derived human mesenchymal stem cells (AMSCs) were cultured in 5% human platelet lysate (PL) and seeded on scaffolds using a dynamic bioreactor. Cell growth, viability, and differentiation were examined using metabolic assays and immunostaining for ligament-related markers (e.g., glycosaminoglycans [GAGs], alkaline phosphatase [ALP], collagens, and tenascin-C). Results: AMSCs seeded on three-dimensional (3D) PCLF scaffolds remain viable for at least 2 weeks with proliferating cells filling the pores. AMSC proliferation rates increased in PL compared to fetal bovine serum (FBS) (p < 0.05). Cells had a low baseline expression of ALP and GAG, but increased expression of total collagen when induced by the ligament and tenogenic growth factor fibroblast growth factor 2 (FGF-2), especially when cultured in the presence of PL (p < 0.01) instead of FBS (p < 0.05). FGF-2 and PL also significantly increased immunostaining of tenascin-C and collagen at 2 and 4 weeks compared with human fibroblasts. Summary: Our results demonstrate that AMSCs proliferate and eventually produce a collagen-rich extracellular matrix on porous PCLF scaffolds. This novel scaffold has potential in stem cell engineering and ligament regeneration. PMID:26413793

  2. The role of SDF-1-CXCR4/CXCR7 axis in biological behaviors of adipose tissue-derived mesenchymal stem cells in vitro

    SciTech Connect

    Li, Qiang; Zhang, Aijun; Tao, Changbo; Li, Xueyang; Jin, Peisheng

    2013-11-22

    Highlights: •SDF-1 pretreating increased the levels of CXCR4, CXCR7 in ADSCs. •SDF-1 improved cells paracrine migration and proliferation abilities. •CXCR4 and CXCR7 could function in ADSCs paracrine, migration and proliferation. -- Abstract: Numerous studies have reported that CXCR4 and CXCR7 play an essential, but differential role in stromal cell-derived factor-1 (SDF-1)-inducing cell chemotaxis, viability and paracrine actions of BMSCs. Adipose tissue-derived mesenchymal stem cells (ADSCs) have been suggested to be potential seed cells for clinical application instead of bone marrow derived stroma cell (BMSCs). However, the function of SDF-1/CXCR4 and SDF-1/CXCR7 in ADSCs is not well understood. This study was designed to analyze the effect of SDF-1/CXCR4 and SDF-1/CXCR7 axis on ADSCs biological behaviors in vitro. Using Flow cytometry and Western blot methods, we found for the first time that CXCR4/CXCR7 expression was increased after treatment with SDF-1 in ADSCs. SDF-1 promoted ADSCs paracrine, proliferation and migration abilities. CXCR4 or CXCR7 antibody suppressed ADSCs paracrine action induced by SDF-1. The migration of ADSCs can be abolished by CXCR4 antibody, while the proliferation of ADSCs was only downregulated by CXCR7 antibody. Our study indicated that the angiogenesis of ADSCs is, at least partly, mediated by SDF-1/CXCR4 and SDF-1/CXCR7 axis. However, only binding of SDF-1/CXCR7 was required for proliferation of ADSCs, and CXCR7 was required for migration of ADSCs induced by SDF-1. Our studies provide evidence that the activation of either axis may be helpful to improve the effectiveness of ADSCs-based stem cell therapy.

  3. Combined introduction of Bmi-1 and hTERT immortalizes human adipose tissue-derived stromal cells with low risk of transformation

    SciTech Connect

    Tatrai, Peter; Szepesi, Aron; Matula, Zsolt; Szigeti, Anna; Buchan, Gyoengyi; Madi, Andras; Uher, Ferenc; and others

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer We immortalized human adipose stromal cells (ASCs) with hTERT, Bmi-1, and SV40T. Black-Right-Pointing-Pointer hTERT-only ASCs are prone to transformation, while Bmi-only ASCs become senescent. Black-Right-Pointing-Pointer SV40T introduced along with hTERT abrogates proliferation control and multipotency. Black-Right-Pointing-Pointer hTERT combined with Bmi-1 yields stable phenotype up to 140 population doublings. -- Abstract: Adipose tissue-derived stromal cells (ASCs) are increasingly being studied for their usefulness in regenerative medicine. However, limited life span and donor-dependent variation of primary cells such as ASCs present major hurdles to controlled and reproducible experiments. We therefore aimed to establish immortalized ASC cell lines that provide steady supply of homogeneous cells for in vitro work while retain essential features of primary cells. To this end, combinations of human telomerase reverse transcriptase (hTERT), murine Bmi-1, and SV40 large T antigen (SV40T) were introduced by lentiviral transduction into ASCs. The resulting cell lines ASC{sup hTERT}, ASC{sup Bmi-1}, ASC{sup Bmi-1+hTERT} and ASC{sup SV40T+hTERT} were tested for transgene expression, telomerase activity, surface immunomarkers, proliferation, osteogenic and adipogenic differentiation, karyotype, tumorigenicity, and cellular senescence. All cell lines have maintained expression of characteristic surface immunomarkers, and none was tumorigenic. However, ASC{sup Bmi-1} had limited replicative potential, while the rapidly proliferating ASC{sup SV40T+hTERT} acquired chromosomal aberrations, departed from MSC phenotype, and lost differentiation capacity. ASC{sup hTERT} and ASC{sup hTERT+Bmi-1}, on the other hand, preserved all essential MSC features and did not senesce after 100 population doublings. Notably, a subpopulation of ASC{sup hTERT} also acquired aberrant karyotype and showed signs of transformation after long-term culture

  4. Porcine Adipose Tissue-Derived Mesenchymal Stem Cells Retain Their Proliferative Characteristics, Senescence, Karyotype and Plasticity after Long-Term Cryopreservation

    PubMed Central

    Dariolli, Rafael; Bassaneze, Vinicius; Nakamuta, Juliana Sanajotti; Omae, Samantha Vieira; Campos, Luciene Cristina Gastalho; Krieger, Jose E.

    2013-01-01

    We and others have provided evidence that adipose tissue-derived mesenchymal stem cells (ASCs) can mitigate rat cardiac functional deterioration after myocardial ischemia, even though the mechanism of action or the relevance of these findings to human conditions remains elusive. In this regard, the porcine model is a key translational step, because it displays heart anatomic-physiological features that are similar to those found in the human heart. Towards this end, we wanted to establish the cultural characteristics of porcine ASCs (pASCs) with or without long-term cryostorage, considering that allogeneic transplantation may also be a future option. Compared to fresh pASCs, thawed cells displayed 90–95% viability and no changes in morphological characteristics or in the expression of surface markers (being pASCs characterized by positive markers CD29+; CD90+; CD44+; CD140b+; CD105+; and negative markers CD31−; CD34−; CD45− and SLA-DR−; n = 3). Mean population doubling time was also comparable (64.26±15.11 hours to thawed cells vs. 62.74±18.07 hours to fresh cells) and cumulative population doubling increased constantly until Passage 10 (P10) in the entire cell population, with a small and gradual increase in senescence (P5, 3.25%±0.26 vs. 3.47%±0.32 and P10, 9.6%±0.29 vs. 10.67%±1.25, thawed vs. fresh; SA-β-Gal staining). Chromosomal aberrations were not observed. In addition, under both conditions pASCs responded to adipogenic and osteogenic chemical cues in vitro. In conclusion, we have demonstrated the growth characteristics, senescence, and the capacity of pASCs to respond to chemical cues in vitro and have provided evidence that these properties are not influenced by cryostorage in 10% DMSO solution. PMID:23874472

  5. Comparative proteomic analysis of extracellular vesicles isolated from porcine adipose tissue-derived mesenchymal stem/stromal cells

    PubMed Central

    Eirin, Alfonso; Zhu, Xiang-Yang; Puranik, Amrutesh S.; Woollard, John R.; Tang, Hui; Dasari, Surendra; Lerman, Amir; van Wijnen, Andre J.; Lerman, Lilach O.

    2016-01-01

    Extracellular vesicles (EVs) isolated from mesenchymal stem/stromal cells (MSCs) contribute to recovery of damaged tissue. We have previously shown that porcine MSC-derived EVs transport mRNA and miRNA capable of modulating cellular pathways in recipient cells. To identify candidate factors that contribute to the therapeutic effects of porcine MSC-derived EVs, we characterized their protein cargo using proteomics. Porcine MSCs were cultured from abdominal fat, and EVs characterized for expression of typical MSC and EV markers. LC-MS/MS proteomic analysis was performed and proteins classified. Functional pathway analysis was performed and five candidate proteins were validated by western blot. Proteomics analysis identified 5,469 distinct proteins in MSCs and 4,937 in EVs. The average protein expression was higher in MSCs vs. EVs. Differential expression analysis revealed 128 proteins that are selectively enriched in EVs versus MSCs, whereas 563 proteins were excluded from EVs. Proteins enriched in EVs are linked to a broad range of biological functions, including angiogenesis, blood coagulation, apoptosis, extracellular matrix remodeling, and regulation of inflammation. Excluded are mostly nuclear proteins, like proteins involved in nucleotide binding and RNA splicing. EVs have a selectively-enriched protein cargo with a specific biological signature that MSCs may employ for intercellular communication to facilitate tissue repair. PMID:27786293

  6. Integrated transcriptomic and proteomic analysis of the molecular cargo of extracellular vesicles derived from porcine adipose tissue-derived mesenchymal stem cells

    PubMed Central

    Eirin, Alfonso; Zhu, Xiang-Yang; Puranik, Amrutesh S.; Woollard, John R.; Tang, Hui; Dasari, Surendra; Lerman, Amir; van Wijnen, Andre J.

    2017-01-01

    Background Mesenchymal stromal/stem cell (MSC) transplantation is a promising therapy for tissue regeneration. Extracellular vesicles (EVs) released by MSCs act as their paracrine effectors by delivering proteins and genetic material to recipient cells. To assess how their cargo mediates biological processes that drive their therapeutic effects, we integrated miRNA, mRNA, and protein expression data of EVs from porcine adipose tissue-derived MSCs. Methods Simultaneous expression profiles of miRNAs, mRNAs, and proteins were obtained by high-throughput sequencing and LC-MS/MS proteomic analysis in porcine MSCs and their daughter EVs (n = 3 each). TargetScan and ComiR were used to predict miRNA target genes. Functional annotation analysis was performed using DAVID 6.7 database to rank primary gene ontology categories for the enriched mRNAs, miRNA target genes, and proteins. STRING was used to predict associations between mRNA and miRNA target genes. Results Differential expression analysis revealed 4 miRNAs, 255 mRNAs, and 277 proteins enriched in EVs versus MSCs (fold change >2, p<0.05). EV-enriched miRNAs target transcription factors (TFs) and EV-enriched mRNAs encode TFs, but TF proteins are not enriched in EVs. Rather, EVs are enriched for proteins that support extracellular matrix remodeling, blood coagulation, inflammation, and angiogenesis. Conclusions Porcine MSC-derived EVs contain a genetic cargo of miRNAs and mRNAs that collectively control TF activity in EVs and recipient cells, as well as proteins capable of modulating cellular pathways linked to tissue repair. These properties provide the fundamental basis for considering therapeutic use of EVs in tissue regeneration. PMID:28333993

  7. Upregulation of miR-22 promotes osteogenic differentiation and inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells by repressing HDAC6 protein expression.

    PubMed

    Huang, Shan; Wang, Shihua; Bian, Chunjing; Yang, Zhuo; Zhou, Hong; Zeng, Yang; Li, Hongling; Han, Qin; Zhao, Robert Chunhua

    2012-09-01

    Mesenchmal stem cells (MSCs) can be differentiated into either adipocytes or osteoblasts, and a reciprocal relationship exists between adipogenesis and osteogenesis. Multiple transcription factors and signaling pathways have been reported to regulate adipogenic or osteogenic differentiation, respectively, yet the molecular mechanism underlying the cell fate alteration between adipogenesis and osteogenesis still remains to be illustrated. MicroRNAs are important regulators in diverse biological processes by repressing protein expression of their targets. Here, miR-22 was found to regulate adipogenic and osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hADMSCs) in opposite directions. Our data showed that miR-22 decreased during the process of adipogenic differentiation but increased during osteogenic differentiation. On one hand, overexpression of miR-22 in hADMSCs could inhibit lipid droplets accumulation and repress the expression of adipogenic transcription factors and adipogenic-specific genes. On the other hand, enhanced alkaline phosphatase activity and matrix mineralization, as well as increased expression of osteo-specific genes, indicated a positive role of miR-22 in regulating osteogenic differentiation. Target databases prediction and validation by Dual Luciferase Reporter Assay, western blot, and real-time polymerase chain reaction identified histone deacetylase 6 (HDAC6) as a direct downstream target of miR-22 in hADMSCs. Inhibition of endogenous HDAC6 by small-interfering RNAs suppressed adipogenesis and stimulated osteogenesis, consistent with the effect of miR-22 overexpression in hADMSCs. Together, our results suggested that miR-22 acted as a critical regulator of balance between adipogenic and osteogenic differentiation of hADMSCs by repressing its target HDAC6.

  8. Adipose Tissue-Derived Mesenchymal Stromal Cells Protect Mice Infected with Trypanosoma cruzi from Cardiac Damage through Modulation of Anti-parasite Immunity

    PubMed Central

    Mesquita, Fernanda C. P.; Brasil, Guilherme V.; Rocha, Nazareth N.; Takiya, Christina M.; Lima, Ana Paula C. A.; Campos de Carvalho, Antonio C.; Goldenberg, Regina S.; Carvalho, Adriana B.

    2015-01-01

    Background Chagas disease, caused by the protozoan Trypanosoma cruzi (T.cruzi), is a complex disease endemic in Central and South America. It has been gathering interest due to increases in non-vectorial forms of transmission, especially in developed countries. The objective of this work was to investigate if adipose tissue-derived mesenchymal stromal cells (ASC) can alter the course of the disease and attenuate pathology in a mouse model of chagasic cardiomyopathy. Methodology/Principal Findings ASC were injected intraperitoneally at 3 days post-infection (dpi). Tracking by bioluminescence showed that cells remained in the abdominal cavity for up to 9 days after injection and most of them migrated to the abdominal or subcutaneous fat, an early parasite reservoir. ASC injection resulted in a significant reduction in blood parasitemia, which was followed by a decrease in cardiac tissue inflammation, parasitism and fibrosis at 30 dpi. At the same time point, analyses of cytokine release in cells isolated from the heart and exposed to T. cruzi antigens indicated an anti-inflammatory response in ASC-treated animals. In parallel, splenocytes exposed to the same antigens produced a pro-inflammatory response, which is important for the control of parasite replication, in placebo and ASC-treated groups. However, splenocytes from the ASC group released higher levels of IL-10. At 60 dpi, magnetic resonance imaging revealed that right ventricular (RV) dilation was prevented in ASC-treated mice. Conclusions/Significance In conclusion, the injection of ASC early after T. cruzi infection prevents RV remodeling through the modulation of immune responses. Lymphoid organ response to the parasite promoted the control of parasite burden, while the heart, a target organ of Chagas disease, was protected from damage due to an improved control of inflammation in ASC-treated mice. PMID:26248209

  9. Proinflammatory interleukins' production by adipose tissue-derived mesenchymal stromal cells: the impact of cell culture conditions and cell-to-cell interaction.

    PubMed

    Andreeva, Elena; Andrianova, Irina; Rylova, Julia; Gornostaeva, Aleksandra; Bobyleva, Polina; Buravkova, Ludmila

    2015-08-01

    The impact of culture conditions and interaction with activated peripheral blood mononuclear cells on the interleukin (IL) gene expression profile and proinflammatory IL-6 and IL-8 production by adipose-derived stromal cells (ASCs) was investigated. A microarray analysis revealed a wide range of IL genes either under standard (20%) or hypoxic (5%) O2 concentrations, some highly up-regulated at hypoxia. IL-6 and IL-8 production was inversely dependent on cell culture density. In early (first-third) passages, IL-6 and IL-8 concentration was higher at 20% O2 and in late (8th-12th) passages under 5% O2. Interaction between ASCs and mononuclear cells in indirect setting was accompanied with a significant decrease of IL-6 and did not result in the elevation of IL-8 concentration. Thereby, the production of proinflammatory interleukins (IL-6 and IL-8) may be affected by the ASC intrinsic features (density in culture, and duration of expansion), as well as by microenvironmental factors, such as hypoxia and the presence of blood-borne cells. These data are important for elucidating ASC paracrine activity regulation in vitro. They would also be on demand for optimisation of the cell therapy protocols, based on the application of ASC biologically active substances. SIGNIFICANCE PARAGRAPH: Ex vivo expansion is widely used for increasing the number of adipose-derived stromal cells (ASCs) and improving of their quality. The present study was designed to elucidate the particular factors influencing the interleukin production in ASCs. The presented data specified the parameters (i.e. cell density, duration of cultivation, hypoxia, etc.) that should be taken in mind when ASCs are intended to be used in protocols implying their paracrine activity. These data would be of considerable interest for researchers and clinicians working in the biomedical science.

  10. MicroRNA hsa-miR-138 inhibits adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells through adenovirus EID-1.

    PubMed

    Yang, Zhuo; Bian, Chunjing; Zhou, Hong; Huang, Shan; Wang, Shihua; Liao, Lianming; Zhao, Robert Chunhua

    2011-02-01

    A better understanding of the molecular mechanisms underlying the differentiation of human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) could provide new insights into the pathogenesis of a number of diseases, such as obesity and diabetes, and broaden the spectrum of potential hAD-MSCs-based cell therapy. In this study, we reported that a human microRNA, hsa-miR-138, could inhibit the adipogenic differentiation of hAD-MSCs. Our results showed that miR-138 was significantly down-regulated during adipogenic differentiation. Overexpression of miR-138 in hAD-MSCs could effectively reduce lipid droplets accumulation, inhibit expression of key adipogenic transcription factors cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT) enhancer binding protein alpha and peroxisome proliferator-activated receptor gamma 2 as well as several other adipogenic marker genes, such as fatty acid binding protein 4 and lipoprotein lipase. Further studies showed that the expression of adenovirus early region 1-A-like inhibitor of differentiation 1 (EID-1), a nuclear receptor coregulator, was inversely correlated with that of miR-138 when hAD-MSCs were differentiated into adipocytes. Knockdown of EID-1 by RNA interference inhibited adipocyte differentiation of hAD-MSCs. In addition, luciferase reporter assays demonstrated that miR-138 directly targeted the 3' untranslated region of EID-1, implying that the negative role of miR-138 in the adipocyte differentiation of hAD-MSCs is at least partially mediated via repressing EID-1. Taken together, this study shows that miR-138 plays a negative role in adipogenic differentiation and sheds light on the role of miRNAs during differentiation of hAD-MSCs toward adipocytes.

  11. Transplantation of adipose tissue-derived stem cells improves cardiac contractile function and electrical stability in a rat myocardial infarction model.

    PubMed

    Gautam, Milan; Fujita, Daiki; Kimura, Kazuhiro; Ichikawa, Hinako; Izawa, Atsushi; Hirose, Masamichi; Kashihara, Toshihide; Yamada, Mitsuhiko; Takahashi, Masafumi; Ikeda, Uichi; Shiba, Yuji

    2015-04-01

    The transplantation of adipose tissue-derived stem cells (ADSCs) improves cardiac contractility after myocardial infarction (MI); however, little is known about the electrophysiological consequences of transplantation. The purpose of this study was to clarify whether the transplantation of ADSCs increases or decreases the incidence of ventricular tachyarrhythmias (VT) in a rat model of MI. MI was induced experimentally by permanent occlusion of the left anterior descending artery of Lewis rats. ADSCs were harvested from GFP-transgenic rats, and were cultured until passage four. ADSCs (10×10(6)) resuspended in 100μL saline or pro-survival cocktail (PSC), which enhances cardiac graft survival, were injected directly into syngeneic rat hearts 1week after MI. The recipients of ADSCs suspended in PSC had a larger graft area compared with those receiving ASDCs suspended in saline at 1week post-transplantation (number of graft cells/section: 148.7±10.6 vs. 22.4±3.4, p<0.05, n=5/group). Thereafter, all ADSC recipients were transplanted with ASDCs in PSC. ADSCs were transplanted into infarcted hearts, and the mechanical and electrophysiological functions were assessed. Echocardiography revealed that ADSC recipients had improved contractile function compared with those receiving PSC vehicle (fractional shortening: 21.1±0.9 vs. 14.1±1.2, p<0.05, n≥12/group). Four weeks post-transplantation, VT was induced via in vivo programmed electrical stimulation. The recipients of ADSCs showed a significantly lower incidence of induced VT compared with the control (31.3% vs. 83.3%, p<0.05, n≥12/group). To understand the electrical activity following transplantation, we performed ex vivo optical mapping using a voltage sensitive dye, and found that ADSC transplantation decreased conduction velocity and its dispersion in the peri-infarct area. These results suggest that ADSC transplantation improved cardiac mechanical and electrophysiological functions in subacute MI.

  12. Human Adipose Tissue Derived Stem Cells as a Source of Smooth Muscle Cells in the Regeneration of Muscular Layer of Urinary Bladder Wall

    PubMed Central

    SALEM, Salah Abood; HWIE, Angela Ng Min; SAIM, Aminuddin; CHEE KONG, Christopher Ho; SAGAP, Ismail; SINGH, Rajesh; YUSOF, Mohd Reusmaazran; MD ZAINUDDIN, Zulkifili; HJ IDRUS, Ruszymah

    2013-01-01

    Background: Adipose tissue provides an abundant source of multipotent cells, which represent a source of cell-based regeneration strategies for urinary bladder smooth muscle repair. Our objective was to confirm that adipose-derived stem cells (ADSCs) can be differentiated into smooth muscle cells. Methods: In this study, adipose tissue samples were digested with 0.075% collagenase, and the resulting ADSCs were cultured and expanded in vitro. ADSCs at passage two were differentiated by incubation in smooth muscle inductive media (SMIM) consisting of MCDB I31 medium, 1% FBS, and 100 U/mL heparin for three and six weeks. ADSCs in non-inductive media were used as controls. Characterisation was performed by cell morphology and gene and protein expression. Result: The differentiated cells became elongated and spindle shaped, and towards the end of six weeks, sporadic cell aggregation appeared that is typical of smooth muscle cell culture. Smooth muscle markers (i.e. alpha smooth muscle actin (ASMA), calponin, and myosin heavy chain (MHC)) were used to study gene expression. Expression of these genes was detected by PCR after three and six weeks of differentiation. At the protein expression level, ASMA, MHC, and smoothelin were expressed after six weeks of differentiation. However, only ASMA and smoothelin were expressed after three weeks of differentiation. Conclusion: Adipose tissue provides a possible source of smooth muscle precursor cells that possess the potential capability of smooth muscle differentiation. This represents a promising alternative for urinary bladder smooth muscle repair. PMID:24044001

  13. Differential response of human adipose tissue-derived mesenchymal stem cells, dermal fibroblasts, and keratinocytes to burn wound exudates: potential role of skin-specific chemokine CCL27.

    PubMed

    van den Broek, Lenie J; Kroeze, Kim L; Waaijman, Taco; Breetveld, Melanie; Sampat-Sardjoepersad, Shakun C; Niessen, Frank B; Middelkoop, Esther; Scheper, Rik J; Gibbs, Susan

    2014-01-01

    Many cell-based regenerative medicine strategies toward tissue-engineered constructs are currently being explored. Cell-cell interactions and interactions with different biomaterials are extensively investigated, whereas very few studies address how cultured cells will interact with soluble wound-healing mediators that are present within the wound bed after transplantation. The aim of this study was to determine how adipose tissue-derived mesenchymal stem cells (ASC), dermal fibroblasts, and keratinocytes will react when they come in contact with the deep cutaneous burn wound bed. Burn wound exudates isolated from deep burn wounds were found to contain many cytokines, including chemokines and growth factors related to inflammation and wound healing. Seventeen mediators were identified by ELISA (concentration range 0.0006-9 ng/mg total protein), including the skin-specific chemokine CCL27. Burn wound exudates activated both ASC and dermal fibroblasts, but not keratinocytes, to increase secretion of CXCL1, CXCL8, CCL2, and CCL20. Notably, ASC but not fibroblasts or keratinocytes showed significant increased secretion of vascular endothelial growth factor (5-fold) and interleukin-6 (253-fold), although when the cells were incorporated in bi-layered skin substitute (SS) these differences were less pronounced. A similar discrepancy between ASC and dermal fibroblast mono-cultures was observed when recombinant human-CCL27 was used instead of burn wound exudates. Although CCL27 did not stimulate the secretion of any of the wound-healing mediators by keratinocytes, these cells, in contrast to ASC or dermal fibroblasts, showed increased proliferation and migration. Taken together, these results indicate that on transplantation, keratinocytes are primarily activated to promote wound closure. In contrast, dermal fibroblasts and, in particular, ASC respond vigorously to factors present in the wound bed, leading to increased secretion of angiogenesis/granulation tissue formation

  14. Safety reporting on implantation of autologous adipose tissue-derived stem cells with platelet-rich plasma into human articular joints

    PubMed Central

    2013-01-01

    Background Adipose tissue-derived stem cells (ADSCs), a type of mesenchymal stem cells (MSCs), have great potential as therapeutic agents in regenerative medicine. Numerous animal studies have documented the multipotency of ADSCs, showing their capabilities to differentiate into tissues such as muscle, bone, cartilage, and tendon. However, the safety of autologous ADSC injections into human joints is only beginning to be understood and the data are lacking. Methods Between 2009 and 2010, 91 patients were treated with autologous ADSCs with platelet-rich plasma (PRP) for various orthopedic conditions. Stem cells in the form of stromal vascular fraction (SVF) were injected with PRP into various joints (n = 100). All patients were followed for symptom improvement with visual analog score (VAS) at one month and three months. Approximately one third of the patients were followed up with third month magnetic resonance imaging (MRI) of the injected sites. All patients were followed up by telephone questionnaires every six months for up to 30 months. Results The mean follow-up time for all patients was 26.62 ± 0.32 months. The follow-up time for patients who were treated in 2009 and early 2010 was close to three years. The relative mean VAS of patients at the end of one month follow-up was 6.55 ± 0.32, and at the end of three months follow-up was 4.43 ± 0.41. Post-procedure MRIs performed on one third of the patients at three months failed to demonstrate any tumor formation at the implant sites. Further, no tumor formation was reported in telephone long-term follow-ups. However, swelling of injected joints was common and was thought to be associated with death of stem cells. Also, tenosinovitis and tendonitis in elderly patients, all of which were either self-limited or were remedied with simple therapeutic measures, were common as well. Conclusions Using both MRI tracking and telephone follow ups in 100 joints in 91 patients treated, no neoplastic complications were

  15. Differences in Gene Expression and Cytokine Release Profiles Highlight the Heterogeneity of Distinct Subsets of Adipose Tissue-Derived Stem Cells in the Subcutaneous and Visceral Adipose Tissue in Humans

    PubMed Central

    Perrini, Sebastio; Ficarella, Romina; Picardi, Ernesto; Cignarelli, Angelo; Barbaro, Maria; Nigro, Pasquale; Peschechera, Alessandro; Palumbo, Orazio; Carella, Massimo; De Fazio, Michele; Natalicchio, Annalisa; Laviola, Luigi; Pesole, Graziano; Giorgino, Francesco

    2013-01-01

    Differences in the inherent properties of adipose tissue-derived stem cells (ASC) may contribute to the biological specificity of the subcutaneous (Sc) and visceral (V) adipose tissue depots. In this study, three distinct subpopulations of ASC, i.e. ASCSVF, ASCBottom, and ASCCeiling, were isolated from Sc and V fat biopsies of non-obese subjects, and their gene expression and functional characteristics were investigated. Genome-wide mRNA expression profiles of ASCSVF, ASCBottom and ASCCeiling from Sc fat were significantly different as compared to their homologous subsets of V-ASCs. Furthermore, ASCSVF, ASCCeiling and ASCBottom from the same fat depot were also distinct from each other. In this respect, both principal component analysis and hierarchical clusters analysis showed that ASCCeiling and ASCSVF shared a similar pattern of closely related genes, which was highly different when compared to that of ASCBottom. However, larger variations in gene expression were found in inter-depot than in intra-depot comparisons. The analysis of connectivity of genes differently expressed in each ASC subset demonstrated that, although there was some overlap, there was also a clear distinction between each Sc-ASC and their corresponding V-ASC subsets, and among ASCSVF, ASCBottom, and ASCCeiling of Sc or V fat depots in regard to networks associated with regulation of cell cycle, cell organization and development, inflammation and metabolic responses. Finally, the release of several cytokines and growth factors in the ASC cultured medium also showed both inter- and intra-depot differences. Thus, ASCCeiling and ASCBottom can be identified as two genetically and functionally heterogeneous ASC populations in addition to the ASCSVF, with ASCBottom showing the highest degree of unmatched gene expression. On the other hand, inter-depot seem to prevail over intra-depot differences in the ASC gene expression assets and network functions, contributing to the high degree of specificity

  16. Chemical and genetic blockade of HDACs enhances osteogenic differentiation of human adipose tissue-derived stem cells by oppositely affecting osteogenic and adipogenic transcription factors

    SciTech Connect

    Maroni, Paola; Brini, Anna Teresa; Arrigoni, Elena; Girolamo, Laura de; Niada, Stefania; Matteucci, Emanuela; Bendinelli, Paola; Desiderio, Maria Alfonsina

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Acetylation affected hASCs osteodifferentiation through Runx2-PPAR{gamma}. Black-Right-Pointing-Pointer HDACs knocking-down favoured the commitment effect of osteogenic medium. Black-Right-Pointing-Pointer HDACs silencing early activated Runx2 and ALP. Black-Right-Pointing-Pointer PPAR{gamma} reduction and calcium/collagen deposition occurred later. Black-Right-Pointing-Pointer Runx2/PPAR{gamma} target genes were modulated in line with HDACs role in osteo-commitment. -- Abstract: The human adipose-tissue derived stem/stromal cells (hASCs) are an interesting source for bone-tissue engineering applications. Our aim was to clarify in hASCs the role of acetylation in the control of Runt-related transcription factor 2 (Runx2) and Peroxisome proliferator activated receptor (PPAR) {gamma}. These key osteogenic and adipogenic transcription factors are oppositely involved in osteo-differentiation. The hASCs, committed or not towards bone lineage with osteoinductive medium, were exposed to HDACs chemical blockade with Trichostatin A (TSA) or were genetically silenced for HDACs. Alkaline phosphatase (ALP) and collagen/calcium deposition, considered as early and late osteogenic markers, were evaluated concomitantly as index of osteo-differentiation. TSA pretreatment, useful experimental protocol to analyse pan-HDAC-chemical inhibition, and switch to osteogenic medium induced early-osteoblast maturation gene Runx2, while transiently decreased PPAR{gamma} and scarcely affected late-differentiation markers. Time-dependent effects were observed after knocking-down of HDAC1 and 3: Runx2 and ALP underwent early activation, followed by late-osteogenic markers increase and by PPAR{gamma}/ALP activity diminutions mostly after HDAC3 silencing. HDAC1 and 3 genetic blockade increased and decreased Runx2 and PPAR{gamma} target genes, respectively. Noteworthy, HDACs knocking-down favoured the commitment effect of osteogenic medium. Our results reveal

  17. Differentiate into urothelium and smooth muscle cells from adipose tissue-derived stem cells for ureter reconstruction in a rabbit model

    PubMed Central

    Zhao, Zhankui; Yu, Honglian; Fan, Chengjuan; Kong, Qingsheng; Liu, Deqian; Meng, Lin

    2016-01-01

    Ureter reconstruction is still a tough task for urologist. Cell-based tissue engineering serves a better technique for patients with long segments of ureter defect who need ureter reconstruction. In this study, we sought to evaluate the differentiation potential of adipose derived stem cells (ADSCs) into urothelial lineage and smooth muscle lineage and to assess the possibility of ureter reconstruction using differentiated cells seeded vessel extracellular matrix (VECM) in a rabbit model. ADSCs were isolated from adipose tissue and identified in vitro. Subsequently, they were cultured with induction medium for urothelium and smooth muscle phenotypes differentiation. After 14 days inducing, differentiation was evaluated by Quantitative PCR and western blot studies. After fluorescent protein labeling, the differentiated cells were seeded onto VECM and cultured under dynamic conditions in vitro. After 7 days culturing, the cell-seeded graft was tubularized and wrapped by two layers of the omentum in a rabbit. Three weeks later, the maturated graft was used for ureter reconstruction in vivo. The ADSCs were isolated and cultured in vitro. Flow cytometry demonstrated that the ADSCs expressed CD29 and CD90, but did not express CD34. After induction, urothelium phenotypes gene (cytokeratin 7) and smooth muscle expression gene (a-SMA and SM-MHC) was confirmed in mRNA and protein level. After cells seeding onto VECM, the induced urothelium cells formed a single epithelial layer, and the induced smooth muscle cells formed a few cell layers during dynamic culture. After 3 weeks of omental maturation, tubular graft was vascularized and comprised epithelial layer positively with cytokeratin 7, cytokeratin 20 on the luminal aspect. At 8 weeks post ureter reconstruction, histological evaluation showed a clearly layered structure of ureter with terminally differentiated multilayered urothelium positively with cytokeratin 20 and uroplakin III over connective smooth muscle tissue

  18. The Use of Adipose Tissue-Derived Progenitors in Bone Tissue Engineering - a Review

    PubMed Central

    Bhattacharya, Indranil; Ghayor, Chafik; Weber, Franz E.

    2016-01-01

    2500 years ago, Hippocrates realized that bone can heal without scaring. The natural healing potential of bone is, however, restricted to small defects. Extended bone defects caused by trauma or during tumor resections still pose a huge problem in orthopedics and cranio-maxillofacial surgery. Bone tissue engineering strategies using stem cells, growth factors, and scaffolds could overcome the problems with the treatment of extended bone defects. In this review, we give a short overview on bone tissue engineering with emphasis on the use of adipose tissue-derived stem cells and small molecules. PMID:27781021

  19. Stem cell treatment for patients with autoimmune disease by systemic infusion of culture-expanded autologous adipose tissue derived mesenchymal stem cells

    PubMed Central

    2011-01-01

    Prolonged life expectancy, life style and environmental changes have caused a changing disease pattern in developed countries towards an increase of degenerative and autoimmune diseases. Stem cells have become a promising tool for their treatment by promoting tissue repair and protection from immune-attack associated damage. Patient-derived autologous stem cells present a safe option for this treatment since these will not induce immune rejection and thus multiple treatments are possible without any risk for allogenic sensitization, which may arise from allogenic stem cell transplantations. Here we report the outcome of treatments with culture expanded human adipose-derived mesenchymal stem cells (hAdMSCs) of 10 patients with autoimmune associated tissue damage and exhausted therapeutic options, including autoimmune hearing loss, multiple sclerosis, polymyotitis, atopic dermatitis and rheumatoid arthritis. For treatment, we developed a standardized culture-expansion protocol for hAdMSCs from minimal amounts of fat tissue, providing sufficient number of cells for repetitive injections. High expansion efficiencies were routinely achieved from autoimmune patients and from elderly donors without measurable loss in safety profile, genetic stability, vitality and differentiation potency, migration and homing characteristics. Although the conclusions that can be drawn from the compassionate use treatments in terms of therapeutic efficacy are only preliminary, the data provide convincing evidence for safety and therapeutic properties of systemically administered AdMSC in human patients with no other treatment options. The authors believe that ex-vivo-expanded autologous AdMSCs provide a promising alternative for treating autoimmune diseases. Further clinical studies are needed that take into account the results obtained from case studies as those presented here. PMID:22017805

  20. Evaluation of gene expression and DNA copy number profiles of adipose tissue-derived stromal cells and consecutive neurosphere-like cells generated from dogs with naturally occurring spinal cord injury.

    PubMed

    Lim, Ji-Hey; Koh, Sehwon; Thomas, Rachael; Breen, Matthew; Olby, Natasha J

    2017-03-01

    OBJECTIVE To evaluate gene expression and DNA copy number in adipose tissue-derived stromal cells (ADSCs) and in ADSC-derived neurosphere-like cell clusters (ADSC-NSCs) generated from tissues of chronically paraplegic dogs. ANIMALS 14 client-owned paraplegic dogs. PROCEDURES Dorsal subcutaneous adipose tissue (< 1 cm(3)) was collected under general anesthesia; ADSCs were isolated and cultured. Third-passage ADSCs were cultured in neural cell induction medium to generate ADSC-NSCs. Relative gene expression of mesenchymal cell surface marker CD90 and neural progenitor marker nestin was assessed in ADSCs and ADSC-NSCs from 3 dogs by quantitative real-time PCR assay; expression of these and various neural lineage genes was evaluated for the same dogs by reverse transcription PCR assay. Percentages of cells expressing CD90, nestin, glial fibrillary acidic protein (GFAP), and tubulin β 3 class III (TUJ1) proteins were determined by flow cytometry for all dogs. The DNA copy number stability (in samples from 6 dogs) and neural cell differentiation (14 dogs) were assessed with array-comparative genomic hybridization analysis and immunocytochemical evaluation, respectively. RESULTS ADSCs and ADSC-NSCs expressed neural cell progenitor and differentiation markers; GFAP and microtubule-associated protein 2 were expressed by ADSC-NSCs but not ADSCs. Relative gene expression of CD90 and nestin was subjectively higher in ADSC-NSCs than in ADSCs. Percentages of ADSC-NSCs expressing nestin, GFAP, and TUJ1 proteins were substantially higher than those of ADSCs. Cells expressing neuronal and glial markers were generated from ADSC-NSCs and had no DNA copy number instability detectable by the methods used. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested ADSCs can potentially be a safe and clinically relevant autologous source for canine neural progenitor cells. Further research is needed to verify these findings.

  1. Characterization of human adipose tissue-derived stem cells in vitro culture and in vivo differentiation in a temperature-sensitive chitosan/β- glycerophosphate/collagen hybrid hydrogel.

    PubMed

    Song, Kedong; Li, Liying; Yan, Xinyu; Zhang, Wen; Zhang, Yu; Wang, Yiwei; Liu, Tianqing

    2017-01-01

    In this study, the interaction of human adipose tissue-derived stem cells (ADSCs) with chitosan/β-glycerophosphate/collagen (C/GP/Co) hybrid hydrogel was test, followed by investigating the capability of engineered adipose tissue formation using this ADSCs seeded hydrogel. The ADSCs were harvested and mixed with a C/GP/Co hydrogel followed by a gelation at 37°C and an in vitro culture. The results showed that the ADSCs within C/GP/Co hydrogels achieved a 30% of expansion over 7days in culture medium and encapsulated cell in C/GP/Co hydrogel demonstrated a characteristic morphology with high viability over 5days. C/GP/Co hydrogel were subcutaneous injected into SD-rats to assess the biocompatibility. The induced ADSCs-C/GP/Co hydrogel and non-induced ADSCs-C/GP/Co hydrogel were subcutaneously injected into nude mice for detecting potential of adipogenic differentiation. It has shown that C/GP/Co hydrogel were well tolerated in SD rats where they had persisted over 4weeks post implantation. Histology analysis indicated that induced ADSCs-C/GP/Co hydrogel has a greater number of adipocytes and vascularized adipose tissues compared with non-induced ADSCs-C/GP/Co hydrogel.

  2. Effects of intravenous administration of allogenic bone marrow- and adipose tissue-derived mesenchymal stem cells on functional recovery and brain repair markers in experimental ischemic stroke

    PubMed Central

    2013-01-01

    Introduction Stem cell therapy can promote good recovery from stroke. Several studies have demonstrated that mesenchymal stem cells (MSC) are safe and effective. However, more information regarding appropriate cell type is needed from animal model. This study was targeted at analyzing the effects in ischemic stroke of acute intravenous (i.v.) administration of allogenic bone marrow- (BM-MSC) and adipose-derived-stem cells (AD-MSC) on functional evaluation results and brain repair markers. Methods Allogenic MSC (2 × 106 cells) were administered intravenously 30 minutes after permanent middle cerebral artery occlusion (pMCAO) to rats. Infarct volume and cell migration and implantation were analyzed by magnetic resonance imaging (MRI) and immunohistochemistry. Function was evaluated by the Rogers and rotarod tests, and cell proliferation and cell-death were also determined. Brain repair markers were analyzed by confocal microscopy and confirmed by western blot. Results Compared to infarct group, function had significantly improved at 24 h and continued at 14 d after i.v. administration of either BM-MSC or AD-MSC. No reduction in infarct volume or any migration/implantation of cells into the damaged brain were observed. Nevertheless, cell death was reduced and cellular proliferation significantly increased in both treatment groups with respect to the infarct group. At 14 d after MSC administration vascular endothelial growth factor (VEGF), synaptophysin (SYP), oligodendrocyte (Olig-2) and neurofilament (NF) levels were significantly increased while those of glial fiibrillary acid protein (GFAP) were decreased. Conclusions i.v. administration of allogenic MSC - whether BM-MSC or AD-MSC, in pMCAO infarct was associated with good functional recovery, and reductions in cell death as well as increases in cellular proliferation, neurogenesis, oligodendrogenesis, synaptogenesis and angiogenesis markers at 14 days post-infarct. PMID:23356495

  3. Safety Studies for Use of Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells in a Rabbit Model for Osteoarthritis to Support a Phase I Clinical Trial.

    PubMed

    Riester, Scott M; Denbeigh, Janet M; Lin, Yang; Jones, Dakota L; de Mooij, Tristan; Lewallen, Eric A; Nie, Hai; Paradise, Christopher R; Radel, Darcie J; Dudakovic, Amel; Camilleri, Emily T; Larson, Dirk R; Qu, Wenchun; Krych, Aaron J; Frick, Matthew A; Im, Hee-Jeong; Dietz, Allan B; Smith, Jay; van Wijnen, Andre J

    2017-03-01

    Adipose-derived mesenchymal stem cells (AMSCs) offer potential as a therapeutic option for clinical applications in musculoskeletal regenerative medicine because of their immunomodulatory functions and capacity for trilineage differentiation. In preparation for a phase I clinical trial using AMSCs to treat patients with osteoarthritis, we carried out preclinical studies to assess the safety of human AMSCs within the intra-articular joint space. Culture-expanded human AMSCs grown in human platelet-lysate were delivered via intra-articular injections into normal healthy rabbit knees and knees at risk for the development of osteoarthritis after bilateral medial anterior hemimeniscectomy. Treatment outcomes and safety were evaluated by assessing the general health, function, and behavior of the animals. Joint tissues were analyzed by x-ray, magnetic resonance imaging, and histopathology. Intra-articular AMSC therapy was well tolerated in this study. We did not observe adverse systemic reactions, nor did we find evidence of damage to intra-articular joint tissues. Thus, the data generated in this study show a favorable safety profile for AMSCs within the joint space in support of a phase I clinical trial evaluating the clinical utility of AMSCs to treat osteoarthritis. Stem Cells Translational Medicine 2017;6:910-922.

  4. Local delivery of allogeneic bone marrow and adipose tissue-derived mesenchymal stromal cells for cutaneous wound healing in a porcine model.

    PubMed

    Hanson, Summer E; Kleinbeck, Kyle R; Cantu, David; Kim, Jaeyhup; Bentz, Michael L; Faucher, Lee D; Kao, W John; Hematti, Peiman

    2016-02-01

    Wound healing remains a major challenge in modern medicine. Bone marrow- (BM) and adipose tissue- (AT) derived mesenchymal stromal/stem cells (MSCs) are of great interest for tissue reconstruction due to their unique immunological properties and regenerative potential. The purpose of this study was to characterize BM and AT-MSCs and evaluate their effect when administered in a porcine wound model. MSCs were derived from male Göttingen Minipigs and characterized according to established criteria. Allogeneic BM- or AT-MSCs were administered intradermally (1 x 10(6) cells) into partial-thickness wounds created on female animals, and covered with Vaseline® gauze or fibrin in a randomized pattern. Animals were euthanized at 7, 10, 14 and 21 days. Tissues were analyzed visually for healing and by microscopic examination for epidermal development and remodelling. Polymerase chain reaction (PCR) was used to detect the presence of male DNA in the specimens. All wounds were healed by 14 days. MSC-injected wounds were associated with improved appearance and faster re-epithelialization compared to saline controls. Evaluation of rete ridge depth and architecture showed that MSC treatment promoted a faster rate of epidermal maturation. Male DNA was detected in all samples at days 7 and 10, suggesting the presence of MSCs. We showed the safety, feasibility and potential efficacy of local injection of allogeneic BM- and AT-MSCs for treatment of wounds in a preclinical model. Our data in this large animal model support the potential use of BM- and AT-MSC for treatment of cutaneous wounds through modulation of healing and epithelialization.

  5. Proteomic Analysis Profile of Engineered Articular Cartilage with Chondrogenic Differentiated Adipose Tissue-Derived Stem Cells Loaded Polyglycolic Acid Mesh for Weight-Bearing Area Defect Repair

    PubMed Central

    Gong, Lunli; Zhou, Xiao; Wu, Yaohao; Zhang, Yun; Wang, Chen; Zhou, Heng; Guo, Fangfang

    2014-01-01

    The present study was designed to investigate the possibility of full-thickness defects repair in porcine articular cartilage (AC) weight-bearing area using chondrogenic differentiated autologous adipose-derived stem cells (ASCs) with a follow-up of 3 and 6 months, which is successive to our previous study on nonweight-bearing area. The isolated ASCs were seeded onto the phosphoglycerate/polylactic acid (PGA/PLA) with chondrogenic induction in vitro for 2 weeks as the experimental group prior to implantation in porcine AC defects (8 mm in diameter, deep to subchondral bone), with PGA/PLA only as control. With follow-up time being 3 and 6 months, both neo-cartilages of postimplantation integrated well with the neighboring normal cartilage and subchondral bone histologically in experimental group, whereas only fibrous tissue in control group. Immunohistochemical and toluidine blue staining confirmed similar distribution of COL II and glycosaminoglycan in the regenerated cartilage to the native one. A vivid remolding process with repair time was also witnessed in the neo-cartilage as the compressive modulus significantly increased from 70% of the normal cartilage at 3 months to nearly 90% at 6 months, which is similar to our former research. Nevertheless, differences of the regenerated cartilages still could be detected from the native one. Meanwhile, the exact mechanism involved in chondrogenic differentiation from ASCs seeded on PGA/PLA is still unknown. Therefore, proteome is resorted leading to 43 proteins differentially identified from 20 chosen two-dimensional spots, which do help us further our research on some committed factors. In conclusion, the comparison via proteome provided a thorough understanding of mechanisms implicating ASC differentiation toward chondrocytes, which is further substantiated by the present study as a perfect supplement to the former one in nonweight-bearing area. PMID:24044689

  6. Intracoronary artery transplantation of cardiomyoblast-like cells from human adipose tissue-derived multi-lineage progenitor cells improve left ventricular dysfunction and survival in a swine model of chronic myocardial infarction.

    PubMed

    Okura, Hanayuki; Saga, Ayami; Soeda, Mayumi; Miyagawa, Shigeru; Sawa, Yoshiki; Daimon, Takashi; Ichinose, Akihiro; Matsuyama, Akifumi

    2012-09-07

    Transplantation of human cardiomyoblast-like cells (hCLCs) from human adipose tissue-derived multi-lineage progenitor cells improved left ventricular function and survival of rats with myocardial infarction. Here we examined the effect of intracoronary artery transplantation of human CLCs in a swine model of chronic heart failure. Twenty-four pigs underwent balloon-occlusion of the first diagonal branch followed by reperfusion, with a second balloon-occlusion of the left ascending coronary artery 1 week later followed by reperfusion. Four weeks after the second occlusion/reperfusion, 17 of the 18 surviving animals with severe chronic MI (ejection fraction <35% by echocardiography) were immunosuppressed then randomly assigned to receive either intracoronary artery transplantation of hCLCs hADMPCs or placebo lactic Ringer's solution with heparin. Intracoronary artery transplantation was followed by the distribution of DiI-stained hCLCs into the scarred myocardial milieu. Echocardiography at post-transplant days 4 and 8 weeks showed rescue and maintenance of cardiac function in the hCLCs transplanted group, but not in the control animals, indicating myocardial functional recovery by hCLCs intracoronary transplantation. At 8 week post-transplantation, 7 of 8 hCLCs transplanted animals were still alive compared with only 1 of the 5 control (p=0.0147). Histological studies at week 12 post-transplantation demonstrated engraftment of the pre DiI-stained hCLCs into the scarred myocardium and their expression of human specific alpha-cardiac actin. Human alpha cardiac actin-positive cells also expressed cardiac nuclear factors; nkx2.5 and GATA-4. Our results suggest that intracoronary artery transplantation of hCLCs is a potentially effective therapeutic strategy for future cardiac tissue regeneration.

  7. Labeling and in vivo visualization of transplanted adipose tissue-derived stem cells with safe cadmium-free aqueous ZnS coating of ZnS-AgInS2 nanoparticles

    PubMed Central

    Ogihara, Yusuke; Yukawa, Hiroshi; Kameyama, Tatsuya; Nishi, Hiroyasu; Onoshima, Daisuke; Ishikawa, Tetsuya; Torimoto, Tsukasa; Baba, Yoshinobu

    2017-01-01

    The facile synthesis of ZnS-AgInS2 (ZAIS) as cadmium-free QDs and their application, mainly in solar cells, has been reported by our groups. In the present study, we investigated the safety and the usefulness for labeling and in vivo imaging of a newly synthesized aqueous ZnS-coated ZAIS (ZnS-ZAIS) carboxylated nanoparticles (ZZC) to stem cells. ZZC shows the strong fluorescence in aqueous solutions such as PBS and cell culture medium, and a complex of ZZC and octa-arginine (R8) peptides (R8-ZZC) can achieve the highly efficient labeling of adipose tissue-derived stem cells (ASCs). The cytotoxicity of R8-ZZC to ASCs was found to be extremely low in comparison to that of CdSe-based QDs, and R8-ZZC was confirmed to have no influence on the proliferation rate or the differentiation ability of ASCs. Moreover, R8-ZZC was not found to induce the production of major inflammatory cytokines (TNF-α, IFN-γ, IL-12p70, IL-6 and MCP-1) in ASCs. Transplanted R8-ZZC-labeled ASCs could be quantitatively detected in the lungs and liver mainly using an in vivo imaging system. In addition, high-speed multiphoton confocal laser microscopy revealed the presence of aggregates of transplanted ASCs at many sites in the lungs, whereas individual ASCs were found to have accumulated in the liver. PMID:28059135

  8. Labeling and in vivo visualization of transplanted adipose tissue-derived stem cells with safe cadmium-free aqueous ZnS coating of ZnS-AgInS2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Ogihara, Yusuke; Yukawa, Hiroshi; Kameyama, Tatsuya; Nishi, Hiroyasu; Onoshima, Daisuke; Ishikawa, Tetsuya; Torimoto, Tsukasa; Baba, Yoshinobu

    2017-01-01

    The facile synthesis of ZnS-AgInS2 (ZAIS) as cadmium-free QDs and their application, mainly in solar cells, has been reported by our groups. In the present study, we investigated the safety and the usefulness for labeling and in vivo imaging of a newly synthesized aqueous ZnS-coated ZAIS (ZnS-ZAIS) carboxylated nanoparticles (ZZC) to stem cells. ZZC shows the strong fluorescence in aqueous solutions such as PBS and cell culture medium, and a complex of ZZC and octa-arginine (R8) peptides (R8-ZZC) can achieve the highly efficient labeling of adipose tissue-derived stem cells (ASCs). The cytotoxicity of R8-ZZC to ASCs was found to be extremely low in comparison to that of CdSe-based QDs, and R8-ZZC was confirmed to have no influence on the proliferation rate or the differentiation ability of ASCs. Moreover, R8-ZZC was not found to induce the production of major inflammatory cytokines (TNF-α, IFN-γ, IL-12p70, IL-6 and MCP-1) in ASCs. Transplanted R8-ZZC-labeled ASCs could be quantitatively detected in the lungs and liver mainly using an in vivo imaging system. In addition, high-speed multiphoton confocal laser microscopy revealed the presence of aggregates of transplanted ASCs at many sites in the lungs, whereas individual ASCs were found to have accumulated in the liver.

  9. Effect of Adipose Tissue-Derived Osteogenic and Endothelial Cells on Bone Allograft Osteogenesis and Vascularization in Critical-Sized Calvarial Defects

    DTIC Science & Technology

    2012-05-10

    primary passage. The dif- ferentiating cells established specific morphologies; cells in OM displayed an osteoblast-like spindle morphology (Fig. 1A), and...that completed the study. FIG. 1. Morphology and characterization of differenti- ated OBs and ECs. The OBs ex- hibited a spindle cell morphology (A), and...R. En gineering vascularized skeletal muscle tissue. Nat Biotechnol 23, 879, 2005. 21. Rouwkema, J., de Boer, J., and Van Blitterswijk, C.A. En

  10. Intracoronary artery transplantation of cardiomyoblast-like cells from human adipose tissue-derived multi-lineage progenitor cells improve left ventricular dysfunction and survival in a swine model of chronic myocardial infarction

    SciTech Connect

    Okura, Hanayuki; Saga, Ayami; Soeda, Mayumi; Miyagawa, Shigeru; Sawa, Yoshiki; Daimon, Takashi; Ichinose, Akihiro; Matsuyama, Akifumi

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer We administered human CLCs in a swine model of MI via intracoronary artery. Black-Right-Pointing-Pointer Histological studies demonstrated engraftment of hCLCs into the scarred myocardium. Black-Right-Pointing-Pointer Echocardiography showed rescue of cardiac function in the hCLCs transplanted swine. Black-Right-Pointing-Pointer Transplantation of hCLCs is an effective therapeutics for cardiac regeneration. -- Abstract: Transplantation of human cardiomyoblast-like cells (hCLCs) from human adipose tissue-derived multi-lineage progenitor cells improved left ventricular function and survival of rats with myocardial infarction. Here we examined the effect of intracoronary artery transplantation of human CLCs in a swine model of chronic heart failure. Twenty-four pigs underwent balloon-occlusion of the first diagonal branch followed by reperfusion, with a second balloon-occlusion of the left ascending coronary artery 1 week later followed by reperfusion. Four weeks after the second occlusion/reperfusion, 17 of the 18 surviving animals with severe chronic MI (ejection fraction <35% by echocardiography) were immunosuppressed then randomly assigned to receive either intracoronary artery transplantation of hCLCs hADMPCs or placebo lactic Ringer's solution with heparin. Intracoronary artery transplantation was followed by the distribution of DiI-stained hCLCs into the scarred myocardial milieu. Echocardiography at post-transplant days 4 and 8 weeks showed rescue and maintenance of cardiac function in the hCLCs transplanted group, but not in the control animals, indicating myocardial functional recovery by hCLCs intracoronary transplantation. At 8 week post-transplantation, 7 of 8 hCLCs transplanted animals were still alive compared with only 1 of the 5 control (p = 0.0147). Histological studies at week 12 post-transplantation demonstrated engraftment of the pre DiI-stained hCLCs into the scarred myocardium and their expression of

  11. Comparative Efficacies of Long-Term Serial Transplantation of Syngeneic, Allogeneic, Xenogeneic, or CTLA4Ig-Overproducing Xenogeneic Adipose Tissue-Derived Mesenchymal Stem Cells on Murine Systemic Lupus Erythematosus.

    PubMed

    Choi, Eun Wha; Lee, Hee Woo; Shin, Il Seob; Park, Ji Hyun; Yun, Tae Won; Youn, Hwa Young; Kim, Sung-Joo

    2016-01-01

    Allogeneic and xenogeneic transplantation are suitable alternatives for treating patients with stem cell defects and autoimmune diseases. The purpose of this study was to compare the effects of long-term serial transplantation of adipose tissue-derived mesenchymal stem cells (ASCs) from (NZB × NZW) F1 mice (syngeneic), BALB/c mice (allogeneic), or humans (xenogeneic) on systemic lupus erythematosus (SLE). The effects of transplanting human ASCs overproducing CTLA4Ig (CTLA4Ig-hASC) were also compared. Animals were divided into five experimental groups, according to the transplanted cell type. Approximately 500,000 ASCs were administered intravenously every 2 weeks from 6 to 60 weeks of age to all mice except for the control mice, which received saline. The human ASC groups (hASC and CTLA4Ig-hASC) showed a 13-week increase in average life spans and increased survival rates and decreased blood urea nitrogen, proteinuria, and glomerular IgG deposition. The allogeneic group also showed higher survival rates compared to those of the control, up to 40, 41, 42, 43, 44, 45, 52, and 53 weeks of age. Syngeneic ASC transplantation did not accelerate the mortality of the mice. The mean life span of both the syngeneic and allogeneic groups was prolonged for 6-7 weeks. Both human ASC groups displayed increased serum interleukin-10 and interleukin-4 levels, whereas both mouse ASC groups displayed significantly increased GM-CSF and interferon-γ levels in the serum. The strongest humoral immune response was induced by xenogeneic transplantation, followed by allogeneic, CTLA4Ig-xenogeneic, and syngeneic transplantations. Long-term serial transplantation of the ASCs from various sources displayed different patterns of cytokine expression and humoral responses, but all of them increased life spans in an SLE mouse model.

  12. 45S5-Bioglass(®)-based 3D-scaffolds seeded with human adipose tissue-derived stem cells induce in vivo vascularization in the CAM angiogenesis assay.

    PubMed

    Handel, Marina; Hammer, Timo R; Nooeaid, Patcharakamon; Boccaccini, Aldo R; Hoefer, Dirk

    2013-12-01

    Poor vascularization is the key limitation for long-term acceptance of large three-dimensional (3D) tissue engineering constructs in regenerative medicine. 45S5 Bioglass(®) was investigated given its potential for applications in bone engineering. Since native Bioglass(®) shows insufficient angiogenic properties, we used a collagen coating, to seed human adipose tissue-derived stem cells (hASC) confluently onto 3D 45S5 Bioglass(®)-based scaffolds. To investigate vascularization by semiquantitative analyses, these biofunctionalized scaffolds were then subjected to in vitro human umbilical vein endothelial cells formation assays, and were also investigated in the chorioallantoic membrane (CAM) angiogenesis model, an in vivo angiogenesis assay, which uses the CAM of the hen's egg. In their native, nonbiofunctionalized state, neither Bioglass(®)-based nor biologically inert fibrous polypropylene control scaffolds showed angiogenic properties. However, significant vascularization was induced by hASC-seeded scaffolds (Bioglass(®) and polypropylene) in the CAM angiogenesis assay. Biofunctionalized scaffolds also showed enhanced tube lengths, compared to unmodified scaffolds or constructs seeded with fibroblasts. In case of biologically inert hernia meshes, the quantification of vascular endothelial growth factor secretion as the key angiogenic stimulus strongly correlated to the tube lengths and vessel numbers in all models. This correlation proved the CAM angiogenesis assay to be a suitable semiquantitative tool to characterize angiogenic effects of larger 3D implants. In addition, our results suggest that combinations of suitable scaffold materials, such as 45S5 Bioglass(®), with hASC could be a promising approach for future tissue engineering applications.

  13. Enhancement of osteogenic differentiation of rat adipose tissue-derived mesenchymal stem cells by zinc sulphate under electromagnetic field via the PKA, ERK1/2 and Wnt/β-catenin signaling pathways

    PubMed Central

    Fathi, Ezzatollah; Farahzadi, Raheleh

    2017-01-01

    Zinc ion as an essential trace element and electromagnetic fields (EMFs) has been reported to be involved in the regulation of bone metabolism. The aim of this study was to elucidate the effects of zinc sulphate (ZnSO4) on the osteogenic differentiation of adipose tissue-derived mesenchymal stem cells (ADSCs) in the presence of EMF as a strategy in osteoporosis therapy. Alkaline phophatase (ALP) activity measurement, calcium assay and expression of several osteoblastic marker genes were examined to assess the effect of ZnSO4 on the osteogenic differentiation of ADSCs under EMF. The expression of cAMP and PKA was evaluated by ELISA. The expression of β-catenin, Wnt1, Wnt3a, low-density lipoprotein receptor-related protein 5 (LRP5) and reduced dickkopf1 (DKK1) genes were used to detect the Wnt/β-catenin pathway. It was found that ZnSO4, in the presence of EMF, resulted in an increase in the expression of osteogenic genes, ALP activity and calcium levels. EMF, in the presence of ZnSO4, increased the cAMP level and protein kinase A (PKA) activity. Treatment of ADSCs with (MAPK)/ERK kinase 1/2 inhibitor, or PKA inhibitor, significantly inhibited the promotion of osteogenic markers, indicating that the induction of osteogenesis was dependent on the ERK and PKA signaling pathways. Real-time PCR analysis showed that ZnSO4, in the presence of EMF, increased the mRNA expressions of β-catenin, Wnt1, Wnt3a, LRP5 and DKK1. In this study, it was shown that 0.432 μg/ml ZnSO4, in the presence of 50 Hz, 20 mT EMF, induced the osteogenic differentiation of ADSCs via PKA, ERK1/2 and Wnt/β-catenin signaling pathways. PMID:28339498

  14. Serum miRNA Signatures Are Indicative of Skeletal Fractures in Postmenopausal Women With and Without Type 2 Diabetes and Influence Osteogenic and Adipogenic Differentiation of Adipose Tissue-Derived Mesenchymal Stem Cells In Vitro.

    PubMed

    Heilmeier, Ursula; Hackl, Matthias; Skalicky, Susanna; Weilner, Sylvia; Schroeder, Fabian; Vierlinger, Klemens; Patsch, Janina M; Baum, Thomas; Oberbauer, Eleni; Lobach, Iryna; Burghardt, Andrew J; Schwartz, Ann V; Grillari, Johannes; Link, Thomas M

    2016-12-01

    Standard DXA measurements, including Fracture Risk Assessment Tool (FRAX) scores, have shown limitations in assessing fracture risk in Type 2 Diabetes (T2D), underscoring the need for novel biomarkers and suggesting that other pathomechanisms may drive diabetic bone fragility. MicroRNAs (miRNAs) are secreted into the circulation from cells of various tissues proportional to local disease severity and were recently found to be crucial to bone homeostasis and T2D. Here, we studied, if and which circulating miRNAs or combinations of miRNAs can discriminate best fracture status in a well-characterized study of diabetic bone disease and postmenopausal osteoporosis (n = 80 postmenopausal women). We then tested the most discriminative and most frequent miRNAs in vitro. Using miRNA-qPCR-arrays, we showed that 48 miRNAs can differentiate fracture status in T2D women and that several combinations of four miRNAs can discriminate diabetes-related fractures with high specificity and sensitivity (area under the receiver-operating characteristic curve values [AUCs], 0.92 to 0.96; 95% CI, 0.88 to 0.98). For the osteoporotic study arm, 23 miRNAs were fracture-indicative and potential combinations of four miRNAs showed AUCs from 0.97 to 1.00 (95% CI, 0.93 to 1.00). Because a role in bone homeostasis for those miRNAs that were most discriminative and most present among all miRNA combinations had not been described, we performed in vitro functional studies in human adipose tissue-derived mesenchymal stem cells to investigate the effect of miR-550a-5p, miR-188-3p, and miR-382-3p on osteogenesis, adipogenesis, and cell proliferation. We found that miR-382-3p significantly enhanced osteogenic differentiation (p < 0.001), whereas miR-550a-5p inhibited this process (p < 0.001). Both miRNAs, miR-382-3p and miR-550a-5p, impaired adipogenic differentiation, whereas miR-188-3p did not exert an effect on adipogenesis. None of the miRNAs affected significantly cell proliferation. Our

  15. Human Adipose Tissue Derived Extracellular Matrix and Methylcellulose Hydrogels Augments and Regenerates the Paralyzed Vocal Fold

    PubMed Central

    Kim, Eun Na; Sung, Myung Whun; Kwon, Tack-Kyun; Cho, Yong Woo; Kwon, Seong Keun

    2016-01-01

    Vocal fold paralysis results from various etiologies and can induce voice changes, swallowing complications, and issues with aspiration. Vocal fold paralysis is typically managed using injection laryngoplasty with fat or synthetic polymers. Injection with autologous fat has shown excellent biocompatibility. However, it has several disadvantages such as unpredictable resorption rate, morbidities associated with liposuction procedure which has to be done in operating room under general anesthesia. Human adipose-derived extracellular matrix (ECM) grafts have been reported to form new adipose tissue and have greater biostability than autologous fat graft. Here, we present an injectable hydrogel that is constructed from adipose tissue derived soluble extracellular matrix (sECM) and methylcellulose (MC) for use in vocal fold augmentation. Human sECM derived from adipose tissue was extracted using two major steps—ECM was isolated from human adipose tissue and was subsequently solubilized. Injectable sECM/MC hydrogels were prepared by blending of sECM and MC. Sustained vocal fold augmentation and symmetric vocal fold vibration were accomplished by the sECM/MC hydrogel in paralyzed vocal fold which were confirmed by laryngoscope, histology and a high-speed imaging system. There were increased number of collagen fibers and fatty granules at the injection site without significant inflammation or fibrosis. Overall, these results indicate that the sECM/MC hydrogel can enhance vocal function in paralyzed vocal folds without early resorption and has potential as a promising material for injection laryngoplasty for stable vocal fold augmentation which can overcome the shortcomings of autologous fat such as unpredictable duration and morbidity associated with the fat harvest. PMID:27768757

  16. Human adipose tissue derived pericytes increase life span in Utrn (tm1Ked) Dmd (mdx) /J mice.

    PubMed

    Valadares, M C; Gomes, J P; Castello, G; Assoni, A; Pellati, M; Bueno, C; Corselli, M; Silva, H; Bartolini, P; Vainzof, M; Margarido, P F; Baracat, E; Péault, B; Zatz, M

    2014-12-01

    Duchenne muscular dystrophy (DMD) is still an untreatable lethal X-linked disorder, which affects 1 in 3500 male births. It is caused by the absence of muscle dystrophin due to mutations in the dystrophin gene. The potential regenerative capacity as well as immune privileged properties of mesenchymal Stem Cells (MSC) has been under investigation for many years in an attempt to treat DMD. One of the questions to be addressed is whether stem cells from distinct sources have comparable clinical effects when injected in murine or canine muscular dystrophy animal models. Many studies comparing different stem cells from various sources were reported but these cells were obtained from different donors and thus with different genetic backgrounds. Here we investigated whether human pericytes obtained from 4 different tissues (muscle, adipose tissue, fallopian tube and endometrium) from the same donor have a similar clinical impact when injected in double mutant Utrn (tm1Ked) Dmd (mdx) /J mice, a clinically relevant model for DMD. After a weekly regimen of intraperitoneal injections of 10(6) cells per 8 weeks we evaluated the motor ability as well as the life span of the treated mice as compared to controls. Our experiment showed that only adipose tissue derived pericytes are able to increase significantly (39 days on average) the life span of affected mice. Microarray analysis showed an inhibition of the interferon pathway by adipose derived pericytes. Our results suggest that the clinical benefit associated with intraperitoneal injections of these adult stem cells is related to immune modulation rather than tissue regeneration.

  17. Static magnetic field enhances the viability and proliferation rate of adipose tissue-derived mesenchymal stem cells potentially through activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway.

    PubMed

    Marędziak, Monika; Tomaszewski, Krzysztof; Polinceusz, Paulina; Lewandowski, Daniel; Marycz, Krzysztof

    2017-01-01

    The aim of this work was to investigate the effects of 0.5T static magnetic field (sMF) on the viability and proliferation rate of human adipose-derived mesenchymal stromal stem cells (hASCs) via activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) signaling pathway. In a 7-d culture we examined cell growth kinetic and population doubling time (PDT). We also examined cell morphology and the cellular senescence markers level. Exposure to sMF enhanced the viability of these cells. However, the effect was blocked by treating the cells with LY294002, a P13K inhibitor. We compared this effect by Western Blot analysis of Akt protein expression. We also examined whether the cell response on sMF stimulation is dependent on integrin engagement and we measured integrin gene expression. Our results suggest that stimulation using sMF is a viable method to improve hASC viability. sMF is involved in mechanisms associated with controlling cell proliferative potential signaling events.

  18. Cell supermarket: Adipose tissue as a source of stem cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue is derived from numerous sources, and in recent years has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical ...

  19. State of the art. Autologous fat graft and adipose tissue-derived stromal vascular fraction injection for hand therapy in systemic sclerosis patients.

    PubMed

    Guillaume-Jugnot, P; Daumas, A; Magalon, J; Sautereau, N; Veran, J; Magalon, G; Sabatier, F; Granel, B

    2016-01-01

    Systemic sclerosis is an autoimmune disease characterized by sclerosis (hardening) of the skin and deep viscera associated with microvascular functional and structural alteration, which leads to chronic ischemia. In the hands of patients, ischemic and fibrotic damages lead to both pain and functional impairment. Hand disability creates a large burden in professional and daily activities, with social and psychological consequences. Currently, the proposed therapeutic options for hands rely mainly on hygienic measures, vasodilatator drugs and physiotherapy, but have many constraints and limited effects. Developing an innovative therapeutic approach is crucial to reduce symptoms and improve the quality of life. The discovery of adult stem cells from adipose tissue has increased the interest to use adipose tissue in plastic and regenerative surgery. Prepared as freshly isolated cells for immediate autologous transplantation, adipose tissue-derived stem cell therapy has emerged as a therapeutic alternative for the regeneration and repair of damaged tissues. We aim to update literature in the interest of autologous fat graft or adipose derived from stromal vascular fraction cell-based therapy for the hands of patients who suffer from systemic sclerosis.

  20. Cell Supermarket: Adipose Tissue as a Source of Stem Cells

    PubMed Central

    Dodson, M.V.; Wei, S.; Duarte, M.; Du, M.; Jiang, Z.; Hausman, G.J.; Bergen, W.G.

    2013-01-01

    Adipose tissue is derived from numerous sources, and in recent years this tissue has been shown to provide numerous cells from what seemingly was a population of homogeneous adipocytes. Considering the types of cells that adipose tissue-derived cells may form, these cells may be useful in a variety of clinical and scientific applications. The focus of this paper is to reflect on this area of research and to provide a list of potential (future) research areas. PMID:25031654

  1. Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure

    PubMed Central

    Sun, Kai; Kusminski, Christine M.; Luby-Phelps, Kate; Spurgin, Stephen B.; An, Yu A.; Wang, Qiong A.; Holland, William L.; Scherer, Philipp E.

    2014-01-01

    We recently reported that local overexpression of VEGF-A in white adipose tissue (WAT) protects against diet-induced obesity and metabolic dysfunction. The observation that VEGF-A induces a “brown adipose tissue (BAT)-like” phenotype in WAT prompted us to further explore the direct function of VEGF-A in BAT. We utilized a doxycycline (Dox)-inducible, brown adipocyte-specific VEGF-A transgenic overexpression model to assess direct effects of VEGF-A in BAT in vivo. We observed that BAT-specific VEGF-A expression increases vascularization and up-regulates expression of both UCP1 and PGC-1α in BAT. As a result, the transgenic mice show increased thermogenesis during chronic cold exposure. In diet-induced obese mice, introducing VEGF-A locally in BAT rescues capillary rarefaction, ameliorates brown adipocyte dysfunction, and improves deleterious effects on glucose and lipid metabolism caused by a high-fat diet challenge. These results demonstrate a direct positive role of VEGF-A in the activation and expansion of BAT. PMID:24944907

  2. CXCL5 is an adipose tissue derived factor that links obesity to insulin resistance

    PubMed Central

    Chavey, Carine; Lazennec, Gwendal; Lagarrigue, Sylviane; Clapé, Cyrielle; Iankova, Irena; Teyssier, Jacques; Annicotte, Jean-Sébastien; Schmidt, Julien; Mataki, Chikage; Yamamoto, Hiroyasu; Sanches, Rosario; Guma, Anna; Stich, Vladimir; Vitkova, Michaela; Jardin-Watelet, Bénédicte; Renard, Eric; Strieter, Robert; Tuthill, Antoinette; Hotamisligil, Gôkhan S.; Vidal-Puig, Toni; Zorzano, Antonio; Langin, Dominique; Fajas, Lluis

    2009-01-01

    We show here high levels of expression and secretion of the chemokine CXCL5 in the macrophage fraction of white adipose tissue (WAT). Moreover, we find that CXCL5 is dramatically increased in serum of human obese compared to lean subjects. Conversely, CXCL5 concentration is decreased in obese subjects after a weight reduction program, or in obese non-insulin resistant, compared to insulin resistant obese subjects. Most importantly we demonstrate that treatment with recombinant CXCL5 blocks insulin-stimulated glucose uptake in muscle in mice. CXCL5 blocks insulin signaling by activating the Jak2/STAT5/SOCS2 pathway. Finally, by treating obese, insulin resistant mice with either anti-CXCL5 neutralizing antibodies or antagonists of CXCR2, which is the CXCL5 receptor we demonstrate that CXCL5 mediates insulin resistance. Furthermore CXCR2−/− mice are protected against obesity-induced insulin resistance. Taken together, these results show that secretion of CXCL5 by WAT resident macrophages represents a link between obesity, inflammation, and insulin resistance. PMID:19356715

  3. Regulation of visceral adipose tissue-derived serine protease inhibitor by nutritional status, metformin, gender and pituitary factors in rat white adipose tissue.

    PubMed

    González, C R; Caminos, J E; Vázquez, M J; Garcés, M F; Cepeda, L A; Angel, A; González, A C; García-Rendueles, M E; Sangiao-Alvarellos, S; López, M; Bravo, S B; Nogueiras, R; Diéguez, C

    2009-07-15

    Visceral adipose tissue-derived serine protease inhibitor (vaspin) is a recently discovered adipocytokine mainly secreted from visceral adipose tissue, which plays a main role in insulin sensitivity. In this study, we have investigated the regulation of vaspin gene expression in rat white adipose tissue (WAT) in different physiological (nutritional status, pregnancy, age and gender) and pathophysiological (gonadectomy, thyroid status and growth hormone deficiency) settings known to be associated with energy homeostasis and alterations in insulin sensitivity. We have determined vaspin gene expression by real-time PCR. Vaspin was decreased after fasting and its levels were partially recovered after leptin treatment. Chronic treatment with metformin increased vaspin gene expression. Vaspin mRNA expression reached the highest peak at 45 days in both sexes after birth and its expression was higher in females than males, but its levels did not change throughout pregnancy. Finally, decreased levels of growth hormone and thyroid hormones suppressed vaspin expression. These findings suggest that WAT vaspin mRNA expression is regulated by nutritional status, and leptin seems to be the nutrient signal responsible for those changes. Vaspin is influenced by age and gender, and its expression is increased after treatment with insulin sensitizers. Finally, alterations in pituitary functions modify vaspin levels. Understanding the molecular mechanisms regulating vaspin will provide new insights into the pathogenesis of the metabolic syndrome.

  4. Site-specific differences of insulin action in adipose tissue derived from normal prepubertal children

    SciTech Connect

    Grohmann, Malcolm; Stewart, Claire; Welsh, Gavin; Hunt, Linda; Tavare, Jeremy; Holly, Jeff; Shield, Julian; Sabin, Matt; Crowne, Elizabeth . E-mail: Liz.Crowne@ubht.swest.nhs.uk

    2005-08-15

    Body fat distribution determines obesity-related morbidity in adults but little is known of the aetiology or pathophysiology in children. This study investigates differences in insulin-mediated metabolism in primary cell cultures of subcutaneous and visceral preadipocytes derived from prepubertal children. The impact of differentiation and responses to TNF{alpha} exposure was also investigated. Proliferation rates were greater in subcutaneous versus visceral preadipocytes (41 h(3) versus 69 h(4); P = 0.008). Insulin caused a dose-dependent increase in GSK-3 phosphorylation and an increase in MAPK phosphorylation over time, with increased sensitivity in subcutaneous preadipocytes. Post-differentiation, dose-dependent increases in GSK-3 phosphorylation were maintained, while MAPK phosphorylation was identical in both subtypes. No changes were observed in insulin receptor abundance pre-/post-differentiation. GLUT4 abundance was significantly increased in visceral versus subcutaneous adipocytes by 76(4)%; P = 0.03), coincidental with increased insulin-stimulated 2-deoxy-glucose transport (+150(26)% versus +79(10)%; P = 0.014) and further elevated by acute exposure to TNF{alpha} (+230(52)%; P = 0.019 versus +123(24)%; P = 0.025, respectively). TNF{alpha} also significantly increased basal glucose transport rates (+44(14)%; P = 0.006 versus +34(11)%; P = 0.007) and GLUT1 localisation to the plasma membrane. These data establish site-specific differences in subcutaneous and visceral fat cells from children. Responses to insulin varied with differentiation and TNF{alpha} exposure in the two depots, consistent with parallel changes in GLUT1/4 abundance and localisation.

  5. Site-specific differences of insulin action in adipose tissue derived from normal prepubertal children.

    PubMed

    Grohmann, Malcolm; Stewart, Claire; Welsh, Gavin; Hunt, Linda; Tavaré, Jeremy; Holly, Jeff; Shield, Julian; Sabin, Matt; Crowne, Elizabeth

    2005-08-15

    Body fat distribution determines obesity-related morbidity in adults but little is known of the aetiology or pathophysiology in children. This study investigates differences in insulin-mediated metabolism in primary cell cultures of subcutaneous and visceral preadipocytes derived from prepubertal children. The impact of differentiation and responses to TNFalpha exposure was also investigated. Proliferation rates were greater in subcutaneous versus visceral preadipocytes (41 h3 versus 69 h4; P=0.008). Insulin caused a dose-dependent increase in GSK-3 phosphorylation and an increase in MAPK phosphorylation over time, with increased sensitivity in subcutaneous preadipocytes. Post-differentiation, dose-dependent increases in GSK-3 phosphorylation were maintained, while MAPK phosphorylation was identical in both subtypes. No changes were observed in insulin receptor abundance pre-/post-differentiation. GLUT4 abundance was significantly increased in visceral versus subcutaneous adipocytes by 76(4)%; P=0.03), coincidental with increased insulin-stimulated 2-deoxy-glucose transport (+150(26)% versus +79(10)%; P=0.014) and further elevated by acute exposure to TNFalpha (+230(52)%; P=0.019 versus +123(24)%; P=0.025, respectively). TNFalpha also significantly increased basal glucose transport rates (+44(14)%; P=0.006 versus +34(11)%; P=0.007) and GLUT1 localisation to the plasma membrane. These data establish site-specific differences in subcutaneous and visceral fat cells from children. Responses to insulin varied with differentiation and TNFalpha exposure in the two depots, consistent with parallel changes in GLUT1/4 abundance and localisation.

  6. Biomedical Application of Dental Tissue-Derived Induced Pluripotent Stem Cells.

    PubMed

    Lee, Jung-Hwan; Seo, Seog-Jin

    2016-01-01

    The academic researches and clinical applications in recent years found interest in induced pluripotent stem cells (iPSCs-) based regenerative medicine due to their pluripotency able to differentiate into any cell types in the body without using embryo. However, it is limited in generating iPSCs from adult somatic cells and use of these cells due to the low stem cell potency and donor site morbidity. In biomedical applications, particularly, dental tissue-derived iPSCs have been getting attention as a type of alternative sources for regenerating damaged tissues due to high potential of stem cell characteristics, easy accessibility and attainment, and their ectomesenchymal origin, which allow them to have potential for nerve, vessel, and dental tissue regeneration. This paper will cover the overview of dental tissue-derived iPSCs and their application with their advantages and drawbacks.

  7. Biomedical Application of Dental Tissue-Derived Induced Pluripotent Stem Cells

    PubMed Central

    Lee, Jung-Hwan; Seo, Seog-Jin

    2016-01-01

    The academic researches and clinical applications in recent years found interest in induced pluripotent stem cells (iPSCs-) based regenerative medicine due to their pluripotency able to differentiate into any cell types in the body without using embryo. However, it is limited in generating iPSCs from adult somatic cells and use of these cells due to the low stem cell potency and donor site morbidity. In biomedical applications, particularly, dental tissue-derived iPSCs have been getting attention as a type of alternative sources for regenerating damaged tissues due to high potential of stem cell characteristics, easy accessibility and attainment, and their ectomesenchymal origin, which allow them to have potential for nerve, vessel, and dental tissue regeneration. This paper will cover the overview of dental tissue-derived iPSCs and their application with their advantages and drawbacks. PMID:26989423

  8. Concise reviews: Characteristics and potential applications of human dental tissue-derived mesenchymal stem cells.

    PubMed

    Liu, Junjun; Yu, Fang; Sun, Yao; Jiang, Beizhan; Zhang, Wenjun; Yang, Jianhua; Xu, Guo-Tong; Liang, Aibin; Liu, Shangfeng

    2015-03-01

    Recently, numerous types of human dental tissue-derived mesenchymal stem cells (MSCs) have been isolated and characterized, including dental pulp stem cells, stem cells from exfoliated deciduous teeth, periodontal ligament stem cells, dental follicle progenitor cells, alveolar bone-derived MSCs, stem cells from apical papilla, tooth germ progenitor cells, and gingival MSCs. All these MSC-like cells exhibit self-renewal, multilineage differentiation potential, and immunomodulatory properties. Several studies have demonstrated the potential advantages of dental stem cell-based approaches for regenerative treatments and immunotherapies. This review outlines the properties of various dental MSC-like populations and the progress toward their use in regenerative therapy. Several dental stem cell banks worldwide are also introduced, with a view toward future clinical application.

  9. Different Tissue-Derived Stem Cells: A Comparison of Neural Differentiation Capability

    PubMed Central

    Bonaventura, Gabriele; Chamayou, Sandrine; Liprino, Annalisa; Guglielmino, Antonino; Fichera, Michele; Caruso, Massimo; Barcellona, Maria Luisa

    2015-01-01

    Background Stem cells are capable of self-renewal and differentiation into a wide range of cell types with multiple clinical and therapeutic applications. Stem cells are providing hope for many diseases that currently lack effective therapeutic methods, including strokes, Huntington's disease, Alzheimer's and Parkinson's disease. However, the paucity of suitable cell types for cell replacement therapy in patients suffering from neurological disorders has hampered the development of this promising therapeutic approach. Aim The innovative aspect of this study has been to evaluate the neural differentiation capability of different tissue-derived stem cells coming from different tissue sources such as bone marrow, umbilical cord blood, human endometrium and amniotic fluid, cultured under the same supplemented media neuro-transcription factor conditions, testing the expression of neural markers such as GFAP, Nestin and Neurofilaments using the immunofluorescence staining assay and some typical clusters of differentiation such as CD34, CD90, CD105 and CD133 by using the cytofluorimetric test assay. Results Amniotic fluid derived stem cells showed a more primitive phenotype compared to the differentiating potential demonstrated by the other stem cell sources, representing a realistic possibility in the field of regenerative cell therapy suitable for neurodegenerative diseases. PMID:26517263

  10. The Regulatory Effects of Long Noncoding RNA-ANCR on Dental Tissue-Derived Stem Cells

    PubMed Central

    Jia, Qian; Chen, Xiaolin; Jiang, Wenkai; Wang, Wei

    2016-01-01

    Long noncoding RNAs (lncRNA) have been recognized as important regulators in diverse biological processes, such as transcriptional regulation, stem cell proliferation, and differentiation. Previous study has demonstrated that lncRNA-ANCR (antidifferentiation ncRNA) plays a key role in regulating the proliferation and osteogenic differentiation of periodontal ligament stem cells (PDLSCs). However, little is known about the role of ANCR in regulating other types of dental tissue-derived stem cells (DTSCs) behaviours (including proliferation and multiple-potential of differentiation). In this study, we investigated the regulatory effects of lncRNA-ANCR on the proliferation and differentiation (including osteogenic, adipogenic, and neurogenic differentiation) of DTSCs, including dental pulp stem cells (DPSCs), PDLSCs, and stem cells from the apical papilla (SCAP) by downregulation of lncRNA-ANCR. We found that downregulation of ANCR exerted little effect on proliferation of DPSCs and SCAP but promoted the osteogenic, adipogenic, and neurogenic differentiation of DTSCs. These data provide an insight into the regulatory effects of long noncoding RNA-ANCR on DTSCs and indicate that ANCR is a very important regulatory factor in stem cell differentiation. PMID:27648074

  11. Evaluating the Potential of Adipose Tissue-Derived MSCs as Anticancer Gene Delivery Vehicles to Bone-Metastasized Prostate Cancer

    DTIC Science & Technology

    2010-04-01

    indicating an inherently activated phenotype of AT-MSCs in obese individuals. The above studies have enabled us to enrich for several AT-MSC... studies is to enrich for those AT-MSCs which have better tumor-homing potential and demonstrate that these enriched AT-MSCs carrying a suicide gene...reporter (GFP). In trans-well in vitro studies , we have isolated cells with enhanced tumor-homing potential and have been able to increase their

  12. Recovery of renal function after administration of adipose-tissue-derived stromal vascular fraction in rat model of acute kidney injury induced by ischemia/reperfusion injury.

    PubMed

    Lee, Chunwoo; Jang, Myoung Jin; Kim, Bo Hyun; Park, Jin Young; You, Dalsan; Jeong, In Gab; Hong, Jun Hyuk; Kim, Choung-Soo

    2017-03-10

    Acute kidney injury (AKI) induced by ischemia/reperfusion (I/R) injury is a major challenge in critical care medicine. The purpose of this study is to determine the therapeutic effects of the adipose-tissue-derived stromal vascular fraction (SVF) and the optimal route for SVF delivery in a rat model of AKI induced by I/R injury. Fifty male Sprague-Dawley rats were randomly divided into five groups (10 animals per group): sham, nephrectomy control, I/R injury control, renal arterial SVF infusion and subcapsular SVF injection. To induce AKI by I/R injury, the left renal artery was clamped with a nontraumatic vascular clamp for 40 min, and the right kidney was removed. Rats receiving renal arterial infusion of SVF had a significantly reduced increase in serum creatinine compared with the I/R injury control group at 4 days after I/R injury. The glomerular filtration rate of the renal arterial SVF infusion group was maintained at a level similar to that of the sham and nephrectomy control groups at 14 days after I/R injury. Masson's trichrome staining showed significantly less fibrosis in the renal arterial SVF infusion group compared with that in the I/R injury control group in the outer stripe (P < 0.001). TUNEL labeling showed significantly decreased apoptosis in both the renal arterial SVF infusion and subcapsular SVF injection groups compared with the I/R injury control group in the outer stripe (P < 0.001). Thus, renal function is effectively rescued from AKI induced by I/R injury through the renal arterial administration of SVF in a rat model.

  13. Adipose Recruitment and Activation of Plasmacytoid Dendritic Cells Fuel Metaflammation.

    PubMed

    Ghosh, Amrit Raj; Bhattacharya, Roopkatha; Bhattacharya, Shamik; Nargis, Titli; Rahaman, Oindrila; Duttagupta, Pritam; Raychaudhuri, Deblina; Liu, Chinky Shiu Chen; Roy, Shounak; Ghosh, Parasar; Khanna, Shashi; Chaudhuri, Tamonas; Tantia, Om; Haak, Stefan; Bandyopadhyay, Santu; Mukhopadhyay, Satinath; Chakrabarti, Partha; Ganguly, Dipyaman

    2016-11-01

    In obese individuals, visceral adipose tissue (VAT) is the seat of chronic low-grade inflammation (metaflammation), but the mechanistic link between increased adiposity and metaflammation largely remains unclear. In obese individuals, deregulation of a specific adipokine, chemerin, contributes to innate initiation of metaflammation by recruiting circulating plasmacytoid dendritic cells (pDCs) into VAT through chemokine-like receptor 1 (CMKLR1). Adipose tissue-derived high-mobility group B1 (HMGB1) protein activates Toll-like receptor 9 (TLR9) in the adipose-recruited pDCs by transporting extracellular DNA through receptor for advanced glycation end products (RAGE) and induces production of type I interferons (IFNs). Type I IFNs in turn help in proinflammatory polarization of adipose-resident macrophages. IFN signature gene expression in VAT correlates with both adipose tissue and systemic insulin resistance (IR) in obese individuals, which is represented by ADIPO-IR and HOMA2-IR, respectively, and defines two subgroups with different susceptibility to IR. Thus, this study reveals a pathway that drives adipose tissue inflammation and consequent IR in obesity.

  14. Isolation, characterization and cardiac differentiation of human thymus tissue derived mesenchymal stromal cells.

    PubMed

    Lin, Ze Bang; Qian, Bo; Yang, Yu Zhong; Zhou, Kai; Sun, Jian; Mo, Xu Ming; Wu, Kai Hong

    2015-07-01

    Mesenchymal stromal cells (MSCs) are promising candidate donor cells for replacement of cardiomyocyte loss during ischemia and in vitro generation of myocardial tissue. We have successfully isolated MSCs from the discarded neonatal thymus gland during cardiac surgery. The thymus MSCs were characterized by cell-surface antigen expression. These cells have high ability for proliferation and are able to differentiate into osteoblasts and adipocytes in vitro. For cardiac differentiation, the cells were divided into 3 groups: untreated control; 5-azacytidine group and sequential exposure to 5-azacytidine, bone morphogenetic protein 4, and basic fibroblast growth factor. Thymus MSCs showed a fibrolast-like morphology and some differentiated cells increased in size, formed a ball-like appearance over time and spontaneously contracting cells were observed in sequential exposure group. Immunostaining studies, cardiac specific genes/protein expression confirmed the cardiomyocyte phenotype of the differentiated cells. These results demonstrate that thymus MSCs can be a promising cellular source for cardiac cell therapy and tissue engineering.

  15. Characterization of the attachment mechanisms of tissue-derived cell lines to blood-compatible polymers.

    PubMed

    Hoshiba, Takashi; Nikaido, Mayo; Tanaka, Masaru

    2014-05-01

    Recent advances in biomedical engineering require the development of new types of blood-compatible polymers that also allow non-blood cell attachment for the isolation of stem cells and circulating tumor cells (CTCs) from blood and for the development of artificial organs for use under blood-contact conditions. Poly(2-methoxyethyl acrylate) (PMEA) and poly(tetrafurfuryl acrylate) (PTHFA) were previously identified as blood-compatible polymers. Here, it is demonstrated that cancer cells can attach to the PMEA and PTHFA substrates, and the differences in the attachment mechanisms to the PMEA and PTHFA substrates between cancer cells and platelets are investigated. It is also found that the adsorption-induced deformation of fibrinogen, which is required for the attachment and activation of platelets, does not occur on the PMEA and PTHFA substrates. In contrast, fibronectin is deformed on the PMEA and PTHFA substrates. Therefore, it is concluded that cancer cells and not platelets can attach to the PMEA and PTHFA substrates based on this protein-deformation difference between these substrates. Moreover, it is observed that cancer cells attach to the PMEA substrate via both integrin-dependent and -independent mechanisms and attach to the PTHFA substrate only through an integrin-dependent mechanism. It is expected that PMEA and PTHFA will prove useful for blood-contact biomedical applications.

  16. Angiopoietin-like protein 8 (ANGPTL8) in pregnancy: a brown adipose tissue-derived endocrine factor with a potential role in fetal growth.

    PubMed

    Martinez-Perez, Bruno; Ejarque, Miriam; Gutierrez, Cristina; Nuñez-Roa, Catalina; Roche, Kelly; Vila-Bedmar, Rocio; Ballesteros, Mónica; Redondo-Angulo, Ibon; Planavila, Anna; Villarroya, Francesc; Vendrell, Joan; Fernández-Veledo, Sonia; Megía, Ana

    2016-12-01

    Angiopoietin-like protein 8 (ANGPTL8), a protein implicated in lipid and glucose homeostasis, is present only in mammals, suggesting that it is involved in processes unique to these vertebrates such as pregnancy and homeothermy. We explored the role of ANGPTL8 in maternal-fetal crosstalk and its relationship with newborn adiposity. In a longitudinal analysis of healthy pregnant women, ANGPTL8 levels decreased progressively during pregnancy although remained higher than levels in the postpartum period. In a cross-sectional observational study of women with or without gestational diabetes mellitus (GDM), and their offspring, ANGPTL8 levels were higher in venous cord blood than those in maternal blood and were significantly lower in GDM patients than those in healthy women. Infants small for gestational age and with low-fat mass had the highest ANGPTL8 cord blood levels. Studies in vitro revealed that ANGPTL8 was secreted by brown adipocytes and its expression was increased in experimental models of white-to-brown fat conversion. In addition, ANGPTL8 induced the expression of markers of brown adipocytes. The high levels of ANGPTL8 found in fetal life together with its relationship with newborn adiposity and brown adipose tissue point to ANGPTL8 as a potential new player in the modulation of the thermogenic machinery during the fetal-neonatal transition.

  17. Tubular Cardiac Tissues Derived from Human Induced Pluripotent Stem Cells Generate Pulse Pressure In Vivo

    PubMed Central

    Seta, Hiroyoshi; Matsuura, Katsuhisa; Sekine, Hidekazu; Yamazaki, Kenji; Shimizu, Tatsuya

    2017-01-01

    Human induced pluripotent stem (iPS) cell-derived cardiac cells provide the possibility to fabricate cardiac tissues for transplantation. However, it remains unclear human bioengineered cardiac tissues function as a functional pump in vivo. Human iPS cells induced to cardiomyocytes in suspension were cultured on temperature-responsive dishes to fabricate cardiac cell sheets. Two pairs of triple-layered sheets were transplanted to wrap around the inferior vena cava (IVC) of nude rats. At 4 weeks after transplantation, inner pressure changes in the IVC were synchronized with electrical activations of the graft. Under 80 pulses per minute electrical stimulation, the inner pressure changes at 8 weeks increased to 9.1 ± 3.2 mmHg, which were accompanied by increases in the baseline inner pressure of the IVC. Immunohistochemical analysis revealed that 0.5-mm-thick cardiac troponin T-positive cardiac tissues, which contained abundant human mitochondria, were clearly engrafted lamellar around the IVC and surrounded by von Willebrand factor-positive capillary vessels. The mRNA expression of several contractile proteins in cardiac tissues at 8 weeks in vivo was significantly upregulated compared with those at 4 weeks. We succeeded in generating pulse pressure by tubular human cardiac tissues in vivo. This technology might lead to the development of a bioengineered heart assist pump. PMID:28358136

  18. Adipose tissue: cell heterogeneity and functional diversity.

    PubMed

    Esteve Ràfols, Montserrat

    2014-02-01

    There are two types of adipose tissue in the body whose function appears to be clearly differentiated. White adipose tissue stores energy reserves as fat, whereas the metabolic function of brown adipose tissue is lipid oxidation to produce heat. A good balance between them is important to maintain energy homeostasis. The concept of white adipose tissue has radically changed in the past decades, and is now considered as an endocrine organ that secretes many factors with autocrine, paracrine, and endocrine functions. In addition, we can no longer consider white adipose tissue as a single tissue, because it shows different metabolic profiles in its different locations, with also different implications. Although the characteristic cell of adipose tissue is the adipocyte, this is not the only cell type present in adipose tissue, neither the most abundant. Other cell types in adipose tissue described include stem cells, preadipocytes, macrophages, neutrophils, lymphocytes, and endothelial cells. The balance between these different cell types and their expression profile is closely related to maintenance of energy homeostasis. Increases in adipocyte size, number and type of lymphocytes, and infiltrated macrophages are closely related to the metabolic syndrome diseases. The study of regulation of proliferation and differentiation of preadipocytes and stem cells, and understanding of the interrelationship between the different cell types will provide new targets for action against these diseases.

  19. Isolation and proliferation of umbilical cord tissue derived mesenchymal stem cells for clinical applications.

    PubMed

    Van Pham, Phuc; Truong, Nhat Chau; Le, Phuong Thi-Bich; Tran, Tung Dang-Xuan; Vu, Ngoc Bich; Bui, Khanh Hong-Thien; Phan, Ngoc Kim

    2016-06-01

    Umbilical cord (UC) is a rich source of rapidly proliferating mesenchymal stem cells (MSCs) that are easily cultured on a large-scale. Clinical applications of UC-MSCs include graft-versus-host disease, and diabetes mellitus types 1 and 2. UC-MSCs should be isolated and proliferated according to good manufacturing practice (GMP) with animal component-free medium, quality assurance, and quality control for their use in clinical applications. This study developed a GMP standard protocol for UC-MSC isolation and culture. UC blood and UC were collected from the same donors. Blood vasculature was removed from UC. UC blood was used as a source of activated platelet rich plasma (aPRP). Small fragments (1-2 mm(2)) of UC membrane and Wharton's jelly were cut and cultured in DMEM/F12 medium containing 1 % antibiotic-antimycotic, aPRP (2.5, 5, 7.5 and 10 %) at 37 °C in 5 % CO2. The MSC properties of UC-MSCs at passage 5 such as osteoblast, chondroblast and adipocyte differentiation, and markers including CD13, CD14, CD29, CD34, CD44, CD45, CD73, CD90, CD105, and HLA-DR were confirmed. UC-MSCs also were analyzed for karyotype, expression of tumorigenesis related genes, cell cycle, doubling time as well as in vivo tumor formation in NOD/SCID mice. Control cells consisted of UC-MSCs cultured in DMEM/F12 plus 1 % antibiotic-antimycotic, and 10 % fetal bovine serum (FBS). All UC-MSC (n = 30) samples were successfully cultured in medium containing 7.5 and 10 % aPRP, 92 % of samples grew in 5.0 % aPRP, 86 % of samples in 2.5 % aPRP, and 72 % grew in 10 % FBS. UC-MSCs in these four groups exhibited similar marker profiles. Moreover, the proliferation rates in medium with PRP, especially 7.5 and 10 %, were significantly quicker compared with 2.5 and 5 % aPRP or 10 % FBS. These cells maintained a normal karyotype for 15 sub-cultures, and differentiated into osteoblasts, chondroblasts, and adipocytes. The analysis of pluripotent cell markers showed UC-MSCs maintained

  20. Influence of Egr-1 in cardiac tissue-derived mesenchymal stem cells in response to glucose variations.

    PubMed

    Bastianelli, Daniela; Siciliano, Camilla; Puca, Rosa; Coccia, Andrea; Murdoch, Colin; Bordin, Antonella; Mangino, Giorgio; Pompilio, Giulio; Calogero, Antonella; De Falco, Elena

    2014-01-01

    Mesenchymal stem cells (MSCs) represent a promising cell population for cell therapy and regenerative medicine applications. However, how variations in glucose are perceived by MSC pool is still unclear. Since, glucose metabolism is cell type and tissue dependent, this must be considered when MSCs are derived from alternative sources such as the heart. The zinc finger transcription factor Egr-1 is an important early response gene, likely to play a key role in the glucose-induced response. Our aim was to investigate how short-term changes in in vitro glucose concentrations affect multipotent cardiac tissue-derived MSCs (cMSCs) in a mouse model of Egr-1 KO (Egr-1(-/-)). Results showed that loss of Egr-1 does not significantly influence cMSC proliferation. In contrast, responses to glucose variations were observed in wt but not in Egr-1(-/-) cMSCs by clonogenic assay. Phenotype analysis by RT-PCR showed that cMSCs Egr-1(-/-) lost the ability to regulate the glucose transporters GLUT-1 and GLUT-4 and, as expected, the Egr-1 target genes VEGF, TGF β -1, and p300. Acetylated protein levels of H3 histone were impaired in Egr-1(-/-) compared to wt cMSCs. We propose that Egr-1 acts as immediate glucose biological sensor in cMSCs after a short period of stimuli, likely inducing epigenetic modifications.

  1. Premalignant alteration assessment in liver-like tissue derived from embryonic stem cells by aristolochic acid I exposure

    PubMed Central

    Li, Tong; Jin, Ke; Zhu, Dan-yan; Li, Lu; Mao, Zheng-rong; Wu, Bo-wen; Wang, Yi-fan; Pan, Zong-fu; Li, Lan-juan; Xiang, Chun-sheng; Su, Kun-kai; Lou, Yi-jia

    2016-01-01

    The in vitro predictive evaluation of chemical carcinogenicity based on hepatic premalignance has so far not been established. Here, we report a novel approach to investigate the premalignant events triggered by human carcinogen aristolochic acid I (AAI) in the liver-like tissue derived from mouse embryonic stem cells. By AAI exposure, the liver-like tissue exhibited the paracrine interleukin-6 phenotypic characteristics. Hepatocytes expressed STAT3/p-STAT3, c-Myc and Lin28B in parallel. Some of them displayed the dedifferentiation characteristics, such as full of α-fetoprotein granules, increase in size, and nucleocytoplasmic shuttle of Oct4. When these cells were injected into mice, the xenografts mostly displayed the uniform area of hepatic-like tissue with malignant nuclei. The hepatic malignant markers, α-fetoprotein, cytokeratin 7 and cytokeratin 19, were co-expressed in albumin-positive areas, respectively. In conclusion, we established an approach to predict the hepatic premalignance triggered by carcinogen AAI. This premalignant assay system might aid to evaluate the effects of potential carcinogens in liver, and probably to screen the protecting against hepatocarcinogenic efficacy of pharmaceuticals in vitro. PMID:27713163

  2. Cardiac Adipose-Derived Stem Cells Exhibit High Differentiation Potential to Cardiovascular Cells in C57BL/6 Mice.

    PubMed

    Nagata, Hiroki; Ii, Masaaki; Kohbayashi, Eiko; Hoshiga, Masaaki; Hanafusa, Toshiaki; Asahi, Michio

    2016-02-01

    Adipose-derived stem cells (AdSCs) have recently been shown to differentiate into cardiovascular lineage cells. However, little is known about the fat tissue origin-dependent differences in AdSC function and differentiation potential. AdSC-rich cells were isolated from subcutaneous, visceral, cardiac (CA), and subscapular adipose tissue from mice and their characteristics analyzed. After four different AdSC types were cultured with specific differentiation medium, immunocytochemical analysis was performed for the assessment of differentiation into cardiovascular cells. We then examined the in vitro differentiation capacity and therapeutic potential of AdSCs in ischemic myocardium using a mouse myocardial infarction model. The cell density and proliferation activity of CA-derived AdSCs were significantly increased compared with the other adipose tissue-derived AdSCs. Immunocytochemistry showed that CA-derived AdSCs had the highest appearance rates of markers for endothelial cells, vascular smooth muscle cells, and cardiomyocytes among the AdSCs. Systemic transfusion of CA-derived AdSCs exhibited the highest cardiac functional recovery after myocardial infarction and the high frequency of the recruitment to ischemic myocardium. Moreover, long-term follow-up of the recruited CA-derived AdSCs frequently expressed cardiovascular cell markers compared with the other adipose tissue-derived AdSCs. Cardiac adipose tissue could be an ideal source for isolation of therapeutically effective AdSCs for cardiac regeneration in ischemic heart diseases. Significance: The present study found that cardiac adipose-derived stem cells have a high potential to differentiate into cardiovascular lineage cells (i.e., cardiomyocytes, endothelial cells, and vascular smooth muscle cells) compared with stem cells derived from other adipose tissue such as subcutaneous, visceral, and subscapular adipose tissue. Notably, only a small number of supracardiac adipose-derived stem cells that were

  3. Histone deacetylase inhibitor sodium butyrate promotes the osteogenic differentiation of rat adipose-derived stem cells.

    PubMed

    Hu, Xiaoqing; Fu, Yutuo; Zhang, Xin; Dai, Linghui; Zhu, Jingxian; Bi, Zhenggang; Ao, Yingfang; Zhou, Chunyan

    2014-04-01

    Adult stem cells hold great promise for use in tissue repair and regeneration. Recently, adipose tissue-derived stem cells (ADSCs) were found to be an appealing alternative to bone marrow stem cells (BMSCs) for bone tissue engineering. The main benefit of ADSCs is that they can be easily and abundantly available from adipose tissue. However, our prior study discovered an important phenomenon that BMSCs have greater osteogenic potential than ADSCs in vitro and epigenetic regulation plays a critical role in runt-related transcription factor 2 (Runx2) expression and thus osteogenesis. In this study, we aimed to improve the osteogenic potential of ADSCs by histone deacetylase inhibitor sodium butyrate (NaBu). We found that NaBu promoted rat ADSC osteogenic differentiation by altering the epigenetic modifications on the Runx2 promoter.

  4. Fat depot-specific gene signature and ECM remodeling of Sca1(high) adipose-derived stem cells.

    PubMed

    Tokunaga, Masakuni; Inoue, Mayumi; Jiang, Yibin; Barnes, Richard H; Buchner, David A; Chun, Tae-Hwa

    2014-06-01

    Stem cell antigen-1 (Sca1 or Ly6A/E) is a cell surface marker that is widely expressed in mesenchymal stem cells, including adipose-derived stem cells (ASCs). We hypothesized that the fat depot-specific gene signature of Sca1(high) ASCs may play the major role in defining adipose tissue function and extracellular matrix (ECM) remodeling in a depot-specific manner. Herein we aimed to characterize the unique gene signature and ECM remodeling of Sca1(high) ASCs isolated from subcutaneous (inguinal) and visceral (epididymal) adipose tissues. Sca1(high) ASCs are found in the adventitia and perivascular areas of adipose tissues. Sca1(high) ASCs purified with magnetic-activated cell sorting (MACS) demonstrate dendrite or round shape with the higher expression of cytokines and chemokines (e.g., Il6, Cxcl1) and the lower expression of a glucose transporter (Glut1). Subcutaneous and visceral fat-derived Sca1(high) ASCs particularly differ in the gene expressions of adhesion and ECM molecules. While the expression of the major membrane-type collagenase (MMP14) is comparable between the groups, the expressions of secreted collagenases (MMP8 and MMP13) are higher in visceral Sca1(high) ASCs than in subcutaneous ASCs. Consistently, slow but focal MMP-dependent collagenolysis was observed with subcutaneous adipose tissue-derived vascular stromal cells, whereas rapid and bulk collagenolysis was observed with visceral adipose tissue-derived cells in MMP-dependent and -independent manners. These results suggest that the fat depot-specific gene signatures of ASCs may contribute to the distinct patterns of ECM remodeling and adipose function in different fat depots.

  5. Invited review: Pre- and postnatal adipose tissue development in farm animals: from stem cells to adipocyte physiology.

    PubMed

    Louveau, I; Perruchot, M-H; Bonnet, M; Gondret, F

    2016-11-01

    Both white and brown adipose tissues are recognized to be differently involved in energy metabolism and are also able to secrete a variety of factors called adipokines that are involved in a wide range of physiological and metabolic functions. Brown adipose tissue is predominant around birth, except in pigs. Irrespective of species, white adipose tissue has a large capacity to expand postnatally and is able to adapt to a variety of factors. The aim of this review is to update the cellular and molecular mechanisms associated with pre- and postnatal adipose tissue development with a special focus on pigs and ruminants. In contrast to other tissues, the embryonic origin of adipose cells remains the subject of debate. Adipose cells arise from the recruitment of specific multipotent stem cells/progenitors named adipose tissue-derived stromal cells. Recent studies have highlighted the existence of a variety of those cells being able to differentiate into white, brown or brown-like/beige adipocytes. After commitment to the adipocyte lineage, progenitors undergo large changes in the expression of many genes involved in cell cycle arrest, lipid accumulation and secretory functions. Early nutrition can affect these processes during fetal and perinatal periods and can also influence or pre-determinate later growth of adipose tissue. How these changes may be related to adipose tissue functional maturity around birth and can influence newborn survival is discussed. Altogether, a better knowledge of fetal and postnatal adipose tissue development is important for various aspects of animal production, including neonatal survival, postnatal growth efficiency and health.

  6. Advances in Adipose-Derived Stem Cells Isolation, Characterization, and Application in Regenerative Tissue Engineering

    PubMed Central

    Wankhade, Umesh D.; Shen, Michael; Kolhe, Ravindra; Fulzele, Sadanand

    2016-01-01

    Obesity is a complex, multifactorial disease that has been extensively researched in recent times. Obesity is characterized by excess deposition of adipose tissue in response to surplus energy. Despite the negative connotations of adipose tissue (AT), it serves as a critical endocrine organ. Adipose tissue is a source of several adipokines and cytokines which have been deemed important for both normal metabolic function and disease formation. The discoveries of metabolically active brown AT in adult humans and adipose tissue derived stem cells (ADSC) have been key findings in the past decade with potential therapeutic implications. ADSCs represent an enticing pool of multipotent adult stem cells because of their noncontroversial nature, relative abundance, ease of isolation, and expandability. A decade and a half since the discovery of ADSCs, the scientific community is still working to uncover their therapeutic potential in a wide range of diseases. In this review, we provide an overview of the recent developments in the field of ADSCs and examine their potential use in transplantation and cell-based therapies for the regeneration of diseased organs and systems. We also hope to provide perspective on how to best utilize this readily available, powerful pool of stem cells in the future. PMID:26981130

  7. Survival and Inflammatory Response in Adipose-derived Mesenchymal Stem Cell-enriched Mouse Fat Grafts

    PubMed Central

    Begic, Anadi; Isfoss, Björn L.; Lønnerød, Linn K.; Vigen, Alexander

    2016-01-01

    Background: Adipose tissue-derived mesenchymal stem cells (ATMSCs) are currently used in grafting procedures in a number of clinical trials. The reconstructive role of such cells in fat graft enrichment is largely unclear. This study was undertaken to assess survival and inflammatory response in fat grafts enriched with ATMSCs in mice. Methods: ATMSC-enriched adipose tissue was grafted subcutaneously in a clinically relevant manner in mice, and survival and inflammatory response were determined by bioluminescence imaging of transgenic tissue constitutively expressing luciferase or driven by inflammation in wild-type animals. Results: Only a minor fraction of ATMSCs transplanted subcutaneously were found to survive long term, yet fat grafts enriched with ATMSCs showed improved survival for a limited period, compared with no enrichment. NF-κB activity was transiently increased in ATMSC-enriched grafts, and the grafts responded adequately to a proinflammatory stimulus. In one animal, cells originating from the subcutaneous graft were found at a site of inflammation distant from the site of engraftment. Conclusion: ATMSCs display limited subcutaneous survival. Still, ATMSC enrichment may improve the outcome of adipose tissue grafting procedures by facilitating short-term graft survival and adequate inflammatory responses. Migration of cells from grafted adipose tissue requires further investigation. PMID:28293494

  8. Notch signalling inhibits the adipogenic differentiation of single-cell-derived mesenchymal stem cell clones isolated from human adipose tissue.

    PubMed

    Osathanon, Thanaphum; Subbalekha, Keskanya; Sastravaha, Panunn; Pavasant, Prasit

    2012-01-01

    ADSCs (adipose-derived mesenchymal stem cells) are candidate adult stem cells for regenerative medicine. Notch signalling participates in the differentiation of a heterogeneous ADSC population. We have isolated, human adipose tissue-derived single-cell clones using a cloning ring technique and characterized for their stem cell characteristics. The role of Notch signalling in the differentiation capacity of these adipose-derived single-cell-clones has also been investigated. All 14 clones expressed embryonic and mesenchymal stem cell marker genes. These clones could differentiate into both osteogenic and adipogenic lineages. However, the differentiation potential of each clone was different. Low adipogenic clones had significantly higher mRNA expression levels of Notch 2, 3 and 4, Jagged1, as well as Delta1, compared with those of high adipogenic clones. In contrast, no changes in expression of Notch signalling component mRNA between low and high osteogenic clones was found. Notch receptor mRNA expression decreased with the adipogenic differentiation of both low and high adipogenic clones. The γ-secretase inhibitor, DAPT (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-(S)-phenylglycine t-butyl ester), enhanced adipogenic differentiation. Correspondingly, cells seeded on a Notch ligand (Jagged1) bound surface showed lower intracellular lipid accumulation. These results were noted in both low and high adipogenic clones, indicating that Notch signalling inhibited the adipogenic differentiation of adipose ADSC clones, and could be used to identify an adipogenic susceptible subpopulation for soft-tissue augmentation application.

  9. Characterization of adipose tissue macrophages and adipose-derived stem cells in critical wounds

    PubMed Central

    Tilstam, Pathricia V.; Springenberg-Jung, Katrin; Boecker, Arne Hendrick; Schmitz, Corinna; Heinrichs, Daniel; Hwang, Soo Seok; Stromps, Jan Philipp; Ganse, Bergita; Kopp, Ruedger; Knobe, Matthias; Bernhagen, Juergen

    2017-01-01

    Background Subcutaneous adipose tissue is a rich source of adipose tissue macrophages and adipose-derived stem cells which both play a key role in wound repair. While macrophages can be divided into the classically-activated M1 and the alternatively-activated M2 phenotype, ASCs are characterized by the expression of specific stem cell markers. Methods In the present study, we have investigated the expression of common macrophage polarization and stem cell markers in acutely inflamed adipose tissue. Subcutaneous adipose tissue adjacent to acutely inflamed wounds of 20 patients and 20 healthy subjects were harvested and underwent qPCR and flow cytometry analysis. Results Expression levels of the M1-specific markers CD80, iNOS, and IL-1b were significantly elevated in inflammatory adipose tissue when compared to healthy adipose tissue, whereas the M2-specific markers CD163 and TGF-β were decreased. By flow cytometry, a significant shift of adipose tissue macrophage populations towards the M1 phenotype was confirmed. Furthermore, a decrease in the mesenchymal stem cell markers CD29, CD34, and CD105 was observed whereas CD73 and CD90 remained unchanged. Discussion This is the first report describing the predominance of M1 adipose tissue macrophages and the reduction of stem cell marker expression in acutely inflamed, non-healing wounds. PMID:28070458

  10. Enrichment of putative stem cells from adipose tissue using dielectrophoretic field-flow fractionation

    PubMed Central

    Vykoukal, Jody; Vykoukal, Daynene M.; Freyberg, Susanne; Alt, Eckhard U.; Gascoyne, Peter R. C.

    2009-01-01

    We have applied the microfluidic cell separation method of dielectrophoretic field-flow fractionation (DEP-FFF) to the enrichment of a putative stem cell population from an enzyme-digested adipose tissue derived cell suspension. A DEP-FFF separator device was constructed using a novel microfluidic-microelectronic hybrid flex-circuit fabrication approach that is scaleable and anticipates future low-cost volume manufacturing. We report the separation of a nucleated cell fraction from cell debris and the bulk of the erythrocyte population, with the relatively rare (<2% starting concentration) NG2-positive cell population (pericytes and/or putative progenitor cells) being enriched up to 14-fold. This work demonstrates a potential clinical application for DEP-FFF and further establishes the utility of the method for achieving label-free fractionation of cell subpopulations. PMID:18651083

  11. Giant cell tumor in adipose package Hoffa

    PubMed Central

    Etcheto, H. Rivarola; Escobar, G.; Blanchod, C. Collazo; Palanconi, M.; Zordan, J.; Salinas, E. Alvarez; Autorino₁, Carlos

    2017-01-01

    Tumors of adipose Hoffa package are very uncommon, with isolated cases reported in the literature. His presentation in pediatric patients knee is exceptional. The most frequently described tumors are benign including vellonodular synovitis. The extra-articular localized variant there of is known as giant cell tumor of the tendon sheath. It is characterized by locally aggressive nature, and has been described in reports of isolated cases. Objective: A case of giant cell tumor of the tendon sheath in adipose presentation package Hoffa in pediatric patients is presented in this paper. Methods: male patient eleven years with right knee pain after sports practice was evaluated. Physical examination, showed limited extension -30º, joint effusion, stable negative Lachman maneuver without peripheral knee laxity. MRI hyperintense on tumor is observed in T2 and hypointense on T1 homogeneous and defined edges content displayed prior to LCA related to adipose Hoffa package. Results: The tumor specimen was obtained and histopathology is defined as densely cellular tissue accumulation of xantomisados fibrocollagenous with histiocytes and multinucleated giant cells, compatible with giant cell tumor of tendon sheath. Conclusion: The presentation of giant cell tumors of the tendon sheath in Hoffa fat pad is exceptional. However, his suspicion allows adequate preoperative surgical planning, as a whole resection is the only procedure that has been shown to decrease the rate of recurrence of this disease.

  12. Adipose stem cells and skin repair.

    PubMed

    Jeong, Jae Ho

    2010-06-01

    With the discovery of adipose stem cells (ASCs), 40 years after the identification of bone marrow stem cells, a new era of active stem cell therapy has opened. The abundance of stem cells harvested from adipose tissue enables us to instantly apply primary cells without culture expansion. ASCs are already clinically applied in many other purposes such as cell-enriched lipotransfer, wound healing, skin rejuvenation, scar remodeling and skin tissue engineering. Although cellular mechanism of ASCs is not completely understood, recent researches have disclosed some of their unique functions as mesenchymal stem cells. There have been increasing numbers of scientific reports on the therapeutic effect of ASCs on skin repair, scar remodeling and rejuvenation. Wound healing and scar remodeling are complex, multi-cellular processes that involve coordinated efforts of many cell types and various cytokines. Recent reports showed ASCs as a powerful source of skin regeneration because of their capability to provide not only cellular elements, but also numerous cytokines. Currently, other attractive functions of ASCs in the recovery of extrinsic aging and radiation damage are under active investigation. It seems that autologous ASCs have great promise for applications in repair of skin, rejuvenation of aging skin and aging-related skin lesions. This review will focus on the specific roles of ASCs in skin tissue, especially related with wound healing, radiation injury, scar remodeling, skin rejuvenation and skin engineering.

  13. Effects of Sit Up Exercise Training on Adipose Cell Size and Adiposity.

    ERIC Educational Resources Information Center

    Katch, Frank I.; And Others

    1984-01-01

    This article reports on an experiment that evaluated the effects of a 27-day sit up exercise training program on adipose cell size and adiposity. Fat biopsies were taken by needle aspiration from male subjects before and after a progressive training regimen. Results are discussed. (Author/DF)

  14. Umbilical Cord Tissue-Derived Mesenchymal Stem Cells Induce T Lymphocyte Apoptosis and Cell Cycle Arrest by Expression of Indoleamine 2, 3-Dioxygenase

    PubMed Central

    Li, Xiuying; Xu, Zhuo; Bai, Jinping; Yang, Shuyuan; Zhao, Shuli; Zhang, Yingjie; Chen, Xiaodong

    2016-01-01

    It has been reported that human mesenchymal stem cells are able to inhibit T lymphocyte activation; however, the discrepancy among different sources of MSCs is not well documented. In this study, we have compared the MSCs from bone marrow (BM), adipose tissue (AT), placenta (PL), and umbilical cord (UC) to determine which one displayed the most efficient immunosuppressive effects on phytohemagglutinin-induced T cell proliferation. Among them we found that hUC-MSC has the strongest effects on inhibiting T cell proliferation and is chosen to do the further study. We observed that T lymphocyte spontaneously released abundant IFN-γ. And IFN-γ secreted by T lymphocyte could induce the expression of indoleamine 2, 3-dioxygenase (IDO) in hUC-MSCs. IDO was previously reported to induce T lymphocyte apoptosis and cell cycle arrest in S phase. When cocultured with hUC-MSCs, T lymphocyte expression of caspase 3 was significantly increased, while Bcl2 and CDK4 mRNA expression decreased dramatically. Addition of 1-methyl tryptophan (1-MT), an IDO inhibitor, restored T lymphocyte proliferation, reduced apoptosis, and induced resumption of the cell cycle. In addition, the changes in caspase 3, CDK4, and Bcl2 expression were reversed by 1-MT. These findings demonstrate that hUC-MSCs induce T lymphocyte apoptosis and cell cycle arrest by expressing abundant IDO and provide an explanation for some of the immunomodulatory effects of MSCs. PMID:27418932

  15. Characterization of Three-Dimensional Retinal Tissue Derived from Human Embryonic Stem Cells in Adherent Monolayer Cultures

    PubMed Central

    Singh, Ratnesh K.; Mallela, Ramya K.; Cornuet, Pamela K.; Reifler, Aaron N.; Chervenak, Andrew P.; West, Michael D.; Wong, Kwoon Y.; Nasonkin, Igor O.

    2015-01-01

    Stem cell-based therapy of retinal degenerative conditions is a promising modality to treat blindness, but requires new strategies to improve the number of functionally integrating cells. Grafting semidifferentiated retinal tissue rather than progenitors allows preservation of tissue structure and connectivity in retinal grafts, mandatory for vision restoration. Using human embryonic stem cells (hESCs), we derived retinal tissue growing in adherent conditions consisting of conjoined neural retina and retinal pigment epithelial (RPE) cells and evaluated cell fate determination and maturation in this tissue. We found that deriving such tissue in adherent conditions robustly induces all eye field genes (RX, PAX6, LHX2, SIX3, SIX6) and produces four layers of pure populations of retinal cells: RPE (expressing NHERF1, EZRIN, RPE65, DCT, TYR, TYRP, MITF, PMEL), early photoreceptors (PRs) (coexpressing CRX and RCVRN), inner nuclear layer neurons (expressing CALB2), and retinal ganglion cells [RGCs, expressing BRN3B and Neurofilament (NF) 200]. Furthermore, we found that retinal progenitors divide at the apical side of the hESC-derived retinal tissue (next to the RPE layer) and then migrate toward the basal side, similar to that found during embryonic retinogenesis. We detected synaptogenesis in hESC-derived retinal tissue, and found neurons containing many synaptophysin-positive boutons within the RGC and PR layers. We also observed long NF200-positive axons projected by RGCs toward the apical side. Whole-cell recordings demonstrated that putative amacrine and/or ganglion cells exhibited electrophysiological responses reminiscent of those in normal retinal neurons. These responses included voltage-gated Na+ and K+ currents, depolarization-induced spiking, and responses to neurotransmitter receptor agonists. Differentiation in adherent conditions allows generation of long and flexible pieces of 3D retinal tissue suitable for isolating transplantable slices of tissue for

  16. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus

    PubMed Central

    da Costa, Ricardo M. F.; Lee, Scott J.; Allison, Gordon G.; Hazen, Samuel P.; Winters, Ana; Bosch, Maurice

    2014-01-01

    Background and Aims Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Methods Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transform mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Key Results Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. Conclusions It is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene–trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only

  17. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus

    DOE PAGES

    da Costa, Ricardo M. F.; Lee, Scott J.; Allison, Gordon G.; ...

    2014-04-15

    Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transformmore » mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. In conclusion, it is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene-trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass

  18. Comparative analysis of adherence, viability, proliferation and morphology of umbilical cord tissue-derived mesenchymal stem cells seeded on different titanium-coated expanded polytetrafluoroethylene scaffolds.

    PubMed

    Hollweck, Trixi; Marschmann, Michaela; Hartmann, Isabel; Akra, Bassil; Meiser, Bruno; Reichart, Bruno; Eblenkamp, Markus; Wintermantel, Erich; Eissner, Günther

    2010-12-01

    Umbilical cord tissue comprises an attractive new source for mesenchymal stem cells. Umbilical cord tissue-derived mesenchymal stem cells (UCMSC) exhibit self-renewal, multipotency and immunological naivity, and they can be obtained without medical intervention. The transfer of UCMSC to the ischemic region of the heart may have a favorable impact on tissue regeneration. Benefit from typical cell delivery by injection to the infarcted area is often limited due to poor cell retention and survival. Another route of administration is to use populated scaffolds implanted into the infarcted zone. In this paper, the seeding efficiency of UCMSC on uncoated and titanium-coated expanded polytetrafluoroethylene (ePTFE) scaffolds with different surface structures was determined. Dualmesh (DM) offers a corduroy-like surface in contrast to the comparatively planar surface of cardiovascular patch (CVP). The investigation of adherence, viability and proliferation of UCMSC demonstrates that titanium-coated scaffolds are superior to uncoated scaffolds, independent of the surface structure. Microscopic images reveal spherical UCMSC seeded on uncoated scaffolds. In contrast, UCMSC on titanium-coated scaffolds display their characteristic spindle-shaped morphology and a homogeneous coverage of CVP. In summary, titanium coating of clinically approved CVP enhances the retention of UCMSC and thus offers a potential cell delivery system for the repair of the damaged myocardium.

  19. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells.

    PubMed

    Eoh, Joon H; Shen, Nian; Burke, Jacqueline A; Hinderer, Svenja; Xia, Zhiyong; Schenke-Layland, Katja; Gerecht, Sharon

    2017-04-01

    Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications.

  20. Self-Organizing 3D Human Neural Tissue Derived from Induced Pluripotent Stem Cells Recapitulate Alzheimer’s Disease Phenotypes

    PubMed Central

    Raja, Waseem K.; Mungenast, Alison E.; Lin, Yuan-Ta; Ko, Tak; Abdurrob, Fatema; Seo, Jinsoo; Tsai, Li-Huei

    2016-01-01

    The dismal success rate of clinical trials for Alzheimer’s disease (AD) motivates us to develop model systems of AD pathology that have higher predictive validity. The advent of induced pluripotent stem cells (iPSCs) allows us to model pathology and study disease mechanisms directly in human neural cells from healthy individual as well as AD patients. However, two-dimensional culture systems do not recapitulate the complexity of neural tissue, and phenotypes such as extracellular protein aggregation are difficult to observe. We report brain organoids that use pluripotent stem cells derived from AD patients and recapitulate AD-like pathologies such as amyloid aggregation, hyperphosphorylated tau protein, and endosome abnormalities. These pathologies are observed in an age-dependent manner in organoids derived from multiple familial AD (fAD) patients harboring amyloid precursor protein (APP) duplication or presenilin1 (PSEN1) mutation, compared to controls. The incidence of AD pathology was consistent amongst several fAD lines, which carried different mutations. Although these are complex assemblies of neural tissue, they are also highly amenable to experimental manipulation. We find that treatment of patient-derived organoids with β- and γ-secretase inhibitors significantly reduces amyloid and tau pathology. Moreover, these results show the potential of this model system to greatly increase the translatability of pre-clinical drug discovery in AD. PMID:27622770

  1. Laser-induced lipolysis on adipose cells

    NASA Astrophysics Data System (ADS)

    Solarte, Efrain; Gutierrez, O.; Neira, Rodrigo; Arroyave, J.; Isaza, Carolina; Ramirez, Hugo; Rebolledo, Aldo F.; Criollo, Willian; Ortiz, C.

    2004-10-01

    Recently, a new liposuction technique, using a low-level laser (LLL) device and Ultrawet solution prior to the procedure, demonstrated the movement of fat from the inside to the outside of the adipocyte (Neira et al., 2002). To determine the mechanisms involved, we have performed Scanning and Transmission Electron Microscopy studies; Light transmittance measurements on adipocyte dilutions; and a study of laser light propagation in adipose tissue. This studies show: 1. Cellular membrane alterations. 2. LLL is capable to reach the deep adipose tissue layer, and 3. The tumescence solution enhances the light propagation by clearing the tissue. MRI studies demonstrated the appearance of fat on laser treated abdominal tissue. Besides, adipocytes were cultivated and irradiated to observe the effects on isolated cells. These last studies show: 1. 635 nm-laser alone is capable of mobilizing cholesterol from the cell membrane; this action is enhanced by the presence of adrenaline and lidocaine. 2. Intracellular fat is released from adipocytes by co joint action of adrenaline, aminophyline and 635 nm-laser. Results are consistent with a laser induced cellular process, which causes fat release from the adipocytes into the intercellular space, besides the modification of the cellular membranes.

  2. Proline oxidase-adipose triglyceride lipase pathway restrains adipose cell death and tissue inflammation.

    PubMed

    Lettieri Barbato, D; Aquilano, K; Baldelli, S; Cannata, S M; Bernardini, S; Rotilio, G; Ciriolo, M R

    2014-01-01

    The nutrient-sensing lipolytic enzyme adipose triglyceride lipase (ATGL) has a key role in adipose tissue function, and alterations in its activity have been implicated in many age-related metabolic disorders. In adipose tissue reduced blood vessel density is related to hypoxia state, cell death and inflammation. Here we demonstrate that adipocytes of poorly vascularized enlarged visceral adipose tissue (i.e. adipose tissue of old mice) suffer from limited nutrient delivery. In particular, nutrient starvation elicits increased activity of mitochondrial proline oxidase/dehydrogenase (POX/PRODH) that is causal in triggering a ROS-dependent induction of ATGL. We demonstrate that ATGL promotes the expression of genes related to mitochondrial oxidative metabolism (peroxisome proliferator-activated receptor-α, peroxisome proliferator-activated receptor-γ coactivator-1α), thus setting a metabolic switch towards fat utilization that supplies energy to starved adipocytes and prevents cell death, as well as adipose tissue inflammation. Taken together, these results identify ATGL as a stress resistance mediator in adipocytes, restraining visceral adipose tissue dysfunction typical of age-related metabolic disorders.

  3. Brain-derived neurotrophic factor produced by human umbilical tissue-derived cells is required for its effect on hippocampal dendritic differentiation.

    PubMed

    Alder, Janet; Kramer, Brian C; Hoskin, Casey; Thakker-Varia, Smita

    2012-06-01

    The potential for nonembryonic cells to promote differentiation of neuronal cells has therapeutic implications for regeneration of neurons damaged by stroke or injury and avoids many ethical and safety concerns. The authors have assessed the capacity of human umbilical tissue-derived cells (hUTC) and human mesenchymal stromal cells (hMSC) to enhance differentiation of rodent hippocampal neurons. Co-culture of hippocampal cells with hUTC or hMSC in transwell inserts for 3 days resulted in increase of several dendritic parameters including the number and length of primary dendrites. The effect of hUTC or hMSC on dendritic maturation was only apparent on neurons grown for 2 weeks in vitro prior to co-culture. Changes in dendritic morphology in the presence of hUTC were also accompanied by increased expression of the presynaptic marker synaptotagmin and the postsynaptic marker postsynaptic density protein 95 kDa (PSD95) suggesting that there may also be an increase in the number of synapses formed in the presence of hUTC. The effect of hUTC and hMSC on hippocampal cells in co-culture was comparable to those induced by treatment with recombinant human brain-derived neurotrophic factor (BDNF) implying that a similar factor may be released from hUTC or hMSC. Analysis of hUTC-conditioned medium by ELISA demonstrated that BDNF was indeed secreted. An antibody that blocks the actions of BDNF partially inhibited the actions of hUTC on dendritic morphology suggesting that BDNF is at least one of the factors secreted from the cells to promote dendritic maturation. These results indicate that hUTC secrete biologically active BDNF, which can affect dendritic morphology.

  4. Extensive characterization of feline intra-abdominal adipose-derived mesenchymal stem cells.

    PubMed

    Kim, Hee-Ryang; Lee, Jienny; Byeon, Jeong Su; Gu, Na-Yeon; Lee, Jiyun; Cho, In-Soo; Cha, Sang-Ho

    2016-07-25

    Mesenchymal stem cells (MSCs) have been isolated from various tissues and well characterized for therapeutic application to clinical diseases. However, in contrast to MSCs from other animal species, the characteristics of feline MSCs have not been well documented. In this study, we attempted to conduct extensive characterization of feline adipose tissue-derived MSCs (fAD-MSCs). fAD-MSCs were individually isolated from the intra-abdominal adipose tissues of six felines. The expression levels of cell surface markers and pluripotent markers were evaluated. Next, the proliferation capacity was analyzed by cumulative population doubling level (CPDL) and doubling time (DT) calculation assays. Differentiation potentials into mesodermal cell lineages of fAD-MSCs were further analyzed by specific staining and molecular markers. All of fAD-MSCs positively expressed cell surface markers such as CD29, CD44, CD90, CD105, CD166, and MHC-I, while CD14, CD34, CD45, and CD73 were negatively expressed. The CPDL of the fAD-MSCs was maintained until passage 5 to 6 (P5 to P6) and DT increased after P5 to P6. Also, stem cell specific pluripotent markers (Oct3/4, Nanog, and SSEA-4) were detected. Importantly, all of the fAD-MSCs demonstrated mesodermal differentiation capacity. These results suggest that well characterized fAD-MSCs could be beneficial, when considering these cells for researches of feline diseases.

  5. Adipose-derived stem cells for periodontal tissue regeneration.

    PubMed

    Tobita, Morikuni; Mizuno, Hiroshi

    2011-01-01

    Mesenchymal stem cells can effectively regenerate destroyed periodontal tissue. Because periodontal tissues are complex, mesenchymal stem cells that can differentiate into many tissue types would aid periodontal tissue regeneration. Indeed, periodontal tissue regeneration using mesenchymal stem cells derived from adipose tissue or bone marrow has been performed in experimental animal models, such as rat, canine, swine, and monkey. We have shown that rat periodontal tissue can be regenerated with adipose-derived stem cells. Adipose tissue contains a large number of stromal cells and is relatively easy to obtain in large quantities, and thus constitutes a very convenient stromal cell source. In this chapter, we introduce a rat periodontal tissue regeneration model using adipose-derived stem cells.

  6. Bovine dedifferentiated adipose tissue (DFAT) cells

    PubMed Central

    Wei, Shengjuan; Du, Min; Jiang, Zhihua; Duarte, Marcio S; Fernyhough-Culver, Melinda; Albrecht, Elke; Will, Katja; Zan, Linsen; Hausman, Gary J; Elabd, Elham M Youssef; Bergen, Werner G; Basu, Urmila; Dodson, Michael V

    2013-01-01

    Dedifferentiated fat cells (DFAT cells) are derived from lipid-containing (mature) adipocytes, which possess the ability to symmetrically or asymmetrically proliferate, replicate, and redifferentiate/transdifferentiate. Robust cell isolation and downstream culture methods are needed to isolate large numbers of DFAT cells from any (one) adipose depot in order to establish population dynamics and regulation of the cells within and across laboratories. In order to establish more consistent/repeatable methodology here we report on two different methods to establish viable DFAT cell cultures: both traditional cell culture flasks and non-traditional (flat) cell culture plates were used for ceiling culture establishment. Adipocytes (maternal cells of the DFAT cells) were easier to remove from flat culture plates than flasks and the flat plates also allowed cloning rings to be utilized for cell/cell population isolation. While additional aspects of usage of flat-bottomed cell culture plates may yet need to be optimized by definition of optimum bio-coating to enhance cell attachment, utilization of flat plate approaches will allow more efficient study of the dedifferentiation process or the DFAT progeny cells. To extend our preliminary observations, dedifferentiation of Wagyu intramuscular fat (IMF)-derived mature adipocytes and redifferentiation ability of DFAT cells utilizing the aforementioned isolation protocols were examined in traditional basal media/differentiation induction media (DMI) containing adipogenic inducement reagents. In the absence of treatment approximately 10% isolated Wagyu IMF-mature adipocytes dedifferentiated spontaneously and 70% DFAT cells displayed protracted adipogenesis 12 d after confluence in vitro. Lipid-free intracellular vesicles in the cytoplasm (vesicles possessing an intact membrane but with no any observable or stainable lipid inside) were observed during redifferentiation. One to 30% DFAT cells redifferentiated into lipid

  7. Recloned dogs derived from adipose stem cells of a transgenic cloned beagle.

    PubMed

    Oh, Hyun Ju; Park, Jung Eun; Kim, Min Jung; Hong, So Gun; Ra, Jeong Chan; Jo, Jung Youn; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun

    2011-04-15

    A number of studies have postulated that efficiency in mammalian cloning is inversely correlated with donor cell differentiation status and may be increased by using undifferentiated cells as nuclear donors. Here, we attempted the recloning of dogs by nuclear transfer of canine adipose tissue-derived mesenchymal stem cells (cAd-MSCs) from a transgenic cloned beagle to determine if cAd-MSCs can be a suitable donor cell type. In order to isolate cAd-MSCs, adipose tissues were collected from a transgenic cloned beagle produced by somatic cell nuclear transfer (SCNT) of canine fetal fibroblasts modified genetically with a red fluorescent protein (RFP) gene. The cAd-MSCs expressed the RFP gene and cell-surface marker characteristics of MSCs including CD29, CD44 and thy1.1. Furthermore, cAd-MSCs underwent osteogenic, adipogenic, myogenic, neurogenic and chondrogenic differentiation when exposed to specific differentiation-inducing conditions. In order to investigate the developmental potential of cAd-MSCs, we carried out SCNT. Fused-couplets (82/109, 75.2%) were chemically activated and transferred into the uterine tube of five naturally estrus-synchronized surrogates. One of them (20%) maintained pregnancy and subsequently gave birth to two healthy cloned pups. The present study demonstrated for the first time the successful production of cloned beagles by nuclear transfer of cAd-MSCs. Another important outcome of the present study is the successful recloning of RFP-expressing transgenic cloned beagle pups by nuclear transfer of cells derived from a transgenic cloned beagle. In conclusion, the present study demonstrates that adipose stem cells can be a good nuclear donor source for dog cloning.

  8. Different routes of administration of human umbilical tissue-derived cells improve functional recovery in the rat after focal cerebral ischemia.

    PubMed

    Zhang, Li; Li, Yi; Romanko, Michael; Kramer, Brian C; Gosiewska, Anna; Chopp, Michael; Hong, Klaudyne

    2012-12-13

    Human umbilical tissue-derived cells (hUTC) are a potential neurorestorative candidate for stroke treatment. Here, we test the effects of hUTC treatment in a rat model of stroke via various routes of administration. Rats were treated with hUTC or phosphate-buffered saline (PBS) via different routes including intraarterial (IA), intravenous (IV), intra-cisterna magna (ICM), lumber intrathecal (IT), or intracerebral injection (IC) at 24h after stroke onset. Treatment with hUTC via IV and IC route led to significant functional improvements starting at day 14, which persisted to day 60 compared with respective PBS-treated rats. HUTC administered via IA, ICM, and IT significantly improved neurological functional recovery starting at day 14 and persisted up to day 49 compared with PBS-treated rats. Although IA administration resulted in the highest donor cell number detected within the ischemic brain compared to the other routes, hUTC treatments significantly increased ipsilateral bromodeoxyuridine incorporating subventricular zone (SVZ) cells and vascular density in the ischemic boundary compared with PBS-treated rats regardless of the route of administration. While rats received hUTC treatment via IA, IV, IC, and ICM routes showed greater synaptophysin immunoreactivity, significant reductions in TUNEL-positive cells in the ipsilateral hemisphere were observed in IA, IV, and IC routes compared with PBS-treated rats. hUTC treatments did not reduce infarct volume when compared to the PBS groups. Our data indicate that hUTC administered via multiple routes provide therapeutic benefit after stroke. The enhancement of neurorestorative events in the host brain may contribute to the therapeutic benefits of hUTC in the treatment of stroke.

  9. Enhanced Adipogenic Differentiation of Human Adipose-Derived Stem Cells in an In Vitro Microenvironment: The Preparation of Adipose-Like Microtissues Using a Three-Dimensional Culture

    PubMed Central

    Miyamoto, Yoshitaka; Ikeuchi, Masashi; Noguchi, Hirofumi; Yagi, Tohru; Hayashi, Shuji

    2017-01-01

    The application of stem cells for cell therapy has been extensively studied in recent years. Among the various types of stem cells, human adipose tissue-derived stem cells (ASCs) can be obtained in large quantities with relatively few passages, and they possess a stable quality. ASCs can differentiate into a number of cell types, such as adipose cells and ectodermal cells. We therefore focused on the in vitro microenvironment required for such differentiation and attempted to induce the differentiation of human stem cells into microtissues using a microelectromechanical system. We first evaluated the adipogenic differentiation of human ASC spheroids in a three-dimensional (3D) culture. We then created the in vitro microenvironment using a 3D combinatorial TASCL device and attempted to induce the adipogenic differentiation of human ASCs. The differentiation of human ASC spheroids cultured in maintenance medium and those cultured in adipocyte differentiation medium was evaluated via Oil red O staining using lipid droplets based on the quantity of accumulated triglycerides. The differentiation was confirmed in both media, but the human ASCs in the 3D cultures contained higher amounts of triglycerides than those in the 2D cultures. In the short culture period, greater adipogenic differentiation was observed in the 3D cultures than in the 2D cultures. The 3D culture using the TASCL device with adipogenic differentiation medium promoted greater differentiation of human ASCs into adipogenic lineages than either a 2D culture or a culture using a maintenance medium. In summary, the TASCL device created a hospitable in vitro microenvironment and may therefore be a useful tool for the induction of differentiation in 3D culture. The resultant human ASC spheroids were “adipose-like microtissues” that formed spherical aggregation perfectly and are expected to be applicable in regenerative medicine as well as cell transplantation. PMID:28174673

  10. Enhanced Adipogenic Differentiation of Human Adipose-Derived Stem Cells in an In Vitro Microenvironment: The Preparation of Adipose-Like Microtissues Using a Three-Dimensional Culture.

    PubMed

    Miyamoto, Yoshitaka; Ikeuchi, Masashi; Noguchi, Hirofumi; Yagi, Tohru; Hayashi, Shuji

    2017-01-08

    The application of stem cells for cell therapy has been extensively studied in recent years. Among the various types of stem cells, human adipose tissue-derived stem cells (ASCs) can be obtained in large quantities with relatively few passages, and they possess a stable quality. ASCs can differentiate into a number of cell types, such as adipose cells and ectodermal cells. We therefore focused on the in vitro microenvironment required for such differentiation and attempted to induce the differentiation of human stem cells into microtissues using a microelectromechanical system. We first evaluated the adipogenic differentiation of human ASC spheroids in a three-dimensional (3D) culture. We then created the in vitro microenvironment using a 3D combinatorial TASCL device and attempted to induce the adipogenic differentiation of human ASCs. The differentiation of human ASC spheroids cultured in maintenance medium and those cultured in adipocyte differentiation medium was evaluated via Oil red O staining using lipid droplets based on the quantity of accumulated triglycerides. The differentiation was confirmed in both media, but the human ASCs in the 3D cultures contained higher amounts of triglycerides than those in the 2D cultures. In the short culture period, greater adipogenic differentiation was observed in the 3D cultures than in the 2D cultures. The 3D culture using the TASCL device with adipogenic differentiation medium promoted greater differentiation of human ASCs into adipogenic lineages than either a 2D culture or a culture using a maintenance medium. In summary, the TASCL device created a hospitable in vitro microenvironment and may therefore be a useful tool for the induction of differentiation in 3D culture. The resultant human ASC spheroids were "adipose-like microtissues" that formed spherical aggregation perfectly and are expected to be applicable in regenerative medicine as well as cell transplantation.

  11. Therapeutic Potential of Adipose-Derived SSEA-3-Positive Muse Cells for Treating Diabetic Skin Ulcers

    PubMed Central

    Kinoshita, Kahori; Kuno, Shinichiro; Ishimine, Hisako; Aoi, Noriyuki; Mineda, Kazuhide; Kato, Harunosuke; Doi, Kentaro; Kanayama, Koji; Feng, Jingwei; Mashiko, Takanobu; Kurisaki, Akira

    2015-01-01

    Stage-specific embryonic antigen-3 (SSEA-3)-positive multipotent mesenchymal cells (multilineage differentiating stress-enduring [Muse] cells) were isolated from cultured human adipose tissue-derived stem/stromal cells (hASCs) and characterized, and their therapeutic potential for treating diabetic skin ulcers was evaluated. Cultured hASCs were separated using magnetic-activated cell sorting into positive and negative fractions, a SSEA-3+ cell-enriched fraction (Muse-rich) and the remaining fraction (Muse-poor). Muse-rich hASCs showed upregulated and downregulated pluripotency and cell proliferation genes, respectively, compared with Muse-poor hASCs. These cells also released higher amounts of certain growth factors, particularly under hypoxic conditions, compared with Muse-poor cells. Skin ulcers were generated in severe combined immunodeficiency (SCID) mice with type 1 diabetes, which showed delayed wound healing compared with nondiabetic SCID mice. Treatment with Muse-rich cells significantly accelerated wound healing compared with treatment with Muse-poor cells. Transplanted cells were integrated into the regenerated dermis as vascular endothelial cells and other cells. However, they were not detected in the surrounding intact regions. Thus, the selected population of ASCs has greater therapeutic effects to accelerate impaired wound healing associated with type 1 diabetes. These cells can be achieved in large amounts with minimal morbidity and could be a practical tool for a variety of stem cell-depleted or ischemic conditions of various organs and tissues. PMID:25561682

  12. Characterization and therapeutic application of canine adipose mesenchymal stem cells to treat elbow osteoarthritis.

    PubMed

    Kriston-Pál, Éva; Czibula, Ágnes; Gyuris, Zoltán; Balka, Gyula; Seregi, Antal; Sükösd, Farkas; Süth, Miklós; Kiss-Tóth, Endre; Haracska, Lajos; Uher, Ferenc; Monostori, Éva

    2017-01-01

    Visceral adipose tissue (AT) obtained from surgical waste during routine ovariectomies was used as a source for isolating canine mesenchymal stem cells (MSCs). As determined by cytofluorimetry, passage 2 cells expressed MSC markers CD44 and CD90 and were negative for lineage-specific markers CD34 and CD45. The cells differentiated toward osteogenic, adipogenic, and chondrogenic directions. With therapeutic aims, 30 dogs (39 joints) suffering from elbow dysplasia (ED) and osteoarthritis (OA) were intra-articularly transplanted with allogeneic MSCs suspended in 0.5% hyaluronic acid (HA). A highly significant improvement was achieved without any medication as demonstrated by the degree of lameness during the follow-up period of 1 y. Control arthroscopy of 1 transplanted dog indicated that the cartilage had regenerated. Histological analysis of the cartilage biopsy confirmed that the regenerated cartilage was of hyaline type. These results demonstrate that transplantation of allogeneic adipose tissue-derived mesenchymal stem cells (AT-MSCs) is a novel, noninvasive, and highly effective therapeutic tool in treating canine elbow dysplasia.

  13. Obesity Determines the Immunophenotypic Profile and Functional Characteristics of Human Mesenchymal Stem Cells From Adipose Tissue

    PubMed Central

    Pachón-Peña, Gisela; Serena, Carolina; Ejarque, Miriam; Petriz, Jordi; Duran, Xevi; Oliva-Olivera, W.; Simó, Rafael; Tinahones, Francisco J.

    2016-01-01

    Adipose tissue is a major source of mesenchymal stem cells (MSCs), which possess a variety of properties that make them ideal candidates for regenerative and immunomodulatory therapies. Here, we compared the immunophenotypic profile of human adipose-derived stem cells (hASCs) from lean and obese individuals, and explored its relationship with the apparent altered plasticity of hASCs. We also hypothesized that persistent hypoxia treatment of cultured hASCs may be necessary but not sufficient to drive significant changes in mature adipocytes. hASCs were obtained from subcutaneous adipose tissue of healthy, adult, female donors undergoing abdominal plastic surgery: lean (n = 8; body mass index [BMI]: 23 ± 1 kg/m2) and obese (n = 8; BMI: 35 ± 5 kg/m2). Cell surface marker expression, proliferation and migration capacity, and adipogenic differentiation potential of cultured hASCs at two different oxygen conditions were studied. Compared with lean-derived hASCs, obese-derived hASCs demonstrated increased proliferation and migration capacity but decreased lipid droplet accumulation, correlating with a higher expression of human leukocyte antigen (HLA)-II and cluster of differentiation (CD) 106 and lower expression of CD29. Of interest, adipogenic differentiation modified CD106, CD49b, HLA-ABC surface protein expression, which was dependent on the donor’s BMI. Additionally, low oxygen tension increased proliferation and migration of lean but not obese hASCs, which correlated with an altered CD36 and CD49b immunophenotypic profile. In summary, the differences observed in proliferation, migration, and differentiation capacity in obese hASCs occurred in parallel with changes in cell surface markers, both under basal conditions and during differentiation. Therefore, obesity is an important determinant of stem cell function independent of oxygen tension. Significance The obesity-related hypoxic environment may have latent effects on human adipose tissue-derived mesenchymal

  14. Direct comparison of progenitor cells derived from adipose, muscle, and bone marrow from wild-type or craniosynostotic rabbits

    PubMed Central

    GM, Cooper; EL, Lensie; JJ, Cray; MR, Bykowski; GE, DeCesare; MA, Smalley; MP, Mooney; PG, Campbell; JE, Losee

    2010-01-01

    Background Reports have identified cells capable of osteogenic differentiation in bone marrow, muscle, and adipose tissues, but there are few direct comparisons of these different cell-types. Also, few have investigated the potential connection between a tissue-specific pathology and cells derived from seemingly unrelated tissues. Here, we compare cells isolated from wild-type rabbits or rabbits with nonsyndromic craniosynostosis, defined as the premature fusion of one or more of the cranial sutures. Methods Cells were derived from bone marrow, adipose, and muscle of 10 day-old wild-type rabbits (WT; n=17) or from age-matched rabbits with familial nonsyndromic craniosynostosis (CS; n=18). Cells were stimulated with bone morphogenetic protein 4 (BMP4) and alkaline phosphatase expression and cell proliferation were assessed. Results In WT rabbits, cells derived from muscle had more alkaline phosphatase activity than cells derived from either adipose or bone marrow. The cells derived from CS rabbit bone marrow and muscle were significantly more osteogenic than WT. Adipose-derived cells demonstrated no significant differences. While muscle-derived cells were most osteogenic in WT rabbits, bone marrow-derived cells were most osteogenic in CS rabbits. Conclusions Results suggest that cells from different tissues have different potentials for differentiation. Furthermore, cells derived from rabbits with craniosynostosis were different from wild-type derived cells. Interestingly, cells derived from the craniosynostotic rabbits were not uniformly more responsive compared with wild-type cells, suggesting that specific tissue-derived cells may react differently in individuals with craniosynostosis. PMID:20871482

  15. In Vivo Dedifferentiation of Adult Adipose Cells

    PubMed Central

    Lu, Feng; Dong, Ziqing; Chang, Qiang; Gao, Jianhua

    2015-01-01

    Introduction Adipocytes can dedifferentiate into fibroblast-like cells in vitro and thereby acquire proliferation and multipotent capacities to participate in the repair of various organs and tissues. Whether dedifferentiation occurs under physiological or pathological conditions in vivo is unknown. Methods A tissue expander was placed under the inguinal fat pads of rats and gradually expanded by injection of water. Samples were collected at various time points, and morphological, histological, cytological, ultrastructural, and gene expression analyses were conducted. In a separate experiment, purified green fluorescent protein+ adipocytes were transplanted into C57 mice and collected at various time points. The transplanted adipocytes were assessed by bioluminescence imaging and whole-mount staining. Results The expanded fat pad was obviously thinner than the untreated fat pad on the opposite side. It was also tougher in texture and with more blood vessels attached. Hematoxylin and eosin staining and transmission electron microscopy indicated there were fewer monolocular adipocytes in the expanded fat pad and the morphology of these cells was altered, most notably their lipid content was discarded. Immunohistochemistry showed that the expanded fat pad contained an increased number of proliferative cells, which may have been derived from adipocytes. Following removal of the tissue expander, many small adipocytes were observed. Bioluminescence imaging suggested that some adipocytes survived when transplanted into an ischemic-hypoxic environment. Whole-mount staining revealed that surviving adipocytes underwent a process similar to adipocyte dedifferentiation in vitro. Monolocular adipocytes became multilocular adipocytes and then fibroblast-like cells. Conclusions Mature adipocytes may be able to dedifferentiate in vivo, and this may be an adipose tissue self-repair mechanism. The capacity of adipocytes to dedifferentiate into stem cell-like cells may also have a

  16. Characterization of adipose-derived stem cells from subcutaneous and visceral adipose tissues and their function in breast cancer cells

    PubMed Central

    Ritter, Andreas; Friemel, Alexandra; Fornoff, Friderike; Adjan, Mouhib; Solbach, Christine

    2015-01-01

    Adipose-derived stem cells are capable of differentiating into multiple cell types and thus considered useful for regenerative medicine. However, this differentiation feature seems to be associated with tumor initiation and metastasis raising safety concerns, which requires further investigation. In this study, we isolated adipose-derived stem cells from subcutaneous as well as from visceral adipose tissues of the same donor and systematically compared their features. Although being characteristic of mesenchymal stem cells, subcutaneous adipose-derived stem cells tend to be spindle form-like and are more able to home to cancer cells, whereas visceral adipose-derived stem cells incline to be “epithelial”-like and more competent to differentiate. Moreover, compared to subcutaneous adipose-derived stem cells, visceral adipose-derived stem cells are more capable of promoting proliferation, inducing the epithelial-to-mesenchymal transition, enhancing migration and invasion of breast cancer cells by cell-cell contact and by secreting interleukins such as IL-6 and IL-8. Importantly, ASCs affect the low malignant breast cancer cells MCF-7 more than the highly metastatic MDA-MB-231 cells. Induction of the epithelial-to-mesenchymal transition is mediated by the activation of multiple pathways especially the PI3K/AKT signaling in breast cancer cells. BCL6, an important player in B-cell lymphoma and breast cancer progression, is crucial for this transition. Finally, this transition fuels malignant properties of breast cancer cells and render them resistant to ATP competitive Polo-like kinase 1 inhibitors BI 2535 and BI 6727. PMID:26439686

  17. Characterization of adipose-derived stem cells from subcutaneous and visceral adipose tissues and their function in breast cancer cells.

    PubMed

    Ritter, Andreas; Friemel, Alexandra; Fornoff, Friderike; Adjan, Mouhib; Solbach, Christine; Yuan, Juping; Louwen, Frank

    2015-10-27

    Adipose-derived stem cells are capable of differentiating into multiple cell types and thus considered useful for regenerative medicine. However, this differentiation feature seems to be associated with tumor initiation and metastasis raising safety concerns, which requires further investigation. In this study, we isolated adipose-derived stem cells from subcutaneous as well as from visceral adipose tissues of the same donor and systematically compared their features. Although being characteristic of mesenchymal stem cells, subcutaneous adipose-derived stem cells tend to be spindle form-like and are more able to home to cancer cells, whereas visceral adipose-derived stem cells incline to be "epithelial"-like and more competent to differentiate. Moreover, compared to subcutaneous adipose-derived stem cells, visceral adipose-derived stem cells are more capable of promoting proliferation, inducing the epithelial-to-mesenchymal transition, enhancing migration and invasion of breast cancer cells by cell-cell contact and by secreting interleukins such as IL-6 and IL-8. Importantly, ASCs affect the low malignant breast cancer cells MCF-7 more than the highly metastatic MDA-MB-231 cells. Induction of the epithelial-to-mesenchymal transition is mediated by the activation of multiple pathways especially the PI3K/AKT signaling in breast cancer cells. BCL6, an important player in B-cell lymphoma and breast cancer progression, is crucial for this transition. Finally, this transition fuels malignant properties of breast cancer cells and render them resistant to ATP competitive Polo-like kinase 1 inhibitors BI 2535 and BI 6727.

  18. Osteogenesis of Adipose-Derived Stem Cells

    PubMed Central

    Grottkau, Brian E.; Lin, Yunfeng

    2013-01-01

    Current treatment options for skeletal repair, including immobilization, rigid fixation, alloplastic materials and bone grafts, have significant limitations. Bone tissue engineering offers a promising method for the repair of bone deficieny caused by fractures, bone loss and tumors. The use of adipose derived stem cells (ASCs) has received attention because of the self-renewal ability, high proliferative capacity and potential of osteogenic differentiation in vitro and in vivo studies of bone regeneration. Although cell therapies using ASCs are widely promising in various clinical fields, no large human clinical trials exist for bone tissue engineering. The aim of this review is to introduce how they are harvested, examine the characterization of ASCs, to review the mechanisms of osteogenic differentiation, to analyze the effect of mechanical and chemical stimuli on ASC osteodifferentiation, to summarize the current knowledge about usage of ASC in vivo studies and clinical trials, and finally to conclude with a general summary of the field and comments on its future direction. PMID:26273498

  19. Natural killer T cells in adipose tissue prevent insulin resistance.

    PubMed

    Schipper, Henk S; Rakhshandehroo, Maryam; van de Graaf, Stan F J; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E S; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-09-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell-deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue-resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue-resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance.

  20. Natural killer T cells in adipose tissue prevent insulin resistance

    PubMed Central

    Schipper, Henk S.; Rakhshandehroo, Maryam; van de Graaf, Stan F.J.; Venken, Koen; Koppen, Arjen; Stienstra, Rinke; Prop, Serge; Meerding, Jenny; Hamers, Nicole; Besra, Gurdyal; Boon, Louis; Nieuwenhuis, Edward E.S.; Elewaut, Dirk; Prakken, Berent; Kersten, Sander; Boes, Marianne; Kalkhoven, Eric

    2012-01-01

    Lipid overload and adipocyte dysfunction are key to the development of insulin resistance and can be induced by a high-fat diet. CD1d-restricted invariant natural killer T (iNKT) cells have been proposed as mediators between lipid overload and insulin resistance, but recent studies found decreased iNKT cell numbers and marginal effects of iNKT cell depletion on insulin resistance under high-fat diet conditions. Here, we focused on the role of iNKT cells under normal conditions. We showed that iNKT cell–deficient mice on a low-fat diet, considered a normal diet for mice, displayed a distinctive insulin resistance phenotype without overt adipose tissue inflammation. Insulin resistance was characterized by adipocyte dysfunction, including adipocyte hypertrophy, increased leptin, and decreased adiponectin levels. The lack of liver abnormalities in CD1d-null mice together with the enrichment of CD1d-restricted iNKT cells in both mouse and human adipose tissue indicated a specific role for adipose tissue–resident iNKT cells in the development of insulin resistance. Strikingly, iNKT cell function was directly modulated by adipocytes, which acted as lipid antigen-presenting cells in a CD1d-mediated fashion. Based on these findings, we propose that, especially under low-fat diet conditions, adipose tissue–resident iNKT cells maintain healthy adipose tissue through direct interplay with adipocytes and prevent insulin resistance. PMID:22863618

  1. Adipose-derived stem cells and periodontal tissue engineering.

    PubMed

    Tobita, Morikuni; Mizuno, Hiroshi

    2013-01-01

    Innovative developments in the multidisciplinary field of tissue engineering have yielded various implementation strategies and the possibility of functional tissue regeneration. Technologic advances in the combination of stem cells, biomaterials, and growth factors have created unique opportunities to fabricate tissues in vivo and in vitro. The therapeutic potential of human multipotent mesenchymal stem cells (MSCs), which are harvested from bone marrow and adipose tissue, has generated increasing interest in a wide variety of biomedical disciplines. These cells can differentiate into a variety of tissue types, including bone, cartilage, fat, and nerve tissue. Adipose-derived stem cells have some advantages compared with other sources of stem cells, most notably that a large number of cells can be easily and quickly isolated from adipose tissue. In current clinical therapy for periodontal tissue regeneration, several methods have been developed and applied either alone or in combination, such as enamel matrix proteins, guided tissue regeneration, autologous/allogeneic/xenogeneic bone grafts, and growth factors. However, there are various limitations and shortcomings for periodontal tissue regeneration using current methods. Recently, periodontal tissue regeneration using MSCs has been examined in some animal models. This method has potential in the regeneration of functional periodontal tissues because the various secreted growth factors from MSCs might not only promote the regeneration of periodontal tissue but also encourage neovascularization of the damaged tissues. Adipose-derived stem cells are especially effective for neovascularization compared with other MSC sources. In this review, the possibility and potential of adipose-derived stem cells for regenerative medicine are introduced. Of particular interest, periodontal tissue regeneration with adipose-derived stem cells is discussed.

  2. Laser light propagation in adipose tissue and laser effects on adipose cell membranes

    NASA Astrophysics Data System (ADS)

    Solarte, Efraín; Rebolledo, Aldo; Gutierrez, Oscar; Criollo, William; Neira, Rodrigo; Arroyave, José; Ramírez, Hugo

    2006-01-01

    Recently Neira et al. have presented a new liposuction technique that demonstrated the movement of fat from inside to outside of the cell, using a low-level laser device during a liposuction procedure with Ultrawet solution. The clinical observations, allowed this new surgical development, started a set of physical, histological and pharmacological studies aimed to determine the mechanisms involved in the observed fat mobilization concomitant to external laser application in liposuction procedures. Scanning and Transmission Electron Microscopy, studies show that the cellular arrangement of normal adipose tissue changes when laser light from a diode laser: 10 mW, 635 nm is applied. Laser exposures longer than 6 minutes cause the total destruction of the adipocyte panicles. Detailed observation of the adipose cells show that by short irradiation times (less than four minutes) the cell membrane exhibits dark zones, that collapse by longer laser exposures. Optical measurements show that effective penetration length depends on the laser intensity. Moreover, the light scattering is enhanced by diffraction and subsequent interference effects, and the tumescent solution produces a clearing of the tissue optical medium. Finally, isolate adipose cell observation show that fat release from adipocytes is a concomitant effect between the tumescent solution (adrenaline) and laser light, revealing a synergism which conduces to the aperture, and maybe the disruption, of the cell membrane. All these studies were consistent with a laser induced cellular process, which causes fat release from inside the adipocytes into the intercellular space, besides a strong modification of the cellular membranes.

  3. Acute Hypoxic Stress Affects Migration Machinery of Tissue O2-Adapted Adipose Stromal Cells

    PubMed Central

    Lobanova, Margarita V.; Andreeva, Elena R.

    2016-01-01

    The ability of mesenchymal stromal (stem) cells (MSCs) to be mobilised from their local depot towards sites of injury and to participate in tissue repair makes these cells promising candidates for cell therapy. Physiological O2 tension in an MSC niche in vivo is about 4–7%. However, most in vitro studies of MSC functional activity are performed at 20% O2. Therefore, this study focused on the effects of short-term hypoxic stress (0.1% O2, 24 h) on adipose tissue-derived MSC motility at tissue-related O2 level. No significant changes in integrin expression were detected after short-term hypoxic stress. However, O2 deprivation provoked vimentin disassembly and actin polymerisation and increased cell stiffness. In addition, hypoxic stress induced the downregulation of ACTR3, DSTN, MACF1, MID1, MYPT1, NCK1, ROCK1, TIAM1, and WASF1 expression, the products of which are known to be involved in leading edge formation and cell translocation. These changes were accompanied by the attenuation of targeted and nontargeted migration of MSCs after short-term hypoxic exposure, as demonstrated in scratch and transwell migration assays. These results indicate that acute hypoxic stress can modulate MSC function in their native milieu, preventing their mobilisation from sites of injury. PMID:28115943

  4. Serially Transplanted Nonpericytic CD146(-) Adipose Stromal/Stem Cells in Silk Bioscaffolds Regenerate Adipose Tissue In Vivo.

    PubMed

    Frazier, Trivia P; Bowles, Annie; Lee, Stephen; Abbott, Rosalyn; Tucker, Hugh A; Kaplan, David; Wang, Mei; Strong, Amy; Brown, Quincy; He, Jibao; Bunnell, Bruce A; Gimble, Jeffrey M

    2016-04-01

    Progenitors derived from the stromal vascular fraction (SVF) of white adipose tissue (WAT) possess the ability to form clonal populations and differentiate along multiple lineage pathways. However, the literature continues to vacillate between defining adipocyte progenitors as "stromal" or "stem" cells. Recent studies have demonstrated that a nonpericytic subpopulation of adipose stromal cells, which possess the phenotype, CD45(-) /CD31(-) /CD146(-) /CD34(+) , are mesenchymal, and suggest this may be an endogenous progenitor subpopulation within adipose tissue. We hypothesized that an adipose progenitor could be sorted based on the expression of CD146, CD34, and/or CD29 and when implanted in vivo these cells can persist, proliferate, and regenerate a functional fat pad over serial transplants. SVF cells and culture expanded adipose stromal/stem cells (ASC) ubiquitously expressing the green fluorescent protein transgene (GFP-Tg) were fractionated by flow cytometry. Both freshly isolated SVF and culture expanded ASC were seeded in three-dimensional silk scaffolds, implanted subcutaneously in wild-type hosts, and serially transplanted. Six-week WAT constructs were removed and evaluated for the presence of GFP-Tg adipocytes and stem cells. Flow cytometry, quantitative polymerase chain reaction, and confocal microscopy demonstrated GFP-Tg cell persistence, proliferation, and expansion, respectively. Glycerol secretion and glucose uptake assays revealed GFP-Tg adipose was metabolically functional. Constructs seeded with GFP-Tg SVF cells or GFP-Tg ASC exhibited higher SVF yields from digested tissue, and higher construct weights, compared to nonseeded controls. Constructs derived from CD146(-) CD34(+) -enriched GFP-Tg ASC populations exhibited higher hemoglobin saturation, and higher frequency of GFP-Tg cells than unsorted or CD29(+) GFP-Tg ASC counterparts. These data demonstrated successful serial transplantation of nonpericytic adipose-derived progenitors that can

  5. Adipocytes as immune cells: differential expression of TWEAK, BAFF, and APRIL and their receptors (Fn14, BAFF-R, TACI, and BCMA) at different stages of normal and pathological adipose tissue development.

    PubMed

    Alexaki, Vassilia-Ismini; Notas, George; Pelekanou, Vassiliki; Kampa, Marilena; Valkanou, Maria; Theodoropoulos, Panayiotis; Stathopoulos, Efstathios N; Tsapis, Andreas; Castanas, Elias

    2009-11-01

    Adipose tissue represents a rich source of multipotent stem cells. Mesenchymal cells, isolated from this source, can differentiate to other cell types in vitro and therefore can be used for a number of regenerative therapies. Our view of adipose tissue has recently changed, establishing adipocytes as new members of the immune system, as they produce a number of proinflammatory cytokines (such as IL-6 and TNFalpha and chemokines, in addition to adipokines (leptin, adiponectin, resistin) and molecules associated with the innate immune system. In this paper, we report the differential expression of TNF-superfamily members B cell activating factor of the TNF Family (BAFF), a proliferation inducing ligand (APRIL), and TNF-like weak inducer of apoptosis (TWEAK) in immature-appearing and mature adipocytes and in benign and malignant adipose tissue-derived tumors. These ligands act through their cognitive receptors, BAFF receptor, transmembrane activator and calcium signal-modulating cyclophilic ligand (TACI), B cell maturation Ag (BCMA), and fibroblast growth factor-inducible 14 (Fn14), which are also expressed in these cells. We further report the existence of functional BCMA, TACI, and Fn14 receptors and their ligands BAFF, APRIL, and TWEAK on adipose tissue-derived mesenchymal cells, their interaction modifying the rate of adipogenesis. Our data integrate BAFF, APRIL, and TWEAK and their receptors BCMA, TACI, and Fn14 as novel potential mediators of adipogenesis, in addition to their specific role in immunity, and define immature and mature adipocytes as source of immune mediators.

  6. Skin Tissue Engineering: Application of Adipose-Derived Stem Cells

    PubMed Central

    Zimoch, Jakub; Biedermann, Thomas

    2017-01-01

    Perception of the adipose tissue has changed dramatically over the last few decades. Identification of adipose-derived stem cells (ASCs) ultimately transformed paradigm of this tissue from a passive energy depot into a promising stem cell source with properties of self-renewal and multipotential differentiation. As compared to bone marrow-derived stem cells (BMSCs), ASCs are more easily accessible and their isolation yields higher amount of stem cells. Therefore, the ASCs are of high interest for stem cell-based therapies and skin tissue engineering. Currently, freshly isolated stromal vascular fraction (SVF), which may be used directly without any expansion, was also assessed to be highly effective in treating skin radiation injuries, burns, or nonhealing wounds such as diabetic ulcers. In this paper, we review the characteristics of SVF and ASCs and the efficacy of their treatment for skin injuries and disorders. PMID:28337463

  7. Comparison between Stromal Vascular Fraction and Adipose Mesenchymal Stem Cells in Remodeling Hypertrophic Scars

    PubMed Central

    Maumus, Marie; Toupet, Karine; Frouin, Eric; Rigau, Valérie; Vozenin, Marie-Catherine; Magalon, Guy; Jorgensen, Christian; Noël, Danièle

    2016-01-01

    Hypertrophic scars (HTS) are characterized by excessive amount of collagen deposition and principally occur following burn injuries or surgeries. In absence of effective treatments, the use of mesenchymal stem/stromal cells, which have been shown to attenuate fibrosis in various applications, seems of interest. The objectives of the present study were therefore to evaluate the effect of human adipose tissue-derived mesenchymal stem cells (hASC) on a pre-existing HTS in a humanized skin graft model in Nude mice and to compare the efficacy of hASCs versus stromal vascular fraction (SVF). We found that injection of SVF or hASCs resulted in an attenuation of HTS as noticed after clinical evaluation of skin thickness, which was associated with lower total collagen contents in the skins of treated mice and a reduced dermis thickness after histological analysis. Although both SVF and hASCs were able to significantly reduce the clinical and histological parameters of HTS, hASCs appeared to be more efficient than SVF. The therapeutic effect of hASCs was attributed to higher expression of TGFβ3 and HGF, which are important anti-fibrotic mediators, and to higher levels of MMP-2 and MMP-2/TIMP-2 ratio, which reflect the remodelling activity responsible for fibrosis resorption. These results demonstrated the therapeutic potential of hASCs for clinical applications of hypertrophic scarring. PMID:27227960

  8. Bovine dedifferentiated adipose tissue (DFAT) cells: DFAT cell isolation.

    PubMed

    Wei, Shengjuan; Du, Min; Jiang, Zhihua; Duarte, Marcio S; Fernyhough-Culver, Melinda; Albrecht, Elke; Will, Katja; Zan, Linsen; Hausman, Gary J; Elabd, Elham M Youssef; Bergen, Werner G; Basu, Urmila; Dodson, Michael V

    2013-07-01

    Dedifferentiated fat cells (DFAT cells) are derived from lipid-containing (mature) adipocytes, which possess the ability to symmetrically or asymmetrically proliferate, replicate, and redifferentiate/transdifferentiate. Robust cell isolation and downstream culture methods are needed to isolate large numbers of DFAT cells from any (one) adipose depot in order to establish population dynamics and regulation of the cells within and across laboratories. In order to establish more consistent/repeatable methodology here we report on two different methods to establish viable DFAT cell cultures: both traditional cell culture flasks and non-traditional (flat) cell culture plates were used for ceiling culture establishment. Adipocytes (maternal cells of the DFAT cells) were easier to remove from flat culture plates than flasks and the flat plates also allowed cloning rings to be utilized for cell/cell population isolation. While additional aspects of usage of flat-bottomed cell culture plates may yet need to be optimized by definition of optimum bio-coating to enhance cell attachment, utilization of flat plate approaches will allow more efficient study of the dedifferentiation process or the DFAT progeny cells. To extend our preliminary observations, dedifferentiation of Wagyu intramuscular fat (IMF)-derived mature adipocytes and redifferentiation ability of DFAT cells utilizing the aforementioned isolation protocols were examined in traditional basal media/differentiation induction media (DMI) containing adipogenic inducement reagents. In the absence of treatment approximately 10% isolated Wagyu IMF-mature adipocytes dedifferentiated spontaneously and 70% DFAT cells displayed protracted adipogenesis 12 d after confluence in vitro. Lipid-free intracellular vesicles in the cytoplasm (vesicles possessing an intact membrane but with no any observable or stainable lipid inside) were observed during redifferentiation. One to 30% DFAT cells redifferentiated into lipid

  9. Subcutaneous Adipose Cell Size and Distribution: Relationship to Insulin Resistance and Body Fat

    PubMed Central

    McLaughlin, T; Lamendola, C; Coghlan, N; Liu, TC; Lerner, K; Sherman, A; Cushman, SW

    2015-01-01

    Metabolic heterogeneity among obese individuals may be attributable to differences in adipose cell size. We sought to clarify this by quantifying adipose cell-size distribution, body fat, and insulin-mediated glucose uptake in overweight/moderately-obese individuals. 148 healthy nondiabetic subjects with BMI 25–38 kg/m2 underwent subcutaneous adipose tissue biopsies and quantification of insulin-mediated glucose uptake with steady-state plasma glucose concentrations (SSPG) during the modified insulin suppression test. Cell-size distributions were obtained with Beckman Coulter Multisizer. Primary endpoints included % small adipose cells and diameter of large adipose cells. Cell-size and metabolic parameters were compared by regression for the whole group; according to IR and IS subgroups; and by body fat quintile. Both large and small adipose cells were present in nearly equal proportions. Percent small cells was associated with SSPG (r=0.26, p=0.003). Compared to BMI-matched IS individuals, IR counterparts demonstrated fewer, but larger large adipose cells, and a greater proportion of small-to-large adipose cells. Diameter of the large adipose cells was associated with %body fat (r=0.26, p=0.014), female sex (r=0.21, p=0.036), and SSPG (r=0.20, p=0.012). In the highest vs lowest % body fat quintile, adipose cell size increased by only 7% whereas adipose cell number increased by 74%. Recruitment of adipose cells is required for expansion of body fat mass beyond BMI of 25 kg/m2. Insulin resistance is associated with accumulation of small adipose cells and enlargement of large adipose cells. These data support the notion that impaired adipogenesis may underlie insulin resistance. PMID:23666871

  10. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells.

    PubMed

    Fiedler, Tomas; Salamon, Achim; Adam, Stefanie; Herzmann, Nicole; Taubenheim, Jan; Peters, Kirsten

    2013-11-01

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions.

  11. Role of adipose-derived stem cells in wound healing.

    PubMed

    Hassan, Waqar Ul; Greiser, Udo; Wang, Wenxin

    2014-01-01

    Impaired wound healing remains a challenge to date and causes debilitating effects with tremendous suffering. Recent advances in tissue engineering approaches in the area of cell therapy have provided promising treatment options to meet the challenges of impaired skin wound healing such as diabetic foot ulcers. Over the last few years, stem cell therapy has emerged as a novel therapeutic approach for various diseases including wound repair and tissue regeneration. Several different types of stem cells have been studied in both preclinical and clinical settings such as bone marrow-derived stem cells, adipose-derived stem cells (ASCs), circulating angiogenic cells (e.g., endothelial progenitor cells), human dermal fibroblasts, and keratinocytes for wound healing. Adipose tissue is an abundant source of mesenchymal stem cells, which have shown an improved outcome in wound healing studies. ASCs are pluripotent stem cells with the ability to differentiate into different lineages and to secrete paracrine factors initiating tissue regeneration process. The abundant supply of fat tissue, ease of isolation, extensive proliferative capacities ex vivo, and their ability to secrete pro-angiogenic growth factors make them an ideal cell type to use in therapies for the treatment of nonhealing wounds. In this review, we look at the pathogenesis of chronic wounds, role of stem cells in wound healing, and more specifically look at the role of ASCs, their mechanism of action and their safety profile in wound repair and tissue regeneration.

  12. Obtaining spontaneously beating cardiomyocyte-like cells from adipose-derived stromal vascular fractions cultured on enzyme-crosslinked gelatin hydrogels

    PubMed Central

    Yang, Gang; Xiao, Zhenghua; Ren, Xiaomei; Long, Haiyan; Ma, Kunlong; Qian, Hong; Guo, Yingqiang

    2017-01-01

    Heart failure often develops after acute myocardial infarction because the injured myocardial tissue fails to recover or regenerate. Stem cell transplantation using adult cell sources, such as adipose-derived stromal vascular fraction (SVF), draws extensive attention. In this study, SVF cells were isolated from rat adipose tissue and cultivated on enzyme-crosslinked gelatin hydrogels. Morphological features of cell development and spontaneous beating behavior from these cells were observed and recorded. Cardiac phenotypes were characterized via immunofluorescence staining, and the expression of cardiac-specific genes was measured via RT-PCR. The functional assessment of SVF-derived cardiomyocyte-like cells (SVF-CMs) was performed by detecting cellular calcium transient activities and pharmacological responses. Results showed that most SVF-CMs exhibited elongated myotubule shapes and expressed cardiac troponin I strongly. SVF-CMs expressed cardiac-specific RNA (including transcription factors GATA binding protein 4) and myocyte enhancer factor 2c, as well as the structural proteins, namely, sarcomere actinin alpha 2, cardiac troponin I type 3, cardiac troponin T type 2, and cardiac gap junction protein alpha 1. Their beating mode, calcium activities, and pharmacological responses were similar to those of native CMs. Spontaneously beating SVF-CMs can be derived from adipose tissue-derived SVFs, and enzyme-crosslinked gelatin hydrogel promoted the cardiac differentiation of SVF cells. PMID:28155919

  13. Obtaining spontaneously beating cardiomyocyte-like cells from adipose-derived stromal vascular fractions cultured on enzyme-crosslinked gelatin hydrogels.

    PubMed

    Yang, Gang; Xiao, Zhenghua; Ren, Xiaomei; Long, Haiyan; Ma, Kunlong; Qian, Hong; Guo, Yingqiang

    2017-02-03

    Heart failure often develops after acute myocardial infarction because the injured myocardial tissue fails to recover or regenerate. Stem cell transplantation using adult cell sources, such as adipose-derived stromal vascular fraction (SVF), draws extensive attention. In this study, SVF cells were isolated from rat adipose tissue and cultivated on enzyme-crosslinked gelatin hydrogels. Morphological features of cell development and spontaneous beating behavior from these cells were observed and recorded. Cardiac phenotypes were characterized via immunofluorescence staining, and the expression of cardiac-specific genes was measured via RT-PCR. The functional assessment of SVF-derived cardiomyocyte-like cells (SVF-CMs) was performed by detecting cellular calcium transient activities and pharmacological responses. Results showed that most SVF-CMs exhibited elongated myotubule shapes and expressed cardiac troponin I strongly. SVF-CMs expressed cardiac-specific RNA (including transcription factors GATA binding protein 4) and myocyte enhancer factor 2c, as well as the structural proteins, namely, sarcomere actinin alpha 2, cardiac troponin I type 3, cardiac troponin T type 2, and cardiac gap junction protein alpha 1. Their beating mode, calcium activities, and pharmacological responses were similar to those of native CMs. Spontaneously beating SVF-CMs can be derived from adipose tissue-derived SVFs, and enzyme-crosslinked gelatin hydrogel promoted the cardiac differentiation of SVF cells.

  14. Adipose stem cells: biology, safety, regulation, and regenerative potential.

    PubMed

    Minteer, Danielle M; Marra, Kacey G; Rubin, J Peter

    2015-04-01

    This article discusses adipose-derived stem cell (ASC) biology, describes the current knowledge in the literature for the safety and regulation of ASCs, and provides a brief overview of the regenerative potential of ASCs. It is not an exhaustive listing of all available clinical studies or every study applying ASCs in tissue engineering and regenerative medicine, but is an objective commentary of these topics.

  15. Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue.

    PubMed

    Hayashi, Ousuke; Katsube, Yoshihiro; Hirose, Motohiro; Ohgushi, Hajime; Ito, Hiromoto

    2008-03-01

    Mesenchymal stem cells (MSCs) reside in many types of tissue and are able to differentiate into various functional cells including osteoblasts. Recently, adipose tissue-derived MSCs (AMSCs) have been shown to differentiate into many lineages, and they are considered a source for tissue regeneration. The purpose of this study was to compare the osteogenic differentiation capability of MSCs from bone marrow (BMSCs), MSCs from periosteum (PMSCs), and AMSCs using in vitro culture and in vivo implantation experiments. We harvested these MSCs from 7-week-old rats. The cells were seeded and cultured for 7 days in primary culture to assay a colony-forming unit. The frequency of the unit was the smallest in the BMSCs (P < 0.001). After primary culture, subculture was performed under osteogenic differentiation conditions for 1 and 2 weeks to detect mineralization as well as the bone-specific proteins of alkaline phosphatase and osteocalcin as osteogenic markers. BMSCs and PMSCs showed distinct osteogenic differentiation capability in comparison with other MSCs (P < 0.001). For the in vivo assay, composites of these cells and hydroxyapatite ceramics were subcutaneously implanted into syngeneic rats and harvested after 6 weeks. Micro-computed tomographic (CT) and histological analyses demonstrated that new bone formation was detected in the composites using BMSCs and PMSCs, although it was hard to detect in other composites. The CT analyses also demonstrated that the bone volume of BMSC composites was more than that of AMSC composites (P < 0.001). These results indicate that BMSCs and PMSCs could be ideal candidates for utilization in practical bone tissue regeneration.

  16. Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells.

    PubMed

    Merceron, Christophe; Vinatier, Claire; Portron, Sophie; Masson, Martial; Amiaud, Jérôme; Guigand, Lydie; Chérel, Yan; Weiss, Pierre; Guicheux, Jérôme

    2010-02-01

    Human adipose tissue-derived stem cells (hATSC) have been contemplated as reparative cells for cartilage engineering. Chondrogenic differentiation of hATSC can be induced by an enriched culture medium and a three-dimensional environment. Given that bone is vascularized and cartilage is not, oxygen tension has been suggested as a regulatory factor for osteochondrogenic differentiation. Our work aimed at determining whether hypoxia affects the osteochondrogenic potential of hATSC. hATSC were cultured in chondrogenic or osteogenic medium for 28 days, in pellets or monolayers, and under 5% or 20% oxygen tension. Cell differentiation was monitored by real-time PCR (COL2A1, aggrecan, Runx2, and osteocalcin). The chondrogenic differentiation was further evaluated by Alcian blue and immunohistological staining for glycosaminoglycans (GAGs) and type II collagen, respectively. Osteogenic differentiation was also assessed by the staining of mineralized matrix (Alizarin Red) and measurement of alkaline phosphatase (ALP) activity. The expression of chondrogenic markers was upregulated when hATSC were exposed to hypoxia in chondrogenic medium. Conversely, osteocalcin expression, mineralization, and ALP activity were severely reduced under hypoxic conditions even in the presence of osteogenic medium. Our data strongly suggest that hypoxia favors the chondrogenic differentiation of hATSC as evidenced by the expression of the chondrogenic markers, whereas it could alter their osteogenic potential. Our results highlight the differential regulatory role of hypoxia on the chondrogenic and osteogenic differentiation processes of hATSC. These data could help us exploit the potential of tissue engineering and stem cells to replace or restore the function of osteoarticular tissues.

  17. Characterization of stromal vascular fraction and adipose stem cells from subcutaneous, preperitoneal and visceral morbidly obese human adipose tissue depots

    PubMed Central

    Silva, Karina Ribeiro; Côrtes, Isis; Liechocki, Sally; Carneiro, João Regis Ivar; Souza, Antônio Augusto Peixoto; Borojevic, Radovan; Maya-Monteiro, Clarissa Menezes

    2017-01-01

    Background/Objectives The pathological condition of obesity is accompanied by a dysfunctional adipose tissue. We postulate that subcutaneous, preperitoneal and visceral obese abdominal white adipose tissue depots could have stromal vascular fractions (SVF) with distinct composition and adipose stem cells (ASC) that would differentially account for the pathogenesis of obesity. Methods In order to evaluate the distribution of SVF subpopulations, samples of subcutaneous, preperitoneal and visceral adipose tissues from morbidly obese women (n = 12, BMI: 46.2±5.1 kg/m2) were collected during bariatric surgery, enzymatically digested and analyzed by flow cytometry (n = 12). ASC from all depots were evaluated for morphology, surface expression, ability to accumulate lipid after induction and cytokine secretion (n = 3). Results A high content of preadipocytes was found in the SVF of subcutaneous depot (p = 0.0178). ASC from the three depots had similar fibroblastoid morphology with a homogeneous expression of CD34, CD146, CD105, CD73 and CD90. ASC from the visceral depot secreted the highest levels of IL-6, MCP-1 and G-CSF (p = 0.0278). Interestingly, preperitoneal ASC under lipid accumulation stimulus showed the lowest levels of all the secreted cytokines, except for adiponectin that was enhanced (p = 0.0278). Conclusions ASC from preperitoneal adipose tissue revealed the less pro-inflammatory properties, although it is an internal adipose depot. Conversely, ASC from visceral adipose tissue are the most pro-inflammatory. Therefore, ASC from subcutaneous, visceral and preperitoneal adipose depots could differentially contribute to the chronic inflammatory scenario of obesity. PMID:28323901

  18. Targeted Proapoptotic Peptides Depleting Adipose Stromal Cells Inhibit Tumor Growth

    PubMed Central

    Daquinag, Alexes C; Tseng, Chieh; Zhang, Yan; Amaya-Manzanares, Felipe; Florez, Fernando; Dadbin, Ali; Zhang, Tao; Kolonin, Mikhail G

    2016-01-01

    Progression of many cancers is associated with tumor infiltration by mesenchymal stromal cells (MSC). Adipose stromal cells (ASC) are MSC that serve as adipocyte progenitors and endothelium-supporting cells in white adipose tissue (WAT). Clinical and animal model studies indicate that ASC mobilized from WAT are recruited by tumors. Direct evidence for ASC function in tumor microenvironment has been lacking due to unavailability of approaches to specifically inactivate these cells. Here, we investigate the effects of a proteolysis-resistant targeted hunter-killer peptide D-WAT composed of a cyclic domain CSWKYWFGEC homing to ASC and of a proapoptotic domain KLAKLAK2. Using mouse bone marrow transplantation models, we show that D-WAT treatment specifically depletes tumor stromal and perivascular cells without directly killing malignant cells or tumor-infiltrating leukocytes. In several mouse carcinoma models, targeted ASC cytoablation reduced tumor vascularity and cell proliferation resulting in hemorrhaging, necrosis, and suppressed tumor growth. We also validated a D-WAT derivative with a proapoptotic domain KFAKFAK2 that was found to have an improved cytoablative activity. Our results for the first time demonstrate that ASC, recruited as a component of tumor microenvironment, support cancer progression. We propose that drugs targeting ASC can be developed as a combination therapy complementing conventional cancer treatments. PMID:26316391

  19. New Adipose Tissue Formation by Human Adipose-Derived Stem Cells with Hyaluronic Acid Gel in Immunodeficient Mice

    PubMed Central

    Huang, Shu-Hung; Lin, Yun-Nan; Lee, Su-Shin; Chai, Chee-Yin; Chang, Hsueh-Wei; Lin, Tsai-Ming; Lai, Chung-Sheng; Lin, Sin-Daw

    2015-01-01

    Background: Currently available injectable fillers have demonstrated limited durability. This report proposes the in vitro culture of human adipose-derived stem cells (hASCs) on hyaluronic acid (HA) gel for in vivo growth of de novo adipose tissue. Methods: For in vitro studies, hASCs were isolated from human adipose tissue and were confirmed by multi-lineage differentiation and flow cytometry. hASCs were cultured on HA gel. The effectiveness of cell attachment and proliferation on HA gel was surveyed by inverted light microscopy. For in vivo studies, HA gel containing hASCs, hASCs without HA gel, HA gel alone were allocated and subcutaneously injected into the subcutaneous pocket in the back of nude mice (n=6) in each group. At eight weeks post-injection, the implants were harvested for histological examination by hematoxylin and eosin (H&E) stain, Oil-Red O stain and immunohistochemical staining. The human-specific Alu gene was examined. Results: hASCs were well attachment and proliferation on the HA gel. In vivo grafts showed well-organized new adipose tissue on the HA gel by histologic examination and Oil-Red O stain. Analysis of neo-adipose tissues by PCR revealed the presence of the Alu gene. This study demonstrated not only the successful culture of hASCs on HA gel, but also their full proliferation and differentiation into adipose tissue. Conclusions: The efficacy of injected filler could be permanent since the reduction of the volume of the HA gel after bioabsorption could be replaced by new adipose tissue generated by hASCs. This is a promising approach for developing long lasting soft tissue filler. PMID:25589892

  20. Obesity and weight loss could alter the properties of adipose stem cells?

    PubMed Central

    Baptista, Leandra S; Silva, Karina R; Borojevic, Radovan

    2015-01-01

    The discovery that adipose tissue represents an interesting source of multipotent stem cells has led to many studies exploring the clinical potential of these cells in cell-based therapies. Recent advances in understanding the secretory capacity of adipose tissue and the role of adipokines in the development of obesity and associated disorders have added a new dimension to the study of adipose tissue biology in normal and diseased states. Subcutaneous adipose tissue forms the interface between the clinical application of regenerative medicine and the establishment of the pathological condition of obesity. These two facets of adipose tissue should be understood as potentially related phenomena. Because of the functional characteristics of adipose stem cells, these cells represent a fundamental tool for understanding how these two facets are interconnected and could be important for therapeutic applications. In fact, adipose tissue stem cells have multiple functions in obesity related to adipogenic, angiogenic and secretory capacities. In addition, we have also previously described a predominance of larger blood vessels and an adipogenic memory in the subcutaneous adipose tissue after massive weight loss subsequent to bariatric surgery (ex-obese patients). Understanding the reversibility of the behavior of adipose stem cells in obeses and in weight loss is relevant to both physiological studies and the potential use of these cells in regenerative medicine. PMID:25621116

  1. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells.

    PubMed

    Neufurth, Meik; Wang, Xiaohong; Schröder, Heinz C; Feng, Qingling; Diehl-Seifert, Bärbel; Ziebart, Thomas; Steffen, Renate; Wang, Shunfeng; Müller, Werner E G

    2014-10-01

    Sodium alginate hydrogel, stabilized with gelatin, is a suitable, biologically inert matrix that can be used for encapsulating and 3D bioprinting of bone-related SaOS-2 cells. However, the cells, embedded in this matrix, remain in a non-proliferating state. Here we show that addition of an overlay onto the bioprinted alginate/gelatine/SaOS-2 cell scaffold, consisting of agarose and the calcium salt of polyphosphate [polyP·Ca(2+)-complex], resulted in a marked increase in cell proliferation. In the presence of 100 μm polyP·Ca(2+)-complex, the cells proliferate with a generation time of approximately 47-55 h. In addition, the hardness of the alginate/gelatin hydrogel substantially increases in the presence of the polymer. The reduced Young's modulus for the alginate/gelatin hydrogel is approximately 13-14 kPa, and this value drops to approximately 0.5 kPa after incubation of the cell containing scaffolds for 5 d. In the presence of 100 μm polyP·Ca(2+)-complex, the reduced Young's modulus increases to about 22 kPa. The hardness of the polyP·Ca(2+)-complex containing hydrogel remains essentially constant if cells are absent in the matrix, but it drops to 3.2 kPa after a 5 d incubation period in the presence of SaOS-2 cells, indicating that polyP·Ca(2+)-complex becomes metabolized, degraded, by the cells. The alginate/gelatine-agarose system with polyP·Ca(2+)-complex cause a significant increase in the mineralization of the cells. SEM analyses revealed that the morphology of the mineral nodules formed on the surface of the cells embedded in the alginate/gelatin hydrogel do not significantly differ from the nodules on cells growing in monolayer cultures. The newly developed technique, using cells encapsulated into an alginate/gelatin hydrogel and a secondary layer containing the morphogenetically active, growth promoting polymer polyP·Ca(2+)-complex opens new possibilities for the application of 3D bioprinting in bone tissue engineering.

  2. Calcium Sensing Receptor (CaSR) activation elevates proinflammatory factor expression in human adipose cells and adipose tissue

    PubMed Central

    Cifuentes, Mariana; Fuentes, Cecilia; Acevedo, Ingrid; Villalobos, Elisa; Hugo, Eric; Ben Jonathan, Nira; Reyes, Marcela

    2013-01-01

    We have previously established that human adipose cells and the human adipose cell line LS14 express the calcium sensing receptor (CaSR) and that its expression is elevated upon exposure to inflammatory cytokines that are typically elevated in obese humans. Research in recent years has established that an important part of the adverse metabolic and cardiovascular consequences of obesity derive from a dysfunction of the tissue, one of the mechanisms being a disordered secretion pattern leading to an excess of proinflammatory cytokines and chemokines. Given the reported association of the CaSR to inflammatory processes in other tissues, we sought to evaluate its role elevating the adipose expression of inflammatory factors. We exposed adipose tissue and in-vitro cultured LS14 preadipocytes and differentiated adipocytes to the calcimimetic cinacalcet and evaluated the expression or production of the proinflammatory cytokines IL6, IL1β and TNFα as well as the chemoattractant factor CCL2. CaSR activation elicited an elevation in the expression of the inflammatory factors, which was in part reverted by SN50, an inhibitor of the inflammatory mediator NFκB. Our observations suggest that CaSR activation elevates cytokine and chemokine production through a signaling pathway involving activation of NFκB nuclear translocation. These findings confirm the relevance of the CaSR in the pathophysiology of obesity-induced adipose tissue dysfunction, with an interesting potential for pharmacological manipulation in the fight against obesity- associated diseases. PMID:22449852

  3. Secreted proteins and genes in fetal and neonatal pig adipose tissue and stromal-vascular cells.

    PubMed

    Hausman, G J; Poulos, S P; Richardson, R L; Barb, C R; Andacht, T; Kirk, H C; Mynatt, R L

    2006-07-01

    Although microarray and proteomic studies have indicated the expression of unique and unexpected genes and their products in human and rodent adipose tissue, similar studies of meat animal adipose tissue have not been reported. Thus, total RNA was isolated from stromal-vascular (S-V) cell cultures (n = 4; 2 arrays; 2 cultures/array) from 90-d (79% of gestation) fetuses and adipose tissue from 105-d (92% of gestation) fetuses (n = 2) and neonatal (5-d-old) pigs (n = 2). Duplicate adipose tissue microarrays (n = 4) represented RNA samples from a pig and a fetus. Dye-labeled cDNA probes were hybridized to custom microarrays (70-mer oligonucleotides) representing more than 600 pig genes involved in growth and reproduction. Microarray studies showed significant expression of 40 genes encoding for known adipose tissue secreted proteins in fetal S-V cell cultures and adipose tissue. Expression of 10 genes encoding secreted proteins not known to be expressed by adipose tissue was also observed in neonatal adipose tissue and fetal S-V cell cultures. Additionally, the agouti gene was detected by reverse transcription-PCR in pig S-V cultures and adipose tissue. Proteomic analysis of adipose tissue and fetal and young pig S-V cell culture-conditioned media identified multiple secreted proteins including heparin-like epidermal growth factor-like growth factor and several apolipoproteins. Another adipose tissue secreted protein, plasminogen activator inhibitor-1, was identified by ELISA in S-V cell culture media. A group of 20 adipose tissue secreted proteins were detected or identified using the gene microarray and the proteomic and protein assay approaches including apolipoprotein-A1, apolipoprotein-E, relaxin, brain-derived neurotrophic factor, and IGF binding protein-5. These studies demonstrate, for the first time, the expression of several major secreted proteins in pig adipose tissue that may influence local and central metabolism and growth.

  4. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus

    SciTech Connect

    da Costa, Ricardo M. F.; Lee, Scott J.; Allison, Gordon G.; Hazen, Samuel P.; Winters, Ana; Bosch, Maurice

    2014-04-15

    Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transform mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. In conclusion, it is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene-trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only total above-ground biomass

  5. Adipose Derived Stem Cells Ameliorate Hyperlipidemia-associated Detrusor-overactivity in a Rat Model System

    PubMed Central

    Huang, Yun-Ching; Shindel, Alan W.; Ning, Hongxiu; Lin, Guiting; Harraz, Ahmed M.; Wang, Guifang; Garcia, Maurice; Lue, Tom F.; Lin, Ching-Shwun

    2011-01-01

    Purpose It has been previously demonstrated that adipose tissue-derived stem cell (ADSC) can differentiate into muscle and neuron-like cells in vitro. In this study, we investigate the utility of ADSC in the treatment of overactive bladder (OAB) in obese hyperlipidemic rats (OHR). Materials and Methods Hyperlipidemia was induced in healthy rats by administration of a high fat diet. The resulting OHR were then treated with bladder injection of saline or ADSC or tail vein injection of ADSC. Bladder function was assessed by 24-h voiding behavior study and conscious cystometry. Bladder histology was assessed using immunostaining and trichrome staining followed by image analysis. Results Serum total cholesterol and low-density lipoprotein levels were significantly higher in OHR than in normal rats (p < 0.01). Micturition intervals were shorter in the saline-treated OHR relative to normal rats, OHR that received ADSC via tail vein, and OHR that received ADSC by bladder injection (143 ± 28.7 vs 407 ± 77.9 vs 281 ± 43.9 vs 368 ± 66.7 seconds respectively, p = 0.0084). Smooth muscle content of the bladder wall was significantly lower in OHR than in normal animals (p = 0.0061) while there was no significant difference between OHR groups. Nerve content and blood vessel density were lower in control than in ADSC-treated OHR. Conclusions Hyperlipidemia is associated with increased urinary frequency and diminished bladder blood vessel and nerve density in rats. Treatment with ADSC ameliorates these adverse effects and holds promise as a potential new therapy for OAB. PMID:20096880

  6. Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications

    PubMed Central

    Togliatto, G; Dentelli, P; Gili, M; Gallo, S; Deregibus, C; Biglieri, E; Iavello, A; Santini, E; Rossi, C; Solini, A; Camussi, G; Brizzi, M F

    2016-01-01

    Background/Objectives: Soluble factors and cell-derived extracellular vesicles (EVs) are crucial tissue repair mediators in cell-based therapy. In the present study, we investigate the therapeutic impact of EVs released by adipose tissue-derived stem cells (ASCs) recovered from obese subjects' visceral and subcutaneous tissues. Methods: ASCs were recovered from 10 obese (oASCs) and 6 non-obese (nASCs) participants and characterized. In selected experiments, nASCs and oASCs were cultured with palmitic acid (PA) or high glucose (HG), respectively. EVs from obese (oEVs) and non-obese (nEVs) subjects' visceral and subcutaneous ASCs were collected after ultracentrifugation and analyzed for their cargo: microRNA-126 (miR-126), vascular endothelial growth factor (VEGF), and matrix metalloproteinase 2 (MMP-2), and for their biological effects on endothelial cells (ECs). Western blotting analysis and loss- and gain-of function experiments were performed. Results: oEVs show impaired angiogenic potential compared with nEVs. This effect depends on EV cargo: reduced content of VEGF, MMP-2 and, more importantly, miR-126. We demonstrate, using gain- and loss-of-function experiments, that this reduced miR-126 content leads to Spred1 upregulation and the inhibition of the extracellular signal–regulated kinase 1/2 mitogen-activated protein kinase pathway in ECs. We also show that PA treatment of nASCs translates into the release of EVs that recapitulate oEV cargo. Moreover, HG treatment of oASCs further reduces miR-126 EV content and EV-mediated in vitro angiogenesis. Finally, impaired pro-angiogenic potential is also detected in EVs released from obese subcutaneous adipose tissue-derived ASCs. Conclusions: These results indicate that obesity impacts on EV pro-angiogenic potential and may raise concerns about the use of adipose tissue-derived EVs in cell-based therapy in the obese setting. PMID:26122028

  7. Cisplatin impaired adipogenic differentiation of adipose mesenchymal stem cells.

    PubMed

    Chang, Yu-Hsun; Liu, Hwan-Wun; Chu, Tang-Yuan; Wen, Yao-Tseng; Ding, Dah-Ching

    2017-02-03

    Adipose mesenchymal stem cells (ASCs) were isolated from the adipose tissue and can be induced in vitro to differentiate into osteoblasts, chondroblasts, myocytes, neurons and other cell types. Cisplatin is a commonly used chemotherapy drug for cancer patients. However, the effects of cisplatin on ASC remain elusive. This study found that high-concentration cisplatin affects the viability of ASCs. First, IC50 concentration of cisplatin was evaluated. Proliferation of ASCs assessed by XTT method decreased immediately after cisplatin treatment with various concentrations. ASCs maintained mesenchymal stem cells surface markers evaluating by flow cytometry after cisplatin treatment. Upon differentiation by adding specific chemicals, a significant decrease in adipogenic differentiation (by Oil red staining) and osteogenic differentiation (by Alizarin red staining), and significant chondrogenic differentiation (by Alcian blue staining) were found after cisplatin treatment. Simultaneously, qRT-PCR was also used for evaluating the specific gene expressions after various differentiations. Finally, ASCs from one donor who had received cisplatin showed significantly decreased adipogenic differentiation but increased osteogenic differentiation compared with ASCs derived from one healthy donor. In conclusion, cisplatin affects the viability, proliferation, and differentiation of ASCs both in vitro and in vivo via certain signaling pathway such as p53 and Fas/FasL. The differentiation abilities of ASCs should be evaluated before their transplantation for repairing cisplatin-induced tissue damage.

  8. Allogeneic Adipose-Derived Mesenchymal Stromal Cells Ameliorate Experimental Autoimmune Encephalomyelitis by Regulating Self-Reactive T Cell Responses and Dendritic Cell Function

    PubMed Central

    Gonzalez-Rey, Elena; Martin, Francisco; Oliver, F. Javier

    2017-01-01

    Multipotent mesenchymal stromal cells (MSCs) have emerged as a promising therapy for autoimmune diseases, including multiple sclerosis (MS). Administration of MSCs to MS patients has proven safe with signs of immunomodulation but their therapeutic efficacy remains low. The aim of the current study has been to further characterize the immunomodulatory mechanisms of adipose tissue-derived MSCs (ASCs) in vitro and in vivo using the EAE model of chronic brain inflammation in mice. We found that murine ASCs (mASCs) suppress T cell proliferation in vitro via inducible nitric oxide synthase (iNOS) and cyclooxygenase- (COX-) 1/2 activities. mASCs also prevented the lipopolysaccharide- (LPS-) induced maturation of dendritic cells (DCs) in vitro. The addition of the COX-1/2 inhibitor indomethacin, but not the iNOS inhibitor L-NAME, reversed the block in DC maturation implicating prostaglandin (PG) E2 in this process. In vivo, early administration of murine and human ASCs (hASCs) ameliorated myelin oligodendrocyte protein- (MOG35-55-) induced EAE in C57Bl/6 mice. Mechanistic studies showed that mASCs suppressed the function of autoantigen-specific T cells and also decreased the frequency of activated (CD11c+CD40high and CD11c+TNF-α+) DCs in draining lymph nodes (DLNs). In summary, these data suggest that mASCs reduce EAE severity, in part, through the impairment of DC and T cell function. PMID:28250776

  9. Essential role of CD11a in CD8+ T-cell accumulation and activation in adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    T-cells, particularly CD8+ T-cells, are major participants in obesity-linked adipose tissue inflammation. We examined the mechanisms of CD8+ T-cell accumulation and activation in adipose tissue and the role of CD11a, a beta2 integrin. CD8+ T-cells in adipose tissue of obese mice showed activated phe...

  10. Adipose progenitor cells reside among the mature adipocytes: morphological research using an organotypic culture system.

    PubMed

    Anayama, Hisashi; Fukuda, Ryo; Yamate, Jyoji

    2015-11-01

    The precise localization and biological characteristics of the adipose progenitor cells are still a focus of debate. In this study, the localization of the adipose progenitor cells was determined using an organotypic culture system of adipose tissue slices. The tissue slices of subcutaneous white adipose tissue from rats were placed on a porous membrane and cultured at the interface between air and the culture medium for up to 5 days with or without adipogenic stimulation. The structure of adipose tissue components was sufficiently preserved during the culture and, following adipogenic stimulation with insulin, dexamethasone, and 3-isobutyl-1-methylxanthine, numerous multilocular adipocytes appeared in the interstitium among the mature adipocytes. Histomorphological 3-D observation using confocal laser microscopy revealed the presence of small mesenchymal cells containing little or no fat residing in the perivascular region and on the mature adipocytes and differentiation from the pre-existing mesenchymal cells to multilocular adipocytes. Immunohistochemistry demonstrated that these cells were initially present within the fibronectin-positive extracellular matrix (ECM). The adipose differentiation of the mesenchymal cells was confirmed by the enhanced expression of C/EBP-β suggesting adipose differentiation and the concurrent advent of CD105-expressing mesenchymal cells within the interstitium of the mature adipocytes. Based on the above, the mesenchymal cells embedded in the ECM around the mature adipocytes were confirmed to be responsible for adipogenesis because the transition of the mesenchymal cells to the stem state contributed to the increase in the number of adipocytes in rat adipose tissue.

  11. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    SciTech Connect

    Fiedler, Tomas; Salamon, Achim; Adam, Stefanie; Herzmann, Nicole; Taubenheim, Jan; Peters, Kirsten

    2013-11-01

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: • Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. • Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. • Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. • Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. • LTA does not influence adipogenic or osteogenic differentiation of adMSC.

  12. Runx2 overexpression enhances osteoblastic differentiation and mineralization in adipose--derived stem cells in vitro and in vivo.

    PubMed

    Zhang, X; Yang, M; Lin, L; Chen, P; Ma, K T; Zhou, C Y; Ao, Y F

    2006-09-01

    Like bone marrow stromal cells, adipose tissue-derived stem cells (ADSCs) possess multilineage potential, a capacity for self-renewal and long-term viability. To confirm whether ADSCs represent a promising source of cells for gene-enhanced bone tissue-engineering, the osteogenic potential of ADSCs under the control of certain osteoinductive genes has been evaluated. Runx2, a transcription factor at the downstream end of bone morphogenetic protein (BMP) signaling pathways, is essential for osteoblast differentiation and bone formation. In this study we used adenovirus vector to deliver Runx2 to ADSCs and then examined the enhancement of osteogenic activity. Overexpression of Runx2 inhibited adipogenesis, as demonstrated by suppression of LPL and PPARgamma expression at the mRNA level and reduced lipid droplet formation. Moreover, ADSCs transduced with Ad-Runx2 underwent rapid and marked osteoblast differentiation as determined by osteoblastic gene expression, alkaline phosphatase activity and mineral deposition. Additionally, histological examination revealed that implantation of Runx2 modified ADSCs could induce mineral deposition and bone-like tissue formation in vivo. These results confirmed, firstly, the ability of Runx2 to promote osteogenesis and cell differentiation and, secondly, the competence of ADSCs as target cells for bone tissue engineering. Our work demonstrates a potential new approach for bone repair using Runx2-modified ADSCs for bone tissue engineering.

  13. Phenotypic and functional properties of feline dedifferentiated fat cells and adipose-derived stem cells.

    PubMed

    Kono, Shota; Kazama, Tomohiko; Kano, Koichiro; Harada, Kayoko; Uechi, Masami; Matsumoto, Taro

    2014-01-01

    It has been reported that mature adipocyte-derived dedifferentiated fat (DFAT) cells show multilineage differentiation potential similar to that observed in mesenchymal stem cells. Since DFAT cells can be prepared from a small quantity of adipose tissue, they could facilitate cell-based therapies in small companion animals such as cats. The present study examined whether multipotent DFAT cells can be generated from feline adipose tissue, and the properties of DFAT cells were compared with those of adipose-derived stem cells (ASCs). DFAT cells and ASCs were prepared from the floating mature adipocyte fraction and the stromal vascular fraction, respectively, of collagenase-digested feline omental adipose tissue. Both cell types were evaluated for growth kinetics, colony-forming unit fibroblast (CFU-F) frequency, immunophenotypic properties, and multilineage differentiation potential. DFAT cells and ASCs could be generated from approximately 1g of adipose tissue and were grown and subcultured on laminin-coated dishes. The frequency of CFU-Fs in DFAT cells (35.8%) was significantly higher than that in ASCs (20.8%) at passage 1 (P1). DFAT cells and ASCs displayed similar immunophenotypes (CD44(+), CD90(+), CD105(+), CD14(-), CD34(-) and CD45(-)). Alpha-smooth muscle actin-positive cells were readily detected in ASCs (15.2±7.2%) but were rare in DFAT cells (2.2±3.2%) at P1. Both cell types exhibited adipogenic, osteogenic, chondrogenic, and smooth muscle cell differentiation potential in vitro. In conclusion, feline DFAT cells exhibited similar properties to ASCs but displayed higher CFU-F frequency and greater homogeneity. DFAT cells, like ASCs, may be an attractive source for cell-based therapies in cats.

  14. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells.

    PubMed

    Zeve, Daniel; Millay, Douglas P; Seo, Jin; Graff, Jonathan M

    2016-01-01

    Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicate that muscle, in a non-autonomous manner, regulates adipose progenitor homeostasis, highlighting a role for muscle-derived secreted factors. These findings support a humoral link between skeletal muscle and adipose progenitors and indicate that manipulation of adipose stem cell function may help address obesity and diabetes.

  15. Adipose Derived-Mesenchymal Stem Cells Viability and Differentiating Features for Orthopaedic Reparative Applications: Banking of Adipose Tissue

    PubMed Central

    Alotto, Daniela; Belisario, Dimas Carolina; Casarin, Stefania; Fumagalli, Mara; Cambieri, Irene; Piana, Raimondo; Stella, Maurizio; Ferracini, Riccardo; Castagnoli, Carlotta

    2016-01-01

    Osteoarthritis is characterized by loss of articular cartilage also due to reduced chondrogenic activity of mesenchymal stem cells (MSCs) from patients. Adipose tissue is an attractive source of MSCs (ATD-MSCs), representing an effective tool for reparative medicine, particularly for treatment of osteoarthritis, due to their chondrogenic and osteogenic differentiation capability. The treatment of symptomatic knee arthritis with ATD-MSCs proved effective with a single infusion, but multiple infusions could be also more efficacious. Here we studied some crucial aspects of adipose tissue banking procedures, evaluating ATD-MSCs viability, and differentiation capability after cryopreservation, to guarantee the quality of the tissue for multiple infusions. We reported that the presence of local anesthetic during lipoaspiration negatively affects cell viability of cryopreserved adipose tissue and cell growth of ATD-MSCs in culture. We observed that DMSO guarantees a faster growth of ATD-MSCs in culture than trehalose. At last, ATD-MSCs derived from fresh and cryopreserved samples at −80°C and −196°C showed viability and differentiation ability comparable to fresh samples. These data indicate that cryopreservation of adipose tissue at −80°C and −196°C is equivalent and preserves the content of ATD-MSCs in Stromal Vascular Fraction (SVF), guaranteeing the differentiation ability of ATD-MSCs. PMID:28018432

  16. Osteogenic and adipogenic potential of porcine adipose mesenchymal stem cells.

    PubMed

    Qu, Chang-qing; Zhang, Guo-hua; Zhang, Li-jie; Yang, Gong-she

    2007-02-01

    Human, rat, and mouse studies have demonstrated the existence of a population of adipose mesenchymal stem cells (AMSCs) that can undergo multilineage differentiation in vitro. Understanding the clinical potential of AMSCs may require their use in preclinical large-animal models such as pigs. Thus, the objectives of this study were to establish a protocol for the isolation of porcine AMSCs from adipose tissue and to examine their ex vivo differentiation potential to adipocytes and osteoblast. The porcine AMSCs from passage 4 were selected for differentiation analysis. The adipocytes were identified morphologically by staining with Oil Red O, and the adipogenic marker genes were examined by RT-PCR technique. Osteogenic lineage was documented by deposition of calcium stained with Alzarin Red S, visualization of alkaline phosphatase activity, and expression of marker gene. Our result indicates that porcine AMSCs have been successfully isolated and induced differentiation into adipocytes and osteoblasts. This study suggested that porcine AMSCs are also a valuable model system for the study on the mesenchymal lineages for basic research and tissue engineering.

  17. Leptin differentially regulates STAT3 activation in the ob/ob mice adipose mesenchymal stem cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leptin-deficient genetically obese ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Studies have shown that multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute...

  18. Effects of Ionizing Radiation on Human Adipose Derived Mesenchymal Stem Cells and their Differentiation towards the Osteoblastic Lineage

    NASA Astrophysics Data System (ADS)

    Konda, Bikash; Baumstark-Khan, Christa; Hellweg, Christine; Reitz, Guenther; Lau, Patrick

    Radiation exposure and musculoskeletal disuse are among the major challenges during space missions. Astronauts face the problem to lose bone calcium due to uncoupling of bone formation and resorption. Bone forming osteoblasts can be derived from the undifferentiated mesenchymal stem cell compartment (MSC). In this study, the ability of human adipose tissue derived stem cells (ATSC) to differentiate into the osteoblastic lineage was examined after radiation exposure in presence of medium supplementation with osteogenic additives (ß-glycerophosphate, ascorbic acid and dexamethasone). The SAOS-2 cell line (human osteosarcoma cell line) was used as control for osteoblastic differentiation. Changes in cellular morphology, cell cycle progression, as well as cellular radiation sensitivity were characterized after ionizing radiation exposure with X-rays and heavy ions (Ti). Rapidly proliferating SAOS-2 cells are less radiation-sensitive than slowly proliferating ATSC cells after X-ray (CFA: dose effect curves show D0 values of 1 Gy and 0.75 Gy for SAOS-2 and ATSC, respectively) exposure. Heavy ion (Ti) exposure resulted in a greater extent of cells accumulating in the G2/M phase of the cell cycle in a dose-dependent manner when compared to X-ray exposure. Differentiation of cells towards the osteoblastic lineage was quantified by hydroxyapatite (HA) deposition using Lonza OsteoImageTM mineralization assay. The deposition of HA after X- and Ti-irradiation for highly proliferating SAOS-2 cells showed a dose-dependent time delay while slowly proliferating ATSC showed no effect from radiation exposure. More detailed investigation is required to reveal the radiation dependent mechanism of bone loss in astronauts.

  19. Identification and characterization of pig adipose-derived progenitor cells.

    PubMed

    Zhang, Shuang; Bai, Chunyu; Zheng, Dong; Gao, Yuhua; Fan, Yanan; Li, Lu; Guan, Weijun; Ma, Yuehui

    2016-10-01

    Adipose-derived stem cells (ADSCs) are multipotent, and can be differentiated into many cell types in vitro. In this study, tissues from pigs were chosen to identify and characterize ADSCs. Primary ADSCs were sub-cultured to passage 28. The surface markers of ADSCs: CD29, CD71, CD73, CD90, and CD166 were detected by reverse-transcription polymerase chain reaction assays and the markers CD29, CD44, CD105, and vimentin were detected by immunofluorescence. Growth curves and the capacity of clone-forming were performed to test the proliferation of ADSCs. Karyotype analysis showed that ADSCs cultured in vitro were genetically stable. To assess the differentiation capacity of the ADSCs, cells were induced to differentiate into osteoblasts, adipocytes, epithelial cells, neural cells, and hepatocyte-like cells. The results suggest that ADSCs from pigs showed similar biological characteristics with those separated from other species, and their multi-lineage differentiation shows potential as an application for cellular therapy in an animal model.

  20. Dedifferentiated fat cells: an alternative source of adult multipotent cells from the adipose tissues

    PubMed Central

    Shen, Jie-fei; Sugawara, Atsunori; Yamashita, Joe; Ogura, Hideo; Sato, Soh

    2011-01-01

    When adipose-derived stem cells (ASCs) are retrieved from the stromal vascular portion of adipose tissue, a large amount of mature adipocytes are often discarded. However, by modified ceiling culture technique based on their buoyancy, mature adipocytes can be easily isolated from the adipose cell suspension and dedifferentiated into lipid-free fibroblast-like cells, named dedifferentiated fat (DFAT) cells. DFAT cells re-establish active proliferation ability and undertake multipotent capacities. Compared with ASCs and other adult stem cells, DFAT cells showed unique advantages in their abundance, isolation and homogeneity. In this concise review, the establishment and culture methods of DFAT cells are introduced and the current profiles of their cellular nature are summarized. Under proper induction culture in vitro or environment in vivo, DFAT cells could demonstrate adipogenic, osteogenic, chondrogenic and myogenic potentials. In angiogenic conditions, DFAT cells could exhibit perivascular characteristics and elicit neovascularization. Our preliminary findings also suggested the pericyte phenotype underlying such cell lineage, which supported a novel interpretation about the common origin of mesenchymal stem cells and tissue-specific stem cells within blood vessel walls. Current research on DFAT cells indicated that this alternative source of adult multipotent cells has great potential in tissue engineering and regenerative medicine. PMID:21789960

  1. Dedifferentiated fat cells: an alternative source of adult multipotent cells from the adipose tissues.

    PubMed

    Shen, Jie-fei; Sugawara, Atsunori; Yamashita, Joe; Ogura, Hideo; Sato, Soh

    2011-07-01

    When adipose-derived stem cells (ASCs) are retrieved from the stromal vascular portion of adipose tissue, a large amount of mature adipocytes are often discarded. However, by modified ceiling culture technique based on their buoyancy, mature adipocytes can be easily isolated from the adipose cell suspension and dedifferentiated into lipid-free fibroblast-like cells, named dedifferentiated fat (DFAT) cells. DFAT cells re-establish active proliferation ability and undertake multipotent capacities. Compared with ASCs and other adult stem cells, DFAT cells showed unique advantages in their abundance, isolation and homogeneity. In this concise review, the establishment and culture methods of DFAT cells are introduced and the current profiles of their cellular nature are summarized. Under proper induction culture in vitro or environment in vivo, DFAT cells could demonstrate adipogenic, osteogenic, chondrogenic and myogenic potentials. In angiogenic conditions, DFAT cells could exhibit perivascular characteristics and elicit neovascularization. Our preliminary findings also suggested the pericyte phenotype underlying such cell lineage, which supported a novel interpretation about the common origin of mesenchymal stem cells and tissue-specific stem cells within blood vessel walls. Current research on DFAT cells indicated that this alternative source of adult multipotent cells has great potential in tissue engineering and regenerative medicine.

  2. Cell-mediated remodeling of biomimetic encapsulating hydrogels triggered by adipogenic differentiation of adipose stem cells

    PubMed Central

    Clevenger, Tracy N; Luna, Gabriel; Boctor, Daniel; Fisher, Steven K; Clegg, Dennis O

    2016-01-01

    One of the most common regenerative therapies is autologous fat grafting, which frequently suffers from unexpected volume loss. One approach is to deliver adipose stem cells encapsulated in the engineered hydrogels supportive of cell survival, differentiation, and integration after transplant. We describe an encapsulating, biomimetic poly(ethylene)-glycol hydrogel, with embedded peptides for attachment and biodegradation. Poly(ethylene)-glycol hydrogels containing an Arg–Gly–Asp attachment sequence and a matrix metalloprotease 3/10 cleavage site supported adipose stem cell survival and showed remodeling initiated by adipogenic differentiation. Arg–Gly–Asp–matrix metalloprotease 3/10 cleavage site hydrogels showed an increased number and area of lacunae or holes after adipose stem cell differentiation. Image analysis of adipose stem cells in Arg–Gly–Asp–matrix metalloprotease 3/10 cleavage site hydrogels showed larger Voronoi domains, while cell density remained unchanged. The differentiated adipocytes residing within these newly remodeled spaces express proteins and messenger RNAs indicative of adipocytic differentiation. These engineered scaffolds may provide niches for stem cell differentiation and could prove useful in soft tissue regeneration. PMID:27733898

  3. Human adipose-derived stem cells stimulate neuroregeneration.

    PubMed

    Masgutov, Ruslan F; Masgutova, Galina A; Zhuravleva, Margarita N; Salafutdinov, Ilnur I; Mukhametshina, Regina T; Mukhamedshina, Yana O; Lima, Luciana M; Reis, Helton J; Kiyasov, Andrey P; Palotás, András; Rizvanov, Albert A

    2016-08-01

    Traumatic brain injuries and degenerative neurological disorders such as Alzheimer's dementia, Parkinson's disease, amyotrophic lateral sclerosis and many others are characterized by loss of brain cells and supporting structures. Restoring microanatomy and function using stem cells is a promising therapeutic approach. Among the many various sources, adipose-derived stem cells (ADSCs) are one of the most easily harvested alternatives, they multiply rapidly, and they demonstrate low immunogenicity with an ability to differentiate into several cell types. The objective of this study was to evaluate the effect of xenotransplanted human ADSCs on post-traumatic regeneration of rat sciatic nerve. Peripheral reconstruction following complete sciatic transection and autonerve grafting was complemented by intra-operative injection of hADSCs into the proximal and distal stumps. The injury caused gliosis and apoptosis of sensory neurons in the lumbar 5 (L5) ganglia in the control rodents; however, animals treated with hADSCs demonstrated a smaller amount of cellular loss. Formation of amputation neuroma, which hinders axonal repair, was less prominent in the experimental group, and immunohistochemical analysis of myelin basic protein showed good myelination 65 days after surgery. At this point, control groups still exhibited high levels of microglia/macrophage-specific marker Iba-1 and proliferating cell nuclear antigen, the mark of an ongoing inflammation and incomplete axonal growth 2 months after the injury. This report demonstrates that hADSCs promote neuronal survival in the spinal ganglion, fuel axonal repair and stimulate the regeneration of peripheral nerves.

  4. Adipose depots differ in cellularity, adipokines produced, gene expression, and cell systems

    PubMed Central

    Dodson, Michael V; Du, Min; Wang, Songbo; Bergen, Werner G; Fernyhough-Culver, Melinda; Basu, Urmila; Poulos, Sylvia P; Hausman, Gary J

    2014-01-01

    The race to manage the health concerns related to excess fat deposition has spawned a proliferation of clinical and basic research efforts to understand variables including dietary uptake, metabolism, and lipid deposition by adipocytes. A full appreciation of these variables must also include a depot-specific understanding of content and location in order to elucidate mechanisms governing cellular development and regulation of fat deposition. Because adipose tissue depots contain various cell types, differences in the cellularity among and within adipose depots are presently being documented to ascertain functional differences. This has led to the possibility of there being, within any one adipose depot, cellular distinctions that essentially result in adipose depots within depots. The papers comprising this issue will underscore numerous differences in cellularity (development, histogenesis, growth, metabolic function, regulation) of different adipose depots. Such information is useful in deciphering adipose depot involvement both in normal physiology and in pathology. Obesity, diabetes, metabolic syndrome, carcass composition of meat animals, performance of elite athletes, physiology/pathophysiology of aging, and numerous other diseases might be altered with a greater understanding of adipose depots and the cells that comprise them—including stem cells—during initial development and subsequent periods of normal/abnormal growth into senescence. Once thought to be dormant and innocuous, the adipocyte is emerging as a dynamic and influential cell and research will continue to identify complex physiologic regulation of processes involved in adipose depot physiology. PMID:26317047

  5. Xenobiotics that affect oxidative phosphorylation alter differentiation of human adipose-derived stem cells at concentrations that are found in human blood

    PubMed Central

    Llobet, Laura; Toivonen, Janne M.; Montoya, Julio; Ruiz-Pesini, Eduardo; López-Gallardo, Ester

    2015-01-01

    ABSTRACT Adipogenesis is accompanied by differentiation of adipose tissue-derived stem cells to adipocytes. As part of this differentiation, biogenesis of the oxidative phosphorylation system occurs. Many chemical compounds used in medicine, agriculture or other human activities affect oxidative phosphorylation function. Therefore, these xenobiotics could alter adipogenesis. We have analyzed the effects on adipocyte differentiation of some xenobiotics that act on the oxidative phosphorylation system. The tested concentrations have been previously reported in human blood. Our results show that pharmaceutical drugs that decrease mitochondrial DNA replication, such as nucleoside reverse transcriptase inhibitors, or inhibitors of mitochondrial protein synthesis, such as ribosomal antibiotics, diminish adipocyte differentiation and leptin secretion. By contrast, the environmental chemical pollutant tributyltin chloride, which inhibits the ATP synthase of the oxidative phosphorylation system, can promote adipocyte differentiation and leptin secretion, leading to obesity and metabolic syndrome as postulated by the obesogen hypothesis. PMID:26398948

  6. Xenobiotics that affect oxidative phosphorylation alter differentiation of human adipose-derived stem cells at concentrations that are found in human blood.

    PubMed

    Llobet, Laura; Toivonen, Janne M; Montoya, Julio; Ruiz-Pesini, Eduardo; López-Gallardo, Ester

    2015-11-01

    Adipogenesis is accompanied by differentiation of adipose tissue-derived stem cells to adipocytes. As part of this differentiation, biogenesis of the oxidative phosphorylation system occurs. Many chemical compounds used in medicine, agriculture or other human activities affect oxidative phosphorylation function. Therefore, these xenobiotics could alter adipogenesis. We have analyzed the effects on adipocyte differentiation of some xenobiotics that act on the oxidative phosphorylation system. The tested concentrations have been previously reported in human blood. Our results show that pharmaceutical drugs that decrease mitochondrial DNA replication, such as nucleoside reverse transcriptase inhibitors, or inhibitors of mitochondrial protein synthesis, such as ribosomal antibiotics, diminish adipocyte differentiation and leptin secretion. By contrast, the environmental chemical pollutant tributyltin chloride, which inhibits the ATP synthase of the oxidative phosphorylation system, can promote adipocyte differentiation and leptin secretion, leading to obesity and metabolic syndrome as postulated by the obesogen hypothesis.

  7. Fighting Fat with Fat: The Expanding Field of Adipose Stem Cells

    PubMed Central

    Zeve, Daniel; Tang, Wei; Graff, Jon

    2010-01-01

    We are in the midst of a dire, unprecedented, and global epidemic of obesity and secondary sequelae, most prominently diabetes and hyperlipidemia. Underlying this epidemic is the most hated of cells, adipocytes, and their inherent dynamic ability to expand and renew. This capacity highlights a heretofore undefined stem compartment. Recent in vivo studies, relying upon lineage tracing and flow cytometry methods, have begun to unravel the identity of adipose stem cells, their niche, and the dynamism central to adipose expansion. Thus, the field is moving in a direction that may allow us to manipulate adipose stem cells to beneficial therapeutic ends. PMID:19896439

  8. Adult Adipose-Derived Stem Cell Attachment to Biomaterials

    PubMed Central

    Prichard, Heather L; Reichert, William M; Klitzman, Bruce

    2007-01-01

    Attachment of adipose-derived stem cells (ASC) to biomaterials prior to implantation is a possible strategy for mediating inflammation and wound healing. In this study, the ASC percent coverage was measured on common medical grade biosensor materials subjected to different surface treatments. Cell coverage on silicone elastomer (poly dimethylsiloxane) was below 20% for all surface treatments. Polyimide (Kapton), polyurethane (Pellethane) and tissue culture polystyrene all exhibited >50% coverage for surfaces treated with fibronectin (Fn), fibronectin plus avidin/biotin (dual ligand), and oxygen plasma plus fibronectin treatments (Fn O2). The fibronectin treatment performed as well or better on polyimide, polyurethane, and tissue culture polystyrene compared to the dual ligand and fibronectin oxygen plasma treated surfaces. Cell detachment with increasing shear stresses was <25% for each attachment method on both polyimide and polyurethane. The effects of attachment methods on the basic cell functions of proliferation, metabolism, ATP concentration, and caspase-3 activity were analyzed yielding proliferation profiles that were very similar among all of the materials. No significant differences in metabolism, intracellular ATP, or intracellular caspase-3 activity were observed for any of the attachment methods on either polyimide or polyurethane. PMID:17074385

  9. Adipose lineage specification of bone marrow-derived myeloid cells

    PubMed Central

    Majka, Susan M.; Miller, Heidi L.; Sullivan, Timothy; Erickson, Paul F.; Kong, Raymond; Weiser-Evans, Mary; Nemenoff, Raphael; Moldovan, Radu; Morandi, Shelley A.; Davis, James A.; Klemm, Dwight J.

    2012-01-01

    We have reported the production of white adipocytes in adipose tissue from hematopoietic progenitors arising from bone marrow. However, technical challenges have hindered detection of this adipocyte population by certain other laboratories. These disparate results highlight the need for sensitive and definitive techniques to identify bone marrow progenitor (BMP)-derived adipocytes. In these studies we exploited new models and methods to enhance detection of this adipocyte population. Here we showed that confocal microscopy with spectrum acquisition could effectively identify green fluorescent protein (GFP) positive BMP-derived adipocytes by matching their fluorescence spectrum to that of native GFP. Likewise, imaging flow cytometry made it possible to visualize intact unilocular and multilocular GFP-positive BMP-derived adipocytes and distinguished them from non-fluorescent adipocytes and cell debris in the cytometer flow stream. We also devised a strategy to detect marker genes in flow-enriched adipocytes from which stromal cells were excluded. This technique also proved to be an efficient means for detecting genetically labeled adipocytes and should be applicable to models in which marker gene expression is low or absent. Finally, in vivo imaging of mice transplanted with BM from adipocyte-targeted luciferase donors showed a time-dependent increase in luciferase activity, with the bulk of luciferase activity confined to adipocytes rather than stromal cells. These results confirmed and extended our previous reports and provided proof-of-principle for sensitive techniques and models for detection and study of these unique cells. PMID:23700536

  10. Adipose-derived mesenchymal stem cells promote cell proliferation and invasion of epithelial ovarian cancer

    SciTech Connect

    Chu, Yijing; Tang, Huijuan; Guo, Yan; Guo, Jing; Huang, Bangxing; Fang, Fang; Cai, Jing Wang, Zehua

    2015-09-10

    Adipose-derived mesenchymal stem cell (ADSC) is an important component of tumor microenvironment. However, whether ADSCs have a hand in ovarian cancer progression remains unclear. In this study, we investigated the impact of human ADSCs derived from the omentum of normal donors on human epithelial ovarian cancer (EOC) cells in vitro and in vivo. Direct and indirect co-culture models including ADSCs and human EOC cell lines were established and the effects of ADSCs on EOC cell proliferation were evaluated by EdU incorporation and flow cytometry. Transwell migration assays and detection of MMPs were performed to assess the invasion activity of EOC cells in vitro. Mouse models were established by intraperitoneal injection of EOC cells with or without concomitant ADSCs to investigate the role of ADSCs in tumor progression in vivo. We found that ADSCs significantly promoted proliferation and invasion of EOC cells in both direct and indirect co-culture assays. In addition, after co-culture with ADSCs, EOC cells secreted higher levels of matrix metalloproteinases (MMPs), and inhibition of MMP2 and MMP9 partially relieved the tumor-promoting effects of ADSCs in vitro. In mouse xenograft models, we confirmed that ADSCs promoted EOC growth and metastasis and elevated the expression of MMP2 and MMP9. Our findings indicate that omental ADSCs play a promotive role during ovarian cancer progression. - Highlights: • Omental adipose derived stem cells enhanced growth and invasion properties of ovarian cancer cells. • Adipose derived stem cells promoted the growth and metastasis of ovarian cancer in mice models. • Adipose derived stem cells promoted MMPs expression and secretion of ovarian cancer cells. • Elevated MMPs mediated the tumor promoting effects of ADSCs.

  11. Treatment of faecal incontinence using allogeneic-adipose-derived mesenchymal stem cells: a study protocol for a pilot randomised controlled trial

    PubMed Central

    Park, Eun Jung; Kang, Jeonghyun; Baik, Seung Hyuk

    2016-01-01

    Introduction Faecal incontinence is a distressing condition with recurrent uncontrolled passage of faecal material. Although faecal incontinence may cause psychological depression and social isolation, previous treatments have been limited. Recently, regenerative treatment has been developed using mesenchymal stem cells. Especially, there are possibilities that adipose-tissue-derived stem cells can be effective to treat a degenerated anal sphincter that is causing faecal incontinence. Therefore, this study aimed to investigate the safety and efficacy of using allogeneic-adipose-derived mesenchymal stem cells in the treatment of the anal sphincter of patients with faecal incontinence. Methods and analysis This study is a randomised, prospective, dose escalation, placebo-controlled, single-blinded, single-centre trial with two parallel groups. The safety test is performed by an injection of allogeneic-adipose-derived mesenchymal stem cells (ALLO-ASCs) into the anal sphincter with dose escalation (3×107, 6×107 and 9×107 cells, sequentially). After confirming the safety of the stem cells, an efficacy test is performed by this dose in the experimental group. The experimental group will receive ALLO-ASCs mixed with fibrin glue into the anal sphincter, and the placebo group will receive 0.9% normal saline injection mixed with fibrin glue. The primary end point is to assess the safety of ALLO-ASCs after the injection into the anal sphincter, and the secondary end point is to compare the efficacy of ALLO-ASC injection with fibrin glue in patients with faecal incontinence. Ethics and dissemination The study protocol was approved by the Ministry of Food and Drug Safety and the Ministry of Health & Welfare, in the Republic of Korea. The informed consent form was approved by the institutional review board of Gangnam Severance Hospital (IRB approval number 3-2014-0271). Dissemination of the results will be presented at a conference and in peer-reviewed publications. Trial

  12. Stromal vascular cells and adipogenesis: Cells within adipose depots regulate adipogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A collection of investigations indicate the importance of adipose tissue stromal/stem cells to vasculogenesis and angiogenesis during adipogenesis. Early in development the stromal-vascular (S-V) elements control and dictate the extent of adipogenesis in a depot dependent manner. For instance, the...

  13. Mouse adipose tissue stromal cells give rise to skeletal and cardiomyogenic cell sub-populations

    PubMed Central

    Dromard, Cécile; Barreau, Corinne; André, Mireille; Berger-Müller, Sandra; Casteilla, Louis; Planat-Benard, Valerie

    2014-01-01

    We previously reported that adipose tissue could generate cardiomyocyte-like cells from crude stromal vascular fraction (SVF) in vitro that improved cardiac function in a myocardial infarction context. However, it is not clear whether these adipose-derived cardiomyogenic cells (AD-CMG) constitute a homogenous population and if AD-CMG progenitors could be isolated as a pure population from the SVF of adipose tissue. This study aims to characterize the different cell types that constitute myogenic clusters and identify the earliest AD-CMG progenitors in vitro for establishing a complete phenotype and use it to sort AD-CMG progenitors from crude SVF. Here, we report cell heterogeneity among adipose-derived clusters during their course of maturation and highlighted sub-populations that exhibit original mixed cardiac/skeletal muscle phenotypes with a progressive loss of cardiac phenotype with time in liquid culture conditions. Moreover, we completed the phenotype of AD-CMG progenitors but we failed to sort them from the SVF. We demonstrated that micro-environment is required for the maturation of myogenic phenotype by co-culture experiments. These findings bring complementary data on AD-CMG and suggest that their emergence results from in vitro events. PMID:25364749

  14. Adipose-derived Mesenchymal Stem Cells and Their Reparative Potential in Ischemic Heart Disease.

    PubMed

    Badimon, Lina; Oñate, Blanca; Vilahur, Gemma

    2015-07-01

    Adipose tissue has long been considered an energy storage and endocrine organ; however, in recent decades, this tissue has also been considered an abundant source of mesenchymal cells. Adipose-derived stem cells are easily obtained, show a strong capacity for ex vivo expansion and differentiation to other cell types, release a large variety of angiogenic factors, and have immunomodulatory properties. Thus, adipose tissue is currently the focus of considerable interest in the field of regenerative medicine. In the context of coronary heart disease, numerous experimental studies have supported the safety and efficacy of adipose-derived stem cells in the setting of myocardial infarction. These results have encouraged the clinical use of these stem cells, possibly prematurely. Indeed, the presence of cardiovascular risk factors, such as hypertension, coronary disease, diabetes mellitus, and obesity, alter and reduce the functionality of adipose-derived stem cells, putting in doubt the efficacy of their autologous implantation. In the present article, white adipose tissue is described, the stem cells found in this tissue are characterized, and the use of these cells is discussed according to the preclinical and clinical trials performed so far.

  15. Hair Regeneration Treatment Using Adipose-Derived Stem Cell Conditioned Medium: Follow-up With Trichograms

    PubMed Central

    Suga, Hirotaka

    2015-01-01

    Objective: Adipose-derived stem cells secrete various growth factors that promote hair growth. This study examined the effects of adipose-derived stem cell-conditioned medium on alopecia. Methods: Adipose-derived stem cell-conditioned medium was intradermally injected in 22 patients (11 men and 11 women) with alopecia. Patients received treatment every 3 to 5 weeks for a total of 6 sessions. Hair numbers were counted using trichograms before and after treatment. A half-side comparison study was also performed in 10 patients (8 men and 2 women). Results: Hair numbers were significantly increased after treatment in both male (including those without finasteride administration) and female patients. In the half-side comparison study, the increase in hair numbers was significantly higher on the treatment side than on the placebo side. Conclusion: Treatment using adipose-derived stem cell-conditioned medium appears highly effective for alopecia and may represent a new therapy for hair regeneration. PMID:25834689

  16. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    PubMed Central

    He, Yunfan; Lu, Feng

    2016-01-01

    Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells. PMID:26977158

  17. Adipose tissue-deprived stem cells acquire cementoblast features treated with dental follicle cell conditioned medium containing dentin non-collagenous proteins in vitro

    SciTech Connect

    Wen, Xiujie; Nie, Xin; Zhang, Li; Liu, Luchuan; Deng, Manjing

    2011-06-10

    Highlights: {yields} In this study we examine the effects of dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs) on differentiation of ADSCs. {yields} We examined that ADSCs treated with dNCPs/DFCCM underwent morphological changes and significantly lost their proliferative capacity. {yields} dNCPs/DFCCM enhanced the mineralization behaviour and mineralization-related marker expression of ADSCs. {yields} ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment. -- Abstract: Adipose tissue-derived stem cells (ADSCs), which are easily harvested and show excellent pluripotency potential, have generated considerable interest in regenerative medicine. In this study, the differentiation of ADSCs was assessed after treatment with dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs). ADSCs exhibited a fibroblast-like morphology and high proliferative capacity. However, after treatment with dNCPs/DFCCM, ADSCs changed from a fibroblast-like to cementoblast-like morphology and significantly lost their proliferative capacity. Alkaline phosphatase activity and in vitro mineralization behaviour of ADSCs were significantly enhanced. Mineralization-related markers including cementum attachment protein, bone sialoprotein, osteocalcin, osteopontin and osteonectin were detected at mRNA or protein levels, whereas dentin sialophosphoprotein and dentin sialoprotein were not detected, implying a cementoblast-like phenotype. These results demonstrate that ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment and could be a potential source of cementogenic cells for periodontal regeneration.

  18. Delivery of Human Adipose Stem Cells Spheroids into Lockyballs

    PubMed Central

    Pereira, Frederico D. A. S.; Gruber, Peter; Stuart, Mellannie P.; Ovsianikov, Aleksandr; Brakke, Ken; Kasyanov, Vladimir; da Silva, Jorge V. L.; Granjeiro, José M.; Mironov, Vladimir

    2016-01-01

    Adipose stem cells (ASCs) spheroids show enhanced regenerative effects compared to single cells. Also, spheroids have been recently introduced as building blocks in directed self-assembly strategy. Recent efforts aim to improve long-term cell retention and integration by the use of microencapsulation delivery systems that can rapidly integrate in the implantation site. Interlockable solid synthetic microscaffolds, so called lockyballs, were recently designed with hooks and loops to enhance cell retention and integration at the implantation site as well as to support spheroids aggregation after transplantation. Here we present an efficient methodology for human ASCs spheroids biofabrication and lockyballs cellularization using micro-molded non-adhesive agarose hydrogel. Lockyballs were produced using two-photon polymerization with an estimated mechanical strength. The Young’s modulus was calculated at level 0.1362 +/-0.009 MPa. Interlocking in vitro test demonstrates high level of loading induced interlockability of fabricated lockyballs. Diameter measurements and elongation coefficient calculation revealed that human ASCs spheroids biofabricated in resections of micro-molded non-adhesive hydrogel had a more regular size distribution and shape than spheroids biofabricated in hanging drops. Cellularization of lockyballs using human ASCs spheroids did not alter the level of cells viability (p › 0,999) and gene fold expression for SOX-9 and RUNX2 (p › 0,195). The biofabrication of ASCs spheroids into lockyballs represents an innovative strategy in regenerative medicine, which combines solid scaffold-based and directed self-assembly approaches, fostering opportunities for rapid in situ biofabrication of 3D building-blocks. PMID:27829016

  19. Angiopoietin-1-expressing adipose stem cells genetically modified with baculovirus nanocomplex: investigation in rat heart with acute infarction.

    PubMed

    Paul, Arghya; Nayan, Madhur; Khan, Afshan Afsar; Shum-Tim, Dominique; Prakash, Satya

    2012-01-01

    The objective of this study was to develop angiopoietin-1 (Ang1)-expressing genetically modified human adipose tissue derived stem cells (hASCs) for myocardial therapy. For this, an efficient gene delivery system using recombinant baculovirus complexed with cell penetrating transactivating transcriptional activator TAT peptide/deoxyribonucleic acid nanoparticles (Bac-NP), through ionic interactions, was used. It was hypothesized that the hybrid Bac- NP(Ang1) system can efficiently transduce hASCs and induces favorable therapeutic effects when transplanted in vivo. To evaluate this hypothesis, a rat model with acute myocardial infarction and intramyocardially transplanted Ang1-expressing hASCs (hASC-Ang1), genetically modified by Bac-NP(Ang1), was used. Ang1 is a crucial pro-angiogenic factor for vascular maturation and neovasculogenesis. The released hAng1 from hASC-Ang1 demonstrated profound mitotic and anti-apoptotic activities on endothelial cells and cardiomyocytes. The transplanted hASC-Ang1 group showed higher cell retention compared to hASC and control groups. A significant increase in capillary density and reduction in infarct sizes were noted in the infarcted hearts with hASC-Ang1 treatment compared to infarcted hearts treated with hASC or the untreated group. Furthermore, the hASC-Ang1 group showed significantly higher cardiac performance in echocardiography (ejection fraction 46.28% ± 6.3%, P < 0.001 versus control, n = 8) than the hASC group (36.35% ± 5.7%, P < 0.01, n = 8), 28 days post-infarction. The study identified Bac-NP complex as an advanced gene delivery vehicle for stem cells and demonstrated its potential to treat ischemic heart disease with high therapeutic index for combined stem cell-gene therapy strategy.

  20. [Isolation, culture and identification of adipose-derived stem cells from SD rat adipose tissues subjected to long-term cryopreservation].

    PubMed

    Liu, Qin; Wang, Liping; Chen, Fang; Zhang, Yi

    2017-02-01

    Objective To study the feasibility of isolation and culture of adipose-derived stem cells (ADSCs) from SD rat adipose tissues subjected to long-term cryopreservation. Methods We took inguinal fat pads from healthy SD rats. Adipose tissues were stored with 100 mL/L dimethyl sulfoxide (DMSO) combined with 900 mL/L fetal bovine serum (FBS) in liquid nitrogen. Three months later, the adipose tissues were resuscitated for the isolation and culture of ADSCs. The growth status and morphology were observed. The growth curve and cell surface markers CD29, CD45, CD90 of the 3rd passage cells were analyzed respectively by CCK-8 assay and immunocytochemistry. The 3rd passage cells were induced towards adipogenic lineages and osteogenic lineages by different inducers, and the resulting cells were examined separately by oil red O staining and alizarin red staining. Results The ADSCs obtained from SD rat adipose tissues subjected to long-term cryopreservation showed a spindle-shape appearance and had a good proliferation ability. The cell growth curve was typical "S" curve. Immunocytochemistry showed that the 3rd passage cells were positive for CD29 and CD90, while negative for CD45. The cells were positive for oil red O staining after adipogenic induction, and also positive for alizarin red staining after osteogenic induction. Conclusion The ADSCs can be isolated from SD rat adipose tissues subjected to long-term cryopreservation.

  1. Altered gene expression in human adipose stem cells cultured with fetal bovine serum compared to human supplements.

    PubMed

    Bieback, Karen; Ha, Viet Anh-Thu; Hecker, Andrea; Grassl, Melanie; Kinzebach, Sven; Solz, Hermann; Sticht, Carsten; Klüter, Harald; Bugert, Peter

    2010-11-01

    Mesenchymal stromal cells (MSCs) are promising candidates for innovative cell therapeutic applications. For clinical scale manufacturing regulatory agencies recommend to replace fetal bovine serum (FBS) commonly used in MSC expansion media as soon as equivalent alternative supplements are available. We already demonstrated that pooled blood group AB human serum (HS) and thrombin-activated platelet releasate plasma (tPRP) support the expansion of multipotent adipose tissue-derived MSCs (ASCs). Slight differences in size, growth pattern and adhesion prompted us to investigate the level of equivalence by compiling the transcriptional profiles of ASCs cultivated in these supplements. A whole genome gene expression analysis was performed and data verified by polymerase chain reaction and protein analyses. Microarray-based screening of 34,039 genes revealed 102 genes differentially expressed in ASCs cultured with FBS compared to HS or tPRP supplements. A significantly higher expression in FBS cultures was found for 90 genes (fold change ≥2). Only 12 of the 102 genes showed a lower expression in FBS compared to HS or tPRP cultures (fold change ≤0.5). Differences between cells cultivated in HS and tPRP were hardly evident. Supporting previous observations of reduced adhesion of cells cultivated in the human alternatives we detected a number of adhesion and extracellular matrix-associated molecules expressed at lower levels in ASCs cultivated with human supplements. Confirmative assays analyzing transcript or protein expression with selected genes supported these results. Likewise a number of mesodermal differentiation-associated genes were higher expressed in cells grown in FBS. Quantifying adipogenic and osteogenic differentiation lacked to demonstrate a clear correlation to the supplement due to donor-specific variances. Our results emphasize the necessity of comparability studies as they indicate that FBS induces a culture adaptation exceeding that of ex vivo

  2. Adipose Stem Cells as Alternatives for Bone Marrow Mesenchymal Stem Cells in Oral Ulcer Healing

    PubMed Central

    Aziz Aly, Lobna Abdel; Menoufy, Hala El-; Ragae, Alyaa; Rashed, Laila Ahmed; Sabry, Dina

    2012-01-01

    Background and Objectives Adipose tissue is now recognized as an accessible, abundant, and reliable site for the isolation of adult stem cells suitable for tissue engineering and regenerative medicine applications. Methods and Results Oral ulcers were induced by topical application of formocresol in the oral cavity of dogs. Transplantation of undifferentiated GFP-labeled Autologous Bone Marrow Stem Cell (BMSCs), Adipose Derived Stem Cell (ADSCs) or vehicle (saline) was injected around the ulcer in each group. The healing process of the ulcer was monitored clinically and histopathologically. Gene expression of vascular endothelial growth factor (VEGF) was detected in MSCs by Reverse Transcription-Polymerase Chain Reaction (RT-PCR). Expression of VEGF and collagen genes was detected in biopsies from all ulcers. Results: MSCs expressed mRNA for VEGF MSCs transplantation significantly accelerated oral ulcer healing compared with controls. There was increased expression of both collagen and VEGF genes in MSCs-treated ulcers compared to controls. Conclusions MSCs transplantation may help to accelerate oral ulcer healing, possibly through the induction of angiogenesis by VEGF together with increased intracellular matrix formation as detected by increased collagen gene expression. This body of work has provided evidence supporting clinical applications of adipose-derived cells in safety and efficacy trials as an alternative for bone marrow mesenchymal stem cells in oral ulcer healing. PMID:24298363

  3. Increased Adipogenesis of Human Adipose-Derived Stem Cells on Polycaprolactone Fiber Matrices

    PubMed Central

    Brännmark, Cecilia; Paul, Alexandra; Ribeiro, Diana; Magnusson, Björn; Brolén, Gabriella; Enejder, Annika; Forslöw, Anna

    2014-01-01

    With accelerating rates of obesity and type 2 diabetes world-wide, interest in studying the adipocyte and adipose tissue is increasing. Human adipose derived stem cells - differentiated to adipocytes in vitro - are frequently used as a model system for white adipocytes, as most of their pathways and functions resemble mature adipocytes in vivo. However, these cells are not completely like in vivo mature adipocytes. Hosting the cells in a more physiologically relevant environment compared to conventional two-dimensional cell culturing on plastic surfaces, can produce spatial cues that drive the cells towards a more mature state. We investigated the adipogenesis of adipose derived stem cells on electro spun polycaprolactone matrices and compared functionality to conventional two-dimensional cultures as well as to human primary mature adipocytes. To assess the degree of adipogenesis we measured cellular glucose-uptake and lipolysis and used a range of different methods to evaluate lipid accumulation. We compared the averaged results from a whole population with the single cell characteristics – studied by coherent anti-Stokes Raman scattering microscopy - to gain a comprehensive picture of the cell phenotypes. In adipose derived stem cells differentiated on a polycaprolactone-fiber matrix; an increased sensitivity in insulin-stimulated glucose uptake was detected when cells were grown on either aligned or random matrices. Furthermore, comparing differentiation of adipose derived stem cells on aligned polycaprolactone-fiber matrixes, to those differentiated in two-dimensional cultures showed, an increase in the cellular lipid accumulation, and hormone sensitive lipase content. In conclusion, we propose an adipocyte cell model created by differentiation of adipose derived stem cells on aligned polycaprolactone-fiber matrices which demonstrates increased maturity, compared to 2D cultured cells. PMID:25419971

  4. Therapeutic potential of human adipose-derived stem cells in neurological disorders.

    PubMed

    Chang, Keun-A; Lee, Jun-Ho; Suh, Yoo-Hun

    2014-01-01

    Stem cell therapy has been noted as a novel strategy to various diseases including neurological disorders such as Alzheimer's disease, Parkinson's disease, stroke, amyotrophic lateral sclerosis, and Huntington's disease that have no effective treatment available to date. The adipose-derived stem cells (ASCs), mesenchymal stem cells (MSCs) isolated from adipose tissue, are well known for their pluripotency with the ability to differentiate into various types of cells and immuno-modulatory property. These biological features make ASCs a promising source for regenerative cell therapy in neurological disorders. Here we discuss the recent progress of regenerative therapies in various neurological disorders utilizing ASCs.

  5. Bonghan system as mesenchymal stem cell niches and pathways of macrophages in adipose tissues.

    PubMed

    Lee, Byung-Cheon; Bae, Kyung-Hee; Jhon, Gil-Ja; Soh, Kwang-Sup

    2009-03-01

    A new technique for visualizing Bonghan ducts (BHDs) and Bonghan corpuscles (BHCs) was developed by using a vivi-staining dye, Trypan blue. The dye stains BHDs and BHCs preferentially to adipocytes so that tracking a BHD and a BHC, even inside adipose tissues, is possible. Concerning the functions of the BHD and the BHC in adipose tissues, we propose conjectures: the Bonghan system may be niches for mesenchymal stem cells, which can differentiate into adipocytes, and pathways for macrophages involved in adipogenesis.

  6. Steroid hormones and the stroma-vascular cells of the adipose tissue.

    PubMed

    Volat, Fanny; Bouloumié, Anne

    2013-09-01

    The stroma-vascular fraction (SVF) of adipose tissue (AT) is a heterogeneous cell fraction composed of progenitor cells, endothelial cells, and immune cells. SVF plays a key role in AT homeostasis and growth as well as in obesity-associated pathologies. The SVF cell composition and phenotype are distinct according to AT location and adiposity. Such discrepancies influence AT function and are involved in obesity-associated disorders such as chronic inflammation. Investigations performed in recent years in rodents and humans provided evidence that the stroma-vascular cells contribute to the conversion of steroid hormones in AT and are also steroid targets. This review describes the link between steroids and SVF depending on gender, adiposity, and AT location and highlights the potential role of sex and corticosteroid hormones in adipogenesis, angiogenesis, and their contributions in AT inflammation.

  7. Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering.

    PubMed

    Parvizi, Mojtaba; Bolhuis-Versteeg, Lydia A M; Poot, André A; Harmsen, Martin C

    2016-07-01

    Occluding artery disease causes a high demand for bioartificial replacement vessels. We investigated the combined use of biodegradable and creep-free poly (1,3-trimethylene carbonate) (PTMC) with smooth muscle cells (SMC) derived by biochemical or mechanical stimulation of adipose tissue-derived stromal cells (ASC) to engineer bioartificial arteries. Biochemical induction of cultured ASC to SMC was done with TGF-β1 for 7d. Phenotype and function were assessed by qRT-PCR, immunodetection and collagen contraction assays. The influence of mechanical stimulation on non-differentiated and pre-differentiated ASC, loaded in porous tubular PTMC scaffolds, was assessed after culturing under pulsatile flow for 14d. Assays included qRT-PCR, production of extracellular matrix and scanning electron microscopy. ASC adhesion and TGF-β1-driven differentiation to contractile SMC on PTMC did not differ from tissue culture polystyrene controls. Mesenchymal and SMC markers were increased compared to controls. Interestingly, pre-differentiated ASC had only marginal higher contractility than controls. Moreover, in 3D PTMC scaffolds, mechanical stimulation yielded well-aligned ASC-derived SMC which deposited ECM. Under the same conditions, pre-differentiated ASC-derived SMC maintained their SMC phenotype. Our results show that mechanical stimulation can replace TGF-β1 pre-stimulation to generate SMC from ASC and that pre-differentiated ASC keep their SMC phenotype with increased expression of SMC markers.

  8. Adipose microenvironment promotes triple negative breast cancer cell invasiveness and dissemination by producing CCL5

    PubMed Central

    D’Esposito, Vittoria; Liguoro, Domenico; Ambrosio, Maria Rosaria; Collina, Francesca; Cantile, Monica; Spinelli, Rosa; Raciti, Gregory Alexander; Miele, Claudia; Valentino, Rossella; Campiglia, Pietro; De Laurentiis, Michelino; Di Bonito, Maurizio; Botti, Gerardo; Franco, Renato; Beguinot, Francesco; Formisano, Pietro

    2016-01-01

    Growing evidence indicates that adiposity is associated with raised cancer incidence, morbidity and mortality. In a subset of tumors, cancer cell growth and/or metastasis predominantly occur in adipocyte-rich microenvironment. Indeed, adipocytes represent the most abundant cell types surrounding breast cancer cells. We have studied the mechanisms by which peritumoral human adipose tissue contributes to Triple Negative Breast Cancer (TNBC) cell invasiveness and dissemination. Co-culture with human adipocytes enhanced MDA-MB231 cancer cell invasiveness. Adipocytes cultured in high glucose were 2-fold more active in promoting cell invasion and motility compared to those cultured in low glucose. This effect is induced, at least in part, by the CC-chemokine ligand 5 (CCL5). Indeed, CCL5 inhibition by specific peptides and antibodies reduced adipocyte-induced breast cancer cell migration and invasion. CCL5 immuno-detection in peritumoral adipose tissue of women with TNBC correlated with lymph node (p-value = 0.04) and distant metastases (p-value = 0.001). A positive trend was also observed between CCL5 expression and glycaemia. Finally, Kaplan-Meier curves showed a negative correlation between CCL5 staining in the peritumoral adipose tissue and overall survival of patients (p-value = 0.039). Thus, inhibition of CCL5 in adipose microenvironment may represent a novel approach for the therapy of highly malignant TNBC. PMID:27027351

  9. Human adipose-derived stem cells: definition, isolation, tissue-engineering applications.

    PubMed

    Nae, S; Bordeianu, I; Stăncioiu, A T; Antohi, N

    2013-01-01

    Recent researches have demonstrated that the most effective repair system of the body is represented by stem cells - unspecialized cells, capable of self-renewal through successive mitoses, which have also the ability to transform into different cell types through differentiation. The discovery of adult stem cells represented an important step in regenerative medicine because they no longer raises ethical or legal issues and are more accessible. Only in 2002, stem cells isolated from adipose tissue were described as multipotent stem cells. Adipose tissue stem cells benefits in tissue engineering and regenerative medicine are numerous. Development of adipose tissue engineering techniques offers a great potential in surpassing the existing limits faced by the classical approaches used in plastic and reconstructive surgery. Adipose tissue engineering clinical applications are wide and varied, including reconstructive, corrective and cosmetic procedures. Nowadays, adipose tissue engineering is a fast developing field, both in terms of fundamental researches and medical applications, addressing issues related to current clinical pathology or trauma management of soft tissue injuries in different body locations.

  10. Cell kinetics, DNA integrity, differentiation, and lipid fingerprinting analysis of rabbit adipose-derived stem cells.

    PubMed

    Barretto, Letícia Siqueira de Sá; Lessio, Camila; Sawaki e Nakamura, Ahy Natally; Lo Turco, Edson Guimarães; da Silva, Camila Gonzaga; Zambon, João Paulo; Gozzo, Fábio César; Pilau, Eduardo Jorge; de Almeida, Fernando Gonçalves

    2014-10-01

    Human adipose tissue has been described as a potential alternative reservoir for stem cells. Although studies have been performed in rabbits using autologous adipose-derived stem cells (ADSC), these cells have not been well characterized. The primary objectives of this study were to demonstrate the presence of adipose-derived stem cells isolated from rabbit inguinal fat pads and to characterize them through osteogenic and adipogenic in vitro differentiation and lipid fingerprinting analysis. The secondary objective was to evaluate cell behavior through growth kinetics, cell viability, and DNA integrity. Rabbit ADSCs were isolated to determine the in vitro growth kinetics and cell viability. DNA integrity was assessed by an alkaline Comet assay in passages 0 and 5. The osteogenic differentiation was evaluated by Von Kossa, and Alizarin Red S staining and adipogenic differentiation were assessed by Oil Red O staining. Lipid fingerprinting analyses of control, adipogenic, and osteogenic differentiated cells were performed by MALDI-TOF/MS. We demonstrate that rabbit ADSC have a constant growth rate at the early passages, with increased DNA fragmentation at or after passage 5. Rabbit ADSC viability was similar in passages 2 and 5 (90.7% and 86.6%, respectively), but there was a tendency to decreased cellular growth rate after passage 3. The ADSC were characterized by the expression of surface markers such as CD29 (67.4%) and CD44 (89.4%), using CD 45 (0.77%) as a negative control. ADSC from rabbits were successfully isolated form the inguinal region. These cells were capable to differentiate into osteogenic and adipogenic tissue when they were placed in inductive media. After each passage, there was a trend towards decreased cell growth. On the other hand, DNA fragmentation increased at each passage. ADSC had a different lipid profile when placed in control, adipogenic, or osteogenic media.

  11. In vitro induction of human adipose-derived stem cells into lymphatic endothelial-like cells.

    PubMed

    Yang, Yi; Chen, Xiao-hu; Li, Fu-gui; Chen, Yun-xian; Gu, Li-qiang; Zhu, Jia-kai; Li, Ping

    2015-02-01

    Human adipose-derived stem cells (hADSCs) may provide a suitable number of progenitors for the treatment of lymphatic edema; however, to date the protocols for inducing hADSCs into this tissue type have not been standardized. We wished to investigate the induction of hADSCs into lymphatic endothelial-like cells using vascular endothelial growth factor-C156S (VEGF-C156S) and other growth factors in vitro. hADSCs from healthy adult adipose tissue were purified using enzyme digestion. Differentiation was induced using medium containing VEGF-C156S and bovine fibroblast growth factor (bFGF). Differentiation was confirmed using immunostaining for lymphatic vessel endothelial hyaluronan receptor (LYVE-1) and fms-related tyrosine kinase 4 (FLT-4), two lymphatic endothelial cell markers. The expression levels of LYVE-1, prospero homeobox 1 (PROX-1), and FLT-4 throughout induction were assessed using reverse transcriptase quantitative polymerase chain reaction. hADSCs were successfully obtained by trypsin digest and purification. Flow cytometry showed these cells were similar to mesenchymal stem cells, with a high positive rate of CD13, CD29, CD44, and CD105, and a low positive rate of CD31, CD34, CD45, and HLA-DR. Induction to lymphatic endothelial-like cells was successful, with cells expressing high levels of LYVE-1, PROX-1, and FLT-4. Adipose-derived stem cells can be induced to differentiate into lymphatic endothelial-like cells using a medium containing VEGF-C156S, bFGF, and other growth factors. This population of lymphatic endothelial-like cells may be useful for lymphatic reconstruction in the future.

  12. Human adipose CD34+ CD90+ stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and adipose tissues.

    PubMed

    Ferraro, Giuseppe A; De Francesco, Francesco; Nicoletti, Gianfranco; Paino, Francesca; Desiderio, Vincenzo; Tirino, Virginia; D'Andrea, Francesco

    2013-05-01

    Stem cell based therapies for the repair and regeneration of various tissues are of great interest for a high number of diseases. Adult stem cells, instead, are more available, abundant and harvested with minimally invasive procedures. In particular, mesenchymal stem cells (MSCs) are multi-potent progenitors, able to differentiate into bone, cartilage, and adipose tissues. Human adult adipose tissue seems to be the most abundant source of MSCs and, due to its easy accessibility; it is able to give a considerable amount of stem cells. In this study, we selected MSCs co-expressing CD34 and CD90 from adipose tissue. This stem cell population displayed higher proliferative capacity than CD34(-) CD90(-) cells and was able to differentiate in vitro into adipocytes (PPARγ(+) and adiponectin(+)) and endothelial cells (CD31(+) VEGF(+) Flk1(+)). In addition, in methylcellulose without VEGF, it formed a vascular network. The aim of this study was to investigate differentiation potential of human adipose CD34(+) /CD90(+) stem cells loaded onto commercial collagen sponges already used in clinical practice (Gingistat) both in vitro and in vivo. The results of this study clearly demonstrate that human adult adipose and loose connective tissues can be obtained in vivo, highlighting that CD34(+) /CD90 ASCs are extremely useful for regenerative medicine.

  13. Adipose-Derived Stem Cells as a Tool in Cell-Based Therapies.

    PubMed

    Bajek, Anna; Gurtowska, Natalia; Olkowska, Joanna; Kazmierski, Lukasz; Maj, Malgorzata; Drewa, Tomasz

    2016-12-01

    Recent development in stem cell isolation methods and expansion under laboratory conditions create an opportunity to use those aforementioned cells in tissue engineering and regenerative medicine. Particular attention is drawn towards mesenchymal stem cells (MSCs) being multipotent progenitors exhibiting several unique characteristics, including high proliferation potential, self-renewal abilities and multilineage differentiation into cells of mesodermal and non-mesodermal origin. High abundance of MSCs found in adipose tissue makes it a very attractive source of adult stem cells for further use in regenerative medicine applications. Despite immunomodulating properties of adipose-derived stem cells (ASCs) and a secretion of a wide variety of paracrine factors that facilitate tissue regeneration, effectiveness of stem cell therapy was not supported by the results of clinical trials. Lack of a single, universal stem cell marker, patient-to-patient variability, heterogeneity of ASC population combined with multiple widely different protocols of cell isolation and expansion hinder the ability to precisely identify and analyze biological properties of stem cells. The above issues contribute to conflicting data reported in literature. We will review the comprehensive information concerning characteristic features of ASCs. We will also review the regenerative potential and clinical application based on various clinical trials.

  14. [Nuclear heterogeneity and proliferative capacity of human adipose derived MSC-like cells].

    PubMed

    Lavrov, A V; Smirnichina, S A

    2010-01-01

    Adipose derived stem cells (ADSCs) are MSC-like cells which could be easily used for regenerative medicine. Here, the morphology and proliferative capacity of human ADSCs is discribed. ADSCs were analyzed after one month of cultivation at a density of 10 cells/cm2. 21 colonies were counted. Few atypical cells (huge nuclei and cytoplasm) were found in 9 out of 17 colonies analyzed. ANOVA demonstrated that colonies also differed (P = 0.0025) in nuclei dimensions and scatter in the dimensions in each colony. Nuclei dimensions and cell density logarithms correlated in reverse proportion (-0.7; P = 0.002). Thus, ADSCs were heterogeneous and represented two types of cells: small highly proliferative and large low proliferative cells. Cell heterogeneity observed in some colonies might be due to cells registered at different cell cycle phases. Stable and typical morphology, colony-formation capability and high proliferative capacity of cells indicate visceral adipose tissue as a rich source of ADSCs.

  15. Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue.

    PubMed

    Gao, Hui; Mejhert, Niklas; Fretz, Jackie A; Arner, Erik; Lorente-Cebrián, Silvia; Ehrlund, Anna; Dahlman-Wright, Karin; Gong, Xiaowei; Strömblad, Staffan; Douagi, Iyadh; Laurencikiene, Jurga; Dahlman, Ingrid; Daub, Carsten O; Rydén, Mikael; Horowitz, Mark C; Arner, Peter

    2014-06-03

    White adipose tissue (WAT) morphology characterized by hypertrophy (i.e., fewer but larger adipocytes) associates with increased adipose inflammation, lipolysis, insulin resistance, and risk of diabetes. However, the causal relationships and the mechanisms controlling WAT morphology are unclear. Herein, we identified EBF1 as an adipocyte-expressed transcription factor with decreased expression/activity in WAT hypertrophy. In human adipocytes, the regulatory targets of EBF1 were enriched for genes controlling lipolysis and adipocyte morphology/differentiation, and in both humans and murine models, reduced EBF1 levels associated with increased lipolysis and adipose hypertrophy. Although EBF1 did not affect adipose inflammation, TNFα reduced EBF1 gene expression. High-fat diet intervention in Ebf1(+/-) mice resulted in more pronounced WAT hypertrophy and attenuated insulin sensitivity compared with wild-type littermate controls. We conclude that EBF1 is an important regulator of adipose morphology and fat cell lipolysis and may constitute a link between WAT inflammation, altered lipid metabolism, adipose hypertrophy, and insulin resistance.

  16. Early B-cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue

    PubMed Central

    Gao, Hui; Mejhert, Niklas; Fretz, Jackie A.; Arner, Erik; Lorente-Cebrián, Silvia; Ehrlund, Anna; Dahlman-Wright, Karin; Gong, Xiaowei; Strömblad, Staffan; Douagi, Iyadh; Laurencikiene, Jurga; Dahlman, Ingrid; Daub, Carsten O.; Rydén, Mikael; Horowitz, Mark C.; Arner, Peter

    2014-01-01

    Summary White adipose tissue (WAT) morphology characterized by hypertrophy (i.e. fewer but larger adipocytes) associates with increased adipose inflammation, lipolysis, insulin resistance and risk of diabetes. However, the causal relationships and the mechanisms controlling WAT morphology are unclear. Herein, we identified EBF1 as an adipocyte-expressed transcription factor with decreased expression/activity in WAT hypertrophy. In human adipocytes, the regulatory targets of EBF1 were enriched for genes controlling lipolysis and adipocyte morphology/differentiation and in both humans and murine models, reduced EBF1 levels associated with increased lipolysis and adipose hypertrophy. Although EBF1 did not affect adipose inflammation, TNFα reduced EBF1 gene expression. High fat diet-intervention in Ebf1+/− mice resulted in more pronounced WAT hypertrophy and attenuated insulin sensitivity compared with wild-type littermate controls. We conclude that EBF1 is an important regulator of adipose morphology and fat cell lipolysis and may constitute a link between WAT inflammation, altered lipid metabolism, adipose hypertrophy and insulin resistance. PMID:24856929

  17. Effect of Human Adipose Tissue Mesenchymal Stem Cells on the Regeneration of Ovine Articular Cartilage

    PubMed Central

    Zorzi, Alessandro R.; Amstalden, Eliane M. I.; Plepis, Ana Maria G.; Martins, Virginia C. A.; Ferretti, Mario; Antonioli, Eliane; Duarte, Adriana S. S.; Luzo, Angela C. M.; Miranda, João B.

    2015-01-01

    Cell therapy is a promising approach to improve cartilage healing. Adipose tissue is an abundant and readily accessible cell source. Previous studies have demonstrated good cartilage repair results with adipose tissue mesenchymal stem cells in small animal experiments. This study aimed to examine these cells in a large animal model. Thirty knees of adult sheep were randomly allocated to three treatment groups: CELLS (scaffold seeded with human adipose tissue mesenchymal stem cells), SCAFFOLD (scaffold without cells), or EMPTY (untreated lesions). A partial thickness defect was created in the medial femoral condyle. After six months, the knees were examined according to an adaptation of the International Cartilage Repair Society (ICRS 1) score, in addition to a new Partial Thickness Model scale and the ICRS macroscopic score. All of the animals completed the follow-up period. The CELLS group presented with the highest ICRS 1 score (8.3 ± 3.1), followed by the SCAFFOLD group (5.6 ± 2.2) and the EMPTY group (5.2 ± 2.4) (p = 0.033). Other scores were not significantly different. These results suggest that human adipose tissue mesenchymal stem cells promoted satisfactory cartilage repair in the ovine model. PMID:26569221

  18. Amelioration of insulin resistance by rosiglitazone is associated with increased adipose cell size in obese type 2 diabetic patients

    PubMed Central

    Eliasson, Bjorn; Smith, Ulf; Mullen, Shawn; Cushman, Samuel W; Sherman, Arthur S; Yang, Jian

    2014-01-01

    Early studies reported that the size of adipose cells positively correlates with insulin resistance, but recent evidence suggests that the relationship between adipose cell size and insulin resistance is more complex. We previously reported that among BMI-matched moderately obese subjects who were either insulin sensitive or resistant insulin resistance correlated with the proportion of small adipose cells, rather than the size of the large adipose cells, whereas the size of large adipose cells was found to be a predictor of insulin resistance in the first-degree relatives of type 2 diabetic (T2D) patients. The relationship between adipose cellularity and insulin resistance thus appears to depend on the metabolic state of the individual. We did a longitudinal study with T2D patients treated with the insulin-sensitizer rosiglitazone to test the hypothesis that improved insulin sensitivity is associated with increased adipocyte size. Eleven T2D patients were recruited and treated with rosiglitazone for 90 days. Blood samples and needle biopsies of abdominal subcutaneous fat were taken at six time points and analyzed for cell size distributions. Rosiglitazone treatment ameliorated insulin resistance as evidenced by significantly decreased fasting plasma glucose and increased index of insulin sensitivity, QUICKI. In association with this, we found significantly increased size of the large adipose cells and, with a weaker effect, increased proportion of small adipose cells. We conclude rosiglitazone treatment both enlarges existing large adipose cells and recruits new small adipose cells in T2D patients, improving fat storage capacity in adipose tissue and thus systemic insulin sensitivity. PMID:26317056

  19. Functional Plasticity of Adipose-Derived Stromal Cells During Development of Obesity

    PubMed Central

    Zhu, Xiang-Yang; Ma, Shuangtao; Eirin, Alfonso; Woollard, John R.; Hickson, LaTonya J.; Sun, Dong; Lerman, Amir

    2016-01-01

    Obesity is a major risk factor for a number of chronic diseases, including diabetes, cardiovascular diseases, and cancer. Expansion of the adipose mass requires adipocyte precursor cells that originate from multipotent adipose-derived stromal cells (ASCs), which in turn also participate in repair activities. ASC function might decline in a disease milieu, but it remains unclear whether ASC function varies during the development of obesity. We tested the hypothesis that microenvironmental inflammatory changes during development of metabolic disorders in obesity affect ASC function. Domestic pigs were fed with an atherogenic (n = 7) or normal (n = 7) diet for 16 weeks. Abdominal adipose tissue biopsies were collected after 8, 12, and 16 weeks of diet for ASC isolation and immunohistochemistry of in situ ASCs and tumor necrosis factor-α (TNF-α). Longitudinal changes in proliferation, differentiation, and anti-inflammatory functions of ASCs were assessed. At 16 weeks, upregulated TNF-α expression in adipose tissue from obese pigs was accompanied by increased numbers of adipocyte progenitors (CD24+/CD34+) in adipose tissue and enlarged adipocyte size. In vitro, ASCs from obese pigs showed enhanced adipogenic and osteogenic propensity, which was abolished by anti-TNF-α treatment, whereas lean ASCs treated with TNF-α showed enhanced adipogenesis. Furthermore, obese ASCs showed increased senescence compared with lean ASCs, whereas their immunomodulatory capacity was preserved. Adipose tissue inflammation promotes an increase in resident adipocyte progenitors and upregulated TNF-α enhances ASC adipogenesis. Thus, adipose tissue anti-inflammatory strategies might be a novel target to attenuate obesity and its complications. Significance Adipose-derived stromal cell (ASC) function might decline in a disease milieu, but it remains unclear whether ASC function varies during the development of obesity. This study tested the hypothesis that microenvironmental inflammatory

  20. Impaired tethering and fusion of GLUT4 vesicles in insulin-resistant human adipose cells.

    PubMed

    Lizunov, Vladimir A; Lee, Jo-Ping; Skarulis, Monica C; Zimmerberg, Joshua; Cushman, Samuel W; Stenkula, Karin G

    2013-09-01

    Systemic glucose homeostasis is profoundly influenced by adipose cell function. Here we investigated GLUT4 dynamics in living adipose cells from human subjects with varying BMI and insulin sensitivity index (Si) values. Cells were transfected with hemagglutinin (HA)-GLUT4-green fluorescent protein (GFP)/mCherry (red fluorescence), and were imaged live using total internal reflection fluorescence and confocal microscopy. HA-GLUT4-GFP redistribution to the plasma membrane (PM) was quantified by surface-exposed HA epitope. In the basal state, GLUT4 storage vesicle (GSV) trafficking to and fusion with the PM were invariant with donor subject Si, as was total cell-surface GLUT4. In cells from insulin-sensitive subjects, insulin augmented GSV tethering and fusion approximately threefold, resulting in a corresponding increase in total PM GLUT4. However, with decreasing Si, these effects diminished progressively. All insulin-induced effects on GLUT4 redistribution and trafficking correlated strongly with Si and only weakly with BMI. Thus, while basal GLUT4 dynamics and total cell-surface GLUT4 are intact in human adipose cells, independent of donor Si, cells from insulin-resistant donors show markedly impaired GSV tethering and fusion responses to insulin, even after overnight culture. This altered insulin responsiveness is consistent with the hypothesis that adipose cellular dysfunction is a primary contributor to systemic metabolic dysfunction.

  1. Osteogenic differentiation of umbilical cord and adipose derived stem cells onto highly porous 45S5 Bioglass®-based scaffolds.

    PubMed

    Detsch, Rainer; Alles, Sonja; Hum, Jasmin; Westenberger, Peter; Sieker, Frank; Heusinger, Dominik; Kasper, Cornelia; Boccaccini, Aldo R

    2015-03-01

    In the context of bone tissue engineering (BTE), combinations of bioactive scaffolds with living cells are investigated to optimally yield functional bone tissue for implantation purposes. Bioactive glasses are a class of highly bioactive, inorganic materials with broad application potential in BTE strategies. The aim of this study was to evaluate bioactive glass (45S5 Bioglass(®)) samples of composition: 45 SiO2, 24.5 CaO, 24.5 Na2O, and 6 P2O5 (in wt%) as scaffold materials for mesenchymal stem cells (MSC). Pore architecture of the scaffolds as well as cell behavior in the three-dimensional environment was evaluated by several methods. Investigations concerned the osteogenic cell attachment, growth and differentiation of adipose tissue derived MSC (adMSC) compared with MSC from human full term umbilical cord tissues (ucMSC) on porous Bioglass(®)-based scaffolds over a cultivation period of 5 weeks. Differences in lineage-specific osteogenic differentiation of adMSC and ucMSC on Bioglass(®) samples were demonstrated. The investigation led to positive results in terms of cell attachment, proliferation, and differentiation of MSC onto Bioglass(®)-based scaffolds confirming the relevance of these matrices for BTE applications.

  2. Mesenchymal Stem Cells from Adipose Tissue in Clinical Applications for Dermatological Indications and Skin Aging

    PubMed Central

    Gaur, Meenakshi; Dobke, Marek; Lunyak, Victoria V.

    2017-01-01

    Operating at multiple levels of control, mesenchymal stem cells from adipose tissue (ADSCs) communicate with organ systems to adjust immune response, provide signals for differentiation, migration, enzymatic reactions, and to equilibrate the regenerative demands of balanced tissue homeostasis. The identification of the mechanisms by which ADSCs accomplish these functions for dermatological rejuvenation and wound healing has great potential to identify novel targets for the treatment of disorders and combat aging. Herein, we review new insights into the role of adipose-derived stem cells in the maintenance of dermal and epidermal homeostasis, and recent advances in clinical applications of ADSCs related to dermatology. PMID:28117680

  3. Role of adipose-derived stromal cells in pedicle skin flap survival in experimental animal models.

    PubMed

    Foroglou, Pericles; Karathanasis, Vasileios; Demiri, Efterpi; Koliakos, George; Papadakis, Marios

    2016-03-26

    The use of skin flaps in reconstructive surgery is the first-line surgical treatment for the reconstruction of skin defects and is essentially considered the starting point of plastic surgery. Despite their excellent usability, their application includes general surgical risks or possible complications, the primary and most common is necrosis of the flap. To improve flap survival, researchers have used different methods, including the use of adipose-derived stem cells, with significant positive results. In our research we will report the use of adipose-derived stem cells in pedicle skin flap survival based on current literature on various experimental models in animals.

  4. Role of adipose-derived stromal cells in pedicle skin flap survival in experimental animal models

    PubMed Central

    Foroglou, Pericles; Karathanasis, Vasileios; Demiri, Efterpi; Koliakos, George; Papadakis, Marios

    2016-01-01

    The use of skin flaps in reconstructive surgery is the first-line surgical treatment for the reconstruction of skin defects and is essentially considered the starting point of plastic surgery. Despite their excellent usability, their application includes general surgical risks or possible complications, the primary and most common is necrosis of the flap. To improve flap survival, researchers have used different methods, including the use of adipose-derived stem cells, with significant positive results. In our research we will report the use of adipose-derived stem cells in pedicle skin flap survival based on current literature on various experimental models in animals. PMID:27022440

  5. Mesenchymal Stem Cells from Adipose Tissue in Clinical Applications for Dermatological Indications and Skin Aging.

    PubMed

    Gaur, Meenakshi; Dobke, Marek; Lunyak, Victoria V

    2017-01-20

    Operating at multiple levels of control, mesenchymal stem cells from adipose tissue (ADSCs) communicate with organ systems to adjust immune response, provide signals for differentiation, migration, enzymatic reactions, and to equilibrate the regenerative demands of balanced tissue homeostasis. The identification of the mechanisms by which ADSCs accomplish these functions for dermatological rejuvenation and wound healing has great potential to identify novel targets for the treatment of disorders and combat aging. Herein, we review new insights into the role of adipose-derived stem cells in the maintenance of dermal and epidermal homeostasis, and recent advances in clinical applications of ADSCs related to dermatology.

  6. Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite.

    PubMed

    Jack, Gregory S; Zhang, Rong; Lee, Min; Xu, Yuhan; Wu, Ben M; Rodríguez, Larissa V

    2009-07-01

    Human adipose stem cells were cultured in smooth muscle inductive media and seeded into synthetic bladder composites to tissue engineer bladder smooth muscle. 85:15 Poly-lactic-glycolic acid bladder dome composites were cast using an electropulled microfiber luminal surface combined with an outer porous sponge. Cell-seeded bladders expressed smooth muscle actin, myosin heavy chain, calponinin, and caldesmon via RT-PCR and immunoflourescence. Nude rats (n=45) underwent removal of half their bladder and repair using: (i) augmentation with the adipose stem cell-seeded composites, (ii) augmentation with a matched acellular composite, or (iii) suture closure. Animals were followed for 12 weeks post-implantation and bladders were explanted serially. Results showed that bladder capacity and compliance were maintained in the cell-seeded group throughout the 12 weeks, but deteriorated in the acellular scaffold group sequentially with time. Control animals repaired with sutures regained their baseline bladder capacities by week 12, demonstrating a long-term limitation of this model. Histological analysis of explanted materials demonstrated viable adipose stem cells and increasing smooth muscle mass in the cell-seeded scaffolds with time. Tissue bath stimulation demonstrated smooth muscle contraction of the seeded implants but not the acellular implants after 12 weeks in vivo. Our study demonstrates the feasibility and short term physical properties of bladder tissue engineered from adipose stem cells.

  7. Hdac3 Deficiency Increases Marrow Adiposity and Induces Lipid Storage and Glucocorticoid Metabolism in Osteochondroprogenitor Cells

    PubMed Central

    McGee-Lawrence, Meghan E; Carpio, Lomeli R; Schulze, Ryan J; Pierce, Jessica L; McNiven, Mark A; Farr, Joshua N; Khosla, Sundeep; Oursler, Merry Jo; Westendorf, Jennifer J

    2016-01-01

    Bone loss and increased marrow adiposity are hallmarks of aging skeletons. Conditional deletion of histone deacetylase 3 (Hdac3) in murine osteochondroprogenitor cells causes osteopenia and increases marrow adiposity, even in young animals, but the origins of the increased adiposity are unclear. To explore this, bone marrow stromal cells (BMSCs) from Hdac3-depleted and control mice were cultured in osteogenic medium. Hdac3-deficient cultures accumulated lipid droplets in greater abundance than control cultures and expressed high levels of genes related to lipid storage (Fsp27/Cidec, Plin1) and glucocorticoid metabolism (Hsd11b1) despite normal levels of Pparγ2. Approximately 5% of the lipid containing cells in the wild-type cultures expressed the master osteoblast transcription factor Runx2, but this population was threefold greater in the Hdac3-depleted cultures. Adenoviral expression of Hdac3 restored normal gene expression, indicating that Hdac3 controls glucocorticoid activation and lipid storage within osteoblast lineage cells. HDAC3 expression was reduced in bone cells from postmenopausal as compared to young women, and in osteoblasts from aged as compared to younger mice. Moreover, phosphorylation of S424 in Hdac3, a posttranslational mark necessary for deacetylase activity, was suppressed in osseous cells from old mice. Thus, concurrent declines in transcription and phosphorylation combine to suppress Hdac3 activity in aging bone, and reduced Hdac3 activity in osteochondroprogenitor cells contributes to increased marrow adiposity associated with aging. PMID:26211746

  8. Hdac3 Deficiency Increases Marrow Adiposity and Induces Lipid Storage and Glucocorticoid Metabolism in Osteochondroprogenitor Cells.

    PubMed

    McGee-Lawrence, Meghan E; Carpio, Lomeli R; Schulze, Ryan J; Pierce, Jessica L; McNiven, Mark A; Farr, Joshua N; Khosla, Sundeep; Oursler, Merry Jo; Westendorf, Jennifer J

    2016-01-01

    Bone loss and increased marrow adiposity are hallmarks of aging skeletons. Conditional deletion of histone deacetylase 3 (Hdac3) in murine osteochondroprogenitor cells causes osteopenia and increases marrow adiposity, even in young animals, but the origins of the increased adiposity are unclear. To explore this, bone marrow stromal cells (BMSCs) from Hdac3-depleted and control mice were cultured in osteogenic medium. Hdac3-deficient cultures accumulated lipid droplets in greater abundance than control cultures and expressed high levels of genes related to lipid storage (Fsp27/Cidec, Plin1) and glucocorticoid metabolism (Hsd11b1) despite normal levels of Pparγ2. Approximately 5% of the lipid containing cells in the wild-type cultures expressed the master osteoblast transcription factor Runx2, but this population was threefold greater in the Hdac3-depleted cultures. Adenoviral expression of Hdac3 restored normal gene expression, indicating that Hdac3 controls glucocorticoid activation and lipid storage within osteoblast lineage cells. HDAC3 expression was reduced in bone cells from postmenopausal as compared to young women, and in osteoblasts from aged as compared to younger mice. Moreover, phosphorylation of S424 in Hdac3, a posttranslational mark necessary for deacetylase activity, was suppressed in osseous cells from old mice. Thus, concurrent declines in transcription and phosphorylation combine to suppress Hdac3 activity in aging bone, and reduced Hdac3 activity in osteochondroprogenitor cells contributes to increased marrow adiposity associated with aging. © 2015 American Society for Bone and Mineral Research.

  9. Adipose-derived stromal cells inhibit prostate cancer cell proliferation inducing apoptosis

    SciTech Connect

    Takahara, Kiyoshi; Ii, Masaaki; Inamoto, Teruo; Komura, Kazumasa; Ibuki, Naokazu; Minami, Koichiro; Uehara, Hirofumi; Hirano, Hajime; Nomi, Hayahito; Kiyama, Satoshi; Asahi, Michio; Azuma, Haruhito

    2014-04-18

    Highlights: • AdSC transplantation exhibits inhibitory effect on tumor progressions of PCa cells. • AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway. • High expression of the TGF-β1 gene in AdSCs. - Abstract: Mesenchymal stem cells (MSCs) have generated a great deal of interest in the field of regenerative medicine. Adipose-derived stromal cells (AdSCs) are known to exhibit extensive proliferation potential and can undergo multilineage differentiation, sharing similar characteristics to bone marrow-derived MSCs. However, as the effect of AdSCs on tumor growth has not been studied sufficiently, we assessed the degree to which AdSCs affect the proliferation of prostate cancer (PCa) cell. Human AdSCs exerted an inhibitory effect on the proliferation of androgen-responsive (LNCaP) and androgen-nonresponsive (PC3) human PCa cells, while normal human dermal fibroblasts (NHDFs) did not, and in fact promoted PCa cell proliferation to a degree. Moreover, AdSCs induced apoptosis of LNCaP cells and PC3 cells, activating the caspase3/7 signaling pathway. cDNA microarray analysis suggested that AdSC-induced apoptosis in both LNCaP and PC3 cells was related to the TGF-β signaling pathway. Consistent with our in vitro observations, local transplantation of AdSCs delayed the growth of tumors derived from both LNCaP- and PC3-xenografts in immunodeficient mice. This is the first preclinical study to have directly demonstrated that AdSC-induced PCa cell apoptosis may occur via the TGF-β signaling pathway, irrespective of androgen-responsiveness. Since autologous AdSCs can be easily isolated from adipose tissue without any ethical concerns, we suggest that therapy with these cells could be a novel approach for patients with PCa.

  10. Extensive Characterization and Comparison of Endothelial Cells Derived from Dermis and Adipose Tissue: Potential Use in Tissue Engineering

    PubMed Central

    Monsuur, Hanneke N.; Weijers, Ester M.; Niessen, Frank B.; Gefen, Amit; Koolwijk, Pieter; Gibbs, Susan; van den Broek, Lenie J.

    2016-01-01

    Tissue-engineered constructs need to become quickly vascularized in order to ensure graft take. One way of achieving this is to incorporate endothelial cells (EC) into the construct. The adipose tissue stromal vascular fraction (adipose-SVF) might provide an alternative source for endothelial cells as adipose tissue can easily be obtained by liposuction. Since adipose-EC are now gaining more interest in tissue engineering, we aimed to extensively characterize endothelial cells from adipose tissue (adipose-EC) and compare them with endothelial cells from dermis (dermal-EC). The amount of endothelial cells before purification varied between 4–16% of the total stromal population. After MACS selection for CD31 positive cells, a >99% pure population of endothelial cells was obtained within two weeks of culture. Adipose- and dermal-EC expressed the typical endothelial markers PECAM-1, ICAM-1, Endoglin, VE-cadherin and VEGFR2 to a similar extent, with 80–99% of the cell population staining positive. With the exception of CXCR4, which was expressed on 29% of endothelial cells, all other chemokine receptors (CXCR1, 2, 3, and CCR2) were expressed on less than 5% of the endothelial cell populations. Adipose-EC proliferated similar to dermal-EC, but responded less to the mitogens bFGF and VEGF. A similar migration rate was found for both adipose-EC and dermal-EC in response to bFGF. Sprouting of adipose-EC and dermal-EC was induced by bFGF and VEGF in a 3D fibrin matrix. After stimulation of adipose-EC and dermal-EC with TNF-α an increased secretion was seen for PDGF-BB, but not uPA, PAI-1 or Angiopoietin-2. Furthermore, secretion of cytokines and chemokines (IL-6, CCL2, CCL5, CCL20, CXCL1, CXCL8 and CXCL10) was also upregulated by both adipose- and dermal-EC. The similar characteristics of adipose-EC compared to their dermal-derived counterpart make them particularly interesting for skin tissue engineering. In conclusion, we show here that adipose tissue provides for an

  11. Development of a chemically defined serum-free medium for differentiation of rat adipose precursor cells

    SciTech Connect

    Deslex, S.; Negrel, R.; Ailhaud, G.

    1987-01-01

    Stromal-vascular cells from the epididymal fat pad of 4-week-old rats, when cultured in a medium containing insulin or insulin-like growth factor, IFG-I, triiodothyronine and transferrin, were able to undergo adipose conversion. Over ninety percent of the cells accumulated lipid droplets and this proportion was reduced in serum-supplemented medium. The adipose conversion was assessed by the development of lipoprotein lipase (LPL) and glycerol-3-phosphate dehydrogenase (GPDH) activities, (/sup 14/)glucose incorporation into polar and neutral lipids, triacylglycerol accumulation and lipolysis in response to isoproterenol. Similar results were obtained with stromal-vascular cells from rat subcutaneous and retroperitoneal adipose tissues. Stromal-vascular cells required no adipogenic factors in addition to the components of the serum-free medium. Insulin was required within a physiological range of concentrations for the emergence of LPL and at higher concentrations for that of GPDH. When present at concentrations ranging from 2 to 50 nM, IGF-I was able to replace insulin for the expression of both LPL and and GPDH. The development of a serum free, chemically defined medium for the differentiation of diploid adiopose precursor cells opens up the possibility of characterizing inhibitors or activators of the adipose conversion process.

  12. Subcutaneous Construction of Engineered Adipose Tissue with Fat Lobule-Like Structure Using Injectable Poly-Benzyl-L-Glutamate Microspheres Loaded with Adipose-Derived Stem Cells.

    PubMed

    Sun, Wentao; Fang, Jianjun; Yong, Qi; Li, Sufang; Xie, Qingping; Yin, Jingbo; Cui, Lei

    2015-01-01

    Porous microcarriers were fabricated from synthesized poly(γ-benzyl-L-glutamate) (PBLG) polymer to engineer adipose tissue with lobule-like structure via the injectable approach. The adipogenic differentiation of human adipose-derived stem cells (hASCs) seeded on porous PBLG microcarriers was determined by adipogenic gene expression and glycerol-3-phosphate dehydrogenase enzyme activity. In vitro adipogenic cultivation was performed for 7 days, and induced hASC/PBLG complex (Adi-ASC/PBLG group) was subcutaneously injected into nude mice. Injections of PBLG microcarriers alone (PBLG group) and non-induced hASC/PBLG complex (ASC/PBLG group) served as controls. Newly formed tissues were harvested after 4 and 8 weeks. Generation of subcutaneous adipose tissue with typical lobule-like structure separated by fibrous septa was observed upon injection of adipogenic-induced hASC/microsphere complex. Adipogenesis significantly increased in the Adi-ASC/PBLG group compared with the control groups. The angiogenesis in the engineered adipose tissue was comparable to that in normal tissue as determined by capillary density and luminal diameter. Cell tracking assay demonstrated that labeled hASCs remained detectable in the neo-generated tissues 8 weeks post-injection using green fluorescence protein-labeled hASCs. These results indicate that adipose tissue with typical lobule-like structure could be engineered using injectable porous PBLG microspheres loaded with adipogenic-induced hASCs.

  13. [Interests and potentials of adipose tissue in scleroderma].

    PubMed

    Daumas, A; Eraud, J; Hautier, A; Sabatier, F; Magalon, G; Granel, B

    2013-12-01

    Systemic sclerosis is a disorder involving the connective tissue, arterioles and microvessels. It is characterized by skin and visceral fibrosis and ischemic phenomena. Currently, therapy is limited and no antifibrotic treatment has proven its efficacy. Beyond some severe organ lesions (pulmonary arterial hypertension, pulmonary fibrosis, scleroderma renal crisis), which only concern a minority of patients, the skin sclerosis of hands and face and the vasculopathy lead to physical and psychological disability in most patients. Thus, functional improvement of hand motion and face represents a priority for patient therapy. Due to its easy obtention by fat lipopaspirate and adipocytes survival, re injection of adipose tissue is a common therapy used in plastic surgery for its voluming effect. Identification and characterization of the adipose tissue-derived stroma vascular fraction, mainly including mesenchymal stem cells, have revolutionized the science showing that adipose tissue is a valuable source of multipotent stem cells, able to migrate to site of injury and to differentiate according to the receiver tissue's needs. Due to easy harvest by liposuction, its abundance in mesenchymal cells far higher that the bone marrow, and stroma vascular fraction's ability to differentiate and secrete growth angiogenic and antiapoptotic factors, the use of adipose tissue is becoming more attractive in regenerative medicine. We here present the interest of adipose tissue use in the treatment of the hands and face in scleroderma.

  14. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages

    PubMed Central

    Molofsky, Ari B.; Nussbaum, Jesse C.; Liang, Hong-Erh; Van Dyken, Steven J.; Cheng, Laurence E.; Mohapatra, Alexander; Chawla, Ajay

    2013-01-01

    Eosinophils in visceral adipose tissue (VAT) have been implicated in metabolic homeostasis and the maintenance of alternatively activated macrophages (AAMs). The absence of eosinophils can lead to adiposity and systemic insulin resistance in experimental animals, but what maintains eosinophils in adipose tissue is unknown. We show that interleukin-5 (IL-5) deficiency profoundly impairs VAT eosinophil accumulation and results in increased adiposity and insulin resistance when animals are placed on a high-fat diet. Innate lymphoid type 2 cells (ILC2s) are resident in VAT and are the major source of IL-5 and IL-13, which promote the accumulation of eosinophils and AAM. Deletion of ILC2s causes significant reductions in VAT eosinophils and AAMs, and also impairs the expansion of VAT eosinophils after infection with Nippostrongylus brasiliensis, an intestinal parasite associated with increased adipose ILC2 cytokine production and enhanced insulin sensitivity. Further, IL-33, a cytokine previously shown to promote cytokine production by ILC2s, leads to rapid ILC2-dependent increases in VAT eosinophils and AAMs. Thus, ILC2s are resident in VAT and promote eosinophils and AAM implicated in metabolic homeostasis, and this axis is enhanced during Th2-associated immune stimulation. PMID:23420878

  15. Single cell-derived clones from human adipose stem cells present different immunomodulatory properties.

    PubMed

    Sempere, J M; Martinez-Peinado, P; Arribas, M I; Reig, J A; De La Sen, M L; Zubcoff, J J; Fraga, M F; Fernández, A F; Santana, A; Roche, E

    2014-05-01

    Human adipose mesenchymal stem cells are a heterogeneous population, where cell cultures derived from single-cell-expanded clones present varying degrees of differential plasticity. This work focuses on the immunomodulatory/anti-inflammatory properties of these cells. To this end, five single-cell clones were isolated (generally called 1.X and 3.X) from two volunteers. Regarding the expression level of the lineage-characteristic surface antigens, clones 1·10 and 1·22 expressed the lowest amounts, while clones 3·10 and 3·5 expressed more CD105 than the rest and clone 1·7 expressed higher amounts of CD73 and CD44. Regarding cytokine secretion, all clones were capable of spontaneously releasing high levels of interleukin (IL)-6 and low to moderate levels of IL-8. These differences can be explained in part by the distinct methylation profile exhibited by the clones. Furthermore, and after lipopolysaccharide stimulation, clone 3.X produced the highest amounts of proinflammatory cytokines such as IL-1β, while clones 1·10 and 1·22 highly expressed IL-4 and IL-5. In co-culture experiments, clones 1.X are, together, more potent inhibitors than clones 3.X for proliferation of total, CD3(+) T, CD4(+) T and CD8(+) T lymphocytes and natural killer (NK) cells. The results of this work indicate that the adipose stem cell population is heterogeneous in cytokine production profile, and that isolation, characterization and selection of the appropriate cell clone is a more exact method for the possible treatment of different patients or pathologies.

  16. Single cell-derived clones from human adipose stem cells present different immunomodulatory properties

    PubMed Central

    Sempere, J M; Martinez-Peinado, P; Arribas, M I; Reig, J A; De La Sen, M L; Zubcoff, J J; Fraga, M F; Fernández, A F; Santana, A; Roche, E

    2014-01-01

    Human adipose mesenchymal stem cells are a heterogeneous population, where cell cultures derived from single-cell-expanded clones present varying degrees of differential plasticity. This work focuses on the immunomodulatory/anti-inflammatory properties of these cells. To this end, five single-cell clones were isolated (generally called 1.X and 3.X) from two volunteers. Regarding the expression level of the lineage-characteristic surface antigens, clones 1·10 and 1·22 expressed the lowest amounts, while clones 3·10 and 3·5 expressed more CD105 than the rest and clone 1·7 expressed higher amounts of CD73 and CD44. Regarding cytokine secretion, all clones were capable of spontaneously releasing high levels of interleukin (IL)-6 and low to moderate levels of IL-8. These differences can be explained in part by the distinct methylation profile exhibited by the clones. Furthermore, and after lipopolysaccharide stimulation, clone 3.X produced the highest amounts of proinflammatory cytokines such as IL-1β, while clones 1·10 and 1·22 highly expressed IL-4 and IL-5. In co-culture experiments, clones 1.X are, together, more potent inhibitors than clones 3.X for proliferation of total, CD3+T, CD4+T and CD8+T lymphocytes and natural killer (NK) cells. The results of this work indicate that the adipose stem cell population is heterogeneous in cytokine production profile, and that isolation, characterization and selection of the appropriate cell clone is a more exact method for the possible treatment of different patients or pathologies. PMID:24666184

  17. Cell-autonomous activation of Hedgehog signaling inhibits brown adipose tissue development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although recent studies have shown that brown adipose tissue (BAT) arises from progenitor cells that also give rise to skeletal muscle, the developmental signals that control the formation of BAT remain largely unknown. Here, we show that brown preadipocytes possess primary cilia and can respond to ...

  18. Effect of T3 hormone on neural differentiation of human adipose derived stem cells.

    PubMed

    Razavi, Shahnaz; Mostafavi, Fatemeh Sadat; Mardani, Mohammad; Zarkesh Esfahani, Hamid; Kazemi, Mohammad; Esfandiari, Ebrahim

    2014-12-01

    Human adult stem cells, which are capable of self-renewal and differentiation into other cell types, can be isolated from various tissues. There are no ethical and rejection problems as in the case of embryonic stem cells, so they are a promising source for cell therapy. The human body contains a great amount of adipose tissue that contains high numbers of mesenchymal stem cells. Human adipose-derived stem cells (hADSCs) could be easily induced to form neuron-like cells, and because of its availability and abundance, we can use it for clinical cell therapy. On the other hand, T3 hormone as a known neurotropic factor has important impressions on the nervous system. The aim of this study was to explore the effects of T3 treatment on neural differentiation of hADSCs. ADSCs were harvested from human adipose tissue, after neurosphere formation, and during final differentiation, treatment with T3 was performed. Immunocytochemistry, real-time RT-PCR, Western blotting techniques were used for detection of nestin, MAP2, and GFAP markers in order to confirm the effects of T3 on neural differentiation of hADSCs. Our results showed an increase in the number of glial cells but reduction in neuronal cells number fallowing T3 treatment.

  19. SNAP-23 participates in SNARE complex assembly in rat adipose cells.

    PubMed Central

    St-Denis, J F; Cabaniols, J P; Cushman, S W; Roche, P A

    1999-01-01

    SNARE proteins are required for vesicle docking and fusion in eukaryotic cells in processes as diverse as homotypic membrane fusion and synaptic vesicle exocytosis [SNARE stands for SNAP receptor, where SNAP is soluble NSF attachment protein]. The SNARE proteins syntaxin 4 and vesicle-associated membrane protein (VAMP) 2/3 also participate in the insulin-stimulated translocation of GLUT4 from intracellular vesicles to the plasma membrane in adipose cells. We now report the molecular cloning and characterization of rat SNAP-23, a ubiquitously expressed homologue of the essential neuronal SNARE protein SNAP-25 (synaptosomal-associated protein of 25 kDa). Rat SNAP-23 is 86% and 98% identical respectively to human and mouse SNAP-23. Southern blot analysis reveals that the rat, mouse and human SNAP-23 genes encode species-specific isoforms of the same protein. Co-immunoprecipitation of syntaxin 4 and SNAP-23 shows association of these two proteins in rat adipose cell plasma membranes, and insulin stimulation does not alter the SNAP-23/syntaxin 4 complex. In addition, we demonstrate for the first time the participation of SNAP-23, along with syntaxin 4 and VAMP2/3, in the formation of 20S SNARE complexes prepared using rat adipose cell membranes and recombinant alpha-SNAP and NSF proteins. The stoichiometry of the SNARE complexes formed is essentially identical using membranes from either unstimulated or insulin-stimulated adipose cells. These data demonstrate that rat SNAP-23 associates with syntaxin 4 before insulin stimulation and is present in the SNARE complexes known to mediate the translocation of GLUT4 from intracellular vesicles to the plasma membrane of rat adipose cells. PMID:10051443

  20. Adipose tissue hyperplasia with enhanced adipocyte-derived stem cell activity in Tc1(C8orf4)-deleted mice.

    PubMed

    Jang, Hayoung; Kim, Minsung; Lee, Soyoung; Kim, Jungtae; Woo, Dong-Cheol; Kim, Kyung Won; Song, Kyuyoung; Lee, Inchul

    2016-10-24

    Adipose tissue hyperplasia with increased number of adipocytes is implicated in a protective rather than deleterious effect on obesity-associated metabolic disorder. It is poorly understood how the adipose tissue cellularity is regulated. Tc1 is a gene of vertebrates that regulates diverse downstream genes. Young Tc1-deleted mice fed on standard chow diet show expanded adipose tissue with smaller adipocytes in size compared to wild type controls, representing adipose tissue hyperplasia. Tc1(-/-) mice show enhanced glucose tolerance and reduced serum lipids. Adipocyte-derived stem cells (ADSCs) from Tc1(-/-) mice show enhanced proliferative and adipogenic capacity compared to wild type controls, suggesting that the adipose hyperplasia is regulated at the stem cell level. PPARγ and CEBPα are up-regulated robustly in Tc1(-/-) ADSCs upon induction for adipogenesis. Wisp2 and Dlk1, inhibitors of adipogenesis, are down-regulated in Tc1(-/-) ADSCs compared to controls. Tc1-transfected NIH3T3 cells show higher β-catenin reporter signals than vector transfected controls, suggesting a role of canonical Wnt signaling in the Tc1-dependent adipose regulation. Our data support that Tc1 is a novel regulator for adipose stem cells. Adipose tissue hyperplasia may be implicated in the metabolic regulation of Tc1(-/-) mice.

  1. Adipose tissue hyperplasia with enhanced adipocyte-derived stem cell activity in Tc1(C8orf4)-deleted mice

    PubMed Central

    Jang, Hayoung; Kim, Minsung; Lee, Soyoung; Kim, Jungtae; Woo, Dong-Cheol; Kim, Kyung Won; Song, Kyuyoung; Lee, Inchul

    2016-01-01

    Adipose tissue hyperplasia with increased number of adipocytes is implicated in a protective rather than deleterious effect on obesity-associated metabolic disorder. It is poorly understood how the adipose tissue cellularity is regulated. Tc1 is a gene of vertebrates that regulates diverse downstream genes. Young Tc1-deleted mice fed on standard chow diet show expanded adipose tissue with smaller adipocytes in size compared to wild type controls, representing adipose tissue hyperplasia. Tc1−/− mice show enhanced glucose tolerance and reduced serum lipids. Adipocyte-derived stem cells (ADSCs) from Tc1−/− mice show enhanced proliferative and adipogenic capacity compared to wild type controls, suggesting that the adipose hyperplasia is regulated at the stem cell level. PPARγ and CEBPα are up-regulated robustly in Tc1−/− ADSCs upon induction for adipogenesis. Wisp2 and Dlk1, inhibitors of adipogenesis, are down-regulated in Tc1−/− ADSCs compared to controls. Tc1-transfected NIH3T3 cells show higher β-catenin reporter signals than vector transfected controls, suggesting a role of canonical Wnt signaling in the Tc1-dependent adipose regulation. Our data support that Tc1 is a novel regulator for adipose stem cells. Adipose tissue hyperplasia may be implicated in the metabolic regulation of Tc1−/− mice. PMID:27775060

  2. Effect of decellularized adipose tissue particle size and cell density on adipose-derived stem cell proliferation and adipogenic differentiation in composite methacrylated chondroitin sulphate hydrogels.

    PubMed

    Brown, Cody F C; Yan, Jing; Han, Tim Tian Y; Marecak, Dale M; Amsden, Brian G; Flynn, Lauren E

    2015-07-30

    An injectable composite scaffold incorporating decellularized adipose tissue (DAT) as a bioactive matrix within a hydrogel phase capable of in situ polymerization would be advantageous for adipose-derived stem cell (ASC) delivery in the filling of small or irregular soft tissue defects. Building on previous work, the current study investigates DAT milling methods and the effects of DAT particle size and cell seeding density on the response of human ASCs encapsulated in photo-cross-linkable methacrylated chondroitin sulphate (MCS)-DAT composite hydrogels. DAT particles were generated by milling lyophilized DAT and the particle size was controlled through the processing conditions with the goal of developing composite scaffolds with a tissue-specific 3D microenvironment tuned to enhance adipogenesis. ASC proliferation and adipogenic differentiation were assessed in vitro in scaffolds incorporating small (average diameter of 38   ±   6 μm) or large (average diameter of 278   ±   3 μm) DAT particles in comparison to MCS controls over a period of up to 21 d. Adipogenic differentiation was enhanced in the composites incorporating the smaller DAT particles and seeded at the higher density of 5   ×   10(5) ASCs/scaffold, as measured by glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, semi-quantitative analysis of perilipin expression and oil red O staining of intracellular lipid accumulation. Overall, this study demonstrates that decellularized tissue particle size can impact stem cell differentiation through cell-cell and cell-matrix interactions, providing relevant insight towards the rational design of composite biomaterial scaffolds for adipose tissue engineering.

  3. The therapeutic effects of human adipose-derived stem cells in Alzheimer's disease mouse models.

    PubMed

    Chang, Keun-A; Kim, Hee Jin; Joo, Yuyoung; Ha, Sungji; Suh, Yoo-Hun

    2014-01-01

    Alzheimer's disease (AD) is an irreversible neurodegenerative disease, still lacking proper clinical treatment. Therefore, many researchers have focused on the possibility of therapeutic use of stem cells for AD. Adipose-derived stem cells (ASCs), mesenchymal stem cells (MSCs) isolated from adipose tissue, are well known for their pluripotency and their ability to differentiate into multiple tissue types and have immune modulatory properties similar to those of MSCs from other origins. Because of their biological properties, ASCs can be considered for cell therapy and neuroregeneration. Our recent results clearly showed the therapeutic potential of these cells after transplantation into Tg2576 mice (an AD mouse model). Intravenously or intracerebrally transplanted human ASCs (hASCs) greatly improved the memory impairment and the neuropathology, suggesting that hASCs have a high therapeutic potential for AD.

  4. Adipogenic and osteogenic differentiation of Lin(-)CD271(+)Sca-1(+) adipose-derived stem cells.

    PubMed

    Xiao, Jingang; Yang, Xiaojuan; Jing, Wei; Guo, Weihua; Sun, Qince; Lin, Yunfeng; Liu, Lei; Meng, Wentong; Tian, Weidong

    2013-05-01

    Adipose-derived stem cells (ASCs) have been defined as cells that undergo sustained in vitro growth and have multilineage differentiation potential. However, the identity and purification of ASCs has proved elusive due to the lack of specific markers and poor understanding of their physiological roles. Here, we prospectively isolated and identified a restricted homogeneous subpopulation of ASCs (Lin(-)CD271(+)Sca-1(+)) from mouse adipose tissues on the basis of cell-surface markers. Individual ASCs generated colony-forming unit-fibroblast at a high frequency and could differentiate into adipocytes, osteoblasts, and chondrocytes in vitro. Expansion of ASCs in a large quantity was feasible in medium supplemented with fibroblast growth factor-2 and leukemia inhibitory factor, without loss of adipogenic and osteogenic differentiation capacity. Moreover, we found that the transplanted ASCs can differentiate into adipocytes in adipogenic microenvironment in vivo and osteoblasts in osteogenic microenvironment in vivo. Thus we proved that Lin, CD271, and Sca-1 could be used as the specific markers to purify ASCs from adipose tissue. The method we established to identify ASCs as defined in vivo entities will help develop ASCs transplantation as a new therapeutic strategy for bone regeneration and adipose tissue regeneration in clinic.

  5. Stearidonic and eicosapentaenoic acids inhibit interleukin-6 expression in ob/ob mouse adipose stem cells via toll-like receptor-2-mediated pathways

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increases in adipose tissue weight positively correlates with increased circulating inflammatory cytokines such as interleukin-6 (IL-6). We previously have shown that adipose stem cell produce significantly higher levels of IL-6 when compared to other cell types in the adipose tissue in genetically ...

  6. Ex-Vivo Tissues Engineering Modeling for Reconstructive Surgery Using Human Adult Adipose Stem Cells and Polymeric Nanostructured Matrix

    PubMed Central

    Morena, Francesco; Argentati, Chiara; Calzoni, Eleonora; Cordellini, Marino; Emiliani, Carla; D’Angelo, Francesco; Martino, Sabata

    2016-01-01

    The major challenge for stem cell translation regenerative medicine is the regeneration of damaged tissues by creating biological substitutes capable of recapitulating the missing function in the recipient host. Therefore, the current paradigm of tissue engineering strategies is the combination of a selected stem cell type, based on their capability to differentiate toward committed cell lineages, and a biomaterial, that, due to own characteristics (e.g., chemical, electric, mechanical property, nano-topography, and nanostructured molecular components), could serve as active scaffold to generate a bio-hybrid tissue/organ. Thus, effort has been made on the generation of in vitro tissue engineering modeling. Here, we present an in vitro model where human adipose stem cells isolated from lipoaspirate adipose tissue and breast adipose tissue, cultured on polymeric INTEGRA® Meshed Bilayer Wound Matrix (selected based on conventional clinical applications) are evaluated for their potential application for reconstructive surgery toward bone and adipose tissue. We demonstrated that human adipose stem cells isolated from lipoaspirate and breast tissue have similar stemness properties and are suitable for tissue engineering applications. Finally, the overall results highlighted lipoaspirate adipose tissue as a good source for the generation of adult adipose stem cells.

  7. Transdifferentiation of Adipose-Derived Stem Cells into Keratinocyte-Like Cells: Engineering a Stratified Epidermis

    PubMed Central

    Chavez-Munoz, Claudia; Nguyen, Khang T.; Xu, Wei; Hong, Seok-Jong; Mustoe, Thomas A.; Galiano, Robert D.

    2013-01-01

    Skin regeneration is an important area of research in the field of tissue-engineering, especially for cases involving loss of massive areas of skin, where current treatments are not capable of inducing permanent satisfying replacements. Human adipose-derived stem cells (ASC) have been shown to differentiate in-vitro into both mesenchymal lineages and non-mesenchymal lineages, confirming their transdifferentiation ability. This versatile differentiation potential, coupled with their ease of harvest, places ASC at the advancing front of stem cell-based therapies. In this study, we hypothesized that ASC also have the capacity to transdifferentiate into keratinocyte-like cells and furthermore are able to engineer a stratified epidermis. ASC were successfully isolated from lipoaspirates and cell sorted (FACS). After sorting, ASC were either co-cultured with human keratinocytes or with keratinocyte conditioned media. After a 14-day incubation period, ASC developed a polygonal cobblestone shape characteristic of human keratinocytes. Western blot and q-PCR analysis showed the presence of specific keratinocyte markers including cytokeratin-5, involucrin, filaggrin and stratifin in these keratinocyte-like cells (KLC); these markers were absent in ASC. To further evaluate if KLC were capable of stratification akin to human keratinocytes, ASC were seeded on top of human decellularized dermis and cultured in the presence or absence of EGF and high Ca2+ concentrations. Histological analysis demonstrated a stratified structure similar to that observed in normal skin when cultured in the presence of EGF and high Ca2+. Furthermore, immunohistochemical analysis revealed the presence of keratinocyte markers such as involucrin, cytokeratin-5 and cytokeratin-10. In conclusion this study demonstrates for the first time that ASC have the capacity to transdifferentiate into KLC and engineer a stratified epidermis. This study suggests that adipose tissue is potentially a readily available

  8. Adipose-Derived Stem Cells Cocultured with Chondrocytes Promote the Proliferation of Chondrocytes

    PubMed Central

    2017-01-01

    Articular cartilage injury and defect caused by trauma and chronic osteoarthritis vascularity are very common, while the repair of injured cartilage remains a great challenge due to its limited healing capacity. Stem cell-based tissue engineering provides a promising treatment option for injured articular cartilage because of the cells potential for multiple differentiations. However, its application has been largely limited by stem cell type, number, source, proliferation, and differentiation. We hypothesized that (1) adipose-derived stem cells are ideal seed cells for articular cartilage repair because of their accessibility and abundance and (2) the microenvironment of articular cartilage could induce adipose-derived stem cells (ADSCs) to differentiate into chondrocytes. In order to test our hypotheses, we isolated stem cells from rabbit adipose tissues and cocultured these ADSCs with rabbit articular cartilage chondrocytes. We found that when ADSCs were cocultured with chondrocytes, the proliferation of articular cartilage chondrocytes was promoted, the apoptosis of chondrocytes was inhibited, and the osteogenic and chondrogenic differentiation of ADSCs was enhanced. The study on the mechanism of this coculture system indicated that the role of this coculture system is similar to the function of TGF-β1 in the promotion of chondrocytes. PMID:28133485

  9. Adipose-derived adult stem cells: available technologies for potential clinical regenerative applications in dentistry.

    PubMed

    Catalano, Enrico; Cochis, Andrea; Varoni, Elena; Rimondini, Lia; Carrassi, Antonio; Azzimonti, Barbara

    2013-01-01

    Tissue homeostasis depends closely on the activity and welfare of adult stem cells. These cells represent a promising tool for biomedical research since they can aid in treatment and promote the regeneration of damaged organs in many human disorders. Adult stem cells indefinitely preserve their ability to self-renew and differentiate into various phenotypes; this capacity could be promoted in vitro by particular culture conditions (differentiation media) or spontaneously induced in vivo by exploiting the biochemical and mechanical properties of the tissue in which the stem cells are implanted. Among the different sources of adult stem cells, adipose tissue is an attractive possibility thanks to its ready availability and the standard extraction techniques at our disposal today. This review discusses the isolation, characterization, and differentiation of human adipose-derived adult stem cells, as well as regeneration strategies, therapeutic uses, and adverse effects of their delivery. In particular, since oral disorders (e.g., trauma, erosion, and chronic periodontitis) often cause the loss of dental tissue along with functional, phonetic, and aesthetic impairment, this review focuses on the application of human adipose-derived adult stem cells, alone or in combination with biomaterials, in treating oral diseases.

  10. Effects of nanoporous anodic titanium oxide on human adipose derived stem cells.

    PubMed

    Malec, Katarzyna; Góralska, Joanna; Hubalewska-Mazgaj, Magdalena; Głowacz, Paulina; Jarosz, Magdalena; Brzewski, Pawel; Sulka, Grzegorz D; Jaskuła, Marian; Wybrańska, Iwona

    The aim of current bone biomaterials research is to design implants that induce controlled, guided, successful, and rapid healing. Titanium implants are widely used in dental, orthopedic, and reconstructive surgery. A series of studies has indicated that cells can respond not only to the chemical properties of the biomaterial, but also, in particular, to the changes in surface topography. Nanoporous materials remain in focus of scientific queries due to their exclusive properties and broad applications. One such material is nanostructured titanium oxide with highly ordered, mutually perpendicular nanopores. Nanoporous anodic titanium dioxide (TiO2) films were fabricated by a three-step anodization process in propan-1,2,3-triol-based electrolyte containing fluoride ions. Adipose-derived stem cells offer many interesting opportunities for regenerative medicine. The important goal of tissue engineering is to direct stem cell differentiation into a desired cell lineage. The influence of nanoporous TiO2 with pore diameters of 80 and 108 nm on cell response, growth, viability, and ability to differentiate into osteoblastic lineage of human adipose-derived progenitors was explored. Cells were harvested from the subcutaneous abdominal fat tissue by a simple, minimally invasive, and inexpensive method. Our results indicate that anodic nanostructured TiO2 is a safe and nontoxic biomaterial. In vitro studies demonstrated that the nanotopography induced and enhanced osteodifferentiation of human adipose-derived stem cells from the abdominal subcutaneous fat tissue.

  11. Effects of nanoporous anodic titanium oxide on human adipose derived stem cells

    PubMed Central

    Malec, Katarzyna; Góralska, Joanna; Hubalewska-Mazgaj, Magdalena; Głowacz, Paulina; Jarosz, Magdalena; Brzewski, Pawel; Sulka, Grzegorz D; Jaskuła, Marian; Wybrańska, Iwona

    2016-01-01

    The aim of current bone biomaterials research is to design implants that induce controlled, guided, successful, and rapid healing. Titanium implants are widely used in dental, orthopedic, and reconstructive surgery. A series of studies has indicated that cells can respond not only to the chemical properties of the biomaterial, but also, in particular, to the changes in surface topography. Nanoporous materials remain in focus of scientific queries due to their exclusive properties and broad applications. One such material is nanostructured titanium oxide with highly ordered, mutually perpendicular nanopores. Nanoporous anodic titanium dioxide (TiO2) films were fabricated by a three-step anodization process in propan-1,2,3-triol-based electrolyte containing fluoride ions. Adipose-derived stem cells offer many interesting opportunities for regenerative medicine. The important goal of tissue engineering is to direct stem cell differentiation into a desired cell lineage. The influence of nanoporous TiO2 with pore diameters of 80 and 108 nm on cell response, growth, viability, and ability to differentiate into osteoblastic lineage of human adipose-derived progenitors was explored. Cells were harvested from the subcutaneous abdominal fat tissue by a simple, minimally invasive, and inexpensive method. Our results indicate that anodic nanostructured TiO2 is a safe and nontoxic biomaterial. In vitro studies demonstrated that the nanotopography induced and enhanced osteodifferentiation of human adipose-derived stem cells from the abdominal subcutaneous fat tissue. PMID:27789947

  12. Assembling Composite Dermal Papilla Spheres with Adipose-derived Stem Cells to Enhance Hair Follicle Induction

    PubMed Central

    Huang, Chin-Fu; Chang, Ya-Ju; Hsueh, Yuan-Yu; Huang, Chia-Wei; Wang, Duo-Hsiang; Huang, Tzu-Chieh; Wu, Yi-Ting; Su, Fong-Chin; Hughes, Michael; Chuong, Cheng-Ming; Wu, Chia-Ching

    2016-01-01

    Intradermal adipose tissue plays an essential role for hair follicles (HFs) regeneration by regulating hair cycles. However, the effect of reconstruction of HFs and the involvement of adipose-related cells are poorly understood. We investigated assembly strategies for the interactions of dermal papilla (DP) cells with adipose-derived stem cells (ASCs) in promoting hair formation. DP cells lose DP traits during adherent culture, but preserved DP markers with a unified sphere diameter by seeding on chitosan-coated microenvironments. Next, ASCs isolated from rats were co-cultured with DP spheres by different assembling approaches to determine their interactions; a mixed sphere of ASCs with DP cells (MA-DPS), or a core-shell structure, outer ASCs shell and an inner DP core (CSA-DPS). CSA-DPS exhibited superior DP characteristics compared to MA-DPS. Conditional medium from ASCs, but not differentiated adipocytes, promoted DP markers and functional alkaline phosphatase activity from the DP cells. In vivo patch assay showed the core-shell assembling of CSA-DPS can reconstruct cellular arrangements and microenvironmental niches as dominated by PPARα signal in ASCs to induce the greater hair induction than MA-DPS or DP spheres alone. Therefore, the assembling of a core-shell sphere for DP with ASCs could reconstruct the HF cellular arrangement for hair formation. This paper set the groundwork for further evaluation of the input of other cell types. PMID:27210831

  13. Spontaneous aneuploidy and clone formation in adipose tissue stem cells during different periods of culturing.

    PubMed

    Buyanovskaya, O A; Kuleshov, N P; Nikitina, V A; Voronina, E S; Katosova, L D; Bochkov, N P

    2009-07-01

    Cytogenetic analysis of 13 mesenchymal stem cell cultures isolated from normal human adipose tissue was carried out at different stages of culturing. The incidence of chromosomes 6, 8, 11, and X aneuploidy and polyploidy was studied by fluorescent in situ hybridization. During the early passages, monosomal cells were more often detected than trisomal ones. A clone with chromosome 6 monosomy was detected in three cultures during late passages.

  14. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche1

    PubMed Central

    Templeton, Zach S.; Lie, Wen-Rong; Wang, Weiqi; Rosenberg-Hasson, Yael; Alluri, Rajiv V.; Tamaresis, John S.; Bachmann, Michael H.; Lee, Kitty; Maloney, William J.; Contag, Christopher H.; King, Bonnie L.

    2015-01-01

    BACKGROUND/OBJECTIVES: Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. METHODS: Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. RESULTS: Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. CONCLUSIONS: Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche. PMID:26696367

  15. Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes.

    PubMed

    Abd Elmageed, Zakaria Y; Yang, Yijun; Thomas, Raju; Ranjan, Manish; Mondal, Debasis; Moroz, Krzysztof; Fang, Zhide; Rezk, Bashir M; Moparty, Krishnarao; Sikka, Suresh C; Sartor, Oliver; Abdel-Mageed, Asim B

    2014-04-01

    Emerging evidence suggests that mesenchymal stem cells (MSCs) are often recruited to tumor sites but their functional significance in tumor growth and disease progression remains elusive. Herein we report that prostate cancer (PC) cell microenvironment subverts PC patient adipose-derived stem cells (pASCs) to undergo neoplastic transformation. Unlike normal ASCs, the pASCs primed with PC cell conditioned media (CM) formed prostate-like neoplastic lesions in vivo and reproduced aggressive tumors in secondary recipients. The pASC tumors acquired cytogenetic aberrations and mesenchymal-to-epithelial transition and expressed epithelial, neoplastic, and vasculogenic markers reminiscent of molecular features of PC tumor xenografts. Our mechanistic studies revealed that PC cell-derived exosomes are sufficient to recapitulate formation of prostate tumorigenic mimicry generated by CM-primed pASCs in vivo. In addition to downregulation of the large tumor suppressor homolog2 and the programmed cell death protein 4, a neoplastic transformation inhibitor, the tumorigenic reprogramming of pASCs was associated with trafficking by PC cell-derived exosomes of oncogenic factors, including H-ras and K-ras transcripts, oncomiRNAs miR-125b, miR-130b, and miR-155 as well as the Ras superfamily of GTPases Rab1a, Rab1b, and Rab11a. Our findings implicate a new role for PC cell-derived exosomes in clonal expansion of tumors through neoplastic reprogramming of tumor tropic ASCs in cancer patients.

  16. Alginate-Encapsulation for the Improved Hypothermic Preservation of Human Adipose-Derived Stem Cells.

    PubMed

    Swioklo, Stephen; Constantinescu, Andrei; Connon, Che J

    2016-03-01

    Despite considerable progress within the cell therapy industry, unmet bioprocessing and logistical challenges associated with the storage and distribution of cells between sites of manufacture and the clinic exist. We examined whether hypothermic (4°C-23°C) preservation of human adipose-derived stem cells could be improved through their encapsulation in 1.2% calcium alginate. Alginate encapsulation improved the recovery of viable cells after 72 hours of storage. Viable cell recovery was highly temperature-dependent, with an optimum temperature of 15°C. At this temperature, alginate encapsulation preserved the ability for recovered cells to attach to tissue culture plastic on rewarming, further increasing its effect on total cell recovery. On attachment, the cells were phenotypically normal, displayed normal growth kinetics, and maintained their capacity for trilineage differentiation. The number of cells encapsulated (up to 2 × 10(6) cells per milliliter) did not affect viable cell recovery nor did storage of encapsulated cells in a xeno-free, serum-free,current Good Manufacturing Practice-grade medium. We present a simple, low-cost system capable of enhancing the preservation of human adipose-derived stem cells stored at hypothermic temperatures, while maintaining their normal function. The storage of cells in this manner has great potential for extending the time windows for quality assurance and efficacy testing, distribution between the sites of manufacture and the clinic, and reducing the wastage associated with the limited shelf life of cells stored in their liquid state.

  17. Adipose progenitor cells increase fibronectin matrix strain and unfolding in breast tumors

    NASA Astrophysics Data System (ADS)

    Chandler, E. M.; Saunders, M. P.; Yoon, C. J.; Gourdon, D.; Fischbach, C.

    2011-02-01

    Increased stiffness represents a hallmark of breast cancer that has been attributed to the altered physicochemical properties of the extracellular matrix (ECM). However, the role of fibronectin (Fn) in modulating the composition and mechanical properties of the tumor-associated ECM remains unclear. We have utilized a combination of biochemical and physical science tools to evaluate whether paracrine signaling between breast cancer cells and adipose progenitor cells regulates Fn matrix assembly and stiffness enhancement in the tumor stroma. In particular, we utilized fluorescence resonance energy transfer imaging to map the molecular conformation and stiffness of Fn that has been assembled by 3T3-L1 preadipocytes in response to conditioned media from MDA-MB231 breast cancer cells. Our results reveal that soluble factors secreted by tumor cells promote Fn expression, unfolding, and stiffening by adipose progenitor cells and that transforming growth factor-β serves as a soluble cue underlying these changes. In vivo experiments using orthotopic co-transplantation of primary human adipose-derived stem cells and MDA-MB231 into SCID mice support the pathological relevance of our results. Insights gained by these studies advance our understanding of the role of Fn in mammary tumorigenesis and may ultimately lead to improved anti-cancer therapies.

  18. Ultrastructural features of human adipose-derived multipotent mesenchymal stromal cells.

    PubMed

    Manea, Claudiu Marius; Rusu, Mugurel Constantin; Constantin, Daniel; Mănoiu, Valentina Mariana; Moldovan, Lucia; Jianu, Adelina Maria

    2014-01-01

    Multipotent mesenchymal stromal cells (MMSCs) are plastic-adherent cells with a well-established phenotype. Equine, but not human, adipose MMSCs have been characterized ultrastructurally. The purpose of our study was to evaluate ultrastructurally the adipose-derived human MMSCs. Cell cultures were prepared from human lipoaspirate. The flow cytometry evaluation of surface markers of cultured cells confirmed the expected profile of MMSCs, that were positive for CD73, CD90 and CD105, and negative for CD34 and CD45. We examined these human adipose-derived MMSCs in transmission electron microscopy (TEM) by Epon en-face embedding the fixed MMSCs. The main ultrastructural features of MMSCs were the extremely rich content of endosomal/vesicular elements, long mitochondria, dilated RER (rough endoplasmic reticulum) cisternae, and abundant intermediate filaments and microtubules. We found two types of MMSCS prolongations: (a) thick processes, with opposite, vesicular and filaments-rich, sides and (b) slender processes (pseudopodes and filopodes), with occasional proximal dilated segments housing mitochondria, vesicles and secretory granules. These TEM features of MMSCs characterized an in vitro cell population and could use to distinguish between different cell types in culture.

  19. Retinoic Acid Enhances the Differentiation of Adipose-Derived Stem Cells to Keratocytes In Vitro

    PubMed Central

    Lynch, Amy P.; Ahearne, Mark

    2017-01-01

    Purpose All-trans retinoic acid (RA) supplementation was investigated as a method of enhancing the differentiation of human adipose-derived stem cells (ASCs) to corneal keratocytes in vitro, in combination with a chemically defined serum-free medium. Methods Adipose-derived stem cells were cultured in monolayer and supplemented with 0.1, 1, or 10 μM RA for 14 days. The effects of RA on cell proliferation, migration, and extracellular matrix (ECM) accumulation were evaluated. In addition, the expression of phenotypic keratocyte markers was examined by reverse transcription polymerase chain reaction (PCR), immunocytochemistry, and Western blotting. Results Adipose-derived stem cells cultured with RA showed improved cell proliferation and ECM production. In addition, RA enhanced the expression of keratocyte-specific markers, keratocan, aldehyde dehydrogenase 3A1, lumican, and decorin, when compared to serum-free media alone. Furthermore, the presence of RA increased the amount of collagen type I while reducing the expression of fibrotic marker, α-smooth muscle actin. Conclusions These findings indicate that RA is a useful supplement for promoting a keratocyte phenotype in ASC. Translational Relevance This study is particularly important for the generation of biological corneal substitutes and next generation cell based therapies for corneal conditions. PMID:28138416

  20. Brown but not white adipose cells synthesize omega-3 docosahexaenoic acid in culture.

    PubMed

    Qin, Xia; Park, Hui Gyu; Zhang, Ji Yao; Lawrence, Peter; Liu, Guowen; Subramanian, Nivetha; Kothapalli, Kumar S D; Brenna, J Thomas

    2016-01-01

    Adipose tissue is a complex endocrine organ which coordinates several crucial biological functions including fatty acid metabolism, glucose metabolism, energy homeostasis, and immune function. Brown adipose tissue (BAT) is most abundant in young infants during the brain growth spurt when demands for omega-3 docosahexaenoic acid (DHA, 22:6n-3) is greatest for brain structure. Our aim was to characterize relative biosynthesis of omega-3 long chain polyunsaturated fatty acids (LCPUFA) from precursors in cultured white (WAT) and brown (BAT) cells and study relevant gene expression. Mouse WAT and BAT cells were grown in regular DMEM media to confluence, and differentiation was induced. At days 0 and 8 cells were treated with albumin bound d5-18:3n-3 (d5-ALA) and analyzed 24h later. d5-ALA increased cellular eicosapentaenoic acid (EPA, 20:5n-3) and docosapentaenoic acid (DPA, 22:5n-3) in undifferentiated BAT cells, whereas differentiated BAT cells accumulated 20:4n-3, EPA and DPA. DHA as a fraction of total omega-3 LCPUFA was greatest in differentiated BAT cells compared to undifferentiated cells. Undifferentiated WAT cells accumulated EPA, whereas differentiated cells accumulated DPA. WAT accumulated trace newly synthesized DHA. Zic1 a classical brown marker and Prdm16 a key driver of brown fat cell fate are expressed only in BAT cells. Ppargc1a is 15 fold higher in differentiated BAT cells. We conclude that in differentiated adipose cells accumulating fat, BAT cells but not WAT cells synthesize DHA, supporting the hypothesis that BAT is a net producer of DHA.

  1. Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2

    SciTech Connect

    Li Huiwu; Dai Kerong . E-mail: krdai@163.com; Tang Tingting; Zhang Xiaoling; Yan Mengning; Lou Jueren

    2007-05-18

    In this study, we reported that the adipose-derived stromal cells (ADSCs) genetically modified by bone morphogenetic protein 2 (BMP-2) healed critical-sized canine ulnar bone defects. First, the osteogenic and adipogenic differentiation potential of the ADSCs derived from canine adipose tissue were demonstrated. And then the cells were modified by the BMP-2 gene and the expression and bone-induction ability of BMP-2 were identified. Finally, the cells modified by BMP-2 gene were applied to a {beta}-tricalcium phosphate (TCP) carrier and implanted into ulnar bone defects in the canine model. After 16 weeks, radiographic, histological, and histomorphometry analysis showed that ADSCs modified by BMP-2 gene produced a significant increase of newly formed bone area and healed or partly healed all of the bone defects. We conclude that ADSCs modified by the BMP-2 gene can enhance the repair of critical-sized bone defects in large animals.

  2. In Vitro and In Vivo Effects of Metformin on Osteopontin Expression in Mice Adipose-Derived Multipotent Stromal Cells and Adipose Tissue

    PubMed Central

    Basińska, Katarzyna; Chrząstek, Klaudia; Marycz, Krzysztof

    2015-01-01

    Metformin is applied not only as antidiabetic drug, but also in the treatment of obesity or as antiaging drug. The first part of the research discussed the effect of metformin at concentrations of 1 mM, 5 mM, and 10 mM on the morphology, ultrastructure, and proliferation potential of mice adipose-derived multipotent mesenchymal stromal cells (ASCs) in vitro. Additionally, we determined the influence of metformin on mice adipose tissue metabolism. This study has shown for the first time that metformin inhibits the proliferative potential of ASCs in vitro in a dose- and time-dependent manner. In addition, we have found a significant correlation between the activity of ASCs and osteopontin at the mRNA and protein level. Furthermore, we have demonstrated that 5 mM and 10 mM metformin have cytotoxic effect on ASCs, causing severe morphological, ultrastructural, and apoptotic changes. The reduced level of OPN in the adipose tissue of metformin-treated animals strongly correlated with the lower expression of Ki67 and CD105 and increased caspase-3. The metformin influenced also circulating levels of OPN, which is what was found with systemic and local action of metformin. The results are a valuable source of information regarding the in vitro effect of metformin on adipose-derived stem cells. PMID:26064989

  3. Xeno-Free Extraction, Culture, and Cryopreservation of Human Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Escobar, Carlos Hugo

    2016-01-01

    Molecules of animal or bacterial origin, which pose a risk for zoonoses or immune rejection, are commonly used for extraction, culture, and cryopreservation of mesenchymal stem cells. There is no sequential and orderly protocol for producing human adipose-derived stem cells (hASCs) under xeno-free conditions. After standardizing a human platelet lysate (hPL) production protocol, four human adipose tissue samples were processed through explants with fetal bovine serum (FBS)-supplemented or hPL-supplemented media for extracting the adipose-derived stem cells. The cells were cultivated in cell culture medium + hPL (5%) or FBS (10%). The cellular replication rate, immunophenotype, and differentiation potential were evaluated at fourth passage. Cellular viability was evaluated before and after cryopreservation of the cells, with an hPL-based solution compared with an FBS-based solution. The explants cultured in hPL-supplemented media showed earlier and faster hASC proliferation than did those supplemented with FBS. Likewise, cells grown in hPL-supplemented media showed a greater proliferation rate, without losing the immunophenotype. Osteogenic differentiation of xeno-free hASC was higher than the hASC produced in standard conditions. However, adipogenic differentiation was reduced in xeno-free hASC. Finally, the cells cryopreserved in an hPL-based solution showed a higher cellular viability than the cells cryopreserved in an FBS-based. In conclusion, we have developed a complete xeno-free protocol for extracting, culturing, and cryopreserving hASCs that can be safely implemented in clinical studies. Significance This study was performed to standardize a complete ordered protocol to produce xeno-free human adipose-derived mesenchymal stem cells (hASCs) as a safe therapeutic alternative. Cells were extracted by adipose tissue explants and then cultured and cryopreserved using human platelet lysate (hPL). Different scientific journals have published data regarding the use

  4. Central Administration of Galanin Receptor 1 Agonist Boosted Insulin Sensitivity in Adipose Cells of Diabetic Rats

    PubMed Central

    Zhang, Zhenwen; Fang, Penghua; He, Biao; Guo, Lili; Runesson, Johan; Langel, Ülo; Shi, Mingyi; Zhu, Yan; Bo, Ping

    2016-01-01

    Our previous studies testified the beneficial effect of central galanin on insulin sensitivity of type 2 diabetic rats. The aim of the study was further to investigate whether central M617, a galanin receptor 1 agonist, can benefit insulin sensitivity. The effects of intracerebroventricular administration of M617 on insulin sensitivity and insulin signaling were evaluated in adipose tissues of type 2 diabetic rats. The results showed that central injection of M617 significantly increased plasma adiponectin contents, glucose infusion rates in hyperinsulinemic-euglycemic clamp tests, GLUT4 mRNA expression levels, GLUT4 contents in plasma membranes, and total cell membranes of the adipose cells but reduced the plasma C-reactive protein concentration in nondiabetic and diabetic rats. The ratios of GLUT4 contents were higher in plasma membranes to total cell membranes in both nondiabetic and diabetic M617 groups than each control. In addition, the central administration of M617 enhanced the ratios of pAkt/Akt and pAS160/AS160, but not phosphorylative cAMP response element-binding protein (pCREB)/CREB in the adipose cells of nondiabetic and diabetic rats. These results suggest that excitation of central galanin receptor 1 facilitates insulin sensitivity via activation of the Akt/AS160 signaling pathway in the fat cells of type 2 diabetic rats. PMID:27127795

  5. Preliminary study on non-viral transfection of F9 (factor IX) gene by nucleofection in human adipose-derived mesenchymal stem cells

    PubMed Central

    Olmedillas López, Susana; Garcia-Arranz, Mariano; Garcia-Olmo, Damian

    2016-01-01

    Background. Hemophilia is a rare recessive X-linked disease characterized by a deficiency of coagulation factor VIII or factor IX. Its current treatment is merely palliative. Advanced therapies are likely to become the treatment of choice for the disease as they could provide a curative treatment. Methods. The present study looks into the use of a safe non-viral transfection method based on nucleofection to express and secrete human clotting factor IX (hFIX) where human adipose tissue derived mesenchymal stem cells were used as target cells in vitro studies and NOD. Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice were used to analyze factor IX expression in vivo studies. Previously, acute liver injury was induced by an injected intraperitoneal dose of 500 mg/kg body weight of acetaminophen. Results. Nucleofection showed a percentage of positive cells ranging between 30.7% and 41.9% and a cell viability rate of 29.8%, and cells were shown to secrete amounts of hFIX between 36.8 and 71.9 ng/mL. hFIX levels in the blood of NSG mice injected with ASCs transfected with this vector, were 2.7 ng/mL 48 h after injection. Expression and secretion of hFIX were achieved both in vitro cell culture media and in vivo in the plasma of mice treated with the transfected ASCs. Such cells are capable of eventually migrating to a previously damaged target tissue (the liver) where they secrete hFIX, releasing it to the bloodstream over a period of at least five days from administration. Conclusions. The results obtained in the present study may form a preliminary basis for the establishment of a future ex vivo non-viral gene/cellular safe therapy protocol that may eventually contribute to advancing the treatment of hemophilia. PMID:27114871

  6. Radioelectric asymmetric conveyed fields and human adipose-derived stem cells obtained with a nonenzymatic method and device: a novel approach to multipotency.

    PubMed

    Maioli, Margherita; Rinaldi, Salvatore; Santaniello, Sara; Castagna, Alessandro; Pigliaru, Gianfranco; Delitala, Alessandro; Bianchi, Francesca; Tremolada, Carlo; Fontani, Vania; Ventura, Carlo

    2014-01-01

    Human adipose-derived stem cells (hASCs) have been recently proposed as a suitable tool for regenerative therapies for their simple isolation procedure and high proliferative capability in culture. Although hASCs can be committed into different lineages in vitro, the differentiation is a low-yield and often incomplete process. We have recently developed a novel nonenzymatic method and device, named Lipogems, to obtain a fat tissue derivative highly enriched in pericytes/mesenchymal stem cells by mild mechanical forces from human lipoaspirates. When compared to enzymatically dissociated cells, Lipogems-derived hASCs exhibited enhanced transcription of vasculogenic genes in response to provasculogenic molecules, suggesting that these cells may be amenable for further optimization of their multipotency. Here we exposed Lipogems-derived hASCs to a radioelectric asymmetric conveyer (REAC), an innovative device asymmetrically conveying radioelectric fields, affording both enhanced differentiating profiles in mouse embryonic stem cells and efficient direct multilineage reprogramming in human skin fibroblasts. We show that specific REAC exposure remarkably enhanced the transcription of prodynorphin, GATA-4, Nkx-2.5, VEGF, HGF, vWF, neurogenin-1, and myoD, indicating the commitment toward cardiac, vascular, neuronal, and skeletal muscle lineages, as inferred by the overexpression of a program of targeted marker proteins. REAC exposure also finely tuned the expression of stemness-related genes, including NANOG, SOX-2, and OCT-4. Noteworthy, the REAC-induced responses were fashioned at a significantly higher extent in Lipogems-derived than in enzymatically dissociated hASCs. Therefore, REAC-mediated interplay between radioelectric asymmetrically conveyed fields and Lipogems-derived hASCs appears to involve the generation of an ideal "milieu" to optimize multipotency expression from human adult stem cells in view of potential improvement of future cell therapy efforts.

  7. Regeneration of dental pulp following pulpectomy by fractionated stem/progenitor cells from bone marrow and adipose tissue.

    PubMed

    Ishizaka, Ryo; Iohara, Koichiro; Murakami, Masashi; Fukuta, Osamu; Nakashima, Misako

    2012-03-01

    Pulp stem/progenitor cells can induce complete pulp regeneration. However, due to the limited availability of pulp tissue with age, there is a need to examine other sources for fractions of side population (SP) cells. In the present investigation bone marrow and adipose tissues of the same individual were evaluated as alternate sources. Pulp CD31(-) SP cells have higher migration activity and higher expression of angiogenic/neurotrophic factors than bone marrow and adipose CD31(-) SP cells. Adipose tissue CD31(-) SP cell transplantation yielded the same amount of regenerated tissue as pulp derived cells. However, bone marrow CD31(-) SP cell transplantation yielded significantly less regenerated tissue in pulpectomized root canals in dogs. The rate of matrix formation was much higher in adipose CD31(-) SP cell transplantation compared to pulp CD31(-) SP cell transplantation on day 28. Microarray analysis demonstrated similar qualitative and quantitative patterns of mRNA expression characteristic of pulp in the regenerated tissues from all three cell sources. Expression of many angiogenic/neurotrophic factors in the transplanted cells demonstrated trophic effects. Our results demonstrate that bone marrow and adipose CD31(-) SP cells might be suitable alternative cell sources for pulp regeneration.

  8. Original Research: Adipose-derived stem cells from younger donors, but not aging donors, inspire the host self-healing capability through its secreta.

    PubMed

    Ma, Ning; Qiao, Chenhui; Zhang, Weihua; Luo, Hong; Zhang, Xin; Liu, Donghai; Zang, Suhua; Zhang, Liang; Bai, Jingyun

    2017-01-01

    Adipose-derived stem cells demonstrate promising effects in promoting cutaneous wound healing, but the mechanisms are still not well defined and contradictory views are still debatable. In the present research, we established a mouse cutaneous wound model and investigated the effects of adipose-derived stem cells in wound healing. Adipocyte, adipose-derived stem cells, and epidermal keratinocyte stem cells were isolated from younger and aged donors according to the standard protocol. The conditioned medium either from adipose-derived stem cells or from adipocytes was used to treat epidermal keratinocyte cells. The results showed that adipocytes or adipose-derived stem cells isolated from younger donors demonstrated mild advantage over those cells isolated from aging donors. Adipose-derived stem cells showed stronger stimuli than adipocytes, and the adipose-derived stem cells or adipocytes from younger donors enabled to support higher growth rate of keratinocyte stem cells. The invasion of vasculature was observed at day 10 after posttransplantation in the mice bearing the keratinocyte stem cells or combination of keratinocyte stem cells with adipose-derived stem cells; however, simply inoculating keratinocyte stem cells from aging donors did not result in vasculature formation. Adipose-derived stem cells isolated from younger donors were able to inspire the host's self-healing capabilities, and age-associated factors should be taken into consideration when designing a feasible therapeutic treatment for skin regeneration.

  9. Generation of Human Adipose Stem Cells through Dedifferentiation of Mature Adipocytes in Ceiling Cultures

    PubMed Central

    Lessard, Julie; Côté, Julie Anne; Lapointe, Marc; Pelletier, Mélissa; Nadeau, Mélanie; Marceau, Simon; Biertho, Laurent; Tchernof, André

    2015-01-01

    Mature adipocytes have been shown to reverse their phenotype into fibroblast-like cells in vitro through a technique called ceiling culture. Mature adipocytes can also be isolated from fresh adipose tissue for depot-specific characterization of their function and metabolic properties. Here, we describe a well-established protocol to isolate mature adipocytes from adipose tissues using collagenase digestion, and subsequent steps to perform ceiling cultures. Briefly, adipose tissues are incubated in a Krebs-Ringer-Henseleit buffer containing collagenase to disrupt tissue matrix. Floating mature adipocytes are collected on the top surface of the buffer. Mature cells are plated in a T25-flask completely filled with media and incubated upside down for a week. An alternative 6-well plate culture approach allows the characterization of adipocytes undergoing dedifferentiation. Adipocyte morphology drastically changes over time of culture. Immunofluorescence can be easily performed on slides cultivated in 6-well plates as demonstrated by FABP4 immunofluorescence staining. FABP4 protein is present in mature adipocytes but down-regulated through dedifferentiation of fat cells. Mature adipocyte dedifferentiation may represent a new avenue for cell therapy and tissue engineering. PMID:25867041

  10. T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is associated with chronic inflammation, which includes increased macrophage accumulation in adipose tissue (AT) and upregulation of chemokines and cytokines. T cells also play important roles in chronic inflammatory diseases such as atherosclerosis but have not been well studied in obesity....

  11. Efficient generation of functional Schwann cells from adipose-derived stem cells in defined conditions.

    PubMed

    Xie, Songtao; Lu, Fan; Han, Juntao; Tao, Ke; Wang, Hongtao; Simental, Alfred; Hu, Dahai; Yang, Hao

    2017-03-15

    Schwann cells (SCs) are hitherto regarded as the most promising candidates for viable cell-based therapy to peripheral nervous system (PNS) injuries or degenerative diseases. However, the extreme drawbacks of transplanting autologous SCs for clinical applications still represent a significant bottleneck in neural regenerative medicine, mainly owing to the need of sacrificing a functional nerve to generate autologous SCs and the nature of slow expansion of the SCs. Thus, it is of great importance to establish an alternative cell system for the generation of sufficient SCs. Here, we demonstrated that adipose-derived stem cells (ADSCs) of rat robustly give rise to morphological, phenotypic and functional SCs using an optimized protocol. After undergoing a 3-week in vitro differentiation, almost all of treated ADSCs exhibited spindle shaped morphology similar to genuine SCs and expressed SC markers GFAP and S100. Most importantly, apart from acquisition of SC antigenic and biochemical features, the ADSC-derived SCs were functionally identical to native SCs as they possess a potential ability to form myelin, and secret nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and glia-derived neurotrophic factor (GDNF). The current study may provide an ideal strategy for harvesting sufficient SCs for cell-based treatment of various peripheral nerve injuries or disorders.

  12. Xeno-Free Extraction, Culture, and Cryopreservation of Human Adipose-Derived Mesenchymal Stem Cells.

    PubMed

    Escobar, Carlos Hugo; Chaparro, Orlando

    2016-03-01

    Molecules of animal or bacterial origin, which pose a risk for zoonoses or immune rejection, are commonly used for extraction, culture, and cryopreservation of mesenchymal stem cells. There is no sequential and orderly protocol for producing human adipose-derived stem cells (hASCs) under xeno-free conditions. After standardizing a human platelet lysate (hPL) production protocol, four human adipose tissue samples were processed through explants with fetal bovine serum (FBS)-supplemented or hPL-supplemented media for extracting the adipose-derived stem cells. The cells were cultivated in cell culture medium + hPL (5%) or FBS (10%). The cellular replication rate, immunophenotype, and differentiation potential were evaluated at fourth passage. Cellular viability was evaluated before and after cryopreservation of the cells, with an hPL-based solution compared with an FBS-based solution. The explants cultured in hPL-supplemented media showed earlier and faster hASC proliferation than did those supplemented with FBS. Likewise, cells grown in hPL-supplemented media showed a greater proliferation rate, without losing the immunophenotype. Osteogenic differentiation of xeno-free hASC was higher than the hASC produced in standard conditions. However, adipogenic differentiation was reduced in xeno-free hASC. Finally, the cells cryopreserved in an hPL-based solution showed a higher cellular viability than the cells cryopreserved in an FBS-based. In conclusion, we have developed a complete xeno-free protocol for extracting, culturing, and cryopreserving hASCs that can be safely implemented in clinical studies.

  13. Functional expression of smooth muscle-specific ion channels in TGF-β1-treated human adipose-derived mesenchymal stem cells

    PubMed Central

    Park, Won Sun; Heo, Soon Chul; Jeon, Eun Su; Hong, Da Hye; Son, Youn Kyoung; Ko, Jae-Hong; Kim, Hyoung Kyu; Lee, Sun Young; Kim, Jae Ho

    2013-01-01

    Human adipose tissue-derived mesenchymal stem cells (hASCs) have the power to differentiate into various cell types including chondrocytes, osteocytes, adipocytes, neurons, cardiomyocytes, and smooth muscle cells. We characterized the functional expression of ion channels after transforming growth factor-β1 (TGF-β1)-induced differentiation of hASCs, providing insights into the differentiation of vascular smooth muscle cells. The treatment of hASCs with TGF-β1 dramatically increased the contraction of a collagen-gel lattice and the expression levels of specific genes for smooth muscle including α-smooth muscle actin, calponin, smooth mucle-myosin heavy chain, smoothelin-B, myocardin, and h-caldesmon. We observed Ca2+, big-conductance Ca2+-activated K+ (BKCa), and voltage-dependent K+ (Kv) currents in TGF-β1-induced, differentiated hASCs and not in undifferentiated hASCs. The currents share the characteristics of vascular smooth muscle cells (SMCs). RT-PCR and Western blotting revealed that the L-type (Cav1.2) and T-type (Cav3.1, 3.2, and 3.3), known to be expressed in vascular SMCs, dramatically increased along with the Cavβ1 and Cavβ3 subtypes in TGF-β1-induced, differentiated hASCs. Although the expression-level changes of the β-subtype BKCa channels varied, the major α-subtype BKCa channel (KCa1.1) clearly increased in the TGF-β1-induced, differentiated hASCs. Most of the Kv subtypes, also known to be expressed in vascular SMCs, dramatically increased in the TGF-β1-induced, differentiated hASCs. Our results suggest that TGF-β1 induces the increased expression of vascular SMC-like ion channels and the differentiation of hASCs into contractile vascular SMCs. PMID:23761629

  14. Functional expression of smooth muscle-specific ion channels in TGF-β(1)-treated human adipose-derived mesenchymal stem cells.

    PubMed

    Park, Won Sun; Heo, Soon Chul; Jeon, Eun Su; Hong, Da Hye; Son, Youn Kyoung; Ko, Jae-Hong; Kim, Hyoung Kyu; Lee, Sun Young; Kim, Jae Ho; Han, Jin

    2013-08-15

    Human adipose tissue-derived mesenchymal stem cells (hASCs) have the power to differentiate into various cell types including chondrocytes, osteocytes, adipocytes, neurons, cardiomyocytes, and smooth muscle cells. We characterized the functional expression of ion channels after transforming growth factor-β1 (TGF-β1)-induced differentiation of hASCs, providing insights into the differentiation of vascular smooth muscle cells. The treatment of hASCs with TGF-β1 dramatically increased the contraction of a collagen-gel lattice and the expression levels of specific genes for smooth muscle including α-smooth muscle actin, calponin, smooth mucle-myosin heavy chain, smoothelin-B, myocardin, and h-caldesmon. We observed Ca(2+), big-conductance Ca(2+)-activated K(+) (BKCa), and voltage-dependent K(+) (Kv) currents in TGF-β1-induced, differentiated hASCs and not in undifferentiated hASCs. The currents share the characteristics of vascular smooth muscle cells (SMCs). RT-PCR and Western blotting revealed that the L-type (Cav1.2) and T-type (Cav3.1, 3.2, and 3.3), known to be expressed in vascular SMCs, dramatically increased along with the Cavβ1 and Cavβ3 subtypes in TGF-β1-induced, differentiated hASCs. Although the expression-level changes of the β-subtype BKCa channels varied, the major α-subtype BKCa channel (KCa1.1) clearly increased in the TGF-β1-induced, differentiated hASCs. Most of the Kv subtypes, also known to be expressed in vascular SMCs, dramatically increased in the TGF-β1-induced, differentiated hASCs. Our results suggest that TGF-β1 induces the increased expression of vascular SMC-like ion channels and the differentiation of hASCs into contractile vascular SMCs.

  15. Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine.

    PubMed

    Mizuno, Hiroshi; Tobita, Morikuni; Uysal, A Cagri

    2012-05-01

    The potential use of stem cell-based therapies for the repair and regeneration of various tissues and organs offers a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. The use of either embryonic stem cells (ESCs) or induced pluripotent stem cells in clinical situations is limited due to cell regulations and to technical and ethical considerations involved in the genetic manipulation of human ESCs, even though these cells are, theoretically, highly beneficial. Mesenchymal stem cells seem to be an ideal population of stem cells for practical regenerative medicine, because they are not subjected to the same restrictions. In particular, large number of adipose-derived stem cells (ASCs) can be easily harvested from adipose tissue. Furthermore, recent basic research and preclinical studies have revealed that the use of ASCs in regenerative medicine is not limited to mesodermal tissue but extends to both ectodermal and endodermal tissues and organs, although ASCs originate from mesodermal lineages. Based on this background knowledge, the primary purpose of this concise review is to summarize and describe the underlying biology of ASCs and their proliferation and differentiation capacities, together with current preclinical and clinical data from a variety of medical fields regarding the use of ASCs in regenerative medicine. In addition, future directions for ASCs in terms of cell-based therapies and regenerative medicine are discussed.

  16. Human adipose tissue possesses a unique population of pluripotent stem cells with nontumorigenic and low telomerase activities: potential implications in regenerative medicine.

    PubMed

    Ogura, Fumitaka; Wakao, Shohei; Kuroda, Yasumasa; Tsuchiyama, Kenichiro; Bagheri, Mozhdeh; Heneidi, Saleh; Chazenbalk, Gregorio; Aiba, Setsuya; Dezawa, Mari

    2014-04-01

    In this study, we demonstrate that a small population of pluripotent stem cells, termed adipose multilineage-differentiating stress-enduring (adipose-Muse) cells, exist in adult human adipose tissue and adipose-derived mesenchymal stem cells (adipose-MSCs). They can be identified as cells positive for both MSC markers (CD105 and CD90) and human pluripotent stem cell marker SSEA-3. They intrinsically retain lineage plasticity and the ability to self-renew. They spontaneously generate cells representative of all three germ layers from a single cell and successfully differentiate into targeted cells by cytokine induction. Cells other than adipose-Muse cells exist in adipose-MSCs, however, do not exhibit these properties and are unable to cross the boundaries from mesodermal to ectodermal or endodermal lineages even under cytokine inductions. Importantly, adipose-Muse cells demonstrate low telomerase activity and transplants do not promote teratogenesis in vivo. When compared with bone marrow (BM)- and dermal-Muse cells, adipose-Muse cells have the tendency to exhibit higher expression in mesodermal lineage markers, while BM- and dermal-Muse cells were generally higher in those of ectodermal and endodermal lineages. Adipose-Muse cells distinguish themselves as both easily obtainable and versatile in their capacity for differentiation, while low telomerase activity and lack of teratoma formation make these cells a practical cell source for potential stem cell therapies. Further, they will promote the effectiveness of currently performed adipose-MSC transplantation, particularly for ectodermal and endodermal tissues where transplanted cells need to differentiate across the lineage from mesodermal to ectodermal or endodermal in order to replenish lost cells for tissue repair.

  17. Neurogenic Effects of Cell-Free Extracts of Adipose Stem Cells

    PubMed Central

    Ban, Jae-Jun; Yang, Seungwon; Im, Wooseok; Kim, Manho

    2016-01-01

    Stem-cell-based therapies are regarded as promising treatments for neurological disorders, and adipose-derived stem cells (ASCs) are a feasible source of clinical application of stem cell. Recent studies have shown that stem cells have a therapeutic potential for use in the treatment of various illnesses through paracrine action. To examine the effects of cell components of ASCs on neural stem cells (NSCs), we treated cell-free extracts of ASCs (CFE-ASCs) containing various components with brain-derived NSCs. To elucidate the effects of CFE-ASCs in NSC proliferation, we treated mouse subventricular zone-derived cultured NSCs with various doses of CFE-ASCs. As a result, CFE-ASCs were found to induce the proliferation of NSCs under conditions of growth factor deprivation in a dose-dependent manner (p<0.01). CFE-ASCs increase the expression of neuron and astrocyte differentiation markers including Tuj-1 (p<0.05) and glial fibrillary acidic protein (p<0.01) without altering the cell’s fate in differentiating NSCs. In addition, treatment with CFE-ASCs induces an increase in neurite numbers (p<0.01) and lengths of NSCs (p<0.05). Furthermore, CFE-ASCs rescue the hydrogen peroxide-induced reduction of NSCs’ viability (p<0.05) and neurite branching (p<0.01). Findings from our study indicate that CFE-ASCs support the survival, proliferation and differentiation of NSCs accompanied with neurite outgrowth, suggesting that CFE-ASCs can modulate neurogenesis in the central nervous system. PMID:26859291

  18. Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects.

    PubMed

    Sándor, George K; Numminen, Jura; Wolff, Jan; Thesleff, Tuomo; Miettinen, Aimo; Tuovinen, Veikko J; Mannerström, Bettina; Patrikoski, Mimmi; Seppänen, Riitta; Miettinen, Susanna; Rautiainen, Markus; Öhman, Juha

    2014-04-01

    Although isolated reports of hard-tissue reconstruction in the cranio-maxillofacial skeleton exist, multipatient case series are lacking. This study aimed to review the experience with 13 consecutive cases of cranio-maxillofacial hard-tissue defects at four anatomically different sites, namely frontal sinus (3 cases), cranial bone (5 cases), mandible (3 cases), and nasal septum (2 cases). Autologous adipose tissue was harvested from the anterior abdominal wall, and adipose-derived stem cells were cultured, expanded, and then seeded onto resorbable scaffold materials for subsequent reimplantation into hard-tissue defects. The defects were reconstructed with either bioactive glass or β-tricalcium phosphate scaffolds seeded with adipose-derived stem cells (ASCs), and in some cases with the addition of recombinant human bone morphogenetic protein-2. Production and use of ASCs were done according to good manufacturing practice guidelines. Follow-up time ranged from 12 to 52 months. Successful integration of the construct to the surrounding skeleton was noted in 10 of the 13 cases. Two cranial defect cases in which nonrigid resorbable containment meshes were used sustained bone resorption to the point that they required the procedure to be redone. One septal perforation case failed outright at 1 year because of the postsurgical resumption of the patient's uncontrolled nasal picking habit.

  19. Adipose Stem Cells Used to Reconstruct 13 Cases With Cranio-Maxillofacial Hard-Tissue Defects

    PubMed Central

    Numminen, Jura; Wolff, Jan; Thesleff, Tuomo; Miettinen, Aimo; Tuovinen, Veikko J.; Mannerström, Bettina; Patrikoski, Mimmi; Seppänen, Riitta; Miettinen, Susanna; Rautiainen, Markus; Öhman, Juha

    2014-01-01

    Although isolated reports of hard-tissue reconstruction in the cranio-maxillofacial skeleton exist, multipatient case series are lacking. This study aimed to review the experience with 13 consecutive cases of cranio-maxillofacial hard-tissue defects at four anatomically different sites, namely frontal sinus (3 cases), cranial bone (5 cases), mandible (3 cases), and nasal septum (2 cases). Autologous adipose tissue was harvested from the anterior abdominal wall, and adipose-derived stem cells were cultured, expanded, and then seeded onto resorbable scaffold materials for subsequent reimplantation into hard-tissue defects. The defects were reconstructed with either bioactive glass or β-tricalcium phosphate scaffolds seeded with adipose-derived stem cells (ASCs), and in some cases with the addition of recombinant human bone morphogenetic protein-2. Production and use of ASCs were done according to good manufacturing practice guidelines. Follow-up time ranged from 12 to 52 months. Successful integration of the construct to the surrounding skeleton was noted in 10 of the 13 cases. Two cranial defect cases in which nonrigid resorbable containment meshes were used sustained bone resorption to the point that they required the procedure to be redone. One septal perforation case failed outright at 1 year because of the postsurgical resumption of the patient’s uncontrolled nasal picking habit. PMID:24558162

  20. Gene expression of adipose tissue, endothelial cells and platelets in subjects with metabolic syndrome (Review).

    PubMed

    Pérez, Pablo M; Moore-Carrasco, Rodrigo; González, Daniel R; Fuentes, Eduardo Q; Palomo, Iván G

    2012-05-01

    Metabolic syndrome is a combination of medical disorders including hypertension, dyslipidemia, hyperglycemia, insulin resistance and increased waist circumference, and is associated with a higher risk of cardiovascular disease. An increase in adipose tissue mass is associated with the augmented secretion of certain adipokines, such as interleukin-6, tumor necrosis factor-α and resistin, which cause endothelial dysfunction (an increase in vasoconstrictor molecules and in the expression of adhesion molecules as well as a decrease of vasodilator molecules, amongst other features) and hemostasis alterations that also favor a prothrombotic state (increased fibrinogen and plasminogen activator inhibitor-1 concentrations and platelet activation/aggregation). This interaction between adipose tissue, endothelial cells and platelets is associated with an increase or decrease in the expression of several transcription factors (peroxisome proliferator-activated receptors, CCAAT-enhancer-binding proteins, carbohydrate responsive element-binding proteins and sterol regulatory element-binding proteins) that play a crucial role in the regulation of distinct metabolic pathways related to the metabolic syndrome. In the present review, we present the primary changes in adipose tissue, endothelial cells and platelets in subjects with metabolic syndrome and their possible target sites at the gene expression level.

  1. Synergistic inhibition of interleukin-6 production in adipose stem cells by tart cherry anthocyanins and atorvastatin.

    PubMed

    Zhou, Zhou; Nair, Muraleedharan G; Claycombe, Kate J

    2012-07-15

    Studies have shown positive correlations between inflammatory cytokines such as interleukin-6 (IL-6) and the development of chronic diseases including cardiovascular disease by activating C-reactive protein (CRP). Both atorvastatin calcium (lipitor) as well as flavonoid rich fruit such as tart cherry demonstrate potent anti-inflammatory effects on IL-6 secretion. In this study, we investigated whether tart cherry extract or specific anthocyanins contained in the tart cherry show synergistic anti-inflammatory effects with lipitor. Results showed that LPS-induced adipose stem cell secretion of IL-6 reduced with the addition of tart cherry extract, a mixture of tart cherry anthocyanins, and pure tart cherry cyanidin-3-O-glucoside (C3G) in a dose-dependent manner. Furthermore, lipitor and C3G exhibited synergistic effects in reducing LPS-induced IL-6 secretion from adipose stem cells. In conclusion, these results support potential benefits of using dietary phytochemicals in conjunction with pharmacological therapies to decrease adipose inflammation, drug doses, and ultimately, drug-induced adverse effects.

  2. Mechanical Stimulation Increases Knee Meniscus Gene RNA-level Expression in Adipose-derived Stromal Cells

    PubMed Central

    Meier, Elizabeth M.; Wu, Bin; Siddiqui, Aamir; Tepper, Donna G.; Longaker, Michael T.

    2016-01-01

    Background: Efforts have been made to engineer knee meniscus tissue for injury repair, yet most attempts have been unsuccessful. Creating a cell source that resembles the complex, heterogeneous phenotype of the meniscus cell remains difficult. Stem cell differentiation has been investigated, mainly using bone marrow mesenchymal cells and biochemical means for differentiation, resulting in no solution. Mechanical stimulation has been investigated to an extent with no conclusion. Here, we explore the potential for and effectiveness of mechanical stimulation to induce the meniscal phenotype in adipose-derived stromal cells. Methods: Human adipose-derived stromal cells were chosen for their fibrogenic nature and conduciveness for chondrogenesis. Biochemical and mechanical stimulation were investigated. Biochemical stimulation included fibrogenic and chondrogenic media. For mechanical stimulation, a custom-built device was used to apply constant, cyclical, uniaxial strain for up to 6 hours. Strain and frequency varied. Results: Under biochemical stimulation, both fibrogenic (collagen I, versican) and chondrogenic (collagen II, Sox9, aggrecan) genes were expressed by cells exposed to either fibrogenic or chondrogenic biochemical factors. Mechanical strain was found to preferentially promote fibrogenesis over chondrogenesis, confirming that tensile strain is an effective fibrogenic cue. Three hours at 10% strain and 1 Hz in chondrogenic media resulted in the highest expression of fibrochondrogenic genes. Although mechanical stimulation did not seem to affect protein level expression, biochemical means did affect protein level presence of collagen fibers. Conclusion: Mechanical stimulation can be a useful differentiation tool for mechanoresponsive cell types as long as biochemical factors are also integrated. PMID:27757329

  3. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells

    SciTech Connect

    Kakudo, Natsuko . E-mail: kakudon@takii.kmu.ac.jp; Shimotsuma, Ayuko; Kusumoto, Kenji

    2007-07-27

    Adipose-derived stem cells (ASCs) have demonstrated a capacity for differentiating into a variety of lineages, including bone, cartilage, or fat, depending on the inducing stimuli and specific growth and factors. It is acknowledged that fibroblast growth factor-2 (FGF-2) promotes chondrogenic and inhibits osteogenic differentiation of ASCs, but thorough investigations of its effects on adipogenic differentiation are lacking. In this study, we demonstrate at the cellular and molecular levels the effect of FGF-2 on adipogenic differentiation of ASCs, as induced by an adipogenic hormonal cocktail consisting of 3-isobutyl-1-methylxanthine (IBMX), dexamethasone, insulin, and indomethacin. FGF-2 significantly enhances the adipogenic differentiation of human ASCs. Furthermore, in cultures receiving FGF-2 before adipogenic induction, mRNA expression of peroxisome proliferator-activated receptor {gamma}2 (PPAR{gamma}2), a key transcription factor in adipogenesis, was upregulated. The results of FGF-2 supplementation suggest the potential applications of FGF-2 and ASCs in adipose tissue regeneration.

  4. Gluteal and abdominal subcutaneous adipose tissue depots as stroma cell source: gluteal cells display increased adipogenic and osteogenic differentiation potentials.

    PubMed

    Iwen, Karl Alexander; Priewe, Anna-Christin; Winnefeld, Marc; Rose, Christian; Siemers, Frank; Rohwedel, Jürgen; Cakiroglu, Figen; Lehnert, Hendrik; Schepky, Andreas; Klein, Johannes; Kramer, Jan

    2014-06-01

    Human adipose-derived stroma cells (ADSCs) have successfully been employed in explorative therapeutic studies. Current evidence suggests that ADSCs are unevenly distributed in subcutaneous adipose tissue; therefore, the anatomical origin of ADSCs may influence clinical outcomes. This study was designed to investigate proliferation and differentiation capacities of ADSCs from the gluteal and abdominal depot of 8 females. All had normal BMI (22.01 ± 0.39 kg/m(2) ) and waist circumference (81.13 ± 2.33 cm). Examination by physicians and analysis of 31 laboratory parameters did not reveal possibly confounding medical disorders. Gluteal and abdominal adipose tissue was sampled by en bloc resection on day 7 (±1) after the last menses. Histological examination did not reveal significant depot-specific differences. As assessed by BrdU assay, proliferation of cells from both depots was similar after 24 h and analysis of 15 cell surface markers by flow cytometry identified the isolated cells as ADSCs, again without depot-specific differences. ADSCs from both depots differentiated poorly to chondroblasts. Gluteal ADSCs displayed significantly higher adipogenic differentiation potential than abdominal cells. Osteogenic differentiation was most pronounced in gluteal cells, whereas differentiation of abdominal ADSCs was severely impaired. Our data demonstrate a depot-specific difference in ADSC differentiation potential with abdominal cells failing to meet the criteria of multipotent ADSCs. This finding should be taken into account in future explorations of ADSC-derived therapeutic strategies.

  5. [Human brown adipose tissue].

    PubMed

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  6. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice

    SciTech Connect

    Fujimura, Juri; E-mail: juri-f@nms.ac.jp; Ogawa, Rei; Mizuno, Hiroshi; Fukunaga, Yoshitaka; Suzuki, Hidenori

    2005-07-22

    Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have recently reported that adipose-derived stromal cells (ASCs) could differentiate into mesenchymal lineages in vitro. In this study, we performed neural induction using ASCs from GFP transgenic mice and were able to induce these ASCs into neuronal and glial cell lineages. Most of the neurally induced cells showed bipolar or multipolar appearance morphologically and expressed neuronal markers. Electron microscopy revealed their neuronal morphology. Some cells also showed glial phenotypes, as shown immunocytochemically. The present study clearly shows that ASCs derived from GFP transgenic mice differentiate into neural lineages in vitro, suggesting that these cells might provide an ideal source for further neural stem cell research with possible therapeutic application for neurological disorders.

  7. Impact of Cell Density on Differentiation Efficiency of Rat Adipose-derived Stem Cells into Schwann-like Cells

    PubMed Central

    Najafabadi, Mahtab Maghzi; Bayati, Vahid; Orazizadeh, Mahmoud; Hashemitabar, Mahmoud; Absalan, Forouzan

    2016-01-01

    Background and Objectives Schwann-like (SC-like) cells induced from adipose-derived stem cells (ASCs) may be one of the ideal alternative cell sources for obtaining Schwann cells (SCs). They can be used for treating peripheral nerve injuries. Co-culture with SCs or exposure to glial growth factors are commonly used for differentiation of ASCs to SC-like cells. However, the effect of initial cell density as an inductive factor on the differentiation potential of ASCs into the SC-like cells has not been yet investigated. Methods and Results ASCs were harvested from rat and characterized. The cells were seeded into the culture flasks at three different initial cell densities i.e. 2×103, 4×103 and 8×103 cells/cm2 an overnight and differentiated toward SC-like cells using glial growth factors. After two weeks, the differentiation rate of ASCs to SC-like cells at different densities was assessed by immunofluorescence, fluorescence-activated cell sorting analysis and real time RT-PCR. Expression of the typical SCs markers, S-100 proteins and glial fibrillary acidic protein (GFAP) protein, was observed in all cell densities groups although the number of S100-positive and GFAP-positive cells, and the expression of p75NTR mRNA, another SC marker, were significantly higher at the density of 8×103 cells/cm2 when compared with the other cell densities groups (p<0.001). Conclusions The results suggest that the higher differentiation rate of ASCs to SC-like cells can be obtained at initial cell density of 8×103 cells/cm2, possibly via increased cell-cell interaction and cell density-dependent influence of glial growth factors. PMID:27788569

  8. Vasopressin-induced Ca(2+) signals in human adipose-derived stem cells.

    PubMed

    Tran, Tran Doan Ngoc; Gimble, Jeffrey M; Cheng, Henrique

    2016-03-01

    Intracellular Ca(2+) signals are essential for stem cell differentiation due to their ability to control signaling pathways involved in this process. Arginine vasopression (AVP) is a neurohypophyseal hormone that increases intracellular Ca(2+) concentration during adipogenesis via V1a receptors, Gq-proteins and the PLC-IP3 pathway in human adipose-derived stromal/stem cells (hASCs). These Ca(2+) signals originate through calcium release from pools within the endoplasmic reticulum and the extracellular space. AVP supplementation to the adipogenic media inhibits adipogenesis and key adipocyte marker genes. This review focuses on the intersection between AVP, Ca(2+) signals and ASC differentiation.

  9. Sirtuins 1-7 expression in human adipose-derived stem cells from subcutaneous and visceral fat depots: influence of obesity and hypoxia.

    PubMed

    Mariani, Stefania; Di Rocco, Giuliana; Toietta, Gabriele; Russo, Matteo A; Petrangeli, Elisa; Salvatori, Luisa

    2016-11-14

    The sirtuin family comprises seven NAD(+)-dependent deacetylases which control the overall health of organisms through the regulation of pleiotropic metabolic pathways. Sirtuins are important modulators of adipose tissue metabolism and their expression is higher in lean than obese subjects. At present, the role of sirtuins in adipose-derived stem cells has not been investigated yet. Therefore, in this study, we evaluated the expression of the complete panel of sirtuins in adipose-derived stem cells isolated from both subcutaneous and visceral fat of non-obese and obese subjects. We aimed at investigating the influence of obesity on sirtuins' levels, their role in obesity-associated inflammation, and the relationship with the peroxisome proliferator-activated receptor delta, which also plays functions in adipose tissue metabolism. The mRNA levels in the four types of adipose-derived stem cells were evaluated by quantitative polymerase chain reaction, in untreated cells and also after 8 h of hypoxia exposure. Correlations among sirtuins' expression and clinical and molecular parameters were also analyzed. We found that sirtuin1-6 exhibited significant higher mRNA expression in visceral adipose-derived stem cells compared to subcutaneous adipose-derived stem cells of non-obese subjects. Sirtuin1-6 levels were markedly reduced in visceral adipose-derived stem cells of obese patients. Sirtuins' expression in visceral adipose-derived stem cells correlated negatively with body mass index and C-reactive protein and positively with peroxisome proliferator-activated receptor delta. Finally, only in the visceral adipose-derived stem cells of obese patients hypoxia-induced mRNA expression of all of the sirtuins. Our results highlight that sirtuins' levels in adipose-derived stem cells are consistent with protective effects against visceral obesity and inflammation, and suggest a transcriptional mechanism through which acute hypoxia up-regulates sirtuins in the visceral

  10. Endothelial Differentiation of Adipose-Derived Stem Cells from Elderly Patients with Cardiovascular Disease

    PubMed Central

    Zhang, Ping; Moudgill, Neil; Hager, Eric; Tarola, Nicolas; DiMatteo, Christopher; McIlhenny, Stephen; Tulenko, Thomas

    2011-01-01

    Adipose-derived stem cells (ASCs) possess significant therapeutic potential for tissue engineering and regeneration. This study investigates the endothelial differentiation and functional capacity of ASCs isolated from elderly patients. Isolation of ASCs from 53 patients (50–89 years) revealed that advanced age or comorbidity did not negatively impact stem cell harvest; rather, higher numbers were observed in older donors (>70 years) than in younger. ASCs cultured in endothelial growth medium-2 for up to 3 weeks formed cords upon Matrigel and demonstrated acetylated-low-density lipoprotein and lectin uptake. Further stimulation with vascular endothelial growth factor and shear stress upregulated endothelial cell-specific markers (CD31, von Willebrand factor, endothelial nitric oxide synthase, and VE-cadherin). Inhibition of the PI3K but not mitogen-activated protein kinase pathway blocked the observed endothelial differentiation. Shear stress promoted an anti-thrombogenic phenotype as demonstrated by production of tissue-plasminogen activator and nitric oxide, and inhibition of plasminogen activator inhibitor-1. Shear stress augmented integrin α5β1 expression and subsequently increased attachment of differentiated ASCs to basement membrane components. Finally, ASCs seeded onto a decellularized vein graft resisted detachment despite application of shear force up to 9 dynes. These results suggest that (1) advanced age and comorbidity do not negatively impact isolation of ASCs, and (2) these stem cells retain significant capacity to acquire key endothelial cell traits throughout life. As such, adipose tissue is a practical source of autologous stem cells for vascular tissue engineering. PMID:20879833

  11. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    NASA Astrophysics Data System (ADS)

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (sbnd NH2), carboxyl (sbnd COOH) and methyl (sbnd CH3), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (sbnd COOH and sbnd NH2) can absorb more proteins than these modified with more hydrophobic functional group (sbnd CH3). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the sbnd NH2 modified surfaces encourage osteogenic differentiation; the sbnd COOH modified surfaces promote cell adhesion and spreading and the sbnd CH3 modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  12. IL-33 activates eosinophils of visceral adipose tissue both directly and via innate lymphoid cells.

    PubMed

    Hashiguchi, Masaaki; Kashiwakura, Yuji; Kojima, Hidefumi; Kobayashi, Ayano; Kanno, Yumiko; Kobata, Tetsuji

    2015-03-01

    Eosinophils are multifunctional leukocytes involved in allergic reactions as well as adipose tissue regulation. IL-5 is required for eosinophil survival; however, the in vivo mechanisms of eosinophil regulation are not fully understood. A tg mouse model with il5 promoter-driven EGFP expression was established for detecting the IL-5-producing cells in vivo. Il5-egfp tg mice expressed high levels of EGFP in gonadal adipose tissue (GAT) cells. EGFP(+) cells in GAT were mainly group 2 innate lymphoid cells (ILCs). IL-33 preferentially expanded EGFP(+) cells and eosinophils in GAT in vivo. EGFP(+) ILCs were found to upregulate prg2 mRNA expression in GAT eosinophils. These results demonstrate that ILCs activate eosinophils in GAT. The blockage of IL-33Rα, on the other hand, did not impair EGFP(+) ILC numbers but did impair eosinophil numbers in vivo. GAT eosinophils expressed IL-33Rα and IL-33 expanded eosinophil numbers in CD90(+) cell-depleted mice. IL-33 was further observed to induce the expression of retnla and epx mRNA in eosinophils. These findings demonstrate that IL-33 directly activates eosinophils in GAT, and together with our other findings described above, our findings show that IL-33 has dual pathways via which it activates eosinophils in vivo: a direct activation pathway and a group 2 ILC-mediated pathway.

  13. The current landscape of adipose-derived stem cells in clinical applications.

    PubMed

    Lim, Ming Hui; Ong, Wee Kiat; Sugii, Shigeki

    2014-05-07

    Adipose-derived stem cells (ASCs) are considered a great alternative source of mesenchymal stem cells (MSCs). Unlike bone marrow stem cells (BMSCs), ASCs can be retrieved in high numbers from lipoaspirate, a by-product of liposuction procedures. Given that ASCs represent an easily accessible and abundant source of multipotent cells, ASCs have garnered attention and curiosity from both scientific and clinical communities for their potential in clinical applications. Furthermore, their unique immunobiology and secretome are attractive therapeutic properties. A decade since the discovery of a stem cell reservoir residing within adipose tissue, ASC-based clinical trials have grown over the years around the world along with assessments made on their safety and efficacy. With the progress of ASCs into clinical applications, the aim towards producing clinical-grade ASCs becomes increasingly important. Several countries have recognised the growing industry of cell therapies and have developed regulatory frameworks to assure their safety. With more research efforts made to understand their effects in both scientific and clinical settings, ASCs hold great promise as a future therapeutic strategy in treating a wide variety of diseases. Therefore, this review seeks to highlight the clinical applicability of ASCs as well as their progress in clinical trials across various medical disciplines.

  14. Expansion of adipose mesenchymal stromal cells is affected by human platelet lysate and plating density.

    PubMed

    Cholewa, Dominik; Stiehl, Thomas; Schellenberg, Anne; Bokermann, Gudrun; Joussen, Sylvia; Koch, Carmen; Walenda, Thomas; Pallua, Norbert; Marciniak-Czochra, Anna; Suschek, Christoph V; Wagner, Wolfgang

    2011-01-01

    The composition of mesenchymal stromal cells (MSCs) changes in the course of in vitro culture expansion. Little is known how these cell preparations are influenced by culture media, plating density, or passaging. In this study, we have isolated MSCs from human adipose tissue in culture medium supplemented with either fetal calf serum (FCS) or human platelet lysate (HPL). In addition, culture expansion was simultaneously performed at plating densities of 10 or 10,000 cells/cm(2). The use of FCS resulted in larger cells, whereas HPL significantly enhanced proliferation. Notably, HPL also facilitated expansion for more population doublings than FCS (43 ± 3 vs. 22 ± 4 population doubling; p < 0.001), while plating density did not have a significant effect on long-term growth curves. To gain further insight into population dynamics, we conceived a cellular automaton model to simulate expansion of MSCS. It is based on the assumptions that the number of cell divisions is limited and that due to contact inhibition proliferation occurs only at the rim of colonies. The model predicts that low plating densities result in more heterogeneity with regard to cell division history, and favor subpopulations of higher migratory activity. In summary, HPL is a suitable serum supplement for isolation of MSC from adipose tissue and facilitates more population doublings than FCS. Cellular automaton computer simulations provided additional insights into how complex population dynamics during long-term expansion are affected by plating density and migration.

  15. Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation

    SciTech Connect

    Tavakolinejad, Alireza; Rabbani, Mohsen; Janmaleki, Mohsen

    2015-08-21

    Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation was assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. - Highlights: • Hypergravity (10 g, 20 g, 40 g and 60 g) affects on adipose derived stem cells (ADSCs). • ADSCs after exposure to the hypergravity are more slender. • The height of ADSCs increases in all test groups comparing their control group. • Hypergravity decreases ADSCs modulus of elasticity and cell actin fiber content. • Hypergravity enhances proliferation rate of ADSCs.

  16. Long-term in-vivo tumorigenic assessment of human culture-expanded adipose stromal/stem cells

    SciTech Connect

    MacIsaac, Zoe Marie; Shang, Hulan; Agrawal, Hitesh; Yang, Ning; Parker, Anna; Katz, Adam J.

    2012-02-15

    After more than a decade of extensive experimentation, the promise of stem cells to revolutionize the field of medicine has negotiated their entry into clinical trial. Adipose tissue specifically holds potential as an attainable and abundant source of stem cells. Currently undergoing investigation are adipose stem cell (ASC) therapies for diabetes and critical limb ischemia, among others. In the enthusiastic pursuit of regenerative therapies, however, questions remain regarding ASC persistence and migration, and, importantly, their safety and potential for neoplasia. To date, assays of in vivo ASC activity have been limited by early end points. We hypothesized that with time, ASCs injected subcutaneously undergo removal by normal tissue turnover and homeostasis, and by the host's immune system. In this study, a high dose of culture expanded ASCs was formulated and implanted as multicellular aggregates into immunocompromised mice, which were maintained for over one year. Animals were monitored for toxicity, and surviving cells quantified at study endpoint. No difference in growth/weight or lifespan was found between cell-treated and vehicle treated animals, and no malignancies were detected in treated animals. Moreover, real-time PCR for a human specific sequence, ERV-3, detected no persistent ASCs. With the advent of clinical application, clarification of currently enigmatic stem cell properties has become imperative. Our study represents the longest duration determination of stem cell activity in vivo, and contributes strong evidence in support of the safety of adipose derived stem cell applications. -- Highlights: Black-Right-Pointing-Pointer Adipose stem cells promise novel clinical therapies. Black-Right-Pointing-Pointer Before clinical translation, safety profiles must be further elucidated. Black-Right-Pointing-Pointer Subcutaneously injected non-autologous adipose stem cells do not form tumors. Black-Right-Pointing-Pointer Subcutaneously injected non

  17. Effect of sertraline on proliferation and neurogenic differentiation of human adipose-derived stem cells

    PubMed Central

    Razavi, Shahnaz; Jahromi, Maliheh; Amirpour, Nushin; Khosravizadeh, Zahra

    2014-01-01

    Background: Antidepressant drugs are commonly employed for anxiety and mood disorders. Sertraline is extensively used as antidepressant in clinic. In addition, adipose tissue represents an abundant and accessible source of adult stem cells with the ability to differentiate in to multiple lineages. Therefore, human adipose-derived stem cells (hADSCs) may be useful for autologous transplantation. Materials and Methods: In the present study, we assessed the effect of antidepressant drug Sertraline on the proliferation and neurogenic differentiation of hADSCs using MTT assay and immunofluorescence technique respectively. Results: MTT assay analysis showed that 0.5 μM Sertraline significantly increased the proliferation rate of hADSCs induced cells (P < 0.05), while immunofluorescent staining indicated that Sertraline treatment during neurogenic differentiation could be decreased the percentage of glial fibrillary acidic protein and Nestin-positive cells, but did not significantly effect on the percentage of MAP2 positive cells. Conclusion: Overall, our data show that Sertraline can be promoting proliferation rate during neurogenic differentiation of hADSCs after 6 days post-induction, while Sertraline inhibits gliogenesis of induced hADSCs. PMID:24800186

  18. Current progress in use of adipose derived stem cells in peripheral nerve regeneration

    PubMed Central

    Zack-Williams, Shomari DL; Butler, Peter E; Kalaskar, Deepak M

    2015-01-01

    Unlike central nervous system neurons; those in the peripheral nervous system have the potential for full regeneration after injury. Following injury, recovery is controlled by schwann cells which replicate and modulate the subsequent immune response. The level of nerve recovery is strongly linked to the severity of the initial injury despite the significant advancements in imaging and surgical techniques. Multiple experimental models have been used with varying successes to augment the natural regenerative processes which occur following nerve injury. Stem cell therapy in peripheral nerve injury may be an important future intervention to improve the best attainable clinical results. In particular adipose derived stem cells (ADSCs) are multipotent mesenchymal stem cells similar to bone marrow derived stem cells, which are thought to have neurotrophic properties and the ability to differentiate into multiple lineages. They are ubiquitous within adipose tissue; they can form many structures resembling the mature adult peripheral nervous system. Following early in vitro work; multiple small and large animal in vivo models have been used in conjunction with conduits, autografts and allografts to successfully bridge the peripheral nerve gap. Some of the ADSC related neuroprotective and regenerative properties have been elucidated however much work remains before a model can be used successfully in human peripheral nerve injury (PNI). This review aims to provide a detailed overview of progress made in the use of ADSC in PNI, with discussion on the role of a tissue engineered approach for PNI repair. PMID:25621105

  19. Comprehensive Review of Adipose Stem Cells and Their Implication in Distraction Osteogenesis and Bone Regeneration

    PubMed Central

    Morcos, Mina W.; Al-Jallad, Hadil; Hamdy, Reggie

    2015-01-01

    Bone is one of the most dynamic tissues in the human body that can heal following injury without leaving a scar. However, in instances of extensive bone loss, this intrinsic capacity of bone to heal may not be sufficient and external intervention becomes necessary. Several techniques are available to address this problem, including autogenous bone grafts and allografts. However, all these techniques have their own limitations. An alternative method is the technique of distraction osteogenesis, where gradual and controlled distraction of two bony segments after osteotomy leads to induction of new bone formation. Although distraction osteogenesis usually gives satisfactory results, its major limitation is the prolonged duration of time required before the external fixator is removed, which may lead to numerous complications. Numerous methods to accelerate bone formation in the context of distraction osteogenesis have been reported. A viable alternative to autogenous bone grafts for a source of osteogenic cells is mesenchymal stem cells from bone marrow. However, there are certain problems with bone marrow aspirate. Hence, scientists have investigated other sources for mesenchymal stem cells, specifically adipose tissue, which has been shown to be an excellent source of mesenchymal stem cells. In this paper, the potential use of adipose stem cells to stimulate bone formation is discussed. PMID:26448947

  20. Reduction in Adiposity, β-Cell Function, Insulin Sensitivity, and Cardiovascular Risk Factors: A Prospective Study among Japanese with Obesity

    PubMed Central

    Goto, Maki; Morita, Akemi; Goto, Atsushi; Deura, Kijo; Sasaki, Satoshi; Aiba, Naomi; Shimbo, Takuro; Terauchi, Yasuo; Miyachi, Motohiko; Noda, Mitsuhiko; Watanabe, Shaw

    2013-01-01

    Background A reduction in adiposity may be associated with an improvement in insulin sensitivity and β-cell function as well as cardiovascular disease (CVD) risk factors; however, few studies have investigated these associations in a longitudinal setting. Methods To investigate these associations over a 1-year period, we conducted an observational analysis of 196 Japanese subjects with obesity in the Saku Control Obesity Program. We investigated the relations between changes in adiposity (body mass index [BMI], waist circumference, subcutaneous fat area [SFAT], and visceral fat area [VFAT]) and changes in HbA1c, fasting plasma glucose (FPG), insulin sensitivity index (ISI), the homeostasis model assessment β cell function (HOMA-β), lipids, and blood pressure. Results All adiposity changes were positively associated with HbA1c and FPG changes. Reductions in BMI and VFAT were associated with HOMA-β reduction. Reductions in all adiposity measures were associated with an improvement in the ISI. Changes in most adiposity measures were positively associated with changes in blood pressure and lipid levels, except for LDL. Conclusion The present findings provide additional supportive evidence indicating that a reduction in adiposity may lead to an improvement in insulin sensitivity and the reduction of CVD risk factors in obese individuals. PMID:23483954

  1. Comparison of human adipose stromal vascular fraction and adipose-derived mesenchymal stem cells for the attenuation of acute renal ischemia/reperfusion injury

    PubMed Central

    Zhou, Liuhua; Song, Qun; Shen, Jiangwei; Xu, Luwei; Xu, Zheng; Wu, Ran; Ge, Yuzheng; Zhu, Jiageng; Wu, Jianping; Dou, Quanliang; Jia, Ruipeng

    2017-01-01

    Stem cells therapy has been suggested as a promising option for the treatment of acute kidney injury (AKI). This study was performed to compare the abilities of xenogenic transplantation of human adipose stromal vascular fraction (SVF) and adipose-derived mesenchymal stem cells (AdMSCs) to facilitate the recovery of renal function and structure in a rat model of ischemia/reperfusion (IR) induced AKI. SVF or AdMSCs were transplanted to the injured kidney through intra-parenchymal injection. Significantly improved renal function and reduced tubular injury were observed in SVF and AdMSCs groups. Administration of SVF or AdMSCs contributed to significantly improved cell proliferation and markedly reduced cell apoptosis in parallel with reduced microvascular rarefaction in injured kidney. IR injury resulted in higher levels of inflammatory cytokines, whereas xenogenic transplantation of SVF or AdMSCs reduced but not induced inflammatory cytokines expression. Additionally, in vitro study showed that administration of SVF or AdMSCs could also significantly promote the proliferation and survival of renal tubular epithelial cells underwent hypoxia/reoxygenation injury through secreting various growth factors. However, cell proliferation was significantly promoted in SVF group than in AdMSCs group. In conclusion, our study demonstrated that administration of SVF or AdMSCs was equally effective in attenuating acute renal IR injury. PMID:28276451

  2. Application of a novel sorting system for equine mesenchymal stem cells (MSCs)

    PubMed Central

    Radtke, Catherine L.; Nino-Fong, Rodolfo; Esparza Gonzalez, Blanca P.; McDuffee, Laurie A.

    2014-01-01

    The objective of this study was to validate non-equilibrium gravitational field-flow fractionation (GrFFF), an immunotag-less method of sorting mesenchymal stem cells (MSCs) into subpopulations, for use with MSCs derived from equine muscle tissue, periosteal tissue, bone marrow, and adipose tissue. Cells were collected from 6 young, adult horses, postmortem. Cells were isolated from left semitendinosus muscle tissue, periosteal tissue from the distomedial aspect of the right tibia, bone marrow aspirates from the fourth and fifth sternebrae, and left supragluteal subcutaneous adipose tissue. Aliquots of 800 × 103 MSCs from each tissue source were separated and injected into a ribbon-like capillary device by continuous flow (GrFFF proprietary system). Cells were sorted into 6 fractions and absorbencies [optical density (OD)] were read. Six fractions from each of the 6 aliquots were then combined to provide pooled fractions that had adequate cell numbers to seed at equal concentrations into assays. Equine muscle tissue-derived, periosteal tissue-derived, bone marrow-derived, and adipose tissue-derived mesenchymal stem cells were consistently sorted into 6 fractions that remained viable for use in further assays. Fraction 1 had more cuboidal morphology in culture when compared to the other fractions. Statistical analysis of the fraction absorbencies (OD) revealed a P-value of < 0.05 when fractions 2 and 3 were compared to fractions 1, 4, 5, and 6. It was concluded that non-equilibrium GrFFF is a valid method for sorting equine muscle tissue-derived, periosteal tissue-derived, bone marrow-derived, and adipose tissue-derived mesenchymal stem cells into subpopulations that remain viable, thus securing its potential for use in equine stem cell applications and veterinary medicine. PMID:25355998

  3. Metabolic Rescue of Obese Adipose-Derived Stem Cells by Lin28/Let7 Pathway

    PubMed Central

    Pérez, Laura M.; Bernal, Aurora; San Martín, Nuria; Lorenzo, Margarita; Fernández-Veledo, Sonia; Gálvez, Beatriz G.

    2013-01-01

    Adipose-derived stem cells (ASCs) are promising candidates for autologous cell-based regeneration therapies by virtue of their multilineage differentiation potential and immunogenicity; however, relatively little is known about their role in adipose tissue physiology and dysfunction. Here we evaluated whether ASCs isolated from nonobese and obese tissue differed in their metabolic characteristics and differentiation potential. During differentiation to mature adipocytes, mouse and human ASCs derived from nonobese tissues both increased their insulin sensitivity and inhibition of lipolysis, whereas obese-derived ASCs were insulin-resistant, showing impaired insulin-stimulated glucose uptake and resistance to the antilipolytic effect of insulin. Furthermore, obese-derived ASCs showed enhanced release of proinflammatory cytokines and impaired production of adiponectin. Interestingly, the delivery of cytosol from control ASCs into obese-derived ASCs using a lipid-based, protein-capture methodology restored insulin sensitivity on glucose and lipid metabolism and reversed the proinflammatory cytokine profile, in part due to the restoration of Lin28 protein levels. In conclusion, glucose and lipid metabolism as well as maturation of ASCs is truncated in an obese environment. The reversal of the altered pathways in obese cells by delivery of normal subcellular fractions offers a potential new tool for cell therapy. PMID:23423565

  4. Fat grafting to the breast and adipose-derived stem cells: recent scientific consensus and controversy.

    PubMed

    Mizuno, Hiroshi; Hyakusoku, Hiko

    2010-01-01

    Recent technical advances in fat grafting and the development of surgical devices such as liposuction cannulae have made fat grafting a relatively safe and effective procedure. However, new guidelines issued by the American Society of Plastic Surgeons in 2009 announced that fat grafting to the breast is not a strongly recommended procedure, as there are limited scientific data on the safety and efficacy of this particular type of fat transfer. Recent progress by several groups has revealed that multipotent adult stem cells are present in human adipose tissue. This cell population, termed adipose-derived stem cells (ADSC), represents a promising approach to future cell-based therapies, such as tissue engineering and regeneration. In fact, several reports have shown that ADSC play a pivotal role in graft survival through both adipogenesis and angiogenesis. Although tissue augmentation by fat grafting does have several advantages in that it is a noninvasive procedure and results in minimal scarring, it is essential that such a procedure be supported by evidence-based medicine and that further basic scientific and clinical research is conducted to ensure that fat grafting is a safe and effective procedure.

  5. From bench to bedside: use of human adipose-derived stem cells

    PubMed Central

    Feisst, Vaughan; Meidinger, Sarah; Locke, Michelle B

    2015-01-01

    Since the discovery of adipose-derived stem cells (ASC) in human adipose tissue nearly 15 years ago, significant advances have been made in progressing this promising cell therapy tool from the laboratory bench to bedside usage. Standardization of nomenclature around the different cell types used is finally being adopted, which facilitates comparison of results between research groups. In vitro studies have assessed the ability of ASC to undergo mesenchymal differentiation as well as differentiation along alternate lineages (transdifferentiation). Recently, focus has shifted to the immune modulatory and paracrine effects of transplanted ASC, with growing interest in the ASC secretome as a source of clinical effect. Bedside use of ASC is advancing alongside basic research. An increasing number of safety-focused Phase I and Phase IIb trials have been published without identifying any significant risks or adverse events in the short term. Phase III trials to assess efficacy are currently underway. In many countries, regulatory frameworks are being developed to monitor their use and assure their safety. As many trials rely on ASC injected at a distant site from the area of clinical need, strategies to improve the homing and efficacy of transplanted cells are also being explored. This review highlights each of these aspects of the bench-to-bedside use of ASC and summarizes their clinical utility across a variety of medical specialties. PMID:26586955

  6. CXCL1 mediates obesity-associated adipose stromal cell trafficking and function in the tumour microenvironment

    PubMed Central

    Zhang, Tao; Tseng, Chieh; Zhang, Yan; Sirin, Olga; Corn, Paul G.; Li-Ning-Tapia, Elsa M.; Troncoso, Patricia; Davis, John; Pettaway, Curtis; Ward, John; Frazier, Marsha L.; Logothetis, Christopher; Kolonin, Mikhail G.

    2016-01-01

    White adipose tissue (WAT) overgrowth in obesity is linked with increased aggressiveness of certain cancers. Adipose stromal cells (ASCs) can become mobilized from WAT, recruited by tumours and promote cancer progression. Mechanisms underlying ASC trafficking are unclear. Here we demonstrate that chemokines CXCL1 and CXCL8 chemoattract ASC by signalling through their receptors, CXCR1 and CXCR2, in cell culture models. We further show that obese patients with prostate cancer have increased epithelial CXCL1 expression. Concomitantly, we observe that cells with ASC phenotype are mobilized and infiltrate tumours in obese patients. Using mouse models, we show that the CXCL1 chemokine gradient is required for the obesity-dependent tumour ASC recruitment, vascularization and tumour growth promotion. We demonstrate that αSMA expression in ASCs is induced by chemokine signalling and mediates the stimulatory effects of ASCs on endothelial cells. Our data suggest that ASC recruitment to tumours, driven by CXCL1 and CXCL8, promotes prostate cancer progression. PMID:27241286

  7. Tissues Derived From Reprogrammed Wharton's Jelly Stem Cells of the Umbilical Cord Provide an Ideal Platform to Study the Effects of Glucose, Zika Virus, and Other Agents on the Fetus.

    PubMed

    Fong, Chui-Yee; Biswas, Arijit; Stunkel, Walter; Chong, Yap-Seng; Bongso, Ariff

    2017-03-01

    The infants of mothers with gestational diabetes mellitus (GDM) have an increased risk of metabolic and cardiovascular disease. It has been difficult to study the direct effects of maternal hyperglycemia on the fetus because of inaccessibility of fetal tissues. The development of tissues that simulate the function of fetal organs using stem cell technology provides an unprecedented opportunity to study this disorder. Stem cells in the Wharton's jelly of the umbilical cord (hWJSCs), possess unique properties that are different from other stem cells. They are primitive, present in large numbers, non-tumorigenic, hypoimmunogenic, tumoricidal, and carry a genetic signature that represents the fetus. They are multipotent but their differentiation into functional pancreatic and cardiovascular tissues has been challenging. We have been able to reprogram hWJSCs from normal and GDM cords into induced pluripotent stem cells (iPSCs) from which a variety of functional fetal tissues including insulin-producing and cardiovascular tissues could be derived. Such tissues from reprogrammed hWJSCs of normal and GDM cords that physiologically and genetically mimic the fetus of the diabetic or non-diabetic mother are an ideal platform to study the effects of glucose, the Zika virus, and other harmful agents on the fetus. The immature stemness phenotype of hWJSCs, easy accessibility, availability in large numbers without the need for propagation, and lower risk of accumulation of epigenetic mutations make them the most attractive candidate over other umbilical cord cell types for reprogramming. Additionally, some of their beneficial genes may be retained in memory in the iPSCs derived from them. J. Cell. Biochem. 118: 437-441, 2017. © 2016 Wiley Periodicals, Inc.

  8. Differences in the Osteogenic Differentiation Capacity of Omental Adipose-Derived Stem Cells in Obese Patients With and Without Metabolic Syndrome

    PubMed Central

    Gea, Antonio Leiva; Lhamyani, Said; Coín-Aragüez, Leticia; Torres, Juan Alcaide; Bernal-López, Maria Rosa; García-Luna, Pedro Pablo; Conde, Salvador Morales; Fernández-Veledo, Sonia

    2015-01-01

    Multiple studies have suggested that the reduced differentiation capacity of multipotent adipose tissue-derived mesenchymal stem cells (ASCs) in obese subjects could compromise their use in cell therapy. Our aim was to assess the osteogenic potential of omental ASCs and to examine the status of the isolated CD34negative-enriched fraction of omental-derived ASCs from subjects with different metabolic profiles. Omental ASCs from normal-weight subjects and subjects with or without metabolic syndrome were isolated, and the osteogenic potential of omental ASCs was evaluated. Additionally, osteogenic and clonogenic potential, proliferation rate, mRNA expression levels of proteins involved in redox balance, and fibrotic proteins were examined in the CD34negative-enriched fraction of omental-derived ASCs. Both the omental ASCs and the CD34negative-enriched fraction of omental ASCs from subjects without metabolic syndrome have a greater osteogenic potential than those from subjects with metabolic syndrome. The alkaline phosphatase and osteonectin mRNA were negatively correlated with nicotinamide adenine dinucleotide phosphate oxidase-2 mRNA and the mRNA expression levels of the fibrotic proteins correlated positively with nicotinamide adenine dinucleotide phosphate oxidase-5 mRNA and the homeostasis model assessment. Although the population doubling time was significantly higher in subjects with a body mass index of 25 kg/m2 or greater, only the CD34negative-enriched omental ASC fraction in the subjects with metabolic syndrome had a higher population doubling time than the normal-weight subjects. The osteogenic, clonogenic, fibrotic potential, and proliferation rate observed in vitro suggest that omental ASCs from subjects without metabolic syndrome are more suitable for therapeutic osteogenic applications than those from subjects with metabolic syndrome. PMID:26372179

  9. Differences in the Osteogenic Differentiation Capacity of Omental Adipose-Derived Stem Cells in Obese Patients With and Without Metabolic Syndrome.

    PubMed

    Oliva-Olivera, Wilfredo; Leiva Gea, Antonio; Lhamyani, Said; Coín-Aragüez, Leticia; Alcaide Torres, Juan; Bernal-López, Maria Rosa; García-Luna, Pedro Pablo; Morales Conde, Salvador; Fernández-Veledo, Sonia; El Bekay, Rajaa; Tinahones, Francisco José

    2015-12-01

    Multiple studies have suggested that the reduced differentiation capacity of multipotent adipose tissue-derived mesenchymal stem cells (ASCs) in obese subjects could compromise their use in cell therapy. Our aim was to assess the osteogenic potential of omental ASCs and to examine the status of the isolated CD34(negative)-enriched fraction of omental-derived ASCs from subjects with different metabolic profiles. Omental ASCs from normal-weight subjects and subjects with or without metabolic syndrome were isolated, and the osteogenic potential of omental ASCs was evaluated. Additionally, osteogenic and clonogenic potential, proliferation rate, mRNA expression levels of proteins involved in redox balance, and fibrotic proteins were examined in the CD34(negative)-enriched fraction of omental-derived ASCs. Both the omental ASCs and the CD34(negative)-enriched fraction of omental ASCs from subjects without metabolic syndrome have a greater osteogenic potential than those from subjects with metabolic syndrome. The alkaline phosphatase and osteonectin mRNA were negatively correlated with nicotinamide adenine dinucleotide phosphate oxidase-2 mRNA and the mRNA expression levels of the fibrotic proteins correlated positively with nicotinamide adenine dinucleotide phosphate oxidase-5 mRNA and the homeostasis model assessment. Although the population doubling time was significantly higher in subjects with a body mass index of 25 kg/m(2) or greater, only the CD34(negative)-enriched omental ASC fraction in the subjects with metabolic syndrome had a higher population doubling time than the normal-weight subjects. The osteogenic, clonogenic, fibrotic potential, and proliferation rate observed in vitro suggest that omental ASCs from subjects without metabolic syndrome are more suitable for therapeutic osteogenic applications than those from subjects with metabolic syndrome.

  10. INVITED REVIEW: Evolution of meat animal growth research during the past 50 years: Adipose and muscle stem cells.

    PubMed

    Dodson, M V; Allen, R E; Du, M; Bergen, W G; Velleman, S G; Poulos, S P; Fernyhough-Culver, M; Wheeler, M B; Duckett, S K; Young, M R I; Voy, B H; Jiang, Z; Hausman, G J

    2015-02-01

    If one were to compare today's animal growth research to research from a mere 50 yr ago, one would see programs with few similarities. The evolution of this research from whole-animal through cell-based and finally molecular and genomic studies has been enhanced by the identification, isolation, and in vitro evaluation of adipose- and muscle-derived stem cells. This paper will highlight the struggles and the milestones that make this evolving area of research what it is today. The contribution of adipose and muscle stem cell research to development and growth, tissue regeneration, and final carcass composition are reviewed.

  11. Paroxetine Can Enhance Neurogenesis during Neurogenic Differentiation of Human Adipose-derived Stem Cells

    PubMed Central

    Jahromi, Maliheh; Razavi, Shahnaz; Amirpour, Nushin; Khosravizadeh, Zahra

    2016-01-01

    Background: Some antidepressant drugs can promote neuronal cell proliferation in vitro as well as hippocampal neurogenesis in human and animal models. Furthermore, adipose tissue is an available source of adult stem cells with the ability to differentiate in to multiple lineages. Therefore, human Adipose-Derived Stem Cells (hAD-SCs) may be a suitable source for regenerative medical applications. Since there is no evidence for the effect of Paroxetine as the most commonly prescribed antidepressant drug for neurogenic potential of hADSCs, an attempt was made to determine the effect of Paroxetine on proliferation and neural differentiation of hADSCs. Methods: ADSCs were isolated from human abdominal fat. These cells differentiated to neuron-like cells and were treated with Paroxetine. 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl tetrazolium bromide (MTT) assay and immunofluorescence technique were used for assessment of cell proliferation and neurogenic differentiation potential of induced cells, respectively. Results: MTT assay analysis showed that Paroxetine significantly increased the proliferation rate of induced hADSCs (p<0.05), while immunofluorescent staining indicated that Paroxetine treatment during neurogenic differentiation could enhance the mean percentage of Nestin and MAP2 (Microtubule-associated protein-2) positive cells but the mean percentage of GFAP (Glial acidic fibrillary protein) positive cells significantly decreased relative to control group (p<0.05). Conclusion: Our results provide evidence that Paroxetine can promote proliferation and differentiation rate during neurogenic differentiation of hADSCs. Moreover, Paroxetine can reduce gliogenesis of induced hADSCs during neurogenic differentiation. PMID:27920882

  12. Wound Healing Immediately Post-Thermal Injury Is Improved by Fat and Adipose Derived Stem Cell Isografts

    PubMed Central

    Loder, Shawn; Peterson, Jonathan R.; Agarwal, Shailesh; Eboda, Oluwatobi; Brownley, Cameron; DeLaRosa, Sara; Ranganathan, Kavitha; Cederna, Paul; Wang, Stewart C.; Levi, Benjamin

    2014-01-01

    Objectives Patients with severe burns suffer functional, structural, and aesthetic complications. It is important to explore reconstructive options given that no ideal treatment exists. Transfer of adipose and adipose-derived stem cells (ASCs) has been shown to improve healing in various models. We hypothesize that use of fat isografts and/or ASCs will improve healing in a mouse model of burn injury. Methods Twenty 6–8 week old C57BL/6 male mice received a 30% surface area partial-thickness scald burn. Adipose tissue and ASCs from inguinal fat pads were harvested from a second group of C57BL/6 mice. Burned mice received 500μl subcutaneous injection at burn site of 1) processed adipose, 2) ASCs, 3) mixed adipose (adipose and ASCs), or 4) sham (saline) injection (n=5/group) on the first day post-injury. Mice were followed by serial photography until sacrifice at days 5 and 14. Wounds were assessed for burn depth and healing by Hematoxylin and Eosin (H&E) and immunohistochemistry. Results All treated groups showed improved healing over controls defined by decreased wound depth, area, and apoptotic activity. After 5 days, mice receiving ASCs or mixed adipose displayed a non-significant improvement in vascularization. No significant changes in proliferation were noted at 5 days. Conclusions Adipose isografts improve some early markers of healing post-burn injury. We demonstrate that addition of these grafts improve specific structural markers of healing. This improvement may be due to an increase in early wound vascularity post-graft. Further studies are needed to optimize use of fat or ASC grafts in acute and reconstructive surgery. PMID:25185931

  13. Construction and characterization of osteogenic and vascular endothelial cell sheets from rat adipose-derived mesenchymal stem cells.

    PubMed

    Zhang, Hualin; Yu, Na; Zhou, Yueli; Ma, Hairong; Wang, Juan; Ma, Xuerong; Liu, Jinsong; Huang, Jin; An, Yilin

    2016-10-01

    In this study, adipose-derived mesenchymal stem cells (ADSCs) were isolated from adipose tissues of rats. Flow cytometry identification showed that ADSCs of passage 3 highly expressed CD29 and CD44, but hardly expressed CD31 and CD45. Adipogenic, osteogenic, and chondrogenic differentiation were confirmed by the results of oil red O staining, alkaline phosphatase (ALP), and alcian blue staining, respectively. ADSCs at a density of 1×10(6)/cm(2) were cultured in the osteogenic medium and the osteogenic cell sheets could be obtained after 14 d. The cell sheets were positive with von kossa staining. The transmission electron microscopy (TEM) result showed that needle-like calcium salt crystals were deposited on the ECM. These results suggested that the osteogenic cell sheets may have potential osteogenesis ability. ADSCs at a density of 1×10(6)/cm(2) were cultured in the endothelial cell growth medium-2 and the endothelial cell sheets can be formed after 16 d of culture. The TEM image confirmed that the Weibel-Palade corpuscle was seen in the cells. The expression of CD31 was positive, suggesting that the endothelial cell sheets may have a strong ability to form blood vessels. In this study, two types of cell sheets with the potential abilities of osteogenesis and blood vessels formation were obtained by induced culture of ADSCs in vitro, which lays a foundation to build vascularized tissue engineered bone for the therapy of bone defects.

  14. Adipose-derived mesenchymal cells for bone regereneration: state of the art.

    PubMed

    Barba, Marta; Cicione, Claudia; Bernardini, Camilla; Michetti, Fabrizio; Lattanzi, Wanda

    2013-01-01

    Adipose tissue represents a hot topic in regenerative medicine because of the tissue source abundance, the relatively easy retrieval, and the inherent biological properties of mesenchymal stem cells residing in its stroma. Adipose-derived mesenchymal stem cells (ASCs) are indeed multipotent somatic stem cells exhibiting growth kinetics and plasticity, proved to induce efficient tissue regeneration in several biomedical applications. A defined consensus for their isolation, classification, and characterization has been very recently achieved. In particular, bone tissue reconstruction and regeneration based on ASCs has emerged as a promising approach to restore structure and function of bone compromised by injury or disease. ASCs have been used in combination with osteoinductive biomaterial and/or osteogenic molecules, in either static or dynamic culture systems, to improve bone regeneration in several animal models. To date, few clinical trials on ASC-based bone reconstruction have been concluded and proved effective. The aim of this review is to dissect the state of the art on ASC use in bone regenerative applications in the attempt to provide a comprehensive coverage of the topics, from the basic laboratory to recent clinical applications.

  15. Immunomodulatory Effects of Adipose-Derived Stem Cells: Fact or Fiction?

    PubMed Central

    Leto Barone, Angelo A.; Khalifian, Saami; Lee, W. P. Andrew; Brandacher, Gerald

    2013-01-01

    Adipose-derived stromal cells (ASCs) are often referred to as adipose-derived stem cells due to their potential to undergo multilineage differentiation. Their promising role in tissue engineering and ability to modulate the immune system are the focus of extensive research. A number of clinical trials using ASCs are currently underway to better understand the role of such cell niche in enhancing or suppressing the immune response. If governable, such immunoregulatory role would find application in several conditions in which an immune response is present (i.e., autoimmune conditions) or feared (i.e., solid organ or reconstructive transplantation). Although allogeneic ASCs have been shown to prevent acute GvHD in both preclinical and clinical studies, their potential warrants further investigation. Well-designed and standardized clinical trials are necessary to prove the role of ASCs in the treatment of immune disorders or prevention of tissue rejection. In this paper we analyze the current literature on the role of ASCs in immunomodulation in vitro and in vivo and discuss their potential in regulating the immune system in the context of transplantation. PMID:24106704

  16. Adipose mesenchymal stem cells in the field of bone tissue engineering

    PubMed Central

    Romagnoli, Cecilia; Brandi, Maria Luisa

    2014-01-01

    Bone tissue engineering represents one of the most challenging emergent fields for scientists and clinicians. Current failures of autografts and allografts in many pathological conditions have prompted researchers to find new biomaterials able to promote bone repair or regeneration with specific characteristics of biocompatibility, biodegradability and osteoinductivity. Recent advancements for tissue regeneration in bone defects have occurred by following the diamond concept and combining the use of growth factors and mesenchymal stem cells (MSCs). In particular, a more abundant and easily accessible source of MSCs was recently discovered in adipose tissue. These adipose stem cells (ASCs) can be obtained in large quantities with little donor site morbidity or patient discomfort, in contrast to the invasive and painful isolation of bone marrow MSCs. The osteogenic potential of ASCs on scaffolds has been examined in cell cultures and animal models, with only a few cases reporting the use of ASCs for successful reconstruction or accelerated healing of defects of the skull and jaw in patients. Although these reports extend our limited knowledge concerning the use of ASCs for osseous tissue repair and regeneration, the lack of standardization in applied techniques makes the comparison between studies difficult. Additional clinical trials are needed to assess ASC therapy and address potential ethical and safety concerns, which must be resolved to permit application in regenerative medicine. PMID:24772241

  17. Adipose mesenchymal stem cells in the field of bone tissue engineering.

    PubMed

    Romagnoli, Cecilia; Brandi, Maria Luisa

    2014-04-26

    Bone tissue engineering represents one of the most challenging emergent fields for scientists and clinicians. Current failures of autografts and allografts in many pathological conditions have prompted researchers to find new biomaterials able to promote bone repair or regeneration with specific characteristics of biocompatibility, biodegradability and osteoinductivity. Recent advancements for tissue regeneration in bone defects have occurred by following the diamond concept and combining the use of growth factors and mesenchymal stem cells (MSCs). In particular, a more abundant and easily accessible source of MSCs was recently discovered in adipose tissue. These adipose stem cells (ASCs) can be obtained in large quantities with little donor site morbidity or patient discomfort, in contrast to the invasive and painful isolation of bone marrow MSCs. The osteogenic potential of ASCs on scaffolds has been examined in cell cultures and animal models, with only a few cases reporting the use of ASCs for successful reconstruction or accelerated healing of defects of the skull and jaw in patients. Although these reports extend our limited knowledge concerning the use of ASCs for osseous tissue repair and regeneration, the lack of standardization in applied techniques makes the comparison between studies difficult. Additional clinical trials are needed to assess ASC therapy and address potential ethical and safety concerns, which must be resolved to permit application in regenerative medicine.

  18. Induction of adipose-derived stem cells into Schwann-like cells and observation of Schwann-like cell proliferation

    PubMed Central

    Fu, Xiumei; Tong, Zhaoxue; Li, Qi; Niu, Qingfei; Zhang, Zhe; Tong, Xiaojie; Tong, Lei; Zhang, Xu

    2016-01-01

    The peripheral nervous system has the potential for full regeneration following injury and recovery, predominantly controlled by Schwann cells (SCs). Therefore, obtaining a sufficient number of SCs in a short duration is crucial. In the present study, rat adipose-derived stem cells (ADSCs) were isolated and cultured, following which characterization of the ADSCs was performed using flow cytometry. The results showed that the cells were positive for the CD29 and CD44 markers, and negative for the CD31, CD45, CD49 and CD106 markers. The multilineage differentiation potential of the ADSCs was assayed by determining the ability of the cells to differentiate into osteoblasts and adipocytes. Following this, the ADSCs were treated with a specific medium and differentiated into Schwann-like cells. Immunofluorescence, western blot and reverse transcription-quantitative polymerase chain reaction analyses showed that ~95% of the differentiated cells expressed glial fibrillary acidic protein, S100 and p75. In addition, the present study found that a substantial number of SCs can be produced in a short duration via the mitotic feature of Schwann-like cells. These data indicated that Schwann-like cells derived from ADSCs can undergo mitotic proliferation, which may be beneficial for the treatment of peripheral nerve injury in the future. PMID:27279556

  19. Adipose-Derived Regenerative Cell Injection Therapy for Postprostatectomy Incontinence: A Phase I Clinical Study

    PubMed Central

    Choi, Jae Young; Kim, Tae-Hwan; Yang, Jung Dug; Suh, Jang Soo

    2016-01-01

    Purpose We report our initial experience with transurethral injection of autologous adipose-derived regenerative cells (ADRCs) for the treatment of urinary incontinence after radical prostatectomy. Materials and Methods After providing written informed consent, six men with persistent urinary incontinence after radical prostatectomy were enrolled in the study. Under general anesthesia, about 50 mL of adipose tissue was obtained from the patients by liposuction. ADRCs were obtained by separation with centrifugation using the Celution cell-processing device. A mixture of ADRCs and adipose tissue were transurethrally injected into the submucosal space of the membranous urethra. Functional and anatomical improvement was assessed using a 24-h pad test, validated patient questionnaire, urethral pressure profile, and magnetic resonance imaging (MRI) during 12-week follow-up. Results Urine leakage volume was improved with time in all patients in the 24-h pad test, with the exemption of temporal deterioration at the first 2 weeks post-injection in 2 patients. Subjective symptoms and quality of life assessed on the basis of questionnaire results showed similar improvement. The mean maximum urethral closing pressure increased from 44.0 to 63.5 cm H2O at 12 weeks after injection. MRI showed an increase in functional urethral length (from 6.1 to 8.3 mm) between the lower rim of the pubic bone and the bladder neck. Adverse events, such as pelvic pain, inflammation, or de novo urgency, were not observed in any case during follow-up. Conclusion This study demonstrated that transurethral injection of autologous ADRCs can be a safe and effective treatment modality for postprostatectomy incontinence. PMID:27401646

  20. Different wound healing properties of dermis, adipose, and gingiva mesenchymal stromal cells.

    PubMed

    Boink, Mireille A; van den Broek, Lenie J; Roffel, Sanne; Nazmi, Kamran; Bolscher, Jan G M; Gefen, Amit; Veerman, Enno C I; Gibbs, Susan

    2016-01-01

    Oral wounds heal faster and with better scar quality than skin wounds. Deep skin wounds where adipose tissue is exposed, have a greater risk of forming hypertrophic scars. Differences in wound healing and final scar quality might be related to differences in mesenchymal stromal cells (MSC) and their ability to respond to intrinsic (autocrine) and extrinsic signals, such as human salivary histatin, epidermal growth factor, and transforming growth factor beta1. Dermis-, adipose-, and gingiva-derived MSC were compared for their regenerative potential with regards to proliferation, migration, and matrix contraction. Proliferation was assessed by cell counting and migration using a scratch wound assay. Matrix contraction and alpha smooth muscle actin was assessed in MSC populated collagen gels, and also in skin and gingival full thickness tissue engineered equivalents (reconstructed epithelium on MSC populated matrix). Compared to skin-derived MSC, gingiva MSC showed greater proliferation and migration capacity, and less matrix contraction in full thickness tissue equivalents, which may partly explain the superior oral wound healing. Epidermal keratinocytes were required for enhanced adipose MSC matrix contraction and alpha smooth muscle actin expression, and may therefore contribute to adverse scarring in deep cutaneous wounds. Histatin enhanced migration without influencing proliferation or matrix contraction in all three MSC, indicating that salivary peptides may have a beneficial effect on wound closure in general. Transforming growth factor beta1 enhanced contraction and alpha smooth muscle actin expression in all three MSC types when incorporated into collagen gels. Understanding the mechanisms responsible for the superior oral wound healing will aid us to develop advanced strategies for optimal skin regeneration, wound healing and scar formation.

  1. Adipose-derived stem cells from lean and obese humans show depot specific differences in their stem cell markers, exosome contents and senescence: role of protein kinase C delta (PKCδ) in adipose stem cell niche

    PubMed Central

    Patel, Rekha S.; Carter, Gay; El Bassit, Ghattas; Patel, Achintya A.; Cooper, Denise R.; Murr, Michel

    2016-01-01

    Background Adipose-derived stem cells (ASC) and its exosomes are gaining utmost importance in the field of regenerative medicine. The ASCs tested for their potential in wound healing are predominantly derived from the subcutaneous depot of lean donors. However, it is important to characterize the ASC derived from different adipose depots as these depots have clinically di