Science.gov

Sample records for adiposity insulin resistance

  1. Colonic Macrophages "Remote Control" Adipose Tissue Inflammation and Insulin Resistance.

    PubMed

    Biswas, Subhra K; Bonecchi, Raffaella

    2016-08-01

    The early events linking diet-induced adipose tissue inflammation and insulin resistance remain poorly understood. In this issue of Cell Metabolism, Kawano et al. (2016) show that infiltration of colonic pro-inflammatory macrophages orchestrated by the intestinal CCL2/CCR2 axis kick-starts this process during high-fat-diet feeding. PMID:27508866

  2. Adipose Natural Killer Cells Regulate Adipose Tissue Macrophages to Promote Insulin Resistance in Obesity.

    PubMed

    Lee, Byung-Cheol; Kim, Myung-Sunny; Pae, Munkyong; Yamamoto, Yasuhiko; Eberlé, Delphine; Shimada, Takeshi; Kamei, Nozomu; Park, Hee-Sook; Sasorith, Souphatta; Woo, Ju Rang; You, Jia; Mosher, William; Brady, Hugh J M; Shoelson, Steven E; Lee, Jongsoon

    2016-04-12

    Obesity-induced inflammation mediated by immune cells in adipose tissue appears to participate in the pathogenesis of insulin resistance. We show that natural killer (NK) cells in adipose tissue play an important role. High-fat diet (HFD) increases NK cell numbers and the production of proinflammatory cytokines, notably TNFα, in epididymal, but not subcutaneous, fat depots. When NK cells were depleted either with neutralizing antibodies or genetic ablation in E4bp4(+/-) mice, obesity-induced insulin resistance improved in parallel with decreases in both adipose tissue macrophage (ATM) numbers, and ATM and adipose tissue inflammation. Conversely, expansion of NK cells following IL-15 administration or reconstitution of NK cells into E4bp4(-/-) mice increased both ATM numbers and adipose tissue inflammation and exacerbated HFD-induced insulin resistance. These results indicate that adipose NK cells control ATMs as an upstream regulator potentially by producing proinflammatory mediators, including TNFα, and thereby contribute to the development of obesity-induced insulin resistance. PMID:27050305

  3. Disruption of Adipose Rab10-Dependent Insulin Signaling Causes Hepatic Insulin Resistance.

    PubMed

    Vazirani, Reema P; Verma, Akanksha; Sadacca, L Amanda; Buckman, Melanie S; Picatoste, Belen; Beg, Muheeb; Torsitano, Christopher; Bruno, Joanne H; Patel, Rajesh T; Simonyte, Kotryna; Camporez, Joao P; Moreira, Gabriela; Falcone, Domenick J; Accili, Domenico; Elemento, Olivier; Shulman, Gerald I; Kahn, Barbara B; McGraw, Timothy E

    2016-06-01

    Insulin controls glucose uptake into adipose and muscle cells by regulating the amount of GLUT4 in the plasma membrane. The effect of insulin is to promote the translocation of intracellular GLUT4 to the plasma membrane. The small Rab GTPase, Rab10, is required for insulin-stimulated GLUT4 translocation in cultured 3T3-L1 adipocytes. Here we demonstrate that both insulin-stimulated glucose uptake and GLUT4 translocation to the plasma membrane are reduced by about half in adipocytes from adipose-specific Rab10 knockout (KO) mice. These data demonstrate that the full effect of insulin on adipose glucose uptake is the integrated effect of Rab10-dependent and Rab10-independent pathways, establishing a divergence in insulin signal transduction to the regulation of GLUT4 trafficking. In adipose-specific Rab10 KO female mice, the partial inhibition of stimulated glucose uptake in adipocytes induces insulin resistance independent of diet challenge. During euglycemic-hyperinsulinemic clamp, there is no suppression of hepatic glucose production despite normal insulin suppression of plasma free fatty acids. The impact of incomplete disruption of stimulated adipocyte GLUT4 translocation on whole-body glucose homeostasis is driven by a near complete failure of insulin to suppress hepatic glucose production rather than a significant inhibition in muscle glucose uptake. These data underscore the physiological significance of the precise control of insulin-regulated trafficking in adipocytes. PMID:27207531

  4. Adipose tissue inflammation: a cause or consequence of obesity-related insulin resistance?

    PubMed

    Blüher, Matthias

    2016-09-01

    The worldwide obesity epidemic has become a major health concern, because it contributes to higher mortality due to an increased risk for noncommunicable diseases including cardiovascular diseases, type 2 diabetes, musculoskeletal disorders and some cancers. Insulin resistance may link accumulation of adipose tissue in obesity to metabolic diseases, although the underlying mechanisms are not completely understood. In the past decades, data from human studies and transgenic animal models strongly suggested correlative, but also causative associations between activation of proinflammatory pathways and insulin resistance. Particularly chronic inflammation in adipose tissue seems to play an important role in the development of obesity-related insulin resistance. On the other hand, adipose tissue inflammation has been shown to be essential for healthy adipose tissue expansion and remodelling. However, whether adipose tissue inflammation represents a consequence or a cause of impaired insulin sensitivity remains an open question. A better understanding of the molecular pathways linking excess adipose tissue storage to chronic inflammation and insulin resistance may provide the basis for the future development of anti-inflammatory treatment strategies to improve adverse metabolic consequences of obesity. In this review, potential mechanisms of adipose tissue inflammation and how adipose tissue inflammation may cause insulin resistance are discussed. PMID:27503945

  5. Role of insulin receptor substrate-1 serine 307 phosphorylation and adiponectin in adipose tissue insulin resistance in late pregnancy.

    PubMed

    Sevillano, Julio; de Castro, Javier; Bocos, Carlos; Herrera, Emilio; Ramos, M Pilar

    2007-12-01

    Insulin resistance is a hallmark of late pregnancy both in human and rat. Adipose tissue is one of the tissues that most actively contributes to this reduced insulin sensitivity. The aim of the present study was to characterize the molecular mechanisms of insulin resistance in adipose tissue at late pregnancy. To this end, we analyzed the insulin signaling cascade in lumbar adipose tissue of nonpregnant and pregnant (d 20) rats both under basal and insulin-stimulated conditions. We found that the levels of relevant signaling proteins, such as insulin receptor (IR), IR substrate-1 (IRS-1), phosphatidylinositol 3-kinase, 3-phosphoinositide-dependent kinase-1, ERK1/2, and phosphatase and tensin homolog (PTEN) did not change at late pregnancy. However, insulin-stimulated tyrosine phosphorylation of both IR and IRS-1 were significantly decreased, coincident with decreased IRS-1/p85 association and impaired phosphorylation of AKR mouse thymoma viral protooncogene (Akt) and ERK1/2. This impaired activation of IRS-1 occurred together with an increase of IRS-1 phosphorylation at serine 307 and a decrease in adiponectin levels. To corroborate the role of IRS-1 in adipose tissue insulin resistance during pregnancy, we treated pregnant rats with the antidiabetic drug englitazone. Englitazone improved glucose tolerance, and this pharmacological reversal of insulin resistance was paralleled by an increase of adiponectin levels in adipose tissue as well as by a reduction of IRS-1 serine phosphorylation. Furthermore, the impaired insulin-stimulated tyrosine phosphorylation of IRS-1 in adipose tissue of pregnant animals could be restored ex vivo by treating isolated adipocytes with adiponectin. Together, our findings support a role for adiponectin and serine phosphorylation of IRS-1 in the modulation of insulin resistance in adipose tissue at late pregnancy. PMID:17823255

  6. Adipose Cell Size and Regional Fat Deposition as Predictors of Metabolic Response to Overfeeding in Insulin-Resistant and Insulin-Sensitive Humans.

    PubMed

    McLaughlin, Tracey; Craig, Colleen; Liu, Li-Fen; Perelman, Dalia; Allister, Candice; Spielman, Daniel; Cushman, Samuel W

    2016-05-01

    Obesity is associated with insulin resistance, but significant variability exists between similarly obese individuals, pointing to qualitative characteristics of body fat as potential mediators. To test the hypothesis that obese, insulin-sensitive (IS) individuals possess adaptive adipose cell/tissue responses, we measured subcutaneous adipose cell size, insulin suppression of lipolysis, and regional fat responses to short-term overfeeding in BMI-matched overweight/obese individuals classified as IS or insulin resistant (IR). At baseline, IR subjects exhibited significantly greater visceral adipose tissue (VAT), intrahepatic lipid (IHL), plasma free fatty acids, adipose cell diameter, and percentage of small adipose cells. With weight gain (3.1 ± 1.4 kg), IR subjects demonstrated no significant change in adipose cell size, VAT, or insulin suppression of lipolysis and only 8% worsening of insulin-mediated glucose uptake (IMGU). Alternatively, IS subjects demonstrated significant adipose cell enlargement; decrease in the percentage of small adipose cells; increase in VAT, IHL, and lipolysis; 45% worsening of IMGU; and decreased expression of lipid metabolism genes. Smaller baseline adipose cell size and greater enlargement with weight gain predicted decline in IMGU, as did increase in IHL and VAT and decrease in insulin suppression of lipolysis. Weight gain in IS humans causes maladaptive changes in adipose cells, regional fat distribution, and insulin resistance. The correlation between development of insulin resistance and changes in adipose cell size, VAT, IHL, and insulin suppression of lipolysis highlight these factors as potential mediators between obesity and insulin resistance. PMID:26884438

  7. Crif1 Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice

    PubMed Central

    Ryu, Min Jeong; Kim, Soung Jung; Kim, Yong Kyung; Choi, Min Jeong; Tadi, Surendar; Lee, Min Hee; Lee, Seong Eun; Chung, Hyo Kyun; Jung, Saet Byel; Kim, Hyun-Jin; Jo, Young Suk; Kim, Koon Soon; Lee, Sang-Hee; Kim, Jin Man; Kweon, Gi Ryang; Park, Ki Cheol; Lee, Jung Uee; Kong, Young Yun; Lee, Chul-Ho; Chung, Jongkyeong; Shong, Minho

    2013-01-01

    Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance. PMID:23516375

  8. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance

    PubMed Central

    Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka

    2016-01-01

    Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9−/−) macrophages. Fat-fed Tlr9−/− mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9−/− mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography–determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance. PMID:27051864

  9. Curcumin inhibits lipolysis via suppression of ER stress in adipose tissue and prevents hepatic insulin resistance.

    PubMed

    Wang, Lulu; Zhang, Bangling; Huang, Fang; Liu, Baolin; Xie, Yuan

    2016-07-01

    Curcumin is natural polyphenol with beneficial effects on lipid and glucose metabolism and this study aimed to investigate the effects of curcumin on lipolysis and hepatic insulin resistance. Endoplasmic reticulum (ER) stress and lipolysis signaling in adipose and FFA influx, lipid deposits, and glucose production in liver were examined. Palmitate challenge and high-fat diet feeding evoked ER stress-associated lipolysis with cAMP accumulation in adipose tissue. Curcumin treatment inhibited adipose tissue ER stress by dephosphorylation of inositol-requiring enzyme 1α and eukaryotic initiation factor 2α and reduced cAMP accumulation by preserving phosphodiesterase 3B induction. Knockdown of mitogen-activated protein kinase α1/2α with siRNAs diminished such effects of curcumin. As a result from downregulation of cAMP, curcumin blocked protein kinase (PK)A/hormone-sensitive lipase lipolysis signaling, and thereby reduced glycerol and FFA release from adipose tissue. Curcumin reduced FFA influx into the liver by blocking FFA trafficking, and then prevented diacylglycerol deposits and PKCε translocation in the liver, resultantly improving insulin action in the suppression of hepatic gluconeogenesis. Curcumin decreased adipose lipolysis by attenuating ER stress through the cAMP/PKA pathway, reduced FFA influx into the liver by blocking FFA trafficking, and thereby improved insulin sensitivity to inhibit hepatic glucose production. These findings suggested a novel pathway of curcumin to prevent lipid deposits and insulin resistance in liver by beneficial regulation of adipose function. PMID:27220352

  10. Quantification of adipose tissue insulin sensitivity.

    PubMed

    Søndergaard, Esben; Jensen, Michael D

    2016-06-01

    In metabolically healthy humans, adipose tissue is exquisitely sensitive to insulin. Similar to muscle and liver, adipose tissue lipolysis is insulin resistant in adults with central obesity and type 2 diabetes. Perhaps uniquely, however, insulin resistance in adipose tissue may directly contribute to development of insulin resistance in muscle and liver because of the increased delivery of free fatty acids to those tissues. It has been hypothesized that insulin adipose tissue resistance may precede other metabolic defects in obesity and type 2 diabetes. Therefore, precise and reproducible quantification of adipose tissue insulin sensitivity, in vivo, in humans, is an important measure. Unfortunately, no consensus exists on how to determine adipose tissue insulin sensitivity. We review the methods available to quantitate adipose tissue insulin sensitivity and will discuss their strengths and weaknesses. PMID:27073214

  11. (n-3) Fatty acids alleviate adipose tissue inflammation and insulin resistance: Mechanistic insights

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is associated with the metabolic syndrome, a significant risk factor for developing type-2 diabetes and cardiovascular diseases. A chronic low-grade inflammation occurring in the adipose tissue of obese individuals is causally linked to the pathogenesis of insulin resistance and the metaboli...

  12. Impact of Adiposity on Incident Hypertension Is Modified by Insulin Resistance in Adults: Longitudinal Observation From the Bogalusa Heart Study.

    PubMed

    Zhang, Tao; Zhang, Huijie; Li, Shengxu; Li, Ying; Liu, Yaozhong; Fernandez, Camilo; Harville, Emily; Bazzano, Lydia; He, Jiang; Chen, Wei

    2016-01-01

    Adiposity and insulin resistance are closely associated with hypertension. This study aims to investigate whether the association between adiposity and hypertension is modified by insulin resistance. The cohort consisted of 1624 middle-aged normotensive black and white adults aged 18 to 43 years at baseline who followed for 16 years on average. Overweight/obesity at baseline was defined as body mass index (BMI) ≥25, and insulin resistance was measured using homeostasis model assessment of insulin resistance. Prevalence of incident hypertension was compared between the insulin-sensitive adiposity and insulin-resistant adiposity groups. The prevalence of incident hypertension was higher in the insulin-resistant adiposity than in the insulin-sensitive adiposity group (32.1% versus 22.1%, P<0.001). In multivariable logistic analyses, adjusted for baseline age, race, sex, follow-up years, and smoking, baseline insulin-resistant obesity was associated with incident hypertension (odds ratio, 1.9; P=0.008). Odds ratios did not differ between blacks and whites (P=0.238). Of note, the odds ratios of BMI associated with hypertension significantly increased with increasing quartiles of baseline homeostasis model assessment (odds ratio, 1.3, 1.1, 1.5, and 2.5 in quartiles I, II, III, and IV, respectively; P=0.006 for trend). Slopes of increasing follow-up blood pressure with baseline BMI, measured as regression coefficients (β), were significantly greater in insulin-resistant than in insulin-sensitive individuals (β=0.74 versus β=0.35 for systolic blood pressure, P=0.004 for difference; β=0.51 versus β=0.23 for diastolic blood pressure, P=0.001 for difference). These findings suggest that insulin resistance has a synergistic effect on the obesity-hypertension association in young adults, indicating that the role of adiposity in the development of hypertension is modified by insulin resistance. PMID:26573703

  13. Insulin resistance is associated with altered amino acid metabolism and adipose tissue dysfunction in normoglycemic women

    PubMed Central

    Wiklund, Petri; Zhang, Xiaobo; Pekkala, Satu; Autio, Reija; Kong, Lingjia; Yang, Yifan; Keinänen-Kiukaanniemi, Sirkka; Alen, Markku; Cheng, Sulin

    2016-01-01

    Insulin resistance is associated adiposity, but the mechanisms are not fully understood. In this study, we aimed to identify early metabolic alterations associated with insulin resistance in normoglycemic women with varying degree of adiposity. One-hundred and ten young and middle-aged women were divided into low and high IR groups based on their median HOMA-IR (0.9 ± 0.4 vs. 2.8 ± 1.2). Body composition was assessed using DXA, skeletal muscle and liver fat by proton magnetic resonance spectroscopy, serum metabolites by nuclear magnetic resonance spectroscopy and adipose tissue and skeletal muscle gene expression by microarrays. High HOMA-IR subjects had higher serum branched-chain amino acid concentrations (BCAA) (p < 0.05 for both). Gene expression analysis of subcutaneous adipose tissue revealed significant down-regulation of genes related to BCAA catabolism and mitochondrial energy metabolism and up-regulation of several inflammation-related pathways in high HOMA-IR subjects (p < 0.05 for all), but no differentially expressed genes in skeletal muscle were found. In conclusion, in normoglycemic women insulin resistance was associated with increased serum BCAA concentrations, down-regulation of mitochondrial energy metabolism and increased expression of inflammation-related genes in the adipose tissue. PMID:27080554

  14. Lipocalin 2 produces insulin resistance and can be upregulated by glucocorticoids in human adipose tissue.

    PubMed

    Kamble, Prasad G; Pereira, Maria J; Sidibeh, Cherno O; Amini, Sam; Sundbom, Magnus; Börjesson, Joey Lau; Eriksson, Jan W

    2016-05-15

    The adipokine lipocalin 2 is linked to obesity and metabolic disorders. However, its role in human adipose tissue glucose and lipid metabolism is not explored. Here we show that the synthetic glucocorticoid dexamethasone dose-dependently increased lipocalin 2 gene expression in subcutaneous and omental adipose tissue from pre-menopausal females, while it had no effect in post-menopausal females or in males. Subcutaneous adipose tissue from both genders treated with recombinant human lipocalin 2 showed a reduction in protein levels of GLUT1 and GLUT4 and in glucose uptake in isolated adipocytes. In subcutaneous adipose tissue, lipocalin 2 increased IL-6 gene expression whereas expression of PPARγ and adiponectin was reduced. Our findings suggest that lipocalin 2 can contribute to insulin resistance in human adipose tissue. In pre-menopausal females, it may partly mediate adverse metabolic effects exerted by glucocorticoid excess. PMID:26973291

  15. Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue.

    PubMed

    Zhao, Wenjun; Li, Aiyun; Feng, Xin; Hou, Ting; Liu, Kang; Liu, Baolin; Zhang, Ning

    2016-09-01

    This study aims to investigate the effects of metformin and resveratrol on muscle insulin resistance with emphasis on the regulation of lipolysis in hypoxic adipose tissue. ICR mice were fed with high fat diet (HFD) for 10days with administration of metformin, resveratrol, or intraperitoneal injection of digoxin. Adipose hypoxia, inflammation and cAMP/PKA-dependent lipolysis were investigated. Moreover, lipid deposition and insulin resistance were examined in the muscle. Metformin and resveratrol attenuated adipose hypoxia, inhibited HIF-1α expression and inflammation in the adipose tissue of HFD-fed mice. Metformin and resveratrol inhibited lipolysis through prevention of PKA/HSL activation by decreasing the accumulation of cAMP via preserving PDE3B. Metformin and resveratrol reduced FFAs influx and DAG accumulation, and thus improved insulin signaling in the muscle by inhibiting PKCθ translocation. This study presents a new view of regulating lipid metabolism to ameliorate insulin resistance and provides the clinical guiding significance for obesity and type 2 diabetes with metformin and resveratrol treatment. PMID:27343375

  16. IRF3 promotes adipose inflammation and insulin resistance and represses browning.

    PubMed

    Kumari, Manju; Wang, Xun; Lantier, Louise; Lyubetskaya, Anna; Eguchi, Jun; Kang, Sona; Tenen, Danielle; Roh, Hyun Cheol; Kong, Xingxing; Kazak, Lawrence; Ahmad, Rasheed; Rosen, Evan D

    2016-08-01

    The chronic inflammatory state that accompanies obesity is a major contributor to insulin resistance and other dysfunctional adaptations in adipose tissue. Cellular and secreted factors promote the inflammatory milieu of obesity, but the transcriptional pathways that drive these processes are not well described. Although the canonical inflammatory transcription factor NF-κB is considered to be the major driver of adipocyte inflammation, members of the interferon regulatory factor (IRF) family may also play a role in this process. Here, we determined that IRF3 expression is upregulated in the adipocytes of obese mice and humans. Signaling through TLR3 and TLR4, which lie upstream of IRF3, induced insulin resistance in murine adipocytes, while IRF3 knockdown prevented insulin resistance. Furthermore, improved insulin sensitivity in IRF3-deficient mice was associated with reductions in intra-adipose and systemic inflammation in the high fat-fed state, enhanced browning of subcutaneous fat, and increased adipose expression of GLUT4. Taken together, the data indicate that IRF3 is a major transcriptional regulator of adipose inflammation and is involved in maintaining systemic glucose and energy homeostasis. PMID:27400129

  17. Adipose triglyceride lipase expression in human adipose tissue and muscle. Role in insulin resistance and response to training and pioglitazone

    PubMed Central

    Yao-Borengasser, Aiwei; Varma, Vijayalakshmi; Coker, Robert H.; Ranganathan, Gouri; Phanavanh, Bounleut; Rasouli, Neda; Kern, Philip A.

    2010-01-01

    Objective Adipose triglyceride lipase (ATGL) catalyzes the first step in adipocyte and muscle triglyceride hydrolysis, and Comparative Gene Identification-58 (CGI-58) is an essential cofactor. We studied the expression of ATGL and CGI-58 in human adipose and muscle, and examined correlations with markers of muscle fatty acid oxidation. Materials/Methods Non diabetic volunteers were studied. Subjects with impaired glucose tolerance were treated with pioglitazone or metformin for 10 weeks. Normal glucose tolerant subjects underwent a 12 week training program. We examined changes in ATGL and CGI-58 with obesity and insulin resistance, and effects of exercise and pioglitazone. Results ATGL mRNA expression showed no correlation with either body mass index (BMI) or insulin sensitivity (SI) in either adipose or muscle. However, adipose ATGL protein levels were inversely correlated with BMI (r=−0.64, p<0.02), and positively correlated with SI (r=0.67, p<0.02). In muscle, ATGL mRNA demonstrated a strong positive relationship with carnitine palmitoyltransferase I mRNA (r=0.82, p<0.0001), and the adiponectin receptors AdipoR1 mRNA (r=0.71, p<0.0001), and AdipoR2 mRNA (r=0.74, p<0.0001). Muscle CGI-58 mRNA was inversely correlated with intramyocellular triglyceride in both type 1 (r=−0.35, p<0.05) and type 2 (r=−0.40, p<0.05) fibers. Exercise training resulted in increased muscle ATGL and pioglitazone increased adipose ATGL by 31% (p<0.05). Pioglitazone also increased ATGL in adipocytes. Conclusions Adipose ATGL protein is decreased with insulin resistance and obesity, and muscle ATGL mRNA is associated with markers of fatty acid oxidation in muscle, as is CGI-58. The regulation of ATGL and CGI-58 have important implications for the control of lipotoxicity. PMID:21129760

  18. Glucose-6-Phosphate Dehydrogenase Deficiency Improves Insulin Resistance With Reduced Adipose Tissue Inflammation in Obesity.

    PubMed

    Ham, Mira; Choe, Sung Sik; Shin, Kyung Cheul; Choi, Goun; Kim, Ji-Won; Noh, Jung-Ran; Kim, Yong-Hoon; Ryu, Je-Won; Yoon, Kun-Ho; Lee, Chul-Ho; Kim, Jae Bum

    2016-09-01

    Glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway, plays important roles in redox regulation and de novo lipogenesis. It was recently demonstrated that aberrant upregulation of G6PD in obese adipose tissue mediates insulin resistance as a result of imbalanced energy metabolism and oxidative stress. It remains elusive, however, whether inhibition of G6PD in vivo may relieve obesity-induced insulin resistance. In this study we showed that a hematopoietic G6PD defect alleviates insulin resistance in obesity, accompanied by reduced adipose tissue inflammation. Compared with wild-type littermates, G6PD-deficient mutant (G6PD(mut)) mice were glucose tolerant upon high-fat-diet (HFD) feeding. Intriguingly, the expression of NADPH oxidase genes to produce reactive oxygen species was alleviated, whereas that of antioxidant genes was enhanced in the adipose tissue of HFD-fed G6PD(mut) mice. In diet-induced obesity (DIO), the adipose tissue of G6PD(mut) mice decreased the expression of inflammatory cytokines, accompanied by downregulated proinflammatory macrophages. Accordingly, macrophages from G6PD(mut) mice greatly suppressed lipopolysaccharide-induced proinflammatory signaling cascades, leading to enhanced insulin sensitivity in adipocytes and hepatocytes. Furthermore, adoptive transfer of G6PD(mut) bone marrow to wild-type mice attenuated adipose tissue inflammation and improved glucose tolerance in DIO. Collectively, these data suggest that inhibition of macrophage G6PD would ameliorate insulin resistance in obesity through suppression of proinflammatory responses. PMID:27284106

  19. Adipose tissue fatty acid chain length and mono-unsaturation increases with obesity and insulin resistance

    PubMed Central

    Yew Tan, Chong; Virtue, Samuel; Murfitt, Steven; Robert, Lee D.; Phua, Yi Hui; Dale, Martin; Griffin, Julian L.; Tinahones, Francisco; Scherer, Philipp E.; Vidal-Puig, Antonio

    2015-01-01

    The non-essential fatty acids, C18:1n9, C16:0, C16:1n7, C18:0 and C18:1n7 account for over 75% of fatty acids in white adipose (WAT) triacylglycerol (TAG). The relative composition of these fatty acids (FA) is influenced by the desaturases, SCD1-4 and the elongase, ELOVL6. In knock-out models, loss of SCD1 or ELOVL6 results in reduced Δ9 desaturated and reduced 18-carbon non-essential FA respectively. Both Elovl6 KO and SCD1 KO mice exhibit improved insulin sensitivity. Here we describe the relationship between WAT TAG composition in obese mouse models and obese humans stratified for insulin resistance. In mouse models with increasing obesity and insulin resistance, there was an increase in scWAT Δ9 desaturated FAs (SCD ratio) and FAs with 18-carbons (Elovl6 ratio) in mice. Data from mouse models discordant for obesity and insulin resistance (AKT2 KO, Adiponectin aP2-transgenic), suggested that scWAT TAG Elovl6 ratio was associated with insulin sensitivity, whereas SCD1 ratio was associated with fat mass. In humans, a greater SCD1 and Elovl6 ratio was found in metabolically more harmful visceral adipose tissue when compared to subcutaneous adipose tissue. PMID:26679101

  20. Loss of Oncostatin M Signaling in Adipocytes Induces Insulin Resistance and Adipose Tissue Inflammation in Vivo.

    PubMed

    Elks, Carrie M; Zhao, Peng; Grant, Ryan W; Hang, Hardy; Bailey, Jennifer L; Burk, David H; McNulty, Margaret A; Mynatt, Randall L; Stephens, Jacqueline M

    2016-08-12

    Oncostatin M (OSM) is a multifunctional gp130 cytokine. Although OSM is produced in adipose tissue, it is not produced by adipocytes. OSM expression is significantly induced in adipose tissue from obese mice and humans. The OSM-specific receptor, OSM receptor β (OSMR), is expressed in adipocytes, but its function remains largely unknown. To better understand the effects of OSM in adipose tissue, we knocked down Osmr expression in adipocytes in vitro using siRNA. In vivo, we generated a mouse line lacking Osmr in adiponectin-expressing cells (OSMR(FKO) mice). The effects of OSM on gene expression were also assessed in vitro and in vivo OSM exerts proinflammatory effects on cultured adipocytes that are partially rescued by Osmr knockdown. Osm expression is significantly increased in adipose tissue T cells of high fat-fed mice. In addition, adipocyte Osmr expression is increased following high fat feeding. OSMR(FKO) mice exhibit increased insulin resistance and adipose tissue inflammation and have increased lean mass, femoral length, and bone volume. Also, OSMR(FKO) mice exhibit increased expression of Osm, the T cell markers Cd4 and Cd8, and the macrophage markers F4/80 and Cd11c Interestingly, the same proinflammatory genes induced by OSM in adipocytes are induced in the adipose tissue of the OSMR(FKO) mouse, suggesting that increased expression of proinflammatory genes in adipose tissue arises both from adipocytes and other cell types. These findings suggest that adipocyte OSMR signaling is involved in the regulation of adipose tissue homeostasis and that, in obesity, OSMR ablation may exacerbate insulin resistance by promoting adipose tissue inflammation. PMID:27325693

  1. Alteration of local adipose tissue trace element homeostasis as a possible mechanism of obesity-related insulin resistance.

    PubMed

    Tinkov, Alexey A; Sinitskii, Anton I; Popova, Elizaveta V; Nemereshina, Olga N; Gatiatulina, Evgenia R; Skalnaya, Margarita G; Skalny, Anatoly V; Nikonorov, Alexandr A

    2015-09-01

    The mechanisms of association between obesity and the related metabolic disturbances in general and insulin resistance in particular are extensively studied. Taking into account a key role of adipose tissue insulin resistance in the development of systemic obesity-related insulin resistance, the estimation of mechanisms linking increased adiposity and impaired insulin signaling in adipocytes will allow to develop novel prophylactic and therapeutic approaches to treatment of these states. A number of trace elements like chromium, zinc, and vanadium have been shown to take part in insulin signaling via various mechanisms. Taking into account a key role of adipocyte in systemic carbohydrate homeostasis it can be asked if trace element homeostasis in adipose tissue may influence regulatory mechanisms of glucose metabolism. We hypothesize that caloric excess through currently unknown mechanisms results in decreased chromium, vanadium, and zinc content in adipocytes. Decreased content of trace elements in the adipose tissue causes impairment of intra-adipocyte insulin signaling subsequently leading to adipose tissue insulin resistance. The latter significantly contributes to systemic insulin resistance and further metabolic disruption in obesity. It is also possible that decreased adipose tissue trace element content is associated with dysregulation of insulin-sensitizing and proinflammatory adipokines also leading to insulin resistance. We hypothesize that insulin resistance and adipokine dysbalance increase the severity of obesity subsequently aggravating alteration of adipose tissue trace element balance. Single indications of high relative adipose tissue trace element content, decreased Cr, V, and Zn content in obese adipose tissue, and tight association between fat tissue chromium, vanadium, and zinc levels and metabolic parameters in obesity may be useful for hypothesis validation. If our hypothesis will be confirmed by later studies, adipose tissue chromium

  2. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice

    PubMed Central

    Zhou, Linkang; Park, Shi-Young; Xu, Li; Xia, Xiayu; Ye, Jing; Su, Lu; Jeong, Kyeong-Hoon; Hur, Jang Ho; Oh, Hyunhee; Tamori, Yoshikazu; Zingaretti, Cristina M.; Cinti, Saverio; Argente, Jesús; Yu, Miao; Wu, Lizhen; Ju, Shenghong; Guan, Feifei; Yang, Hongyuan; Choi, Cheol Soo; Savage, David B.; Li, Peng

    2015-01-01

    Fsp27 is a lipid droplet-associated protein almost exclusively expressed in adipocytes where it facilitates unilocular lipid droplet formation. In mice, Fsp27 deficiency is associated with increased basal lipolysis, ‘browning’ of white fat and a healthy metabolic profile, whereas a patient with congenital CIDEC deficiency manifested an adverse lipodystrophic phenotype. Here we reconcile these data by showing that exposing Fsp27-null mice to a substantial energetic stress by crossing them with ob/ob mice or BATless mice, or feeding them a high-fat diet, results in hepatic steatosis and insulin resistance. We also observe a striking reduction in adipose inflammation and increase in adiponectin levels in all three models. This appears to reflect reduced activation of the inflammasome and less adipocyte death. These findings highlight the importance of Fsp27 in facilitating optimal energy storage in adipocytes and represent a rare example where adipose inflammation and hepatic insulin resistance are disassociated. PMID:25565658

  3. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice.

    PubMed

    Zhou, Linkang; Park, Shi-Young; Xu, Li; Xia, Xiayu; Ye, Jing; Su, Lu; Jeong, Kyeong-Hoon; Hur, Jang Ho; Oh, Hyunhee; Tamori, Yoshikazu; Zingaretti, Cristina M; Cinti, Saverio; Argente, Jesús; Yu, Miao; Wu, Lizhen; Ju, Shenghong; Guan, Feifei; Yang, Hongyuan; Choi, Cheol Soo; Savage, David B; Li, Peng

    2015-01-01

    Fsp27 is a lipid droplet-associated protein almost exclusively expressed in adipocytes where it facilitates unilocular lipid droplet formation. In mice, Fsp27 deficiency is associated with increased basal lipolysis, 'browning' of white fat and a healthy metabolic profile, whereas a patient with congenital CIDEC deficiency manifested an adverse lipodystrophic phenotype. Here we reconcile these data by showing that exposing Fsp27-null mice to a substantial energetic stress by crossing them with ob/ob mice or BATless mice, or feeding them a high-fat diet, results in hepatic steatosis and insulin resistance. We also observe a striking reduction in adipose inflammation and increase in adiponectin levels in all three models. This appears to reflect reduced activation of the inflammasome and less adipocyte death. These findings highlight the importance of Fsp27 in facilitating optimal energy storage in adipocytes and represent a rare example where adipose inflammation and hepatic insulin resistance are disassociated. PMID:25565658

  4. Adipose-Resident Group 1 Innate Lymphoid Cells Promote Obesity-Associated Insulin Resistance.

    PubMed

    O'Sullivan, Timothy E; Rapp, Moritz; Fan, Xiying; Weizman, Orr-El; Bhardwaj, Priya; Adams, Nicholas M; Walzer, Thierry; Dannenberg, Andrew J; Sun, Joseph C

    2016-08-16

    Innate lymphoid cells (ILCs) function to protect epithelial barriers against pathogens and maintain tissue homeostasis in both barrier and non-barrier tissues. Here, utilizing Eomes reporter mice, we identify a subset of adipose group 1 ILC (ILC1) and demonstrate a role for these cells in metabolic disease. Adipose ILC1s were dependent on the transcription factors Nfil3 and T-bet but phenotypically and functionally distinct from adipose mature natural killer (NK) and immature NK cells. Analysis of parabiotic mice revealed that adipose ILC1s maintained long-term tissue residency. Diet-induced obesity drove early production of interleukin (IL)-12 in adipose tissue depots and led to the selective proliferation and accumulation of adipose-resident ILC1s in a manner dependent on the IL-12 receptor and STAT4. ILC1-derived interferon-γ was necessary and sufficient to drive proinflammatory macrophage polarization to promote obesity-associated insulin resistance. Thus, adipose-resident ILC1s contribute to obesity-related pathology in response to dysregulated local proinflammatory cytokine production. PMID:27496734

  5. Roles of Reactive Oxygen Species on Insulin Resistance in Adipose Tissue

    PubMed Central

    2016-01-01

    Obesity resulting from the delivery of an excess amount of energy to adipose tissue from glucose or free fatty acids is associated with insulin resistance and adipose tissue inflammation. Reactive oxygen species (ROS) have been implicated as contributors to both the onset and the progression of insulin resistance. ROS can be generated by overloading the mitochondrial oxidative phosphorylation system, and also by nicotinamide adenine dinucleotide phosphate oxidases (NOX) produced by either adipocytes, which only produce NOX4, or by macrophages, which produce mainly NOX2. The source of the ROS might differ in the early, intermediate and late stages of obesity, switching from NOX4-dependence in the early phases to NOX2-dependence, in the intermediate phase, and transiting to mitochondria-dependence later in the time course of obesity. Thus, depending on the stage of obesity, ROS can be generated by three distinct mechanisms: i.e., NOX4, NOX2, and mitochondria. In this review, we will discuss whether NOX4-, NOX2-, and/or mitochondria-derived ROS is/are causal in the onset of adipocyte insulin resistance as obesity progresses. Moreover, we will review the pathophysiological roles of NOX4, NOX2, and mitochondria-derived ROS on adipose tissue inflammation. PMID:27352152

  6. Identification of intracellular peptides in rat adipose tissue: Insights into insulin resistance.

    PubMed

    Berti, Denise A; Russo, Lilian C; Castro, Leandro M; Cruz, Lilian; Gozzo, Fábio C; Heimann, Joel C; Lima, Fabio B; Oliveira, Ariclécio C; Andreotti, Sandra; Prada, Patrícia O; Heimann, Andrea S; Ferro, Emer S

    2012-08-01

    Intracellular peptides generated by the proteasome and oligopeptidases have been suggested to function in signal transduction and to improve insulin resistance in mice fed a high-caloric diet. The aim of this study was to identify specific intracellular peptides in the adipose tissue of Wistar rats that could be associated with the physiological and therapeutic control of glucose uptake. Using semiquantitative mass spectrometry and LC/MS/MS analyses, we identified ten peptides in the epididymal adipose tissue of the Wistar rats; three of these peptides were present at increased levels in rats that were fed a high-caloric Western diet (WD) compared with rats fed a control diet (CD). The results of affinity chromatography suggested that in the cytoplasm of epididymal adipose tissue from either WD or CD rats, distinctive proteins bind to these peptides. However, despite the observed increase in the WD animals, the evaluated peptides increased insulin-stimulated glucose uptake in 3T3-L1 adipocytes treated with palmitate. Thus, intracellular peptides from the adipose tissue of Wistar rats can bind to specific proteins and facilitate insulin-induced glucose uptake in 3T3-L1 adipocytes. PMID:22740317

  7. Adipose Expression of Tumor Necrosis Factor-α: Direct Role in Obesity-Linked Insulin Resistance

    NASA Astrophysics Data System (ADS)

    Hotamisligil, Gokhan S.; Shargill, Narinder S.; Spiegelman, Bruce M.

    1993-01-01

    Tumor necrosis factor-α (TNF-α) has been shown to have certain catabolic effects on fat cells and whole animals. An induction of TNF-α messenger RNA expression was observed in adipose tissue from four different rodent models of obesity and diabetes. TNF-α protein was also elevated locally and systemically. Neutralization of TNF-α in obese fa/fa rats caused a significant increase in the peripheral uptake of glucose in response to insulin. These results indicate a role for TNF-α in obesity and particularly in the insulin resistance and diabetes that often accompany obesity.

  8. Metabolic syndrome: effects of n-3 PUFAs on a model of dyslipidemia, insulin resistance and adiposity.

    PubMed

    Lombardo, Yolanda B; Hein, Gustavo; Chicco, Adriana

    2007-05-01

    Both genetic and environmental factors (e.g. nutrition, life style) contribute to the development of the plurimetabolic syndrome, which has a high prevalence in the world population. Dietary n-3 PUFAs specially those from marine oil (EPA and DHA) appear to play an important role against the adverse effects of this syndrome. The present work examined the effectiveness of fish oil (FO) in reversing or improving the dyslipidemia, insulin resistance and adiposity induced in rats by long-term feeding a sucrose-rich diet (SRD). We studied several metabolic and molecular mechanisms involved in both lipid and glucose metabolisms in different tissues (liver, skeletal muscle, fat pad) as well as insulin secretion patterns from perifused islets under the stimulation of different secretagogues. Dietary FO reverses dyslipidemia and improves insulin action and adiposity in the SRD fed rats. FO reduces adipocytes cell size and thus, the smaller adipocytes are more insulin sensitive and the release of fatty acids decreases. In muscle, FO normalizes both the oxidative and non-oxidative glucose pathways. Moreover, FO modifies the fatty acid composition of membrane phospholipids. In isolated beta cells, lipid contents and glucose oxidation return to normal. All these effects could contribute to the normalization of glucose-stimulated insulin secretion and muscle insulin insensitivity. PMID:17476547

  9. Exercise Intensity Modulates Glucose-Stimulated Insulin Secretion when Adjusted for Adipose, Liver and Skeletal Muscle Insulin Resistance

    PubMed Central

    Malin, Steven K.; Rynders, Corey A.; Weltman, Judy Y.; Barrett, Eugene J.; Weltman, Arthur

    2016-01-01

    Little is known about the effects of exercise intensity on compensatory changes in glucose-stimulated insulin secretion (GSIS) when adjusted for adipose, liver and skeletal muscle insulin resistance (IR). Fifteen participants (8F, Age: 49.9±3.6yr; BMI: 31.0±1.5kg/m2; VO2peak: 23.2±1.2mg/kg/min) with prediabetes (ADA criteria, 75g OGTT and/or HbA1c) underwent a time-course matched Control, and isocaloric (200kcal) exercise at moderate (MIE; at lactate threshold (LT)), and high-intensity (HIE; 75% of difference between LT and VO2peak). A 75g OGTT was conducted 1 hour post-exercise/Control, and plasma glucose, insulin, C-peptide and free fatty acids were determined for calculations of skeletal muscle (1/Oral Minimal Model; SMIR), hepatic (HOMAIR), and adipose (ADIPOSEIR) IR. Insulin secretion rates were determined by deconvolution modeling for GSIS, and disposition index (DI; GSIS/IR; DISMIR, DIHOMAIR, DIADIPOSEIR) calculations. Compared to Control, exercise lowered SMIR independent of intensity (P<0.05), with HIE raising HOMAIR and ADIPOSEIR compared with Control (P<0.05). GSIS was not reduced following exercise, but DIHOMAIR and DIADIPOSEIR were lowered more following HIE compared with Control (P<0.05). However, DISMIR increased in an intensity based manner relative to Control (P<0.05), which corresponded with lower post-prandial blood glucose levels. Taken together, pancreatic insulin secretion adjusts in an exercise intensity dependent manner to match the level of insulin resistance in skeletal muscle, liver and adipose tissue. Further work is warranted to understand the mechanism by which exercise influences the cross-talk between tissues that regulate blood glucose in people with prediabetes. PMID:27111219

  10. Adipose- and muscle-derived Wnts trigger pancreatic β-cell adaptation to systemic insulin resistance.

    PubMed

    Kozinski, Kamil; Jazurek, Magdalena; Dobrzyn, Pawel; Janikiewicz, Justyna; Kolczynska, Katarzyna; Gajda, Anna; Dobrzyn, Agnieszka

    2016-01-01

    Wnt signaling molecules are associated with obesity, hyperlipidemia, and type 2 diabetes (T2D). Here, we show that two Wnt proteins, WNT3a and WNT4, are specifically secreted by skeletal muscle and adipose tissue during the development of insulin resistance and play an important role in cross-talk between insulin-resistant tissues and pancreatic beta cells. The activation of Frizzled receptor and Wnt signaling in pancreatic islets via circulating WNT3a in blood resulted in higher insulin secretion and an increase in beta cell proliferation, thus leading to islet adaptation in a pre-diabetic state. Interestingly, in fully developed T2D, the expression profiles of Wnt3a and Wnt4 in adipose tissue and muscle cells and blood plasma levels of these proteins were opposite to the pre-diabetic state, thus favoring the downregulation of Wnt signaling in beta cells and resulting in dysfunctional pancreatic islets. These results demonstrate that alterations in the secretion profile of a canonical Wnt activator (WNT3a) and inhibitor (WNT4) from insulin-resistant tissues during the development of T2D are responsible for triggering progression from a pre-diabetic to a diabetic state. We also show here that WNT3a and WNT4 are potent myokines, and their expression and secretion are regulated in response to nutritional and metabolic changes. PMID:27527335

  11. Adipose- and muscle-derived Wnts trigger pancreatic β-cell adaptation to systemic insulin resistance

    PubMed Central

    Kozinski, Kamil; Jazurek, Magdalena; Dobrzyn, Pawel; Janikiewicz, Justyna; Kolczynska, Katarzyna; Gajda, Anna; Dobrzyn, Agnieszka

    2016-01-01

    Wnt signaling molecules are associated with obesity, hyperlipidemia, and type 2 diabetes (T2D). Here, we show that two Wnt proteins, WNT3a and WNT4, are specifically secreted by skeletal muscle and adipose tissue during the development of insulin resistance and play an important role in cross-talk between insulin-resistant tissues and pancreatic beta cells. The activation of Frizzled receptor and Wnt signaling in pancreatic islets via circulating WNT3a in blood resulted in higher insulin secretion and an increase in beta cell proliferation, thus leading to islet adaptation in a pre-diabetic state. Interestingly, in fully developed T2D, the expression profiles of Wnt3a and Wnt4 in adipose tissue and muscle cells and blood plasma levels of these proteins were opposite to the pre-diabetic state, thus favoring the downregulation of Wnt signaling in beta cells and resulting in dysfunctional pancreatic islets. These results demonstrate that alterations in the secretion profile of a canonical Wnt activator (WNT3a) and inhibitor (WNT4) from insulin-resistant tissues during the development of T2D are responsible for triggering progression from a pre-diabetic to a diabetic state. We also show here that WNT3a and WNT4 are potent myokines, and their expression and secretion are regulated in response to nutritional and metabolic changes. PMID:27527335

  12. Marrow Adipose Tissue Expansion Coincides with Insulin Resistance in MAGP1-Deficient Mice.

    PubMed

    Walji, Tezin A; Turecamo, Sarah E; Sanchez, Alejandro Coca; Anthony, Bryan A; Abou-Ezzi, Grazia; Scheller, Erica L; Link, Daniel C; Mecham, Robert P; Craft, Clarissa S

    2016-01-01

    Marrow adipose tissue (MAT) is an endocrine organ with the potential to influence skeletal remodeling and hematopoiesis. Pathologic MAT expansion has been studied in the context of severe metabolic challenge, including caloric restriction, high fat diet feeding, and leptin deficiency. However, the rapid change in peripheral fat and glucose metabolism associated with these models impedes our ability to examine which metabolic parameters precede or coincide with MAT expansion. Microfibril-associated glycoprotein-1 (MAGP1) is a matricellular protein that influences cellular processes by tethering signaling molecules to extracellular matrix structures. MAGP1-deficient (Mfap2 (-/-)) mice display a progressive excess adiposity phenotype, which precedes insulin resistance and occurs without changes in caloric intake or ambulation. Mfap2 (-/-) mice were, therefore, used as a model to associate parameters of metabolic disease, bone remodeling, and hematopoiesis with MAT expansion. Marrow adiposity was normal in Mfap2 (-/-) mice until 6 months of age; however, by 10 months, marrow fat volume had increased fivefold relative to wild-type control at the same age. Increased gonadal fat pad mass and hyperglycemia were detectable in Mfap2 (-/-) mice by 2 months, but peaked by 6 months. The development of insulin resistance coincided with MAT expansion. Longitudinal characterization of bone mass demonstrated a disconnection in MAT volume and bone volume. Specifically, Mfap2 (-/-) mice had reduced trabecular bone volume by 2 months, but this phenotype did not progress with age or MAT expansion. Interestingly, MAT expansion in the 10-month-old Mfap2 (-/-) mice was associated with modest alterations in basal hematopoiesis, including a shift from granulopoiesis to B lymphopoiesis. Together, these findings indicate MAT expansion is coincident with insulin resistance, but not excess peripheral adiposity or hyperglycemia in Mfap2 (-/-) mice; and substantial MAT accumulation does

  13. Elevated total and central adiposity and low physical activity are associated with insulin resistance in children.

    PubMed

    Krekoukia, Maria; Nassis, George P; Psarra, Glykeria; Skenderi, Katerina; Chrousos, George P; Sidossis, Labros S

    2007-02-01

    The aim of this study was 2-fold: (1) to examine insulin resistance, blood lipid levels, and inflammatory markers in 9- to 11.5-year-old obese and lean children and (2) to identify factors that influence insulin resistance in this cohort of youths. Body mass index, skinfold thickness, waist circumference, physical activity (4-day triaxial accelerometer), cardiorespiratory fitness (submaximal bicycle ergometer test), and dietary intake (3-day food records) were evaluated in 27 obese and 27 lean boys and girls. Fasting blood samples were analyzed for insulin, glucose, lipids and lipoproteins, C-reactive protein (CRP), interleukin 6, soluble intercellular adhesion molecule, and soluble vascular cell adhesion molecule. Homeostasis model assessment (HOMA) was used to evaluate insulin resistance (HOMA-IR). Obese children presented higher HOMA-IR, CRP, and blood lipid levels (all P < .01) compared with lean children. Total body fat and waist circumference were positively associated with fasting insulin (r > or = 0.51), HOMA-IR (r > or = 0.56), CRP (r > or = 0.51), and blood triacylglycerol (r > or = 0.38), and were inversely correlated with high-density lipoprotein cholesterol (r > or = -0.39; all P < .01). Cardiorespiratory fitness was inversely associated with HOMA-IR (r = -0.24; P < .05), but this association disappeared when adjusted for age, sex, and fat mass. Waist circumference and total daily physical activity explained 49% of the variance in HOMA-IR in these children. In conclusion, these findings suggest that total and central adiposity are positively associated and physical activity is negatively associated with insulin resistance in children. Interventions to improve glucose metabolism in youth should target at reducing total body and abdominal fat and increasing physical activity. The lack of association between inflammatory markers and HOMA-IR suggests that obesity may precede the elevation of these markers in the evolution of insulin resistance in youth

  14. Tofogliflozin Improves Insulin Resistance in Skeletal Muscle and Accelerates Lipolysis in Adipose Tissue in Male Mice.

    PubMed

    Obata, Atsushi; Kubota, Naoto; Kubota, Tetsuya; Iwamoto, Masahiko; Sato, Hiroyuki; Sakurai, Yoshitaka; Takamoto, Iseki; Katsuyama, Hisayuki; Suzuki, Yoshiyuki; Fukazawa, Masanori; Ikeda, Sachiya; Iwayama, Kaito; Tokuyama, Kumpei; Ueki, Kohjiro; Kadowaki, Takashi

    2016-03-01

    Sodium glucose cotransporter 2 inhibitors have attracted attention as they exert antidiabetic and antiobesity effects. In this study, we investigated the effects of tofogliflozin on glucose homeostasis and its metabolic consequences and clarified the underlying molecular mechanisms. C57BL/6 mice were fed normal chow containing tofogliflozin (0.005%) for 20 weeks or a high-fat diet containing tofogliflozin (0.005%) for 8 weeks ad libitum. In addition, the animals were pair-fed in relation to controls to exclude the influence of increased food intake. Tofogliflozin reduced the body weight gain, mainly because of fat mass reduction associated with a diminished adipocyte size. Glucose tolerance and insulin sensitivity were ameliorated. The serum levels of nonesterified fatty acid and ketone bodies were increased and the respiratory quotient was decreased in the tofogliflozin-treated mice, suggesting the acceleration of lipolysis in the white adipose tissue and hepatic β-oxidation. In fact, the phosphorylation of hormone-sensitive lipase and the adipose triglyceride lipase protein levels in the white adipose tissue as well as the gene expressions related to β-oxidation, such as Cpt1α in the liver, were significantly increased. The hepatic triglyceride contents and the expression levels of lipogenic genes were decreased. Pair-fed mice exhibited almost the same results as mice fed an high-fat diet ad libitum. Moreover, a hyperinsulinemic-euglycemic clamp revealed that tofogliflozin improved insulin resistance by increasing glucose uptake, especially in the skeletal muscle, in pair-fed mice. Taken together, these results suggest tofogliflozin ameliorates insulin resistance and obesity by increasing glucose uptake in skeletal muscle and lipolysis in adipose tissue. PMID:26713783

  15. Abdominal adiposity, insulin resistance, and oxidized low-density lipoproteins in Latino adolescents.

    PubMed

    Ryder, Justin R; Vega-López, Sonia; Djedjos, Constantine S; Shaibi, Gabriel Q

    2013-01-01

    Abdominal obesity and insulin resistance (IR) place youth at higher risk for premature cardiovascular disease (CVD), but the underlying mechanisms are not clear. In adults, abdominal obesity and IR contribute to the oxidation of low-density lipoprotein (LDL). Whether similar mechanisms are operational in Latino adolescents is unknown. Therefore, we determined whether IR and abdominal adiposity are associated with higher oxLDL concentrations in Latino adolescents. Data from 123 Latino adolescents (16.3 ± 2.5 years; female = 74) were used for the present analysis. Participants were assessed for waist circumference, fasting serum oxLDL, and insulin sensitivity by the whole body insulin sensitivity index. In separate linear regression models adjusting for age and sex, both waist circumference and insulin sensitivity were significant predictors of oxLDL (β = 1.9; p = 0.002; R2 = 0.13, β = -1.7; p = 0.006; R2 = 0.11, respectively). When insulin sensitivity and waist circumference were included in the same model, both remained independent predictors of oxLDL (β = 1.7; p = 0.016 and, β = -1.5; p = 0.055, respectively; R2 = 0.16). These results suggest that insulin resistance and abdominal adiposity are associated with higher levels of LDL oxidation which may be a mechanism contributing to increased CVD risk in Latino adolescents. PMID:24238302

  16. CTLA-4Ig immunotherapy of obesity-induced insulin resistance by manipulation of macrophage polarization in adipose tissues

    SciTech Connect

    Fujii, Masakazu; Inoguchi, Toyoshi; Batchuluun, Battsetseg; Sugiyama, Naonobu; Kobayashi, Kunihisa; Sonoda, Noriyuki; Takayanagi, Ryoichi

    2013-08-16

    Highlights: •CTLA-4Ig completely alleviates HFD-induced insulin resistance. •CTLA-4Ig reduces epididymal and subcutaneous fat tissue weight and adipocyte size. •CTLA-4Ig alters ATM polarization from inflammatory M1 to anti-inflammatory M2. •CTLA-4Ig may lead to a novel anti-obesity/inflammation/insulin resistance agent. •We identified the mechanism of the novel favorable effects of CTLA-4lg. -- Abstract: It has been established that obesity alters the metabolic and endocrine function of adipose tissue and, together with accumulation of adipose tissue macrophages, contributes to insulin resistance. Although numerous studies have reported that shifting the polarization of macrophages from M1 to M2 can alleviate adipose tissue inflammation, manipulation of macrophage polarization has not been considered as a specific therapy. Here, we determined whether cytotoxic T-lymphocyte-associated antigen-4IgG1 (CTLA-4Ig) can ameliorate insulin resistance by induction of macrophages from proinflammatory M1 to anti-inflammatory M2 polarization in the adipose tissues of high fat diet-induced insulin-resistant mice. CTLA4-Ig treatment prevented insulin resistance by changing gene expression to M2 polarization, which increased the levels of arginase 1. Furthermore, flow cytometric analysis confirmed the alteration of polarization from CD11c (M1)- to CD206 (M2)-positive cells. Concomitantly, CTLA-4Ig treatment resulted in weight reductions of epididymal and subcutaneous adipose tissues, which may be closely related to overexpression of apoptosis inhibitors in macrophages. Moreover, proinflammatory cytokine and chemokine levels decreased significantly. In contrast, CCAAT enhancer binding protein α, peroxisome proliferator-activated receptor γ, and adiponectin expression increased significantly in subcutaneous adipose tissue. This novel mechanism of CTLA-4lg immunotherapy may lead to an ideal anti-obesity/inflammation/insulin resistance agent.

  17. Testing the fetal overnutrition hypothesis; the relationship of maternal and paternal adiposity to adiposity, insulin resistance and cardiovascular risk factors in Indian children

    PubMed Central

    Veena, Sargoor R; Krishnaveni, Ghattu V; Karat, Samuel C; Osmond, Clive; Fall, Caroline HD

    2012-01-01

    Objective We aimed to test the fetal overnutrition hypothesis by comparing the associations of maternal and paternal adiposity (sum of skinfolds) with adiposity and cardiovascular risk factors in children. Design Children from a prospective birth cohort had anthropometry, fat percentage (bio-impedance), plasma glucose, insulin and lipid concentrations and blood pressure measured at 9·5 years of age. Detailed anthropometric measurements were recorded for mothers (at 30 ± 2 weeks’ gestation) and fathers (5 years following the index pregnancy). Setting Holdsworth Memorial Hospital, Mysore, India. Subjects Children (n 504), born to mothers with normal glucose tolerance during pregnancy. Results Twenty-eight per cent of mothers and 38 % of fathers were overweight/obese (BMI ≥ 25·0 kg/m2), but only 4 % of the children were overweight/obese (WHO age- and sex-specific BMI ≥ 18·2 kg/m2). The children’s adiposity (BMI, sum of skinfolds, fat percentage and waist circumference), fasting insulin concentration and insulin resistance increased with increasing maternal and paternal sum of skinfolds adjusted for the child’s sex, age and socio-economic status. Maternal and paternal effects were similar. The associations with fasting insulin and insulin resistance were attenuated after adjusting for the child’s current adiposity. Conclusions In this population, both maternal and paternal adiposity equally predict adiposity and insulin resistance in the children. This suggests that shared family environment and lifestyle, or genetic/epigenetic factors, influence child adiposity. Our findings do not support the hypothesis that there is an intrauterine overnutrition effect of maternal adiposity in non-diabetic pregnancies, although we cannot rule out such an effect in cases of extreme maternal obesity, which is rare in our population. PMID:22895107

  18. The Metabolic Syndrome and Inflammation: 
Role of Insulin Resistance and Increased Adiposity

    PubMed Central

    Farooq, Wajiha; Farwa, Umme; Khan, Faisal Rashid

    2015-01-01

    Objectives We sought to determine the role of obesity and insulin resistance (IR) in the pathogenesis of inflammation in metabolic syndrome (MetS). Methods Our study included 100 patients with MetS and 100 age and gender matched control patients who attended a tertiary care laboratory in Rawalpindi, Pakistan. Anthropometric data was obtained including height and weight to calculate body mass index. A record of patient’s blood pressure (BP), waist circumference (WC) and hip circumference (HC) was made. Biochemical analysis included measurements of fasting glucose, triglycerides (TG), high-density lipoprotein cholesterol (HDL-c), insulin, and high-sensitivity C reactive protein (hsCRP). IR was determined by the homeostasis mode assessment insulin resistance (HOMA-IR) method. Results The levels of hs-CRP were found to be elevated in all patients with MetS where it correlated significantly with all its components including measures of obesity, fasting insulin and glucose levels, IR, TG and HDL-c. However, on linear regression analysis only WC, fasting insulin, and HOMA-IR remained significantly correlated with hs-CRP. Conclusion MetS is a condition characterized by chronic low-grade inflammation, which arises because of increased abdominal adiposity and IR. Large multicenter studies are needed to gain insight into its pathogenesis and derive treatment strategies. PMID:25960834

  19. Long-term Impact of Childhood Adiposity on Adult Metabolic Syndrome Is Modified by Insulin Resistance: The Bogalusa Heart Study

    PubMed Central

    Zhang, Huijie; Zhang, Tao; Li, Shengxu; Li, Ying; Hussain, Azad; Fernandez, Camilo; Harville, Emily; Bazzano, Lydia A.; He, Jiang; Chen, Wei

    2015-01-01

    Childhood adiposity and insulin resistance are well-known risk factors for adult metabolic syndrome (MetS). This study aims to examine whether the association between childhood adiposity and adult MetS is modified by insulin resistance. The cohort consisted of 1,593 black and white subjects, aged 19–50 years at follow-up, who were examined 19 years apart on average as children and adults for MetS variables. The prevalence of adult MetS was compared between the insulin-sensitive obesity and insulin-resistant obesity groups in childhood. Adult MetS prevalence was higher in the insulin-resistant obesity group than in the insulin-sensitive obesity group (34.9% vs. 24.3%, p = 0.008). In multivariable logistic regression analyses adjusted for age, race, gender, and follow-up years, individuals with insulin-resistant obesity in childhood were 1.7 times (p = 0.011) more likely to have MetS 19 years later on average than those with insulin-sensitive obesity in childhood. Odds ratio did not differ significantly between blacks and whites (p = 0.724). ORs for the association of childhood BMI with adult MetS significantly increased with increasing tertiles of childhood HOMA (p < 0.001 for trend). These findings suggest that insulin resistance amplifies the association between childhood adiposity and adult MetS and underscore the importance of preventing both adiposity and insulin resistance in early life. PMID:26640243

  20. Adrenomedullin 2 Improves Early Obesity-Induced Adipose Insulin Resistance by Inhibiting the Class II MHC in Adipocytes.

    PubMed

    Zhang, Song-Yang; Lv, Ying; Zhang, Heng; Gao, Song; Wang, Ting; Feng, Juan; Wang, Yuhui; Liu, George; Xu, Ming-Jiang; Wang, Xian; Jiang, Changtao

    2016-08-01

    MHC class II (MHCII) antigen presentation in adipocytes was reported to trigger early adipose inflammation and insulin resistance. However, the benefits of MHCII inhibition in adipocytes remain largely unknown. Here, we showed that human plasma polypeptide adrenomedullin 2 (ADM2) levels were negatively correlated with HOMA of insulin resistance in obese human. Adipose-specific human ADM2 transgenic (aADM2-tg) mice were generated. The aADM2-tg mice displayed improvements in high-fat diet-induced early adipose insulin resistance. This was associated with increased insulin signaling and decreased systemic inflammation. ADM2 dose-dependently inhibited CIITA-induced MHCII expression by increasing Blimp1 expression in a CRLR/RAMP1-cAMP-dependent manner in cultured adipocytes. Furthermore, ADM2 treatment restored the high-fat diet-induced early insulin resistance in adipose tissue, mainly via inhibition of adipocyte MHCII antigen presentation and CD4(+) T-cell activation. This study demonstrates that ADM2 is a promising candidate for the treatment of early obesity-induced insulin resistance. PMID:27207558

  1. Adipose tissue overexpression of vascular endothelial growth factor protects against diet-induced obesity and insulin resistance.

    PubMed

    Elias, Ivet; Franckhauser, Sylvie; Ferré, Tura; Vilà, Laia; Tafuro, Sabrina; Muñoz, Sergio; Roca, Carles; Ramos, David; Pujol, Anna; Riu, Efren; Ruberte, Jesús; Bosch, Fatima

    2012-07-01

    During the expansion of fat mass in obesity, vascularization of adipose tissue is insufficient to maintain tissue normoxia. Local hypoxia develops and may result in altered adipokine expression, proinflammatory macrophage recruitment, and insulin resistance. We investigated whether an increase in adipose tissue angiogenesis could protect against obesity-induced hypoxia and, consequently, insulin resistance. Transgenic mice overexpressing vascular endothelial growth factor (VEGF) in brown adipose tissue (BAT) and white adipose tissue (WAT) were generated. Vessel formation, metabolism, and inflammation were studied in VEGF transgenic mice and wild-type littermates fed chow or a high-fat diet. Overexpression of VEGF resulted in increased blood vessel number and size in both WAT and BAT and protection against high-fat diet-induced hypoxia and obesity, with no differences in food intake. This was associated with increased thermogenesis and energy expenditure. Moreover, whole-body insulin sensitivity and glucose tolerance were improved. Transgenic mice presented increased macrophage infiltration, with a higher number of M2 anti-inflammatory and fewer M1 proinflammatory macrophages than wild-type littermates, thus maintaining an anti-inflammatory milieu that could avoid insulin resistance. These studies suggest that overexpression of VEGF in adipose tissue is a potential therapeutic strategy for the prevention of obesity and insulin resistance. PMID:22522611

  2. Adipose Tissue Overexpression of Vascular Endothelial Growth Factor Protects Against Diet-Induced Obesity and Insulin Resistance

    PubMed Central

    Elias, Ivet; Franckhauser, Sylvie; Ferré, Tura; Vilà, Laia; Tafuro, Sabrina; Muñoz, Sergio; Roca, Carles; Ramos, David; Pujol, Anna; Riu, Efren; Ruberte, Jesús; Bosch, Fatima

    2012-01-01

    During the expansion of fat mass in obesity, vascularization of adipose tissue is insufficient to maintain tissue normoxia. Local hypoxia develops and may result in altered adipokine expression, proinflammatory macrophage recruitment, and insulin resistance. We investigated whether an increase in adipose tissue angiogenesis could protect against obesity-induced hypoxia and, consequently, insulin resistance. Transgenic mice overexpressing vascular endothelial growth factor (VEGF) in brown adipose tissue (BAT) and white adipose tissue (WAT) were generated. Vessel formation, metabolism, and inflammation were studied in VEGF transgenic mice and wild-type littermates fed chow or a high-fat diet. Overexpression of VEGF resulted in increased blood vessel number and size in both WAT and BAT and protection against high-fat diet–induced hypoxia and obesity, with no differences in food intake. This was associated with increased thermogenesis and energy expenditure. Moreover, whole-body insulin sensitivity and glucose tolerance were improved. Transgenic mice presented increased macrophage infiltration, with a higher number of M2 anti-inflammatory and fewer M1 proinflammatory macrophages than wild-type littermates, thus maintaining an anti-inflammatory milieu that could avoid insulin resistance. These studies suggest that overexpression of VEGF in adipose tissue is a potential therapeutic strategy for the prevention of obesity and insulin resistance. PMID:22522611

  3. Targeting Pyruvate Carboxylase Reduces Gluconeogenesis and Adiposity and Improves Insulin Resistance

    PubMed Central

    Kumashiro, Naoki; Beddow, Sara A.; Vatner, Daniel F.; Majumdar, Sachin K.; Cantley, Jennifer L.; Guebre-Egziabher, Fitsum; Fat, Ioana; Guigni, Blas; Jurczak, Michael J.; Birkenfeld, Andreas L.; Kahn, Mario; Perler, Bryce K.; Puchowicz, Michelle A.; Manchem, Vara Prasad; Bhanot, Sanjay; Still, Christopher D.; Gerhard, Glenn S.; Petersen, Kitt Falk; Cline, Gary W.; Shulman, Gerald I.; Samuel, Varman T.

    2013-01-01

    We measured the mRNA and protein expression of the key gluconeogenic enzymes in human liver biopsy specimens and found that only hepatic pyruvate carboxylase protein levels related strongly with glycemia. We assessed the role of pyruvate carboxylase in regulating glucose and lipid metabolism in rats through a loss-of-function approach using a specific antisense oligonucleotide (ASO) to decrease expression predominantly in liver and adipose tissue. Pyruvate carboxylase ASO reduced plasma glucose concentrations and the rate of endogenous glucose production in vivo. Interestingly, pyruvate carboxylase ASO also reduced adiposity, plasma lipid concentrations, and hepatic steatosis in high fat–fed rats and improved hepatic insulin sensitivity. Pyruvate carboxylase ASO had similar effects in Zucker Diabetic Fatty rats. Pyruvate carboxylase ASO did not alter de novo fatty acid synthesis, lipolysis, or hepatocyte fatty acid oxidation. In contrast, the lipid phenotype was attributed to a decrease in hepatic and adipose glycerol synthesis, which is important for fatty acid esterification when dietary fat is in excess. Tissue-specific inhibition of pyruvate carboxylase is a potential therapeutic approach for nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. PMID:23423574

  4. Insulin and GLP-1 infusions demonstrate the onset of adipose-specific insulin resistance in a large fasting mammal: potential glucogenic role for GLP-1.

    PubMed

    Viscarra, Jose A; Rodriguez, Ruben; Vazquez-Medina, Jose Pablo; Lee, Andrew; Tift, Michael S; Tavoni, Stephen K; Crocker, Daniel E; Ortiz, Rudy M

    2013-08-01

    Prolonged food deprivation increases lipid oxidation and utilization, which may contribute to the onset of the insulin resistance associated with fasting. Because insulin resistance promotes the preservation of glucose and oxidation of fat, it has been suggested to be an adaptive response to food deprivation. However, fasting mammals exhibit hypoinsulinemia, suggesting that the insulin resistance-like conditions they experience may actually result from reduced pancreatic sensitivity to glucose/capacity to secrete insulin. To determine whether fasting results in insulin resistance or in pancreatic dysfunction, we infused early- and late-fasted seals (naturally adapted to prolonged fasting) with insulin (0.065 U/kg), and a separate group of late-fasted seals with low (10 pM/kg) or high (100 pM/kg) dosages of glucagon-like peptide-1 (GLP-1) immediately following a glucose bolus (0.5g/kg), and measured the systemic and cellular responses. Because GLP-1 facilitates glucose-stimulated insulin secretion, these infusions provide a method to assess pancreatic insulin-secreting capacity. Insulin infusions increased the phosphorylation of insulin receptor and Akt in adipose and muscle of early and late fasted seals; however the timing of the signaling response was blunted in adipose of late fasted seals. Despite the dose-dependent increases in insulin and increased glucose clearance (high dose), both GLP-1 dosages produced increases in plasma cortisol and glucagon, which may have contributed to the glucogenic role of GLP-1. Results suggest that fasting induces adipose-specific insulin resistance in elephant seal pups, while maintaining skeletal muscle insulin sensitivity, and therefore suggests that the onset of insulin resistance in fasting mammals is an evolved response to cope with prolonged food deprivation. PMID:23997935

  5. Associations of Different Adipose Tissue Depots with Insulin Resistance: A Systematic Review and Meta-analysis of Observational Studies

    PubMed Central

    Zhang, Mingzhi; Hu, Tian; Zhang, Shaoyan; Zhou, Li

    2015-01-01

    Fat distribution is strongly associated with insulin resistance, a risk factor for type 2 diabetes and cardiovascular diseases. However, associations of different adipose tissue depots or/and obesity indices with insulin resistance have not been systematically evaluated. In this study we examined associations of different adipose tissue depots/obesity indices with insulin resistance, as measured by homeostatic model assessment of insulin resistance (HOMA-IR) in observational studies. A total of 40 studies with 56 populations and 29 adipose tissue depots/obesity indices were included in the meta-analysis. There were strong correlation between HOMA-IR and visceral fat mass (r = 0.570, 95% confidence interval(CI): 0.424~0.687), total fat mass (r = 0.492, 95%CI: 0.407~0.570), body mass index (r = 0.482, 95%CI: 0.445~0.518) and waist circumference (r = 0.466, 95%CI: 0.432~0.500), except lower extremity fat (r = 0.088, 95%CI: −0.116~0.285). Sample size, diabetic status, gender, mean of body mass index, and race contributed to heterogeneity of these associations. This study showed a positive correlation between insulin resistance and most adipose tissue depots/obesity indices, and the strongest association is for visceral fat mass. PMID:26686961

  6. Altered subcutaneous abdominal adipose tissue lipid synthesis in obese, insulin-resistant humans

    PubMed Central

    Tuvdendorj, Demidmaa; Chandalia, Manisha; Batbayar, Tumurbaatar; Saraf, Manish; Beysen, Carine; Murphy, Elizabeth J.

    2013-01-01

    The purpose of this study was to evaluate the variability of subcutaneous abdominal adipose tissue (AT) dynamics in obese subjects with a wide range of insulin sensitivity (IS) and the correlation between these two metabolic measures. Ten obese (BMI 30–40 kg/m2) nondiabetic subjects with (n = 6) and without (n = 4) the metabolic syndrome were studied following a 12-wk 2H2O labeling period. Subcutaneous abdominal AT biopsies were collected. Deuterium incorporation into triglyceride (TG)-glycerol and TG-palmitate were measured by gas chromatography-mass spectrometry for the calculation of fractional TG synthesis (fTG) and fractional de novo lipogenesis (fDNL). Muscle IS and insulin-mediated nonesterified fatty acid (NEFA) suppression (a measure for adipose IS) indexes were derived from the oral glucose tolerance test (OGTT). The ability of subcutaneous abdominal AT to synthesize lipids varied significantly in obese subjects (fTG range 7–28%, fDNL range 1.1–4.6%) with significantly lower values (>35% reduction) for both parameters in obese with the metabolic syndrome. fTG correlated positively with muscle IS (r = 0.64, P = 0.04) and inversely with NEFA suppression during the OGTT (r = −0.69, P = 0.03). These results demonstrate a large variability in subcutaneous abdominal AT lipid turnover in obesity. Moreover, a reduced capacity for subcutaneous abdominal AT fat storage is associated with muscle and adipose tissue insulin resistance as well as with the metabolic syndrome, thus identifying a form of obesity at heightened risk for type 2 diabetes and cardiovascular disease. PMID:23982159

  7. RAAS Activation Is Associated With Visceral Adiposity and Insulin Resistance Among HIV-infected Patients

    PubMed Central

    Srinivasa, Suman; Fitch, Kathleen V.; Wong, Kimberly; Torriani, Martin; Mayhew, Caitlin; Stanley, Takara; Lo, Janet; Adler, Gail K.

    2015-01-01

    Context: Little is known about renin-angiotensin-aldosterone system (RAAS) activation in relationship to visceral adipose tissue (VAT) accumulation in HIV-infected patients, a population at significant risk for insulin resistance and other metabolic disease. Design: Twenty HIV and 10 non-HIV-infected subjects consumed a standardized low sodium or liberal sodium diet to stimulate or suppress the RAAS, respectively. RAAS parameters were evaluated in response to each diet and a graded angiotensin II infusion. Further analyses were performed after groups were substratified by median VAT measured by magnetic resonance imaging. Results: Aldosterone concentrations during the low-sodium diet were higher in HIV than non-HIV-infected subjects [13.8 (9.7, 30.9) vs 9.2 (7.6, 13.6) ng/dL, P = .03] and increased across groups stratified by visceral adipose tissue (VAT) [8.5 (7.1, 12.8), 9.2 (8.1, 21.5), 11.4 (9.4, 13.8), and 27.2 (13.0, 36.9) ng/dL in non-HIV-infected without increased VAT, non-HIV-infected with increased VAT, HIV-infected without increased VAT, HIV-infected with increased VAT, respectively, overall trend P = .02]. Under this condition, plasma renin activity [3.50 (2.58, 4.65) vs 1.45 (0.58, 2.33) ng/mL · h, P = .002] was higher among the HIV-infected subjects with vs without increased VAT. Differences in the suppressibility of plasma renin activity by graded angiotensin infusion were seen stratifying by VAT among the HIV-infected group (P < .02 at each dose). In addition, aldosterone (P = .007) was an independent predictor of insulin resistance in multivariate modeling, controlling for VAT and adiponectin. Conclusion: These data suggest excess RAAS activation in relationship to visceral adiposity in HIV-infected patients that may independently contribute to insulin resistance. Mineralocorticoid blockade may have therapeutic potential to reduce metabolic complications in HIV-infected patients with increased visceral adiposity. PMID:26086328

  8. Marrow Adipose Tissue Expansion Coincides with Insulin Resistance in MAGP1-Deficient Mice

    PubMed Central

    Walji, Tezin A.; Turecamo, Sarah E.; Sanchez, Alejandro Coca; Anthony, Bryan A.; Abou-Ezzi, Grazia; Scheller, Erica L.; Link, Daniel C.; Mecham, Robert P.; Craft, Clarissa S.

    2016-01-01

    Marrow adipose tissue (MAT) is an endocrine organ with the potential to influence skeletal remodeling and hematopoiesis. Pathologic MAT expansion has been studied in the context of severe metabolic challenge, including caloric restriction, high fat diet feeding, and leptin deficiency. However, the rapid change in peripheral fat and glucose metabolism associated with these models impedes our ability to examine which metabolic parameters precede or coincide with MAT expansion. Microfibril-associated glycoprotein-1 (MAGP1) is a matricellular protein that influences cellular processes by tethering signaling molecules to extracellular matrix structures. MAGP1-deficient (Mfap2−/−) mice display a progressive excess adiposity phenotype, which precedes insulin resistance and occurs without changes in caloric intake or ambulation. Mfap2−/− mice were, therefore, used as a model to associate parameters of metabolic disease, bone remodeling, and hematopoiesis with MAT expansion. Marrow adiposity was normal in Mfap2−/− mice until 6 months of age; however, by 10 months, marrow fat volume had increased fivefold relative to wild-type control at the same age. Increased gonadal fat pad mass and hyperglycemia were detectable in Mfap2−/− mice by 2 months, but peaked by 6 months. The development of insulin resistance coincided with MAT expansion. Longitudinal characterization of bone mass demonstrated a disconnection in MAT volume and bone volume. Specifically, Mfap2−/− mice had reduced trabecular bone volume by 2 months, but this phenotype did not progress with age or MAT expansion. Interestingly, MAT expansion in the 10-month-old Mfap2−/− mice was associated with modest alterations in basal hematopoiesis, including a shift from granulopoiesis to B lymphopoiesis. Together, these findings indicate MAT expansion is coincident with insulin resistance, but not excess peripheral adiposity or hyperglycemia in Mfap2−/− mice; and substantial MAT

  9. High-fat diet induced adiposity and insulin resistance in mice lacking the myotonic dystrophy protein kinase.

    PubMed

    Llagostera, Esther; Carmona, Mari Carmen; Vicente, Meritxell; Escorihuela, Rosa María; Kaliman, Perla

    2009-06-18

    Myotonic dystrophy 1 (MD1) is caused by a CTG expansion in the 3'-unstranslated region of the myotonic dystrophy protein kinase (DMPK) gene. MD1 patients frequently present insulin resistance and increased visceral adiposity. We examined whether DMPK deficiency is a genetic risk factor for high-fat diet-induced adiposity and insulin resistance using the DMPK knockout mouse model. We found that high-fat fed DMPK knockout mice had significantly increased body weights, hypertrophic adipocytes and whole-body insulin resistance compared with wild-type mice. This nutrient-genome interaction should be considered by physicians given the cardiometabolic risks and sedentary lifestyle associated with MD1 patients. PMID:19482024

  10. Role of resistant starch in improving gut health, adiposity, and insulin resistance.

    PubMed

    Keenan, Michael J; Zhou, June; Hegsted, Maren; Pelkman, Christine; Durham, Holiday A; Coulon, Diana B; Martin, Roy J

    2015-03-01

    The realization that low-glycemic index diets were formulated using resistant starch led to more than a decade of research on the health effects of resistant starch. Determination of the metabolizable energy of the resistant starch product allowed for the performance of isocaloric studies. Fermentation of resistant starch in rodent studies results in what appears to be a healthier gut, demonstrated by increased amounts of short-chain fatty acids, an apparent positive change in the microbiota, and increased gene expression for gene products involved in normal healthy proliferation and apoptosis of potential cancer cells. Additionally, consumption of resistant starch was associated with reduced abdominal fat and improved insulin sensitivity. Increased serum glucagon-like peptide 1 (GLP-1) likely plays a role in promoting these health benefits. One rodent study that did not use isocaloric diets demonstrated that the use of resistant starch at 8% of the weight of the diet reduced body fat. This appears to be approximately equivalent to the human fiber requirement. In human subjects, insulin sensitivity is increased with the feeding of resistant starch. However, only 1 of several studies reports an increase in serum GLP-1 associated with resistant starch added to the diet. This means that other mechanisms, such as increased intestinal gluconeogenesis or increased adiponectin, may be involved in the promotion of improved insulin sensitivity. Future research may confirm that there will be improved health if human individuals consume the requirement for dietary fiber and a large amount of the fiber is fermentable. PMID:25770258

  11. Role of Resistant Starch in Improving Gut Health, Adiposity, and Insulin Resistance1234

    PubMed Central

    Keenan, Michael J; Zhou, June; Hegsted, Maren; Pelkman, Christine; Durham, Holiday A; Coulon, Diana B; Martin, Roy J

    2015-01-01

    The realization that low–glycemic index diets were formulated using resistant starch led to more than a decade of research on the health effects of resistant starch. Determination of the metabolizable energy of the resistant starch product allowed for the performance of isocaloric studies. Fermentation of resistant starch in rodent studies results in what appears to be a healthier gut, demonstrated by increased amounts of short-chain fatty acids, an apparent positive change in the microbiota, and increased gene expression for gene products involved in normal healthy proliferation and apoptosis of potential cancer cells. Additionally, consumption of resistant starch was associated with reduced abdominal fat and improved insulin sensitivity. Increased serum glucagon-like peptide 1 (GLP-1) likely plays a role in promoting these health benefits. One rodent study that did not use isocaloric diets demonstrated that the use of resistant starch at 8% of the weight of the diet reduced body fat. This appears to be approximately equivalent to the human fiber requirement. In human subjects, insulin sensitivity is increased with the feeding of resistant starch. However, only 1 of several studies reports an increase in serum GLP-1 associated with resistant starch added to the diet. This means that other mechanisms, such as increased intestinal gluconeogenesis or increased adiponectin, may be involved in the promotion of improved insulin sensitivity. Future research may confirm that there will be improved health if human individuals consume the requirement for dietary fiber and a large amount of the fiber is fermentable. PMID:25770258

  12. Stevioside ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by downregulating the NF-{kappa}B pathway

    SciTech Connect

    Wang, Zhiquan; Xue, Liqiong; Guo, Cuicui; Han, Bing; Pan, Chunming; Zhao, Shuangxia; Song, Huaidong; Ma, Qinyun

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Stevioside ameliorates high-fat diet-induced insulin resistance. Black-Right-Pointing-Pointer Stevioside alleviates the adipose tissue inflammation. Black-Right-Pointing-Pointer Stevioside reduces macrophages infiltration into the adipose tissue. Black-Right-Pointing-Pointer Stevioside suppresses the activation of NF-{kappa}B in the adipose tissue. -- Abstract: Accumulating evidence suggests that adipose tissue is the main source of pro-inflammatory molecules that predispose individuals to insulin resistance. Stevioside (SVS) is a widely used sweetener with multiple beneficial effects for diabetic patients. In this study, we investigated the effect of SVS on insulin resistance and the pro-inflammatory state of adipose tissue in mice fed with a high-fat diet (HFD). Oral administration of SVS for 1 month had no effect on body weight, but it significantly improved fasting glucose, basal insulin levels, glucose tolerance and whole body insulin sensitivity. Interestingly, these changes were accompanied with decreased expression levels of several inflammatory cytokines in adipose tissue, including TNF-{alpha}, IL6, IL10, IL1{beta}, KC, MIP-1{alpha}, CD11b and CD14. Moreover, macrophage infiltration in adipose tissue was remarkably reduced by SVS. Finally, SVS significantly suppressed the nuclear factor-kappa b (NF-{kappa}B) signaling pathway in adipose tissue. Collectively, these results suggested that SVS may ameliorate insulin resistance in HFD-fed mice by attenuating adipose tissue inflammation and inhibiting the NF-{kappa}B pathway.

  13. Adipose Tissue Hypoxia, Inflammation, and Fibrosis in Obese Insulin-Sensitive and Obese Insulin-Resistant Subjects.

    PubMed

    Lawler, Helen M; Underkofler, Chantal M; Kern, Philip A; Erickson, Christopher; Bredbeck, Brooke; Rasouli, Neda

    2016-04-01

    We confirmed fat hypoxia in obese as compared to lean subjects. However, fat oxygenation was similar in obese insulin sensitive and insulin resistant subjects suggesting fat hypoxia may be simply a consequence of fat expansion. PMID:26871994

  14. MicroRNA-223 Expression is Upregulated in Insulin Resistant Human Adipose Tissue.

    PubMed

    Chuang, Tung-Yueh; Wu, Hsiao-Li; Chen, Chen-Chun; Gamboa, Gloria Mabel; Layman, Lawrence C; Diamond, Michael P; Azziz, Ricardo; Chen, Yen-Hao

    2015-01-01

    MicroRNAs (miRNAs) are short noncoding RNAs involved in posttranscriptional regulation of gene expression and influence many cellular functions including glucose and lipid metabolism. We previously reported that adipose tissue (AT) from women with polycystic ovary syndrome (PCOS) or controls with insulin resistance (IR) revealed a differentially expressed microRNA (miRNA) profile, including upregulated miR-93 in PCOS patients and in non-PCOS women with IR. Overexpressed miR-93 directly inhibited glucose transporter isoform 4 (GLUT4) expression, thereby influencing glucose metabolism. We have now studied the role of miR-223, which is also abnormally expressed in the AT of IR subjects. Our data indicates that miR-223 is significantly overexpressed in the AT of IR women, regardless of whether they had PCOS or not. miR-223 expression in AT was positively correlated with HOMA-IR. Unlike what is reported in cardiomyocytes, overexpression of miR-223 in human differentiated adipocytes was associated with a reduction in GLUT4 protein content and insulin-stimulated glucose uptake. In addition, our data suggests miR-223 regulates GLUT4 expression by direct binding to its 3' untranslated region (3'UTR). In conclusion, in AT miR-223 is an IR-related miRNA that may serve as a potential therapeutic target for the treatment of IR-related disorders. PMID:26273679

  15. Primary Hyperparathyroidism: The Influence of Bone Marrow Adipose Tissue on Bone Loss and of Osteocalcin on Insulin Resistance

    PubMed Central

    Mendonça, Maira L.; Batista, Sérgio L.; Nogueira-Barbosa, Marcello H.; Salmon, Carlos E.G.; de Paula, Francisco J.A.

    2016-01-01

    OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT) and 21 controls (CG). Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01). Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%). The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005), but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity.

  16. Adipose tissue and vascular phenotypic modulation by voluntary physical activity and dietary restriction in obese insulin-resistant OLETF rats

    PubMed Central

    Crissey, Jacqueline M.; Jenkins, Nathan T.; Lansford, Kasey A.; Thorne, Pamela K.; Bayless, David S.; Vieira-Potter, Victoria J.; Rector, R. Scott; Thyfault, John P.; Laughlin, M. Harold

    2014-01-01

    Adipose tissue (AT)-derived cytokines are proposed to contribute to obesity-associated vascular insulin resistance. We tested the hypothesis that voluntary physical activity and diet restriction-induced maintenance of body weight would both result in decreased AT inflammation and concomitant improvements in insulin-stimulated vascular relaxation in the hyperphagic, obese Otsuka Long-Evans Tokushima fatty (OLETF) rat. Rats (aged 12 wk) were randomly assigned to sedentary (SED; n = 10), wheel running (WR; n = 10), or diet restriction (DR; n = 10; fed 70% of SED) for 8 wk. WR and DR rats exhibited markedly lower adiposity (7.1 ± 0.4 and 15.7 ± 1.1% body fat, respectively) relative to SED (27 ± 1.2% body fat), as well as improved blood lipid profiles and systemic markers of insulin resistance. Reduced adiposity in both WR and DR was associated with decreased AT mRNA expression of inflammatory genes (e.g., MCP-1, TNF-α, and IL-6) and markers of immune cell infiltration (e.g., CD8, CD11c, and F4/80). The extent of these effects were most pronounced in visceral AT compared with subcutaneous and periaortic AT. Markers of inflammation in brown AT were upregulated with WR but not DR. In periaortic AT, WR- and DR-induced reductions in expression and secretion of cytokines were accompanied with a more atheroprotective gene expression profile in the adjacent aortic wall. WR, but not DR, resulted in greater insulin-stimulated relaxation in the aorta; an effect that was, in part, mediated by a decrease in insulin-induced endothelin-1 activation in WR aorta. Collectively, we show in OLETF rats that lower adiposity leads to less AT and aortic inflammation, as well as an exercise-specific improvement in insulin-stimulated vasorelaxation. PMID:24523340

  17. Loss of Pdk1-Foxo1 Signaling in Myeloid Cells Predisposes to Adipose Tissue Inflammation and Insulin Resistance

    PubMed Central

    Kawano, Yoshinaga; Nakae, Jun; Watanabe, Nobuyuki; Fujisaka, Shiho; Iskandar, Kristy; Sekioka, Risa; Hayashi, Yoshitake; Tobe, Kazuyuki; Kasuga, Masato; Noda, Tetsuo; Yoshimura, Akihiko; Onodera, Masafumi; Itoh, Hiroshi

    2012-01-01

    Chronic inflammation in adipose tissue contributes to obesity-related insulin resistance. The 3-phosphoinositide-dependent protein kinase 1 (Pdk1)/forkhead transcription factor (Foxo1) pathway is important in regulating glucose and energy homeostasis, but little is known about this pathway in adipose tissue macrophages (ATMs). To investigate this, we generated transgenic mice that carried macrophage/granulocyte-specific mutations, including a Pdk1 knockout (LysMPdk1−/−), a Pdk1 knockout with transactivation-defective Foxo1 (Δ256LysMPdk1−/−), a constitutively active nuclear (CN) Foxo1 (CNFoxo1LysM), or a transactivation-defective Foxo1 (Δ256Foxo1LysM). We analyzed glucose metabolism and gene expression in ATM populations isolated with fluorescence-activated cell sorting. The LysMPdk1−/− mice exhibited elevated M1 macrophages in adipose tissue and insulin resistance. Overexpression of transactivation-defective Foxo1 rescued these phenotypes. CNFoxo1LysM promoted transcription of the C-C motif chemokine receptor 2 (Ccr2) in ATMs and increased M1 macrophages in adipose tissue. On a high-fat diet, CNFoxo1LysM mice exhibited insulin resistance. Pdk1 deletion or Foxo1 activation in bone marrow–derived macrophages abolished insulin and interleukin-4 induction of genes involved in alternative macrophage activation. Thus, Pdk1 regulated macrophage infiltration by inhibiting Foxo1-induced Ccr2 expression. This shows that the macrophage Pdk1/Foxo1 pathway is important in regulating insulin sensitivity in vivo. PMID:22586579

  18. Inflammation and Insulin Resistance

    PubMed Central

    de Luca, Carl; Olefsky, Jerrold M.

    2008-01-01

    Obesity-induced chronic inflammation is a key component in the pathogenesis of insulin resistance and the Metabolic syndrome. In this review, we focus on the interconnection between obesity, inflammation and insulin resistance. Pro-inflammatory cytokines can cause insulin resistance in adipose tissue, skeletal muscle and liver by inhibiting insulin signal transduction. The sources of cytokines in insulin resistant states are the insulin target tissue themselves, primarily fat and liver, but to a larger extent the activated tissue resident macrophages. While the initiating factors of this inflammatory response remain to be fully determined, chronic inflammation in these tissues could cause localized insulin resistance via autocrine/paracrine cytokine signaling and systemic insulin resistance via endocrine cytokine signaling all of which contribute to the abnormal metabolic state. PMID:18053812

  19. Injecting engineered anti-inflammatory macrophages therapeutically induces white adipose tissue browning and improves diet-induced insulin resistance.

    PubMed

    Liu, Pu-Ste; Lin, Yi-Wei; Burton, Frank H; Wei, Li-Na

    2015-01-01

    We recently exploited a transgenic approach to coerce macrophage anti-inflammatory M2 polarization in vivo by lowering Receptor Interacting Protein 140 (RIP140) level in macrophages (mφRIP140KD), which induced browning of white adipose tissue (WAT). In vitro, conditioned medium from cultured adipose tissue macrophages (ATMs) of mφRIP140KD mice could trigger preadipocytes' differentiation into beige cells. Here we describe a cell therapy for treating high fat diet (HFD)-induced insulin resistance (IR). Injecting M2 ATMs retrieved from the WAT of mφRIP140KD mice into HFD-fed obese adult wild-type mice effectively triggers their WAT browning, reduces their pro-inflammatory responses, and improves their insulin sensitivity. These data provide a proof-of-concept that delivering engineered anti-inflammatory macrophages can trigger white fat browning, stimulate whole-body thermogenesis, and reduce obesity-associated IR. PMID:26167415

  20. Resveratrol attenuates intermittent hypoxia-induced macrophage migration to visceral white adipose tissue and insulin resistance in male mice.

    PubMed

    Carreras, Alba; Zhang, Shelley X L; Almendros, Isaac; Wang, Yang; Peris, Eduard; Qiao, Zhuanhong; Gozal, David

    2015-02-01

    Chronic intermittent hypoxia during sleep (IH), as occurs in sleep apnea, promotes systemic insulin resistance. Resveratrol (Resv) has been reported to ameliorate high-fat diet-induced obesity, inflammation, and insulin resistance. To examine the effect of Resv on IH-induced metabolic dysfunction, male mice were subjected to IH or room air conditions for 8 weeks and treated with either Resv or vehicle (Veh). Fasting plasma levels of glucose, insulin, and leptin were obtained, homeostatic model assessment of insulin resistance index levels were calculated, and insulin sensitivity tests (phosphorylated AKT [also known as protein kinase B]/total AKT) were performed in 2 visceral white adipose tissue (VWAT) depots (epididymal [Epi] and mesenteric [Mes]) along with flow cytometry assessments for VWAT macrophages and phenotypes (M1 and M2). IH-Veh and IH-Resv mice showed initial reductions in food intake with later recovery, with resultant lower body weights after 8 weeks but with IH-Resv showing better increases in body weight vs IH-Veh. IH-Veh and IH-Resv mice exhibited lower fasting glucose levels, but only IH-Veh had increased homeostatic model assessment of insulin resistance index vs all 3 other groups. Leptin levels were preserved in IH-Veh but were significantly lower in IH-Resv. Reduced VWAT phosphorylated-AKT/AKT responses to insulin emerged in both Mes and Epi in IH-Veh but normalized in IH-Resv. Increases total macrophage counts and in M1 to M2 ratios occurred in IH-Veh Mes and Epi compared all other 3 groups. Thus, Resv ameliorates food intake and weight gain during IH exposures and markedly attenuates VWAT inflammation and insulin resistance, thereby providing a potentially useful adjunctive therapy for metabolic morbidity in the context of sleep apnea. PMID:25406018

  1. Oleanolic acid supplement attenuates liquid fructose-induced adipose tissue insulin resistance through the insulin receptor substrate-1/phosphatidylinositol 3-kinase/Akt signaling pathway in rats

    SciTech Connect

    Li, Ying; Wang, Jianwei; Gu, Tieguang; Yamahara, Johji; Li, Yuhao

    2014-06-01

    Oleanolic acid, a triterpenoid contained in more than 1620 plants including various fruits and foodstuffs, has numerous metabolic effects, such as hepatoprotection. However, its underlying mechanisms remain poorly understood. Adipose tissue insulin resistance (Adipo-IR) may contribute to the development and progress of metabolic abnormalities through release of excessive free fatty acids from adipose tissue. This study investigated the effect of oleanolic acid on Adipo-IR. The results showed that supplement with oleanolic acid (25 mg/kg, once daily, by oral gavage) over 10 weeks attenuated liquid fructose-induced increase in plasma insulin concentration and the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. Simultaneously, oleanolic acid reversed the increase in the Adipo-IR index and plasma non-esterified fatty acid concentrations during the oral glucose tolerance test assessment. In white adipose tissue, oleanolic acid enhanced mRNA expression of the genes encoding insulin receptor, insulin receptor substrate (IRS)-1 and phosphatidylinositol 3-kinase. At the protein level, oleanolic acid upregulated total IRS-1 expression, suppressed the increased phosphorylated IRS-1 at serine-307, and restored the increased phosphorylated IRS-1 to total IRS-1 ratio. In contrast, phosphorylated Akt to total Akt ratio was increased. Furthermore, oleanolic acid reversed fructose-induced decrease in phosphorylated-Akt/Akt protein to plasma insulin concentration ratio. However, oleanolic acid did not affect IRS-2 mRNA expression. Therefore, these results suggest that oleanolic acid supplement ameliorates fructose-induced Adipo-IR in rats via the IRS-1/phosphatidylinositol 3-kinase/Akt pathway. Our findings may provide new insights into the mechanisms of metabolic actions of oleanolic acid. - Highlights: • Adipose insulin resistance (Adipo-IR) contributes to metabolic abnormalities. • We investigated the effect of oleanolic acid (OA) on adipo-IR in

  2. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity

    PubMed Central

    Subramanian, Manikandan; Ozcan, Lale; Ghorpade, Devram Sampat; Ferrante, Anthony W.; Tabas, Ira

    2015-01-01

    Obesity-induced inflammation in visceral adipose tissue (VAT) is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT) inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis. PMID:26317499

  3. Phthalate is associated with insulin resistance in adipose tissue of male rat: role of antioxidant vitamins.

    PubMed

    Rajesh, Parsanathan; Sathish, Sampath; Srinivasan, Chinnapaiyan; Selvaraj, Jayaraman; Balasubramanian, Karundevi

    2013-03-01

    Diethyl hexyl phthalate (DEHP) is a plasticizer, commonly used in a variety of products, including lubricants, perfumes, hairsprays and cosmetics, construction materials, wood finishers, adhesives, floorings and paints. DEHP is an endocrine disruptor and it has a continuum of influence on various organ systems in human beings and experimental animals. However, specific effects of DEHP on insulin signaling in adipose tissue are not known. Adult male albino rats of Wistar strain were divided into four groups. Control, DEHP treated (dissolved in olive oil at a dose of 10, and 100 mg/kg body weight, respectively, once daily through gastric intubations for 30 days) and DEHP + vitamin E (50 mg/kg body weight) and C (100 mg/kg body weight) dissolved in olive oil and distilled water, respectively, once daily through gastric intubations for 30 days. After the completion of treatment, adipose tissue was dissected out to assess various parameters. DEHP treatment escalated H(2)O(2) and hydroxyl radical levels as well as lipid peroxidation in the adipose tissue. DEHP impaired the expression of insulin signaling molecules and their phosphorelay pathways leading to diminish plasma membrane GLUT4 level and thus decreased glucose uptake and oxidation. Blood glucose level was elevated as a result of these changes. Supplementation of vitamins (C & E) prevented the DEHP-induced changes. It is concluded that DEHP-induced ROS and lipid peroxidation disrupts the insulin signal transduction in adipose tissue and favors glucose intolerance. Antioxidant vitamins have a protective role against the adverse effect of DEHP. PMID:22991202

  4. Endurance exercise training ameliorates insulin resistance and reticulum stress in adipose and hepatic tissue in obese rats.

    PubMed

    da Luz, Gabrielle; Frederico, Marisa J S; da Silva, Sabrina; Vitto, Marcelo F; Cesconetto, Patricia A; de Pinho, Ricardo A; Pauli, José R; Silva, Adelino S R; Cintra, Dennys E; Ropelle, Eduardo R; De Souza, Cláudio T

    2011-09-01

    Obesity-induced endoplasmatic reticulum (ER) stress has been demonstrated to underlie the induction of obesity-induced JNK and NF-κB activation inflammatory responses, and generation of peripheral insulin resistance. On the other hand, exercise has been used as a crucial tool in obese and diabetic patients, and may reduce inflammatory pathway stimulation. However, the ability of exercise training to reverse endoplasmatic reticulum stress in adipose and hepatic tissue in obesity has not been investigated in the literature. Here, we demonstrate that exercise training ameliorates ER stress and insulin resistance in DIO-induced rats. Rats were fed with standard rodent chow (3,948 kcal kg(-1)) or high-fat diet (5,358 kcal kg(-1)) for 2 months. After that rats were submitted to swimming training (1 h per day, 5 days for week with 5% overload of the body weight for 8 weeks). Samples from epididymal fat and liver were obtained and western blot analysis was performed. Our results showed that swimming protocol reduces pro-inflammatory molecules (JNK, IκB and NF-κB) in adipose and hepatic tissues. In addition, exercise leads to reduction in ER stress, by reducing PERK and eIF2α phosphorylation in these tissues. In parallel, an increase in insulin pathway signaling was observed, as confirmed by increases in IR, IRSs and Akt phosphorylation following exercise training in DIO rats. Thus, results suggest that exercise can reduce ER stress, improving insulin resistance in adipose and hepatic tissue. PMID:21249392

  5. [Oxidative stress in adipose tissue as a primary link in pathogenesis of insulin resistance].

    PubMed

    Kuzmenko, D I; Udintsev, S N; Klimentyeva, T K; Serebrov, V Yu

    2016-01-01

    Obesity is a leading risk factor of diabetes mellitus type 2, impairments of lipid metabolism and cardiovascular diseases. Dysfunctions of the accumulating weight of the visceral fat are primarily linked to pathogenesis of systemic insulin resistance. The review considers modern views about biochemical mechanisms underlying formation of oxidative stress in adipocytes at obesity, as one of key elements of impairments of their metabolism triggering formation of systemic insulin resistance. PMID:26973182

  6. Angiopoietin Like Protein 2 (ANGPTL2) Promotes Adipose Tissue Macrophage and T lymphocyte Accumulation and Leads to Insulin Resistance

    PubMed Central

    Sasaki, Yusuke; Ohta, Masayuki; Desai, Dhruv; Figueiredo, Jose-Luiz; Whelan, Mary C.; Sugano, Tomohiro; Yamabi, Masaki; Yano, Wataru; Faits, Tyler; Yabusaki, Katsumi; Zhang, Hengmin; Mlynarchik, Andrew K.; Inoue, Keisuke; Mizuno, Ken; Aikawa, Masanori

    2015-01-01

    Objectives Angiopoietin-like protein 2 (ANGPTL2), a recently identified pro-inflammatory cytokine, is mainly secreted from the adipose tissue. This study aimed to explore the role of ANGPTL2 in adipose tissue inflammation and macrophage activation in a mouse model of diabetes. Methodology/Principal Findings Adenovirus mediated lacZ (Ad-LacZ) or human ANGPTL2 (Ad-ANGPTL2) was delivered via tail vein in diabetic db/db mice. Ad-ANGPTL2 treatment for 2 weeks impaired both glucose tolerance and insulin sensitivity as compared to Ad-LacZ treatment. Ad-ANGPTL2 treatment significantly induced pro-inflammatory gene expression in white adipose tissue. We also isolated stromal vascular fraction from epididymal fat pad and analyzed adipose tissue macrophage and T lymphocyte populations by flow cytometry. Ad-ANGPTL2 treated mice had more adipose tissue macrophages (F4/80+CD11b+) and a larger M1 macrophage subpopulation (F4/80+CD11b+CD11c+). Moreover, Ad-ANGPTL2 treatment increased a CD8-positive T cell population in adipose tissue, which preceded increased macrophage accumulation. Consistent with our in vivo results, recombinant human ANGPTL2 protein treatment increased mRNA levels of pro-inflammatory gene products and production of TNF-α protein in the human macrophage-like cell line THP-1. Furthermore, Ad-ANGPTL2 treatment induced lipid accumulation and increased fatty acid synthesis, lipid metabolism related gene expression in mouse liver. Conclusion ANGPTL2 treatment promotes macrophage accumulation and activation. These results suggest potential mechanisms for insulin resistance. PMID:26132105

  7. CD11b regulates obesity-induced insulin resistance via limiting alternative activation and proliferation of adipose tissue macrophages

    PubMed Central

    Zheng, Chunxing; Yang, Qian; Xu, Chunliang; Cao, Jianchang; Jiang, Menghui; Chen, Qing; Cao, Gang; Han, Yanyan; Li, Fengying; Cao, Wei; Zhang, Liying; Zhang, Li; Shi, Yufang; Wang, Ying

    2015-01-01

    Obesity-associated inflammation is accompanied by the accumulation of adipose tissue macrophages (ATMs), which is believed to predispose obese individuals to insulin resistance. CD11b (integrin αM) is highly expressed on monocytes and macrophages and is critical for their migration and function. We found here that high-fat diet–induced insulin resistance was significantly reduced in CD11b-deficient mice. Interestingly, the recruitment of monocytes to adipose tissue is impaired when CD11b is deficient, although the cellularity of ATMs in CD11b-deficient mice is higher than that in wild-type mice. We further found that the increase in ATMs is caused mainly by their vigorous proliferation in the absence of CD11b. Moreover, the proliferation and alternative activation of ATMs are regulated by the IL-4/STAT6 axis, which is inhibited by CD11b through the activity of phosphatase SHP-1. Thus, CD11b plays a critical role in obesity-induced insulin resistance by limiting the proliferation and alternative activation of ATMs. PMID:26669445

  8. CONTRAST-ENHANCED ULTRASOUND ASSESSMENT OF IMPAIRED ADIPOSE TISSUE AND MUSCLE PERFUSION IN INSULIN-RESISTANT MICE

    PubMed Central

    Belcik, J. Todd; Davidson, Brian P.; Foster, Ted; Qi, Yue; Zhao, Yan; Peters, Dawn; Lindner, Jonathan R.

    2015-01-01

    Background In diabetes mellitus reduced perfusion and capillary surface area in skeletal muscle, which is a major glucose storage site, contributes to abnormal glucose homeostasis. Using contrast-enhanced ultrasound (CEU) we investigated whether abdominal adipose tissue perfusion is abnormal in insulin resistance (IR) and correlates with glycemic control. Methods and Results Abdominal adipose tissue and skeletal muscle CEU perfusion imaging was performed in obese IR (db/db) mice at 11-12 or 14-16 weeks of age, and in control lean mice. Time-intensity data were analyzed to quantify microvascular blood flow (MBF) and capillary blood volume (CBV). Blood glucose response over one hour was measured after insulin challenge (1 u/Kg, I.P.). Compared to control mice, db/db mice at 11-12 and 14-16 weeks had a higher glucose concentration area-under-the-curve after insulin (11.8±2.8, 20.6±4.3, and 28.4±5.9 mg·min/dL [×1000], respectively, p=0.0002), and also had lower adipose MBF (0.094±0.038, 0.035±0.010, and 0.023±0.01 mL/min/g, p=0.0002) and CBV (1.6±0.6, 1.0±0.3, and 0.5±0.1 mL/100 g, p=0.0017). The glucose area-under-the-curve correlated in a non-linear fashion with both adipose and skeletal muscle MBF and CBV. There were significant linear correlations between adipose and muscle MBF (r=0.81) and CBV (r=0.66). Adipocyte cell volume on histology was 25-fold higher in 14-16 week db/db versus control mice. Conclusions Abnormal adipose MBF and CBV in IR can be detected by CEU and correlates with the degree of impairment in glucose storage. Abnormalities in adipose tissue and muscle appear to be coupled. Impaired adipose tissue perfusion is in part explained by an increase in adipocyte size without proportional vascular response. PMID:25855669

  9. Abdominal adiposity and obstructive airway disease: testing insulin resistance and sleep disordered breathing mechanisms

    PubMed Central

    2012-01-01

    Background This study examined associations of abdominal adiposity with lung function, asthma symptoms and current doctor-diagnosed asthma and mediation by insulin resistance (IR) and sleep disordered breathing (SDB). Methods A random sample of 2500 households was drawn from the community of Whyalla, South Australia (The Whyalla Intergenerational Study of Health, WISH February 2008 - July 2009). Seven-hundred twenty-two randomly selected adults (≥18 years) completed clinical protocols (32.2% response rate). Lung function was measured by spirometry. Post-bronchodilator FEV1/FVC was used to measure airway obstruction and reversibility of FEV1 was calculated. Current asthma was defined by self-reported doctor-diagnosis and evidence of currently active asthma. Symptom scores for asthma (CASS) and SDB were calculated. Intra-abdominal fat (IAF) was estimated using dual-energy x-ray absorptiometry (DXA). IR was calculated from fasting glucose and insulin concentrations. Results The prevalence of current doctor-diagnosed asthma was 19.9% (95% CI 16.7 – 23.5%). The ratio of observed to expected cases given the age and sex distribution of the population was 2.4 (95%CI 2.1, 2.9). IAF was not associated with current doctor-diagnosed asthma, FEV1/FVC or FEV1 reversibility in men or women but was positively associated with CASS independent of IR and SDB in women. A 1% increase in IAF was associated with decreases of 12 mL and 20 mL in FEV1 and FVC respectively in men, and 4 mL and 7 mL respectively in women. SDB mediated 12% and 26% of these associations respectively in men but had minimal effects in women. Conclusions In this population with an excess of doctor-diagnosed asthma, IAF was not a major factor in airway obstruction or doctor-diagnosed asthma, although women with higher IAF perceived more severe asthma symptoms which did not correlate with lower FEV1. Higher IAF was significantly associated with lower FEV1 and FVC and in men SDB mechanisms may

  10. Cellularity and Adipogenic Profile of the Abdominal Subcutaneous Adipose Tissue From Obese Adolescents: Association With Insulin Resistance and Hepatic Steatosis

    PubMed Central

    Kursawe, Romy; Eszlinger, Markus; Narayan, Deepak; Liu, Teresa; Bazuine, Merlijn; Cali, Anna M.G.; D'Adamo, Ebe; Shaw, Melissa; Pierpont, Bridget; Shulman, Gerald I.; Cushman, Samuel W.; Sherman, Arthur; Caprio, Sonia

    2010-01-01

    OBJECTIVE We explored whether the distribution of adipose cell size, the estimated total number of adipose cells, and the expression of adipogenic genes in subcutaneous adipose tissue are linked to the phenotype of high visceral and low subcutaneous fat depots in obese adolescents. RESEARCH DESIGN AND METHODS A total of 38 adolescents with similar degrees of obesity agreed to have a subcutaneous periumbilical adipose tissue biopsy, in addition to metabolic (oral glucose tolerance test and hyperinsulinemic euglycemic clamp) and imaging studies (MRI, DEXA, 1H-NMR). Subcutaneous periumbilical adipose cell-size distribution and the estimated total number of subcutaneous adipose cells were obtained from tissue biopsy samples fixed in osmium tetroxide and analyzed by Beckman Coulter Multisizer. The adipogenic capacity was measured by Affymetrix GeneChip and quantitative RT-PCR. RESULTS Subjects were divided into two groups: high versus low ratio of visceral to visceral + subcutaneous fat (VAT/[VAT+SAT]). The cell-size distribution curves were significantly different between the high and low VAT/(VAT+SAT) groups, even after adjusting for age, sex, and ethnicity (MANOVA P = 0.035). Surprisingly, the fraction of large adipocytes was significantly lower (P < 0.01) in the group with high VAT/(VAT+SAT), along with the estimated total number of large adipose cells (P < 0.05), while the mean diameter was increased (P < 0.01). From the microarray analyses emerged a lower expression of lipogenesis/adipogenesis markers (sterol regulatory element binding protein-1, acetyl-CoA carboxylase, fatty acid synthase) in the group with high VAT/(VAT+SAT), which was confirmed by RT-PCR. CONCLUSIONS A reduced lipo-/adipogenic capacity, fraction, and estimated number of large subcutaneous adipocytes may contribute to the abnormal distribution of abdominal fat and hepatic steatosis, as well as to insulin resistance in obese adolescents. PMID:20805387

  11. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance

    PubMed Central

    Poher, Anne-Laure; Altirriba, Jordi; Veyrat-Durebex, Christelle; Rohner-Jeanrenaud, Françoise

    2015-01-01

    Presence of brown adipose tissue (BAT), characterized by the expression of the thermogenic uncoupling protein 1 (UCP1), has recently been described in adult humans. UCP1 is expressed in classical brown adipocytes, as well as in “beige cells” in white adipose tissue (WAT). The thermogenic activity of BAT is mainly controlled by the sympathetic nervous system. Endocrine factors, such as fibroblast growth factor 21 (FGF21) and bone morphogenic protein factor-9 (BMP-9), predominantly produced in the liver, were shown to lead to activation of BAT thermogenesis, as well as to “browning” of WAT. This was also observed in response to irisin, a hormone secreted by skeletal muscles. Different approaches were used to delineate the impact of UCP1 on insulin sensitivity. When studied under thermoneutral conditions, UCP1 knockout mice exhibited markedly increased metabolic efficiency due to impaired thermogenesis. The impact of UCP1 deletion on insulin sensitivity in these mice was not reported. Conversely, several studies in both rodents and humans have shown that BAT activation (by cold exposure, β3-agonist treatment, transplantation and others) improves glucose tolerance and insulin sensitivity. Interestingly, similar results were obtained by adipose tissue-specific overexpression of PR-domain-containing 16 (PRDM16) or BMP4 in mice. The mediators of such beneficial effects seem to include FGF21, interleukin-6, BMP8B and prostaglandin D2 synthase. Interestingly, some of these molecules can be secreted by BAT itself, indicating the occurrence of autocrine effects. Stimulation of BAT activity and/or recruitment of UCP1-positive cells are therefore relevant targets for the treatment of obesity/type 2 diabetes in humans. PMID:25688211

  12. AMPK Activation by Metformin Suppresses Abnormal Extracellular Matrix Remodeling in Adipose Tissue and Ameliorates Insulin Resistance in Obesity.

    PubMed

    Luo, Ting; Nocon, Allison; Fry, Jessica; Sherban, Alex; Rui, Xianliang; Jiang, Bingbing; Xu, X Julia; Han, Jingyan; Yan, Yun; Yang, Qin; Li, Qifu; Zang, Mengwei

    2016-08-01

    Fibrosis is emerging as a hallmark of metabolically dysregulated white adipose tissue (WAT) in obesity. Although adipose tissue fibrosis impairs adipocyte plasticity, little is known about how aberrant extracellular matrix (ECM) remodeling of WAT is initiated during the development of obesity. Here we show that treatment with the antidiabetic drug metformin inhibits excessive ECM deposition in WAT of ob/ob mice and mice with diet-induced obesity, as evidenced by decreased collagen deposition surrounding adipocytes and expression of fibrotic genes including the collagen cross-linking regulator LOX Inhibition of interstitial fibrosis by metformin is likely attributable to the activation of AMPK and the suppression of transforming growth factor-β1 (TGF-β1)/Smad3 signaling, leading to enhanced systemic insulin sensitivity. The ability of metformin to repress TGF-β1-induced fibrogenesis is abolished by the dominant negative AMPK in primary cells from the stromal vascular fraction. TGF-β1-induced insulin resistance is suppressed by AMPK agonists and the constitutively active AMPK in 3T3L1 adipocytes. In omental fat depots of obese humans, interstitial fibrosis is also associated with AMPK inactivation, TGF-β1/Smad3 induction, aberrant ECM production, myofibroblast activation, and adipocyte apoptosis. Collectively, integrated AMPK activation and TGF-β1/Smad3 inhibition may provide a potential therapeutic approach to maintain ECM flexibility and combat chronically uncontrolled adipose tissue expansion in obesity. PMID:27207538

  13. Android Adiposity and Lack of Moderate and Vigorous Physical Activity Are Associated With Insulin Resistance and Diabetes in Aging Adults

    PubMed Central

    Al Snih, Soham; Serra-Rexach, José A.; Burant, Charles

    2015-01-01

    Background. Physical inactivity and excess adiposity are thought to be interdependent “lifestyle” factors and thus, many older adults are at exaggerated risk for preventable diseases. The purposes of this study were to determine the degree of discordance between body mass index (BMI) and adiposity among adults older than 50 years, and to determine the extent to which direct measures of adiposity, and objectively measured sedentary behavior (SB) and physical activity (PA) are associated with insulin resistance (IR) or diabetes. Methods. A population representative sample of 2,816 individuals, aged 50–85 years, was included from the combined 2003–2006 National Health and Nutrition Examination Survey (NHANES) datasets. BMI, percent body fat (%BF) and android adiposity as determined by dual energy x-ray absorptiometry, objectively measured SB and PA, established markers of cardiometabolic risk, IR, and type 2 diabetes were analyzed. Results. Approximately 50% of the men and 64% of the women who were normal weight according to BMI had excessive %BF. Adults with the least SB and greatest moderate and vigorous PA exhibited the healthiest cardiometabolic profiles, whereas adults with the greatest SB and lowest activity had highest risk. Greater android adiposity stores were robustly associated with IR or diabetes in all adults, independent of SB and activity. Among men, less moderate-to-vigorous PA was associated with IR or diabetes; whereas among women, less lifestyle moderate activity was associated with IR or diabetes. Conclusions. Android adiposity and low moderate and vigorous PA are the strongest predictors of IR or diabetes among aging adults. PMID:25711528

  14. Ghrelin receptor regulates HFCS-induced adipose inflammation and insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High fructose corn syrup (HFCS) is the most commonly used sweetener in the United States. Some studies show that HFCS consumption correlates with obesity and insulin resistance, while other studies are in disagreement. Owing to conflicting and insufficient scientific evidence, the safety of HFCS con...

  15. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice.

    PubMed

    Buras, Eric Dale; Yang, Lina; Saha, Pradip; Kim, Jongoh; Mehta, Pooja; Yang, Yisheng; Hilsenbeck, Susan; Kojima, Hideto; Chen, Wenhao; Smith, C Wayne; Chan, Lawrence

    2015-08-01

    Adipose tissue macrophages (ATMs) play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet (HFD)-induced obesity has been shown to lead to ATM accumulation in rodents; however, the impact of hyperglycemia on ATM dynamics in HFD-fed type 2 diabetic models has not been studied. We previously showed that hyperglycemia induces the appearance of proinsulin (PI)-producing proinflammatory bone marrow (BM)-derived cells (PI-BMDCs) in rodents. We fed a 60% HFD to C57BL6/J mice to produce an obese type 2 diabetes model. Absent in chow-fed animals, PI-BMDCs account for 60% of the ATMs in the type 2 diabetic mice. The PI-ATM subset expresses TNF-α and other inflammatory markers, and is highly enriched within crownlike structures (CLSs). We found that amelioration of hyperglycemia by different hypoglycemic agents forestalled PI-producing ATM accumulation and adipose inflammation in these animals. We developed a diphtheria toxin receptor-based strategy to selectively ablate PI-BMDCs among ATMs. Application of the maneuver in HFD-fed type 2 diabetic mice was found to lead to near total disappearance of complex CLSs and reversal of insulin resistance and hepatosteatosis in these animals. In sum, we have identified a novel ATM subset in type 2 diabetic rodents that underlies systemic insulin resistance. PMID:25953849

  16. Targeted Overexpression of Inducible 6-Phosphofructo-2-kinase in Adipose Tissue Increases Fat Deposition but Protects against Diet-induced Insulin Resistance and Inflammatory Responses*

    PubMed Central

    Huo, Yuqing; Guo, Xin; Li, Honggui; Xu, Hang; Halim, Vera; Zhang, Weiyu; Wang, Huan; Fan, Yang-Yi; Ong, Kuok Teong; Woo, Shih-Lung; Chapkin, Robert S.; Mashek, Douglas G.; Chen, Yanming; Dong, Hui; Lu, Fuer; Wei, Lai; Wu, Chaodong

    2012-01-01

    Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues. PMID:22556414

  17. Cellular and molecular players in adipose tissue inflammation in the development of obesity-induced insulin resistance.

    PubMed

    Lee, Byung-Cheol; Lee, Jongsoon

    2014-03-01

    There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease. PMID:23707515

  18. Loss of White Adipose Hyperplastic Potential Is Associated with Enhanced Susceptibility to Insulin Resistance

    PubMed Central

    Kim, Soo M.; Lun, Mingyue; Wang, Mei; Senyo, Samuel E.; Guillermier, Christelle; Patwari, Parth; Steinhauser, Matthew L.

    2016-01-01

    SUMMARY Fat mass expansion occurs by adipocyte hypertrophy or recruitment of differentiating adipocyte progenitors, the relative balance of which may impact systemic metabolism. We measured adipogenesis in murine subcutaneous (sWAT) and visceral white adipose tissue (vWAT) using stable isotope methodology and then modeled adipocyte turnover. Birth and death rates were similar within depots; however, turnover was higher in vWAT relative to sWAT. In juvenile mice, obesity increased adipogenesis, but in adults, this was only seen in vWAT after prolonged high-fat feeding. Statistical modeling suggests differentiation of adipocyte progenitors without an accompanying self-renewing division step may partially explain the age-dependent decline in hyperplastic potential. Additional metabolic interrogation of obese mice demonstrated an association between adipocyte turnover and insulin sensitivity. These data therefore identify adipocyte hypertrophy as the dominant mechanism of adult fat mass expansion and support the paradoxical concept that metabolic disease ensues due to a failure of adipose tissue plasticity. PMID:25456741

  19. Enzamin ameliorates adipose tissue inflammation with impaired adipocytokine expression and insulin resistance in db/db mice.

    PubMed

    Tamura, Yukinori; Yano, Masato; Kawao, Naoyuki; Okumoto, Katsumi; Ueshima, Shigeru; Kaji, Hiroshi; Matsuo, Osamu

    2013-01-01

    The effects of Enzamin on obesity-related metabolic disorders in obese db/db mice were examined to explore a novel agent for the prevention of insulin resistance. Db/db mice were treated with water containing Enzamin (0·1 and 1·0 %) for 8 weeks from 6 weeks of age. Enzamin treatment at 1·0 %, but not at 0·1 %, significantly decreased the fasting plasma glucose, serum total cholesterol and TAG levels in db/db mice, without affecting body weight gain and body fat composition. Furthermore, insulin sensitivity and glucose tolerance were improved by the treatment of db/db mice with 1·0 % Enzamin. Immunohistochemical studies and gene expression analysis showed that 1·0 % Enzamin treatment suppressed macrophage accumulation and inflammation in the adipose tissue. In addition, 1·0 % Enzamin treatment increased serum adiponectin in db/db mice. Treatment with 1·0 % Enzamin also significantly suppressed the expression of NADPH oxidase subunits, suggesting an antioxidative effect for Enzamin in the adipose tissue. Furthermore, in vitro experiments demonstrated that the lipopolysaccharide-induced inflammatory reaction was significantly suppressed by Enzamin treatment in macrophages. Enzamin treatment increased the expression of GLUT4 mRNA in muscle, but not GLUT2 mRNA in the liver of db/db mice. Enzamin also increased the mRNA expression of carnitine palmitoyltransferase 1a (CPT1a, muscle isoform) in db/db mice, whereas Enzamin treatment did not affect the mRNA expression of CPT1b (liver isoform) in db/db mice. In conclusion, our data indicate that Enzamin can improve insulin resistance by ameliorating impaired adipocytokine expression, presumably through its anti-inflammatory action, and that Enzamin possesses a potential for preventing the metabolic syndrome. PMID:25191587

  20. SPARC is over-expressed in adipose tissues of diet-induced obese rats and causes insulin resistance in 3T3-L1 adipocytes.

    PubMed

    Shen, Yang; Zhao, Yuyan; Yuan, Lizhi; Yi, Wei; Zhao, Rui; Yi, Qianru; Yong, Tongwu

    2014-01-01

    Secreted protein acidic and rich in cysteine (SPARC) is a secretory multifunctional matricellular glycoprotein. High circulating levels of SPARC have been reported to be associated with obesity and insulin resistance. The aim of the present study was to investigate whether SPARC induces insulin resistance and mitochondrial dysfunction in adipocytes. Our results showed that feeding high fat diet to rats for 12 weeks significantly increased SPARC expression in adipose tissues at both mRNA and protein levels. Moreover, SPARC overexpression in stably transfected 3T3-L1 cells induced insulin resistance and mitochondrial dysfunction, as evidenced by inhibition of insulin-stimulated glucose transport, lower ATP synthesis and mitochondrial membrane potential, reduced expression of glucose transporter 4 (GLUT4), and increased levels of reactive oxygen species (ROS) in mature adipocytes. Finally, overexpression of SPARC also modulated the expression levels of several inflammatory cytokines, which play important roles in insulin resistance, glucose and lipid metabolism during adipogenesis. In conclusion, our data suggest that SPARC is involved in obesity-induced adipose insulin resistance and may serve as a potential target in the treatment of obesity and obesity-related insulin resistance. PMID:23910024

  1. Adipocyte lipolysis and insulin resistance.

    PubMed

    Morigny, Pauline; Houssier, Marianne; Mouisel, Etienne; Langin, Dominique

    2016-06-01

    Obesity-induced insulin resistance is a major risk factor for the development of type 2 diabetes. Basal fat cell lipolysis (i.e., fat cell triacylglycerol breakdown into fatty acids and glycerol in the absence of stimulatory factors) is elevated during obesity and is closely associated with insulin resistance. Inhibition of adipocyte lipolysis may therefore be a promising therapeutic strategy for treating insulin resistance and preventing obesity-associated type 2 diabetes. In this review, we explore the relationship between adipose lipolysis and insulin sensitivity. After providing an overview of the components of fat cell lipolytic machinery, we describe the hypotheses that may support the causality between lipolysis and insulin resistance. Excessive circulating fatty acids may ectopically accumulate in insulin-sensitive tissues and impair insulin action. Increased basal lipolysis may also modify the secretory profile of adipose tissue, influencing whole body insulin sensitivity. Finally, excessive fatty acid release may also worsen adipose tissue inflammation, a well-known parameter contributing to insulin resistance. Partial genetic or pharmacologic inhibition of fat cell lipases in mice as well as short term clinical trials using antilipolytic drugs in humans support the benefit of fat cell lipolysis inhibition on systemic insulin sensitivity and glucose metabolism, which occurs without an increase of fat mass. Modulation of fatty acid fluxes and, putatively, of fat cell secretory pattern may explain the amelioration of insulin sensitivity whereas changes in adipose tissue immune response do not seem involved. PMID:26542285

  2. Neonatal streptozotocin-induced diabetes mellitus: a model of insulin resistance associated with loss of adipose mass.

    PubMed

    Takada, Julie; Machado, Magaly A; Peres, Sidney B; Brito, Luciana C; Borges-Silva, Cristina N; Costa, Cecília E M; Fonseca-Alaniz, Miriam H; Andreotti, Sandra; Lima, Fabio Bessa

    2007-07-01

    The use of experimental models of diabetes mellitus (DM) has been useful in understanding the complex pathogenesis of DM. Streptozotocin (STZ) injected in rats during the neonatal period has usually led to the major features described in diabetic patients (hyperglycemia, polyphagia, polydipsia, polyuria, and abnormal glucose tolerance) in a short period. Diabetes mellitus is a product of low insulin sensibility and pancreatic beta-cell dysfunction. Its process is characterized by a symptomless prediabetic phase before the development of the disease. In this study, we investigated the long-term effects of diabetes induction regarding the cellular metabolic aspects of this model and its similarities with diabetes found in humans. Male Wistar rats (5-day old) were intraperitoneally injected with STZ (150 mg/kg) and followed up for 12 weeks. On the 12th week, animals were decapitated and peri-epididymal fat pads were excised for adipocyte isolation. The following studies were performed: insulin-stimulated 2-deoxy-d-[(3)H]glucose uptake; incorporation of d-[U-(14)C]-glucose into lipids and conversion into (14)CO(2); and insulin binding. The weight gain rate of the STZ-treated group became significantly lower by the eighth week. These rats developed polyphagia, polydipsia, polyuria, and glycosuria, and impaired glucose tolerance. Biological tests with isolated adipocytes revealed a reduction in the insulin receptor number and an impairment in their ability to oxidize glucose as well as to incorporate it into lipids. Interestingly, parallel to reduced body weight, the adipocyte size of STZ rats was significantly small. We concluded that apart of a decrease in pancreatic insulin content, this experimental model of DM promotes a remarkable and sustained picture of insulin resistance in adulthood that is strongly related to a loss in adipose mass. PMID:17570261

  3. Catalpol ameliorates high-fat diet-induced insulin resistance and adipose tissue inflammation by suppressing the JNK and NF-κB pathways.

    PubMed

    Zhou, Jun; Xu, Gang; Ma, Shuai; Li, Fen; Yuan, Miao; Xu, Huibi; Huang, Kaixun

    2015-11-27

    Catalpol, a bioactive component from the root of Rehmannia glutinosa, has been shown to possess hypoglycemic effects in type 2 diabetic animal models, however, the underlying mechanisms remain poorly understood. Here we investigated the effect of catalpol on high-fat diet (HFD)-induced insulin resistance and adipose tissue inflammation in mice. Oral administration of catalpol at 100 mg/kg for 4 weeks had no effect on body weight of HFD-induced obese mice, but it significantly improved fasting glucose and insulin levels, glucose tolerance and insulin tolerance. Moreover, macrophage infiltration into adipose tissue was markedly reduced by catalpol. Intriguingly, catalpol also significantly reduced mRNA expressions of M1 pro-inflammatory cytokines, but increased M2 anti-inflammatory gene expressions in adipose tissue. Concurrently, catalpol significantly suppressed the c-Jun NH2-terminal kinase (JNK) and nuclear factor-kappa B (NF-κB) signaling pathways in adipose tissue. Collectively, these results suggest that catalpol may ameliorate HFD-induced insulin resistance in mice by attenuating adipose tissue inflammation and suppressing the JNK and NF-κB pathways, and thus provide important new insights into the underlying mechanisms of the antidiabetic effect of catalpol. PMID:26474703

  4. Dietary sardine protein lowers insulin resistance, leptin and TNF-α and beneficially affects adipose tissue oxidative stress in rats with fructose-induced metabolic syndrome.

    PubMed

    Madani, Zohra; Louchami, Karim; Sener, Abdullah; Malaisse, Willy J; Ait Yahia, Dalila

    2012-02-01

    The present study aims at exploring the effects of sardine protein on insulin resistance, plasma lipid profile, as well as oxidative and inflammatory status in rats with fructose-induced metabolic syndrome. Rats were fed sardine protein (S) or casein (C) diets supplemented or not with high-fructose (HF) for 2 months. Rats fed the HF diets had greater body weight and adiposity and lower food intake as compared to control rats. Increased plasma glucose, insulin, HbA1C, triacylglycerols, free fatty acids and impaired glucose tolerance and insulin resistance was observed in HF-fed rats. Moreover, a decline in adipose tissues antioxidant status and a rise in lipid peroxidation and plasma TNF-α and fibrinogen were noted. Rats fed sardine protein diets exhibited lower food intake and fat mass than those fed casein diets. Sardine protein diets diminished plasma insulin and insulin resistance. Plasma triacylglycerol and free fatty acids were also lower, while those of α-tocopherol, taurine and calcium were enhanced as compared to casein diets. Moreover, S-HF diet significantly decreased plasma glucose and HbA1C. Sardine protein consumption lowered hydroperoxide levels in perirenal and brown adipose tissues. The S-HF diet, as compared to C-HF diet decreased epididymal hydroperoxides. Feeding sardine protein diets decreased brown adipose tissue carbonyls and increased glutathione peroxidase activity. Perirenal and epididymal superoxide dismutase and catalase activities and brown catalase activity were significantly greater in S-HF group than in C-HF group. Sardine protein diets also prevented hyperleptinemia and reduced inflammatory status in comparison with rats fed casein diets. Taken together, these results support the beneficial effect of sardine protein in fructose-induced metabolic syndrome on such variables as hyperglycemia, insulin resistance, hyperlipidemia and oxidative and inflammatory status, suggesting the possible use of sardine protein as a protective

  5. Relationships among Body Condition, Insulin Resistance and Subcutaneous Adipose Tissue Gene Expression during the Grazing Season in Mares.

    PubMed

    Selim, Shaimaa; Elo, Kari; Jaakkola, Seija; Karikoski, Ninja; Boston, Ray; Reilas, Tiina; Särkijärvi, Susanna; Saastamoinen, Markku; Kokkonen, Tuomo

    2015-01-01

    Obesity and insulin resistance have been shown to be risk factors for laminitis in horses. The objective of the study was to determine the effect of changes in body condition during the grazing season on insulin resistance and the expression of genes associated with obesity and insulin resistance in subcutaneous adipose tissue (SAT). Sixteen Finnhorse mares were grazing either on cultivated high-yielding pasture (CG) or semi-natural grassland (NG) from the end of May to the beginning of September. Body measurements, intravenous glucose tolerance test (IVGTT), and neck and tailhead SAT gene expressions were measured in May and September. At the end of grazing, CG had higher median body condition score (7 vs. 5.4, interquartile range 0.25 vs. 0.43; P=0.05) and body weight (618 kg vs. 572 kg ± 10.21 (mean ± SEM); P=0.02), and larger waist circumference (P=0.03) than NG. Neck fat thickness was not different between treatments. However, tailhead fat thickness was smaller in CG compared to NG in May (P=0.04), but this difference disappeared in September. Greater basal and peak insulin concentrations, and faster glucose clearance rate (P=0.03) during IVGTT were observed in CG compared to NG in September. A greater decrease in plasma non-esterified fatty acids during IVGTT (P<0.05) was noticed in CG compared to NG after grazing. There was down-regulation of insulin receptor, retinol binding protein 4, leptin, and monocyte chemoattractant protein-1, and up-regulation of adiponectin (ADIPOQ), adiponectin receptor 1 and stearoyl-CoA desaturase (SCD) gene expressions in SAT of both groups during the grazing season (P<0.05). Positive correlations were observed between ADIPOQ and its receptors and between SCD and ADIPOQ in SAT (P<0.01). In conclusion, grazing on CG had a moderate effect on responses during IVGTT, but did not trigger insulin resistance. Significant temporal differences in gene expression profiles were observed during the grazing season. PMID:25938677

  6. Relationships among Body Condition, Insulin Resistance and Subcutaneous Adipose Tissue Gene Expression during the Grazing Season in Mares

    PubMed Central

    Selim, Shaimaa; Elo, Kari; Jaakkola, Seija; Karikoski, Ninja; Boston, Ray; Reilas, Tiina; Särkijärvi, Susanna; Saastamoinen, Markku; Kokkonen, Tuomo

    2015-01-01

    Obesity and insulin resistance have been shown to be risk factors for laminitis in horses. The objective of the study was to determine the effect of changes in body condition during the grazing season on insulin resistance and the expression of genes associated with obesity and insulin resistance in subcutaneous adipose tissue (SAT). Sixteen Finnhorse mares were grazing either on cultivated high-yielding pasture (CG) or semi-natural grassland (NG) from the end of May to the beginning of September. Body measurements, intravenous glucose tolerance test (IVGTT), and neck and tailhead SAT gene expressions were measured in May and September. At the end of grazing, CG had higher median body condition score (7 vs. 5.4, interquartile range 0.25 vs. 0.43; P=0.05) and body weight (618 kg vs. 572 kg ± 10.21 (mean ± SEM); P=0.02), and larger waist circumference (P=0.03) than NG. Neck fat thickness was not different between treatments. However, tailhead fat thickness was smaller in CG compared to NG in May (P=0.04), but this difference disappeared in September. Greater basal and peak insulin concentrations, and faster glucose clearance rate (P=0.03) during IVGTT were observed in CG compared to NG in September. A greater decrease in plasma non-esterified fatty acids during IVGTT (P<0.05) was noticed in CG compared to NG after grazing. There was down-regulation of insulin receptor, retinol binding protein 4, leptin, and monocyte chemoattractant protein-1, and up-regulation of adiponectin (ADIPOQ), adiponectin receptor 1 and stearoyl-CoA desaturase (SCD) gene expressions in SAT of both groups during the grazing season (P<0.05). Positive correlations were observed between ADIPOQ and its receptors and between SCD and ADIPOQ in SAT (P<0.01). In conclusion, grazing on CG had a moderate effect on responses during IVGTT, but did not trigger insulin resistance. Significant temporal differences in gene expression profiles were observed during the grazing season. PMID:25938677

  7. CD44 Plays a Critical Role in Regulating Diet-Induced Adipose Inflammation, Hepatic Steatosis, and Insulin Resistance

    PubMed Central

    Kang, Hong Soon; Liao, Grace; DeGraff, Laura M.; Gerrish, Kevin; Bortner, Carl D.; Garantziotis, Stavros; Jetten, Anton M.

    2013-01-01

    CD44 is a multifunctional membrane receptor implicated in the regulation of several biological processes, including inflammation. CD44 expression is elevated in liver and white adipose tissue (WAT) during obesity suggesting a possible regulatory role for CD44 in metabolic syndrome. To study this hypothesis, we examined the effect of the loss of CD44 expression on the development of various features of metabolic syndrome using CD44 null mice. Our study demonstrates that CD44-deficient mice (CD44KO) exhibit a significantly reduced susceptibility to the development of high fat-diet (HFD)-induced hepatic steatosis, WAT-associated inflammation, and insulin resistance. The decreased expression of genes involved in fatty acid synthesis and transport (Fasn and Cd36), de novo triglyceride synthesis (Mogat1), and triglyceride accumulation (Cidea, Cidec) appears in part responsible for the reduced hepatic lipid accumulation in CD44KO(HFD) mice. In addition, the expression of various inflammatory and cell matrix genes, including several chemokines and its receptors, osteopontin, and several matrix metalloproteinases and collagen genes was greatly diminished in CD44KO(HFD) liver consistent with reduced inflammation and fibrogenesis. In contrast, lipid accumulation was significantly increased in CD44KO(HFD) WAT, whereas inflammation as indicated by the reduced infiltration of macrophages and expression of macrophage marker genes, was significantly diminished in WAT of CD44KO(HFD) mice compared to WT(HFD) mice. CD44KO(HFD) mice remained considerably more insulin sensitive and glucose tolerant than WT(HFD) mice and exhibited lower blood insulin levels. Our study indicates that CD44 plays a critical role in regulating several aspects of metabolic syndrome and may provide a new therapeutic target in the management of insulin resistance. PMID:23505504

  8. The Roles of Adipokines, Proinflammatory Cytokines, and Adipose Tissue Macrophages in Obesity-Associated Insulin Resistance in Modest Obesity and Early Metabolic Dysfunction

    PubMed Central

    Kim, Ji Min; Joung, Kyong Hye; Lee, Ju Hee; You, Bo Ram; Choi, Min Jeong; Ryu, Min Jeong; Ko, Young Bok; Lee, Min A.; Lee, Junguee; Ku, Bon Jeong; Shong, Minho; Lee, Ki Hwan; Kim, Hyun Jin

    2016-01-01

    The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance have been explored in both animal and human studies. However, our current understanding of obesity-associated insulin resistance relies on studies of artificial metabolic extremes. The purpose of this study was to explore the roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in human patients with modest obesity and early metabolic dysfunction. We obtained omental adipose tissue and fasting blood samples from 51 females undergoing gynecologic surgery. We investigated serum concentrations of proinflammatory cytokines and adipokines as well as the mRNA expression of proinflammatory and macrophage phenotype markers in visceral adipose tissue using ELISA and quantitative RT-PCR. We measured adipose tissue inflammation and macrophage infiltration using immunohistochemical analysis. Serum levels of adiponectin and leptin were significantly correlated with HOMA-IR and body mass index. The levels of expression of MCP-1 and TNF-α in visceral adipose tissue were also higher in the obese group (body mass index ≥ 25). The expression of mRNA MCP-1 in visceral adipose tissue was positively correlated with body mass index (r = 0.428, p = 0.037) but not with HOMA-IR, whereas TNF-α in visceral adipose tissue was correlated with HOMA-IR (r = 0.462, p = 0.035) but not with body mass index. There was no obvious change in macrophage phenotype or macrophage infiltration in patients with modest obesity or early metabolic dysfunction. Expression of mRNA CD163/CD68 was significantly related to mitochondrial-associated genes and serum inflammatory cytokine levels of resistin and leptin. These results suggest that changes in the production of inflammatory biomolecules precede increased immune cell infiltration and induction of a macrophage phenotype switch in visceral adipose tissue. Furthermore, serum resistin and leptin have specific

  9. Lack of Adipocyte AMPK Exacerbates Insulin Resistance and Hepatic Steatosis through Brown and Beige Adipose Tissue Function.

    PubMed

    Mottillo, Emilio P; Desjardins, Eric M; Crane, Justin D; Smith, Brennan K; Green, Alex E; Ducommun, Serge; Henriksen, Tora I; Rebalka, Irena A; Razi, Aida; Sakamoto, Kei; Scheele, Camilla; Kemp, Bruce E; Hawke, Thomas J; Ortega, Joaquin; Granneman, James G; Steinberg, Gregory R

    2016-07-12

    Brown (BAT) and white (WAT) adipose tissues play distinct roles in maintaining whole-body energy homeostasis, and their dysfunction can contribute to non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes. The AMP-activated protein kinase (AMPK) is a cellular energy sensor, but its role in regulating BAT and WAT metabolism is unclear. We generated an inducible model for deletion of the two AMPK β subunits in adipocytes (iβ1β2AKO) and found that iβ1β2AKO mice were cold intolerant and resistant to β-adrenergic activation of BAT and beiging of WAT. BAT from iβ1β2AKO mice had impairments in mitochondrial structure, function, and markers of mitophagy. In response to a high-fat diet, iβ1β2AKO mice more rapidly developed liver steatosis as well as glucose and insulin intolerance. Thus, AMPK in adipocytes is vital for maintaining mitochondrial integrity, responding to pharmacological agents and thermal stress, and protecting against nutrient-overload-induced NAFLD and insulin resistance. PMID:27411013

  10. Obesogenic memory can confer long-term increases in adipose tissue but not liver inflammation and insulin resistance after weight loss

    PubMed Central

    Schmitz, J.; Evers, N.; Awazawa, M.; Nicholls, H.T.; Brönneke, H.S.; Dietrich, A.; Mauer, J.; Blüher, M.; Brüning, J.C.

    2016-01-01

    Objective Obesity represents a major risk factor for the development of type 2 diabetes mellitus, atherosclerosis and certain cancer entities. Treatment of obesity is hindered by the long-term maintenance of initially reduced body weight, and it remains unclear whether all pathologies associated with obesity are fully reversible even upon successfully maintained weight loss. Methods We compared high fat diet-fed, weight reduced and lean mice in terms of body weight development, adipose tissue and liver insulin sensitivity as well as inflammatory gene expression. Moreover, we assessed similar parameters in a human cohort before and after bariatric surgery. Results Compared to lean animals, mice that demonstrated successful weight reduction showed increased weight gain following exposure to ad libitum control diet. However, pair-feeding weight-reduced mice with lean controls efficiently stabilized body weight, indicating that hyperphagia was the predominant cause for the observed weight regain. Additionally, whereas glucose tolerance improved rapidly after weight loss, systemic insulin resistance was retained and ameliorated only upon prolonged pair-feeding. Weight loss enhanced insulin action and resolved pro-inflammatory gene expression exclusively in the liver, whereas visceral adipose tissue displayed no significant improvement of metabolic and inflammatory parameters compared to obese mice. Similarly, bariatric surgery in humans (n = 55) resulted in massive weight reduction, improved hepatic inflammation and systemic glucose homeostasis, while adipose tissue inflammation remained unaffected and adipocyte-autonomous insulin action only exhibit minor improvements in a subgroup of patients (42%). Conclusions These results demonstrate that although sustained weight loss improves systemic glucose homeostasis, primarily through improved inflammation and insulin action in liver, a remarkable obesogenic memory can confer long-term increases in adipose tissue

  11. GLUT4 Defects in Adipose Tissue Are Early Signs of Metabolic Alterations in Alms1GT/GT, a Mouse Model for Obesity and Insulin Resistance

    PubMed Central

    Collin, Gayle B.; Marshall, Jan D.; Stasi, Fabio; Maffei, Pietro; Vettor, Roberto; Naggert, Jürgen K.

    2014-01-01

    Dysregulation of signaling pathways in adipose tissue leading to insulin resistance can contribute to the development of obesity-related metabolic disorders. Alström Syndrome, a recessive ciliopathy, caused by mutations in ALMS1, is characterized by progressive metabolic alterations such as childhood obesity, hyperinsulinemia, and type 2 diabetes. Here we investigated the role of Alms1 disruption in AT expansion and insulin responsiveness in a murine model for Alström Syndrome. A gene trap insertion in Alms1 on the insulin sensitive C57BL6/Ei genetic background leads to early hyperinsulinemia and a progressive increase in body weight. At 6 weeks of age, before the onset of the metabolic disease, the mutant mice had enlarged fat depots with hypertrophic adipocytes, but without signs of inflammation. Expression of lipogenic enzymes was increased. Pre-adipocytes isolated from mutant animals demonstrated normal adipogenic differentiation but gave rise to mature adipocytes with reduced insulin-stimulated glucose uptake. Assessment of whole body glucose homeostasis revealed glucose intolerance. Insulin stimulation resulted in proper AKT phosphorylation in adipose tissue. However, the total amount of glucose transporter 4 (SLC4A2) and its translocation to the plasma membrane were reduced in mutant adipose depots compared to wildtype littermates. Alterations in insulin stimulated trafficking of glucose transporter 4 are an early sign of metabolic dysfunction in Alström mutant mice, providing a possible explanation for the reduced glucose uptake and the compensatory hyperinsulinemia. The metabolic signaling deficits either reside downstream or are independent of AKT activation and suggest a role for ALMS1 in GLUT4 trafficking. Alström mutant mice represent an interesting model for the development of metabolic disease in which adipose tissue with a reduced glucose uptake can expand by de novo lipogenesis to an obese state. PMID:25299671

  12. GLUT4 defects in adipose tissue are early signs of metabolic alterations in Alms1GT/GT, a mouse model for obesity and insulin resistance.

    PubMed

    Favaretto, Francesca; Milan, Gabriella; Collin, Gayle B; Marshall, Jan D; Stasi, Fabio; Maffei, Pietro; Vettor, Roberto; Naggert, Jürgen K

    2014-01-01

    Dysregulation of signaling pathways in adipose tissue leading to insulin resistance can contribute to the development of obesity-related metabolic disorders. Alström Syndrome, a recessive ciliopathy, caused by mutations in ALMS1, is characterized by progressive metabolic alterations such as childhood obesity, hyperinsulinemia, and type 2 diabetes. Here we investigated the role of Alms1 disruption in AT expansion and insulin responsiveness in a murine model for Alström Syndrome. A gene trap insertion in Alms1 on the insulin sensitive C57BL6/Ei genetic background leads to early hyperinsulinemia and a progressive increase in body weight. At 6 weeks of age, before the onset of the metabolic disease, the mutant mice had enlarged fat depots with hypertrophic adipocytes, but without signs of inflammation. Expression of lipogenic enzymes was increased. Pre-adipocytes isolated from mutant animals demonstrated normal adipogenic differentiation but gave rise to mature adipocytes with reduced insulin-stimulated glucose uptake. Assessment of whole body glucose homeostasis revealed glucose intolerance. Insulin stimulation resulted in proper AKT phosphorylation in adipose tissue. However, the total amount of glucose transporter 4 (SLC4A2) and its translocation to the plasma membrane were reduced in mutant adipose depots compared to wildtype littermates. Alterations in insulin stimulated trafficking of glucose transporter 4 are an early sign of metabolic dysfunction in Alström mutant mice, providing a possible explanation for the reduced glucose uptake and the compensatory hyperinsulinemia. The metabolic signaling deficits either reside downstream or are independent of AKT activation and suggest a role for ALMS1 in GLUT4 trafficking. Alström mutant mice represent an interesting model for the development of metabolic disease in which adipose tissue with a reduced glucose uptake can expand by de novo lipogenesis to an obese state. PMID:25299671

  13. ALOX5AP Overexpression in Adipose Tissue Leads to LXA4 Production and Protection Against Diet-Induced Obesity and Insulin Resistance.

    PubMed

    Elias, Ivet; Ferré, Tura; Vilà, Laia; Muñoz, Sergio; Casellas, Alba; Garcia, Miquel; Molas, Maria; Agudo, Judith; Roca, Carles; Ruberte, Jesús; Bosch, Fatima; Franckhauser, Sylvie

    2016-08-01

    Eicosanoids, such as leukotriene B4 (LTB4) and lipoxin A4 (LXA4), may play a key role during obesity. While LTB4 is involved in adipose tissue inflammation and insulin resistance, LXA4 may exert anti-inflammatory effects and alleviate hepatic steatosis. Both lipid mediators derive from the same pathway, in which arachidonate 5-lipoxygenase (ALOX5) and its partner, arachidonate 5-lipoxygenase-activating protein (ALOX5AP), are involved. ALOX5 and ALOX5AP expression is increased in humans and rodents with obesity and insulin resistance. We found that transgenic mice overexpressing ALOX5AP in adipose tissue had higher LXA4 rather than higher LTB4 levels, were leaner, and showed increased energy expenditure, partly due to browning of white adipose tissue (WAT). Upregulation of hepatic LXR and Cyp7a1 led to higher bile acid synthesis, which may have contributed to increased thermogenesis. In addition, transgenic mice were protected against diet-induced obesity, insulin resistance, and inflammation. Finally, treatment of C57BL/6J mice with LXA4, which showed browning of WAT, strongly suggests that LXA4 is responsible for the transgenic mice phenotype. Thus, our data support that LXA4 may hold great potential for the future development of therapeutic strategies for obesity and related diseases. PMID:27207555

  14. Calcium supplementation reverts central adiposity, leptin, and insulin resistance in adult offspring programed by neonatal nicotine exposure.

    PubMed

    Nobre, J L; Lisboa, P C; Santos-Silva, A P; Lima, N S; Manhães, A C; Nogueira-Neto, J F; Cabanelas, A; Pazos-Moura, C C; Moura, E G; de Oliveira, E

    2011-09-01

    Obesity is a worldwide epidemic. Calcium influences energy metabolism regulation, causing body weight loss. Because maternal nicotine exposure during lactation programs for obesity, hyperleptinemia, insulin resistance (IR), and hypothyroidism, we decided to evaluate the possible effect of dietary calcium supplementation on these endocrine dysfunctions in this experimental model. Osmotic minipumps containing nicotine solution (N: 6 mg/kg per day for 14 days) or saline (C) were s.c. implanted in lactating rats 2 days after giving birth (P2). At P120, N and C offspring were subdivided into four groups: 1) C - standard diet; 2) C with calcium supplementation (CCa, 10 g calcium carbonate/kg rat chow); 3) N - standard diet; and 4) N with calcium supplementation (NCa). Rats were killed at P180. As expected, N offspring showed higher visceral and total body fat, hyperleptinemia, lower hypothalamus leptin receptor (OB-R) content, hyperinsulinemia, and higher IR index. Also, higher tyrosine hydroxylase (TH) expression (+51%), catecholamine content (+37%), and serum 25-hydroxyvitamin D(3) (+76%) were observed in N offspring. Dietary calcium supplementation reversed adiposity, hyperleptinemia, OB-R underexpression, IR, TH overexpression, and vitamin D. However, this supplementation did not reverse hypothyroidism. In NCa offspring, Sirt1 mRNA was lower in visceral fat (-37%) and higher in liver (+42%). In conclusion, dietary calcium supplementation seems to revert most of the metabolic syndrome parameters observed in adult offspring programed by maternal nicotine exposure during lactation. It is conceivable that the reduction in fat mass per se, induced by calcium therapy, is the main mechanism that leads to the increment of insulin action. PMID:21680618

  15. Delayed Intervention With Pyridoxamine Improves Metabolic Function and Prevents Adipose Tissue Inflammation and Insulin Resistance in High-Fat Diet-Induced Obese Mice.

    PubMed

    Maessen, Dionne E; Brouwers, Olaf; Gaens, Katrien H; Wouters, Kristiaan; Cleutjens, Jack P; Janssen, Ben J; Miyata, Toshio; Stehouwer, Coen D; Schalkwijk, Casper G

    2016-04-01

    Obesity is associated with an increased risk for the development of type 2 diabetes and vascular complications. Advanced glycation end products are increased in adipose tissue and have been associated with insulin resistance, vascular dysfunction, and inflammation of adipose tissue. Here, we report that delayed intervention with pyridoxamine (PM), a vitamin B6 analog that has been identified as an antiglycating agent, protected against high-fat diet (HFD)-induced body weight gain, hyperglycemia, and hypercholesterolemia, compared with mice that were not treated. In both HFD-induced and db/db obese mice, impaired glucose metabolism and insulin resistance were prevented by PM supplementation. PM inhibited the expansion of adipose tissue and adipocyte hypertrophy in mice. In addition, adipogenesis of murine 3T3-L1 and human Simpson-Golabi-Behmel Syndrome preadipocytes was dose- and time-dependently reduced by PM, as demonstrated by Oil Red O staining and reduced expression of adipogenic differentiation genes. No ectopic fat deposition was found in the liver of HFD mice. The high expression of proinflammatory genes in visceral adipose tissue of the HFD group was significantly attenuated by PM. Treatment with PM partially prevented HFD-induced mild vascular dysfunction. Altogether, these findings highlight the potential of PM to serve as an intervention strategy in obesity. PMID:26718500

  16. Autologous subcutaneous adipose tissue transplants improve adipose tissue metabolism and reduce insulin resistance and fatty liver in diet-induced obesity rats.

    PubMed

    Torres-Villalobos, Gonzalo; Hamdan-Pérez, Nashla; Díaz-Villaseñor, Andrea; Tovar, Armando R; Torre-Villalvazo, Ivan; Ordaz-Nava, Guillermo; Morán-Ramos, Sofía; Noriega, Lilia G; Martínez-Benítez, Braulio; López-Garibay, Alejandro; Torres-Landa, Samuel; Ceballos-Cantú, Juan C; Tovar-Palacio, Claudia; Figueroa-Juárez, Elizabeth; Hiriart, Marcia; Medina-Santillán, Roberto; Castillo-Hernández, Carmen; Torres, Nimbe

    2016-09-01

    Long-term dietary and pharmacological treatments for obesity have been questioned, particularly in individuals with severe obesity, so a new approach may involve adipose tissue transplants, particularly autologous transplants. Thus, the aim of this study was to evaluate the metabolic effects of autologous subcutaneous adipose tissue (SAT) transplants into two specific intraabdominal cavity sites (omental and retroperitoneal) after 90 days. The study was performed using two different diet-induced obesity (DIO) rat models: one using a high-fat diet (HFD) and the other using a high-carbohydrate diet (HCHD). Autologous SAT transplant reduced hypertrophic adipocytes, improved insulin sensitivity, reduced hepatic lipid content, and fasting serum-free fatty acids (FFAs) concentrations in the two DIO models. In addition, the reductions in FFAs and glycerol were accompanied by a greater reduction in lipolysis, assessed via the phosphorylation status of HSL, in the transplanted adipose tissue localized in the omentum compared with that localized in the retroperitoneal compartment. Therefore, the improvement in hepatic lipid content after autologous SAT transplant may be partially attributed to a reduction in lipolysis in the transplanted adipose tissue in the omentum due to the direct drainage of FFAs into the liver. The HCHD resulted in elevated fasting and postprandial serum insulin levels, which were dramatically reduced by the autologous SAT transplant. In conclusion, the specific intraabdominal localization of the autologous SAT transplant improved the carbohydrate and lipid metabolism of adipose tissue in obese rats and selectively corrected the metabolic parameters that are dependent on the type of diet used to generate the DIO model. PMID:27582062

  17. PPARγ activation alters fatty acid composition in adipose triglyceride, in addition to proliferation of small adipocytes, in insulin resistant high-fat fed rats.

    PubMed

    Sato, Daisuke; Oda, Kanako; Kusunoki, Masataka; Nishina, Atsuyoshi; Takahashi, Kazuaki; Feng, Zhonggang; Tsutsumi, Kazuhiko; Nakamura, Takao

    2016-02-15

    It was reported that adipocyte size is potentially correlated in part to amount of long chain polyunsaturated fatty acids (PUFAs) and insulin resistance because several long chain PUFAs can be ligands of peroxisome proliferator-activated receptors (PPARs). In our previous study, marked reduction of PUFAs was observed in insulin-resistant high-fat fed rats, which may indicate that PUFAs are consumed to improve insulin resistance. Although PPARγ agonist, well known as an insulin sensitizer, proliferates small adipocytes, the effects of PPARγ agonist on FA composition in adipose tissue have not been clarified yet. In the present study, we administered pioglitazone, a PPARγ agonist, to high-fat fed rats, and measured their FA composition of triglyceride fraction in adipose tissue and adipocyte diameters in pioglitazone-treated (PIO) and non-treated (control) rats. Insulin sensitivity was obtained with hyperinsulinemic euglycemic clamp. Average adipocyte diameter in the PIO group were smaller than that in the control one without change in tissue weight. In monounsaturated FAs (MUFAs), 14:1n-5, 16:1n-7, and 18:1n-9 contents in the PIO group were lower than those, respectively, in the control group. In contrast, 22:6n-3, 20:3n-6, 20:4n-6, and 22:4n-6 contents in the PIO group were higher than those, respectively, in the control group. Insulin sensitivity was higher in the PIO group than in the control one. These findings suggest that PPARγ activation lowered MUFAs whereas suppressed most of C20 or C22 PUFAs reduction, and that the change of fatty acid composition may be relevant with increase in small adipocytes. PMID:26825545

  18. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance

    PubMed Central

    Fang, Sungsoon; Suh, Jae Myoung; Reilly, Shannon M; Yu, Elizabeth; Osborn, Olivia; Lackey, Denise; Yoshihara, Eiji; Perino, Alessia; Jacinto, Sandra; Lukasheva, Yelizaveta; Atkins, Annette R; Khvat, Alexander; Schnabl, Bernd; Yu, Ruth T; Brenner, David A; Coulter, Sally; Liddle, Christopher; Schoonjans, Kristina; Olefsky, Jerrold M; Saltiel, Alan R; Downes, Michael; Evans, Ronald M

    2015-01-01

    The systemic expression of the bile acid (BA) sensor farnesoid X receptor (FXR) has led to promising new therapies targeting cholesterol metabolism, triglyceride production, hepatic steatosis and biliary cholestasis. In contrast to systemic therapy, bile acid release during a meal selectively activates intestinal FXR. By mimicking this tissue-selective effect, the gut-restricted FXR agonist fexaramine (Fex) robustly induces enteric fibroblast growth factor 15 (FGF15), leading to alterations in BA composition, but does so without activating FXR target genes in the liver. However, unlike systemic agonism, we find that Fex reduces diet-induced weight gain, body-wide inflammation and hepatic glucose production, while enhancing thermogenesis and browning of white adipose tissue (WAT). These pronounced metabolic improvements suggest tissue-restricted FXR activation as a new approach in the treatment of obesity and metabolic syndrome. PMID:25559344

  19. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance.

    PubMed

    Fang, Sungsoon; Suh, Jae Myoung; Reilly, Shannon M; Yu, Elizabeth; Osborn, Olivia; Lackey, Denise; Yoshihara, Eiji; Perino, Alessia; Jacinto, Sandra; Lukasheva, Yelizaveta; Atkins, Annette R; Khvat, Alexander; Schnabl, Bernd; Yu, Ruth T; Brenner, David A; Coulter, Sally; Liddle, Christopher; Schoonjans, Kristina; Olefsky, Jerrold M; Saltiel, Alan R; Downes, Michael; Evans, Ronald M

    2015-02-01

    The systemic expression of the bile acid (BA) sensor farnesoid X receptor (FXR) has led to promising new therapies targeting cholesterol metabolism, triglyceride production, hepatic steatosis and biliary cholestasis. In contrast to systemic therapy, bile acid release during a meal selectively activates intestinal FXR. By mimicking this tissue-selective effect, the gut-restricted FXR agonist fexaramine (Fex) robustly induces enteric fibroblast growth factor 15 (FGF15), leading to alterations in BA composition, but does so without activating FXR target genes in the liver. However, unlike systemic agonism, we find that Fex reduces diet-induced weight gain, body-wide inflammation and hepatic glucose production, while enhancing thermogenesis and browning of white adipose tissue (WAT). These pronounced metabolic improvements suggest tissue-restricted FXR activation as a new approach in the treatment of obesity and metabolic syndrome. PMID:25559344

  20. HMGA1 overexpression in adipose tissue impairs adipogenesis and prevents diet-induced obesity and insulin resistance

    PubMed Central

    Arce-Cerezo, Altamira; García, Miquel; Rodríguez-Nuevo, Aida; Crosa-Bonell, Mireia; Enguix, Natalia; Peró, Albert; Muñoz, Sergio; Roca, Carles; Ramos, David; Franckhauser, Sylvie; Elias, Ivet; Ferre, Tura; Pujol, Anna; Ruberte, Jesús; Villena, Josep A.; Bosch, Fàtima; Riu, Efrén

    2015-01-01

    High-Mobility-Group-A1 (HMGA1) proteins are non-histone proteins that regulate chromatin structure and gene expression during embryogenesis, tumourigenesis and immune responses. In vitro studies suggest that HMGA1 proteins may be required to regulate adipogenesis. To examine the role of HMGA1 in vivo, we generated transgenic mice overexpressing HMGA1 in adipose tissues. HMGA1 transgenic mice showed a marked reduction in white and brown adipose tissue mass that was associated with downregulation of genes involved in adipogenesis and concomitant upregulation of preadipocyte markers. Reduced adipogenesis and decreased fat mass were not associated with altered glucose homeostasis since HMGA1 transgenic mice fed a regular-chow diet exhibited normal glucose tolerance and insulin sensitivity. However, when fed a high-fat diet, overexpression of HMGA1 resulted in decreased body-weight gain, reduced fat mass, but improved insulin sensitivity and glucose tolerance. Although HMGA1 transgenic mice exhibited impaired glucose uptake in adipose tissue due to impaired adipogenesis, the increased glucose uptake observed in skeletal muscle may account for the improved glucose homeostasis. Our results indicate that HMGA1 plays an important function in the regulation of white and brown adipogenesis in vivo and suggests that impaired adipocyte differentiation and decreased fat mass is not always associated with impaired whole-body glucose homeostasis. PMID:26411793

  1. Selective Insulin Resistance in Adipocytes*

    PubMed Central

    Tan, Shi-Xiong; Fisher-Wellman, Kelsey H.; Fazakerley, Daniel J.; Ng, Yvonne; Pant, Himani; Li, Jia; Meoli, Christopher C.; Coster, Adelle C. F.; Stöckli, Jacqueline; James, David E.

    2015-01-01

    Aside from glucose metabolism, insulin regulates a variety of pathways in peripheral tissues. Under insulin-resistant conditions, it is well known that insulin-stimulated glucose uptake is impaired, and many studies attribute this to a defect in Akt signaling. Here we make use of several insulin resistance models, including insulin-resistant 3T3-L1 adipocytes and fat explants prepared from high fat-fed C57BL/6J and ob/ob mice, to comprehensively distinguish defective from unaffected aspects of insulin signaling and its downstream consequences in adipocytes. Defective regulation of glucose uptake was observed in all models of insulin resistance, whereas other major actions of insulin such as protein synthesis and anti-lipolysis were normal. This defect corresponded to a reduction in the maximum response to insulin. The pattern of change observed for phosphorylation in the Akt pathway was inconsistent with a simple defect at the level of Akt. The only Akt substrate that showed consistently reduced phosphorylation was the RabGAP AS160 that regulates GLUT4 translocation. We conclude that insulin resistance in adipose tissue is highly selective for glucose metabolism and likely involves a defect in one of the components regulating GLUT4 translocation to the cell surface in response to insulin. PMID:25720492

  2. An observational study of the association among interatrial adiposity by computed tomography measure, insulin resistance, and left atrial electromechanical disturbances in heart failure.

    PubMed

    Hung, Chung-Lieh; Yun, Chun-Ho; Lai, Yau-Huei; Sung, Kuo-Tzu; Bezerra, Hiram G; Kuo, Jen-Yuan; Hou, Charles Jia-Yin; Chao, Tze-Fan; Bulwer, Bernard E; Yeh, Hung-I; Shih, Shou-Chuan; Lin, Shing-Jong; Cury, Ricardo C

    2016-06-01

    Excessive visceral adiposity, hypothesized to be a key mediator in metabolic derangements, has recently been shown to exert toxic effects on cardiac structure and function. Data regarding the mechanistic link between regional adiposity, left atrial (LA) electromechanical remodeling, and heart failure with preserved ejection fraction (HFpEF) have been lacking.Various visceral adiposity measures, including pericardial fat (PCF), thoracic periaortic (TAT) fat, regional inter-atrial fat (IAF), and atrioventricular groove fat (AV Groove Fat), were assessed by multidetector computed tomography in 2 study cohorts (an annual health survey cohort and an outpatient cohort). We related such measures to cardiometabolic profiles in health survey cohort and LA electromechanical indices in our outpatient cohort, with Cox proportional hazards performed to examine the temporal trends of heart failure (HF).In our annual health survey cohort (n = 362), all 4 adiposity measures were positively related to unfavorable anthropometrics and systemic inflammation (high-sensitivity C-reactive protein) (all P < 0.05). In addition, both greater IAF and AV Groove Fat were positively associated with higher fasting glucose, HbA1c levels, and insulin resistance (all P < 0.05). In the outpatient cohort, the HFpEF group demonstrated the greatest adiposity measures, with greater IAF (≥8.2 mm, hazard ratio: 4.11, 95% confidence interval: 1.50-11.32) associated with reduced LA strain (ß-coef: -0.28), higher LA stiffness (ß-coef: 0.23), and longer P wave duration (ß-coef: 0.23) in multivariate models (all P < 0.05), and further related to higher HF hospitalization during follow-up.We therefore propose a possible pathophysiologic link among greater visceral adiposity, systemic inflammation, cardiometabolic risks, and HFpEF. Regional adiposity, especially IAF, was tightly linked to altered LA electromechanical properties and likely plays a key role in HF prognosis. PMID:27310996

  3. Naturally-occurring compensated insulin resistance selectively alters glucose transporters in visceral and subcutaneous adipose tissue without change in AS160 activation

    PubMed Central

    Waller, AP; Kohler, K; Burns, TA; Mudge, MC; Belknap, JK; Lacombe, VA

    2011-01-01

    Although the importance of adipose tissue (AT) glucose transport in regulating whole-body insulin sensitivity is becoming increasingly evident and insulin resistance (IR) has been widely recognized, the underlying mechanisms of IR are still not well understood. The purpose of the present study was to determine the early pathological changes in glucose transport by characterizing the alterations in glucose transporters (GLUT) in multiple visceral and subcutaneous adipose depots in a large animal model of naturally-occurring compensated IR. AT biopsies were collected from horses, which were classified as insulin-sensitive (IS) or compensated IR based on the results of an insulin-modified frequently-sampled intravenous glucose tolerance test. Protein expression of GLUT4 (major isoform) and GLUT12 (one of the most recently discovered isoforms) were measured by Western blotting in multiple AT depots, as well as AS160 (a potential key player in GLUT trafficking pathway). Using a biotinylated bis-mannose photolabeled technique, active cell surface GLUT content was quantified. Omental AT had the highest total GLUT content compared to other sites during the IS state. IR was associated with a significantly reduced total GLUT4 content in omental AT, without a change in content in other visceral or subcutaneous adipose sites. In addition, active cell surface GLUT-4, but not -12, was significantly lower in AT of IR compared to IS horses, without change in AS160 phosphorylation between groups. Our data suggest that GLUT4, but not GLUT12, is a pathogenic factor in AT during naturally-occurring compensated IR, despite normal AS160 activation. PMID:21352908

  4. Adverse Fat Depots and Marrow Adiposity Are Associated With Skeletal Deficits and Insulin Resistance in Long-Term Survivors of Pediatric Hematopoietic Stem Cell Transplantation.

    PubMed

    Mostoufi-Moab, Sogol; Magland, Jeremy; Isaacoff, Elizabeth J; Sun, Wenli; Rajapakse, Chamith S; Zemel, Babette; Wehrli, Felix; Shekdar, Karuna; Baker, Joshua; Long, Jin; Leonard, Mary B

    2015-09-01

    Allogeneic hematopoietic stem-cell transplantation (alloHSCT) survivors treated with total body irradiation (TBI) exhibit bone deficits and excess adiposity, potentially related to altered mesenchymal stem cell differentiation into osteoblasts or adipocytes. We examined associations among fat distribution, bone microarchitecture, and insulin resistance in alloHSCT survivors after TBI. This was a cross-sectional observational study of 25 alloHSCT survivors (aged 12 to 25 years) a median of 9.7 (4.3 to 19.3) years after alloHSCT compared to 25 age-, race-, and sex-matched healthy controls. Vertebral MR spectroscopic imaging and tibia micro-MRI were used to quantify marrow adipose tissue (MAT) and trabecular microarchitecture. Additional measures included DXA whole-body fat mass (WB-FM), leg lean mass (Leg-LM), trunk visceral adipose tissue (VAT), and CT calf muscle density. Insulin resistance in alloHSCT survivors was estimated by HOMA-IR. AlloHSCT survivors had lower Leg-LM (p < 0.001) and greater VAT (p < 0.01), MAT (p < 0.001), and fat infiltration of muscle (p = 0.04) independent of WB-FM, versus matched controls; BMI did not differ. Survivors had lower bone volume fraction and abnormal microarchitecture including greater erosion and more rod-like structure versus controls (all p = 0.04); 14 had vertebral deformities and two had compression fractures. Greater WB-FM, VAT, MAT, and muscle fat infiltration were associated with abnormal trabecular microarchitecture (p < 0.04 for all). AlloHSCT HOMA-IR was elevated, associated with younger age at transplantation (p < 0.01), and positively correlated with WB-FM and VAT (both p < 0.01). In conclusion, the markedly increased marrow adiposity, abnormal bone microarchitecture, and abnormal fat distribution highlight the risks of long-term treatment-related morbidity and mortality in alloHSCT recipients after TBI. Trabecular deterioration was associated with marrow and visceral adiposity. Furthermore, long-term survivors

  5. Adverse Fat Depots and Marrow Adiposity Are Associated with Skeletal Deficits and Insulin Resistance in Long-Term Survivors of Pediatric Hematopoietic Stem Cell Transplantation

    PubMed Central

    Mostoufi-Moab, Sogol; Magland, Jeremy; Isaacoff, Elizabeth J.; Sun, Wenli; Rajapakse, Chamith S.; Zemel, Babette; Wehrli, Felix; Shekdar, Karuna; Baker, Joshua; Long, Jin; Leonard, Mary B.

    2015-01-01

    Allogeneic hematopoietic stem-cell transplantation (alloHSCT) survivors treated with total body irradiation (TBI) exhibit bone deficits and excess adiposity, potentially related to altered mesenchymal stem cell differentiation into osteoblasts or adipocytes. We examined associations among fat distribution, bone microarchitecture, and insulin resistance in alloHSCT survivors after TBI. This was a cross-sectional observational study of 25 alloHSCT survivors (aged 12–25 years) a median of 9.7 (4.3–19.3) years after alloHSCT compared to 25 age-, race-, and sex-matched healthy controls. Vertebral MR spectroscopic imaging and tibia micro-MRI were used to quantify marrow adipose tissue (MAT) and trabecular microarchitecture. Additional measures included DXA whole-body fat mass (WB-FM), leg lean mass (Leg-LM), trunk visceral adipose tissue (VAT), and CT calf muscle density. Insulin resistance in alloHSCT survivors was estimated by HOMA-IR. AlloHSCT survivors had lower Leg-LM (p<0.001), and greater VAT (p<0.01), MAT (p<0.001) and fat infiltration of muscle (p=0.04) independent of WB-FM, vs. matched-controls; BMI did not differ. Survivors had lower bone volume fraction and abnormal microarchitecture including greater erosion and more rod-like structure vs. controls (all p=0.04); 14 had vertebral deformities and two had compression fractures. Greater WB-FM, VAT, MAT and muscle fat infiltration were associated with abnormal trabecular microarchitecture (p<0.04 for all). AlloHSCT HOMA-IR was elevated, associated with younger age at transplantation (p<0.01), and positively correlated with WB-FM and VAT (both p<0.01). In conclusion, the markedly increased marrow adiposity, abnormal bone microarchitecture, and abnormal fat distribution highlight the risks of long-term treatment-related morbidity and mortality in alloHSCT recipients after TBI. Trabecular deterioration was associated with marrow and visceral adiposity. Furthermore, long-term survivors demonstrated sarcopenic

  6. Insulin resistance and insulin sensitizers.

    PubMed

    Stumvoll, M; Häring, H

    2001-01-01

    Insulin resistance is a key factor in the pathogenesis of type 2 diabetes mellitus and a co-factor in the development of dyslipidaemia, hypertension and atherosclerosis. The causes of insulin resistance include factors such as obesity and physical inactivity, and there may also be genetic factors. The mechanism of obesity-related insulin resistance involves the release of factors from adipocytes which exert a negative effect on glucose metabolism: free fatty acids, tumour necrosis factor-alpha and the recently discovered hormone, resistin. The two resulting abnormalities observed consistently in glucose-intolerant states are impaired suppression of endogenous glucose production, and impaired stimulation of glucose uptake. Among the genetic factors, a polymorphism (Pro12Ala) in the peroxisome proliferator-activated receptor (PPAR) gamma is associated with a reduced risk of type 2 diabetes mellitus and increased insulin sensitivity, primarily that of lipolysis. On the other hand, the association with insulin resistance of a common polymorphism (Gly972Arg) in the insulin receptor substrate 1, long believed to be a plausible candidate gene, is weak at best. This polymorphism may instead be associated with reduced insulin secretion, which, in view of the recent recognition of the insulin signalling system in beta-cells, results in the development of a novel pathogenic concept. Finally, fine-mapping and positional cloning of the susceptibility locus on chromosome 2 resulted in the identification of a polymorphism (UCSNP-43 G/A) in the calpain-10 gene. In non-diabetic Pima Indians, this polymorphism was associated with insulin resistance of glucose disposal. The pharmacological treatment of insulin resistance has recently acquired a novel class of agents: the thiazolidinediones. They act through regulation of PPARgamma-dependent genes and probably interfere favourably with factors released from adipocytes which mediate obesity-associated insulin resistance. PMID:11684868

  7. Adipocyte insulin receptor activity maintains adipose tissue mass and lifespan.

    PubMed

    Friesen, Max; Hudak, Carolyn S; Warren, Curtis R; Xia, Fang; Cowan, Chad A

    2016-08-01

    Type 2 diabetes follows a well-defined progressive pathogenesis, beginning with insulin resistance in metabolic tissues such as the adipose. Intracellular signaling downstream of insulin receptor activation regulates critical metabolic functions of adipose tissue, including glucose uptake, lipogenesis, lipolysis and adipokine secretion. Previous studies have used the aP2 promoter to drive Cre recombinase expression in adipose tissue. Insulin receptor (IR) knockout mice created using this aP2-Cre strategy (FIRKO mice) were protected from obesity and glucose intolerance. Later studies demonstrated the promiscuity of the aP2 promoter, casting doubts upon the tissue specificity of aP2-Cre models. It is our goal to use the increased precision of the Adipoq promoter to investigate adipocyte-specific IR function. Towards this end we generated an adipocyte-specific IR knockout (AIRKO) mouse using an Adipoq-driven Cre recombinase. Here we report AIRKO mice are less insulin sensitive throughout life, and less glucose tolerant than wild-type (WT) littermates at the age of 16 weeks. In contrast to WT littermates, the insulin sensitivity of AIRKO mice is unaffected by age or dietary regimen. At any age, AIRKO mice are comparably insulin resistant to old or obese WT mice and have a significantly reduced lifespan. Similar results were obtained when these phenotypes were re-examined in FIRKO mice. We also found that the AIRKO mouse is protected from high-fat diet-induced weight gain, corresponding with a 90% reduction in tissue weight of major adipose depots compared to WT littermates. Adipose tissue mass reduction is accompanied by hepatomegaly and increased hepatic steatosis. These data indicate that adipocyte IR function is crucial to systemic energy metabolism and has profound effects on adiposity, hepatic homeostasis and lifespan. PMID:27246738

  8. Eicosapentaenoic acid reduces high-fat diet-induced insulin resistance by altering adipose tissue glycolytic and inflammatory function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We previously reported Eicosapentaenoic Acid (EPA)'s ability to prevent high-fat (HF) diet-induced obesity, insulin resistance, and inflammation. In this study, we dissected mechanisms mediating anti-inflammatory and anti-lipogenic actions of EPA, using histology/ immunohistochemistry, transcriptomi...

  9. Associations of visceral adiposity and exercise participation with C-reactive protein, insulin resistance, and endothelial dysfunction in Korean healthy adults.

    PubMed

    Kim, Kijin; Valentine, Rudy J; Shin, Yoonjung; Gong, Kyungmin

    2008-09-01

    The aim of the current study was to examine the associations of visceral adiposity and exercise participation with C-reactive protein (CRP), insulin resistance, and endothelial dysfunction in Korean adults selected from the general population. We studied 160 Korean adults (aged 41.3 +/- 13.0 years; n = 38 men and n = 122 women) who volunteered in a health promotion program. Subjects were divided into 2 groups based upon spontaneous exercise participation for using a cross-sectional approach. We measured anthropometric factors (body mass index [BMI], percentage body fat, waist-hip ratio [WHR], and abdominal fat area by computed tomographic scanning), blood pressure (BP), blood levels of glucose, lipids, fibrinogen, CRP, leptin, hemoglobin A(1c), homeostasis model assessment (HOMA), and carotid intima media thickness (IMT; via ultrasonography). Associations among the variables were assessed by Pearson partial correlation and linear regression, controlling for age and sex. Independent t tests were used to assess differences between exercise participants and nonparticipants. Significance was accepted at P < .05. As expected, the measures of adiposity (BMI, percentage body fat, WHR, abdominal fat area) were highly correlated with each other (r = .49-.86, P < .01). Blood levels of high-sensitivity CRP (hsCRP), leptin, and HOMA were modestly correlated with all measures of adiposity. Visceral fat area was the most important predictor of hsCRP, explaining 19.6% of the variance using stepwise linear regression analysis (P < .01). As visceral fat area tertiles increased from low to high, a significant stepwise increment in blood levels of CRP (P < .001), HOMA (P = .005), and left carotid IMT (P = .035) was observed. However, hsCRP and HOMA were not significantly different when compared across whole-body fat tertiles. Systolic BP, diastolic BP, and left carotid IMT were modestly correlated with WHR and visceral fat area (P < .05); but systolic BP and diastolic BP were also

  10. Spleen supports a pool of innate-like B cells in white adipose tissue that protects against obesity-associated insulin resistance.

    PubMed

    Wu, Lan; Parekh, Vrajesh V; Hsiao, Joseph; Kitamura, Daisuke; Van Kaer, Luc

    2014-10-28

    Lipid accumulation in obesity triggers a low-grade inflammation that results from an imbalance between pro- and anti-inflammatory components of the immune system and acts as the major underlying mechanism for the development of obesity-associated diseases, notably insulin resistance and type 2 diabetes. Innate-like B cells are a subgroup of B cells that respond to innate signals and modulate inflammatory responses through production of immunomodulatory mediators such as the anti-inflammatory cytokine IL-10. In this study, we examined innate-like B cells in visceral white adipose tissue (VAT) and the relationship of these cells with their counterparts in the peritoneal cavity and spleen during diet-induced obesity (DIO) in mice. We show that a considerable number of innate-like B cells bearing a surface phenotype distinct from the recently identified "adipose natural regulatory B cells" populate VAT of lean animals, and that spleen represents a source for the recruitment of these cells in VAT during DIO. However, demand for these cells in the expanding VAT outpaces their recruitment during DIO, and the obese environment in VAT further impairs their function. We further show that removal of splenic precursors of innate-like B cells through splenectomy exacerbates, whereas supplementation of these cells via adoptive transfer ameliorates, DIO-associated insulin resistance. Additional adoptive transfer experiments pointed toward a dominant role of IL-10 in mediating the protective effects of innate-like B cells against DIO-induced insulin resistance. These findings identify spleen-supplied innate-like B cells in VAT as previously unrecognized players and therapeutic targets for obesity-associated diseases. PMID:25313053

  11. Importance of adipocyte cyclooxygenase-2 and prostaglandin E2-prostaglandin E receptor 3 signaling in the development of obesity-induced adipose tissue inflammation and insulin resistance.

    PubMed

    Chan, Pei-Chi; Hsiao, Fone-Ching; Chang, Hao-Ming; Wabitsch, Martin; Hsieh, Po Shiuan

    2016-06-01

    We examined the involvement of adipocyte cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2)-prostaglandin E receptor (EP)3-mediated signaling during hypertrophy and hypoxia in the development of obesity-associated adipose tissue (AT) inflammation and insulin resistance. The experiments were conducted with high-fat diet (HFD)-induced obese rats, db/db mice, human subjects, and 3T3-L1 and the human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes; the groups were treated with selective inhibitors of COX-2 [celecoxib 30 mg/kg, half maximal inhibitory concentration (IC50) ≈ 0.04 µM] and EP3 (L-798106 100 µg/kg, IC50 ≈ 0.5 µM) or a short interfering RNA. There were strong, positive correlations between adipocyte COX-2 and EP3 gene expressions and the AT TNF-α and monocyte chemotactic protein-1 contents and the homeostatic model assessment for insulin resistance in HFD-induced obese rats, as well as body mass index in human subjects. Treatment with COX-2 and EP3 inhibitors significantly reversed AT inflammatory gene and protein expressions (-50%) and impaired glucose and insulin tolerance in db/db mice. COX-2 inhibition diminished the chemotaxis of adipocytes isolated from HFD rats to macrophages and T cells. Targeting inhibition of adipocyte COX-2 and EP3 during hypertrophy and hypoxia reversed the release of the augmented proinflammatory adipokines and the diminished adiponectin and also suppressed NF-κB and hypoxia-inducible factor-1α transcription activation. These findings suggest that adipocyte COX-2 PGE2-EP3-mediated signaling is crucially involved in the development of obesity-associated AT inflammation and insulin resistance.-Chan, P.-C., Hsiao, F.-C., Chang, H.-M., Wabitsch, M., Hsieh, P. S. Importance of adipocyte cyclooxygenase-2 and prostaglandin E2-prostaglandin E receptor 3 signaling in the development of obesity-induced adipose tissue inflammation and insulin resistance. PMID:26932930

  12. Meta-analyses of the Association of Sleep Apnea with Insulin Resistance, and the Effects of CPAP on HOMA-IR, Adiponectin, and Visceral Adipose Fat

    PubMed Central

    Iftikhar, Imran H.; Hoyos, Camilla M.; Phillips, Craig L.; Magalang, Ulysses J.

    2015-01-01

    Objective: We sought to conduct an updated meta-analysis of randomized controlled trials (RCTs) on the effect of continuous positive airway pressure (CPAP) on insulin resistance, as measured by homeostasis model assessment of insulin resistance (HOMA-IR), visceral abdominal fat (VAF), and adiponectin. Additionally, we performed a separate meta-analysis and meta-regression of studies on the association of insulin resistance and obstructive sleep apnea (OSA). Methods: All included studies were searched from PubMed (from conception to March 15, 2014). Data were pooled across all included RCTs as the mean difference in HOMA-IR and VAF, and as the standardized mean difference in the case of adiponectin analysis. From the included case-control studies, data on the difference of HOMA-IR between cases and controls were pooled across all studies, as the standardized mean difference (SMD). Results: There was a significant difference in HOMA-IR (−0.43 [95% CIs: −0.75 to −0.11], p = 0.008) between CPAP treated and non CPAP treated participants. However, there was no significant difference in VAF or adiponectin; (−47.93 [95% CI: −112.58 to 16.72], p = 0.14) and (−0.06 [95% CI: −0.28 to 0.15], p = 0.56), respectively. Meta-analysis of 16 case-control studies showed a pooled SMD in HOMA-IR of 0.51 (95% CI: 0.28 to 0.75), p ≤ 0.001, between cases and controls. Conclusions: The results of our meta-analyses show that CPAP has a favorable effect on insulin resistance. This effect is not associated with any significant changes in total adiponectin levels or amount of VAF. Our findings also confirm a significant association between OSA and insulin resistance. Citation: Iftikhar IH, Hoyos CM, Phillips CL, Magalang UJ. Meta-analyses of the association of sleep apnea with insulin resistance, and the effects of CPAP on HOMA-IR, adiponectin, and visceral adipose fat. J Clin Sleep Med 2015;11(4):475–485. PMID:25700870

  13. Normalization of blood glucose in diabetic rats with phlorizin treatment reverses insulin-resistant glucose transport in adipose cells without restoring glucose transporter gene expression.

    PubMed Central

    Kahn, B B; Shulman, G I; DeFronzo, R A; Cushman, S W; Rossetti, L

    1991-01-01

    Evidence is emerging for a direct role of glucose, independent of changes in insulin, in the regulation of cellular glucose transport and glucose utilization in vivo. In this study we investigate potential cellular and molecular mechanisms for this regulatory effect of glucose by determining how normalization of glycemia without insulin therapy in diabetic rats influences 3-O-methylglucose transport and the expression and translocation of two genetically distinct species of glucose transporters (GTs) in adipose cells. These results are compared with alterations in glucose disposal in vivo measured by euglycemic clamp. In rats rendered diabetic by 90% pancreatectomy, insulin-stimulated glucose transport in adipose cells is decreased 50% in parallel with reduced insulin-mediated glucose disposal in vivo. Levels of adipose/muscle GTs measured by immunoblotting are decreased in adipose cell subcellular membrane fractions, as are the corresponding mRNA levels assessed by Northern blotting of total adipose cell RNA. Normalization of blood glucose in diabetic rats with phlorizin, which impairs renal tubular glucose reabsorption and thus enhances glucose excretion, restores insulin-stimulated glucose transport in adipose cells and insulin-mediated glucose disposal in vivo. Importantly, levels of the adipose/muscle GT protein remain 43% reduced in the low-density microsomes in the basal state and 46% reduced in the plasma membranes in the insulin-stimulated state. Adipose/muscle GT mRNA levels remain approximately 50% depressed. Levels of the HepG2/brain GT protein and mRNA are unaltered by diabetes or phlorizin treatment. Thus, changes in ambient glucose independent of changes in ambient insulin can regulate the glucose transport response to insulin in isolated adipose cells and changes in responsiveness parallel alterations in glucose uptake in vivo. Since this effect can occur without alteration in the expression of the two species of glucose transporters present in

  14. Sex-Specific Mediating Role of Insulin Resistance and Inflammation in the Effect of Adiposity on Blood Pressure of Prepubertal Children

    PubMed Central

    Correia-Costa, Liane; Santos, Ana Cristina; Severo, Milton; Guerra, António; Schaefer, Franz; Caldas Afonso, Alberto; Barros, Henrique; Azevedo, Ana

    2015-01-01

    Objective To evaluate the association between obesity indices and blood pressure (BP) at 4 years of age, in each sex, and to quantify to which extent this association is mediated by inflammation and insulin resistance (IR). Materials and Methods We studied 1250 4-year-old children selected from the population-based birth cohort Generation XXI. Associations between body mass index (BMI) z-score and waist-to-height ratio (WHtR), office BP, inflammation (high sensitivity C-reactive protein) and IR (HOMA-IR index) were assessed. Path Analysis, a modified multivariate regression approach, was applied to test causal models and quantify direct and indirect effects of predictors of systolic (SBP) and diastolic BP (DBP). Results SBP and DBP increased significantly with BMI and WHtR in both sexes. There was a strong direct association (explaining 74.1-93.2% of the total association) of both measures of adiposity with SBP, in both sexes. This association was additionally indirectly mediated by IR, particularly regarding WHtR (20.5% in girls and 9.4% in boys). Mediation by inflammation did not reach statistical significance in either sex. Regarding DBP, the direct effect of adiposity was strong (>95% for BMI and WHtR in boys) and the mediation by IR was much smaller in boys than in girls. Discussion The direct association between adiposity and BP in healthy 4-year-old children is strong and IR plays an important mediating role. The strength of effects of IR and inflammation suggests sex differences in the complex interplay between BP, adiposity and inflammation. PMID:26125190

  15. c-Jun NH2-Terminal Kinase Activity in Subcutaneous Adipose Tissue but Not Nuclear Factor-κB Activity in Peripheral Blood Mononuclear Cells Is an Independent Determinant of Insulin Resistance in Healthy Individuals

    PubMed Central

    Sourris, Karly C.; Lyons, Jasmine G.; de Courten, Maximilian P.J.; Dougherty, Sonia L.; Henstridge, Darren C.; Cooper, Mark E.; Hage, Michelle; Dart, Anthony; Kingwell, Bronwyn A.; Forbes, Josephine M.; de Courten, Barbora

    2009-01-01

    OBJECTIVE Chronic low-grade activation of the immune system (CLAIS) predicts type 2 diabetes via a decrease in insulin sensitivity. Our study investigated potential relationships between nuclear factor-κB (NF-κB) and c-Jun NH2-terminal kinase (JNK) pathways—two pathways proposed as the link between CLAIS and insulin resistance. RESEARCH DESIGN AND METHODS Adiposity (dual-energy X-ray absorptiometry), waist-to-hip ratio (WHR), and insulin sensitivity (M, hyperinsulinemic-euglycemic clamp) were measured in 22 healthy nondiabetic volunteers (aged 29 ± 11 years, body fat 28 ± 11%). NF-κB activity (DNA-binding assay) and JNK1/2 activity (phosphorylated JNK) were assessed in biopsies of the vastus lateralis muscle and subcutaneous adipose tissue and in peripheral blood mononuclear cell (PBMC) lysates. RESULTS NF-κB activities in PBMCs and muscle were positively associated with WHR after adjustment for age, sex, and percent body fat (both P < 0.05). NF-κB activity in PBMCs was inversely associated with M after adjustment for age, sex, percent body fat, and WHR (P = 0.02) and explained 16% of the variance of M. There were no significant relationships between NF-κB activity and M in muscle or adipose tissue (both NS). Adipose-derived JNK1/2 activity was not associated with obesity (all P> 0.1), although it was inversely related to M (r = −0.54, P < 0.05) and explained 29% of its variance. When both NF-κB and JNK1/2 were examined statistically, only JNK1/2 activity in adipose tissue was a significant determinant of insulin resistance (P = 0.02). CONCLUSIONS JNK1/2 activity in adipose tissue but not NF-κB activity in PBMCs is an independent determinant of insulin resistance in healthy individuals. PMID:19258436

  16. Socioeconomic status is positively associated with measures of adiposity and insulin resistance, but inversely associated with dyslipidaemia in Colombian children

    PubMed Central

    Buitrago-Lopez, Adriana; van den Hooven, Edith H; Rueda-Clausen, Christian F; Serrano, Norma; Ruiz, Alvaro J; Pereira, Mark A; Mueller, Noel T

    2015-01-01

    Background Low socioeconomic status (SES) has been associated with higher risk of cardiometabolic diseases in developed societies, but investigation of SES and cardiometabolic risk in children in less economically developed populations is sparse. We aimed to examine associations among SES and cardiometabolic risk factors in Colombian children. Methods We used data from a population-based study of 1282 children aged 6–10 years from Bucaramanga, Colombia. SES was classified according to household wealth, living conditions and access to public utilities. Anthropometric and biochemical parameters were measured at a clinic visit. Cardiometabolic risk factors were analysed continuously using linear regression and as binary outcomes—according to established paediatric cut points—using logistic regression to calculate OR and 95% CIs. Results Mean age of the children was 8.4 (SD 1.4) and 51.1% of the sample were boys. Odds of overweight/obesity, abdominal obesity and insulin resistance were greater among higher SES. Compared with the lowest SES stratum, children in the highest SES had higher odds of overweight/obesity (OR=3.25, 95% CI 1.89 to 5.57), abdominal obesity (OR=2.74, 95% CI 1.41 to 5.31) and insulin resistance (OR=2.60, 95% CI 1.81 to 3.71). In contrast, children in the highest SES had lower odds of hypertriglyceridaemia (triglycerides ≥90th centile; OR=0.28, 95% CI 0.14 to 0.54) and low (≤10th centile) high-density lipoprotein (HDL) cholesterol (OR=0.35, 95% CI 0.15 to 0.78). Conclusions In Colombian children, SES is directly associated with obesity and insulin resistance, but inversely associated with dyslipidaemia (hypertriglyceridaemia and low HDL cholesterol). Our findings highlight the need to analyse cardiometabolic risk factors separately in children and to carefully consider a population's level of economic development when studying their social determinants of cardiometabolic disease. PMID:25691273

  17. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  18. Oxidative Stress and Insulin Resistance

    PubMed Central

    Park, Kyong; Gross, Myron; Lee, Duk-Hee; Holvoet, Paul; Himes, John H.; Shikany, James M.; Jacobs, David R.

    2009-01-01

    OBJECTIVE Although cumulative evidence suggests that increased oxidative stress may lead to insulin resistance in vivo or in vitro, community-based studies are scarce. This study examined the longitudinal relationships of oxidative stress biomarkers with the development of insulin resistance and whether these relationships were independent of obesity in nondiabetic young adults. RESEARCH DESIGN AND METHODS Biomarkers of oxidative stress (F2-isoprostanes [F2Isop] and oxidized LDL [oxLDL]), insulin resistance (the homeostasis model assessment of insulin resistance [HOMA-IR]), and various fatness measures (BMI, waist circumference, and estimated percent fat) were obtained in a population-based observational study (Coronary Artery Risk Development in Young Adults) and its ancillary study (Young Adult Longitudinal Trends in Antioxidants) during 2000–2006. RESULTS There were substantial increases in estimated mean HOMA-IR over time. OxLDL and F2Isop showed little association with each other. Mean evolving HOMA-IR increased with increasing levels of oxidative stress markers (P < 0.001 for oxLDL and P = 0.06 for F2Isop), measured in 2000–2001. After additional adjustment for adiposity, a positive association between oxLDL and HOMA-IR was strongly evident, whereas the association between F2Isop and HOMA-IR was not. CONCLUSIONS We observed positive associations between each of two oxidative stress markers and insulin resistance. The association with oxidized LDL was independent of obesity, but that with F2Isop was not. PMID:19389821

  19. Vitamin D inadequacy is widespread in Tunisian active boys and is related to diet but not to adiposity or insulin resistance

    PubMed Central

    Bezrati, Ikram; Ben Fradj, Mohamed Kacem; Ouerghi, Nejmeddine; Feki, Moncef; Chaouachi, Anis; Kaabachi, Naziha

    2016-01-01

    Background Vitamin D inadequacy is widespread in children and adolescents worldwide. The present study was undertaken to assess the vitamin D status in active children living in a sunny climate and to identify the main determinants of the serum concentration of 25-hydroxyvitamin D (25-OHD). Methods This cross-sectional study included 225 children aged 7–15 years practicing sports in a football academy. Anthropometric measures were performed to calculate body mass index (BMI), fat mass, and maturity status. A nutritional enquiry was performed including 3-day food records and food frequency questionnaire. Plasma 25-OHD and insulin were assessed by immunoenzymatic methods ensuring categorization of vitamin D status and calculation of insulin sensitivity/resistance indexes. A logistic regression model was applied to identify predictors for vitamin D inadequacy. Results Vitamin D deficiency (25-OHD<12 µg/L) was observed in 40.9% of children and insufficiency (12<25-OHD<20 µg/L) was observed in 44% of children. In a multivariate analysis, vitamin D deficiency and insufficiency were associated with a lower dietary intake of vitamin D, proteins, milk, red meat, fish, and eggs. However, no significant relationship was observed with maturation status, adiposity, or insulin resistance. Conclusions Tunisian children and adolescents are exposed to a high risk of vitamin D inadequacy despite living in a sunny climate. Circulating 25-OHD concentrations are related to the intake of vitamin D food sources but not to maturation status or body composition. Ensuring sufficient and safe sun exposure and adequate vitamin D intake may prevent vitamin D inadequacy in children from sunny environments. PMID:27113441

  20. The Adipose Transcriptional Response to Insulin Is Determined by Obesity, Not Insulin Sensitivity.

    PubMed

    Rydén, Mikael; Hrydziuszko, Olga; Mileti, Enrichetta; Raman, Amitha; Bornholdt, Jette; Boyd, Mette; Toft, Eva; Qvist, Veronica; Näslund, Erik; Thorell, Anders; Andersson, Daniel P; Dahlman, Ingrid; Gao, Hui; Sandelin, Albin; Daub, Carsten O; Arner, Peter

    2016-08-30

    Metabolically healthy obese subjects display preserved insulin sensitivity and a beneficial white adipose tissue gene expression pattern. However, this observation stems from fasting studies when insulin levels are low. We investigated adipose gene expression by 5'Cap-mRNA sequencing in 17 healthy non-obese (NO), 21 insulin-sensitive severely obese (ISO), and 30 insulin-resistant severely obese (IRO) subjects, before and 2 hr into a hyperinsulinemic euglycemic clamp. ISO and IRO subjects displayed a clear but globally similar transcriptional response to insulin, which differed from the small effects observed in NO subjects. In the obese, 231 genes were altered; 71 were enriched in ISO subjects (e.g., phosphorylation processes), and 52 were enriched in IRO subjects (e.g., cellular stimuli). Common cardio-metabolic risk factors and gender do not influence these findings. This study demonstrates that differences in the acute transcriptional response to insulin are primarily driven by obesity per se, challenging the notion of healthy obese adipose tissue, at least in severe obesity. PMID:27545890

  1. miRNA-93 Inhibits GLUT4 and Is Overexpressed in Adipose Tissue of Polycystic Ovary Syndrome Patients and Women With Insulin Resistance

    PubMed Central

    Chen, Yen-Hao; Heneidi, Saleh; Lee, Jung-Min; Layman, Lawrence C.; Stepp, David W.; Gamboa, Gloria Mabel; Chen, Bo-Shiun; Chazenbalk, Gregorio; Azziz, Ricardo

    2013-01-01

    Approximately 70% of women with polycystic ovary syndrome (PCOS) have intrinsic insulin resistance (IR) above and beyond that associated with body mass, including dysfunctional glucose metabolism in adipose tissue (AT). In AT, analysis of the IRS/PI3-K/AKT pathway signaling components identified only GLUT4 expression to be significantly lower in PCOS patients and in control subjects with IR. We examined the role of miRNAs, particularly in the regulation of GLUT4, the insulin-sensitive glucose transporter, in the AT of PCOS and matched control subjects. PCOS AT was determined to have a differentially expressed miRNA profile, including upregulated miR-93, -133, and -223. GLUT4 is a highly predicted target for miR-93, while miR-133 and miR-223 have been demonstrated to regulate GLUT4 expression in cardiomyocytes. Expression of miR-93 revealed a strong correlation between the homeostasis model assessment of IR in vivo values and GLUT4 and miR-93 but not miR-133 and -223 expression in human AT. Overexpression of miR-93 resulted in downregulation of GLUT4 gene expression in adipocytes through direct targeting of the GLUT4 3′UTR, while inhibition of miR-93 activity led to increased GLUT4 expression. These results point to a novel mechanism for regulating insulin-stimulated glucose uptake via miR-93 and demonstrate upregulated miR-93 expression in all PCOS, and in non-PCOS women with IR, possibly accounting for the IR of the syndrome. In contrast, miR-133 and miR-223 may have a different, although yet to be defined, role in the IR of PCOS. PMID:23493574

  2. Timed-daily ingestion of whey protein and exercise training reduces visceral adipose tissue mass and improves insulin resistance: the PRISE study.

    PubMed

    Arciero, Paul J; Baur, Daniel; Connelly, Scott; Ormsbee, Michael J

    2014-07-01

    The present study examined the effects of timed ingestion of supplemental protein (20-g servings of whey protein, 3×/day), added to the habitual diet of free-living overweight/obese adults and subsequently randomized to either whey protein only (P; n = 24), whey protein and resistance exercise (P + RT; n = 27), or a whey protein and multimode exercise training program [protein and resistance exercise, intervals, stretching/yoga/Pilates, endurance exercise (PRISE); n = 28]. Total and regional body composition and visceral adipose tissue (VAT) mass (dual-energy X-ray absorptiometry), insulin sensitivity [homeostasis model assessment-estimated insulin resistance (HOMA-IR)], plasma lipids and adipokines, and feelings of hunger and satiety (visual analog scales) were measured before and after the 16-wk intervention. All groups lost body weight, fat mass (FM), and abdominal fat; however, PRISE lost significantly (P < 0.01) more body weight (3.3 ± 0.7 vs. 1.1 ± 0.7 kg, P + RT) and FM (2.8 ± 0.7 vs. 0.9 ± 0.5 kg, P + RT) and gained (P < 0.05) a greater percentage of lean body mass (2 ± 0.5 vs. 0.9 ± 0.3 and 0.6 ± 0.4%, P + RT and P, respectively). Only P + RT (0.1 ± 0.04 kg) and PRISE (0.21 ± 0.07 kg) lost VAT mass (P < 0.05). Fasting glucose decreased only in P + RT (5.1 ± 2.5 mg/dl) and PRISE (15.3 ± 2.1 mg/dl), with the greatest decline occurring in PRISE (P < 0.05). Similarly, HOMA-IR improved (0.6 ± 0.3, 0.6 ± 0.4 units), and leptin decreased (4.7 ± 2.2, 4.7 ± 3.1 ng/dl), and adiponectin increased (3.8 ± 1.1, 2.4 ± 1.1 μg/ml) only in P + RT and PRISE, respectively, with no change in P. In conclusion, we find evidence to support exercise training and timed ingestion of whey protein added to the habitual diet of free-living overweight/obese adults, independent of caloric restriction on total and regional body fat distribution, insulin resistance, and adipokines. PMID:24833780

  3. The Shc locus regulates insulin signaling and adiposity in mammals

    PubMed Central

    Tomilov, Alexey A.; Ramsey, Jon J.; Hagopian, Kevork; Giorgio, Marco; Kim, Kyoungmi M.; Lam, Adam; Migliaccio, Enrica; Lloyd, Kent C.; Berniakovich, Ina; Prolla, Tomas A.; Pelicci, PierGiuseppe; Cortopassi, Gino A.

    2014-01-01

    Summary Longevity of a p66Shc knockout strain (ShcP) was previously attributed to increased stress resistance and altered mitochondria. Microarrays of ShcP tissues indicated alterations in insulin signaling. Consistent with this observation, ShcP mice were more insulin sensitive and glucose tolerant at organismal and tissue levels, as was a novel p66Shc knockout (ShcL). Increasing and decreasing Shc expression in cell lines decreased and increased insulin sensitivity, respectively – consistent with p66Shc's function as a repressor of insulin signaling. However, differences between the two p66Shc knockout strains were also observed. ShcL mice were fatter and susceptible to fatty diets, and their fat was more insulin sensitive than controls. On the other hand, ShcP mice were leaner and resisted fatty diets, and their adipose was less insulin sensitive than controls. ShcL and ShcP strains are both highly inbred on the C57Bl/6 background, so we investigated gene expression at the Shc locus, which encodes three isoforms, p66, p52, and p46. Isoform p66 is absent in both strains; thus, the remaining difference to which to attribute the ‘lean’ phenotype is expression of the other two isoforms. ShcL mice have a precise deletion of p66Shc and normal expression of p52 and p46Shc isoforms in all tissues; thus, a simple deletion of p66Shc results in a ‘fat’ phenotype. However, ShcP mice in addition to p66Shc deletion have a fourfold increase in p46Shc expression in white fat. Thus, p46Shc overexpression in fat, rather than p66Shc deletion, is the likely cause of decreased adiposity and reduced insulin sensitivity in the fat of ShcP mice, which has implications for the longevity of the strain. PMID:21040401

  4. Adipose tissue monomethyl branched chain fatty acids and insulin sensitivity: effects of obesity and weight loss

    PubMed Central

    Su, Xiong; Magkos, Faidon; Zhou, Dequan; Eagon, J. Christopher; Fabbrini, Elisa; Okunade, Adewole L.; Klein, Samuel

    2014-01-01

    Objective An increase in circulating branched-chain amino acids (BCAA) is associated with insulin resistance. Adipose tissue is a potentially important site for BCAA metabolism. We evaluated whether monomethyl branched chain fatty acids (mmBCFA) in adipose tissue, which are likely derived from BCAA catabolism, are associated with insulin sensitivity. Design and Methods Insulin-stimulated glucose disposal was determined by using the hyperinsulinemic-euglycemic clamp procedure with stable isotope glucose tracer infusion, in 9 lean and 9 obese subjects, and in a separate group of 9 obese subjects before and 1 year after Roux-en-Y gastric bypass (RYGB) surgery (38% weight loss). Adipose tissue mmBCFA content was measured in tissue biopsies taken in the basal state. Results Total adipose tissue mmBCFA content was ~30% lower in obese than lean subjects (P = 0.02), and increased by ~65% after weight loss in the RYGB group (P = 0.01). Adipose tissue mmBCFA content correlated positively with skeletal muscle insulin sensitivity (R2 = 35%, P = 0.01, n = 18). Conclusions These results demonstrate a novel association between adipose tissue mmBCFA content and obesity-related insulin resistance. Additional studies are needed to determine whether the association between adipose tissue mmBCFA and muscle insulin sensitivity is causal or a simple association. PMID:25328153

  5. Nutritional Modulation of Insulin Resistance

    PubMed Central

    Weickert, Martin O.

    2012-01-01

    Insulin resistance has been proposed as the strongest single predictor for the development of Type 2 Diabetes (T2DM). Chronic oversupply of energy from food, together with inadequate physical activity, have been recognized as the most relevant factors leading to overweight, abdominal adiposity, insulin resistance, and finally T2DM. Conversely, energy reduced diets almost invariably to facilitate weight loss and reduce abdominal fat mass and insulin resistance. However, sustained weight loss is generally difficult to achieve, and distinct metabolic characteristics in patients with T2DM further compromise success. Therefore, investigating the effects of modulating the macronutrient composition of isoenergetic diets is an interesting concept that may lead to additional important insights. Metabolic effects of various different dietary concepts and strategies have been claimed, but results from randomized controlled studies and particularly from longer-term-controlled interventions in humans are often lacking. However, some of these concepts are supported by recent research, at least in animal models and short-term studies in humans. This paper provides an update of the current literature regarding the role of nutrition in the modulation of insulin resistance, which includes the discussion of weight-loss-independent metabolic effects of commonly used dietary concepts. PMID:24278690

  6. C333H ameliorated insulin resistance through selectively modulating peroxisome proliferator-activated receptor γ in brown adipose tissue of db/db mice.

    PubMed

    Zhang, Ning; Chen, Wei; Zhou, Xinbo; Zhou, Xiaolin; Xie, Xinni; Meng, Aimin; Li, Song; Wang, Lili

    2013-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) is a unique target for insulin sensitizer agents. These drugs have been used for the clinical treatment of type 2 diabetes for almost twenty years. However, serious safety issues are associated with the PPARγ agonist thiazolidinediones (TZDs). Selective PPARγ modulators (SPPARMs) which retain insulin sensitization without TZDs-like side effects are emerging as a promising new generation of insulin sensitizers. C333H is a novel structure compound synthesized by our laboratory. In diabetic rodent models, C333H has insulin-sensitizing and glucose-lowering activity comparable to that of TZDs, and causes no significant increase in body weight or adipose tissue weight in db/db mice. In diabetic db/db mice, C333H elevated circulating high molecular weight adiponectin isoforms, decreased PPARγ 273 serine phosphorylation in brown adipose tissue and selectively modulated the expression of a subset of PPARγ target genes in adipose tissue. In vitro, C333H weakly recruited coactivator and weakly dissociated corepressor activity. These findings suggest that C333H has similar properties to SPPARMs and may be a potential therapeutic agent for the treatment of type 2 diabetes. PMID:23563593

  7. Mitochondrial efficiency and insulin resistance.

    PubMed

    Crescenzo, Raffaella; Bianco, Francesca; Mazzoli, Arianna; Giacco, Antonia; Liverini, Giovanna; Iossa, Susanna

    2014-01-01

    Insulin resistance, "a relative impairment in the ability of insulin to exert its effects on glucose, protein and lipid metabolism in target tissues," has many detrimental effects on metabolism and is strongly correlated to deposition of lipids in non-adipose tissues. Mitochondria are the main cellular sites devoted to ATP production and fatty acid oxidation. Therefore, a role for mitochondrial dysfunction in the onset of skeletal muscle insulin resistance has been proposed and many studies have dealt with possible alteration in mitochondrial function in obesity and diabetes, both in humans and animal models. Data reporting evidence of mitochondrial dysfunction in type two diabetes mellitus are numerous, even though the issue that this reduced mitochondrial function is causal in the development of the disease is not yet solved, also because a variety of parameters have been used in the studies carried out on this subject. By assessing the alterations in mitochondrial efficiency as well as the impact of this parameter on metabolic homeostasis of skeletal muscle cells, we have obtained results that allow us to suggest that an increase in mitochondrial efficiency precedes and therefore can contribute to the development of high-fat-induced insulin resistance in skeletal muscle. PMID:25601841

  8. High intensity interval training improves liver and adipose tissue insulin sensitivity

    PubMed Central

    Marcinko, Katarina; Sikkema, Sarah R.; Samaan, M. Constantine; Kemp, Bruce E.; Fullerton, Morgan D.; Steinberg, Gregory R.

    2015-01-01

    Objective Endurance exercise training reduces insulin resistance, adipose tissue inflammation and non-alcoholic fatty liver disease (NAFLD), an effect often associated with modest weight loss. Recent studies have indicated that high-intensity interval training (HIIT) lowers blood glucose in individuals with type 2 diabetes independently of weight loss; however, the organs affected and mechanisms mediating the glucose lowering effects are not known. Intense exercise increases phosphorylation and inhibition of acetyl-CoA carboxylase (ACC) by AMP-activated protein kinase (AMPK) in muscle, adipose tissue and liver. AMPK and ACC are key enzymes regulating fatty acid metabolism, liver fat content, adipose tissue inflammation and insulin sensitivity but the importance of this pathway in regulating insulin sensitivity with HIIT is unknown. Methods In the current study, the effects of 6 weeks of HIIT were examined using obese mice with serine–alanine knock-in mutations on the AMPK phosphorylation sites of ACC1 and ACC2 (AccDKI) or wild-type (WT) controls. Results HIIT lowered blood glucose and increased exercise capacity, food intake, basal activity levels, carbohydrate oxidation and liver and adipose tissue insulin sensitivity in HFD-fed WT and AccDKI mice. These changes occurred independently of weight loss or reductions in adiposity, inflammation and liver lipid content. Conclusions These data indicate that HIIT lowers blood glucose levels by improving adipose and liver insulin sensitivity independently of changes in adiposity, adipose tissue inflammation, liver lipid content or AMPK phosphorylation of ACC. PMID:26909307

  9. All about Insulin Resistance

    MedlinePlus

    ... news is that cutting calories, being active, and losing weight can reverse insulin resistance and lower your ... you’ll lose weight. Studies have shown that losing even 7% of your weight, may help. For ...

  10. Insulin Resistance and Prediabetes

    MedlinePlus

    ... sleep apnea; and cigarette smoking. [ Top ] Does sleep matter? Yes. Studies show that untreated sleep problems, especially ... a severe form of insulin resistance may have dark patches of skin, usually on the back of ...

  11. Insulin Resistance of Puberty.

    PubMed

    Kelsey, Megan M; Zeitler, Philip S

    2016-07-01

    Puberty is a time of considerable metabolic and hormonal change. Notably, puberty is associated with a marked decrease in insulin sensitivity, on par with that seen during pregnancy. In otherwise healthy youth, there is a nadir in insulin sensitivity in mid-puberty, and then it recovers at puberty completion. However, there is evidence that insulin resistance (IR) does not resolve in youth who are obese going into puberty and may result in increased cardiometabolic risk. Little is known about the underlying pathophysiology of IR in puberty, and how it might contribute to increased disease risk (e.g., type 2 diabetes). In this review, we have outlined what is known about the IR in puberty in terms of pattern, potential underlying mechanisms and other mediating factors. We also outline other potentially related metabolic changes that occur during puberty, and effects of underlying insulin resistant states (e.g., obesity) on pubertal changes in insulin sensitivity. PMID:27179965

  12. Luteolin attenuates hepatic steatosis and insulin resistance through the interplay between the liver and adipose tissue in mice with diet-induced obesity.

    PubMed

    Kwon, Eun-Young; Jung, Un Ju; Park, Taesun; Yun, Jong Won; Choi, Myung-Sook

    2015-05-01

    The flavonoid luteolin has various pharmacological activities. However, few studies exist on the in vivo mechanism underlying the actions of luteolin in hepatic steatosis and obesity. The aim of the current study was to elucidate the action of luteolin on obesity and its comorbidity by analyzing its transcriptional and metabolic responses, in particular the luteolin-mediated cross-talk between liver and adipose tissue in diet-induced obese mice. C57BL/6J mice were fed a normal, high-fat, and high-fat + 0.005% (weight for weight) luteolin diet for 16 weeks. In high fat-fed mice, luteolin improved hepatic steatosis by suppressing hepatic lipogenesis and lipid absorption. In adipose tissue, luteolin increased PPARγ protein expression to attenuate hepatic lipotoxicity, which may be linked to the improvement in circulating fatty acid (FA) levels by enhancing FA uptake genes and lipogenic genes and proteins in adipose tissue. Interestingly, luteolin also upregulated the expression of genes controlling lipolysis and the tricarboxylic acid (TCA) cycle prior to lipid droplet formation, thereby reducing adiposity. Moreover, luteolin improved hepatic insulin sensitivity by suppressing SREBP1 expression that modulates Irs2 expression through its negative feedback and gluconeogenesis. Luteolin ameliorates the deleterious effects of diet-induced obesity and its comorbidity via the interplay between liver and adipose tissue. PMID:25524918

  13. Adipose tissue inflammation and reduced insulin sensitivity in ovariectomized mice occurs in the absence of increased adiposity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Menopause promotes central obesity, adipose tissue (AT) inflammation and insulin resistance (IR). Both obesity and the loss of estrogen can activate innate and adaptive immune cells (macrophages (M's), T-cells). The respective impacts of weight gain and loss of ovarian hormones on AT inflammation an...

  14. Insulin Receptor Signaling in Normal and Insulin-Resistant States

    PubMed Central

    Boucher, Jérémie; Kleinridders, André; Kahn, C. Ronald

    2014-01-01

    In the wake of the worldwide increase in type-2 diabetes, a major focus of research is understanding the signaling pathways impacting this disease. Insulin signaling regulates glucose, lipid, and energy homeostasis, predominantly via action on liver, skeletal muscle, and adipose tissue. Precise modulation of this pathway is vital for adaption as the individual moves from the fed to the fasted state. The positive and negative modulators acting on different steps of the signaling pathway, as well as the diversity of protein isoform interaction, ensure a proper and coordinated biological response to insulin in different tissues. Whereas genetic mutations are causes of rare and severe insulin resistance, obesity can lead to insulin resistance through a variety of mechanisms. Understanding these pathways is essential for development of new drugs to treat diabetes, metabolic syndrome, and their complications. PMID:24384568

  15. Transcriptomic Identification of ADH1B as a Novel Candidate Gene for Obesity and Insulin Resistance in Human Adipose Tissue in Mexican Americans from the Veterans Administration Genetic Epidemiology Study (VAGES)

    PubMed Central

    Winnier, Deidre A.; Fourcaudot, Marcel; Norton, Luke; Abdul-Ghani, Muhammad A.; Hu, Shirley L.; Farook, Vidya S.; Coletta, Dawn K.; Kumar, Satish; Puppala, Sobha; Chittoor, Geetha; Dyer, Thomas D.; Arya, Rector; Carless, Melanie; Lehman, Donna M.; Curran, Joanne E.; Cromack, Douglas T.; Tripathy, Devjit; Blangero, John; Duggirala, Ravindranath; Göring, Harald H. H.; DeFronzo, Ralph A.; Jenkinson, Christopher P.

    2015-01-01

    Type 2 diabetes (T2D) is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect common patterns of gene regulation associated with obesity and insulin resistance. We used phenotypic and genotypic data from 308 Mexican American participants from the Veterans Administration Genetic Epidemiology Study (VAGES). Basal fasting RNA was extracted from adipose tissue biopsies from a subset of 75 unrelated individuals, and gene expression data generated on the Illumina BeadArray platform. The number of gene probes with significant expression above baseline was approximately 31,000. We performed multiple regression analysis of all probes with 15 metabolic traits. Adipose tissue had 3,012 genes significantly associated with the traits of interest (false discovery rate, FDR ≤ 0.05). The significance of gene expression changes was used to select 52 genes with significant (FDR ≤ 10-4) gene expression changes across multiple traits. Gene sets/Pathways analysis identified one gene, alcohol dehydrogenase 1B (ADH1B) that was significantly enriched (P < 10-60) as a prime candidate for involvement in multiple relevant metabolic pathways. Illumina BeadChip derived ADH1B expression data was consistent with quantitative real time PCR data. We observed significant inverse correlations with waist circumference (2.8 x 10-9), BMI (5.4 x 10-6), and fasting plasma insulin (P < 0.001). These findings are consistent with a central role for ADH1B in obesity and insulin resistance and provide evidence for a novel genetic regulatory mechanism for human metabolic diseases related to these traits. PMID:25830378

  16. Transcriptomic identification of ADH1B as a novel candidate gene for obesity and insulin resistance in human adipose tissue in Mexican Americans from the Veterans Administration Genetic Epidemiology Study (VAGES).

    PubMed

    Winnier, Deidre A; Fourcaudot, Marcel; Norton, Luke; Abdul-Ghani, Muhammad A; Hu, Shirley L; Farook, Vidya S; Coletta, Dawn K; Kumar, Satish; Puppala, Sobha; Chittoor, Geetha; Dyer, Thomas D; Arya, Rector; Carless, Melanie; Lehman, Donna M; Curran, Joanne E; Cromack, Douglas T; Tripathy, Devjit; Blangero, John; Duggirala, Ravindranath; Göring, Harald H H; DeFronzo, Ralph A; Jenkinson, Christopher P

    2015-01-01

    Type 2 diabetes (T2D) is a complex metabolic disease that is more prevalent in ethnic groups such as Mexican Americans, and is strongly associated with the risk factors obesity and insulin resistance. The goal of this study was to perform whole genome gene expression profiling in adipose tissue to detect common patterns of gene regulation associated with obesity and insulin resistance. We used phenotypic and genotypic data from 308 Mexican American participants from the Veterans Administration Genetic Epidemiology Study (VAGES). Basal fasting RNA was extracted from adipose tissue biopsies from a subset of 75 unrelated individuals, and gene expression data generated on the Illumina BeadArray platform. The number of gene probes with significant expression above baseline was approximately 31,000. We performed multiple regression analysis of all probes with 15 metabolic traits. Adipose tissue had 3,012 genes significantly associated with the traits of interest (false discovery rate, FDR ≤ 0.05). The significance of gene expression changes was used to select 52 genes with significant (FDR ≤ 10(-4)) gene expression changes across multiple traits. Gene sets/Pathways analysis identified one gene, alcohol dehydrogenase 1B (ADH1B) that was significantly enriched (P < 10(-60)) as a prime candidate for involvement in multiple relevant metabolic pathways. Illumina BeadChip derived ADH1B expression data was consistent with quantitative real time PCR data. We observed significant inverse correlations with waist circumference (2.8 x 10(-9)), BMI (5.4 x 10(-6)), and fasting plasma insulin (P < 0.001). These findings are consistent with a central role for ADH1B in obesity and insulin resistance and provide evidence for a novel genetic regulatory mechanism for human metabolic diseases related to these traits. PMID:25830378

  17. The Extracellular Matrix and Insulin Resistance

    PubMed Central

    Williams, Ashley S.; Kang, Li; Wasserman, David H.

    2015-01-01

    The extracellular matrix (ECM) is a highly dynamic compartment that undergoes remodeling as a result of injury and repair. Over the past decade, mounting evidence in humans and rodents suggest that ECM remodeling is associated with diet-induced insulin resistance in several metabolic tissues. Additionally, integrin receptors for the ECM have also been implicated in the regulation of insulin action. This review will address what is currently known about the ECM, integrins and insulin action in the muscle, liver and adipose tissue. Understanding how ECM remodeling and integrin signaling regulates insulin action may aid in the development of new therapeutic targets for the treatment of insulin resistance and type 2 diabetes. PMID:26059707

  18. Dietary chia seed (Salvia hispanica L.) rich in alpha-linolenic acid improves adiposity and normalises hypertriacylglycerolaemia and insulin resistance in dyslipaemic rats.

    PubMed

    Chicco, Adriana G; D'Alessandro, Maria E; Hein, Gustavo J; Oliva, Maria E; Lombardo, Yolanda B

    2009-01-01

    The present study investigates the benefits of the dietary intake of chia seed (Salvia hispanica L.) rich in alpha-linolenic acid and fibre upon dyslipidaemia and insulin resistance (IR), induced by intake of a sucrose-rich (62.5 %) diet (SRD). To achieve these goals two sets of experiments were designed: (i) to study the prevention of onset of dyslipidaemia and IR in Wistar rats fed during 3 weeks with a SRD in which chia seed was the dietary source of fat; (ii) to analyse the effectiveness of chia seed in improving or reversing the metabolic abnormalities described above. Rats were fed a SRD during 3 months; by the end of this period, stable dyslipidaemia and IR were present in the animals. From months 3-5, half the animals continued with the SRD and the other half were fed a SRD in which the source of fat was substituted by chia seed (SRD+chia). The control group received a diet in which sucrose was replaced by maize starch. The results showed that: (i) dietary chia seed prevented the onset of dyslipidaemia and IR in the rats fed the SRD for 3 weeks--glycaemia did not change; (ii) dyslipidaemia and IR in the long-term SRD-fed rats were normalised without changes in insulinaemia when chia seed provided the dietary fat during the last 2 months of the feeding period. Dietary chia seed reduced the visceral adiposity present in the SRD rats. The present study provides new data regarding the beneficial effect of chia seed upon lipid and glucose homeostasis in an experimental model of dislipidaemia and IR. PMID:18492301

  19. Sagittal Abdominal Diameter to Measure Visceral Adipose Tissue in Overweight or Obese Adolescent Children and Its Role as A Marker of Insulin Resistance

    PubMed Central

    Yashoda, H.T.; Boraiah, Ganga; Vishwa, Suma

    2015-01-01

    Background Measurement of sagittal abdominal diameter using a revalidated caliper is simple, inexpensive, non-invasive method. It strongly correlates with insulin resistance and can be used as a surrogate marker to predict risk for Type II Diabetes Mellitus. Aim To assess visceral abdominal fat by measuring sagittal abdominal diameter using sliding calipers and to predict insulin resistance in obese or overweight adolescent children. Study design Explorative study for Paediatric age group among over weight and obese children aged 10-18 years in urban population in a Tertiary Care Centre. Materials and Methods Paediatric population satisfying ADA guidelines for diagnosis of prediabetes were included in the study. Anthropometric measurements with SAD were recorded. Blood was collected to investigate for prediabetes and insulin resistance using HOMA-IR. Results Out of 924 subjects who gave assent to participate in study 108 fulfilled ADA criteria. 33 subjects who didn’t come for the follow up were excluded. Out of 75 subjects 12 were detected to have insulin resistance (16%) and 63 were normal (84%). Pearson’s partial correlation of HOMA-IR and OGTT with SAD has demonstrated it to be better correlation with Insulin Resistance (IR) than other anthropometric measurements. Fasting Glucose correlated better with Waist Hip Circumference. Conclusion Insulin Resistance was diagnosed in 16% of the population and these had high levels of insulin resistance. SAD in relation to glucose metabolism, had a better correlation with OGTT followed by HOMA-IR and fasting Insulin. SAD with anthropometric measurements had better correlation all the parameters other than Waist Circumference, which had negative correlation. SAD can be used in evaluation of obese or overweight children for evaluation. PMID:26673888

  20. Depression and Insulin Resistance

    PubMed Central

    Pearson, Sue; Schmidt, Mike; Patton, George; Dwyer, Terry; Blizzard, Leigh; Otahal, Petr; Venn, Alison

    2010-01-01

    OBJECTIVE To examine the association between depressive disorder and insulin resistance in a sample of young adults using the Composite International Diagnostic Interview to ascertain depression status. RESEARCH DESIGN AND METHODS Cross-sectional data were collected from 1,732 participants aged between 26 and 36 years. Insulin resistance was derived from blood chemistry measures of fasting insulin and glucose using the homeostasis model assessment method. Those identified with mild, moderate, or severe depression were classified as having depressive disorder. RESULTS The 12-month prevalence of depressive disorder was 5.4% among men and 11.7% among women. In unadjusted models mean insulin resistance was 17.2% (95% CI 0.7–36.0%, P = 0.04) higher in men and 11.4% (1.5–22.0%, P = 0.02) higher in women with depressive disorder. After adjustment for behavioral and dietary factors, the increased level of insulin resistance associated with depressive disorder was 13.2% (−3.1 to 32.3%, P = 0.12) in men and 6.1% (−4.1 to 17.4%, P = 0.25) in women. Waist circumference was identified as a mediator in the relationship between depression and insulin resistance, reducing the β coefficient in the fully adjusted models in men by 38% and in women by 42%. CONCLUSIONS A positive association was found between depressive disorder and insulin resistance in this population-based sample of young adult men and women. The association seemed to be mediated partially by waist circumference. PMID:20185745

  1. Gender Differences in Insulin Resistance, Body Composition, and Energy Balance

    PubMed Central

    Geer, Eliza B.; Shen, Wei

    2010-01-01

    Background Men and women differ substantially in regard to degrees of insulin resistance, body composition, and energy balance. Adipose tissue distribution, in particular the presence of elevated visceral and hepatic adiposity, plays a central role in the development of insulin resistance and obesity-related complications. Objective This review summarizes published data on gender differences in insulin resistance, body composition, and energy balance, to provide insight into novel gender-specific avenues of research as well as gender-tailored treatments of insulin resistance, visceral adiposity, and obesity. Methods English-language articles were identified from searches of the PubMed database through November 2008, and by reviewing the references cited in these reports. Searches included combinations of the following terms: gender, sex, insulin resistance, body composition, energy balance, and hepatic adipose tissue. Results For a given body mass index, men were reported to have more lean mass, women to have higher adiposity. Men were also found to have more visceral and hepatic adipose tissue, whereas women had more peripheral or subcutaneous adipose tissue. These differences, as well as differences in sex hormones and adipokines, may contribute to a more insulin-sensitive environment in women than in men. When normalized to kilograms of lean body mass, men and women had similar resting energy expenditure, but physical energy expenditure was more closely related to percent body fat in men than in women. Conclusion Greater amounts of visceral and hepatic adipose tissue, in conjunction with the lack of a possible protective effect of estrogen, may be related to higher insulin resistance in men compared with women. PMID:19318219

  2. The effect of oxytetracycline on insulin resistance in obese mice

    PubMed Central

    Bégin-Heick, Nicole; Bourassa, Michel; Heick, H. M. C.

    1974-01-01

    1. Chronic oxytetracycline treatment was found to improve the insulin resistance of the obese–hyperglycaemic mouse. 2. The improved response to insulin was accompanied by decreased concentrations of circulating insulin and glucose, by a decrease in the lipid content of the liver and by an increase in the insulin-receptor sites of the liver and adipose tissue. 3. The increase in insulin-receptor sites preceded the fall in blood glucose. 4. Comparable studies done on food-restricted animals indicated that although chronic food restriction corrected the hyperinsulinaemia it did not restore the insulin-receptor sites or the hyperglycaemia. PMID:4464837

  3. A major role of insulin in promoting obesity-associated adipose tissue inflammation

    PubMed Central

    Pedersen, David J.; Guilherme, Adilson; Danai, Laura V.; Heyda, Lauren; Matevossian, Anouch; Cohen, Jessica; Nicoloro, Sarah M.; Straubhaar, Juerg; Noh, Hye Lim; Jung, DaeYoung; Kim, Jason K.; Czech, Michael P.

    2015-01-01

    Objective Adipose tissue (AT) inflammation is associated with systemic insulin resistance and hyperinsulinemia in obese rodents and humans. A longstanding concept is that hyperinsulinemia may promote systemic insulin resistance through downregulation of its receptor on target tissues. Here we tested the novel hypothesis that insulin also impairs systemic insulin sensitivity by specifically enhancing adipose inflammation. Methods Circulating insulin levels were reduced by about 50% in diet-induced and genetically obese mice by treatments with diazoxide or streptozotocin, respectively. We then examined AT crown-like structures, macrophage markers and pro-inflammatory cytokine expression in AT. AT lipogenesis and systemic insulin sensitivity was also monitored. Conversely, insulin was infused into lean mice to determine its affects on the above parameters. Results Lowering circulating insulin levels in obese mice by streptozotocin treatment decreased macrophage content in AT, enhancing insulin stimulated Akt phosphorylation and de novo lipogenesis (DNL). Moreover, responsiveness of blood glucose levels to injected insulin was improved by streptozotocin and diazoxide treatments of obese mice without changes in body weight. Remarkably, even in lean mice, infusion of insulin under constant euglycemic conditions stimulated expression of cytokines in AT. Consistent with these findings, insulin treatment of 3T3-L1 adipocytes caused a 10-fold increase in CCL2 mRNA levels within 6 h, which was blocked by the ERK inhibitor PD98059. Conclusion Taken together, these results indicate that obesity-associated hyperinsulinemia unexpectedly drives AT inflammation in obese mice, which in turn contributes to factors that suppress insulin-stimulated adipocyte DNL and systemic insulin sensitivity. PMID:26137438

  4. Regulation of insulin resistance and adiponectin signaling in adipose tissue by liver X receptor activation highlights a cross-talk with PPARγ.

    PubMed

    Zheng, Fenping; Zhang, Saifei; Lu, Weina; Wu, Fang; Yin, Xueyao; Yu, Dan; Pan, Qianqian; Li, Hong

    2014-01-01

    Liver X receptors (LXRs) have been recognized as a promising therapeutic target for atherosclerosis; however, their role in insulin sensitivity is controversial. Adiponectin plays a unique role in maintaining insulin sensitivity. Currently, no systematic experiments elucidating the role of LXR activation in insulin function based on adiponectin signaling have been reported. Here, we investigated the role of LXR activation in insulin resistance based on adiponectin signaling, and possible mechanisms. C57BL/6 mice maintained on a regular chow received the LXR agonist, T0901317 (30 mg/kg.d) for 3 weeks by intraperitoneal injection, and differentiated 3T3-L1 adipocytes were treated with T0901317 or GW3965. T0901317 treatment induced significant insulin resistance in C57BL/6 mice. It decreased adiponectin gene transcription in epididymal fat, as well as serum adiponectin levels. Activity of AMPK, a key mediator of adiponectin signaling, was also decreased, resulting in decreased Glut-4 membrane translocation in epididymal fat. In contrast, adiponectin activity was not changed in the liver of T0901317 treated mice. In vitro, both T0901317 and GW3965 decreased adiponectin expression in adipocytes in a dose-dependent manner, an effect which was diminished by LXRα silencing. ChIP-qPCR studies demonstrated that T0901317 decreased the binding of PPARγ to the PPAR-responsive element (PPRE) of the adiponectin promoter in a dose-dependent manner. Furthermore, T0901317 exerted an antagonistic effect on the expression of adiponectin in adipocytes co-treated with 3 µM Pioglitazone. In luciferase reporter gene assays, T0901317 dose-dependently inhibited PPRE-Luc activity in HEK293 cells co-transfected with LXRα and PPARγ. These results suggest that LXR activation induces insulin resistance with decreased adiponectin signaling in epididymal fat, probably due to negative regulation of PPARγ signaling. These findings indicate that the potential of LXR activation as a therapeutic

  5. Insulin resistance, metabolic stress, and atherosclerosis

    PubMed Central

    Pansuria, Meghana; Xi, Hang; Li, Le; Yang, Xiao-Feng; Wang, Hong

    2012-01-01

    Atherosclerosis, a pathological process that underlies the development of cardiovascular disease, is the primary cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). T2DM is characterized by hyperglycemia and insulin resistance (IR), in which target tissues fail to respond to insulin. Systemic IR is associated with impaired insulin signaling in the metabolic tissues and vasculature. Insulin receptor is highly expressed in the liver, muscle, pancreas, and adipose tissue. It is also expressed in vascular cells. It has been suggested that insulin signaling in vascular cells regulates cell proliferation and vascular function. In this review, we discuss the association between IR, metabolic stress, and atherosclerosis with focus on 1) tissue and cell distribution of insulin receptor and its differential signaling transduction and 2) potential mechanism of insulin signaling impairment and its role in the development of atherosclerosis and vascular function in metabolic disorders including hyperglycemia, hypertension, dyslipidemia, and hyperhomocysteinemia. We propose that insulin signaling impairment is the foremost biochemical mechanism underlying increased cardiovascular morbidity and mortality in atherosclerosis, T2DM, and metabolic syndrome. PMID:22202099

  6. Insulin Resistance in Alzheimer's Disease

    PubMed Central

    Dineley, Kelly T; Jahrling, Jordan B; Denner, Larry

    2014-01-01

    Insulin is a key hormone regulating metabolism. Insulin binding to cell surface insulin receptors engages many signaling intermediates operating in parallel and in series to control glucose, energy, and lipids while also regulating mitogenesis and development. Perturbations in the function of any of these intermediates, which occur in a variety of diseases, cause reduced sensitivity to insulin and insulin resistance with consequent metabolic dysfunction. Chronic inflammation ensues which exacerbates compromised metabolic homeostasis. Since insulin has a key role in learning and memory as well as directly regulating ERK, a kinase required for the type of learning and memory compromised in early Alzheimer's disease (AD), insulin resistance has been identified as a major risk factor for the onset of AD. Animal models of AD or insulin resistance or both demonstrate that AD pathology and impaired insulin signaling form a reciprocal relationship. Of note are human and animal model studies geared toward improving insulin resistance that have led to the identification of the nuclear receptor and transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) as an intervention tool for early AD. Strategic targeting of alternate nodes within the insulin signaling network has revealed disease-stage therapeutic windows in animal models that coalesce with previous and ongoing clinical trial approaches. Thus, exploiting the connection between insulin resistance and AD provides powerful opportunities to delineate therapeutic interventions that slow or block the pathogenesis of AD. PMID:25237037

  7. CCL2 Serum Levels and Adiposity Are Associated with the Polymorphic Phenotypes -2518A on CCL2 and 64ILE on CCR2 in a Mexican Population with Insulin Resistance

    PubMed Central

    Guzmán-Ornelas, Milton-Omar; Petri, Marcelo Heron; Vázquez-Del Mercado, Mónica; Chavarría-Ávila, Efraín; Corona-Meraz, Fernanda-Isadora; Ruíz-Quezada, Sandra-Luz; Madrigal-Ruíz, Perla-Monserrat; Castro-Albarrán, Jorge; Sandoval-García, Flavio; Navarro-Hernández, Rosa-Elena

    2016-01-01

    Genetic susceptibility has been described in insulin resistance (IR). Chemokine (C-C motif) ligand-2 (CCL2) is overexpressed in white adipose tissue and is the ligand of C-C motif receptor-2 (CCR2). The CCL2 G-2518A polymorphism is known to regulate gene expression, whereas the physiological effects of the CCR2Val64Ile polymorphism are unknown. The aim of the study is to investigate the relationship between these polymorphisms with soluble CCL2 levels (sCCL2), metabolic markers, and adiposity. In a cross-sectional study we included 380 Mexican-Mestizo individuals, classified with IR according to Stern criteria. Polymorphism was identified using PCR-RFLP/sequence-specific primers. Anthropometrics and metabolic markers were measured by routine methods and adipokines and sCCL2 by ELISA. The CCL2 polymorphism was associated with IR (polymorphic A+ phenotype frequencies were 70.9%, 82.6%, in individuals with and without IR, resp.). Phenotype carriers CCL2 (A+) displayed lower body mass and fat indexes, insulin and HOMA-IR, and higher adiponectin levels. Individuals with IR presented higher sCCL2 compared to individuals without IR and was associated with CCR2 (Ile+) phenotype. The double-polymorphic phenotype carriers (A+/Ile+) exhibited higher sCCL2 than double-wild-type phenotype carriers (A−/Ile−). The present findings suggest that sCCL2 production possibly will be associated with the adiposity and polymorphic phenotypes of CCL2 and CCR2, in Mexican-Mestizos with IR. PMID:26839895

  8. Mechanisms of human insulin resistance and thiazolidinedione-mediated insulin sensitization

    PubMed Central

    Sears, D. D.; Hsiao, G.; Hsiao, A.; Yu, J. G.; Courtney, C. H.; Ofrecio, J. M.; Chapman, J.; Subramaniam, S.

    2009-01-01

    Cellular and tissue defects associated with insulin resistance are coincident with transcriptional abnormalities and are improved after insulin sensitization with thiazolidinedione (TZD) PPARγ ligands. We characterized 72 human subjects by relating their clinical phenotypes with functional pathway alterations. We transcriptionally profiled 364 biopsies harvested before and after hyperinsulinemic-euglycemic clamp studies, at baseline and after 3-month TZD treatment. We have identified molecular and functional characteristics of insulin resistant subjects and distinctions between TZD treatment responder and nonresponder subjects. Insulin resistant subjects exhibited alterations in skeletal muscle (e.g., glycolytic flux and intramuscular adipocytes) and adipose tissue (e.g., mitochondrial metabolism and inflammation) that improved relative to TZD-induced insulin sensitization. Pre-TZD treatment expression of MLXIP in muscle and HLA-DRB1 in adipose tissue from insulin resistant subjects was linearly predictive of post-TZD insulin sensitization. We have uniquely characterized coordinated cellular and tissue functional pathways that are characteristic of insulin resistance, TZD-induced insulin sensitization, and potential TZD responsiveness. PMID:19841271

  9. Transcriptomic and metabolomic profiling of chicken adipose tissue in response to insulin neutralization and fasting

    PubMed Central

    2012-01-01

    Background Domestic broiler chickens rapidly accumulate adipose tissue due to intensive genetic selection for rapid growth and are naturally hyperglycemic and insulin resistant, making them an attractive addition to the suite of rodent models used for studies of obesity and type 2 diabetes in humans. Furthermore, chicken adipose tissue is considered as poorly sensitive to insulin and lipolysis is under glucagon control. Excessive fat accumulation is also an economic and environmental concern for the broiler industry due to the loss of feed efficiency and excessive nitrogen wasting, as well as a negative trait for consumers who are increasingly conscious of dietary fat intake. Understanding the control of avian adipose tissue metabolism would both enhance the utility of chicken as a model organism for human obesity and insulin resistance and highlight new approaches to reduce fat deposition in commercial chickens. Results We combined transcriptomics and metabolomics to characterize the response of chicken adipose tissue to two energy manipulations, fasting and insulin deprivation in the fed state. Sixteen to 17 day-old commercial broiler chickens (ISA915) were fed ad libitum, fasted for five hours, or fed but deprived of insulin by injections of anti-insulin serum. Pair-wise contrasts of expression data identified a total of 2016 genes that were differentially expressed after correction for multiple testing, with the vast majority of differences due to fasting (1780 genes). Gene Ontology and KEGG pathway analyses indicated that a short term fast impacted expression of genes in a broad selection of pathways related to metabolism, signaling and adipogenesis. The effects of insulin neutralization largely overlapped with the response to fasting, but with more modest effects on adipose tissue metabolism. Tissue metabolomics indicated unique effects of insulin on amino acid metabolism. Conclusions Collectively, these data provide a foundation for further study into the

  10. The effect of insulin on porcine adipose tissue lipogenesis.

    PubMed

    Mersmann, H J

    1989-01-01

    1. This laboratory and others have not been able to demonstrate consistent insulin stimulation of glucose incorporation into lipid by porcine adipose tissue in vitro. 2. A multiplicity of tissue handling procedures, additions to the incubation medium, and pig size (age) did not allow the expression of a consistent and substantial insulin stimulation. 3. It is suggested that the twofold or greater stimulation of glucose metabolism observed occasionally in this laboratory results from pig genetics, husbandry, or seasonal effects. PMID:2514071

  11. [Obesity and fatty acids in the etiology of insulin resistance].

    PubMed

    Galgani, J; Díaz, E

    2000-12-01

    Fatty acids, obesity and insulin resistance relationship are discussed. In the last decades fatty acids (FA) have been implicated in the etiology of insulin resistance. Initially, this process was related to FA inhibitory effects on glucose uptake mediated by the FA oxidation metabolites. This mechanism known as the Randle cycle has been presently discarded based on recent evidence for FA effects on glucose metabolism. Now is known that cytosolic lipid content and FA molecular structure determines higher or lower storage and oxidation capacity. Another factor is given by Tumor Necrosis Factor-alpha, which is overexpressed in animal and human obesity, producing insulin signaling and glucose uptake inhibition. This paper discuss the role played by FA and obesity on insulin resistance, mainly in relation to FA effects on glucose metabolism in the liver, muscle and adipose tissues. In the obesity condition adipose tissue releases higher levels of free FA which in turn stimulates hepatic glucose production. Adipose tissue also, increase TNF-alpha secretion impairing glucose utilization and insulin signaling. In muscle, cytosolic lipid content activate a Protein Kinase that inhibits the insulin signaling and reduce GLUT-4 translocation. The study of cellular and metabolic changes associated to weight gain and its relationship with insulin resistance etiology are encouraged. PMID:11227245

  12. Dietary Salba (Salvia hispanica L) seed rich in α-linolenic acid improves adipose tissue dysfunction and the altered skeletal muscle glucose and lipid metabolism in dyslipidemic insulin-resistant rats.

    PubMed

    Oliva, M E; Ferreira, M R; Chicco, A; Lombardo, Y B

    2013-10-01

    This work reports the effect of dietary Salba (chia) seed rich in n-3 α-linolenic acid on the morphological and metabolic aspects involved in adipose tissue dysfunction and the mechanisms underlying the impaired glucose and lipid metabolism in the skeletal muscle of rats fed a sucrose-rich diet (SRD). Rats were fed a SRD for 3 months. Thereafter, half the rats continued with SRD while in the other half, corn oil (CO) was replaced by chia seed for 3 months (SRD+chia). In control group, corn starch replaced sucrose. The replacement of CO by chia seed in the SRD reduced adipocyte hypertrophy, cell volume and size distribution, improved lipogenic enzyme activities, lipolysis and the anti-lipolytic action of insulin. In the skeletal muscle lipid storage, glucose phosphorylation and oxidation were normalized. Chia seed reversed the impaired insulin stimulated glycogen synthase activity, glycogen, glucose-6-phosphate and GLUT-4 protein levels as well as insulin resistance and dyslipidemia. PMID:24120122

  13. B-1a Lymphocytes Attenuate Insulin Resistance

    PubMed Central

    Shen, Lei; Chng, MH; Alonso, Michael N.; Yuan, Robert

    2015-01-01

    Obesity-associated insulin resistance, a common precursor of type 2 diabetes, is characterized by chronic inflammation of tissues, including visceral adipose tissue (VAT). Here we show that B-1a cells, a subpopulation of B lymphocytes, are novel and important regulators of this process. B-1a cells are reduced in frequency in obese high-fat diet (HFD)-fed mice, and EGFP interleukin-10 (IL-10) reporter mice show marked reductions in anti-inflammatory IL-10 production by B cells in vivo during obesity. In VAT, B-1a cells are the dominant producers of B cell–derived IL-10, contributing nearly half of the expressed IL-10 in vivo. Adoptive transfer of B-1a cells into HFD-fed B cell–deficient mice rapidly improves insulin resistance and glucose tolerance through IL-10 and polyclonal IgM-dependent mechanisms, whereas transfer of B-2 cells worsens metabolic disease. Genetic knockdown of B cell–activating factor (BAFF) in HFD-fed mice or treatment with a B-2 cell–depleting, B-1a cell–sparing anti-BAFF antibody attenuates insulin resistance. These findings establish B-1a cells as a new class of immune regulators that maintain metabolic homeostasis and suggest manipulation of these cells as a potential therapy for insulin resistance. PMID:25249575

  14. Opposite effects of genistein on the regulation of insulin-mediated glucose homeostasis in adipose tissue

    PubMed Central

    Wang, M; Gao, X J; Zhao, W W; Zhao, W J; Jiang, C H; Huang, F; Kou, J P; Liu, B L; Liu, K

    2013-01-01

    BACKGROUND AND PURPOSE Genistein is an isoflavone phytoestrogen found in a number of plants such as soybeans and there is accumulating evidence that it has beneficial effects on the regulation of glucose homeostasis. In this study we evaluated the effect of genistein on glucose homeostasis and its underlying mechanisms in normal and insulin-resistant conditions. EXPERIMENTAL APPROACH To induce insulin resistance, mice or differentiated 3T3-L1 adipocytes were treated with macrophage-derived conditioned medium. A glucose tolerance test was used to investigate the effect of genistein. Insulin signalling activation, glucose transporter-4 (GLUT4) translocation and AMP-activated PK (AMPK) activation were detected by Western blot analysis or elisa. KEY RESULTS Genistein impaired glucose tolerance and attenuated insulin sensitivity in normal mice by inhibiting the insulin-induced phosphorylation of insulin receptor substrate-1 (IRS1) at tyrosine residues, leading to inhibition of insulin-mediated GLUT4 translocation in adipocytes. Mac-CM, an inflammatory stimulus induced glucose intolerance accompanied by impaired insulin sensitivity; genistein reversed these changes by restoring the disturbed IRS1 function, leading to an improvement in GLUT4 translocation. In addition, genistein increased AMPK activity under both normal and inflammatory conditions; this was shown to contribute to the anti-inflammatory effect of genistein, which leads to an improvement in insulin signalling and the amelioration of insulin resistance. CONCLUSION AND IMPLICATIONS Genistein showed opposite effects on insulin sensitivity under normal and inflammatory conditions in adipose tissue and this action was derived from its negative or positive regulation of IRS1 function. Its up-regulation of AMPK activity contributes to the inhibition of inflammation implicated in insulin resistance. PMID:23763311

  15. Vascular stiffness in insulin resistance and obesity

    PubMed Central

    Jia, Guanghong; Aroor, Annayya R.; DeMarco, Vincent G.; Martinez-Lemus, Luis A.; Meininger, Gerald A.; Sowers, James R.

    2015-01-01

    Obesity, insulin resistance, and type 2 diabetes are associated with a substantially increased prevalence of vascular fibrosis and stiffness, with attendant increased risk of cardiovascular and chronic kidney disease. Although the underlying mechanisms and mediators of vascular stiffness are not well understood, accumulating evidence supports the role of metabolic and immune dysregulation related to increased adiposity, activation of the renin angiotensin aldosterone system, reduced bioavailable nitric oxide, increased vascular extracellular matrix (ECM) and ECM remodeling in the pathogenesis of vascular stiffness. This review will give a brief overview of the relationship between obesity, insulin resistance and increased vascular stiffness to provide a contemporary understanding of the proposed underlying mechanisms and potential therapeutic strategies. PMID:26321962

  16. Adipocyte-specific blockade of gamma-secretase, but not inhibition of Notch activity, reduces adipose insulin sensitivity

    PubMed Central

    Sparling, David P.; Yu, Junjie; Kim, KyeongJin; Zhu, Changyu; Brachs, Sebastian; Birkenfeld, Andreas L.; Pajvani, Utpal B.

    2015-01-01

    Objective As the obesity pandemic continues to expand, novel molecular targets to reduce obesity-related insulin resistance and Type 2 Diabetes (T2D) continue to be needed. We have recently shown that obesity is associated with reactivated liver Notch signaling, which, in turn, increases hepatic insulin resistance, opening up therapeutic avenues for Notch inhibitors to be repurposed for T2D. Herein, we tested the systemic effects of γ-secretase inhibitors (GSIs), which prevent endogenous Notch activation, and confirmed these effects through creation and characterization of two different adipocyte-specific Notch loss-of-function mouse models through genetic ablation of the Notch transcriptional effector Rbp-Jk (A-Rbpj) and the obligate γ-secretase component Nicastrin (A-Nicastrin). Methods Glucose homeostasis and both local adipose and systemic insulin sensitivity were examined in GSI-treated, A-Rbpj and A-Nicastrin mice, as well as vehicle-treated or control littermates, with complementary in vitro studies in primary hepatocytes and 3T3-L1 adipocytes. Results GSI-treatment increases hepatic insulin sensitivity in obese mice but leads to reciprocal lowering of adipose glucose disposal. While A-Rbpj mice show normal body weight, adipose development and mass and unchanged adipose insulin sensitivity as control littermates, A-Nicastrin mice are relatively insulin-resistant, mirroring the GSI effect on adipose insulin action. Conclusions Notch signaling is dispensable for normal adipocyte function, but adipocyte-specific γ-secretase blockade reduces adipose insulin sensitivity, suggesting that specific Notch inhibitors would be preferable to GSIs for application in T2D. PMID:26909319

  17. Insulin Resistance Alters Islet Morphology in Nondiabetic Humans

    PubMed Central

    Mezza, Teresa; Muscogiuri, Giovanna; Sorice, Gian Pio; Clemente, Gennaro; Hu, Jiang; Pontecorvi, Alfredo; Holst, Jens J.; Giaccari, Andrea; Kulkarni, Rohit N.

    2014-01-01

    Type 2 diabetes is characterized by poor glucose uptake in metabolic tissues and manifests when insulin secretion fails to cope with worsening insulin resistance. In addition to its effects on skeletal muscle, liver, and adipose tissue metabolism, it is evident that insulin resistance also affects pancreatic β-cells. To directly examine the alterations that occur in islet morphology as part of an adaptive mechanism to insulin resistance, we evaluated pancreas samples obtained during pancreatoduodenectomy from nondiabetic subjects who were insulin-resistant or insulin-sensitive. We also compared insulin sensitivity, insulin secretion, and incretin levels between the two groups. We report an increased islet size and an elevated number of β- and α-cells that resulted in an altered β-cell–to–α-cell area in the insulin- resistant group. Our data in this series of studies suggest that neogenesis from duct cells and transdifferentiation of α-cells are potential contributors to the β-cell compensatory response to insulin resistance in the absence of overt diabetes. PMID:24215793

  18. Skeletal Muscle Insulin Resistance and Absence of Inflammation Characterize Insulin-Resistant Grade I Obese Women

    PubMed Central

    Bourret, Annick; Lambert, Karen; Birot, Olivier; Fédou, Christine; Dupuy, Anne-Marie; Cristol, Jean-Paul; Sutra, Thibault; Molinari, Nicolas; Maimoun, Laurent; Mariano-Goulart, Denis; Galtier, Florence; Avignon, Antoine; Stanke-Labesque, Françoise; Mercier, Jacques; Sultan, Ariane; Bisbal, Catherine

    2016-01-01

    Context Obesity is associated with insulin-resistance (IR), the key feature of type 2 diabetes. Although chronic low-grade inflammation has been identified as a central effector of IR development, it has never been investigated simultaneously at systemic level and locally in skeletal muscle and adipose tissue in obese humans characterized for their insulin sensitivity. Objectives We compared metabolic parameters and inflammation at systemic and tissue levels in normal-weight and obese subjects with different insulin sensitivity to better understand the mechanisms involved in IR development. Methods 30 post-menopausal women were classified as normal-weight insulin-sensitive (controls, CT) and obese (grade I) insulin-sensitive (OIS) or insulin-resistant (OIR) according to their body mass index and homeostasis model assessment of IR index. They underwent a hyperinsulinemic-euglycemic clamp, blood sampling, skeletal muscle and subcutaneous adipose tissue biopsies, an activity questionnaire and a self-administrated dietary recall. We analyzed insulin sensitivity, inflammation and IR-related parameters at the systemic level. In tissues, insulin response was assessed by P-Akt/Akt expression and inflammation by macrophage infiltration as well as cytokines and IκBα expression. Results Systemic levels of lipids, adipokines, inflammatory cytokines, and lipopolysaccharides were equivalent between OIS and OIR subjects. In subcutaneous adipose tissue, the number of anti-inflammatory macrophages was higher in OIR than in CT and OIS and was associated with higher IL-6 level. Insulin induced Akt phosphorylation to the same extent in CT, OIS and OIR. In skeletal muscle, we could not detect any inflammation even though IκBα expression was lower in OIR compared to CT. However, while P-Akt/Akt level increased following insulin stimulation in CT and OIS, it remained unchanged in OIR. Conclusion Our results show that systemic IR occurs without any change in systemic and tissues

  19. Adiposity, insulin resistance and cardiovascular risk factors in 9-10-year-old Indian children: relationships with birth size and postnatal growth.

    PubMed

    Krishnaveni, G V; Veena, S R; Wills, A K; Hill, J C; Karat, S C; Fall, C H D

    2010-12-01

    Lower birthweight, and rapid childhood weight gain predict elevated cardiovascular risk factors in children. We examined associations between serial, detailed, anthropometric measurements from birth to 9.5 years of age and cardiovascular risk markers in Indian children. Children (n = 663) born at the Holdsworth Memorial Hospital, Mysore, India were measured at birth and 6-12 monthly thereafter. At 9.5 years, 539 (255 boys) underwent a 2-h oral glucose tolerance test, and blood pressure (BP) and fasting lipid concentrations were measured. Insulin resistance was calculated using the HOMA equation. These outcomes were examined in relation to birth measurements and changes in measurements (growth) during infancy (0-2 years), 2-5 years and 5-9.5 years using conditional s.d. scores. Larger current weight, height and skinfold thickness were associated with higher risk markers at 9.5 years (P < 0.05). Lower weight, smaller length and mid-arm circumference at birth were associated with higher fasting glucose concentrations at 9.5 years (P ⩽ 0.01). After adjusting for current weight/height, there were inverse associations between birthweight and/or length and insulin concentrations, HOMA, systolic and diastolic BP and plasma triglycerides (P < 0.05). Increases in conditional weight and height between 0-2, 2-5 and 5-9.5 years were associated with higher insulin concentrations, HOMA and systolic BP. In conclusion, in 9-10-year-old Indian children, as in other studies, cardiovascular risk factors were highest in children who were light or short at birth but heavy or tall at 9 years. Greater infant and childhood weight and height gain were associated with higher risk markers. PMID:22318657

  20. Adiposity, insulin resistance and cardiovascular risk factors in 9–10-year-old Indian children: relationships with birth size and postnatal growth

    PubMed Central

    Krishnaveni, G. V.; Veena, S. R.; Wills, A. K.; Hill, J. C.; Karat, S. C.; Fall, C. H. D.

    2011-01-01

    Lower birthweight, and rapid childhood weight gain predict elevated cardiovascular risk factors in children. We examined associations between serial, detailed, anthropometric measurements from birth to 9.5 years of age and cardiovascular risk markers in Indian children. Children (n = 663) born at the Holdsworth Memorial Hospital, Mysore, India were measured at birth and 6–12 monthly thereafter. At 9.5 years, 539 (255 boys) underwent a 2-h oral glucose tolerance test, and blood pressure (BP) and fasting lipid concentrations were measured. Insulin resistance was calculated using the HOMA equation. These outcomes were examined in relation to birth measurements and changes in measurements (growth) during infancy (0–2 years), 2–5 years and 5–9.5 years using conditional s.d. scores. Larger current weight, height and skinfold thickness were associated with higher risk markers at 9.5 years (P<0.05). Lower weight, smaller length and mid-arm circumference at birth were associated with higher fasting glucose concentrations at 9.5 years (P≤0.01). After adjusting for current weight/height, there were inverse associations between birthweight and/or length and insulin concentrations, HOMA, systolic and diastolic BP and plasma triglycerides (P<0.05). Increases in conditional weight and height between 0–2, 2–5 and 5–9.5 years were associated with higher insulin concentrations, HOMA and systolic BP. In conclusion, in 9–10-year-old Indian children, as in other studies, cardiovascular risk factors were highest in children who were light or short at birth but heavy or tall at 9 years. Greater infant and childhood weight and height gain were associated with higher risk markers. PMID:22318657

  1. Platycodon grandiflorus Root Extract Attenuates Body Fat Mass, Hepatic Steatosis and Insulin Resistance through the Interplay between the Liver and Adipose Tissue.

    PubMed

    Kim, Ye Jin; Choi, Ji-Young; Ryu, Ri; Lee, Jeonghyeon; Cho, Su-Jung; Kwon, Eun-Young; Lee, Mi-Kyung; Liu, Kwang-Hyeon; Rina, Yu; Sung, Mi-Kyung; Choi, Myung-Sook

    2016-01-01

    The Platycodon grandiflorus root, a Korean medicinal food, is well known to have beneficial effects on obesity and diabetes. In this study, we demonstrated the metabolic effects of P. grandiflorus root ethanol extract (PGE), which is rich in platycodins, on diet-induced obesity. C57BL/6J mice (four-week-old males) were fed a normal diet (16.58% of kilocalories from fat), high-fat diet (HFD, 60% of kilocalories from fat), and HFD supplemented with 5% (w/w) PGE. In the HFD-fed mice, PGE markedly suppressed the body weight gain and white fat mass to normal control level, with simultaneous increase in the expression of thermogenic genes (such as SIRT1, PPARα, PGC1α, and UCP1), that accompanied changes in fatty acid oxidation (FAO) and energy expenditure. In addition, PGE improved insulin sensitivity through activation of the PPARγ expression, which upregulates adiponectin while decreasing leptin gene expression in adipocytes. Furthermore, PGE improved hepatic steatosis by suppressing hepatic lipogenesis while increasing expression of FAO-associated genes such as PGC1α. PGE normalized body fat and body weight, which is likely associated with the increased energy expenditure and thermogenic gene expression. PGE can protect from HFD-induced insulin resistance, and hepatic steatosis by controlling lipid and glucose metabolism. PMID:27589792

  2. ASSOCIATION BETWEEN ADIPONECTIN, INSULIN RESISTANCE, AND ENDOMETRIAL CANCER

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Obesity is a well-known risk factor for the development of endometrial cancer; however, weight alone does not account for all cases. The authors hypothesized that insulin resistance also contributes to an increased risk for endometrial cancer. Adiponectin is a protein secreted by adipose...

  3. Immunity as a link between obesity and insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Type-2 diabetes mellitus (T2DM) is a major health problem in the United States and worldwide. Obesity is causally linked to the pathogenesis of insulin resistance, metabolic syndrome and T2DM. A chronic low-grade inflammation occurring in adipose tissue is at least in part responsible for the obesit...

  4. A Model of Insulin Resistance and Nonalcoholic Steatohepatitis in Rats

    PubMed Central

    Svegliati-Baroni, Gianluca; Candelaresi, Cinzia; Saccomanno, Stefania; Ferretti, Gianna; Bachetti, Tiziana; Marzioni, Marco; De Minicis, Samuele; Nobili, Liliana; Salzano, Renata; Omenetti, Alessia; Pacetti, Deborah; Sigmund, Soeren; Benedetti, Antonio; Casini, Alessandro

    2006-01-01

    Insulin resistance induces nonalcoholic fatty liver disease and nonalcoholic steatohepatitis (NASH). We used a high-fat, high-calorie solid diet (HFD) to create a model of insulin resistance and NASH in nongenetically modified rats and to study the relationship between visceral adipose tissue and liver. Obesity and insulin resistance occurred in HFD rats, accompanied by a progressive increase in visceral adipose tissue tumor necrosis factor (TNF)-α mRNA and in circulating free fatty acids. HFD also decreased adiponectin mRNA and peroxisome proliferator-activated receptor (PPAR)-α expression in the visceral adipose tissue and the liver, respectively, and induced hepatic insulin resistance through TNF-α-mediated c-Jun N-terminal kinase (JNK)-dependent insulin receptor substrate-1Ser307 phosphorylation. These modifications lead to hepatic steatosis accompanied by oxidative stress phenomena, necroinflammation, and hepatocyte apoptosis at 4 weeks and by pericentral fibrosis at 6 months. Supplementation of n-3 polyunsaturated fatty acid, a PPARα ligand, to HFD-treated animals restored hepatic adiponectin and PPARα expression, reduced TNF-α hepatic levels, and ameliorated fatty liver and the degree of liver injury. Thus, our model mimics the most common features of NASH in humans and provides an ideal tool to study the role of individual pathogenetic events (as for PPARα down-regulation) and to define any future experimental therapy, such as n-3 polyunsaturated fatty acid, which ameliorated the degree of liver injury. PMID:16936261

  5. Differential Roles of Insulin and IGF-1 Receptors in Adipose Tissue Development and Function.

    PubMed

    Boucher, Jeremie; Softic, Samir; El Ouaamari, Abdelfattah; Krumpoch, Megan T; Kleinridders, Andre; Kulkarni, Rohit N; O'Neill, Brian T; Kahn, C Ronald

    2016-08-01

    To determine the roles of insulin and insulin-like growth factor 1 (IGF-1) action in adipose tissue, we created mice lacking the insulin receptor (IR), IGF-1 receptor (IGF1R), or both using Cre-recombinase driven by the adiponectin promoter. Mice lacking IGF1R only (F-IGFRKO) had a ∼25% reduction in white adipose tissue (WAT) and brown adipose tissue (BAT), whereas mice lacking both IR and IGF1R (F-IR/IGFRKO) showed an almost complete absence of WAT and BAT. Interestingly, mice lacking only the IR (F-IRKO) had a 95% reduction in WAT, but a paradoxical 50% increase in BAT with accumulation of large unilocular lipid droplets. Both F-IRKO and F-IR/IGFRKO mice were unable to maintain body temperature in the cold and developed severe diabetes, ectopic lipid accumulation in liver and muscle, and pancreatic islet hyperplasia. Leptin treatment normalized blood glucose levels in both groups. Glucose levels also improved spontaneously by 1 year of age, despite sustained lipodystrophy and insulin resistance. Thus, loss of IR is sufficient to disrupt white fat formation, but not brown fat formation and/or maintenance, although it is required for normal BAT function and temperature homeostasis. IGF1R has only a modest contribution to both WAT and BAT formation and function. PMID:27207537

  6. NAMPT-Mediated NAD(+) Biosynthesis in Adipocytes Regulates Adipose Tissue Function and Multi-organ Insulin Sensitivity in Mice.

    PubMed

    Stromsdorfer, Kelly L; Yamaguchi, Shintaro; Yoon, Myeong Jin; Moseley, Anna C; Franczyk, Michael P; Kelly, Shannon C; Qi, Nathan; Imai, Shin-Ichiro; Yoshino, Jun

    2016-08-16

    Obesity is associated with adipose tissue dysfunction and multi-organ insulin resistance. However, the mechanisms of such obesity-associated systemic metabolic complications are not clear. Here, we characterized mice with adipocyte-specific deletion of nicotinamide phosphoribosyltransferase (NAMPT), a rate-limiting NAD(+) biosynthetic enzyme known to decrease in adipose tissue of obese and aged rodents and people. We found that adipocyte-specific Nampt knockout mice had severe insulin resistance in adipose tissue, liver, and skeletal muscle and adipose tissue dysfunction, manifested by increased plasma free fatty acid concentrations and decreased plasma concentrations of a major insulin-sensitizing adipokine, adiponectin. Loss of Nampt increased phosphorylation of CDK5 and PPARγ (serine-273) and decreased gene expression of obesity-linked phosphorylated PPARγ targets in adipose tissue. These deleterious alterations were normalized by administering rosiglitazone or a key NAD(+) intermediate, nicotinamide mononucleotide (NMN). Collectively, our results provide important mechanistic and therapeutic insights into obesity-associated systemic metabolic derangements, particularly multi-organ insulin resistance. PMID:27498863

  7. Problems in diabetes mellitus management. Insulin resistance.

    PubMed

    Wolfsheimer, K J

    1990-12-01

    Insulin resistance is a cause for morning hyperglycemia seen in diabetic patients. Other reasons for morning hyperglycemia should be eliminated by performing an insulin response test. Once insulin resistance has been established as the cause of hyperglycemia, a step-by-step process should be used to establish the cause of the insulin resistance. Common causes of insulin resistance include hyperadrenocorticism, acromegaly, hyperthyroidism, and obesity. Hepatic disease, renal insufficiency, and sepsis are other causes of insulin resistance in practice. Less common causes include insulin antibodies, pregnancy, neoplasia, hyperandrogenism, and pheochromocytoma. If the underlying cause cannot be found or resolved, then increased doses of insulin are required to manage the hyperglycemia. PMID:2134077

  8. Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation.

    PubMed

    Nelson, O Lynne; Jansen, Heiko T; Galbreath, Elizabeth; Morgenstern, Kurt; Gehring, Jamie Lauren; Rigano, Kimberly Scott; Lee, Jae; Gong, Jianhua; Shaywitz, Adam J; Vella, Chantal A; Robbins, Charles T; Corbit, Kevin C

    2014-08-01

    The confluence of obesity and diabetes as a worldwide epidemic necessitates the discovery of new therapies. Success in this endeavor requires translatable preclinical studies, which traditionally employ rodent models. As an alternative approach, we explored hibernation where obesity is a natural adaptation to survive months of fasting. Here we report that grizzly bears exhibit seasonal tripartite insulin responsiveness such that obese animals augment insulin sensitivity but only weeks later enter hibernation-specific insulin resistance (IR) and subsequently reinitiate responsiveness upon awakening. Preparation for hibernation is characterized by adiposity coupled to increased insulin sensitivity via modified PTEN/AKT signaling specifically in adipose tissue, suggesting a state of "healthy" obesity analogous to humans with PTEN haploinsufficiency. Collectively, we show that bears reversibly cope with homeostatic perturbations considered detrimental to humans and describe a mechanism whereby IR functions not as a late-stage metabolic adaptation to obesity, but rather a gatekeeper of the fed-fasting transition. PMID:25100064

  9. Postreceptor defects causing insulin resistance in normoinsulinemic non-insulin-dependent diabetes mellitus

    SciTech Connect

    Bolinder, J.; Ostman, J.; Arner, P.

    1982-10-01

    The mechanisms of the diminished hypoglycemic response to insulin in non-insulin-dependent diabetes mellitus (NIDDM) with normal levels of circulating plasma insulin were investigated. Specific binding of mono-/sup 125/I (Tyr A14)-insulin to isolated adipocytes and effects of insulin (5--10,000 microunits/ml) on glucose oxidation and lipolysis were determined simultaneously in subcutaneous adipose tissue of seven healthy subjects of normal weight and seven untreated NIDDM patients with normal plasma insulin levels. The two groups were matched for age, sex, and body weight. Insulin binding, measured in terms of receptor number and affinity, was normal in NIDDM, the total number of receptors averaging 350,000 per cell. Neither sensitivity nor the maximum antilipolytic effect of insulin was altered in NIDDM patients as compared with control subjects; the insulin concentration producing half the maximum effect (ED50) was 10 microunits/ml. As regards the effect of insulin on glucose oxidation, for the control subjects ED50 was 30 microunits/ml, whereas in NIDDM patients, insulin exerted no stimulatory effect. The results obtained suggest that the effect of insulin on glucose utilization in normoinsulinemic NIDDM may be diminished in spite of normal insulin binding to receptors. The resistance may be due solely to postreceptor defects, and does not involve antilipolysis.

  10. Lipid signals and insulin resistance.

    PubMed

    Zhang, Chongben; Klett, Eric L; Coleman, Rosalind A

    2013-12-01

    The metabolic syndrome, a cluster of metabolic derangements that include obesity, glucose intolerance, dyslipidemia and hypertension, is a major risk factor for cardiovascular disease. Insulin resistance has been proposed to be the common feature that links obesity to the metabolic syndrome, but the mechanism remains obscure. Although the excess content of triacylglycerol in muscle and liver is highly associated with insulin resistance in these tissues, triacylglycerol itself is not causal but merely a marker. Thus, attention has turned to the accumulation of cellular lipids known to have signaling roles. This review will discuss recent progress in understanding how glycerolipids and related lipid intermediates may impair insulin signaling. PMID:24533033

  11. PPARγ Antagonist Gleevec Improves Insulin Sensitivity and Promotes the Browning of White Adipose Tissue.

    PubMed

    Choi, Sun-Sil; Kim, Eun-Sun; Jung, Ji-Eun; Marciano, David P; Jo, Ala; Koo, Ja Young; Choi, Soo Youn; Yang, Yong Ryoul; Jang, Hyun-Jun; Kim, Eung-Kyun; Park, Jiyoung; Kwon, Hyug Moo; Lee, In Hee; Park, Seung Bum; Myung, Kyung-Jae; Suh, Pann-Ghill; Griffin, Patrick R; Choi, Jang Hyun

    2016-04-01

    Blocking phosphorylation of peroxisome proliferator-activated receptor (PPAR)γ at Ser(273) is one of the key mechanisms for antidiabetes drugs to target PPARγ. Using high-throughput phosphorylation screening, we here describe that Gleevec blocks cyclin-dependent kinase 5-mediated PPARγ phosphorylation devoid of classical agonism as a PPARγ antagonist ligand. In high fat-fed mice, Gleevec improved insulin sensitivity without causing severe side effects associated with other PPARγ-targeting drugs. Furthermore, Gleevec reduces lipogenic and gluconeogenic gene expression in liver and ameliorates inflammation in adipose tissues. Interestingly, Gleevec increases browning of white adipose tissue and energy expenditure. Taken together, the results indicate that Gleevec exhibits greater beneficial effects on both glucose/lipid metabolism and energy homeostasis by blocking PPARγ phosphorylation. These data illustrate that Gleevec could be a novel therapeutic agent for use in insulin resistance and type 2 diabetes. PMID:26740599

  12. AgRP Neurons Control Systemic Insulin Sensitivity via Myostatin Expression in Brown Adipose Tissue.

    PubMed

    Steculorum, Sophie M; Ruud, Johan; Karakasilioti, Ismene; Backes, Heiko; Engström Ruud, Linda; Timper, Katharina; Hess, Martin E; Tsaousidou, Eva; Mauer, Jan; Vogt, Merly C; Paeger, Lars; Bremser, Stephan; Klein, Andreas C; Morgan, Donald A; Frommolt, Peter; Brinkkötter, Paul T; Hammerschmidt, Philipp; Benzing, Thomas; Rahmouni, Kamal; Wunderlich, F Thomas; Kloppenburg, Peter; Brüning, Jens C

    2016-03-24

    Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis. PMID:27015310

  13. B lymphocytes as emerging mediators of insulin resistance

    PubMed Central

    Winer, D A; Winer, S; Shen, L; Chng, M H Y; Engleman, E G

    2012-01-01

    Obesity is associated with chronic inflammation of various tissues including visceral adipose tissue (VAT), which contributes to insulin resistance. T cells and macrophages infiltrate VAT in obesity and orchestrate this inflammation. Recently, we made the surprising discovery that B cells are important contributors to this process. Thus, some B cells and the antibodies they produce can promote VAT-associated and systemic inflammation, leading to insulin resistance. This report will focus on the properties of these B cells, and how they contribute to insulin resistance through T-cell modulation and production of pathogenic autoantibodies. Understanding the mechanisms by which B cells contribute to insulin resistance should lead to new antibody-based diagnostics and B-cell modulating therapeutics to manage this increasingly prevalent disease. PMID:25089193

  14. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity.

    PubMed

    Solinas, Giovanni; Vilcu, Cristian; Neels, Jaap G; Bandyopadhyay, Gautam K; Luo, Jun-Li; Naugler, Willscott; Grivennikov, Sergei; Wynshaw-Boris, Anthony; Scadeng, Miriam; Olefsky, Jerrold M; Karin, Michael

    2007-11-01

    Obesity-induced insulin resistance is a major factor in the etiology of type 2 diabetes, and Jun kinases (JNKs) are key negative regulators of insulin sensitivity in the obese state. Activation of JNKs (mainly JNK1) in insulin target cells results in phosphorylation of insulin receptor substrates (IRSs) at serine and threonine residues that inhibit insulin signaling. JNK1 activation is also required for accumulation of visceral fat. Here we used reciprocal adoptive transfer experiments to determine whether JNK1 in myeloid cells, such as macrophages, also contributes to insulin resistance and central adiposity. Our results show that deletion of Jnk1 in the nonhematopoietic compartment protects mice from high-fat diet (HFD)-induced insulin resistance, in part through decreased adiposity. By contrast, Jnk1 removal from hematopoietic cells has no effect on adiposity but confers protection against HFD-induced insulin resistance by decreasing obesity-induced inflammation. PMID:17983584

  15. Insulin Mediated 14C-Glucose Incorporation Into Adipose Tissue: An Undergraduate Biochemistry Experiment

    ERIC Educational Resources Information Center

    Landman, A. D.; Eskin, N. A. M.

    1975-01-01

    Describes an experiment in which rat adipose tissue samples are exposed to labeled glucose; insulin is added to one sample. Subsequent scintillation counting demonstrates the ability of insulin to facilitate the entry of glucose into the tissue. (MLH)

  16. Insulin Resistance and Prediabetes

    MedlinePlus

    ... to be used in most health care providers' offices. The clamp is a research tool used by scientists to learn more about glucose metabolism. Research has shown that if blood tests indicate prediabetes, insulin ... care provider's office or commercial facility and sending the sample to ...

  17. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte

    PubMed Central

    Kusminski, Christine M.; Gallardo-Montejano, Violeta I.; Wang, Zhao V.; Hegde, Vijay; Bickel, Perry E.; Dhurandhar, Nikhil V.; Scherer, Philipp E.

    2015-01-01

    Background/Purpose Type 2 diabetes remains a worldwide epidemic with major pathophysiological changes as a result of chronic insulin resistance. Insulin regulates numerous biochemical pathways related to carbohydrate and lipid metabolism. Methods We have generated a novel mouse model that allows us to constitutively activate, in an inducible fashion, the distal branch of the insulin signaling transduction pathway specifically in adipocytes. Results Using the adenoviral 36 E4orf1 protein, we chronically stimulate locally the Ras-ERK-MAPK signaling pathway. At the whole body level, this leads to reduced body-weight gain under a high fat diet challenge. Despite overlapping glucose tolerance curves, there is a reduced requirement for insulin action under these conditions. The mice further exhibit reduced circulating adiponectin levels that ultimately lead to impaired lipid clearance, and inflamed and fibrotic white adipose tissues. Nevertheless, they are protected from diet-induced hepatic steatosis. As we observe constitutively elevated p-Akt levels in the adipocytes, even under conditions of low insulin levels, this pinpoints enhanced Ras-ERK-MAPK signaling in transgenic adipocytes as a potential alternative route to bypass proximal insulin signaling events. Conclusion We conclude that E4orf1 expression in the adipocyte leads to enhanced baseline activation of the distal insulin signaling node, yet impaired insulin receptor stimulation in the presence of insulin, with important implications for the regulation of adiponectin secretion. The resulting systemic phenotype is complex, yet highlights the powerful nature of manipulating selective branches of the insulin signaling network within the adipocyte. PMID:26500839

  18. Insulin Resistance and Impaired Mitochondrial Function in Obese Adolescent Girls

    PubMed Central

    Bredella, Miriam A.; Thakur, Hena; Torriani, Martin; Misra, Madhusmita

    2014-01-01

    Abstract Background: Mitochondrial dysfunction plays a role in the development of muscle insulin resistance (IR) and the accumulation of intramyocellular lipid (IMCL) in skeletal muscle that can, in turn, interfere with insulin signaling. The purpose of this study was to assess mitochondrial function (MF) and IMCL in obese adolescent girls with and without IR to determine whether: (1) Girls with IR have impaired MF, and (2) impaired MF in girls with IR is related to higher IMCL. Methods: We examined 22 obese girls aged 13–21 years old for IR [defined as a homeostasis model assessment of insulin resistance (HOMA-IR) value >4. Phosphorus magnetic resonance spectroscopy (31P-MRS) and proton magnetic resonance spectroscopy (1H-MRS), respectively, were used to determine MF and IMCL of the soleus muscle along with magnetic resonance imaging (MRI) measures of visceral, subcutaneous, and total adipose tissue (VAT, SAT, and TAT) in girls with HOMA-IR >4 (insulin-resistant group) versus HOMA-IR ≤4 (insulin-sensitive group). Serum lipids and waist-to-hip ratio (W/H) were also measured. Results: Girls with IR (n=8) did not differ from the insulin-sensitive group (n=14) for age, bone age, weight, VAT, SAT, TAT, or IMCL. However, the insulin-resistant group had higher W/H. Additionally the insulin-resistance group had a lower log rate of postexercise phosphocreatine (PCr) recovery (ViPCr) and a higher log PCr recovery constant (tau), indicative of impaired MF. Conclusions: Obese girls with increased IR have impaired mitochondrial function. This association is not mediated by alterations in IMCL or adipose tissue. Further studies are necessary to determine whether there is a causal relation between impaired mitochondrial function and IR in obesity and mediators of such a relationship. PMID:24251951

  19. Surgical removal of visceral adipose tissue: effects on insulin action.

    PubMed

    Gabriely, Ilan; Barzilai, Nir

    2003-06-01

    Many studies have demonstrated that excess of visceral fat has deleterious effects on insulin action. Mainly, it has been shown to be associated with a decrease in hepatic and peripheral insulin sensitivity, which results in a clinical condition also known as insulin resistance. This report describes a novel experimental method that we employed in order to analyze the particular effects of visceral fat on insulin activity. By extracting visceral fat we were able to distinguish the specific role that it plays in insulin action, and to analyze its effects on the gene expression of a variety of fat-derived peptides, which may be considered to be (at least partially) mediators in the development of the metabolic syndrome and possibly diabetes mellitus. PMID:12762966

  20. A PPARγ-Bnip3 Axis Couples Adipose Mitochondrial Fusion-Fission Balance to Systemic Insulin Sensitivity.

    PubMed

    Tol, Marc J; Ottenhoff, Roelof; van Eijk, Marco; Zelcer, Noam; Aten, Jan; Houten, Sander M; Geerts, Dirk; van Roomen, Cindy; Bierlaagh, Marlou C; Scheij, Saskia; Hoeksema, Marten A; Aerts, Johannes M; Bogan, Jonathan S; Dorn, Gerald W; Argmann, Carmen A; Verhoeven, Arthur J

    2016-09-01

    Aberrant mitochondrial fission plays a pivotal role in the pathogenesis of skeletal muscle insulin resistance. However, fusion-fission dynamics are physiologically regulated by inherent tissue-specific and nutrient-sensitive processes that may have distinct or even opposing effects with respect to insulin sensitivity. Based on a combination of mouse population genetics and functional in vitro assays, we describe here a regulatory circuit in which peroxisome proliferator-activated receptor γ (PPARγ), the adipocyte master regulator and receptor for the thiazolidinedione class of antidiabetic drugs, controls mitochondrial network fragmentation through transcriptional induction of Bnip3. Short hairpin RNA-mediated knockdown of Bnip3 in cultured adipocytes shifts the balance toward mitochondrial elongation, leading to compromised respiratory capacity, heightened fatty acid β-oxidation-associated mitochondrial reactive oxygen species generation, insulin resistance, and reduced triacylglycerol storage. Notably, the selective fission/Drp1 inhibitor Mdivi-1 mimics the effects of Bnip3 knockdown on adipose mitochondrial bioenergetics and glucose disposal. We further show that Bnip3 is reciprocally regulated in white and brown fat depots of diet-induced obesity and leptin-deficient ob/ob mouse models. Finally, Bnip3(-/-) mice trade reduced adiposity for increased liver steatosis and develop aggravated systemic insulin resistance in response to high-fat feeding. Together, our data outline Bnip3 as a key effector of PPARγ-mediated adipose mitochondrial network fragmentation, improving insulin sensitivity and limiting oxidative stress. PMID:27325287

  1. Treatment of insulin resistance in uremia.

    PubMed

    Stefanović, V; Nesić, V; Stojimirović, B

    2003-02-01

    Insulin resistance is a characteristic feature of uremia. As long as the hyperinsulinemia adequate to overcome the insulin resistance, glucose tolerance remains normal. In patients destined to develop type 2 diabetes, the beta cell compensatory response declines, and relative, or absolute, insulin deficiency develops. At this point glucose intolerance and eventually frank type 2 diabetes occur. Insulin resistance and concomitant hyperinsulinemia are present irrespective of the type of renal disease. Several studies have confirmed that hemodialysis (HD) treatment significantly improves insulin resistance. Both CAPD and CCPD are shown to improve insulin resistance in uremic patients. Comparing the effect of PD and HD treatment, it was found that the CCPD group has significantly higher insulin sensitivity than the HD group with the CAPD group similar to HD. Treatment of calcium and phosphate disturbances, including vitamin D therapy, significantly reduces insulin resistance in uremia. Treatment with recombinant human erythropoietin (EPO) is an efficient way to increase hematocrit, to reverse cardiovascular problems and to improve insulin sensitivity. Angiotensin-converting enzyme inhibitors have been shown to improve insulin resistance, hyperinsulinemia and glucose intolerance in uremic patients. Thiazolidinediones (TZDs), the new insulin-sensitizing drugs, provide the proof that pharmacologic treatment of insulin resistance can be of enormous clinical benefit. The great potential of insulin resistance therapy illuminated by the TZDs will continue to catalyze research in this area directed toward the discovery of new insulin-sensitizing agents that work through other mechanisms. PMID:12653342

  2. Adipose Tissue Promotes a Serum Cytokine Profile Related to Lower Insulin Sensitivity after Chronic Central Leptin Infusion

    PubMed Central

    Burgos-Ramos, Emma; Canelles, Sandra; Perianes-Cachero, Arancha; Arilla-Ferreiro, Eduardo; Argente, Jesús; Barrios, Vicente

    2012-01-01

    Obesity is an inflammatory state characterized by an augment in circulating inflammatory factors. Leptin may modulate the synthesis of these factors by white adipose tissue decreasing insulin sensitivity. We have examined the effect of chronic central administration of leptin on circulating levels of cytokines and the possible relationship with cytokine expression and protein content as well as with leptin and insulin signaling in subcutaneous and visceral adipose tissues. In addition, we analyzed the possible correlation between circulating levels of cytokines and peripheral insulin resistance. We studied 18 male Wistar rats divided into controls (C), those treated icv for 14 days with a daily dose of 12 μg of leptin (L) and a pair-fed group (PF) that received the same food amount consumed by the leptin group. Serum leptin and insulin were measured by ELISA, mRNA levels of interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-4, IL-6, IL-10 and tumor necrosis factor-α (TNF-α) by real time PCR and serum and adipose tissue levels of these cytokines by multiplexed bead immunoassay. Serum leptin, IL-2, IL-4, IFN-γ and HOMA-IR were increased in L and TNF-α was decreased in PF and L. Serum leptin and IL-2 levels correlate positively with HOMA-IR index and negatively with serum glucose levels during an ip insulin tolerance test. In L, an increase in mRNA levels of IL-2 was found in both adipose depots and IFN-γ only in visceral tissue. Activation of leptin signaling was increased and insulin signaling decreased in subcutaneous fat of L. In conclusion, leptin mediates the production of inflammatory cytokines by adipose tissue independent of its effects on food intake, decreasing insulin sensitivity. PMID:23056516

  3. Insulin resistance in the liver: Deficiency or excess of insulin?

    PubMed Central

    Bazotte, Roberto B; Silva, Lorena G; Schiavon, Fabiana PM

    2014-01-01

    In insulin-resistant states (obesity, pre-diabetes, and type 2 diabetes), hepatic production of glucose and lipid synthesis are heightened in concert, implying that insulin deficiency and insulin excess coexists in this setting. The fact that insulin may be inadequate or excessive at any one point in differing organs and tissues has many biologic ramifications. In this context the concept of metabolic compartmentalization in the liver is offered herein as one perspective of this paradox. In particular, we focus on the hypothesis that insulin resistance accentuates differences in periportal and perivenous hepatocytes, namely periportal glucose production and perivenous lipid synthesis. Subsequently, excessive production of glucose and accumulation of lipids could be expected in the livers of patients with obesity and insulin resistance. Overall, in this review, we provide our integrative perspective regarding how excessive production of glucose in periportal hepatocytes and accumulation of lipids in perivenous hepatocytes interact in insulin resistant states. PMID:25486190

  4. A polyphenol-rich fraction obtained from table grapes decreases adiposity, insulin resistance and markers of inflammation and impacts gut microbiota in high-fat-fed mice.

    PubMed

    Collins, Brian; Hoffman, Jessie; Martinez, Kristina; Grace, Mary; Lila, Mary Ann; Cockrell, Chase; Nadimpalli, Anuradha; Chang, Eugene; Chuang, Chia-Chi; Zhong, Wei; Mackert, Jessica; Shen, Wan; Cooney, Paula; Hopkins, Robin; McIntosh, Michael

    2016-05-01

    The objective of this study was to determine if consuming an extractable or nonextractable fraction of table grapes reduced the metabolic consequences of consuming a high-fat, American-type diet. Male C57BL/6J mice were fed a low fat (LF) diet, a high fat (HF) diet, or an HF diet containing whole table grape powder (5% w/w), an extractable, polyphenol-rich (HF-EP) fraction, a nonextractable, polyphenol-poor (HF-NEP) fraction or equal combinations of both fractions (HF-EP+NEP) from grape powder for 16weeks. Mice fed the HF-EP and HF-EP+NEP diets had lower percentages of body fat and amounts of white adipose tissue (WAT) and improved glucose tolerance compared to the HF-fed controls. Mice fed the HF-EP+NEP diet had lower liver weights and triglyceride (TG) levels compared to the HF-fed controls. Mice fed the HF-EP+NEP diets had higher hepatic mRNA levels of hormone sensitive lipase and adipose TG lipase, and decreased expression of c-reactive protein compared to the HF-fed controls. In epididymal (visceral) WAT, the expression levels of several inflammatory genes were lower in mice fed the HF-EP and HF-EP+NEP diets compared to the HF-fed controls. Mice fed the HF diets had increased myeloperoxidase activity and impaired localization of the tight junction protein zonula occludens-1 in ileal mucosa compared to the HF-EP and HF-NEP diets. Several of these treatment effects were associated with alterations in gut bacterial community structure. Collectively, these data demonstrate that the polyphenol-rich, EP fraction from table grapes attenuated many of the adverse health consequences associated with consuming an HF diet. PMID:27133434

  5. Chenodeoxycholic acid, an endogenous FXR ligand alters adipokines and reverses insulin resistance.

    PubMed

    Shihabudeen, Mohamed Sham; Roy, Debasish; James, Joel; Thirumurugan, Kavitha

    2015-10-15

    Adipose tissue secretes adipokines that regulate insulin sensitivity in adipocytes and other peripheral tissues critical to glucose metabolism. Insulin resistance is associated with severe alterations in adipokines characterized by release of increased pro-inflammatory cytokines and decreased anti-inflammatory cytokines from adipose tissue. The role of Farnesoid X receptor (FXR) activation on adipokines in relation to adipose tissue inflammation and insulin resistance is not completely explored. For the first time, we have evaluated the ability of Chenodeoxycholic acid (CDCA), an endogenous FXR ligand, in restoring the disturbance in adipokine secretion and insulin resistance in palmitate treated 3T3-L1 cells and adipose tissues of High fat diet (HFD) rats. CDCA suppressed several of the tested pro-inflammatory adipokines (TNF-α, MCP-1, IL-6, Chemerin, PAI, RBP4, resistin, vaspin), and enhanced the major anti-inflammatory and insulin sensitizing adipokines (adiponectin, leptin). CDCA suppressed the activation of critical inflammatory regulators such as NF-κB and IKKβ which are activated by palmitate treatment in differentiated cells and HFD in rats. We show the altered adipokines in insulin resistance, its association with inflammatory regulators, and the role of CDCA in amelioration of insulin resistance by modulation of adipokines. PMID:26188168

  6. Metabolic inflammation: connecting obesity and insulin resistance.

    PubMed

    Dali-Youcef, Nassim; Mecili, Mustapha; Ricci, Roméo; Andrès, Emmanuel

    2013-05-01

    Insulin resistance is a pathological condition that arises when insulin signaling is impaired, forcing β-cells to produce more insulin in order to cope with body demands and to maintain glucose homeostasis. When the pancreas is no more able to support an appropriate insulin secretion, insulin resistance becomes decompensated and hyperglycemia is detected. One of the mechanisms leading to insulin resistance is low-grade inflammation that involves a number of protagonists such as inflammatory cytokines, lipids and their metabolites, reactive oxygen species (ROS), hypoxia and endoplasmic reticulum stress, and changes in gut microbiota profiles. We review here the molecular aspects of metabolic inflammation converging to insulin resistance and secondarily to type 2 diabetes. We also discuss the place of high-sensitivity C-reactive protein (hsCRP) in the assessment of metabolic inflammation and potential therapeutic interventions aimed to impede inflammation and therefore prevent insulin resistance. PMID:22834949

  7. The Insulin-Like Growth Factor System in Obesity, Insulin Resistance and Type 2 Diabetes Mellitus

    PubMed Central

    Lewitt, Moira S.; Dent, Mairi S.; Hall, Kerstin

    2014-01-01

    The insulin-like growth factor (IGF) system, acting in concert with other hormone axes, is important in normal metabolism. In obesity, the hyperinsulinaemia that accompanies peripheral insulin resistance leads to reduced growth hormone (GH) secretion, while total IGF-I levels are relatively unchanged due to increased hepatic GH sensitivity. IGF-binding protein (IGFBP)-1 levels are suppressed in relation to the increase in insulin levels in obesity and low levels predict the development of type 2 diabetes several years later. Visceral adiposity and hepatic steatosis, along with a chronic inflammation, contribute to the IGF system phenotype in individuals with metabolic syndrome and type 2 diabetes mellitus, including changes in the normal inverse relationship between IGFBP-1 and insulin, with IGFBP-1 concentrations that are inappropriately normal or elevated. The IGF system is implicated in the vascular and other complications of these disorders and is therefore a potential therapeutic target. PMID:26237614

  8. Association of resistin with visceral fat and muscle insulin resistance.

    PubMed

    Borst, Stephen E; Conover, Christine F; Bagby, Gregory J

    2005-10-01

    Maturing Sprague-Dawley (S-D) rats develop obesity and skeletal muscle insulin resistance. To investigate the relationship between fat mass and insulin responses, we performed surgical removal of the epididymal and retroperitoneal depots of visceral adipose tissue (VF) or sham surgery (SHAM) in male rats aged 4 months. At sacrifice, 30 days later, the mass of visceral fat was 48% lower (p<0.05) in VF- compared to SHAM, while subcutaneous fat was essentially unchanged. VF- animals displayed increased insulin responses in isolated strips of skeletal muscle. Insulin-stimulated glucose transport was increased 28% in soleus muscle (p<0.05), with a trend toward a 31% increase in extensor digitorum longus muscle (p=0.058). Glucose tolerance was not significantly affected by surgical fat removal. In VF- animals, serum resistin was reduced 26% (p<0.05) and serum adiponectin was reduced 30% (p<0.05), with trends for reductions in IL-4 (58% reduction, p=0.084) and IL-6 (56% reduction, p=0.123). TNF-alpha, leptin and free fatty acids (NEFAs) were unchanged. We conclude that in maturing S-D rats, increased visceral adiposity leads to an increase in systemic release in resistin and possibly interleukins. Elevation of circulating cytokines may play a role in the development of muscle insulin resistance. PMID:16154759

  9. Chronic sub-clinical inflammation in the abdominal adipose tissue – Evaluation of inflammatory cytokines and their link with insulin resistance in metabolically obese South Indians: A cross-sectional observational study

    PubMed Central

    Premanath, M.; Basavanagowdappa, H.; Mahesh, M.; Babu, M. Suresh; Devananda, D.

    2016-01-01

    Objective: To measure the levels of proinflammatory cytokines tumor necrosis factor-alpha (TNF-α), interleukin-6(IL-6), and high-sensitive C-reactive protein (hs-CRP) and the anti-inflammatory cytokine adiponectin (AN) in obese South Indian subjects and to ascertain whether or not a causal role could be ascribed to these cytokines in the development of insulin resistance (IR). Materials and Methods: Forty obese and forty nonobese volunteers of both genders were recruited. Parameters such as body mass index (BMI), waist circumference (WC), and blood pressure were evaluated. Fasting blood sugar (FBS), fasting insulin level, hemoglobin A1c (HbA1C), lipid profile, TNF-α, IL-6, hs-CRP, and AN levels were measured. IR was evaluated by homeostatic model assessment-IR method. Abdominal adiposity was measured by ultrasonography. The results were statistically evaluated by appropriate tests. Results: BMI, WC, and visceral fat were high in the obese group. Females had higher subcutaneous fat in both groups. HbA1C was marginally high in the obese group (P = 0.014). IR was high in all the groups, obese males showing higher values (not significant[NS]). Total cholesterol and low-density lipoprotein were high in the obese group (P = 0.028, P = 0.003). TNF-α was high in obese males (NS), IL-6 was high in both groups, higher in nonobese females (NS), hs-CRP was high in both groups, higher in females of both groups (NS). AN was high in females of both groups (P = 0.002). Conclusions: In this study on South Indian subjects, proinflammatory cytokines such as IL-6 and hs-CRP, despite being high, did not show any causal correlation either with abdominal obesity or with IR. TNF-α being normal showed some correlation which was inconsistent. Even the anti-inflammatory adipokine, AN did not show any correlation with IR. Cytokines had an inconsistent correlation with the components of metabolic syndrome hence were not useful. PMID:26904474

  10. Macrophage Metalloelastase (MMP12) Regulates Adipose Tissue Expansion, Insulin Sensitivity, and Expression of Inducible Nitric Oxide Synthase

    PubMed Central

    Lee, Jung-Ting; Pamir, Nathalie; Liu, Ning-Chun; Kirk, Elizabeth A.; Averill, Michelle M.; Becker, Lev; Larson, Ilona; Hagman, Derek K.; Foster-Schubert, Karen E.; van Yserloo, Brian; Bornfeldt, Karin E.; LeBoeuf, Renee C.; Kratz, Mario

    2014-01-01

    Macrophage metalloelastase, a matrix metallopeptidase (MMP12) predominantly expressed by mature tissue macrophages, is implicated in pathological processes. However, physiological functions for MMP12 have not been described. Because mRNA levels for the enzyme increase markedly in adipose tissue of obese mice, we investigated the role of MMP12 in adipose tissue expansion and insulin resistance. In humans, MMP12 expression correlated positively and significantly with insulin resistance, TNF-α expression, and the number of CD14+CD206+ macrophages in adipose tissue. MMP12 was the most abundant matrix metallopeptidase detected by proteomic analysis of conditioned medium of M2 macrophages and dendritic cells. In contrast, it was detected only at low levels in bone marrow derived macrophages and M1 macrophages. When mice received a high-fat diet, adipose tissue mass increased and CD11b+F4/80+CD11c−macrophages accumulated to a greater extent in MMP12-deficient (Mmp12−/−) mice than in wild-type mice (Mmp12+/+). Despite being markedly more obese, fat-fed Mmp12−/− mice were more insulin sensitive than fat-fed Mmp12+/+ mice. Expression of inducible nitric oxide synthase (Nos2) by Mmp12−/− macrophages was significantly impaired both in vivo and in vitro, suggesting that MMP12 might mediate nitric oxide production during inflammation. We propose that MMP12 acts as a double-edged sword by promoting insulin resistance while combatting adipose tissue expansion. PMID:24914938

  11. The Importance of Palmitoleic Acid to Adipocyte Insulin Resistance and Whole-Body Insulin Sensitivity in Type 1 Diabetes

    PubMed Central

    Howard, David; Schauer, Irene E.; Maahs, David M.; Snell-Bergeon, Janet K.; Clement, Timothy W.; Eckel, Robert H.; Perreault, Leigh; Rewers, Marian

    2013-01-01

    Context: Type 1 diabetes is an insulin-resistant state, but it is less clear which tissues are affected. Our previous report implicated skeletal muscle and liver insulin resistance in people with type 1 diabetes, but this occurred independently of generalized, visceral, or ectopic fat. Objective: The aim of the study was to measure adipose tissue insulin sensitivity and plasma triglyceride composition in individuals with type 1 diabetes after overnight insulin infusion to lower fasting glucose. Design, Patients, and Methods: Fifty subjects (25 individuals with type 1 diabetes and 25 controls without) were studied. After 3 d of dietary control and overnight insulin infusion, we performed a three-stage hyperinsulinemic/euglycemic clamp infusing insulin at 4, 8, and 40 mU/m2 · min. Infusions of [1,1,2,3,3-2H2]glycerol and [1-13C]palmitate were used to quantify lipid metabolism. Results: Basal glycerol and palmitate rates of appearance were similar between groups, decreased more in control subjects during the first two stages of the clamp, and similarly suppressed during the highest insulin dose. The concentration of insulin required for 50% inhibition of lipolysis was twice as high in individuals with type 1 diabetes. Plasma triglyceride saturation was similar between groups, but palmitoleic acid in plasma triglyceride was inversely related to adipocyte insulin sensitivity. Unesterified palmitoleic acid in plasma was positively related to insulin sensitivity in controls, but not in individuals with type 1 diabetes. Conclusions: Adipose tissue insulin resistance is a significant feature of type 1 diabetes. Palmitoleic acid is not related to insulin sensitivity in type 1 diabetes, as it was in controls, suggesting a novel mechanism for insulin resistance in this population. PMID:23150678

  12. Increased GIP signaling induces adipose inflammation via a HIF-1α-dependent pathway and impairs insulin sensitivity in mice.

    PubMed

    Chen, Shu; Okahara, Fumiaki; Osaki, Noriko; Shimotoyodome, Akira

    2015-03-01

    Glucose-dependent insulinotropic polypeptide (GIP) is a gut hormone secreted in response to dietary fat and glucose. The blood GIP level is elevated in obesity and diabetes. GIP stimulates proinflammatory gene expression and impairs insulin sensitivity in cultured adipocytes. In obesity, hypoxia within adipose tissue can induce inflammation. The aims of this study were 1) to examine the proinflammatory effect of increased GIP signaling in adipose tissues in vivo and 2) to clarify the association between GIP and hypoxic signaling in adipose tissue inflammation. We administered GIP intraperitoneally to misty (lean) and db/db (obese) mice and examined adipose tissue inflammation and insulin sensitivity. We also examined the effects of GIP and hypoxia on expression of the GIP receptor (GIPR) gene and proinflammatory genes in 3T3-L1 adipocytes. GIP administration increased monocyte chemoattractant protein-1 (MCP-1) expression and macrophage infiltration into adipose tissue and increased blood glucose in db/db mice. GIPR and hypoxia-inducible factor-1α (HIF-1α) expressions were positively correlated in the adipose tissue in mice. GIPR expression increased dramatically in differentiated adipocytes. GIP treatment of adipocytes increased MCP-1 and interleukin-6 (IL-6) production. Adipocytes cultured either with RAW 264 macrophages or under hypoxia expressed more GIPR and HIF-1α, and GIP treatment increased gene expression of plasminogen activator inhibitor 1 and IL-6. HIF-1α gene silencing diminished both macrophage- and hypoxia-induced GIPR expression and GIP-induced IL-6 expression in adipocytes. Thus, increased GIP signaling plays a significant role in adipose tissue inflammation and thereby insulin resistance in obese mice, and HIF-1α may contribute to this process. PMID:25537494

  13. Nonobese, insulin-deficient Ins2Akita mice develop type 2 diabetes phenotypes including insulin resistance and cardiac remodeling.

    PubMed

    Hong, Eun-Gyoung; Jung, Dae Young; Ko, Hwi Jin; Zhang, Zhiyou; Ma, Zhexi; Jun, John Y; Kim, Jae Hyeong; Sumner, Andrew D; Vary, Thomas C; Gardner, Thomas W; Bronson, Sarah K; Kim, Jason K

    2007-12-01

    Although insulin resistance has been traditionally associated with type 2 diabetes, recent evidence in humans and animal models indicates that insulin resistance may also develop in type 1 diabetes. A point mutation of insulin 2 gene in Ins2(Akita) mice leads to pancreatic beta-cell apoptosis and hyperglycemia, and these mice are commonly used to investigate type 1 diabetes and complications. Since insulin resistance plays an important role in diabetic complications, we performed hyperinsulinemic-euglycemic clamps in awake Ins2(Akita) and wild-type mice to measure insulin action and glucose metabolism in vivo. Nonobese Ins2(Akita) mice developed insulin resistance, as indicated by an approximately 80% reduction in glucose infusion rate during clamps. Insulin resistance was due to approximately 50% decreases in glucose uptake in skeletal muscle and brown adipose tissue as well as hepatic insulin action. Skeletal muscle insulin resistance was associated with a 40% reduction in total GLUT4 and a threefold increase in PKCepsilon levels in Ins2(Akita) mice. Chronic phloridzin treatment lowered systemic glucose levels and normalized muscle insulin action, GLUT4 and PKCepsilon levels in Ins2(Akita) mice, indicating that hyperglycemia plays a role in insulin resistance. Echocardiography showed significant cardiac remodeling with ventricular hypertrophy that was ameliorated following chronic phloridzin treatment in Ins2(Akita) mice. Overall, we report for the first time that nonobese, insulin-deficient Ins2(Akita) mice develop type 2 diabetes phenotypes including peripheral and hepatic insulin resistance and cardiac remodeling. Our findings provide important insights into the pathogenesis of metabolic abnormalities and complications affecting type 1 diabetes and lean type 2 diabetes subjects. PMID:17911348

  14. Adipose Depots, not Disease Related Factors, Account for Skeletal Muscle Insulin Sensitivity in Established and Treated Rheumatoid Arthritis

    PubMed Central

    AbouAssi, Hiba; Tune, K. Noelle; Gilmore, Brian; Bateman, Lori A.; McDaniel, Gary; Muehlbauer, Michael; Huebner, Janet L.; Hoenig, Helen M.; Kraus, Virginia B.; Clair, E. William St.; Kraus, William E.; Huffman, Kim M.

    2014-01-01

    Objectives In prior reports, individuals with rheumatoid arthritis (RA) exhibited increased insulin resistance. However, these studies were limited by either suboptimal assessment methods for insulin sensitivity or a failure to account for important determinants, adiposity and physical activity. Our objectives were to carefully assess, compare and determine predictors of skeletal muscle insulin sensitivity (SI) in RA, accounting for adiposity and physical activity. Methods Thirty-nine individuals with established (seropositive or erosions) and treated RA and 39 age, gender, race, BMI, and physical activity-matched controls underwent a frequently-sampled intravenous glucose tolerance test to determine SI. Inflammation, body composition, and physical activity were assessed with systemic cytokine measurements, CT scans, and accelerometry, respectively. Exclusions were diabetes, cardiovascular disease, medication changes within three months, and prednisone use over 5 mg/d. This investigation was powered to detect a clinically significant, moderate effect size for SI difference. Results Despite elevated systemic inflammation (interleukin (IL)-6, IL-18, tumor necrosis factor-alpha; P<0.05 for all), persons with RA were not less insulin sensitive (SI geometric mean (SD): RA 4.0 (2.4) versus Control 4.9 (2.1)*10−5 min−1/[pmol/l]; P=0.39). Except for visceral adiposity being slightly greater in controls (P=0.03), there were no differences in body composition or physical activity. Lower SI was independently associated with increased abdominal and thigh adiposity, but not with cytokines, disease activity, duration, disability, or disease modifying medication use. Conclusions In established and treated RA, traditional risk factors, specifically excess adiposity, play more of a role in predicting skeletal muscle insulin sensitivity than systemic inflammation or other disease-related factors. PMID:24986846

  15. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    SciTech Connect

    Permana, Paska A. . E-mail: Paska.Permana@med.va.gov; Menge, Christopher; Reaven, Peter D.

    2006-03-10

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-{kappa}B) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-{kappa}B inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity.

  16. Insulin Resistance and Skin Diseases

    PubMed Central

    Napolitano, Maddalena; Megna, Matteo; Monfrecola, Giuseppe

    2015-01-01

    In medical practice, almost every clinician may encounter patients with skin disease. However, it is not always easy for physicians of all specialties to face the daily task of determining the nature and clinical implication of dermatologic manifestations. Are they confined to the skin, representing a pure dermatologic event? Or are they also markers of internal conditions relating to the patient's overall health? In this review, we will discuss the principal cutaneous conditions which have been linked to metabolic alterations. Particularly, since insulin has an important role in homeostasis and physiology of the skin, we will focus on the relationships between insulin resistance (IR) and skin diseases, analyzing strongly IR-associated conditions such as acanthosis nigricans, acne, and psoriasis, without neglecting emerging and potential scenarios as the ones represented by hidradenitis suppurativa, androgenetic alopecia, and hirsutism. PMID:25977937

  17. SIRT2 regulates insulin sensitivity in insulin resistant neuronal cells.

    PubMed

    Arora, Amita; Dey, Chinmoy Sankar

    2016-06-10

    Insulin resistance in brain is well-associated with pathophysiology of deficits in whole-body energy metabolism, neurodegenerative diseases etc. Among the seven sirtuins, SIRT2 is the major deacetylase expressed in brain. Inhibition of SIRT2 confers neuroprotection in case of Parkinson's disease (PD) and Huntington's disease (HD). However, the role of this sirtuin in neuronal insulin resistance is not known. In this study, we report the role of SIRT2 in regulating insulin-sensitivity in neuronal cells in vitro. Using approaches like pharmacological inhibition of SIRT2, siRNA mediated SIRT2 knockdown and over-expression of wild-type and catalytically-mutated SIRT2, we observed that downregulation of SIRT2 ameliorated the reduced activity of AKT and increased insulin-stimulated glucose uptake in insulin resistant neuro-2a cells. The data was supported by over expression of catalytically-inactive SIRT2 in insulin-resistant human SH-SY5Y neuronal cells. Data highlights a crucial role of SIRT2 in regulation of neuronal insulin sensitivity under insulin resistant condition. PMID:27163642

  18. Inflammation and insulin resistance: an old story with new ideas.

    PubMed

    Kim, Jason K

    2010-06-01

    Years before insulin was discovered, anti-inflammatory sodium salicylate was used to treat diabetes in 1901. Intriguingly for many years that followed, diabetes was viewed as a disorder of glucose metabolism, and then it was described as a disease of dysregulated lipid metabolism. The diabetes research focused on the causal relationship between obesity and insulin resistance, a major characteristic of type 2 diabetes. It is only within the past 20 years when the notion of inflammation as a cause of insulin resistance began to surface. In obesity, inflammation develops when macrophages infiltrate adipose tissue and stimulate adipocyte secretion of inflammatory cytokines, that in turn affect energy balance, glucose and lipid metabolism, leading to insulin resistance. This report reviews recent discoveries of stress kinase signaling involving molecular scaffolds and endoplasmic reticulum chaperones that regulate energy balance and glucose homeostasis. As we advance from a conceptual understanding to molecular discoveries, a century-old story of inflammation and insulin resistance is re-born with new ideas. PMID:20617073

  19. Chronic cadmium exposure in rats produces pancreatic impairment and insulin resistance in multiple peripheral tissues.

    PubMed

    Treviño, Samuel; Waalkes, Michael P; Flores Hernández, José Angel; León-Chavez, Bertha Alicia; Aguilar-Alonso, Patricia; Brambila, Eduardo

    2015-10-01

    Previous studies have linked cadmium exposure to disturbances in carbohydrate and lipid metabolism. In this study we investigate the effects in Wistar rats of an oral cadmium exposure in drinking water on carbohydrates, lipids and insulin release. Also, using mathematical models we studied the effect of cadmium on insulin resistance and sensitivity in liver, muscle, adipose and cardiovascular tissue. Cadmium exposure induced hyperglycemia, increased insulin release after a glucose load, and caused increases in serum triglycerides, cholesterol, LDL-C and VLDL-C, and a decrease of HDL-C. In addition, there was an accumulation of cadmium in pancreas and an increase of insulin. After exposure, HOMA-IR was increased, while the HOMA-S%, QUICKI and Matsuda-DeFronzo indexes showed decreases. A decrease of insulin sensitivity was shown in muscle and liver. Additionally, cadmium increases insulin resistance in the liver, adipose tissue and cardiovascular system. Finally, β-cell functioning was evaluated by HOMA-B% index and insulin disposition index, which were decreased, while insulin generation index increased. In conclusion, cadmium increases insulin release, induces hyperglycemia and alters lipid metabolism. These changes likely occur as a consequence of reduced sensitivity and increased insulin resistance in multiple insulin-dependent and non-dependent tissues, producing a biochemical phenotype similar to metabolic syndrome and diabetes. PMID:26253262

  20. CB1 antagonism restores hepatic insulin sensitivity without normalization of adiposity in diet-induced obese dogs

    PubMed Central

    Woolcott, Orison O.; Hsu, Isabel R.; Stefanoski, Darko; Harrison, L. Nicole; Zheng, Dan; Lottati, Maya; Kolka, Cathryn; Catalano, Karyn J.; Chiu, Jenny D.; Kabir, Morvarid; Ionut, Viorica; Bergman, Richard N.; Richey, Joyce M.

    2012-01-01

    The endocannabinoid system is highly implicated in the development of insulin resistance associated with obesity. It has been shown that antagonism of the CB1 receptor improves insulin sensitivity (SI). However, it is unknown whether this improvement is due to the direct effect of CB1 blockade on peripheral tissues or secondary to decreased fat mass. Here, we examine in the canine dog model the longitudinal changes in SI and fat deposition when obesity was induced with a high-fat diet (HFD) and animals were treated with the CB1 antagonist rimonabant. SI was assessed (n = 20) in animals fed a HFD for 6 wk to establish obesity. Thereafter, while HFD was continued for 16 additional weeks, animals were divided into two groups: rimonabant (1.25 mg·kg−1·day−1 RIM; n = 11) and placebo (n = 9). Euglycemic hyperinsulinemic clamps were performed to evaluate changes in insulin resistance and glucose turnover before HFD (week −6) after HFD but before treatment (week 0) and at weeks 2, 6, 12, and 16 of treatment (or placebo) + HFD. Magnetic resonance imaging was performed to determine adiposity- related changes in SI. Animals developed significant insulin resistance and increased visceral and subcutaneous adiposity after 6 wk of HFD. Treatment with RIM resulted in a modest decrease in total trunk fat with relatively little change in peripheral glucose uptake. However, there was significant improvement in hepatic insulin resistance after only 2 wk of RIM treatment with a concomitant increase in plasma adiponectin levels; both were maintained for the duration of the RIM treatment. CB1 receptor antagonism appears to have a direct effect on hepatic insulin sensitivity that may be mediated by adiponectin and independent of pronounced reductions in body fat. However, the relatively modest effect on peripheral insulin sensitivity suggests that significant improvements may be secondary to reduced fat mass. PMID:22374758

  1. Insulin resistance and breast-cancer risk.

    PubMed

    Bruning, P F; Bonfrèr, J M; van Noord, P A; Hart, A A; de Jong-Bakker, M; Nooijen, W J

    1992-10-21

    Life-style has a major influence on the incidence of breast cancer. To evaluate the effects of life-style related metabolic-endocrine factors on breast cancer risk we conducted a case-control study comparing 223 women aged 38 to 75 years presenting with operable (stage I or II) breast cancer and 441 women of the same age having no breast cancer, who participated in a population-based breast cancer screening program. Women reporting diabetes mellitus were excluded. Sera from 110 women of the same age group presenting with early stage melanoma, lymphoma or cervical cancer were used as a second 'other-cancer control group'. Serum levels of C-peptide were significantly higher in early breast cancer cases compared to controls. The same was found for the ratios C-peptide to glucose or C-peptide to fructosamine, indicating insulin resistance. Sex hormone binding globulin was inversely, triglycerides and available estradiol were positively related to C-peptide. Serum C-peptide levels were related to body mass index (BMI), and to waist/hip ratio (WHR), in particular in controls. However, the relative increase of C-peptide, C-peptide to glucose or C-peptide to fructosamine in cases was independent of BMI or WHR. The log relative risk was linearly related to the log C-peptide levels. Relative risk according to quintiles, and adjusted for age, family history, BMI and WHR, for women at the 80% level was 2.9 as compared with those at the 20% level for C-peptide. Elevated C-peptide or C-peptide to fructosamine values were not observed in the sera from women belonging to the 'other-cancer control group'. This study suggests that hyperinsulinemia with insulin resistance is a significant risk factor for breast cancer independent of general adiposity or body fat distribution. PMID:1399128

  2. [Resistance to the action of insulin].

    PubMed

    Azevedo, M da S

    1993-06-01

    The author analyses the insulin and glucagon effect on glycaemia regulation. The structure of glucose transporters and insulin receptors is described in some detail. Finally the author attempts to explain the insulin resistance mechanism based on a post receptor alteration that would be advantageous in traditional nutrition, but is noxious in a western type society, due to excessive caloric intake. PMID:8368096

  3. Glucose delays the insulin-induced increase in thyroid hormone-mediated signaling in adipose of prolong-fasted elephant seal pups.

    PubMed

    Martinez, Bridget; Soñanez-Organis, José G; Viscarra, Jose A; Jaques, John T; MacKenzie, Duncan S; Crocker, Daniel E; Ortiz, Rudy M

    2016-03-15

    Prolonged food deprivation in mammals typically reduces glucose, insulin, and thyroid hormone (TH) concentrations, as well as tissue deiodinase (DI) content and activity, which, collectively, suppress metabolism. However, in elephant seal pups, prolonged fasting does not suppress TH levels; it is associated with upregulation of adipose TH-mediated cellular mechanisms and adipose-specific insulin resistance. The functional relevance of this apparent paradox and the effects of glucose and insulin on TH-mediated signaling in an insulin-resistant tissue are not well defined. To address our hypothesis that insulin increases adipose TH signaling in pups during extended fasting, we assessed the changes in TH-associated genes in response to an insulin infusion in early- and late-fasted pups. In late fasting, insulin increased DI1, DI2, and THrβ-1 mRNA expression by 566%, 44%, and 267% at 60 min postinfusion, respectively, with levels decreasing by 120 min. Additionally, we performed a glucose challenge in late-fasted pups to differentiate between insulin- and glucose-mediated effects on TH signaling. In contrast to the insulin-induced effects, glucose infusion did not increase the expressions of DI1, DI2, and THrβ-1 until 120 min, suggesting that glucose delays the onset of the insulin-induced effects. The data also suggest that fasting duration increases the sensitivity of adipose TH-mediated mechanisms to insulin, some of which may be mediated by increased glucose. These responses appear to be unique among mammals and to have evolved in elephant seals to facilitate their adaptation to tolerate an extreme physiological condition. PMID:26739649

  4. Adipokines, Insulin Resistance and Coronary Artery Calcification

    PubMed Central

    Qasim, Atif; Mehta, Nehal N.; Tadesse, Mahlet G.; Wolfe, Megan L.; Rhodes, Thomas; Girman, Cynthia; Reilly, Muredach P

    2008-01-01

    Objectives We evaluated the hypothesis that plasma levels of adiponectin and leptin are independently but oppositely associated with coronary calcification (CAC), a measure of subclinical atherosclerosis. In addition, we assessed which biomarkers of adiposity and insulin resistance are the strongest predictors of CAC beyond traditional risk factors, the metabolic syndrome and plasma C-reactive protein (CRP). Background Adipokines are fat-secreted biomolecules with pleiotropic actions that converge in diabetes and cardiovascular disease. Methods We examined the association of plasma adipocytokines with CAC in 860 asymptomatic, non-diabetic participants in the Study of Inherited Risk of Coronary Atherosclerosis (SIRCA). Results Plasma adiponectin and leptin levels had opposite and distinct associations with adiposity, insulin resistance and inflammation. Plasma leptin was positively (top vs. bottom quartile) associated with higher CAC after adjusting for age, gender, traditional risk factors and Framingham Risk Scores (FRS) [tobit regression ratio 2.42 (95% CI 1.48–3.95, p=0.002)] and further adjusting for metabolic syndrome and CRP [ratio 2.31 (95% CI 1.36–3.94, p=0.002)]. In contrast, adiponectin levels were not associated with CAC. Comparative analyses suggested that levels of leptin, IL-6 and sol-TNFR2 as well as HOMA-IR predicted CAC scores but only leptin and HOMA-IR provided value beyond risk factors, the metabolic syndrome and CRP. Conclusion In SIRCA, while both leptin and adiponectin levels were associated with metabolic and inflammatory markers, only leptin was a significant independent predictor of CAC. Of several metabolic markers, leptin and the HOMA-IR index had the most robust, independent associations with CAC. Condensed Abstract Adipokines are fat-secreted biomolecules with pleiotropic actions and represent novel markers for cardiovascular risk. We examined the association of plasma adipocytokines with CAC in 860 asymptomatic, non

  5. Insulin depletion leads to adipose-specific cell death in obese but not lean mice.

    PubMed

    Loftus, T M; Kuhajda, F P; Lane, M D

    1998-11-24

    Mutation of the obese gene produces obesity, hyperinsulinemia, and compensatory "overexpression" of the defective gene. As insulin activates obese gene expression, it seemed possible that hyperinsulinemia might be responsible for overexpression of the gene. To address this question we rapidly neutralized circulating insulin by injection of an insulin antibody. Unexpectedly, insulin depletion in obese (ob/ob or db/db) mice caused massive adipose RNA degradation confirmed by histological analysis to result from adipocyte cell death by a largely necrotic mechanism. This effect was not observed in lean littermates and was completely corrected by coadministration of insulin. Comparison of multiple tissues demonstrated that the effect was restricted to adipose tissue. Insulin depletion in obese mice by administration of streptozotocin also led to cell death, but this death was less extensive and appeared to be apoptotic in mechanism. Thus insulin may promote the survival side of the physiological balance between adipocyte survival and death. PMID:9826672

  6. Lipid-Overloaded Enlarged Adipocytes Provoke Insulin Resistance Independent of Inflammation

    PubMed Central

    Kim, Jong In; Huh, Jin Young; Sohn, Jee Hyung; Choe, Sung Sik; Lee, Yun Sok; Lim, Chun Yan; Jo, Ala; Park, Seung Bum; Han, Weiping

    2015-01-01

    In obesity, adipocyte hypertrophy and proinflammatory responses are closely associated with the development of insulin resistance in adipose tissue. However, it is largely unknown whether adipocyte hypertrophy per se might be sufficient to provoke insulin resistance in obese adipose tissue. Here, we demonstrate that lipid-overloaded hypertrophic adipocytes are insulin resistant independent of adipocyte inflammation. Treatment with saturated or monounsaturated fatty acids resulted in adipocyte hypertrophy, but proinflammatory responses were observed only in adipocytes treated with saturated fatty acids. Regardless of adipocyte inflammation, hypertrophic adipocytes with large and unilocular lipid droplets exhibited impaired insulin-dependent glucose uptake, associated with defects in GLUT4 trafficking to the plasma membrane. Moreover, Toll-like receptor 4 mutant mice (C3H/HeJ) with high-fat-diet-induced obesity were not protected against insulin resistance, although they were resistant to adipose tissue inflammation. Together, our in vitro and in vivo data suggest that adipocyte hypertrophy alone may be crucial in causing insulin resistance in obesity. PMID:25733684

  7. Serum Glycine Is Associated with Regional Body Fat and Insulin Resistance in Functionally-Limited Older Adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic profiling may provide insight into biologic mechanisms related to age-related increases in regional adiposity and insulin resistance. The objectives of the current study were to characterize the association between mid-thigh intermuscular and subcutaneous adipose tissue (IMAT, SCAT, respec...

  8. Lower body adipose tissue removal decreases glucose tolerance and insulin sensitivity in mice with exposure to high fat diet.

    PubMed

    Cox-York, K; Wei, Y; Wang, D; Pagliassotti, M J; Foster, M T

    2015-01-01

    It has been postulated that the protective effects of lower body subcutaneous adipose tissue (LBSAT) occur via its ability to sequester surplus lipid and thus serve as a "metabolic sink." However, the mechanisms that mediate this protective function are unknown thus this study addresses this postulate. Ad libitum, chow-fed mice underwent Sham-surgery or LBSAT removal (IngX, inguinal depot removal) and were subsequently provided chow (Chow; typical adipocyte expansion) or high fat diet (HFD; enhanced adipocyte expansion) for 5 weeks. Primary outcome measures included glucose tolerance and subsequent insulin response, muscle insulin sensitivity, liver and muscle triglycerides, adipose tissue gene expression, and circulating lipids and adipokines. In a follow up study the consequences of extended experiment length post-surgery (13 wks) or pre-existing glucose intolerance were examined. At 5 wks post-surgery IngX in HFD-fed mice reduced glucose tolerance and muscle insulin sensitivity and increased circulating insulin compared with HFD Sham. In Chow-fed mice, muscle insulin sensitivity was the only measurement reduced following IngX. At 13 wks circulating insulin concentration of HFD IngX mice continued to be higher than HFD Sham. Surgery did not induce changes in mice with pre-existing glucose intolerance. IngX also increased muscle, but not liver, triglyceride concentration in Chow- and HFD-fed mice 5 wks post-surgery, but chow group only at 13 wks. These data suggest that the presence of LBSAT protects against triglyceride accumulation in the muscle and HFD-induced glucose intolerance and muscle insulin resistance. These data suggest that lower body subcutaneous adipose tissue can function as a "metabolic sink." PMID:26167400

  9. Lower body adipose tissue removal decreases glucose tolerance and insulin sensitivity in mice with exposure to high fat diet

    PubMed Central

    Cox-York, K; Wei, Y; Wang, D; Pagliassotti, MJ; Foster, MT

    2014-01-01

    It has been postulated that the protective effects of lower body subcutaneous adipose tissue (LBSAT) occur via its ability to sequester surplus lipid and thus serve as a “metabolic sink.” However, the mechanisms that mediate this protective function are unknown thus this study addresses this postulate. Ad libitum, chow-fed mice underwent Sham-surgery or LBSAT removal (IngX, inguinal depot removal) and were subsequently provided chow (Chow; typical adipocyte expansion) or high fat diet (HFD; enhanced adipocyte expansion) for 5 weeks. Primary outcome measures included glucose tolerance and subsequent insulin response, muscle insulin sensitivity, liver and muscle triglycerides, adipose tissue gene expression, and circulating lipids and adipokines. In a follow up study the consequences of extended experiment length post-surgery (13 wks) or pre-existing glucose intolerance were examined. At 5 wks post-surgery IngX in HFD-fed mice reduced glucose tolerance and muscle insulin sensitivity and increased circulating insulin compared with HFD Sham. In Chow-fed mice, muscle insulin sensitivity was the only measurement reduced following IngX. At 13 wks circulating insulin concentration of HFD IngX mice continued to be higher than HFD Sham. Surgery did not induce changes in mice with pre-existing glucose intolerance. IngX also increased muscle, but not liver, triglyceride concentration in Chow- and HFD-fed mice 5 wks post-surgery, but chow group only at 13 wks. These data suggest that the presence of LBSAT protects against triglyceride accumulation in the muscle and HFD-induced glucose intolerance and muscle insulin resistance. These data suggest that lower body subcutaneous adipose tissue can function as a “metabolic sink.” PMID:26167400

  10. Insulin resistance in young, lean male subjects with essential hypertension.

    PubMed

    Penesova, A; Cizmarova, E; Belan, V; Blazicek, P; Imrich, R; Vlcek, M; Vigas, M; Selko, D; Koska, J; Radikova, Z

    2011-06-01

    Impaired insulin action, frequently found in essential hypertension (HT), is modified by other factors, such as higher age, accumulation of body fat, dyslipidaemia, impaired glucose metabolism and endothelial dysfunction. In addition, antihypertensive and insulin-sensitizing medication itself may significantly affect cardiovascular and metabolic milieu. The aim of this study was to assess insulin sensitivity, acute insulin response, lipidaemic status and the adipokines' concentrations with regard to abdominal fat distribution in young, lean male subjects with treatment-naïve essential HT and in matched healthy normotensive (NT) subjects. We studied 27 HT patients (age: 19.9±0.6 years; body mass index (BMI): 22.9±0.5 kg m(-2)) and 15 NT controls (age: 22.3±1.0 years; BMI: 23.7±0.6 kg m(-2)). The subjects underwent an oral and an intravenous glucose tolerance test (OGTT, IVGTT) on separate days in random order. Higher fasting insulin (P<0.001), non-esterified fatty acids (P<0.05) and plasminogen activator inhibitor factor 1 concentrations (P<0.05) were found in HT patients when compared with NT patients. Despite comparable anthropometric parameters and body fat distribution assessed by magnetic resonance imaging in both groups, newly diagnosed untreated young hypertensive male subjects showed decreased insulin sensitivity, augmented insulin response to both oral and intravenous glucose load (P<0.01; P<0.05 respectively) and 'higher still normal' 2-h plasma glucose levels during OGTT. Untreated, young, lean hypertensive male subjects, with distribution of abdominal adipose tissue and lipid profile comparable with their healthy NT matched counterparts, showed considerable signs of insulin resistance and hyperinsulinaemia. We hypothesize that insulin resistance is the initial feature, which is influenced by several environmental factors, and HT is one of their common consequences. PMID:20631738

  11. Selective Insulin Resistance in the Kidney

    PubMed Central

    Horita, Shoko; Nakamura, Motonobu; Suzuki, Masashi; Satoh, Nobuhiko; Suzuki, Atsushi; Seki, George

    2016-01-01

    Insulin resistance has been characterized as attenuation of insulin sensitivity at target organs and tissues, such as muscle and fat tissues and the liver. The insulin signaling cascade is divided into major pathways such as the PI3K/Akt pathway and the MAPK/MEK pathway. In insulin resistance, however, these pathways are not equally impaired. For example, in the liver, inhibition of gluconeogenesis by the insulin receptor substrate (IRS) 2 pathway is impaired, while lipogenesis by the IRS1 pathway is preserved, thus causing hyperglycemia and hyperlipidemia. It has been recently suggested that selective impairment of insulin signaling cascades in insulin resistance also occurs in the kidney. In the renal proximal tubule, insulin signaling via IRS1 is inhibited, while insulin signaling via IRS2 is preserved. Insulin signaling via IRS2 continues to stimulate sodium reabsorption in the proximal tubule and causes sodium retention, edema, and hypertension. IRS1 signaling deficiency in the proximal tubule may impair IRS1-mediated inhibition of gluconeogenesis, which could induce hyperglycemia by preserving glucose production. In the glomerulus, the impairment of IRS1 signaling deteriorates the structure and function of podocyte and endothelial cells, possibly causing diabetic nephropathy. This paper mainly describes selective insulin resistance in the kidney, focusing on the proximal tubule. PMID:27247938

  12. Angiotensin and insulin resistance: conspiracy theory.

    PubMed

    Townsend, Raymond R

    2003-04-01

    Resistance to the metabolic effects of insulin is a contender for the short list of major cardiovascular risk factors. Since the elements of the syndrome of insulin resistance were first articulated together in 1988, numerous epidemiologic investigations and treatment endeavors have established a relationship between the metabolic disarray of impaired insulin action and cardiovascular disease. Angiotensin II, the primary effector of the renin-angiotensin system, has also achieved a place in the chronicles of cardiovascular risk factors. Conspiracy mechanisms by which angiotensin II and insulin resistance interact in the pathogenesis of cardiovascular disease are reviewed, with particular attention to recent developments in this engaging area of human research. PMID:12642009

  13. Impact of obesity and insulin-resistance on cirrhosis and portal hypertension.

    PubMed

    Berzigotti, Annalisa; Abraldes, Juan G

    2013-10-01

    Obesity is sharply rising worldwide and is increasingly recognized in patients with cirrhosis. This review summarizes the available data documenting a detrimental role of obesity and insulin-resistance on the risk of appearance of clinical events in patients with cirrhosis. Molecular pathways explaining the harmful effect of obesity and insulin resistance in the natural history of cirrhosis are largely unknown. Increasing knowledge of mechanisms leading to white adipose tissue dysfunction on one side, and to portal hypertension on the other side, allow hypothesizing that a link between the pathophysiology of obesity, insulin resistance and portal hypertension in cirrhosis exists. Mechanisms likely involved in this interplay are discussed in this article. PMID:23731977

  14. Dietary Fructose Activates Insulin Signaling and Inflammation in Adipose Tissue: Modulatory Role of Resveratrol

    PubMed Central

    Pektas, Mehmet Bilgehan; Koca, Halit Bugra; Sadi, Gokhan; Akar, Fatma

    2016-01-01

    The effects of high-fructose diet on adipose tissue insulin signaling and inflammatory process have been poorly documented. In this study, we examined the influences of long-term fructose intake and resveratrol supplementation on the expression of genes involved in insulin signaling and the levels of inflammatory cytokines and sex hormones in the white adipose tissues of male and female rats. Consumption of high-fructose diet for 24 weeks increased the expression of genes involved in insulin signaling including IR, IRS-1, IRS-2, Akt, PI3K, eNOS, mTOR, and PPARγ, despite induction of proinflammatory markers, iNOS, TNFα, IL-1β, IL-18, MDA, and ALT, as well as anti-inflammatory factors, IL-10 and Nrf2 in adipose tissues from males and females. Total and free testosterone concentrations of adipose tissues were impaired in males but increased in females, although there were no changes in their blood levels. Resveratrol supplementation markedly restored the levels of MDA, IL6, IL-10, and IL-18, as well as iNOS, Nrf2, and PI3K mRNA, in adipose tissues of both genders. Dietary fructose activates both insulin signaling and inflammatory pathway in the adipose tissues of male and female rats proposing no correlation between the tissue insulin signaling and inflammation. Resveratrol has partly modulatory effects on fructose-induced changes. PMID:27066503

  15. Treatment Approach to Patients With Severe Insulin Resistance.

    PubMed

    Church, Timothy J; Haines, Stuart T

    2016-04-01

    In Brief Patients with severe insulin resistance require >2 units/kg of body weight or 200 units/day of insulin. Yet, many patients do not achieve glycemic targets despite using very high doses of insulin. Insulin can cause weight gain, which further contributes to worsening insulin resistance. This article describes the pharmacological options for managing patients with severe insulin resistance, including the use of U-500 insulin and newer agents in combination with insulin. PMID:27092020

  16. Myeloperoxidase Deletion Prevents High-Fat Diet–Induced Obesity and Insulin Resistance

    PubMed Central

    Wang, Qilong; Xie, Zhonglin; Zhang, Wencheng; Zhou, Jun; Wu, Yue; Zhang, Miao; Zhu, Huaiping

    2014-01-01

    Activation of myeloperoxidase (MPO), a heme protein primarily expressed in granules of neutrophils, is associated with the development of obesity. However, whether MPO mediates high-fat diet (HFD)-induced obesity and obesity-associated insulin resistance remains to be determined. Here, we found that consumption of an HFD resulted in neutrophil infiltration and enhanced MPO expression and activity in epididymal white adipose tissue, with an increase in body weight gain and impaired insulin signaling. MPO knockout (MPO−/−) mice were protected from HFD-enhanced body weight gain and insulin resistance. The MPO inhibitor 4-aminobenzoic acid hydrazide reduced peroxidase activity of neutrophils and prevented HFD-enhanced insulin resistance. MPO deficiency caused high body temperature via upregulation of uncoupling protein-1 and mitochondrial oxygen consumption in brown adipose tissue. Lack of MPO also attenuated HFD-induced macrophage infiltration and expression of proinflammatory cytokines. We conclude that activation of MPO in adipose tissue contributes to the development of obesity and obesity-associated insulin resistance. Inhibition of MPO may be a potential strategy for prevention and treatment of obesity and insulin resistance. PMID:25024373

  17. The Impact of Organokines on Insulin Resistance, Inflammation, and Atherosclerosis.

    PubMed

    Choi, Kyung Mook

    2016-03-01

    Immoderate energy intake, a sedentary lifestyle, and aging have contributed to the increased prevalence of obesity, sarcopenia, metabolic syndrome, type 2 diabetes, and cardiovascular disease. There is an urgent need for the development of novel pharmacological interventions that can target excessive fat accumulation and decreased muscle mass and/or strength. Adipokines, bioactive molecules derived from adipose tissue, are involved in the regulation of appetite and satiety, inflammation, energy expenditure, insulin resistance and secretion, glucose and lipid metabolism, and atherosclerosis. Recently, there is emerging evidence that skeletal muscle and the liver also function as endocrine organs that secrete myokines and hepatokines, respectively. Novel discoveries and research into these organokines (adipokines, myokines, and hepatokines) may lead to the development of promising biomarkers and therapeutics for cardiometabolic disease. In this review, I summarize recent data on these organokines and focus on the role of adipokines, myokines, and hepatokines in the regulation of insulin resistance, inflammation, and atherosclerosis. PMID:26996418

  18. The Impact of Organokines on Insulin Resistance, Inflammation, and Atherosclerosis

    PubMed Central

    2016-01-01

    Immoderate energy intake, a sedentary lifestyle, and aging have contributed to the increased prevalence of obesity, sarcopenia, metabolic syndrome, type 2 diabetes, and cardiovascular disease. There is an urgent need for the development of novel pharmacological interventions that can target excessive fat accumulation and decreased muscle mass and/or strength. Adipokines, bioactive molecules derived from adipose tissue, are involved in the regulation of appetite and satiety, inflammation, energy expenditure, insulin resistance and secretion, glucose and lipid metabolism, and atherosclerosis. Recently, there is emerging evidence that skeletal muscle and the liver also function as endocrine organs that secrete myokines and hepatokines, respectively. Novel discoveries and research into these organokines (adipokines, myokines, and hepatokines) may lead to the development of promising biomarkers and therapeutics for cardiometabolic disease. In this review, I summarize recent data on these organokines and focus on the role of adipokines, myokines, and hepatokines in the regulation of insulin resistance, inflammation, and atherosclerosis. PMID:26996418

  19. Role of reduced insulin-stimulated bone blood flow in the pathogenesis of metabolic insulin resistance and diabetic bone fragility.

    PubMed

    Hinton, Pamela S

    2016-08-01

    Worldwide, 387 million adults live with type 2 diabetes (T2D) and an additional 205 million cases are projected by 2035. Because T2D has numerous complications, there is significant morbidity and mortality associated with the disease. Identification of early events in the pathogenesis of insulin resistance and T2D might lead to more effective treatments that would mitigate health and monetary costs. Here, we present our hypothesis that impaired bone blood flow is an early event in the pathogenesis of whole-body metabolic insulin resistance that ultimately leads to T2D. Two recent developments in different fields form the basis for this hypothesis. First, reduced vascular function has been identified as an early event in the development of T2D. In particular, before the onset of tissue or whole body metabolic insulin resistance, insulin-stimulated, endothelium-mediated skeletal muscle blood flow is impaired. Insulin resistance of the vascular endothelium reduces delivery of insulin and glucose to skeletal muscle, which leads to tissue and whole-body metabolic insulin resistance. Second is the paradigm-shifting discovery that the skeleton has an endocrine function that is essential for maintenance of whole-body glucose homeostasis. Specifically, in response to insulin signaling, osteoblasts secret osteocalcin, which stimulates pancreatic insulin production and enhances insulin sensitivity in skeletal muscle, adipose, and liver. Furthermore, the skeleton is not metabolically inert, but contributes to whole-body glucose utilization, consuming 20% that of skeletal muscle and 50% that of white adipose tissue. Without insulin signaling or without osteocalcin activity, experimental animals become hyperglycemic and insulin resistant. Currently, it is not known if insulin-stimulated, endothelium-mediated blood flow to bone plays a role in the development of whole body metabolic insulin resistance. We hypothesize that it is a key, early event. Microvascular dysfunction is a

  20. Insulin Resistance and Heart Failure: Molecular Mechanisms

    PubMed Central

    Aroor, Annayya R.; Mandavia, Chirag H.; Sowers, James R.

    2012-01-01

    Insulin resistance and associated reductions in cardiac insulin metabolic signaling is emerging as a major factor for the development of heart failure and assumes more importance because of an epidemic increase in obesity and the cardiorenal metabolic syndrome and our aging population. Major factors contributing to the development of cardiac insulin resistance are oxidative stress, hyperglycemia, hyperlipidemia, dysregulated secretion of adipokines/cytokines and inappropriate activation of renin-angiotensin II-aldosterone system (RAAS) and the sympathetic nervous system. The effects of cardiac insulin resistance are exacerbated by metabolic, endocrine and cytokine alterations associated with systemic insulin resistance. The aggregate of these various alterations leads to an insulin resistant phenotype with metabolic inflexibility, impaired calcium handling, mitochondrial dysfunction and oxidative stress, dysregulated myocardial-endothelial interactions resulting in energy deficiency, impaired diastolic dysfunction, myocardial cell death and cardiac fibrosis. Therefore, understanding the molecular mechanisms linking insulin resistance and heart failure may help to design new and more effective mechanism-based drugs to improve myocardial and systemic insulin resistance. PMID:22999243

  1. Aberrant Accumulation of Undifferentiated Myeloid Cells in the Adipose Tissue of CCR2-Deficient Mice Delays Improvements in Insulin Sensitivity

    PubMed Central

    Gutierrez, Dario A.; Kennedy, Arion; Orr, Jeb S.; Anderson, Emily K.; Webb, Corey D.; Gerrald, William K.; Hasty, Alyssa H.

    2011-01-01

    OBJECTIVE Mice with CCR2 deficiency are protected from insulin resistance but only after long periods of high-fat diet (HFD) feeding, despite the virtual absence of circulating inflammatory monocytes. We performed a time course study in mice with hematopoietic and global CCR2 deficiency to determine adipose tissue–specific mechanisms for the delayed impact of CCR2 deficiency on insulin resistance. RESEARCH DESIGN AND METHODS Mice with global or hematopoietic CCR2 deficiency (CCR2−/− and BM-CCR2−/−, respectively) and wild-type controls (CCR2+/+ and BM-CCR2+/+, respectively) were placed on an HFD for 6, 12, and 20 weeks. Adipose tissue myeloid populations, degree of inflammation, glucose tolerance, and insulin sensitivity were assessed. RESULTS Flow cytometry analysis showed that two different populations of F4/80+ myeloid cells (CD11bloF4/80lo and CD11bhiF4/80hi) accumulated in the adipose tissue of CCR2−/− and BM-CCR2−/− mice after 6 and 12 weeks of HFD feeding, whereas only the CD11bhiF4/80hi population was detected in the CCR2+/+ and BM-CCR2+/+ controls. After 20 weeks of HFD feeding, the CD11bloF4/80lo cells were no longer present in the adipose tissue of CCR2−/− mice, and only then were improvements in adipose tissue inflammation detected. Gene expression and histological analysis of the CD11bloF4/80lo cells indicated that they are a unique undifferentiated monocytic inflammatory population. The CD11bloF4/80lo cells are transiently found in wild-type mice, but CCR2 deficiency leads to the aberrant accumulation of these cells in adipose tissue. CONCLUSIONS The discovery of this novel adipose tissue monocytic cell population provides advances toward understanding the pleiotropic role of CCR2 in monocyte/macrophage accumulation and regulation of adipose tissue inflammation. PMID:21926275

  2. Decreased irisin secretion contributes to muscle insulin resistance in high-fat diet mice

    PubMed Central

    Yang, Zaigang; Chen, Xu; Chen, Yujuan; Zhao, Qian

    2015-01-01

    Aims: Recent studies have revealed the relationship between irisin and insulin signaling, while positive associations of muscle FNDC5 with insulin resistance is observed. However, the functional mechanism of irisin on muscle insulin resistance is still obscure. This study aims to investigate the effect of irisin on muscle insulin action. Methods: Diabetic mouse model was established by high fat diet (HFD) induced obesity in C57BL/6 mice. Body indexes and serum levels of triglyceride (TG), blood glucose and insulin were record. Oral glucose tolerance test (OGTT) was performed before being killed. Circulating irisin level was also detected, while FNDC5/irisin expression was determined by RT-PCR and western blot analysis in both muscle and adipose tissues. Insulin action was further evaluated by the phosphorylation of AKT and Erk, and palmitic acid treated muscle cells were introduced for mimicking diabetic status in vitro. Results: Obvious obese feathers associated with type 2 diabetes were observed in HFD feeding mice, with decreased circulating irisin level and FNDC5/irisin secretion in adipose tissues. Although FNDC5/irisin expression showed little change in skeletal muscle, the insulin action was inhibited significantly. Moreover, palmitic acid treated muscle cells showed similar inhibition of insulin action, and FNDC5/irisin expression change. Besides, insulin action could be reversed by irisin addition in muscle cells. Conclusion: HFD induced obese mice showed decreased irisin secretion from adipose tissues, which might contribute to muscle insulin resistance. Furthermore, irisin addition could recover insulin action in palmitic acid treated muscle cells, indicating the importance of irisin for preserving insulin signaling. PMID:26261526

  3. A gene expression signature for insulin resistance.

    PubMed

    Konstantopoulos, Nicky; Foletta, Victoria C; Segal, David H; Shields, Katherine A; Sanigorski, Andrew; Windmill, Kelly; Swinton, Courtney; Connor, Tim; Wanyonyi, Stephen; Dyer, Thomas D; Fahey, Richard P; Watt, Rose A; Curran, Joanne E; Molero, Juan-Carlos; Krippner, Guy; Collier, Greg R; James, David E; Blangero, John; Jowett, Jeremy B; Walder, Ken R

    2011-02-11

    Insulin resistance is a heterogeneous disorder caused by a range of genetic and environmental factors, and we hypothesize that its etiology varies considerably between individuals. This heterogeneity provides significant challenges to the development of effective therapeutic regimes for long-term management of type 2 diabetes. We describe a novel strategy, using large-scale gene expression profiling, to develop a gene expression signature (GES) that reflects the overall state of insulin resistance in cells and patients. The GES was developed from 3T3-L1 adipocytes that were made "insulin resistant" by treatment with tumor necrosis factor-α (TNF-α) and then reversed with aspirin and troglitazone ("resensitized"). The GES consisted of five genes whose expression levels best discriminated between the insulin-resistant and insulin-resensitized states. We then used this GES to screen a compound library for agents that affected the GES genes in 3T3-L1 adipocytes in a way that most closely resembled the changes seen when insulin resistance was successfully reversed with aspirin and troglitazone. This screen identified both known and new insulin-sensitizing compounds including nonsteroidal anti-inflammatory agents, β-adrenergic antagonists, β-lactams, and sodium channel blockers. We tested the biological relevance of this GES in participants in the San Antonio Family Heart Study (n = 1,240) and showed that patients with the lowest GES scores were more insulin resistant (according to HOMA_IR and fasting plasma insulin levels; P < 0.001). These findings show that GES technology can be used for both the discovery of insulin-sensitizing compounds and the characterization of patients into subtypes of insulin resistance according to GES scores, opening the possibility of developing a personalized medicine approach to type 2 diabetes. PMID:21081660

  4. Insulin resistance and diabetes in HIV infection.

    PubMed

    Das, Satyajit

    2011-09-01

    Insulin resistance is an important and under recognized consequence of HIV treatment. Different studies have yielded widely varying estimates of the prevalence of impaired glucose metabolism in people on highly active antiretroviral therapy (HAART). The risk increases further with hepatitis C co infection. Although Protease inhibitors (PIs) are the main drug class implicated in insulin resistance, some studies have shown an association of increased risk of diabetes with cumulative exposure of nucleoside reverse transcriptase inhibitors (NRTIs). The effect of switching to other antiretrovirals has not been fully determined and the long-term consequences of insulin resistance in this population are not known. Treatment of established diabetes mellitus should generally follow existing guidelines. It is therefore reasonable to recommend general measures to increase insulin sensitivity in all patients infected with HIV, such as regular aerobic exercise and weight reduction for overweight persons. The present review article has the information of some recent patents regarding the insulin resistance in HIV infection. PMID:21824074

  5. Influence of adipocyte size and adipose depot on the in vitro lipolytic activity and insulin sensitivity of adipose tissue in dairy cows at the end of the dry period.

    PubMed

    De Koster, J; Van den Broeck, W; Hulpio, L; Claeys, E; Van Eetvelde, M; Hermans, K; Hostens, M; Fievez, V; Opsomer, G

    2016-03-01

    The aim of the present research was to describe characteristics of adipose tissue lipolysis in dairy cows with a variable body condition score (BCS). Ten clinically healthy Holstein Friesian cows were selected based on BCS and euthanized 10 to 13 d before the expected parturition date. Immediately after euthanasia, adipose tissue samples were collected from subcutaneous and omental fat depots. In both depots, we observed an increase in adipocyte size with increasing BCS. Using an in vitro explant culture of subcutaneous and omental adipose tissue, we aimed to determine the influence of adipocyte size and localization of adipose depot on the lipolytic activity in basal conditions and after addition of isoproterenol (nonselective β-agonist) and insulin in different concentrations. Glycerol release in the medium was used as a measure for lipolytic activity. We observed that the basal lipolytic activity of subcutaneous and omental adipose tissue increased with adipocyte volume, meaning that larger fat cells have higher basal lipolytic activity independent of the location of the adipose depot. Dose-response curves were created between the concentration of isoproterenol or insulin and the amount of glycerol released. The shape of the dose-response curves is determined by the concentration of isoproterenol and insulin needed to elicit the half-maximal effect and the maximal amount of stimulated glycerol release or the maximal inhibitory effect of insulin. We observed that larger fat cells released more glycerol upon maximal stimulation with isoproterenol and this was more pronounced in subcutaneous adipose tissue. Additionally, larger fat cells had a higher sensitivity toward lipolytic signals. We observed a trend for larger adipocytes to be more resistant to the maximal antilipolytic effect of insulin. The insulin concentration needed to elicit the half-maximal inhibitory effect of insulin was within the physiological range of insulin and was not influenced by adipocyte

  6. Insulin resistance and muscle insulin receptor substrate‐1 serine hyperphosphorylation

    PubMed Central

    Stuart, Charles A.; Howell, Mary E. A.; Cartwright, Brian M.; McCurry, Melanie P.; Lee, Michelle L.; Ramsey, Michael W.; Stone, Michael H.

    2014-01-01

    Abstract Insulin resistance in metabolic syndrome subjects is profound in spite of muscle insulin receptor and insulin‐responsive glucose transporter (GLUT4) expression being nearly normal. Insulin receptor tyrosine kinase phosphorylation of insulin receptor substrate‐1 (IRS‐1) at Tyr896 is a necessary step in insulin stimulation of translocation of GLUT4 to the cell surface. Serine phosphorylation of IRS‐1 by some kinases diminishes insulin action in mice. We evaluated the phosphorylation status of muscle IRS‐1 in 33 subjects with the metabolic syndrome and seventeen lean controls. Each underwent euglycemic insulin clamps and a thigh muscle biopsy before and after 8 weeks of either strength or endurance training. Muscle IRS‐1 phosphorylation at six sites was quantified by immunoblots. Metabolic syndrome muscle IRS‐1 had excess phosphorylation at Ser337 and Ser636 but not at Ser307, Ser789, or Ser1101. Ser337 is a target for phosphorylation by glycogen synthase kinase 3 (GSK3) and Ser636 is phosphorylated by c‐Jun N‐terminal kinase 1 (JNK1). Exercise training without weight loss did not change the IRS‐1 serine phosphorylation. These data suggest that baseline hyperphosphorylation of at least two key serines within muscle IRS‐1 diminishes the transmission of the insulin signal and thereby decreases the insulin‐stimulated translocation of GLUT4. Excess fasting phosphorylation of muscle IRS‐1 at Ser636 may be a major cause of the insulin resistance seen in obesity and might prevent improvement in insulin responsiveness when exercise training is not accompanied by weight loss. PMID:25472611

  7. Lactobacillus rhamnosus GG Reverses Insulin Resistance but Does Not Block Its Onset in Diet-Induced Obese Mice.

    PubMed

    Park, Kun-Young; Kim, Bobae; Hyun, Chang-Kee

    2015-05-01

    Recently, Lactobacillus rhamnosus GG (LGG) was shown to exert insulin-sensitizing and adiposity-reducing effects in high-fat (HF) diet-fed mice. In the present study, we observed that the effects were correlated with the extent of dysbiosis induced by HF diet feeding before LGG administration. LGG-treated mice were protected from HF diet-induced adiposity and/ or insulin resistance when LGG was treated after, not along with, HF diet feeding. Results indicate that, under HF dietary condition, supplemented LGG reverses insulin resistance, but does not block its onset. PMID:25433553

  8. Depletion of Fat Tregs Prevents Age-Associated Insulin Resistance

    PubMed Central

    Bapat, Sagar P.; Suh, Jae Myoung; Fang, Sungsoon; Liu, Sihao; Zhang, Yang; Cheng, Albert; Zhou, Carmen; Liang, Yuqiong; LeBlanc, Mathias; Liddle, Christopher; Atkins, Annette R.; Yu, Ruth T.; Downes, Michael; Evans, Ronald M.; Zheng, Ye

    2015-01-01

    Age-associated insulin resistance (IR) and obesity-associated IR are two physiologically distinct forms of adult onset diabetes. While macrophage-driven inflammation is a core driver of obesity-associated IR1–6, the underlying mechanisms of the obesity-independent yet highly prevalent age-associated IR7 are largely unexplored. Comparative adipo-immune profiling (AIP) reveals that fat-resident regulatory T cells, termed fTregs, accumulate in adipose tissue as a function of age, but not obesity. Supporting the existence of two distinct mechanisms underlying IR, mice deficient in fTregs are protected against age-associated IR, yet remain susceptible to obesity-associated IR and metabolic disease. In contrast, selective depletion of fTregs via anti-ST2 antibody treatment increases adipose tissue insulin sensitivity. These findings establish that distinct immune cell populations within adipose tissue underlie aging- and obesity-associated IR and implicate fTregs as adipo-immune drivers and potential therapeutic targets in the treatment of age-associated IR. PMID:26580014

  9. Developmental Programming: Impact of Gestational Steroid and Metabolic Milieus on Adiposity and Insulin Sensitivity in Prenatal Testosterone-Treated Female Sheep.

    PubMed

    Cardoso, Rodolfo C; Veiga-Lopez, Almudena; Moeller, Jacob; Beckett, Evan; Pease, Anthony; Keller, Erica; Madrigal, Vanessa; Chazenbalk, Gregorio; Dumesic, Daniel; Padmanabhan, Vasantha

    2016-02-01

    Prenatally testosterone (T)-treated sheep present metabolic disruptions similar to those seen in women with polycystic ovary syndrome. These females exhibit an increased ratio of small to large adipocytes, which may be the earliest event in the development of adult insulin resistance. Additionally, our longitudinal studies suggest the existence of a period of compensatory adaptation during development. This study tested whether 1) in utero cotreatment of prenatally T-treated sheep with androgen antagonist (flutamide) or insulin sensitizer (rosiglitazone) prevents juvenile insulin resistance and adult changes in adipocyte size; and 2) visceral adiposity and insulin sensitivity are both unaltered during early adulthood, confirming the predicted developmental trajectory in this animal model. Insulin sensitivity was tested during juvenile development and adipose tissue distribution, adipocyte size, and concentrations of adipokines were determined during early adulthood. Prenatal T-treated females manifested juvenile insulin resistance, which was prevented by prenatal rosiglitazone cotreatment. Neither visceral adiposity nor insulin sensitivity differed between groups during early adulthood. Prenatal T-treated sheep presented an increase in the relative proportion of small adipocytes, which was not substantially prevented by either prenatal intervention. A large effect size was observed for increased leptin concentrations in prenatal T-treated sheep compared with controls, which was prevented by prenatal rosiglitazone. In conclusion, gestational alterations in insulin-glucose homeostasis likely play a role in programming insulin resistance, but not adipocyte size distribution, in prenatal T-treated sheep. Furthermore, these results support the notion that a period of compensatory adaptation of the metabolic system to prenatal T exposure occurs between puberty and adulthood. PMID:26650569

  10. Selective insulin resistance in hepatocyte senescence

    SciTech Connect

    Aravinthan, Aloysious; Challis, Benjamin; Shannon, Nicholas; Hoare, Matthew; Heaney, Judith; Alexander, Graeme J.M.

    2015-02-01

    Insulin resistance has been described in association with chronic liver disease for decades. Hepatocyte senescence has been demonstrated in chronic liver disease and as many as 80% of hepatocytes show a senescent phenotype in advanced liver disease. The aim of this study was to understand the role of hepatocyte senescence in the development of insulin resistance. Senescence was induced in HepG2 cells via oxidative stress. The insulin metabolic pathway was studied in control and senescent cells following insulin stimulation. GLUT2 and GLUT4 expressions were studied in HepG2 cells and human liver tissue. Further, GLUT2 and GLUT4 expressions were studied in three independent chronic liver disease cohorts. Signalling impairment distal to Akt in phosphorylation of AS160 and FoxO1 was evident in senescent HepG2 cells. Persistent nuclear localisation of FoxO1 was demonstrated in senescent cells despite insulin stimulation. Increased GLUT4 and decreased GLUT2 expressions were evident in senescent cells, human cirrhotic liver tissue and publically available liver disease datasets. Changes in GLUT expressions were associated with a poor clinical prognosis. In conclusion, selective insulin resistance is evident in senescent HepG2 cells and changes in GLUT expressions can be used as surrogate markers of hepatocyte senescence. - Highlights: • Senescent hepatocytes demonstrate selective insulin resistance. • GLUT changes act as markers of hepatocyte senescence and have prognostic value. • Study offers insight into long noticed intimacy of cirrhosis and insulin resistance.

  11. Role of mitochondrial function in insulin resistance.

    PubMed

    Brands, Myrte; Verhoeven, Arthur J; Serlie, Mireille J

    2012-01-01

    The obesity pandemic increases the prevalence of type 2 diabetes (DM2).DM2 develops when pancreatic β-cells fail and cannot compensate for the decrease in insulin sensitivity. How excessive caloric intake and weight gain cause insulin resistance has not completely been elucidated.Skeletal muscle is responsible for a major part of insulin stimulated whole-body glucose disposal and, hence, plays an important role in the pathogenesis of insulin resistance.It has been hypothesized that skeletal muscle mitochondrial dysfunction is involved in the accumulation of intramyocellular lipid metabolites leading to lipotoxicity and insulin resistance. However, findings on skeletal muscle mitochondrial function in relation to insulin resistance in human subjects are inconclusive. Differences in mitochondrial activity can be the result of several factors, including a reduced mitochondrial density, differences in insulin stimulated mitochondrial respiration, lower energy demand or reduced skeletal muscle perfusion, besides an intrinsic mitochondrial defect. The inconclusive results may be explained by the use of different techniques and study populations. Also, mitochondrial capacity is in far excess to meet energy requirements and therefore it may be questioned whether a reduced mitochondrial capacity limits mitochondrial fatty acid oxidation. Whether reduced mitochondrial function is causally related to insulin resistance or rather a consequence of the sedentary lifestyle remains to be elucidated. PMID:22399424

  12. Hypertension and abnormal fat distribution but not insulin resistance in mice with P465L PPARγ

    PubMed Central

    Tsai, Yau-Sheng; Kim, Hyo-Jeong; Takahashi, Nobuyuki; Kim, Hyung-Suk; Hagaman, John R.; Kim, Jason K.; Maeda, Nobuyo

    2004-01-01

    Peroxisome proliferator–activated receptor γ (PPARγ), the molecular target of a class of insulin sensitizers, regulates adipocyte differentiation and lipid metabolism. A dominant negative P467L mutation in the ligand-binding domain of PPARγ in humans is associated with severe insulin resistance and hypertension. Homozygous mice with the equivalent P465L mutation die in utero. Heterozygous mice grow normally and have normal total adipose tissue weight. However, they have reduced interscapular brown adipose tissue and intra-abdominal fat mass, and increased extra-abdominal subcutaneous fat, compared with wild-type mice. They have normal plasma glucose levels and insulin sensitivity, and increased glucose tolerance. However, during high-fat feeding, their plasma insulin levels are mildly elevated in association with a significant increase in pancreatic islet mass. They are hypertensive, and expression of the angiotensinogen gene is increased in their subcutaneous adipose tissues. The effects of P465L on blood pressure, fat distribution, and insulin sensitivity are the same in both male and female mice regardless of diet and age. Thus the P465L mutation alone is sufficient to cause abnormal fat distribution and hypertension but not insulin resistance in mice. These results provide genetic evidence for a critical role for PPARγ in blood pressure regulation that is not dependent on altered insulin sensitivity. PMID:15254591

  13. Insulin signaling, inflammation, and lipolysis in subcutaneous adipose tissue of transition dairy cows either overfed energy during the prepartum period or fed a controlled-energy diet.

    PubMed

    Mann, S; Nydam, D V; Abuelo, A; Leal Yepes, F A; Overton, T R; Wakshlag, J J

    2016-08-01

    Adipose tissue mobilization is a hallmark of the transition period in dairy cows. Cows overfed energy during the dry period have higher concentrations of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) compared with cows fed a controlled-energy diet prepartum. The reason for an increase in blood NEFA concentrations at the level of adipose tissue in cows overfed energy has not been fully elucidated. One hypothesis is that cows with high BHB concentrations suffer from adipose tissue-specific insulin resistance, leading to higher rates of adipose tissue mobilization in the postpartum period. To test this hypothesis, subcutaneous adipose tissue biopsies of cows overfed energy in excess of predicted requirements by 50% in the dry period, and that had high concentrations of blood BHB postpartum (group H; n=12), were used. Findings were compared with results of biopsies from cows fed a controlled-energy diet and with low BHB concentrations postpartum (group C; n=12) to create the biggest contrast in BHB concentrations. Subcutaneous adipose tissue biopsies were obtained before and 60 min after an intravenous glucose challenge (0.25 g/kg of glucose) at 28 and 10 d before expected calving as well as on d 4 and 21 postpartum. Phosphorylation of protein kinase B, extracellular signal-regulated kinase, and hormone-sensitive lipase was determined before and after glucose infusion by Western blot. Western blot was also used to assess the baseline protein abundance of peroxisome proliferator-activated receptor gamma and insulin receptor β-subunit. In addition, gene expression of fatty acid synthase, adiponectin, monocyte chemoattractant protein 1, and tumor necrosis factor α was determined by real-time quantitative reverse-transcription PCR. Backfat thickness was determined in the thurl area by ultrasonography. Cows in group H showed a greater degree of lipogenesis prepartum, but no differences were found in lipolytic enzyme activity postpartum compared with cows

  14. Nuclear receptors reverse McGarry's vicious cycle to insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several pathways and pathologies have been suggested as connections between obesity and diabetes, including inflammation of adipose and other tissues, toxic lipids, endoplasmic reticulum stress, and fatty liver. One specific proposal is that insulin resistance induces a vicious cycle in which hyperi...

  15. Tumor progression locus 2 (TPL2) regulates obesity-associated inflammation and insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity-associated low-grade systemic inflammation resulting from increased adipose mass is strongly related to the development of insulin resistance and type 2 diabetes as well as other metabolic complications. Recent studies have demonstrated the obese metabolic state can be improved by ablating ...

  16. [Insulin resistance - its causes and therapy possibilities].

    PubMed

    Pelikánová, Terezie

    2014-09-01

    Insulin resistance (IR) is defined as a condition where normal plasma free insuconcentrations induce a reduced response of the body. In the narrower sense we understand IR as the impairment of insulin action in the target structure which may arise at any level of the insulin signalling cascade. In the clinical conditions we usually define it as the impairment of insulin action in glucose metabolism, although it is true that the impairment may concern different effects of insulin and different cell structures. The characteristic feature of IR linked to the metabolic syndrome or Type 2 diabetes is defective signalling which affects PI3-kinase branch of insulin signalling cascade. Other insulin actions depending on the signalling through the Ras complex and MAP-kinase, may not be affected. Due to compensatory hyperinsulinemia they may be even increased. The article summarizes some recent findings regarding the structure and regulation of insulin signalling cascade and analyses selected primary and secondary causes of IR which include genetic and epigenetic factors, the microRNA regulation role, metabolic, humoral and immunological factors. The detailed knowledge of the causes of IR opens possibilities of its rational treatment. This is currently based on the treatment of curable causes of IR, i.e. consistent compensation of diabetes, weight reduction, regimen arrangements (diet, physical activity), re-assessment of the need to use corticosteroids in therapy, treatment of coexisting conditions and possibly administration of metformin or pioglitazone.Key words: cytokines - insulin resistance - insulin signalling cascade. PMID:25294764

  17. Atherogenic dyslipidemia associated with metabolic syndrome and insulin resistance.

    PubMed

    Grundy, Scott M

    2006-01-01

    Atherogenic dyslipidemia, a component of metabolic syndrome, is characterized by high levels of apolipoprotein B (apo B)-containing lipoproteins, including very-low-density lipoprotein remnants and small low-density lipoprotein particles, and reduced levels of high-density lipoprotein cholesterol. Although the National Cholesterol Education Program Adult Treatment Panel III includes elevations in blood pressure and plasma glucose in the definition of metabolic syndrome, the broader scope of metabolic syndrome includes proinflammatory and prothrombotic states, which derive from the secretory activity of adipose tissue. Abdominal fat can adversely affect insulin action and the disposal of glucose through an increase in the release of free fatty acid, resulting in accumulation of triglyceride in muscle and liver, thereby depressing insulin action and increasing output of apo B-containing lipoproteins. Impaired regulation of adipokines, bioactive substances secreted from adipose tissue, likely produces systemic inflammation, which can promote atherogenesis. Insulin resistance is recognized as an important metabolic defect linking the components of metabolic syndrome. One molecule that may play an important role in metabolic syndrome to regulate metabolic and vascular pathways is the peroxisome proliferator-activated receptor-gamma (PPAR-gamma). Studies have established PPAR-gamma deficiency as a cause of lipodystrophy and confirmed its adipogenic role. Patients with atherogenic dyslipidemia and metabolic syndrome should undergo global risk assessment for cardiovascular disease and future cardiovascular events to determine an overall treatment strategy. PMID:16903166

  18. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis.

    PubMed

    Pillon, Nicolas J; Azizi, Paymon M; Li, Yujin E; Liu, Jun; Wang, Changsen; Chan, Kenny L; Hopperton, Kathryn E; Bazinet, Richard P; Heit, Bryan; Bilan, Philip J; Lee, Warren L; Klip, Amira

    2015-07-01

    Obesity is associated with inflammation and immune cell recruitment to adipose tissue, muscle and intima of atherosclerotic blood vessels. Obesity and hyperlipidemia are also associated with tissue insulin resistance and can compromise insulin delivery to muscle. The muscle/fat microvascular endothelium mediates insulin delivery and facilitates monocyte transmigration, yet its contribution to the consequences of hyperlipidemia is poorly understood. Using primary endothelial cells from human adipose tissue microvasculature (HAMEC), we investigated the effects of physiological levels of fatty acids on endothelial inflammation and function. Expression of cytokines and adhesion molecules was measured by RT-qPCR. Signaling pathways were evaluated by pharmacological manipulation and immunoblotting. Surface expression of adhesion molecules was determined by immunohistochemistry. THP1 monocyte interaction with HAMEC was measured by cell adhesion and migration across transwells. Insulin transcytosis was measured by total internal reflection fluorescence microscopy. Palmitate, but not palmitoleate, elevated the expression of IL-6, IL-8, TLR2 (Toll-like receptor 2), and intercellular adhesion molecule 1 (ICAM-1). HAMEC had markedly low fatty acid uptake and oxidation, and CD36 inhibition did not reverse the palmitate-induced expression of adhesion molecules, suggesting that inflammation did not arise from palmitate uptake/metabolism. Instead, inhibition of TLR4 to NF-κB signaling blunted palmitate-induced ICAM-1 expression. Importantly, palmitate-induced surface expression of ICAM-1 promoted monocyte binding and transmigration. Conversely, palmitate reduced insulin transcytosis, an effect reversed by TLR4 inhibition. In summary, palmitate activates inflammatory pathways in primary microvascular endothelial cells, impairing insulin transport and increasing monocyte transmigration. This behavior may contribute in vivo to reduced tissue insulin action and enhanced tissue

  19. Estrogen Treatment After Ovariectomy Protects Against Fatty Liver and May Improve Pathway-Selective Insulin Resistance

    PubMed Central

    Zhu, Lin; Brown, William C.; Cai, Qing; Krust, Andrée; Chambon, Pierre; McGuinness, Owen P.; Stafford, John M.

    2013-01-01

    Pathway-selective insulin resistance where insulin fails to suppress hepatic glucose production but promotes liver fat storage may underlie glucose and lipid abnormalities after menopause. We tested the mechanisms by which estrogen treatment may alter the impact of a high-fat diet (HFD) when given at the time of ovariectomy (OVX) in mice. Female C57BL/6J mice underwent sham operation, OVX, or OVX with estradiol (E2) treatment and were fed an HFD. Hyperinsulinemic-euglycemic clamps were used to assess insulin sensitivity, tracer incorporation into hepatic lipids, and liver triglyceride export. OVX mice had increased adiposity that was prevented with E2 at the time of OVX. E2 treatment increased insulin sensitivity with OVX and HFD. In sham and OVX mice, HFD feeding induced fatty liver, and insulin reduced hepatic apoB100 and liver triglyceride export. E2 treatment reduced liver lipid deposition and prevented the decrease in liver triglyceride export during hyperinsulinemia. In mice lacking the liver estrogen receptor α, E2 after OVX limited adiposity but failed to improve insulin sensitivity, to limit liver lipid deposition, and to prevent insulin suppression of liver triglyceride export. In conclusion, estrogen treatment may reverse aspects of pathway-selective insulin resistance by promoting insulin action on glucose metabolism but limiting hepatic lipid deposition. PMID:22966069

  20. New genetic loci link adipose and insulin biology to body fat distribution

    PubMed Central

    Strawbridge, Rona J; Pers, Tune H; Fischer, Krista; Justice, Anne E; Workalemahu, Tsegaselassie; Wu, Joseph M.W.; Buchkovich, Martin L; Heard-Costa, Nancy L; Roman, Tamara S; Drong, Alexander W; Song, Ci; Gustafsson, Stefan; Day, Felix R; Esko, Tonu; Fall, Tove; Kutalik, Zoltán; Luan, Jian’an; Randall, Joshua C; Scherag, André; Vedantam, Sailaja; Wood, Andrew R; Chen, Jin; Fehrmann, Rudolf; Karjalainen, Juha; Kahali, Bratati; Liu, Ching-Ti; Schmidt, Ellen M; Absher, Devin; Amin, Najaf; Anderson, Denise; Beekman, Marian; Bragg-Gresham, Jennifer L; Buyske, Steven; Demirkan, Ayse; Ehret, Georg B; Feitosa, Mary F; Goel, Anuj; Jackson, Anne U; Johnson, Toby; Kleber, Marcus E; Kristiansson, Kati; Mangino, Massimo; Leach, Irene Mateo; Medina-Gomez, Carolina; Palmer, Cameron D; Pasko, Dorota; Pechlivanis, Sonali; Peters, Marjolein J; Prokopenko, Inga; Stančáková, Alena; Sung, Yun Ju; Tanaka, Toshiko; Teumer, Alexander; Van Vliet-Ostaptchouk, Jana V; Yengo, Loïc; Zhang, Weihua; Albrecht, Eva; Ärnlöv, Johan; Arscott, Gillian M; Bandinelli, Stefania; Barrett, Amy; Bellis, Claire; Bennett, Amanda J; Berne, Christian; Blüher, Matthias; Böhringer, Stefan; Bonnet, Fabrice; Böttcher, Yvonne; Bruinenberg, Marcel; Carba, Delia B; Caspersen, Ida H; Clarke, Robert; Daw, E Warwick; Deelen, Joris; Deelman, Ewa; Delgado, Graciela; Doney, Alex SF; Eklund, Niina; Erdos, Michael R; Estrada, Karol; Eury, Elodie; Friedrich, Nele; Garcia, Melissa E; Giedraitis, Vilmantas; Gigante, Bruna; Go, Alan S; Golay, Alain; Grallert, Harald; Grammer, Tanja B; Gräßler, Jürgen; Grewal, Jagvir; Groves, Christopher J; Haller, Toomas; Hallmans, Goran; Hartman, Catharina A; Hassinen, Maija; Hayward, Caroline; Heikkilä, Kauko; Herzig, Karl-Heinz; Helmer, Quinta; Hillege, Hans L; Holmen, Oddgeir; Hunt, Steven C; Isaacs, Aaron; Ittermann, Till; James, Alan L; Johansson, Ingegerd; Juliusdottir, Thorhildur; Kalafati, Ioanna-Panagiota; Kinnunen, Leena; Koenig, Wolfgang; Kooner, Ishminder K; Kratzer, Wolfgang; Lamina, Claudia; Leander, Karin; Lee, Nanette R; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lobbens, Stéphane; Lorentzon, Mattias; Mach, François; Magnusson, Patrik KE; Mahajan, Anubha; McArdle, Wendy L; Menni, Cristina; Merger, Sigrun; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Moayyeri, Alireza; Monda, Keri L; Mooijaart, Simon P; Mühleisen, Thomas W; Mulas, Antonella; Müller, Gabriele; Müller-Nurasyid, Martina; Nagaraja, Ramaiah; Nalls, Michael A; Narisu, Narisu; Glorioso, Nicola; Nolte, Ilja M; Olden, Matthias; Rayner, Nigel W; Renstrom, Frida; Ried, Janina S; Robertson, Neil R; Rose, Lynda M; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Sennblad, Bengt; Seufferlein, Thomas; Sitlani, Colleen M; Smith, Albert Vernon; Stirrups, Kathleen; Stringham, Heather M; Sundström, Johan; Swertz, Morris A; Swift, Amy J; Syvänen, Ann-Christine; Tayo, Bamidele O; Thorand, Barbara; Thorleifsson, Gudmar; Tomaschitz, Andreas; Troffa, Chiara; van Oort, Floor VA; Verweij, Niek; Vonk, Judith M; Waite, Lindsay L; Wennauer, Roman; Wilsgaard, Tom; Wojczynski, Mary K; Wong, Andrew; Zhang, Qunyuan; Zhao, Jing Hua; Brennan, Eoin P.; Choi, Murim; Eriksson, Per; Folkersen, Lasse; Franco-Cereceda, Anders; Gharavi, Ali G; Hedman, Åsa K; Hivert, Marie-France; Huang, Jinyan; Kanoni, Stavroula; Karpe, Fredrik; Keildson, Sarah; Kiryluk, Krzysztof; Liang, Liming; Lifton, Richard P; Ma, Baoshan; McKnight, Amy J; McPherson, Ruth; Metspalu, Andres; Min, Josine L; Moffatt, Miriam F; Montgomery, Grant W; Murabito, Joanne M; Nicholson, George; Nyholt, Dale R; Olsson, Christian; Perry, John RB; Reinmaa, Eva; Salem, Rany M; Sandholm, Niina; Schadt, Eric E; Scott, Robert A; Stolk, Lisette; Vallejo, Edgar E.; Westra, Harm-Jan; Zondervan, Krina T; Amouyel, Philippe; Arveiler, Dominique; Bakker, Stephan JL; Beilby, John; Bergman, Richard N; Blangero, John; Brown, Morris J; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chines, Peter S; Claudi-Boehm, Simone; Collins, Francis S; Crawford, Dana C; Danesh, John; de Faire, Ulf; de Geus, Eco JC; Dörr, Marcus; Erbel, Raimund; Eriksson, Johan G; Farrall, Martin; Ferrannini, Ele; Ferrières, Jean; Forouhi, Nita G; Forrester, Terrence; Franco, Oscar H; Gansevoort, Ron T; Gieger, Christian; Gudnason, Vilmundur; Haiman, Christopher A; Harris, Tamara B; Hattersley, Andrew T; Heliövaara, Markku; Hicks, Andrew A; Hingorani, Aroon D; Hoffmann, Wolfgang; Hofman, Albert; Homuth, Georg; Humphries, Steve E

    2014-01-01

    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, we conducted genome-wide association meta-analyses of waist and hip circumference-related traits in up to 224,459 individuals. We identified 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (WHRadjBMI) and an additional 19 loci newly associated with related waist and hip circumference measures (P<5×10−8). Twenty of the 49 WHRadjBMI loci showed significant sexual dimorphism, 19 of which displayed a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation, and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms. PMID:25673412

  1. New genetic loci link adipose and insulin biology to body fat distribution.

    PubMed

    Shungin, Dmitry; Winkler, Thomas W; Croteau-Chonka, Damien C; Ferreira, Teresa; Locke, Adam E; Mägi, Reedik; Strawbridge, Rona J; Pers, Tune H; Fischer, Krista; Justice, Anne E; Workalemahu, Tsegaselassie; Wu, Joseph M W; Buchkovich, Martin L; Heard-Costa, Nancy L; Roman, Tamara S; Drong, Alexander W; Song, Ci; Gustafsson, Stefan; Day, Felix R; Esko, Tonu; Fall, Tove; Kutalik, Zoltán; Luan, Jian'an; Randall, Joshua C; Scherag, André; Vedantam, Sailaja; Wood, Andrew R; Chen, Jin; Fehrmann, Rudolf; Karjalainen, Juha; Kahali, Bratati; Liu, Ching-Ti; Schmidt, Ellen M; Absher, Devin; Amin, Najaf; Anderson, Denise; Beekman, Marian; Bragg-Gresham, Jennifer L; Buyske, Steven; Demirkan, Ayse; Ehret, Georg B; Feitosa, Mary F; Goel, Anuj; Jackson, Anne U; Johnson, Toby; Kleber, Marcus E; Kristiansson, Kati; Mangino, Massimo; Mateo Leach, Irene; Medina-Gomez, Carolina; Palmer, Cameron D; Pasko, Dorota; Pechlivanis, Sonali; Peters, Marjolein J; Prokopenko, Inga; Stančáková, Alena; Ju Sung, Yun; Tanaka, Toshiko; Teumer, Alexander; Van Vliet-Ostaptchouk, Jana V; Yengo, Loïc; Zhang, Weihua; Albrecht, Eva; Ärnlöv, Johan; Arscott, Gillian M; Bandinelli, Stefania; Barrett, Amy; Bellis, Claire; Bennett, Amanda J; Berne, Christian; Blüher, Matthias; Böhringer, Stefan; Bonnet, Fabrice; Böttcher, Yvonne; Bruinenberg, Marcel; Carba, Delia B; Caspersen, Ida H; Clarke, Robert; Daw, E Warwick; Deelen, Joris; Deelman, Ewa; Delgado, Graciela; Doney, Alex S F; Eklund, Niina; Erdos, Michael R; Estrada, Karol; Eury, Elodie; Friedrich, Nele; Garcia, Melissa E; Giedraitis, Vilmantas; Gigante, Bruna; Go, Alan S; Golay, Alain; Grallert, Harald; Grammer, Tanja B; Gräßler, Jürgen; Grewal, Jagvir; Groves, Christopher J; Haller, Toomas; Hallmans, Goran; Hartman, Catharina A; Hassinen, Maija; Hayward, Caroline; Heikkilä, Kauko; Herzig, Karl-Heinz; Helmer, Quinta; Hillege, Hans L; Holmen, Oddgeir; Hunt, Steven C; Isaacs, Aaron; Ittermann, Till; James, Alan L; Johansson, Ingegerd; Juliusdottir, Thorhildur; Kalafati, Ioanna-Panagiota; Kinnunen, Leena; Koenig, Wolfgang; Kooner, Ishminder K; Kratzer, Wolfgang; Lamina, Claudia; Leander, Karin; Lee, Nanette R; Lichtner, Peter; Lind, Lars; Lindström, Jaana; Lobbens, Stéphane; Lorentzon, Mattias; Mach, François; Magnusson, Patrik K E; Mahajan, Anubha; McArdle, Wendy L; Menni, Cristina; Merger, Sigrun; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Moayyeri, Alireza; Monda, Keri L; Mooijaart, Simon P; Mühleisen, Thomas W; Mulas, Antonella; Müller, Gabriele; Müller-Nurasyid, Martina; Nagaraja, Ramaiah; Nalls, Michael A; Narisu, Narisu; Glorioso, Nicola; Nolte, Ilja M; Olden, Matthias; Rayner, Nigel W; Renstrom, Frida; Ried, Janina S; Robertson, Neil R; Rose, Lynda M; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Sennblad, Bengt; Seufferlein, Thomas; Sitlani, Colleen M; Vernon Smith, Albert; Stirrups, Kathleen; Stringham, Heather M; Sundström, Johan; Swertz, Morris A; Swift, Amy J; Syvänen, Ann-Christine; Tayo, Bamidele O; Thorand, Barbara; Thorleifsson, Gudmar; Tomaschitz, Andreas; Troffa, Chiara; van Oort, Floor V A; Verweij, Niek; Vonk, Judith M; Waite, Lindsay L; Wennauer, Roman; Wilsgaard, Tom; Wojczynski, Mary K; Wong, Andrew; Zhang, Qunyuan; Hua Zhao, Jing; Brennan, Eoin P; Choi, Murim; Eriksson, Per; Folkersen, Lasse; Franco-Cereceda, Anders; Gharavi, Ali G; Hedman, Åsa K; Hivert, Marie-France; Huang, Jinyan; Kanoni, Stavroula; Karpe, Fredrik; Keildson, Sarah; Kiryluk, Krzysztof; Liang, Liming; Lifton, Richard P; Ma, Baoshan; McKnight, Amy J; McPherson, Ruth; Metspalu, Andres; Min, Josine L; Moffatt, Miriam F; Montgomery, Grant W; Murabito, Joanne M; Nicholson, George; Nyholt, Dale R; Olsson, Christian; Perry, John R B; Reinmaa, Eva; Salem, Rany M; Sandholm, Niina; Schadt, Eric E; Scott, Robert A; Stolk, Lisette; Vallejo, Edgar E; Westra, Harm-Jan; Zondervan, Krina T; Amouyel, Philippe; Arveiler, Dominique; Bakker, Stephan J L; Beilby, John; Bergman, Richard N; Blangero, John; Brown, Morris J; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chines, Peter S; Claudi-Boehm, Simone; Collins, Francis S; Crawford, Dana C; Danesh, John; de Faire, Ulf; de Geus, Eco J C; Dörr, Marcus; Erbel, Raimund; Eriksson, Johan G; Farrall, Martin; Ferrannini, Ele; Ferrières, Jean; Forouhi, Nita G; Forrester, Terrence; Franco, Oscar H; Gansevoort, Ron T; Gieger, Christian; Gudnason, Vilmundur; Haiman, Christopher A; Harris, Tamara B; Hattersley, Andrew T; Heliövaara, Markku; Hicks, Andrew A; Hingorani, Aroon D; Hoffmann, Wolfgang; Hofman, Albert; Homuth, Georg; Humphries, Steve E; Hyppönen, Elina; Illig, Thomas; Jarvelin, Marjo-Riitta; Johansen, Berit; Jousilahti, Pekka; Jula, Antti M; Kaprio, Jaakko; Kee, Frank; Keinanen-Kiukaanniemi, Sirkka M; Kooner, Jaspal S; Kooperberg, Charles; Kovacs, Peter; Kraja, Aldi T; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Lakka, Timo A; Langenberg, Claudia; Le Marchand, Loic; Lehtimäki, Terho; Lyssenko, Valeriya; Männistö, Satu; Marette, André; Matise, Tara C; McKenzie, Colin A; McKnight, Barbara; Musk, Arthur W; Möhlenkamp, Stefan; Morris, Andrew D; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J; Ong, Ken K; Palmer, Lyle J; Penninx, Brenda W; Peters, Annette; Pramstaller, Peter P; Raitakari, Olli T; Rankinen, Tuomo; Rao, D C; Rice, Treva K; Ridker, Paul M; Ritchie, Marylyn D; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J; Saramies, Jouko; Sarzynski, Mark A; Schwarz, Peter E H; Shuldiner, Alan R; Staessen, Jan A; Steinthorsdottir, Valgerdur; Stolk, Ronald P; Strauch, Konstantin; Tönjes, Anke; Tremblay, Angelo; Tremoli, Elena; Vohl, Marie-Claude; Völker, Uwe; Vollenweider, Peter; Wilson, James F; Witteman, Jacqueline C; Adair, Linda S; Bochud, Murielle; Boehm, Bernhard O; Bornstein, Stefan R; Bouchard, Claude; Cauchi, Stéphane; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Cooper, Richard S; Dedoussis, George; Ferrucci, Luigi; Froguel, Philippe; Grabe, Hans-Jörgen; Hamsten, Anders; Hui, Jennie; Hveem, Kristian; Jöckel, Karl-Heinz; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; März, Winfried; Munroe, Patricia B; Njølstad, Inger; Oostra, Ben A; Palmer, Colin N A; Pedersen, Nancy L; Perola, Markus; Pérusse, Louis; Peters, Ulrike; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Rivadeneira, Fernando; Saaristo, Timo E; Saleheen, Danish; Sinisalo, Juha; Slagboom, P Eline; Snieder, Harold; Spector, Tim D; Thorsteinsdottir, Unnur; Stumvoll, Michael; Tuomilehto, Jaakko; Uitterlinden, André G; Uusitupa, Matti; van der Harst, Pim; Veronesi, Giovanni; Walker, Mark; Wareham, Nicholas J; Watkins, Hugh; Wichmann, H-Erich; Abecasis, Goncalo R; Assimes, Themistocles L; Berndt, Sonja I; Boehnke, Michael; Borecki, Ingrid B; Deloukas, Panos; Franke, Lude; Frayling, Timothy M; Groop, Leif C; Hunter, David J; Kaplan, Robert C; O'Connell, Jeffrey R; Qi, Lu; Schlessinger, David; Strachan, David P; Stefansson, Kari; van Duijn, Cornelia M; Willer, Cristen J; Visscher, Peter M; Yang, Jian; Hirschhorn, Joel N; Zillikens, M Carola; McCarthy, Mark I; Speliotes, Elizabeth K; North, Kari E; Fox, Caroline S; Barroso, Inês; Franks, Paul W; Ingelsson, Erik; Heid, Iris M; Loos, Ruth J F; Cupples, L Adrienne; Morris, Andrew P; Lindgren, Cecilia M; Mohlke, Karen L

    2015-02-12

    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms. PMID:25673412

  2. Recent advances in obesity-induced inflammation and insulin resistance.

    PubMed

    Tateya, Sanshiro; Kim, Francis; Tamori, Yoshikazu

    2013-01-01

    It has been demonstrated in rodents and humans that chronic inflammation characterized by macrophage infiltration occurs mainly in adipose tissue or liver during obesity, in which activation of immune cells is closely associated with insulin sensitivity. Macrophages can be classified as classically activated (M1) macrophages that support microbicidal activity or alternatively activated (M2) macrophages that support allergic and antiparasitic responses. In the context of insulin action, M2 macrophages sustain insulin sensitivity by secreting IL-4 and IL-10, while M1 macrophages induce insulin resistance through the secretion of proinflammatory cytokines, such as TNFα. Polarization of M1/M2 is controlled by various dynamic functions of other immune cells. It has been demonstrated that, in a lean state, TH2 cells, Treg cells, natural killer T cells, or eosinophils contribute to the M2 activation of macrophages by secreting IL-4 or IL-10. In contrast, obesity causes alteration of the constituent immune cells, in which TH1 cells, B cells, neutrophils, or mast cells induce M1 activation of macrophages by the elevated secretion of TNFα and IFNγ. Increased secretion of TNFα and free fatty acids from hypertrophied adipocytes also contributes to the M1 activation of macrophages. Since obesity-induced insulin resistance is established by macrophage infiltration and the activation of immune cells inside tissues, identification of the factors that regulate accumulation and the intracellular signaling cascades that define polarization of M1/M2 would be indispensable. Regulation of these factors would lead to the pharmacological inhibition of obesity-induced insulin resistance. In this review, we introduce molecular mechanisms relevant to the pathophysiology and review the most recent studies of clinical applications targeting chronic inflammation. PMID:23964268

  3. IEX-1 deficiency induces browning of white adipose tissue and resists diet-induced obesity

    PubMed Central

    Shahid, Mohd; Javed, Ammar A.; Chandra, David; Ramsey, Haley E.; Shah, Dilip; Khan, Mohammed F.; Zhao, Liping; Wu, Mei X.

    2016-01-01

    Chronic inflammation plays a crucial role in the pathogenesis of obesity and insulin resistance. However, the primary mediators that affect energy homeostasis remain ill defined. Here, we report an unexpected role for immediate early response gene X-1 (IEX-1), a downstream target of NF-κB, in energy metabolism. We found that IEX-1 expression was highly induced in white adipose tissue (WAT) in both epidydmal and subcutaneous depots but not in interscapular brown adipose tissue (BAT) in mice fed a high fat diet (HFD). Null mutation of IEX-1 protected mice against HFD-induced adipose and hepatic inflammation, hepatic steatosis, and insulin resistance. Unexpectedly, IEX-1 knockout (IEX-1−/−) mice gained markedly less weight on HFD for 20 weeks as compared to wild-type (WT) littermates (37 ± 3 versus 48 ± 2 gm) due to increased energy expenditure. Mechanistically, we showed that IEX-1 deficiency induced browning and activated thermogenic genes program in WAT but not in BAT by promoting alternative activation of adipose macrophages. Consequently, IEX-1−/− mice exhibited enhanced thermogenesis (24 ± 0.1 versus 22 ± 0.1 kcal/hour/kg in WT mice) explaining increased energy expenditure and lean phenotype in these mice. In conclusion, the present study suggests that IEX-1 is a novel physiological regulator of energy homeostasis via its action in WAT. PMID:27063893

  4. IEX-1 deficiency induces browning of white adipose tissue and resists diet-induced obesity.

    PubMed

    Shahid, Mohd; Javed, Ammar A; Chandra, David; Ramsey, Haley E; Shah, Dilip; Khan, Mohammed F; Zhao, Liping; Wu, Mei X

    2016-01-01

    Chronic inflammation plays a crucial role in the pathogenesis of obesity and insulin resistance. However, the primary mediators that affect energy homeostasis remain ill defined. Here, we report an unexpected role for immediate early response gene X-1 (IEX-1), a downstream target of NF-κB, in energy metabolism. We found that IEX-1 expression was highly induced in white adipose tissue (WAT) in both epidydmal and subcutaneous depots but not in interscapular brown adipose tissue (BAT) in mice fed a high fat diet (HFD). Null mutation of IEX-1 protected mice against HFD-induced adipose and hepatic inflammation, hepatic steatosis, and insulin resistance. Unexpectedly, IEX-1 knockout (IEX-1(-/-)) mice gained markedly less weight on HFD for 20 weeks as compared to wild-type (WT) littermates (37 ± 3 versus 48 ± 2 gm) due to increased energy expenditure. Mechanistically, we showed that IEX-1 deficiency induced browning and activated thermogenic genes program in WAT but not in BAT by promoting alternative activation of adipose macrophages. Consequently, IEX-1(-/-) mice exhibited enhanced thermogenesis (24 ± 0.1 versus 22 ± 0.1 kcal/hour/kg in WT mice) explaining increased energy expenditure and lean phenotype in these mice. In conclusion, the present study suggests that IEX-1 is a novel physiological regulator of energy homeostasis via its action in WAT. PMID:27063893

  5. Developmental Programming by Maternal Insulin Resistance: Hyperinsulinemia, Glucose Intolerance, and Dysregulated Lipid Metabolism in Male Offspring of Insulin-Resistant Mice

    PubMed Central

    Isganaitis, Elvira; Woo, Melissa; Ma, Huijuan; Chen, Michael; Kong, Wen; Lytras, Aristides; Sales, Vicencia; DeCoste-Lopez, Jennifer; Lee, Kyung-Ju; Leatherwood, Cianna; Lee, Deborah; Fitzpatrick, Connor; Gall, Walter; Watkins, Steven; Patti, Mary-Elizabeth

    2014-01-01

    Maternal obesity and gestational diabetes mellitus (GDM) are associated with obesity and diabetes risk in offspring. We tested whether maternal insulin resistance, which frequently coexists with GDM and obesity, could independently contribute to dysregulation of offspring metabolism. Female mice haploinsufficient for insulin receptor substrate-1 (IRS1-het) are hyperinsulinemic and insulin resistant during pregnancy, despite normal plasma glucose and body weight, and thus serve as a model of isolated maternal insulin resistance. Wild-type (WT) offspring of IRS1-het dams insulin resistance-exposed [IR-exposed] were compared with WT offspring of WT dams. Despite no differences in adiposity, male IR-exposed pups were glucose intolerant (P = 0.04) and hyperinsulinemic (1.3-fold increase, P = 0.02) by 1 month of age and developed progressive fasting hyperglycemia. Moreover, male IR-exposed pups challenged with high-fat diet exhibited insulin resistance. Liver lipidomic analysis of 3-week-old IR-exposed males revealed increases in the 16:1n7 fraction of several lipid classes, suggesting increased Scd1 activity. By 6 months of age, IR-exposed males had increased lipid accumulation in liver as well as increased plasma refed fatty acids, consistent with disrupted lipid metabolism. Our results indicate that isolated maternal insulin resistance, even in the absence of hyperglycemia or obesity, can promote metabolic perturbations in male offspring. PMID:24186867

  6. Insulin resistance and response to antiviral therapy in chronic hepatitis C: mechanisms and management.

    PubMed

    del Campo, José A; López, Reyes Aparcero; Romero-Gómez, Manuel

    2010-01-01

    Insulin resistance has been found to be an independent factor predicting sustained response to peginterferon plus ribavirin in patients with chronic hepatitis C. Insulin resistance seems to be involved in decreased sensitivity to interferon and could block interferon intracellular signaling. Insulin resistance promotes steatosis and fibrosis progression, induces pro-inflammatory cytokine secretion and increases adipose tissue, decreasing interferon availability. Moreover, suppressor of cytokines 3 and protein tyrosine-phosphatase seems to be able to block interferon and insulin signaling, building a feed-forward loop. Insulin resistance can be treated with exercise, diet or through the use of drugs that improve insulin sensitivity, like biguanides or glitazones. A recent controlled, randomized, double-blind clinical trial (TRIC-1) examined the effect of adding metformin to standard therapy in the treatment of hepatitis C. This study demonstrated that women infected with hepatitis C virus genotype 1 and HOMA >2 treated with metformin showed a greater drop in viral load during the first 12 weeks and a doubled sustained viral response in comparison with females receiving placebo. Pioglitazone has been used in previous nonresponders and naïve patients with disappointing results in two pilot trials. The mechanisms by which the virus promotes insulin resistance seems to be genotype-dependent and could explain, at least in part, the discrepancies between insulin sensitizers. Insulin resistance is a new target in the challenging management of chronic hepatitis C. PMID:20460925

  7. [The polycystic ovary syndrome and insulin resistance].

    PubMed

    Kreze, A; Hrnciar, J; Dobáková, M; Pekarová, E

    1997-10-01

    The insulin resistance syndrome and the polycystic ovary syndrome (PCOS) appear to have some following coincidences: the existence of subclinical acanthosis nigricans in PCOS hyperinsulinemic women, correlation of insulin levels and free testosterone, insulin-like growth factor I binding protein (IGFIBP), and sex-hormone binding globulin. Insulin and IGFI act synergically with luteinizing hormone increasing the activity of cytochrome P450c17 and its enzymatic activity in the adrenals. The decrease in IGFI level and IGFI receptors in the ovarian granulosa cells reduce the steroids aromatisation. The increased expression of IGFI receptors in the theca cells favours the androgens' synthesis. Long-term insulin therapy results in an increase in ovary volume and the blood androgens levels. The deterioration of insulin resistance in PSOC women progresses also by the reduction of type I of skeletal muscle fibres which are sensitive to insulin, and the increase of type II fibres which are resistant to insulin in hyperandrogenemia. Testosterone deteriorates the skeletal as well as hepatic insulin sensitivity by both its facilitating effect on lipolysis and the increase of free fatty acids. Abdominal obesity seen in PCOS and insulin resistance is composed by adipocytes with glucocorticoid receptors, which after cortisol stimulation activate the lipoprotein lipase and fat accumulation. Gynoid obesity with the preferential aromatisation of steroids is not evolved because of the low estrogens and progesterone levels in PCOS. Low progesterone levels (with anticortisol effect) support the development of abdominal obesity. Ultimately, the early peak of insulin secretion (4-8 min) in PCOS is higher. This fact should testify a certain diabetic disposition. (Ref. 37.) PMID:9490171

  8. Mechanisms Linking Inflammation to Insulin Resistance

    PubMed Central

    Chen, Li; Wang, Hua

    2015-01-01

    Obesity is now widespread around the world. Obesity-associated chronic low-grade inflammation is responsible for the decrease of insulin sensitivity, which makes obesity a major risk factor for insulin resistance and related diseases such as type 2 diabetes mellitus and metabolic syndromes. The state of low-grade inflammation is caused by overnutrition which leads to lipid accumulation in adipocytes. Obesity might increase the expression of some inflammatory cytokines and activate several signaling pathways, both of which are involved in the pathogenesis of insulin resistance by interfering with insulin signaling and action. It has been suggested that specific factors and signaling pathways are often correlated with each other; therefore, both of the fluctuation of cytokines and the status of relevant signaling pathways should be considered during studies analyzing inflammation-related insulin resistance. In this paper, we discuss how these factors and signaling pathways contribute to insulin resistance and the therapeutic promise targeting inflammation in insulin resistance based on the latest experimental studies. PMID:26136779

  9. Mechanisms Linking Inflammation to Insulin Resistance.

    PubMed

    Chen, Li; Chen, Rui; Wang, Hua; Liang, Fengxia

    2015-01-01

    Obesity is now widespread around the world. Obesity-associated chronic low-grade inflammation is responsible for the decrease of insulin sensitivity, which makes obesity a major risk factor for insulin resistance and related diseases such as type 2 diabetes mellitus and metabolic syndromes. The state of low-grade inflammation is caused by overnutrition which leads to lipid accumulation in adipocytes. Obesity might increase the expression of some inflammatory cytokines and activate several signaling pathways, both of which are involved in the pathogenesis of insulin resistance by interfering with insulin signaling and action. It has been suggested that specific factors and signaling pathways are often correlated with each other; therefore, both of the fluctuation of cytokines and the status of relevant signaling pathways should be considered during studies analyzing inflammation-related insulin resistance. In this paper, we discuss how these factors and signaling pathways contribute to insulin resistance and the therapeutic promise targeting inflammation in insulin resistance based on the latest experimental studies. PMID:26136779

  10. Serum Resistin Levels Are Associated with Adiposity and Insulin Sensitivity in Obese Hispanic Subjects

    PubMed Central

    Nieva-Vazquez, Adriana; Torres-Rasgado, Enrique; López-López, José G.; Romero, Jose R.

    2014-01-01

    Abstract Background and Aims: Resistin is involved in the development of obesity and insulin resistance (IR) in mice and may play a similar role in humans through mechanisms that remain unresolved. The objective of this study was to characterize the relationship between resistin levels in obese subjects with and without IR among Hispanic subjects. Material and Methods: A cross-sectional study was performed on 117 nondiabetic Hispanic subjects of both genders that were allocated into three study groups: A control group (n=47) of otherwise healthy individuals in metabolic balance, a group with obesity (OB) (n=36), and a group with obesity and IR (OB-IR) (n=34). Anthropometric and clinical characterization was carried out, and resistin levels were determined by enzyme-linked immunosorbent assay (ELISA). Results: We found that resistin levels were higher in OB and OB-IR groups when compared to the control group (1331.79±142.15 pg/mL, 1266.28±165.97 pg/mL vs. 959.21±171.43 pg/mL; P<0.05), an effect that was not confounded by age (control, 34.04±10.00 years; OB, 37.30±10.78 years; and OB-IR, 35.67±10.15 years). In addition, we observed a significant correlation (P<0.001) between resistin levels and higher adiposity and insulin sensitivity (IS) in our cohort. Conclusions: Our results suggest that higher resistin levels are associated with higher adiposity and lower IS among obese Hispanic subjects. PMID:24266722

  11. Insulin resistance: regression and clustering.

    PubMed

    Yoon, Sangho; Assimes, Themistocles L; Quertermous, Thomas; Hsiao, Chin-Fu; Chuang, Lee-Ming; Hwu, Chii-Min; Rajaratnam, Bala; Olshen, Richard A

    2014-01-01

    In this paper we try to define insulin resistance (IR) precisely for a group of Chinese women. Our definition deliberately does not depend upon body mass index (BMI) or age, although in other studies, with particular random effects models quite different from models used here, BMI accounts for a large part of the variability in IR. We accomplish our goal through application of Gauss mixture vector quantization (GMVQ), a technique for clustering that was developed for application to lossy data compression. Defining data come from measurements that play major roles in medical practice. A precise statement of what the data are is in Section 1. Their family structures are described in detail. They concern levels of lipids and the results of an oral glucose tolerance test (OGTT). We apply GMVQ to residuals obtained from regressions of outcomes of an OGTT and lipids on functions of age and BMI that are inferred from the data. A bootstrap procedure developed for our family data supplemented by insights from other approaches leads us to believe that two clusters are appropriate for defining IR precisely. One cluster consists of women who are IR, and the other of women who seem not to be. Genes and other features are used to predict cluster membership. We argue that prediction with "main effects" is not satisfactory, but prediction that includes interactions may be. PMID:24887437

  12. Anthropometric indicators of insulin resistance.

    PubMed

    Vasques, Ana Carolina; Rosado, Lina; Rosado, Gilberto; Ribeiro, Rita de Cassia; Franceschini, Sylvia; Geloneze, Bruno

    2010-07-01

    Some studies have analyzed the efficacy of anthropometric indicators in predicting insulin resistance (IR), for they are more economic and accessible. In this study, the objective was to discuss the measures and anthropometric indices that have been associated with IR. A bibliographic review was done, based on Scielo, Science Direct and Pubmed. Among these studies, waist and sagittal abdominal diameter presented better predictive capacity for IR, with more consistent results. The waist-to-thigh, waist-to-size, neck-to-thigh ratios, the conicity and the sagittal index have showed positive results; nevertheless, more studies are necessary to consolidate them as predictors to IR. The obtained results, with the use of body mass index and of the waist-to-hip ratio, were inconsistent. In the Brazilian population, the realization of studies evaluating the performance of these indicators in predicting IR is suggested, since the results of the studies conducted in other populations are not always applicable to ours, due to ethnic differences resulting from the great miscegenation in the country. PMID:20694396

  13. Acute Psychological Stress Results in the Rapid Development of Insulin Resistance

    PubMed Central

    Li, Li; Li, Xiaohua; Zhou, Wenjun; Messina, Joseph L.

    2013-01-01

    In recent years, the roles of chronic stress and depression as an independent risk factor for decreased insulin sensitivity and the development of diabetes have been increasingly recognized. However, an understanding and the mechanisms linking insulin resistance and acute psychological stress are very limited. We hypothesized that acute psychological stress may cause the development of insulin resistance, which may be a risk factor in developing type 2 diabetes. We tested the hypothesis in a well-established mouse model using 180 episodes of inescapable foot shock (IES), followed by a behavioral escape test. In this study, mice that received IES treatment were tested for acute insulin resistance by measuring glucose metabolism and insulin signaling. When compared to normal and sham mice, mice that were exposed to IES resulting in escape failure (defined as IES with behavioral escape failure) displayed elevated blood glucose levels in both glucose tolerance and insulin tolerance tests. Furthermore, mice with IES exposure and behavioral escape failure exhibited impaired hepatic insulin signaling via the insulin-induced insulin receptor/insulin receptor substrate 1/Akt pathway, without affecting similar pathways in skeletal muscle, adipose tissue and brain. Additionally, a rise in murine growth-related oncogene KC/GRO was associated with impaired glucose metabolism in IES mice, suggesting a mechanism by which psychological stress by IES may influence glucose metabolism. The present results indicate that psychological stress induced by IES can acutely alter hepatic responsiveness to insulin and affect whole-body glucose metabolism. PMID:23444388

  14. Intermedin Restores Hyperhomocysteinemia-induced Macrophage Polarization and Improves Insulin Resistance in Mice.

    PubMed

    Pang, Yanli; Li, Yang; Lv, Ying; Sun, Lulu; Zhang, Songyang; Li, Yin; Wang, Yuhui; Liu, George; Xu, Ming-Jiang; Wang, Xian; Jiang, Changtao

    2016-06-01

    Hyperhomocysteinemia (HHcy) is a condition characterized by an abnormally high level of homocysteine, an inflammatory factor. This condition has been suggested to promote insulin resistance. To date, the underlying molecular mechanism remains largely unknown, and identifying novel therapeutic targets for HHcy-induced insulin resistance is of high priority. It is well known that intermedin (IMD), a calcitonin family peptide, exerts potent anti-inflammatory effects. In this study, the effects of IMD on HHcy-induced insulin resistance were investigated. Glucose tolerance and insulin tolerance tests were performed on mice treated with IMD by minipump implantation (318 ng/kg/h for 4 weeks) or adipocyte-specific IMD overexpression mice (Adipo-IMD transgenic mice). The expression of genes and proteins related to M1/M2 macrophages and endoplasmic reticulum stress (ERS) was evaluated in adipose tissues or cells. The expression of IMD was identified to be lower in the plasma and adipose tissues of HHcy mice. In both IMD treatment by minipump implantation and Adipo-IMD transgenic mice, IMD reversed HHcy-induced insulin resistance, as revealed by glucose tolerance and insulin tolerance tests. Further mechanistic study revealed that IMD reversed the Hcy-elevated ratio of M1/M2 macrophages by inhibiting AMP-activated protein kinase activity. Adipo-IMD transgenic mice displayed reduced ERS and lower inflammation in adipose tissues with HHcy. Soluble factors from Hcy-treated macrophages induced adipocyte ERS, which was reversed by IMD treatment. These findings revealed that IMD treatment restores the M1/M2 balance, inhibits chronic inflammation in adipose tissues, and improves systemic insulin sensitivity of HHcy mice. PMID:27080257

  15. The Role of Mitochondria in the Pathophysiology of Skeletal Muscle Insulin Resistance

    PubMed Central

    Pagel-Langenickel, Ines; Bao, Jianjun; Pang, Liyan; Sack, Michael N.

    2010-01-01

    Multiple organs contribute to the development of peripheral insulin resistance, with the major contributors being skeletal muscle, liver, and adipose tissue. Because insulin resistance usually precedes the development of type 2 diabetes mellitus (T2DM) by many years, understanding the pathophysiology of insulin resistance should enable development of therapeutic strategies to prevent disease progression. Some subjects with mitochondrial genomic variants/defects and a subset of lean individuals with hereditary predisposition to T2DM exhibit skeletal muscle mitochondrial dysfunction early in the course of insulin resistance. In contrast, in the majority of subjects with T2DM the plurality of evidence implicates skeletal muscle mitochondrial dysfunction as a consequence of perturbations associated with T2DM, and these mitochondrial deficits then contribute to subsequent disease progression. We review the affirmative and contrarian data regarding skeletal muscle mitochondrial biology in the pathogenesis of insulin resistance and explore potential therapeutic options to intrinsically modulate mitochondria as a strategy to combat insulin resistance. Furthermore, an overview of restricted molecular manipulations of skeletal muscle metabolic and mitochondrial biology offers insight into the mitochondrial role in metabolic substrate partitioning and in promoting innate adaptive and maladaptive responses that collectively regulate peripheral insulin sensitivity. We conclude that skeletal muscle mitochondrial dysfunction is not generally a major initiator of the pathophysiology of insulin resistance, although its dysfunction is integral to this pathophysiology and it remains an intriguing target to reverse/delay the progressive perturbations synonymous with T2DM. PMID:19861693

  16. Reversal of diet-induced obesity and insulin resistance by inducible genetic ablation of GRK2.

    PubMed

    Vila-Bedmar, Rocio; Cruces-Sande, Marta; Lucas, Elisa; Willemen, Hanneke L D M; Heijnen, Cobi J; Kavelaars, Annemieke; Mayor, Federico; Murga, Cristina

    2015-07-21

    Insulin resistance is a common feature of obesity and predisposes individuals to various prevalent pathological conditions. G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor kinase 2 (GRK2) integrates several signal transduction pathways and is emerging as a physiologically relevant inhibitor of insulin signaling. GRK2 abundance is increased in humans with metabolic syndrome and in different murine models of insulin resistance. To support GRK2 as a potential drug target in type 2 diabetes and obesity, we investigated whether lowering GRK2 abundance reversed an ongoing systemic insulin-resistant phenotype, using a mouse model of tamoxifen-induced GRK2 ablation after high-fat diet-dependent obesity and insulin resistance. Tamoxifen-triggered GRK2 deletion impeded further body weight gain, normalized fasting glycemia, improved glucose tolerance, and was associated with preserved insulin sensitivity in skeletal muscle and liver, thereby maintaining whole-body glucose homeostasis. Moreover, when continued to be fed a high-fat diet, these animals displayed reduced fat mass and smaller adipocytes, were resistant to the development of liver steatosis, and showed reduced expression of proinflammatory markers in the liver. Our results indicate that GRK2 acts as a hub to control metabolic functions in different tissues, which is key to controlling insulin resistance development in vivo. These data suggest that inhibiting GRK2 could reverse an established insulin-resistant and obese phenotype, thereby putting forward this enzyme as a potential therapeutic target linking glucose homeostasis and regulation of adiposity. PMID:26198359

  17. Restricted passage of insulin across capillary endothelium in perfused rat adipose tissue

    SciTech Connect

    Chernick, S.S.; Gardiner, R.J.; Scow, R.O. )

    1987-11-01

    Passage of insulin across capillary endothelium was monitored in perfused rat parametrial adipose tissue by the effect of intra-arterially infused insulin on oxidation of (U-{sup 14}C)glucose to CO{sub 2}. Glucose oxidation was constant at 34 nmol C {center dot} g{sup {minus}1} {center dot} min{sup {minus}1} for 90 min in tissues perfused with 0 or 50 {mu}U/ml. The rate of oxidation was doubled in 90 min at 100 {mu}U/ml and maximal in 40 min at 200 {mu}U/ml and in 20-30 min at 500 {mu}U/ml. The slow decline in oxidation rate when insulin infusion was stopped suggested that insulin was sequestered in the tissue. Although half-maximal response to insulin occurred in perfused tissues at 100 {mu}U/ml, it occurred at 8 {mu}U/ml in incubated adipocytes and at 30 {mu}U/ml in incubated tissue. In addition, the time required for maximal response to insulin was longer in perfused adipose tissue than in incubated cells and tissues. The data indicate that the transfer of insulin from blood to parenchymal cells in perfused tissue was restricted. The minimal amount of insulin needed for a response by adipocytes in perfused tissue was estimated at be <1% of that in blood. The findings are consistent with the concept that insulin is transferred across capillary endothelium by a receptor-mediated process.

  18. Edible Bird's Nest Prevents High Fat Diet-Induced Insulin Resistance in Rats

    PubMed Central

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ooi, Der-Jiun; Sarega, Nadarajan; Azmi, Nur Hanisah; Ismail, Norsharina; Chan, Kim Wei; Hou, Zhiping; Yusuf, Norhayati Binti

    2015-01-01

    Edible bird's nest (EBN) is used traditionally in many parts of Asia to improve wellbeing, but there are limited studies on its efficacy. We explored the potential use of EBN for prevention of high fat diet- (HFD-) induced insulin resistance in rats. HFD was given to rats with or without simvastatin or EBN for 12 weeks. During the intervention period, weight measurements were recorded weekly. Blood samples were collected at the end of the intervention and oral glucose tolerance test conducted, after which the rats were sacrificed and their liver and adipose tissues collected for further studies. Serum adiponectin, leptin, F2-isoprostane, insulin, and lipid profile were estimated, and homeostatic model assessment of insulin resistance computed. Effects of the different interventions on transcriptional regulation of insulin signaling genes were also evaluated. The results showed that HFD worsened metabolic indices and induced insulin resistance partly through transcriptional regulation of the insulin signaling genes. Additionally, simvastatin was able to prevent hypercholesterolemia but promoted insulin resistance similar to HFD. EBN, on the other hand, prevented the worsening of metabolic indices and transcriptional changes in insulin signaling genes due to HFD. The results suggest that EBN may be used as functional food to prevent insulin resistance. PMID:26273674

  19. Edible Bird's Nest Prevents High Fat Diet-Induced Insulin Resistance in Rats.

    PubMed

    Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ooi, Der-Jiun; Sarega, Nadarajan; Azmi, Nur Hanisah; Ismail, Norsharina; Chan, Kim Wei; Hou, Zhiping; Yusuf, Norhayati Binti

    2015-01-01

    Edible bird's nest (EBN) is used traditionally in many parts of Asia to improve wellbeing, but there are limited studies on its efficacy. We explored the potential use of EBN for prevention of high fat diet- (HFD-) induced insulin resistance in rats. HFD was given to rats with or without simvastatin or EBN for 12 weeks. During the intervention period, weight measurements were recorded weekly. Blood samples were collected at the end of the intervention and oral glucose tolerance test conducted, after which the rats were sacrificed and their liver and adipose tissues collected for further studies. Serum adiponectin, leptin, F2-isoprostane, insulin, and lipid profile were estimated, and homeostatic model assessment of insulin resistance computed. Effects of the different interventions on transcriptional regulation of insulin signaling genes were also evaluated. The results showed that HFD worsened metabolic indices and induced insulin resistance partly through transcriptional regulation of the insulin signaling genes. Additionally, simvastatin was able to prevent hypercholesterolemia but promoted insulin resistance similar to HFD. EBN, on the other hand, prevented the worsening of metabolic indices and transcriptional changes in insulin signaling genes due to HFD. The results suggest that EBN may be used as functional food to prevent insulin resistance. PMID:26273674

  20. Mesenteric Fat Lipolysis Mediates Obesity-Associated Hepatic Steatosis and Insulin Resistance.

    PubMed

    Wueest, Stephan; Item, Flurin; Lucchini, Fabrizio C; Challa, Tenagne D; Müller, Werner; Blüher, Matthias; Konrad, Daniel

    2016-01-01

    Hepatic steatosis and insulin resistance are among the most prevalent metabolic disorders and are tightly associated with obesity and type 2 diabetes. However, the underlying mechanisms linking obesity to hepatic lipid accumulation and insulin resistance are incompletely understood. Glycoprotein 130 (gp130) is the common signal transducer of all interleukin 6 (IL-6) cytokines. We provide evidence that gp130-mediated adipose tissue lipolysis promotes hepatic steatosis and insulin resistance. In obese mice, adipocyte-specific gp130 deletion reduced basal lipolysis and enhanced insulin's ability to suppress lipolysis from mesenteric but not epididymal adipocytes. Consistently, free fatty acid levels were reduced in portal but not in systemic circulation of obese knockout mice. Of note, adipocyte-specific gp130 knockout mice were protected from high-fat diet-induced hepatic steatosis as well as from insulin resistance. In humans, omental but not subcutaneous IL-6 mRNA expression correlated positively with liver lipid accumulation (r = 0.31, P < 0.05) and negatively with hyperinsulinemic-euglycemic clamp glucose infusion rate (r = -0.28, P < 0.05). The results show that IL-6 cytokine-induced lipolysis may be restricted to mesenteric white adipose tissue and that it contributes to hepatic insulin resistance and steatosis. Therefore, blocking IL-6 cytokine signaling in (mesenteric) adipocytes may be a novel approach to blunting detrimental fat-liver crosstalk in obesity. PMID:26384383

  1. Interaction between heat acclimation and exogenous insulin in brown adipose tissue of rats

    NASA Astrophysics Data System (ADS)

    Ohno, H.; Yamashita, H.; Sato, N.; Habara, Y.; Gasa, S.; Nagasawa, J.; Sato, Y.; Ishikawa, M.; Segawa, M.; Yamamoto, M.

    1992-09-01

    Seventy-one male Wistar strain rats (7 weeks old) were kept at 5, 25, or 34° C, respectively, for 2 weeks with or without insulin administration. Insulin (Novo Lente MC) was given subcutaneously in a dose of 3.62 nmol/125 µl saline per 100 g body weight. An apparent effect of insulin treatment was noted only in heat-exposed rats, resulting in a remarkable gain in inter-scapular brown adipose tissue (BAT) mass of heat-acclimated, insulin-treated rats in terms of weight or weight per unit body weight. The BAT from heat-acclimated, insulin-treated rats had significantly higher levels of protein, DNA, RNA, and triglyceride than BAT from heat-acclimated, saline-treated rats. Therefore, it seems likely that the growth of BAT in heat-acclimated, insulin-treated rats was mostly due to the anabolic effects of insulin. The uncoupling protein mRNA was, however, present in BAT of heat-acclimated, insulin-treated rats at rather a depressed level, explaining a corresponding decrease in cold tolerance. On the other hand, the expression of insulin receptor mRNA was attenuated in BAT of rats from all the insulin-treated groups, possibly due to the down-regulation of insulin. Thus, there appeared to be some linkage among BAT, heat acclimation, and insulin.

  2. Fitness, adiposopathy, and adiposity are independent predictors of insulin sensitivity in middle-aged men without diabetes.

    PubMed

    Huth, Claire; Pigeon, Étienne; Riou, Marie-Ève; St-Onge, Josée; Arguin, Hélène; Couillard, Erick; Dubois, Marie-Julie; Marette, André; Tremblay, Angelo; Weisnagel, S John; Lacaille, Michel; Mauriège, Pascale; Joanisse, Denis R

    2016-09-01

    Adiposopathy, or sick fat, refers to adipose tissue dysfunction that can lead to several complications such as dyslipidemia, insulin resistance, and hyperglycemia. The relative contribution of adiposopathy in predicting insulin resistance remains unclear. We investigated the relationship between adiposopathy, as assessed as a low plasma adiponectin/leptin ratio, with anthropometry, body composition (hydrostatic weighing), insulin sensitivity (hyperinsulinemic-euglycemic clamp), inflammation, and fitness level (ergocycle VO2max, mL/kgFFM/min) in 53 men (aged 34-53 years) from four groups: sedentary controls without obesity (body mass index [BMI] <25 kg/m(2)), sedentary with obesity (BMI > 30 kg/m(2)), sedentary with obesity and glucose intolerance, and endurance trained active without obesity. The adiponectin/leptin ratio was the highest in trained men (4.75 ± 0.82) and the lowest in glucose intolerant subjects with obesity (0.27 ± 0.06; ANOVA p < 0.0001) indicating increased adiposopathy in those with obesity. The ratio was negatively associated with adiposity (e.g., waist circumference, r = -0.59, p < 0.01) and positively associated with VO2max (r = 0.67, p < 0.01) and insulin sensitivity (M/I, r = 0.73, p < 0.01). Multiple regression analysis revealed fitness as the strongest independent predictor of insulin sensitivity (partial R (2) = 0.61). While adiposopathy was also an independent and significant contributor (partial R (2) = 0.10), waist circumference added little power to the model (partial R (2) = 0.024). All three variables remained significant independent predictors when trained subjects were excluded from the model. Plasma lipids were not retained in the model. We conclude that low fitness, adiposopathy, as well as adiposity (and in particular abdominal obesity) are independent contributors to insulin resistance in men without diabetes. PMID:27139423

  3. Insulin resistance causes human gallbladder dysmotility.

    PubMed

    Nakeeb, Attila; Comuzzie, Anthony G; Al-Azzawi, Hayder; Sonnenberg, Gabriele E; Kissebah, Ahmed H; Pitt, Henry A

    2006-01-01

    Obesity, diabetes, and hyperlipidemia are known risk factors for the development of gallstones. A growing body of animal and human data has correlated insulin resistance with organ dysfunction. The relationship among obesity, diabetes, hyperlipidemia, and abnormal gallbladder motility remains unclear. Therefore, we designed a study to investigate the association among obesity, insulin resistance, hyperlipidemia, and gallbladder dysmotility. One hundred ninety-two healthy adult nondiabetic volunteers were studied. Gallbladder ultrasounds were performed before and after a standardized fatty meal. A gallbladder ejection fraction (EF) was calculated, and an EF of < 25% was considered abnormal. Serum was analyzed for cholesterol, triglycerides, cholecystokinin, leptin, glucose, and insulin. The homeostasis assessment model (HOMA) was used to determine insulin resistance. The volunteers had a mean age of 38 years (range, 18-77), and 55% were female. Thirty subjects (15%) had gallstones and were excluded from the study. Thirty subjects (19%) had abnormal gallbladder motility (EF < 25%). In lean subjects (n = 96) fasting glucose was significantly increased in the 16 subjects with gallbladder EF < 25% versus the 80 subjects with gallbladder EF > 25% (109 +/- 20 mg/dl versus 78 +/- 2 mg/dl, P < 0.05). Similarly, the HOMA index was significantly greater in subjects with gallbladder EF < 25% versus gallbladder EF >25% (3.3 +/- 1.2 versus 2.0 +/- 0.2, P < 0.05). In obese subjects (n = 66), fasting glucose, insulin, and insulin resistance were not associated with a gallbladder EF < 25%. These data suggest that in lean, nondiabetic volunteers without gallstones, gallbladder dysmotility is associated with an elevated fasting glucose as well as a high index of insulin resistance. We conclude that insulin resistance alone may be responsible for gallbladder dysmotility that may result in acalculous cholecystitis or gallstone formation. PMID:16843864

  4. Effect of fructose on insulin action in adipose tissue of Wistar rats

    SciTech Connect

    Akintilo, A.; Pointer, R.H.; Blakely, S.R.

    1986-05-01

    The present study was conducted to examine the effects of dietary fructose, with and without insulin stimulation, on glucose oxidation to carbon dioxide and on fatty acid synthesis in epididymal adipose tissue of rats. Two groups of male weanling Wistar rats were fed ad libitum 54% (W/W) carbohydrate diets containing 27% cornstarch plus either 27% D-fructose (FRU) or 27% D-glucose (GLU) for eleven weeks. Each diet also contained 16% fat and 20% protein. Neither body weights nor epididymal adipose tissue weights were significantly different between groups. Insulin action was assessed by incubating adipose tissue in Krebs-Ringer bicarbonate buffer (pH 7.4) containing 90 ..mu..moles (U-/sup 14/C)-D-glucose with and without insulin (1 mU/ml) for 1 hour, trapping the /sup 14/CO/sub 2/ on filter paper, and extracting the /sup 14/C-lipid with Dole's mixture. Means +/- SEM with identical superscripts are not different at the P < .05 level. These results indicate that FRU feeding stimulated glucose oxidation at a rate higher than that of GLU feeding and comparable to that stimulated by insulin. However, lipogenesis was lower in FRU fed than either in GLU fed rats or with insulin stimulation. FRU feeding does not alter the action of insulin on glucose oxidation or lipogenesis.

  5. ABDOMINAL OBESITY, MUSCLE COMPOSITION, AND INSULIN RESISTANCE IN PREMENOPAUSAL WOMEN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The independent relationships between visceral and abdominal subcutaneous adipose tissue (AT) depots, muscle composition, and insulin sensitivity were examined in 40 abdominally obese, premenopausal women. Measurements included glucose disposal by euglycemic clamp, muscle composition by computed to...

  6. Human Adipose Cells In Vitro Are Either Refractory or Responsive to Insulin, Reflecting Host Metabolic State

    PubMed Central

    Troy, Aaron; Lee, Jo-Ping; Skarulis, Monica C.; Cushman, Samuel W.; Zimmerberg, Joshua

    2015-01-01

    While intercellular communication processes are frequently characterized by switch-like transitions, the endocrine system, including the adipose tissue response to insulin, has been characterized by graded responses. Yet here individual cells from adipose tissue biopsies are best described by a switch-like transition between the basal and insulin-stimulated states for the trafficking of the glucose transporter GLUT4. Two statistically-defined populations best describe the observed cellular heterogeneity, representing the fractions of refractive and responsive adipose cells. Furthermore, subjects exhibiting high systemic insulin sensitivity indices (SI) have high fractions of responsive adipose cells in vitro, while subjects exhibiting decreasing SI have increasing fractions of refractory cells in vitro. Thus, a two-component model best describes the relationship between cellular refractory fraction and subject SI. Since isolated cells exhibit these different response characteristics in the presence of constant culture conditions and milieu, we suggest that a physiological switching mechanism at the adipose cellular level ultimately drives systemic SI. PMID:25768970

  7. Genetic Forms of Severe Insulin Resistance: What Endocrinologists Should Know

    PubMed Central

    Parker, Victoria E. R.; Semple, Robert K.

    2015-01-01

    Insulin resistance” is a widely used clinical term. It is usually defined as a state characterised by reduced glucose-lowering activity of insulin, but is also sometimes used as a shorthand label for a clinical syndrome encompassing major pathologies such as type 2 diabetes, polycystic ovary syndrome, fatty liver disease, and atherosclerosis. Nevertheless the precise cellular origins of insulin resistance (IR), the causal links among these phenomena, and the mechanisms underlying them, remain poorly understood or contentious. Prevalent IR usually results from a genetic predisposition interacting with acquired obesity, however even in some lean individuals very severe degrees of IR are seen. It is important to identify these people as they often harbour identifiable single gene defects, and they may benefit from molecular diagnosis, genetic counselling, and sometimes tailored therapies. Observation of people with known single gene defects also offers the opportunity to make inferences about the mechanistic links between IR and common pathologies. We now summarise the currently known monogenic forms of severe IR, with an emphasis on practical aspects of their recognition, diagnosis and management. In particular, we draw distinctions among the biochemical subphenotypes of IR that arise from primary adipose tissue dysfunction or from primary insulin signalling defects, and discuss the implications of this dichotomy for management. PMID:23857978

  8. Serum Autotaxin/ENPP2 Correlates with Insulin Resistance in Older Humans with Obesity

    PubMed Central

    Reeves, Valerie L.; Trybula, Joy S.; Wills, Rachel C.; Goodpaster, Bret H.; Dubé, John J.; Kienesberger, Petra C.; Kershaw, Erin E.

    2015-01-01

    Objective Autotaxin (ATX) is an adipocyte-derived lysophospholipase D that generates the lipid signaling molecule lysophosphatidic acid (LPA). The ATX/LPA pathway in adipose tissue has recently been implicated in obesity and insulin resistance in animal models, but the role of circulating ATX in humans remains unclear. The aim of the present study was to determine the relationship between serum ATX and insulin resistance. Methods In this retrospective study, older (60–75 years), non-diabetic human participants with overweight or obesity (BMI 25–37 kg/m2), were characterized for metabolic phenotype including measures of energy, glucose, and lipid homeostasis. The relationship between serum ATX and metabolic parameters was then determined using correlative and predictive statistics. Results Serum ATX was higher in females than in males. After controlling for sex, serum ATX correlated with multiple measures of adiposity and glucose homeostasis/insulin action. Serum ATX and BMI also independently predicted glucose infusion rate during a hyperinsulinemic euglycemic clamp and homeostatic model assessment of insulin resistance after controlling for sex and medication use. Conclusion Serum ATX correlates with and predicts measures of glucose homeostasis and insulin sensitivity in older humans, suggesting that it may be a potential pathogenic factor and/or diagnostic/therapeutic target for insulin resistance in this population. PMID:26727116

  9. Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery.

    PubMed

    Albers, Peter H; Bojsen-Møller, Kirstine N; Dirksen, Carsten; Serup, Annette K; Kristensen, Dorte E; Frystyk, Jan; Clausen, Trine R; Kiens, Bente; Richter, Erik A; Madsbad, Sten; Wojtaszewski, Jørgen F P

    2015-09-01

    Roux-en-Y gastric bypass (RYGB) leads to increased peripheral insulin sensitivity. The aim of this study was to investigate the effect of RYGB on expression and regulation of proteins involved in regulation of peripheral glucose metabolism. Skeletal muscle and adipose tissue biopsies from glucose-tolerant and type 2 diabetic subjects at fasting and during a hyperinsulinemic-euglycemic clamp before as well as 1 wk and 3 and 12 mo after RYGB were analyzed for relevant insulin effector proteins/signaling components. Improvement in peripheral insulin sensitivity mainly occurred at 12 mo postsurgery when major weight loss was evident and occurred concomitantly with alterations in plasma adiponectin and in protein expression/signaling in peripheral tissues. In skeletal muscle, protein expression of GLUT4, phosphorylated levels of TBC1D4, as well as insulin-induced changes in phosphorylation of Akt and glycogen synthase activity were enhanced 12 mo postsurgery. In adipose tissue, protein expression of GLUT4, Akt2, TBC1D4, and acetyl-CoA carboxylase (ACC), phosphorylated levels of AMP-activated protein kinase and ACC, as well as insulin-induced changes in phosphorylation of Akt and TBC1D4, were enhanced 12 mo postsurgery. Adipose tissue from glucose-tolerant subjects was the most responsive to RYGB compared with type 2 diabetic patients, whereas changes in skeletal muscle were largely similar in these two groups. In conclusion, an improved molecular insulin-sensitive phenotype of skeletal muscle and adipose tissue appears to contribute to the improved whole body insulin action following a substantial weight loss after RYGB. PMID:26062634

  10. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells

    SciTech Connect

    Timper, Katharina; Seboek, Dalma; Eberhardt, Michael; Linscheid, Philippe; Christ-Crain, Mirjam; Keller, Ulrich; Mueller, Beat; Zulewski, Henryk . E-mail: henryk.zulewski@unibas.ch

    2006-03-24

    Mesenchymal stem cells (MSC) from mouse bone marrow were shown to adopt a pancreatic endocrine phenotype in vitro and to reverse diabetes in an animal model. MSC from human bone marrow and adipose tissue represent very similar cell populations with comparable phenotypes. Adipose tissue is abundant and easily accessible and could thus also harbor cells with the potential to differentiate in insulin producing cells. We isolated human adipose tissue-derived MSC from four healthy donors. During the proliferation period, the cells expressed the stem cell markers nestin, ABCG2, SCF, Thy-1 as well as the pancreatic endocrine transcription factor Isl-1. The cells were induced to differentiate into a pancreatic endocrine phenotype by defined culture conditions within 3 days. Using quantitative PCR a down-regulation of ABCG2 and up-regulation of pancreatic developmental transcription factors Isl-1, Ipf-1, and Ngn3 were observed together with induction of the islet hormones insulin, glucagon, and somatostatin.

  11. Partial Inhibition of Adipose Tissue Lipolysis Improves Glucose Metabolism and Insulin Sensitivity Without Alteration of Fat Mass

    PubMed Central

    Girousse, Amandine; Tavernier, Geneviève; Valle, Carine; Moro, Cedric; Mejhert, Niklas; Dinel, Anne-Laure; Houssier, Marianne; Roussel, Balbine; Besse-Patin, Aurèle; Combes, Marion; Mir, Lucile; Monbrun, Laurent; Bézaire, Véronic; Prunet-Marcassus, Bénédicte; Waget, Aurélie; Vila, Isabelle; Caspar-Bauguil, Sylvie; Louche, Katie; Marques, Marie-Adeline; Mairal, Aline; Renoud, Marie-Laure; Galitzky, Jean; Holm, Cecilia; Mouisel, Etienne; Thalamas, Claire; Viguerie, Nathalie; Sulpice, Thierry; Burcelin, Rémy; Arner, Peter; Langin, Dominique

    2013-01-01

    When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet–fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity. PMID:23431266

  12. Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass.

    PubMed

    Girousse, Amandine; Tavernier, Geneviève; Valle, Carine; Moro, Cedric; Mejhert, Niklas; Dinel, Anne-Laure; Houssier, Marianne; Roussel, Balbine; Besse-Patin, Aurèle; Combes, Marion; Mir, Lucile; Monbrun, Laurent; Bézaire, Véronic; Prunet-Marcassus, Bénédicte; Waget, Aurélie; Vila, Isabelle; Caspar-Bauguil, Sylvie; Louche, Katie; Marques, Marie-Adeline; Mairal, Aline; Renoud, Marie-Laure; Galitzky, Jean; Holm, Cecilia; Mouisel, Etienne; Thalamas, Claire; Viguerie, Nathalie; Sulpice, Thierry; Burcelin, Rémy; Arner, Peter; Langin, Dominique

    2013-01-01

    When energy is needed, white adipose tissue (WAT) provides fatty acids (FAs) for use in peripheral tissues via stimulation of fat cell lipolysis. FAs have been postulated to play a critical role in the development of obesity-induced insulin resistance, a major risk factor for diabetes and cardiovascular disease. However, whether and how chronic inhibition of fat mobilization from WAT modulates insulin sensitivity remains elusive. Hormone-sensitive lipase (HSL) participates in the breakdown of WAT triacylglycerol into FAs. HSL haploinsufficiency and treatment with a HSL inhibitor resulted in improvement of insulin tolerance without impact on body weight, fat mass, and WAT inflammation in high-fat-diet-fed mice. In vivo palmitate turnover analysis revealed that blunted lipolytic capacity is associated with diminution in FA uptake and storage in peripheral tissues of obese HSL haploinsufficient mice. The reduction in FA turnover was accompanied by an improvement of glucose metabolism with a shift in respiratory quotient, increase of glucose uptake in WAT and skeletal muscle, and enhancement of de novo lipogenesis and insulin signalling in liver. In human adipocytes, HSL gene silencing led to improved insulin-stimulated glucose uptake, resulting in increased de novo lipogenesis and activation of cognate gene expression. In clinical studies, WAT lipolytic rate was positively and negatively correlated with indexes of insulin resistance and WAT de novo lipogenesis gene expression, respectively. In obese individuals, chronic inhibition of lipolysis resulted in induction of WAT de novo lipogenesis gene expression. Thus, reduction in WAT lipolysis reshapes FA fluxes without increase of fat mass and improves glucose metabolism through cell-autonomous induction of fat cell de novo lipogenesis, which contributes to improved insulin sensitivity. PMID:23431266

  13. Improvement in insulin sensitivity following a 1-year lifestyle intervention program in viscerally obese men: contribution of abdominal adiposity.

    PubMed

    Borel, Anne-Laure; Nazare, Julie-Anne; Smith, Jessica; Alméras, Natalie; Tremblay, Angelo; Bergeron, Jean; Poirier, Paul; Després, Jean-Pierre

    2012-02-01

    The objectives of the study were to quantify the effect of a 1-year healthy eating-physical activity/exercise lifestyle modification program on insulin sensitivity in viscerally obese men classified according to their glucose tolerance status and to evaluate the respective contributions of changes in body fat distribution vs changes in cardiorespiratory fitness (CRF) to the improvements in indices of plasma glucose/insulin homeostasis. Abdominally obese, dyslipidemic men (waist circumference ≥90 cm, triglycerides ≥1.69 mmol/L, and/or high-density lipoprotein cholesterol <1.03 mmol/L) were recruited. The 1-year intervention/evaluation was completed by 104 men. Body weight, composition, and fat distribution were assessed by dual-energy x-ray absorptiometry/computed tomography. Cardiorespiratory fitness and cardiometabolic risk profile were measured. After 1 year, insulin sensitivity improved in association with decreases in both visceral (VAT) and subcutaneous adiposity (SAT) as well as with the improvement in CRF, regardless of baseline glucose tolerance. Further analyses were performed according to changes in glucose tolerance status: improvement (group I, n = 39), no change (group N, n = 50), or worsening (group W, n = 15) after 1 year. Groups I and N improved their insulin sensitivity and their CRF, whereas group W did not, while losing less VAT than groups I and N. Multiple regressions showed that reduction in VAT was associated with an improvement in homeostasis model assessment of insulin resistance, whereas reduction in SAT was rather associated with improvement of the insulin sensitivity index of Matsuda. Changes in CRF were not independently associated with changes in indices of plasma glucose/insulin homeostasis. A 1-year lifestyle intervention improved plasma glucose/insulin homeostasis in viscerally obese men, including those with normal glucose tolerance status at baseline. Changes in SAT and VAT but not in CRF appeared to mediate these improvements

  14. Body fat mass and the proportion of very large adipocytes in pregnant women are associated with gestational insulin resistance

    PubMed Central

    Svensson, H; Wetterling, L; Bosaeus, M; Odén, B; Odén, A; Jennische, E; Edén, S; Holmäng, A; Lönn, M

    2016-01-01

    Background/Objectives: Pregnancy is accompanied by fat gain and insulin resistance. Changes in adipose tissue morphology and function during pregnancy and factors contributing to gestational insulin resistance are incompletely known. We sought to characterize adipose tissue in trimesters 1 and 3 (T1/T3) in normal weight (NW) and obese pregnant women, and identify adipose tissue-related factors associated with gestational insulin resistance. Subjects/Methods: Twenty-two NW and 11 obese women were recruited early in pregnancy for the Pregnancy Obesity Nutrition and Child Health study. Examinations and sampling of blood and abdominal adipose tissue were performed longitudinally in T1/T3 to determine fat mass (air-displacement plethysmography); insulin resistance (homeostasis model assessment of insulin resistance, HOMA-IR); size, number and lipolytic activity of adipocytes; and adipokine release and density of immune cells and blood vessels in adipose tissue. Results: Fat mass and HOMA-IR increased similarly between T1 and T3 in the groups; all remained normoglycemic. Adipocyte size increased in NW women. Adipocyte number was not influenced, but proportions of small and large adipocytes changed oppositely in the groups. Lipolytic activity and circulating adipocyte fatty acid-binding protein increased in both groups. Adiponectin release was reduced in NW women. Fat mass and the proportion of very large adipocytes were most strongly associated with T3 HOMA-IR by multivariable linear regression (R2=0.751, P<0.001). Conclusions: During pregnancy, adipose tissue morphology and function change comprehensively. NW women accumulated fat in existing adipocytes, accompanied by reduced adiponectin release. In comparison with the NW group, obese women had signs of adipocyte recruitment and maintained adiponectin levels. Body fat and large adipocytes may contribute significantly to gestational insulin resistance. PMID:26563815

  15. Obesity, insulin resistance and comorbidities – Mechanisms of association

    PubMed Central

    Castro, Ana Valeria B.; Kolka, Cathryn M.; Kim, Stella P.; Bergman, Richard N.

    2015-01-01

    Overall excess of fat, usually defined by the body mass index, is associated with metabolic (e.g. glucose intolerance, type 2 diabetes mellitus (T2DM), dyslipidemia) and non-metabolic disorders (e.g. neoplasias, polycystic ovary syndrome, non-alcoholic fat liver disease, glomerulopathy, bone fragility etc.). However, more than its total amount, the distribution of adipose tissue throughout the body is a better predictor of the risk to the development of those disorders. Fat accumulation in the abdominal area and in non-adipose tissue (ectopic fat), for example, is associated with increased risk to develop metabolic and non-metabolic derangements. On the other hand, observations suggest that individuals who present peripheral adiposity, characterized by large hip and thigh circumferences, have better glucose tolerance, reduced incidence of T2DM and of metabolic syndrome. Insulin resistance (IR) is one of the main culprits in the association between obesity, particularly visceral, and metabolic as well as non-metabolic diseases. In this review we will highlight the current pathophysiological and molecular mechanisms possibly involved in the link between increased VAT, ectopic fat, IR and comorbidities. We will also provide some insights in the identification of these abnormalities. PMID:25211442

  16. Obesity-related insulin resistance: implications for the surgical patient.

    PubMed

    Tewari, N; Awad, S; Macdonald, I A; Lobo, D N

    2015-11-01

    In healthy surgical patients, preoperative fasting and major surgery induce development of insulin resistance (IR). IR can be present in up to 41% of obese patients without diabetes and this can rise in the postoperative period, leading to an increased risk of postoperative complications. Inflammation is implicated in the aetiology of IR. This review examines obesity-associated IR and its implications for the surgical patient. Searches of the Medline and Science Citation Index databases were performed using various key words in combinations with the Boolean operators AND, OR and NOT. Key journals, nutrition and metabolism textbooks and the reference lists of key articles were also hand searched. Adipose tissue has been identified as an active endocrine organ and the chemokines secreted as a result of macrophage infiltration have a role in the pathogenesis of IR. Visceral adipose tissue appears to be the most metabolically active, although results across studies are not consistent. Results from animal and human studies often provide conflicting results, which has rendered the pursuit of a common mechanistic pathway challenging. Obesity-associated IR appears, in part, to be related to inflammatory changes associated with increased adiposity. Postoperatively, the surgical patient is in a proinflammatory state, so this finding has important implications for the obese surgical patient. PMID:26028059

  17. REGULATION OF OBESITY AND INSULIN RESISTANCE BY NITRIC OXIDE

    PubMed Central

    Sansbury, Brian E.; Hill, Bradford G.

    2014-01-01

    Obesity is a risk factor for developing type 2 diabetes and cardiovascular disease and has quickly become a world-wide pandemic with few tangible and safe treatment options. While it is generally accepted that the primary cause of obesity is energy imbalance, i.e., the calories consumed are greater than are utilized, understanding how caloric balance is regulated has proven a challenge. Many “distal” causes of obesity, such as the structural environment, occupation, and social influences, are exceedingly difficult to change or manipulate. Hence, molecular processes and pathways more proximal to the origins of obesity—those that directly regulate energy metabolism or caloric intake—appear to be more feasible targets for therapy. In particular, nitric oxide (NO) is emerging as a central regulator of energy metabolism and body composition. NO bioavailability is decreased in animal models of diet-induced obesity and in obese and insulin resistant patients, and increasing NO output has remarkable effects on obesity and insulin resistance. This review discusses the role of NO in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease. PMID:24878261

  18. Quantitative secretome and glycome of primary human adipocytes during insulin resistance

    PubMed Central

    2014-01-01

    Adipose tissue is both an energy storage depot and an endocrine organ. The impaired regulation of the secreted proteins of adipose tissue, known as adipocytokines, observed during obesity contributes to the onset of whole-body insulin resistance and the pathobiology of type 2 diabetes mellitus (T2DM). In addition, the global elevation of the intracellular glycosylation of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) via either genetic or pharmacological methods is sufficient to induce insulin resistance in both cultured cells and animal models. The elevation of global O-GlcNAc levels is associated with the altered expression of many adipocytokines. We have previously characterized the rodent adipocyte secretome during insulin sensitive and insulin resistant conditions. Here, we characterize and quantify the secretome and glycome of primary human adipocytes during insulin responsive and insulin resistant conditions generated by the classical method of hyperglycemia and hyperinsulinemia or by the pharmacological manipulation of O-GlcNAc levels. Using a proteomic approach, we identify 190 secreted proteins and report a total of 20 up-regulated and 6 down-regulated proteins that are detected in both insulin resistant conditions. Moreover, we apply glycomic techniques to examine (1) the sites of N-glycosylation on secreted proteins, (2) the structures of complex N- and O-glycans, and (3) the relative abundance of complex N- and O-glycans structures in insulin responsive and insulin resistant conditions. We identify 91 N-glycosylation sites derived from 51 secreted proteins, as well as 155 and 29 released N- and O-glycans respectively. We go on to quantify many of the N- and O-glycan structures between insulin responsive and insulin resistance conditions demonstrating no significant changes in complex glycosylation in the time frame for the induction of insulin resistance. Thus, our data support that the O-GlcNAc modification is involved in the regulation of

  19. Central Administration of Galanin Receptor 1 Agonist Boosted Insulin Sensitivity in Adipose Cells of Diabetic Rats

    PubMed Central

    Zhang, Zhenwen; Fang, Penghua; He, Biao; Guo, Lili; Runesson, Johan; Langel, Ülo; Shi, Mingyi; Zhu, Yan; Bo, Ping

    2016-01-01

    Our previous studies testified the beneficial effect of central galanin on insulin sensitivity of type 2 diabetic rats. The aim of the study was further to investigate whether central M617, a galanin receptor 1 agonist, can benefit insulin sensitivity. The effects of intracerebroventricular administration of M617 on insulin sensitivity and insulin signaling were evaluated in adipose tissues of type 2 diabetic rats. The results showed that central injection of M617 significantly increased plasma adiponectin contents, glucose infusion rates in hyperinsulinemic-euglycemic clamp tests, GLUT4 mRNA expression levels, GLUT4 contents in plasma membranes, and total cell membranes of the adipose cells but reduced the plasma C-reactive protein concentration in nondiabetic and diabetic rats. The ratios of GLUT4 contents were higher in plasma membranes to total cell membranes in both nondiabetic and diabetic M617 groups than each control. In addition, the central administration of M617 enhanced the ratios of pAkt/Akt and pAS160/AS160, but not phosphorylative cAMP response element-binding protein (pCREB)/CREB in the adipose cells of nondiabetic and diabetic rats. These results suggest that excitation of central galanin receptor 1 facilitates insulin sensitivity via activation of the Akt/AS160 signaling pathway in the fat cells of type 2 diabetic rats. PMID:27127795

  20. Manganese [III] Tetrakis [5,10,15,20]-Benzoic Acid Porphyrin Reduces Adiposity and Improves Insulin Action in Mice with Pre-Existing Obesity

    PubMed Central

    Brestoff, Jonathan R.; Brodsky, Tim; Sosinsky, Alexandra Z.; McLoughlin, Ryan; Stansky, Elena; Fussell, Leila; Sheppard, Aaron; DiSanto-Rose, Maria; Kershaw, Erin E.; Reynolds, Thomas H.

    2015-01-01

    The superoxide dismutase mimetic manganese [III] tetrakis [5,10,15,20]-benzoic acid porphyrin (MnTBAP) is a potent antioxidant compound that has been shown to limit weight gain during short-term high fat feeding without preventing insulin resistance. However, whether MnTBAP has therapeutic potential to treat pre-existing obesity and insulin resistance remains unknown. To investigate this, mice were treated with MnTBAP or vehicle during the last five weeks of a 24-week high fat diet (HFD) regimen. MnTBAP treatment significantly decreased body weight and reduced white adipose tissue (WAT) mass in mice fed a HFD and a low fat diet (LFD). The reduction in adiposity was associated with decreased caloric intake without significantly altering energy expenditure, indicating that MnTBAP decreases adiposity in part by modulating energy balance. MnTBAP treatment also improved insulin action in HFD-fed mice, a physiologic response that was associated with increased protein kinase B (PKB) phosphorylation and expression in muscle and WAT. Since MnTBAP is a metalloporphyrin molecule, we hypothesized that its ability to promote weight loss and improve insulin sensitivity was regulated by heme oxygenase-1 (HO-1), in a similar fashion as cobalt protoporphyrins. Despite MnTBAP treatment increasing HO-1 expression, administration of the potent HO-1 inhibitor tin mesoporphyrin (SnMP) did not block the ability of MnTBAP to alter caloric intake, adiposity, or insulin action, suggesting that MnTBAP influences these metabolic processes independent of HO-1. These data demonstrate that MnTBAP can ameliorate pre-existing obesity and improve insulin action by reducing caloric intake and increasing PKB phosphorylation and expression. PMID:26397111

  1. Manganese [III] Tetrakis [5,10,15,20]-Benzoic Acid Porphyrin Reduces Adiposity and Improves Insulin Action in Mice with Pre-Existing Obesity.

    PubMed

    Brestoff, Jonathan R; Brodsky, Tim; Sosinsky, Alexandra Z; McLoughlin, Ryan; Stansky, Elena; Fussell, Leila; Sheppard, Aaron; DiSanto-Rose, Maria; Kershaw, Erin E; Reynolds, Thomas H

    2015-01-01

    The superoxide dismutase mimetic manganese [III] tetrakis [5,10,15,20]-benzoic acid porphyrin (MnTBAP) is a potent antioxidant compound that has been shown to limit weight gain during short-term high fat feeding without preventing insulin resistance. However, whether MnTBAP has therapeutic potential to treat pre-existing obesity and insulin resistance remains unknown. To investigate this, mice were treated with MnTBAP or vehicle during the last five weeks of a 24-week high fat diet (HFD) regimen. MnTBAP treatment significantly decreased body weight and reduced white adipose tissue (WAT) mass in mice fed a HFD and a low fat diet (LFD). The reduction in adiposity was associated with decreased caloric intake without significantly altering energy expenditure, indicating that MnTBAP decreases adiposity in part by modulating energy balance. MnTBAP treatment also improved insulin action in HFD-fed mice, a physiologic response that was associated with increased protein kinase B (PKB) phosphorylation and expression in muscle and WAT. Since MnTBAP is a metalloporphyrin molecule, we hypothesized that its ability to promote weight loss and improve insulin sensitivity was regulated by heme oxygenase-1 (HO-1), in a similar fashion as cobalt protoporphyrins. Despite MnTBAP treatment increasing HO-1 expression, administration of the potent HO-1 inhibitor tin mesoporphyrin (SnMP) did not block the ability of MnTBAP to alter caloric intake, adiposity, or insulin action, suggesting that MnTBAP influences these metabolic processes independent of HO-1. These data demonstrate that MnTBAP can ameliorate pre-existing obesity and improve insulin action by reducing caloric intake and increasing PKB phosphorylation and expression. PMID:26397111

  2. TNF-α Involvement in Insulin Resistance Induced by Experimental Scorpion Envenomation

    PubMed Central

    Ait-Lounis, Aouatef; Laraba-Djebari, Fatima

    2012-01-01

    Background Scorpion venom induces systemic inflammation characterized by an increase in cytokine release and chemokine production. There have been few experimental studies assessing the effects of scorpion venom on adipose tissue function in vivo. Methodology/Principal Findings To study the adipose tissue inflammation (ATI) induced by Androctonus australis hector (Aah) venom and to assess possible mechanisms of ATI, mice (n = 6, aged 1 month) were injected with Aah (0.45 mg/kg), toxic fraction of Aah (FTox-G50; 0.2 mg/kg) or saline solution (control). Inflammatory responses were evaluated by ELISA and cell sorting analyses in adipose tissue 45 minutes and 24 hours after injection. Quantitative real-time PCR was used to assess the regulation of genes implicated in glucose uptake. The titers of selected inflammatory cytokines (IL-1β, IL-6 and TNF-α) were also determined in sera and in insulin target tissues. The serum concentration of IL-1β rose 45 minutes after envenomation and returned to basal level after 24 hours. The pathophysiological effects of the venom after 24 hours mainly involved M1-proinflammatory macrophage infiltration in adipose tissue combined with high titers of IL-1β, IL-6 and TNF-α. Indeed, TNF-α was strongly induced in both adipose tissue and skeletal muscle. We studied the effects of Aah venom on genes implicated in insulin-stimulated glucose uptake. Insulin induced a significant increase in the expression of the mRNAs for hexokinase 2 and phosphatidylinositol 3-kinase in both skeletal muscle and adipose tissue in control mice; this upregulation was completely abolished after 24 hours in mice envenomed with Aah or FTox-G50. Conclusions/Significance Our findings suggest that Aah venom induces insulin resistance by mechanisms involving TNF-α-dependent Map4k4 kinase activation in the adipose tissue. PMID:22816003

  3. Resveratrol improves insulin signaling in a tissue-specific manner under insulin-resistant conditions only: in vitro and in vivo experiments in rodents.

    PubMed

    Kang, Wonyoung; Hong, Hyun Ju; Guan, Jian; Kim, Dong Geon; Yang, Eun-Jin; Koh, Gwanpyo; Park, Doekbae; Han, Chang Hoon; Lee, Young-Jae; Lee, Dae-Ho

    2012-03-01

    Resveratrol (RSV) has various metabolic effects, especially with relatively high-dose therapy. However, the ability of RSV to modulate insulin signaling has not been completely evaluated. Here, we determined whether RSV alters insulin signaling in insulin-responsive cells and tissues. The effects of RSV on insulin signaling in 3T3-L1 adipocytes under both insulin-sensitive and insulin-resistant states and in insulin-sensitive tissues of high fat-fed diet-induced obese (DIO) mice were investigated. Insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation (Y612) was suppressed in RSV-treated adipocytes compared with untreated adipocytes, as was the insulin-stimulated Akt phosphorylation (Ser473). However, under an insulin-resistant condition that was made by incubating 3T3-L1 adipocytes in the conditioned medium from lipopolysaccharide-stimulated LAW264.7 cells, RSV reduced inducible nitric oxide synthase expression and IκBα protein degradation and improved insulin-stimulated Akt phosphorylation (Ser473). In DIO mice, relatively low-dose RSV (30 mg/kg daily for 2 weeks) therapy lowered fasting blood glucose level and serum insulin, increased hepatic glycogen content, and ameliorated fatty liver without change in body weight. The insulin-stimulated Akt phosphorylation was decreased in the liver and white adipose tissue of DIO mice, but it was completely normalized by RSV treatment. However, in the skeletal muscle of DIO mice, insulin signaling was not improved by RSV treatment, whereas the phosphorylation of adenosine monophosphate-activated protein kinase α (Thr172) was improved by it. Our results show that RSV enhances insulin action only under insulin-resistant conditions and suggest that the effect of RSV may depend on the type of tissue being targeted and its metabolic status. PMID:21945106

  4. Newborn Size and Body Composition as Predictors of Insulin Resistance and Diabetes in the Parents

    PubMed Central

    Veena, Sargoor R.; Krishnaveni, Ghattu V.; Fall, Caroline H.

    2012-01-01

    OBJECTIVE We aimed to examine detailed neonatal measurements as predictors of later diabetes in both parents. RESEARCH DESIGN AND METHODS Babies (n = 617) born to nondiabetic parents in Holdsworth Memorial Hospital, Mysore, India, were measured at birth for weight; crown-to-heel length (CHL), crown-to-rump length (CRL), and leg length; skinfolds (triceps and subscapular); and circumferences (head, abdomen, and mid–upper-arm circumference [MUAC]). Nine and a half years later, glucose tolerance and fasting insulin were measured in their parents (469 mothers and 398 fathers). RESULTS Sixty-two (15.6%) fathers and 22 (4.7%) mothers had developed diabetes. There were linear inverse associations of the children’s birth weight, CHL, CRL, MUAC, and skinfolds with paternal diabetes and insulin resistance (P < 0.05 for all). Offspring birth weight and adiposity (MUAC, abdominal circumference, and skinfolds) showed U-shaped associations with maternal diabetes (P for quadratic association <0.05 for all). These associations persisted after adjusting for the parents’ current adiposity and maternal glucose concentrations and adiposity during pregnancy. Newborn adiposity was positively related to maternal insulin resistance; this association was nonsignificant after adjusting for maternal current adiposity. CONCLUSIONS Newborn size is a window into the future health of the parents. Small newborn size (especially soft-tissue body components) predicts an increased risk of later diabetes in both parents, suggesting a genetic or epigenetic link between parents’ diabetes risk and reduced fetal growth in their children. The association of higher birth weight and newborn adiposity with later maternal diabetes suggests effects on fetal adiposity of the intrauterine environment in prediabetic mothers. PMID:22751963

  5. The role of fatty acids in insulin resistance.

    PubMed

    Sears, Barry; Perry, Mary

    2015-01-01

    Insulin resistance is a multi-faceted disruption of the communication between insulin and the interior of a target cell. The underlying cause of insulin appears to be inflammation that can either be increased or decreased by the fatty acid composition of the diet. However, the molecular basis for insulin resistance can be quite different in various organs. This review deals with various types of inflammatory inputs mediated by fatty acids, which affect the extent of insulin resistance in various organs. PMID:26415887

  6. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    SciTech Connect

    Vikram, Ajit; Jena, Gopabandhu

    2010-07-23

    Research highlights: {yields}Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. {yields}Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. {yields}Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. {yields}Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia ({approx}18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPAR{gamma}) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 {+-} 16.32 vs. 126.37 {+-} 27.07 mg/dl) and glucose intolerance ({approx}78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  7. (-)-Epicatechin mitigates high fructose-associated insulin resistance by modulating redox signaling and endoplasmic reticulum stress

    PubMed Central

    Bettaieb, Ahmed; Vazquez Prieto, Marcela A.; Rodriguez Lanzi, Cecilia; Miatello, Roberto M.; Haj, Fawaz G.; Fraga, César G.; Oteiza, Patricia I.

    2014-01-01

    We investigated the capacity of dietary (-)-epicatechin (EC) to mitigate insulin resistance through the modulation of redox-regulated mechanisms in a rat model of metabolic syndrome (MetS). Adolescent rats were fed a regular chow diet without or with high fructose (HFr) (10% (w/v)) in drinking water for 8 weeks, and a group of HFr-fed rats was supplemented with EC in the diet. HFr-fed rats developed insulin resistance which was mitigated by EC supplementation. Accordingly, the activation of components of the insulin signaling cascade (insulin receptor (IR), IRS-1, Akt and ERK1/2) was impaired, while negative regulators (PKC, IKK, JNK and PTP1B) were upregulated in the liver and adipose tissue of HFr rats. These alterations were partially or totally prevented by EC supplementation. In addition, EC inhibited events which contribute to insulin resistance: HFr-associated increased expression and activity of NADPH oxidase, activation of redox-sensitive signals, expression of NF-κB-regulated pro-inflammatory cytokines and chemokines, and some sub-arms of endoplasmic reticulum stress signaling. Collectively, these findings indicate that EC supplementation can mitigate HFr-induced insulin resistance and are relevant to define interventions that can prevent/mitigate MetS-associated insulin resistance. PMID:24746618

  8. Salicylate Downregulates 11β-HSD1 Expression in Adipose Tissue in Obese Mice and in Humans, Mediating Insulin Sensitization

    PubMed Central

    Nixon, Mark; Wake, Deborah J.; Livingstone, Dawn E.; Stimson, Roland H.; Esteves, Cristina L.; Seckl, Jonathan R.; Chapman, Karen E.; Andrew, Ruth; Walker, Brian R.

    2012-01-01

    Recent trials show salicylates improve glycemic control in type 2 diabetes, but the mechanism is poorly understood. Expression of the glucocorticoid-generating enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in adipose tissue is increased in vitro by proinflammatory cytokines and upregulated in obesity. 11β-HSD1 inhibition enhances insulin sensitivity. We hypothesized that salicylates downregulate 11β-HSD1 expression, contributing to their metabolic efficacy. We treated diet-induced obese (DIO) 11β-HSD1–deficient mice and C57Bl/6 mice with sodium salicylate for 4 weeks. Glucose tolerance was assessed in vivo. Tissue transcript levels were assessed by quantitative PCR and enzyme activity by incubation with 3H-steroid. Two weeks’ administration of salsalate was also investigated in a randomized double-blind placebo-controlled crossover study in 16 men, with measurement of liver 11β-HSD1 activity in vivo and adipose tissue 11β-HSD1 transcript levels ex vivo. In C57Bl/6 DIO mice, salicylate improved glucose tolerance and downregulated 11β-HSD1 mRNA and activity selectively in visceral adipose. DIO 11β-HSD1–deficient mice were resistant to these metabolic effects of salicylate. In men, salsalate reduced 11β-HSD1 expression in subcutaneous adipose, and in vitro salicylate treatment reduced adipocyte 11β-HSD1 expression and induced adiponectin expression only in the presence of 11β-HSD1 substrate. Reduced intra-adipose glucocorticoid regeneration by 11β-HSD1 is a novel mechanism that contributes to the metabolic efficacy of salicylates. PMID:22357964

  9. Beneficial effects of combined resveratrol and metformin therapy in treating diet-induced insulin resistance.

    PubMed

    Frendo-Cumbo, Scott; MacPherson, Rebecca E K; Wright, David C

    2016-08-01

    The polyphenol compound resveratrol (RSV) has attracted attention due to its reputed beneficial effects on insulin sensitivity. Our lab has previously identified protective effects of RSV against the development of type 2 diabetes in rats. These effects occurred in a manner similar to thiazolidinedione's (TZDs), a class of insulin sensitizing drugs. TZDs are commonly prescribed in combination with metformin (MET) and thus we sought to examine the combined effects of RSV and MET in treating insulin resistance. Male C57BL6 mice were fed a low- (LFD; 10% Kcal from fat) or high-fat diet (HFD; 60% Kcal from fat) for 9 weeks to induce glucose and insulin intolerance. HFD mice were then assigned to control (HFD), MET (231.28 ± 12.24 mg/kg/day), RSV (93.68 ± 3.51 mg/kg/day), or combined (COM; MET 232.01 ± 17.12 mg/kg/day and RSV 92.77 ± 6.92 mg/kg/day) treatment groups. Changes in glucose and insulin tolerance and tissue-specific insulin signaling were measured 4 weeks post-treatment. RSV or MET alone did not have beneficial effects on glucose tolerance, although MET significantly improved insulin tolerance compared to HFD Glucose and insulin tolerance were significantly improved in COM compared to HFD and this was mirrored by enhanced insulin-stimulated AKT phosphorylation in triceps muscle and inguinal subcutaneous adipose tissue in COM compared to HFD mice. Improvements with COM treatment were not explained by differences in body weight, adiposity, or markers of adipose tissue inflammation. In summary, this study provides evidence of beneficial effects of combined RSV and MET therapy in treating impairments in glucose homeostasis. PMID:27482073

  10. Hypoglycemic effects and mechanisms of electroacupuncture on insulin resistance

    PubMed Central

    Yin, Jieyun; Kuang, Jian; Chandalia, Manisha; Tuvdendorj, Demidmaa; Tumurbaatar, Batbayar; Abate, Nicola

    2014-01-01

    The aim of this study was to investigate effects and mechanisms of electroacupuncture (EA) on blood glucose and insulin sensitivity in mice fed a high-fat diet. Both wild-type (WT) and adipose ectonucleotide pyrophosphate phosphodiesterase (ENPP1) transgenic (TG) mice were fed a high-fat diet for 12 wk; for each mouse, an intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (ITT) were performed with or without EA at abdomen or auricular areas. A high-fat diet-induced insulin resistance in both WT and TG mice. In the WT mice, EA at 3 Hz and 15 Hz, but not at 1 Hz or 100 Hz, via CV4+CV12 significantly reduced postprandial glucose levels; EA at 3 Hz was most potent. The glucose level was reduced by 61.7% at 60 min and 74.5% at 120 min with EA at 3 Hz (all P < 0.001 vs. control). Similar hypoglycemic effect was noted in the TG mice. On the contrary, EA at auricular points increased postprandial glucose level (P < 0.03). 4). EA at 3 Hz via CV4+CV12 significantly enhanced the decrease of blood glucose after insulin injection, suggesting improvement of insulin sensitivity. Plasma free fatty acid was significantly suppressed by 42.5% at 15 min and 50.8% at 30 min with EA (P < 0.01) in both WT and TG mice. EA improves glucose tolerance in both WT and TG mice fed a high-fat diet, and the effect is associated with stimulation parameters and acupoints and is probably attributed to the reduction of free fatty acid. PMID:24848362

  11. Hypoglycemic effects and mechanisms of electroacupuncture on insulin resistance.

    PubMed

    Yin, Jieyun; Kuang, Jian; Chandalia, Manisha; Tuvdendorj, Demidmaa; Tumurbaatar, Batbayar; Abate, Nicola; Chen, Jiande D Z

    2014-08-01

    The aim of this study was to investigate effects and mechanisms of electroacupuncture (EA) on blood glucose and insulin sensitivity in mice fed a high-fat diet. Both wild-type (WT) and adipose ectonucleotide pyrophosphate phosphodiesterase (ENPP1) transgenic (TG) mice were fed a high-fat diet for 12 wk; for each mouse, an intraperitoneal glucose tolerance test (IPGTT) and insulin tolerance test (ITT) were performed with or without EA at abdomen or auricular areas. A high-fat diet-induced insulin resistance in both WT and TG mice. In the WT mice, EA at 3 Hz and 15 Hz, but not at 1 Hz or 100 Hz, via CV4+CV12 significantly reduced postprandial glucose levels; EA at 3 Hz was most potent. The glucose level was reduced by 61.7% at 60 min and 74.5% at 120 min with EA at 3 Hz (all P < 0.001 vs. control). Similar hypoglycemic effect was noted in the TG mice. On the contrary, EA at auricular points increased postprandial glucose level (P < 0.03). 4). EA at 3 Hz via CV4+CV12 significantly enhanced the decrease of blood glucose after insulin injection, suggesting improvement of insulin sensitivity. Plasma free fatty acid was significantly suppressed by 42.5% at 15 min and 50.8% at 30 min with EA (P < 0.01) in both WT and TG mice. EA improves glucose tolerance in both WT and TG mice fed a high-fat diet, and the effect is associated with stimulation parameters and acupoints and is probably attributed to the reduction of free fatty acid. PMID:24848362

  12. Polyunsaturated fatty acids and insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have reviewed results from published studies regarding the effects of polyunsaturated fatty acids (PUFA) intake on insulin resistance (IR) in human subjects. Evidence has been gathered from epidemiological, cross-sectional and interventions studies. Increased intake of trans fatty acids (TFA) inc...

  13. Genetic Architecture of Insulin Resistance in the Mouse

    PubMed Central

    Parks, Brian W.; Sallam, Tamer; Mehrabian, Margarete; Psychogios, Nikolas; Hui, Simon T.; Norheim, Frode; Castellani, Lawrence W.; Rau, Christoph; Pan, Calvin; Phun, Jennifer; Zhou, Zhenqi; Yang, Wen-Pin; Neuhaus, Isaac; Gargalovic, Peter S.; Kirchgessner, Todd G.; Graham, Mark; Lee, Richard; Tontonoz, Peter; Gerszten, Robert E.; Hevener, Andrea L.; Lusis, Aldons J.

    2015-01-01

    SUMMARY Insulin Resistance (IR) is a complex trait with multiple genetic and environmental components. Confounded by large differences between the sexes, environment and disease pathology, the genetic basis of IR has been difficult to dissect. Here we examine IR and related traits in a diverse population of more than 100 unique male and female inbred mouse strains after feeding a diet rich in fat and refined carbohydrates. Our results show dramatic variation in IR among strains of mice and widespread differences between sexes that is dependent on genotype. We uncover more than 15 genome-wide significant loci and validate a gene, Agpat5, associated with IR. We also integrate plasma metabolite levels and global gene expression from liver and adipose tissue to identify metabolite Quantitative Trait Loci (mQTL) and expression QTL (eQTL), respectively. Our results provide a resource for analysis of interactions between diet, sex and genetic background in IR. PMID:25651185

  14. Relationship between generalized and upper body obesity to insulin resistance in Asian Indian men.

    PubMed

    Chandalia, M; Abate, N; Garg, A; Stray-Gundersen, J; Grundy, S M

    1999-07-01

    It has been proposed that excessive insulin resistance in Asian Indians living in urban areas or migrated to western countries is responsible for the higher incidence of type 2 diabetes and coronary heart disease observed in this population. To evaluate whether Asian Indians are more insulin resistant than Caucasians and to define the role of generalized and truncal adiposity, we performed hydrodensitometry, skinfold measurements, and euglycemic-hyperinsulinemic clamps in 21 healthy Asian Indian men and 23 Caucasian men of similar age and body fat content. The glucose disposal rate (Rd) was significantly lower in the Asian Indians than in the Caucasians (3.7+/-1.3 vs. 5.3+/-2.0 mg/min x kg lean body mass, respectively; P = 0.003). Despite similar total body fat content, Asian Indians had higher truncal adiposity than Caucasians (sum of truncal skinfolds, 117+/-37 and 92.4+/-38 mm, respectively). In both Asian Indians and Caucasians, the insulin sensitivity index (Rd/plasma insulin concentrations) was inversely correlated with both total body fat (r = -0.49; P<0.03 and r = -0.67; P<0.001, respectively) and sum of truncal skinfold thickness (r = -0.55; P<0.001 and r = -0.61; P<0.002, respectively). After adjustment for total body fat and truncal skinfold thickness, Asian Indians still had a significantly lower glucose disposal rate (P = 0.04). These results show that Asian Indian men are more insulin resistant than Caucasian men independently of generalized or truncal adiposity. The excessive insulin resistance in Asian Indians is probably a primary metabolic defect and may account for the excessive morbidity and mortality from diabetes and coronary heart disease in this population. PMID:10404798

  15. Acrolein metabolites, diabetes and insulin resistance.

    PubMed

    Feroe, Aliya G; Attanasio, Roberta; Scinicariello, Franco

    2016-07-01

    Acrolein is a dietary and environmental pollutant that has been associated in vitro to dysregulate glucose transport. We investigated the association of urinary acrolein metabolites N-acetyl-S-(3-hydroxypropyl)-l-cysteine (3-HPMA) and N-acetyl-S-(carboxyethyl)-l-cysteine (CEMA) and their molar sum (∑acrolein) with diabetes using data from investigated 2027 adults who participated in the 2005-2006 National Health and Nutrition Examination Survey (NHANES). After excluding participants taking insulin or other diabetes medication we, further, investigated the association of the compounds with insulin resistance (n=850), as a categorical outcome expressed by the homeostatic model assessment (HOMA-IR>2.6). As secondary analyses, we investigated the association of the compounds with HOMA-IR, HOMA-β, fasting insulin and fasting plasma glucose. The analyses were performed using urinary creatinine as independent variable in the models, and, as sensitivity analyses, the compounds were used as creatinine corrected variables. Diabetes as well as insulin resistance (defined as HOMA-IR>2.6) were positively associated with the 3-HPMA, CEMA and ∑Acrolein with evidence of a dose-response relationship (p<0.05). The highest 3rd and 4th quartiles of CEMA compared to the lowest quartile were significantly associated with higher HOMA-IR, HOMA-β and fasting insulin with a dose-response relationship. The highest 3rd quartile of 3-HPMA and ∑Acrolein were positively and significantly associated with HOMA-IR, HOMA-β and fasting insulin. These results suggest a need of further studies to fully understand the implications of acrolein with type 2 diabetes and insulin. PMID:26991531

  16. The Relationship of Fat Distribution and Insulin Resistance with Lumbar Spine Bone Mass in Women

    PubMed Central

    de Paula, Francisco J. A.; de Araújo, Iana M.; Carvalho, Adriana L.; Elias, Jorge; Salmon, Carlos E. G.; Nogueira-Barbosa, Marcello H.

    2015-01-01

    Bone marrow harbors a significant amount of body adipose tissue (BMAT). While BMAT might be a source of energy for bone modeling and remodeling, its increment can also represent impairment of osteoblast differentiation. The relationship between BMAT, bone mass and insulin sensitivity is only partially understood and seems to depend on the circumstances. The present study was designed to assess the association of BMAT with bone mineral density in the lumbar spine as well as with visceral adipose tissue, intrahepatic lipids, HOMA-IR, and serum levels of insulin and glucose. This cross-sectional clinical investigation included 31 non-diabetic women, but 11 had a pre-diabetes status. Dual X-ray energy absorptiometry was used to measure bone mineral density and magnetic resonance imaging was used to assess fat deposition in BMAT, visceral adipose tissue and liver. Our results suggest that in non-diabetic, there is an inverse relationship between bone mineral density in lumbar spine and BMAT and a trend persists after adjustment for weight, age, BMI and height. While there is a positive association between visceral adipose tissue and intrahepatic lipids with serum insulin levels, there is no association between BMAT and serum levels of insulin. Conversely, a positive relationship was observed between BMAT and serum glucose levels, whereas this association was not observed with other fat deposits. These relationships did not apply after adjustment for body weight, BMI, height and age. The present study shows that in a group of predominantly non-obese women the association between insulin resistance and BMAT is not an early event, as occurs with visceral adipose tissue and intrahepatic lipids. On the other hand, BMAT has a negative relationship with bone mineral density. Taken together, the results support the view that bone has a complex and non-linear relationship with energy metabolism. PMID:26067489

  17. Repeated Ozone Exposure Exacerbates Insulin Resistance And Activates Innate Immune Response In Genetically Susceptible Mice

    PubMed Central

    Zhong, Jixin; Allen, Katryn; Rao, Xiaoquan; Ying, Zhekang; Braunstein, Zachary; Kankanala, Saumya R.; Xia, Chang; Wang, Xiaoke; Bramble, Lori A.; Wagner, James G.; Lewandowski, Ryan; Sun, Qinghua; Harkema, Jack R.; Rajagopalan, Sanjay

    2016-01-01

    Background Inhaled ozone (O3) has been demonstrated as a harmful pollutant and associated with chronic inflammatory diseases such as diabetes and vascular disorders. However, the underlying mechanisms by which O3 mediates harmful effects are poorly understood. Objectives To investigate the effect of O3 exposure on glucose intolerance, immune activation and underlying mechanisms in a genetically susceptible mouse model. Methods Diabetes-prone KK mice were exposed to filtered air (FA), or O3 (0.5 ppm) for 13 consecutive weekdays (4 h/day). Insulin tolerance test (ITT) was performed following the last exposure. Plasma insulin, adiponectin, and leptin were measured by ELISA. Pathologic changes were examined by H&E and oil-red-o staining. Inflammatory responses were detected using flow cytometry and real-time PCR. Results KK mice exposed to O3 displayed an impaired insulin response. Plasma insulin and leptin levels were reduced in O3-exposed mice. Three-week exposure to O3 induced lung inflammation and increased monocytes/macrophages in both blood and visceral adipose tissue. Inflammatory monocytes/macrophages increased both systemically and locally. CD4+ T cell activation was also enhanced by the exposure of O3 although the relative percentage of CD4+ T cell decreased in blood and adipose tissue. Multiple inflammatory genes including CXCL-11, IFN-γ, TNFα, IL-12, and iNOS were up-regulated in visceral adipose tissue. Furthermore, the expression of oxidative stress-related genes such as Cox4, Cox5a, Scd1, Nrf1, and Nrf2, increased in visceral adipose tissue of O3-exposed mice. Conclusions Repeated O3 inhalation induces oxidative stress, adipose inflammation and insulin resistance. PMID:27240593

  18. Wnt signaling activation in adipose progenitors promotes insulin-independent muscle glucose uptake

    PubMed Central

    Zeve, Daniel; Seo, Jin; Suh, Jae Myoung; Stenesen, Drew; Tang, Wei; Berglund, Eric D.; Wan, Yihong; Williams, Linda J.; Lim, Ajin; Martinez, Myrna J.; McKay, Renée M.; Millay, Douglas P.; Olson, Eric N.; Graff, Jonathan M.

    2012-01-01

    SUMMARY Adipose tissues provide circulating nutrients and hormones. We present in vivo mouse studies highlighting roles for Wnt signals in both aspects of metabolism. β-catenin activation in PPARγ–expressing fat progenitors (PBCA) decreased fat mass and induced fibrotic replacement of subcutaneous fat specifically. In spite of lipodystrophy, PBCA mice did not develop the expected diabetes and hepatosteatosis, but rather exhibited improved glucose metabolism and normal insulin sensitivity. Glucose uptake was increased in muscle independently of insulin, associated with cell surface translocation of glucose transporters and AMPK activation. Ex vivo assays showed these effects were likely secondary to blood-borne signals since PBCA sera or conditioned media from PBCA fat progenitors enhanced glucose uptake and activated AMPK in muscle cultures. Thus, adipose progenitor Wnt activation dissociates lipodystrophy from dysfunctional metabolism and highlights a fat-muscle endocrine axis, which may represent a potential therapy to lower blood glucose and improve metabolism. PMID:22482731

  19. Pid1 induces insulin resistance in both human and mouse skeletal muscle during obesity.

    PubMed

    Bonala, Sabeera; McFarlane, Craig; Ang, Jackie; Lim, Radiance; Lee, Marcus; Chua, Hillary; Lokireddy, Sudarsanareddy; Sreekanth, Patnam; Leow, Melvin Khee Shing; Meng, Khoo Chin; Shyong, Tai E; Lee, Yung Seng; Gluckman, Peter D; Sharma, Mridula; Kambadur, Ravi

    2013-09-01

    Obesity is associated with insulin resistance and abnormal peripheral tissue glucose uptake. However, the mechanisms that interfere with insulin signaling and glucose uptake in human skeletal muscle during obesity are not fully characterized. Using microarray, we have identified that the expression of Pid1 gene, which encodes for a protein that contains a phosphotyrosine-interacting domain, is increased in myoblasts established from overweight insulin-resistant individuals. Molecular analysis further validated that both Pid1 mRNA and protein levels are increased in cell culture models of insulin resistance. Consistent with these results, overexpression of phosphotyrosine interaction domain-containing protein 1 (PID1) in human myoblasts resulted in reduced insulin signaling and glucose uptake, whereas knockdown of PID1 enhanced glucose uptake and insulin signaling in human myoblasts and improved the insulin sensitivity following palmitate-, TNF-α-, or myostatin-induced insulin resistance in human myoblasts. Furthermore, the number of mitochondria in myoblasts that ectopically express PID1 was significantly reduced. In addition to overweight humans, we find that Pid1 levels are also increased in all 3 peripheral tissues (liver, skeletal muscle, and adipose tissue) in mouse models of diet-induced obesity and insulin resistance. An in silico search for regulators of Pid1 expression revealed the presence of nuclear factor-κB (NF-κB) binding sites in the Pid1 promoter. Luciferase reporter assays and chromatin immunoprecipitation studies confirmed that NF-κB is sufficient to transcriptionally up-regulate the Pid1 promoter. Furthermore, we find that myostatin up-regulates Pid1 expression via an NF-κB signaling mechanism. Collectively these results indicate that Pid1 is a potent intracellular inhibitor of insulin signaling pathway during obesity in humans and mice. PMID:23927930

  20. Insulin resistance and cancer: epidemiological evidence.

    PubMed

    Tsugane, Shoichiro; Inoue, Manami

    2010-05-01

    Over the last 60 years, Japanese people have experienced a rapid and drastic change in lifestyle, including diet. Suspicions have been raised that so-called 'Westernization', characterized by a high-calorie diet and physical inactivity, is associated with increasing trends in the incidence of cancer of the colon, liver, pancreas, prostate, and breast, as well as type 2 diabetes. Epidemiological evidence from our prospective study, the Japan Public Health Center-based Prospective (JPHC) study, and systematic literature reviews generally support the idea that factors related to diabetes or insulin resistance are associated with an increased risk of colon (mostly in men), liver, and pancreatic cancers. These cancers are inversely associated with physical activity and coffee consumption, which are known to decrease the risk of type 2 diabetes. The suggested mechanism of these effects is that insulin resistance and the resulting chronic hyperinsulinemia and increase in bioavailable insulin-like growth factor 1 (IGF1) stimulate tumor growth. In contrast, associations with diabetes are less clear for cancer of the colon in women, and breast and prostate, which are known to be related to sex hormones. The effect of insulin resistance or body fat on sex-hormone production and bioavailability may modify their carcinogenic effect differently from cancers of the colon in men, and liver and pancreas. In conclusion, there is substantial evidence to show that cancers of the colon, liver, and pancreas are associated with insulin resistance, and that these cancers can be prevented by increasing physical activity, and possibly coffee consumption. PMID:20345478

  1. Insulin-induced cytokine production in macrophages causes insulin resistance in hepatocytes.

    PubMed

    Manowsky, Julia; Camargo, Rodolfo Gonzalez; Kipp, Anna P; Henkel, Janin; Püschel, Gerhard P

    2016-06-01

    Overweight and obesity are associated with hyperinsulinemia, insulin resistance, and a low-grade inflammation. Although hyperinsulinemia is generally thought to result from an attempt of the β-cell to compensate for insulin resistance, there is evidence that hyperinsulinaemia itself may contribute to the development of insulin resistance and possibly the low-grade inflammation. To test this hypothesis, U937 macrophages were exposed to insulin. In these cells, insulin induced expression of the proinflammatory cytokines IL-1β, IL-8, CCL2, and OSM. The insulin-elicited induction of IL-1β was independent of the presence of endotoxin and most likely mediated by an insulin-dependent activation of NF-κB. Supernatants of the insulin-treated U937 macrophages rendered primary cultures of rat hepatocytes insulin resistant; they attenuated the insulin-dependent induction of glucokinase by 50%. The cytokines contained in the supernatants of insulin-treated U937 macrophages activated ERK1/2 and IKKβ, resulting in an inhibitory serine phosphorylation of the insulin receptor substrate. In addition, STAT3 was activated and SOCS3 induced, further contributing to the interruption of the insulin receptor signal chain in hepatocytes. These results indicate that hyperinsulinemia per se might contribute to the low-grade inflammation prevailing in overweight and obese patients and thereby promote the development of insulin resistance particularly in the liver, because the insulin concentration in the portal circulation is much higher than in all other tissues. PMID:27094035

  2. Mitochondrial dysfunction and insulin resistance: an update

    PubMed Central

    Montgomery, Magdalene K; Turner, Nigel

    2014-01-01

    Mitochondrial dysfunction has been implicated in the development of insulin resistance (IR); however, a large variety of association and intervention studies as well as genetic manipulations in rodents have reported contrasting results. Indeed, even 39 years after the first publication describing a relationship between IR and diminished mitochondrial function, it is still unclear whether a direct relationship exists, and more importantly if changes in mitochondrial capacity are a cause or consequence of IR. This review will take a journey through the past and summarise the debate about the occurrence of mitochondrial dysfunction and its possible role in causing decreased insulin action in obesity and type 2 diabetes. Evidence is presented from studies in various human populations, as well as rodents with genetic manipulations of pathways known to affect mitochondrial function and insulin action. Finally, we have discussed whether mitochondria are a potential target for the treatment of IR. PMID:25385852

  3. TUSC5 regulates insulin-mediated adipose tissue glucose uptake by modulation of GLUT4 recycling

    PubMed Central

    Beaton, Nigel; Rudigier, Carla; Moest, Hansjörg; Müller, Sebastian; Mrosek, Nadja; Röder, Eva; Rudofsky, Gottfried; Rülicke, Thomas; Ukropec, Jozef; Ukropcova, Barbara; Augustin, Robert; Neubauer, Heike; Wolfrum, Christian

    2015-01-01

    Objective Failure to properly dispose of glucose in response to insulin is a serious health problem, occurring during obesity and is associated with type 2 diabetes development. Insulin-stimulated glucose uptake is facilitated by the translocation and plasma membrane fusion of vesicles containing glucose transporter 4 (GLUT4), the rate-limiting step of post-prandial glucose disposal. Methods We analyzed the role of Tusc5 in the regulation of insulin-stimulated Glut4-mediated glucose uptake in vitro and in vivo. Furthermore, we measured Tusc5 expression in two patient cohorts. Results Herein, we report that TUSC5 controls insulin-stimulated glucose uptake in adipocytes, in vitro and in vivo. TUSC5 facilitates the proper recycling of GLUT4 and other key trafficking proteins during prolonged insulin stimulation, thereby enabling proper protein localization and complete vesicle formation, processes that ultimately enable insulin-stimulated glucose uptake. Tusc5 knockout mice exhibit impaired glucose disposal and TUSC5 expression is predictive of glucose tolerance in obese individuals, independent of body weight. Furthermore, we show that TUSC5 is a PPARγ target and in its absence the anti-diabetic effects of TZDs are significantly blunted. Conclusions Collectively, these findings establish TUSC5 as an adipose tissue-specific protein that enables proper protein recycling, linking the ubiquitous vesicle traffic machinery with tissue-specific insulin-mediated glucose uptake into adipose tissue and the maintenance of a healthy metabolic phenotype in mice and humans. PMID:26629404

  4. Responses of the Insulin Signaling Pathways in the Brown Adipose Tissue of Rats following Cold Exposure

    PubMed Central

    Wang, Xiaofei; Wahl, Richard

    2014-01-01

    The insulin signaling pathway is critical for the control of blood glucose levels. Brown adipose tissue (BAT) has also been implicated as important in glucose homeostasis. The effect of short-term cold exposure on this pathway in BAT has not been explored. We evaluated the effect of 4 hours of cold exposure on the insulin pathway in the BAT of rats. Whole genomic microarray chips were used to examine the transcripts of the pathway in BAT of rats exposed to 4°C and 22°C for 4 hours. The 4 most significantly altered pathways following 4 hours of cold exposure were the insulin signaling pathway, protein kinase A, PI3K/AKT and ERK/MAPK signaling. The insulin signaling pathway was the most affected. In the documented 142 genes of the insulin pathway, 42 transcripts (29.6%) responded significantly to this cold exposure with the least false discovery rate (Benjamini-Hochberg Multiple Testing: −log10 (p-value)  = 7.18). Twenty-seven genes (64%) were up-regulated, including the insulin receptor (Insr), insulin substrates 1 and 2 (Irs1 and Irs2). Fifteen transcripts (36%) were down-regulated. Multiple transcripts of the primary target and secondary effector targets for the insulin signaling were also up-regulated, including those for carbohydrate metabolism. Using western blotting, we demonstrated that the cold induced higher Irs2, Irs1, and Akt-p protein levels in the BAT than in the BAT of controls maintained at room temperature, and higher Akt-p protein level in the muscle. Conclusion: this study demonstrated that 4 hours of cold exposure stimulated the insulin signaling pathway in the BAT and muscle of overnight fasted rats. This raises the possibility that acute cold stimulation may have potential to improve glucose clearance and insulin sensitivity. PMID:24915042

  5. Plerocercoid growth factor (PGF), a human growth hormone (hGH) analogue produced by the tapeworm Spirometra mansonoides, has direct insulin-like action in adipose tissue of normal rats in vitro

    SciTech Connect

    Salem, M.A.M.; Phares, C.K.

    1986-03-01

    The metabolic actions of GH can be divided into acute (insulin-like) and chronic (lipolytic/anti-insulin). The insulin-like actions of GH are most readily elicited in GH-deficient animals as GH induces resistance to its own insulin-like action. Like GH, PGF stimulates growth and cross-reacts with anti-hGH antibodies. Independent experiments were conducted comparing the direct actions of PGF to insulin or hGH in vitro. Insulin-like effects were determined by the ability of PGF, insulin or hGH to stimulate (U-/sup 14/C)glucose metabolism in epidydimal fat pads from normal rats and by inhibition of epinephrine-stimulated lipolysis. Direct stimulation of lipolysis was used as anti-insulin activity. To determine if PGF competes for insulin or GH receptors, adipocytes (3 x 10/sup 5/ cells/ml) were incubated with either (/sup 125/I)insulin or (/sup 125/I)hGH +/- PGF, +/- insulin or +/- hGH. PGF stimulated glucose oxidation and /sup 14/C-incorporation into lipids. Insulin, hGH and PGF inhibited lipolysis (33%, 29% and 34%, respectively). Adipose tissue was very sensitive to the lipolytic effect of hGH but PGF was neither lipolytic nor did it confer refractoriness to its insulin-like action. PGF bound to GH but not to insulin receptors. Therefore, PGF had direct insulin-like effects but did not stimulate lipolysis in tissue from normal rats in vitro.

  6. Low fish oil intake improves insulin sensitivity, lipid profile and muscle metabolism on insulin resistant MSG-obese rats

    PubMed Central

    2011-01-01

    Background Obesity is commonly associated with diabetes, cardiovascular diseases and cancer. The purpose of this study was to determinate the effect of a lower dose of fish oil supplementation on insulin sensitivity, lipid profile, and muscle metabolism in obese rats. Methods Monosodium glutamate (MSG) (4 mg/g body weight) was injected in neonatal Wistar male rats. Three-month-old rats were divided in normal-weight control group (C), coconut fat-treated normal weight group (CO), fish oil-treated normal weight group (FO), obese control group (Ob), coconut fat-treated obese group (ObCO) and fish oil-treated obese group (ObFO). Obese insulin-resistant rats were supplemented with fish oil or coconut fat (1 g/kg/day) for 4 weeks. Insulin sensitivity, fasting blood biochemicals parameters, and skeletal muscle glucose metabolism were analyzed. Results Obese animals (Ob) presented higher Index Lee and 2.5 fold epididymal and retroperitoneal adipose tissue than C. Insulin sensitivity test (Kitt) showed that fish oil supplementation was able to maintain insulin sensitivity of obese rats (ObFO) similar to C. There were no changes in glucose and HDL-cholesterol levels amongst groups. Yet, ObFO revealed lower levels of total cholesterol (TC; 30%) and triacylglycerol (TG; 33%) compared to Ob. Finally, since exposed to insulin, ObFO skeletal muscle revealed an increase of 10% in lactate production, 38% in glycogen synthesis and 39% in oxidation of glucose compared to Ob. Conclusions Low dose of fish oil supplementation (1 g/kg/day) was able to reduce TC and TG levels, in addition to improved systemic and muscle insulin sensitivity. These results lend credence to the benefits of n-3 fatty acids upon the deleterious effects of insulin resistance mechanisms. PMID:21526994

  7. Hypochlorous acid via peroxynitrite activates protein kinase Cθ and insulin resistance in adipocytes

    PubMed Central

    Zhou, Jun; Wang, Qilong; Ding, Ye; Zou, Ming-Hui

    2015-01-01

    We recently reported that genetic deletion of myeloperoxidase (MPO) alleviates obesity-related insulin resistance in mice in vivo. How MPO impairs insulin sensitivity in adipocytes is poorly characterized. As hypochlorous acid (HOCl) is a principal oxidant product generated by MPO, we evaluated the effects of HOCl on insulin signaling in adipocytes differentiated from 3T3-L1 cells. Exposure of 3T3-L1 adipocytes to exogenous HOCl (200 μmol/l) attenuated insulin-stimulated 2-deoxyglucose uptake, GLUT4 translocation, and insulin signals, including tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) and phosphorylation of Akt. Furthermore, treatment with HOCl induced phosphorylation of IRS1 at serine 307, inhibitor κB kinase (IKK), c-Jun NH2-terminal kinase (JNK), and phosphorylation of PKCθ (PKCθ). In addition, genetic and pharmacological inhibition of IKK and JNK abolished serine phosphorylation of IRS1 and impairment of insulin signaling by HOCl. Furthermore, knockdown of PKCθ using siRNA transfection suppressed phosphorylation of IKK and JNK and consequently attenuated the HOCl-impaired insulin signaling pathway. Moreover, activation of PKCθ by peroxynitrite was accompanied by increased phosphorylation of IKK, JNK, and IRS1-serine 307. In contrast, ONOO− inhibitors abolished HOCl-induced phosphorylation of PKCθ, IKK, JNK, and IRS1-serine 307, as well as insulin resistance. Finally, high-fat diet (HFD)-induced insulin resistance was associated with enhanced phosphorylation of PKCθ, IKK, JNK, and IRS1 at serine 307 in white adipose tissues from WT mice, all of which were not found in Mpo knockout mice fed HFDs. We conclude that HOCl impairs insulin signaling pathway by increasing ONOO− mediated phosphorylation of PKCθ, resulting in phosphorylation of IKK/JNK and consequent serine phosphorylation of IRS1 in adipocytes. PMID:25381390

  8. History of gestational diabetes, insulin resistance and coronary risk.

    PubMed

    Davis, C L; Gutt, M; Llabre, M M; Marks, J B; O'Sullivan, M J; Potter, J E; Landel, J L; Kumar, M; Schneiderman, N; Gellman, M; Skyler, J S

    1999-01-01

    The purpose of this study was to examine characteristics associated with the insulin metabolic syndrome, including insulin resistance, abnormal glucose tolerance, dyslipidemia, obesity, and elevated blood pressure, among women who have experienced gestational diabetes. 39 nondiabetic, young (20-42 years), postpartum (3-18 months) white women were recruited from obstetrical clinics. Twenty-one women had a history of gestational diabetes; 18 had uncomplicated pregnancies. Multivariate analyses revealed a significant difference between groups in insulin resistance (M, measured by euglycemic clamp) and insulin levels (from an oral glucose tolerance test), with insulin resistance showing a statistically stronger difference than insulin levels. Groups also differed significantly when compared on a set of variables associated with insulin metabolic syndrome: glucose tolerance, triglycerides, blood pressure, and body-mass index. Using insulin resistance as a covariate eliminated these group differences, suggesting that insulin resistance is the key factor underlying insulin metabolic syndrome. The higher risk of later developing type 2 diabetes and hypertension in women who have a history of gestational diabetes is explicable by their poorer profile on variables associated with insulin metabolic syndrome, and appears to be attributable to insulin resistance. Thus, insulin resistance appears to distinguish young women at risk for cardiovascular disease. PMID:10616862

  9. Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice

    SciTech Connect

    Verreth, Wim; Verhamme, Peter; Pelat, Michael; Ganame, Javier; Bielicki, John K.; Mertens, Ann; Quarck, Rozenn; Benhabiles, Nora; Marguerie, Gerard; Mackness, Bharti; Mackness, Mike; Ninio, Ewa; Herregods, Marie-Christine; Balligand, Jean-Luc; Holvoet, Paul

    2003-09-01

    Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and of key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.

  10. Interference with Akt signaling pathway contributes curcumin-induced adipocyte insulin resistance.

    PubMed

    Zhang, Deling; Zhang, Yemin; Ye, Mao; Ding, Youming; Tang, Zhao; Li, Mingxin; Zhou, Yu; Wang, Changhua

    2016-07-01

    Previous study has shown that curcumin directly or indirectly suppresses insulin signaling in 3T3-L1 adipocytes. However, the underlying mechanism remains unclear. Here we experimentally demonstrate that curcumin inhibited the ubiquitin-proteasome system (UPS) function, activated autophagy, and reduced protein levels of protein kinase B (Akt) in a dose- and time-dependent manner in 3T3-L1 adipocytes, accompanied with attenuation of insulin-stimulated Akt phosphorylation, plasma membrane translocation of glucose transporter type 4 (GLUT4), and glucose uptake. These in vitro inhibitory effects of curcumin on Akt protein expression and insulin action were reversed by pharmacological and genetic inhibition of autophagy but not by inhibition of the UPS and caspases. In addition, Akt reduction in adipose tissues of mice treated with curcumin could be recovered by administration of autophagy inhibitor bafilomycin A1 (BFA). This new finding provides a novel mechanism by which curcumin induces insulin resistance in adipocytes. PMID:27113027

  11. Transient receptor potential vanilloid type-1 channel regulates diet-induced obesity, insulin resistance, and leptin resistance.

    PubMed

    Lee, Eunjung; Jung, Dae Young; Kim, Jong Hun; Patel, Payal R; Hu, Xiaodi; Lee, Yongjin; Azuma, Yoshihiro; Wang, Hsun-Fan; Tsitsilianos, Nicholas; Shafiq, Umber; Kwon, Jung Yeon; Lee, Hyong Joo; Lee, Ki Won; Kim, Jason K

    2015-08-01

    Insulin resistance is a major characteristic of obesity and type 2 diabetes, but the underlying mechanism is unclear. Recent studies have shown a metabolic role of capsaicin that may be mediated via the transient receptor potential vanilloid type-1 (TRPV1) channel. In this study, TRPV1 knockout (KO) and wild-type (WT) mice (as controls) were fed a high-fat diet (HFD), and metabolic studies were performed to measure insulin and leptin action. The TRPV1 KO mice became more obese than the WT mice after HFD, partly attributed to altered energy balance and leptin resistance in the KO mice. The hyperinsulinemic-euglycemic clamp experiment showed that the TRPV1 KO mice were more insulin resistant after HFD because of the ∼40% reduction in glucose metabolism in the white and brown adipose tissue, compared with that in the WT mice. Leptin treatment failed to suppress food intake, and leptin-mediated hypothalamic signal transducer and activator of transcription (STAT)-3 activity was blunted in the TRPV1 KO mice. We also found that the TRPV1 KO mice were more obese and insulin resistant than the WT mice at 9 mo of age. Taken together, these results indicate that lacking TRPV1 exacerbates the obesity and insulin resistance associated with an HFD and aging, and our findings further suggest that TRPV1 has a major role in regulating glucose metabolism and hypothalamic leptin's effects in obesity. PMID:25888600

  12. Effects of consuming fructose- or glucose-sweetened beverages for 10 weeks on lipids, insulin sensitivity and adiposity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Animal studies have documented that, compared with glucose, dietary fructose promotes dyslipidemia and insulin resistance. Experimental evidence that fructose consumption in humans promotes dyslipidemia and insulin resistance compared with glucose consumption has been equivocal. We tested the hypoth...

  13. Early postnatal oestradiol exposure causes insulin resistance and signs of inflammation in circulation and skeletal muscle.

    PubMed

    Alexanderson, Camilla; Eriksson, Elias; Stener-Victorin, Elisabet; Lönn, Malin; Holmäng, Agneta

    2009-04-01

    Early postnatal events can predispose to metabolic and endocrine disease in adulthood. In this study, we evaluated the programming effects of a single early postnatal oestradiol injection on insulin sensitivity in adult female rats. We also assessed the expression of genes involved in inflammation and glucose metabolism in skeletal muscle and adipose tissue and analysed circulating inflammation markers as possible mediators of insulin resistance. Neonatal oestradiol exposure reduced insulin sensitivity and increased plasma levels of monocyte chemoattractant protein-1 (MCP-1) and soluble intercellular adhesion molecule-1. In skeletal muscle, oestradiol increased the expression of genes encoding complement component 3 (C3), Mcp-1, retinol binding protein-4 (Rbp4) and transforming growth factor beta1 (Tgfbeta1). C3 and MCP-1 are both related to insulin resistance, and C3, MCP-1 and TGFbeta1 are also involved in inflammation. Expression of genes encoding glucose transporter-4 (Glut 4), carnitine-palmitoyl transferase 1b (Cpt1b), peroxisome proliferator-activated receptor delta (Ppard) and uncoupling protein 3 (Ucp3), which are connected to glucose uptake, lipid oxidation, and energy uncoupling, was down regulated. Expression of several inflammatory genes in skeletal muscle correlated negatively with whole-body insulin sensitivity. In s.c. inguinal adipose tissue, expression of Tgfbeta1, Ppard and C3 was decreased, while expression of Rbp4 and Cpt1b was increased. Inguinal adipose tissue weight was increased but adipocyte size was unaltered, suggesting an increased number of adipocytes. We suggest that early neonatal oestrogen exposure may reduce insulin sensitivity by inducing chronic, low-grade systemic and skeletal muscle inflammation and disturbances of glucose and lipid metabolism in skeletal muscle in adulthood. PMID:19193715

  14. Three-dimensional differentiation of adipose-derived mesenchymal stem cells into insulin-producing cells.

    PubMed

    Khorsandi, Layasadat; Khodadadi, Ali; Nejad-Dehbashi, Fereshteh; Saremy, Sadegh

    2015-09-01

    The aim of this study is to evaluate the collagen/hyaluronic acid (Col/HA) scaffold effect on the differentiation of insulin-producing cells (IPCs) from adipose-derived mesenchymal stem cells (ASCs). In this experimental study, ASCs were cultured and seeded in a Col/HA scaffold (3D culture) and then treated with induction media. After induction, the presence of IPCs was evaluated using gene expression (PDX-1, GLUT-2 and insulin) analysis and immunocytochemistry, while functional maturity was determined by measuring insulin release in response to low- and high-glucose media. The induced IPCs were morphologically similar to pancreatic islet-like cells. Expression of the islet-associated genes PDX-1, GLUT-2 and insulin genes in 3D-cultured cells was markedly higher than the 2D-cultured cells exposure differentiation media. Compared to the 2D culture of ASCs-derived IPCs, the insulin release from 3D ASCs-derived IPCs showed a nearly 4-fold (p < 0.05) increase when exposed to a high glucose (25 mmol) medium. The percentage of insulin-positive cells in the 3D experimental group showed an approximately 4-fold increase compared to the 2D experimental culture cells. The results of this study demonstrated that the COL/HA scaffold can enhance the differentiation of IPCs from rat ASCs. PMID:25795142

  15. Artemisia extracts activate PPARγ, promote adipogenesis, and enhance insulin sensitivity in adipose tissue of obese mice

    PubMed Central

    Richard, Allison J.; Burris, Thomas P.; Sanchez-Infantes, David; Wang, Yongjun; Ribnicky, David M.; Stephens, Jacqueline M.

    2014-01-01

    Objective Studies have shown that the inability of adipose tissue to properly expand during the obese state or respond to insulin can lead to metabolic dysfunction. Artemisia is a diverse group of plants that has a history of medicinal use. This study examines the ability of ethanolic extracts of Artemisia scoparia (SCO) and Artemisia santolinifolia (SAN) to modulate adipocyte development in cultured adipocytes and white adipose tissue (WAT) function in vivo using a mouse model of diet-induced obesity. Research Design & Procedures Adipogenesis was assessed using Oil Red O staining and immunoblotting. A nuclear receptor specificity assay was used to examine the specificity of SCO- and SAN-induced PPARγ activation. C57BL/6J mice, fed a high-fat diet, were gavaged with saline, SCO, or SAN for 2 weeks. Whole-body insulin sensitivity was examined using insulin tolerance tests. WAT depots were assessed via immunoblotting for markers of insulin action and adipokine production. Results We established that SCO and SAN were highly specific activators of PPARγ and did not activate other nuclear receptors. After a one-week daily gavage, SCO- and SAN-treated mice had lower insulin-induced glucose disposal rates than control mice. At the end of the 2-week treatment period, SCO- and SAN-treated mice had enhanced insulin-responsive Akt serine-473 phosphorylation and significantly decreased MCP-1 levels in visceral WAT relative to control mice; these differences were depot specific. Moreover, plasma adiponectin levels were increased following SCO treatment. Conclusion Overall, these studies demonstrate that extracts from two Artemisia species can have metabolically favorable effects on adipocytes and WAT. PMID:24985103

  16. Transgenic overexpression of VEGF-C induces weight gain and insulin resistance in mice.

    PubMed

    Karaman, Sinem; Hollmén, Maija; Yoon, Sun-Young; Alkan, H Furkan; Alitalo, Kari; Wolfrum, Christian; Detmar, Michael

    2016-01-01

    Obesity comprises great risks for human health, contributing to the development of other diseases such as metabolic syndrome, type 2 diabetes and cardiovascular disease. Previously, obese patients were found to have elevated serum levels of VEGF-C, which correlated with worsening of lipid parameters. We recently identified that neutralization of VEGF-C and -D in the subcutaneous adipose tissue during the development of obesity improves metabolic parameters and insulin sensitivity in mice. To test the hypothesis that VEGF-C plays a role in the promotion of the metabolic disease, we used K14-VEGF-C mice that overexpress human VEGF-C under control of the keratin-14 promoter in the skin and monitored metabolic parameters over time. K14-VEGF-C mice had high levels of VEGF-C in the subcutaneous adipose tissue and gained more weight than wildtype littermates, became insulin resistant and had increased ectopic lipid accumulation at 20 weeks of age on regular mouse chow. The metabolic differences persisted under high-fat diet induced obesity. These results indicate that elevated VEGF-C levels contribute to metabolic deterioration and the development of insulin resistance, and that blockade of VEGF-C in obesity represents a suitable approach to alleviate the development of insulin resistance. PMID:27511834

  17. Transgenic overexpression of VEGF-C induces weight gain and insulin resistance in mice

    PubMed Central

    Karaman, Sinem; Hollmén, Maija; Yoon, Sun-Young; Alkan, H. Furkan; Alitalo, Kari; Wolfrum, Christian; Detmar, Michael

    2016-01-01

    Obesity comprises great risks for human health, contributing to the development of other diseases such as metabolic syndrome, type 2 diabetes and cardiovascular disease. Previously, obese patients were found to have elevated serum levels of VEGF-C, which correlated with worsening of lipid parameters. We recently identified that neutralization of VEGF-C and -D in the subcutaneous adipose tissue during the development of obesity improves metabolic parameters and insulin sensitivity in mice. To test the hypothesis that VEGF-C plays a role in the promotion of the metabolic disease, we used K14-VEGF-C mice that overexpress human VEGF-C under control of the keratin-14 promoter in the skin and monitored metabolic parameters over time. K14-VEGF-C mice had high levels of VEGF-C in the subcutaneous adipose tissue and gained more weight than wildtype littermates, became insulin resistant and had increased ectopic lipid accumulation at 20 weeks of age on regular mouse chow. The metabolic differences persisted under high-fat diet induced obesity. These results indicate that elevated VEGF-C levels contribute to metabolic deterioration and the development of insulin resistance, and that blockade of VEGF-C in obesity represents a suitable approach to alleviate the development of insulin resistance. PMID:27511834

  18. Genetics Home Reference: type A insulin resistance syndrome

    MedlinePlus

    ... Ovarian Cysts Health Topic: Blood Sugar Health Topic: Diabetes Genetic and Rare Diseases Information Center (1 link) Insulin- ... List from the University of Kansas Medical Center: Diabetes Genetic Testing Registry (1 link) Insulin-resistant diabetes mellitus ...

  19. Adrenocortical tumors and insulin resistance: What is the first step?

    PubMed

    Altieri, Barbara; Tirabassi, Giacomo; Casa, Silvia Della; Ronchi, Cristina L; Balercia, Giancarlo; Orio, Francesco; Pontecorvi, Alfredo; Colao, Annamaria; Muscogiuri, Giovanna

    2016-06-15

    The pathogenetic mechanisms underlying the onset of adrenocortical tumors (ACTs) are still largely unknown. Recently, more attention has been paid to the role of insulin and insulin-like growth factor (IGF) system on general tumor development and progression. Increased levels of insulin, IGF-1 and IGF-2 are associated with tumor cell growth and increased risk of cancer promotion and progression in patients with type 2 diabetes. Insulin resistance and compensatory hyperinsulinemia may play a role in adrenal tumor growth through the activation of insulin and IGF-1 receptors. Interestingly, apparently non-functioning ACTs are often associated with a high prevalence of insulin resistance and metabolic syndrome. However, it is unclear if ACT develops from a primary insulin resistance and compensatory hyperinsulinemia or if insulin resistance is only secondary to the slight cortisol hypersecretion by ACT. The aim of this review is to summarize the current evidence regarding the relationship between hyperinsulinemia and adrenocortical tumors. PMID:26637955

  20. Carnitine Palmitoyltransferase 1b Deficient Mice Develop Severe Insulin Resistance After Prolonged High Fat Diet Feeding

    PubMed Central

    Kim, Teayoun; Moore, John F; Sharer, Jon D; Yang, Kevin; Wood, Philip A; Yang, Qinglin

    2014-01-01

    Background Carnitine palmitoyltransferase 1 (CPT1) is the rate-limiting enzyme governing the entry of long-chain acyl-CoAs into mitochondria. Treatments with CPT1 inhibitors protect against insulin resistance in short-term preclinical animal studies. We recently reported that mice with muscle isoform CPT1b deficiency demonstrated improved insulin sensitivity when fed a High Fat-Diet (HFD) for up to 5 months. In this follow up study, we further investigated whether the insulin sensitizing effects of partial CPT1b deficiency could be maintained under a prolonged HFD feeding condition. Methods We investigated the effects of CPT1b deficiency on HFD-induced insulin resistance using heterozygous CPT1b deficient (Cpt1b+/−) mice compared with Wild Type (WT) mice fed a HFD for a prolonged period of time (7 months). We assessed insulin sensitivity using hyperinsulinemic-euglycemic clamps. We also examined body composition, skeletal muscle lipid profile, and changes in the insulin signaling pathways of skeletal muscle, liver, and adipose tissue. Results We found that Cpt1b+/− mice became severely insulin resistant after 7 months of HFD feeding. Cpt1b+/− mice exhibited a substantially reduced glucose infusion rate and skeletal muscle glucose uptake. While Cpt1b+/− mice maintained a slower weight gain with less fat mass than WT mice, accumulation of lipid intermediates became evident in the muscle of Cpt1b+/− but not WT mice after 7 months of HFD feeding. Insulin signaling was impaired in the Cpt1b+/− as compared to the WT muscles. Conclusion Partial CPT1b deficiency, mimicking CPT1b inhibition, may lead to impaired insulin signaling and insulin sensitivity under a prolonged HFD feeding condition. Therefore, further studies on the potential detrimental effects of prolonged therapy with CPT1 inhibition are necessary in the development of this potential therapeutic strategy. PMID:25580367

  1. Altered Skeletal Muscle Lipase Expression and Activity Contribute to Insulin Resistance in Humans

    PubMed Central

    Badin, Pierre-Marie; Louche, Katie; Mairal, Aline; Liebisch, Gerhard; Schmitz, Gerd; Rustan, Arild C.; Smith, Steven R.; Langin, Dominique; Moro, Cedric

    2011-01-01

    OBJECTIVE Insulin resistance is associated with elevated content of skeletal muscle lipids, including triacylglycerols (TAGs) and diacylglycerols (DAGs). DAGs are by-products of lipolysis consecutive to TAG hydrolysis by adipose triglyceride lipase (ATGL) and are subsequently hydrolyzed by hormone-sensitive lipase (HSL). We hypothesized that an imbalance of ATGL relative to HSL (expression or activity) may contribute to DAG accumulation and insulin resistance. RESEARCH DESIGN AND METHODS We first measured lipase expression in vastus lateralis biopsies of young lean (n = 9), young obese (n = 9), and obese-matched type 2 diabetic (n = 8) subjects. We next investigated in vitro in human primary myotubes the impact of altered lipase expression/activity on lipid content and insulin signaling. RESULTS Muscle ATGL protein was negatively associated with whole-body insulin sensitivity in our population (r = −0.55, P = 0.005), whereas muscle HSL protein was reduced in obese subjects. We next showed that adenovirus-mediated ATGL overexpression in human primary myotubes induced DAG and ceramide accumulation. ATGL overexpression reduced insulin-stimulated glycogen synthesis (−30%, P < 0.05) and disrupted insulin signaling at Ser1101 of the insulin receptor substrate-1 and downstream Akt activation at Ser473. These defects were fully rescued by nonselective protein kinase C inhibition or concomitant HSL overexpression to restore a proper lipolytic balance. We show that selective HSL inhibition induces DAG accumulation and insulin resistance. CONCLUSIONS Altogether, the data indicate that altered ATGL and HSL expression in skeletal muscle could promote DAG accumulation and disrupt insulin signaling and action. Targeting skeletal muscle lipases may constitute an interesting strategy to improve insulin sensitivity in obesity and type 2 diabetes. PMID:21498783

  2. Fish oil and argan oil intake differently modulate insulin resistance and glucose intolerance in a rat model of dietary-induced obesity.

    PubMed

    Samane, Samira; Christon, Raymond; Dombrowski, Luce; Turcotte, Stéphane; Charrouf, Zoubida; Lavigne, Charles; Levy, Emile; Bachelard, Hélène; Amarouch, Hamid; Marette, André; Haddad, Pierre Selim

    2009-07-01

    We investigated the potential metabolic benefits of fish oil (FO) or vegetable argan oil (AO) intake in a dietary model of obesity-linked insulin resistance. Rats were fed a standard chow diet (controls), a high-fat/high-sucrose (HFHS) diet, or an HFHS diet in which 6% of the fat was replaced by either FO or AO feeding, respectively. The HFHS diet increased adipose tissue weight and insulin resistance as revealed by increased fasting glucose and exaggerated glycemic and insulin responses to a glucose tolerance test (intraperitoneal glucose tolerance test). Fish oil feeding prevented fat accretion, reduced fasting glycemia, and normalized glycemic or insulin responses to intraperitoneal glucose tolerance test as compared with HFHS diet. Unlike FO consumption, AO intake failed to prevent obesity, yet restored fasting glycemia back to chow-fed control values. Insulin-induced phosphorylation of Akt and Erk in adipose tissues, skeletal muscles, and liver was greatly attenuated in HFHS rats as compared with chow-fed controls. High-fat/high-sucrose diet-induced insulin resistance was also confirmed in isolated hepatocytes. Fish oil intake prevented insulin resistance by improving or fully restoring insulin signaling responses in all tissues and isolated hepatocytes. Argan oil intake also improved insulin-dependent phosphorylations of Akt and Erk; and in adipose tissue, these responses were increased even beyond values observed in chow-fed controls. Taken together, these results strongly support the beneficial action of FO on diet-induced insulin resistance and glucose intolerance, an effect likely explained by the ability of FO to prevent HFHS-induced adiposity. Our data also show for the first time that AO can improve some of the metabolic and insulin signaling abnormalities associated with HFHS feeding. PMID:19394055

  3. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses.

    PubMed

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-09-01

    Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle microvascular recruitment. We demonstrated that a high-fat diet induces vascular adiponectin and insulin resistance but globular adiponectin administration can restore vascular insulin responses and improve insulin's metabolic action via an AMPK- and nitric oxide-dependent mechanism. This suggests that globular adiponectin might have a therapeutic potential for improving insulin resistance and preventing cardiovascular complications in patients with diabetes via modulation of microvascular insulin responses. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague-Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by

  4. An Integrated View of Insulin Resistance and Endothelial Dysfunction

    PubMed Central

    Muniyappa, Ranganath; Iantorno, Micaela; Quon, Michael J.

    2008-01-01

    Synopsis Endothelial dysfunction and insulin resistance are frequently co-morbid states. Vasodilator actions of insulin are mediated by phosphatidylinositol 3-kinase (PI3K)-dependent signaling pathways that stimulate production of nitric oxide from vascular endothelium. This helps to couple metabolic and hemodynamic homeostasis under healthy conditions. In pathological states, shared causal factors including glucotoxicity, lipotoxicity, and inflammation selectively impair PI3K-dependent insulin signaling pathways that contribute to reciprocal relationships between insulin resistance and endothelial dysfunction. We discuss implications of pathway-selective insulin resistance in vascular endothelium, interactions between endothelial dysfunction and insulin resistance, and therapeutic interventions that may simultaneously improve both metabolic and cardiovascular physiology in insulin-resistant conditions. PMID:18775359

  5. Impaired adipogenesis and insulin resistance in epicardial fat-mesenchymal cells from patients with cardiovascular disease.

    PubMed

    Fernández-Trasancos, Angel; Fandiño-Vaquero, Rubén; Agra, Rosa María; Fernández, Angel Luis; Viñuela, Juan E; González-Juanatey, José Ramón; Eiras, Sonia

    2014-11-01

    The thickness of epicardial adipose tissue (EAT), which is an inflammatory source for coronary artery disease (CAD), correlates with insulin resistance. One trigger factor is impaired adipogenesis. Here, our aim was to clarify the underlying mechanisms of insulin resistance on EAT-mesenchymal cells (MC). EAT and subcutaneous adipose tissue (SAT) were collected from 19 patients who were undergoing heart surgery. Their dedifferentiated adipocytes (DAs) and/or MCs were cultured. After the induction of adipogenesis or stimulation with insulin, the expression of adipokines was analyzed using real-time polymerase chain reaction (PCR). Colorimetric assays were performed to measure glucose levels and proliferation rate. Proteins modifications were detected via the proteomic approach and Western blot. Our results showed lower adipogenic ability in EAT-MCs than in SAT-MCs. Maximum adiponectin levels were reached within 28-35 days of exposure to adipogenic inducers. Moreover, the adipogenesis profile in EAT-MCs was dependent on the patients' clinical characteristics. The low adipogenic ability of EAT-MCs might be associated with an insulin-resistant state because chronic insulin treatment reduced the inflammatory cytokine expression levels, improved the glucose consumption, and increased the post-translational modifications (PTMs) of the glycolytic enzyme phosphoglycerate mutase 1 (PGAM1). We found lower adipogenic ability in EAT-MCs than in SAT-MCs. This lower ability level was dependent on gender and the presence of diabetes, obesity, and CAD. Low adipogenesis ability and insulin resistance in EAT-MCs might shed light on the association between EAT dysfunction and cardiovascular disease. PMID:24648294

  6. The possible role of mRNA expression changes of GH/IGF-1/insulin axis components in subcutaneous adipose tissue in metabolic disturbances of patients with acromegaly.

    PubMed

    Touskova, V; Klouckova, J; Durovcova, V; Lacinova, Z; Kavalkova, P; Trachta, P; Kosak, M; Mraz, M; Haluzikova, D; Hana, V; Marek, J; Krsek, M; Haluzik, M

    2016-07-18

    We explored the effect of chronically elevated circulating levels of growth hormone (GH)/insulin-like-growth-factor-1 (IGF-1) on mRNA expression of GH/IGF-1/insulin axis components and p85alpha subunit of phosphoinositide-3-kinase (p85alpha) in subcutaneous adipose tissue (SCAT) of patients with active acromegaly and compared these findings with healthy control subjects in order to find its possible relationships with insulin resistance and body composition changes. Acromegaly group had significantly decreased percentage of truncal and whole body fat and increased homeostasis model assessment-insulin resistance (HOMA-IR). In SCAT, patients with acromegaly had significantly increased IGF-1 and IGF-binding protein-3 (IGFBP-3) expression that both positively correlated with serum GH. P85alpha expression in SCAT did not differ from control group. IGF-1 and IGFBP-3 expression in SCAT were not independently associated with percentage of truncal and whole body fat or with HOMA-IR while IGFBP-3 expression in SCAT was an independent predictor of insulin receptor as well as of p85alpha expression in SCAT. Our data suggest that GH overproduction in acromegaly group increases IGF-1 and IGFBP-3 expression in SCAT while it does not affect SCAT p85alpha expression. Increased IGF-1 or IGFBP-3 in SCAT of acromegaly group do not appear to contribute to systemic differences in insulin sensitivity but may have local regulatory effects in SCAT of patients with acromegaly. PMID:27070751

  7. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy

    PubMed Central

    Jia, Guanghong; DeMarco, Vincent G.; Sowers, James R.

    2016-01-01

    Insulin resistance, type 2 diabetes mellitus and associated hyperinsulinaemia can promote the development of a specific form of cardiomyopathy that is independent of coronary artery disease and hypertension. Termed diabetic cardiomyopathy, this form of cardiomyopathy is a major cause of morbidity and mortality in developed nations, and the prevalence of this condition is rising in parallel with increases in the incidence of obesity and type 2 diabetes mellitus. Of note, female patients seem to be particularly susceptible to the development of this complication of metabolic disease. The diabetic cardiomyopathy observed in insulin-resistant or hyperinsulinaemic states is characterized by impaired myocardial insulin signalling, mitochondrial dysfunction, endoplasmic reticulum stress, impaired calcium homeostasis, abnormal coronary microcirculation, activation of the sympathetic nervous system, activation of the renin–angiotensin–aldosterone system and maladaptive immune responses. These pathophysiological changes result in oxidative stress, fibrosis, hypertrophy, cardiac diastolic dysfunction and eventually systolic heart failure. This Review highlights a surge in diabetic cardiomyopathy research, summarizes current understanding of the molecular mechanisms underpinning this condition and explores potential preventive and therapeutic strategies. PMID:26678809

  8. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy.

    PubMed

    Jia, Guanghong; DeMarco, Vincent G; Sowers, James R

    2016-03-01

    Insulin resistance, type 2 diabetes mellitus and associated hyperinsulinaemia can promote the development of a specific form of cardiomyopathy that is independent of coronary artery disease and hypertension. Termed diabetic cardiomyopathy, this form of cardiomyopathy is a major cause of morbidity and mortality in developed nations, and the prevalence of this condition is rising in parallel with increases in the incidence of obesity and type 2 diabetes mellitus. Of note, female patients seem to be particularly susceptible to the development of this complication of metabolic disease. The diabetic cardiomyopathy observed in insulin- resistant or hyperinsulinaemic states is characterized by impaired myocardial insulin signalling, mitochondrial dysfunction, endoplasmic reticulum stress, impaired calcium homeostasis, abnormal coronary microcirculation, activation of the sympathetic nervous system, activation of the renin-angiotensin-aldosterone system and maladaptive immune responses. These pathophysiological changes result in oxidative stress, fibrosis, hypertrophy, cardiac diastolic dysfunction and eventually systolic heart failure. This Review highlights a surge in diabetic cardiomyopathy research, summarizes current understanding of the molecular mechanisms underpinning this condition and explores potential preventive and therapeutic strategies. PMID:26678809

  9. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux.

    PubMed

    Samuel, Varman T; Shulman, Gerald I

    2016-01-01

    Insulin resistance arises when the nutrient storage pathways evolved to maximize efficient energy utilization are exposed to chronic energy surplus. Ectopic lipid accumulation in liver and skeletal muscle triggers pathways that impair insulin signaling, leading to reduced muscle glucose uptake and decreased hepatic glycogen synthesis. Muscle insulin resistance, due to ectopic lipid, precedes liver insulin resistance and diverts ingested glucose to the liver, resulting in increased hepatic de novo lipogenesis and hyperlipidemia. Subsequent macrophage infiltration into white adipose tissue (WAT) leads to increased lipolysis, which further increases hepatic triglyceride synthesis and hyperlipidemia due to increased fatty acid esterification. Macrophage-induced WAT lipolysis also stimulates hepatic gluconeogenesis, promoting fasting and postprandial hyperglycemia through increased fatty acid delivery to the liver, which results in increased hepatic acetyl-CoA content, a potent activator of pyruvate carboxylase, and increased glycerol conversion to glucose. These substrate-regulated processes are mostly independent of insulin signaling in the liver but are dependent on insulin signaling in WAT, which becomes defective with inflammation. Therapies that decrease ectopic lipid storage and diminish macrophage-induced WAT lipolysis will reverse the root causes of type 2 diabetes. PMID:26727229

  10. Maladaptive immune and inflammatory pathways lead to cardiovascular insulin resistance.

    PubMed

    Aroor, Annayya R; McKarns, Susan; Demarco, Vincent G; Jia, Guanghong; Sowers, James R

    2013-11-01

    Insulin resistance is a hallmark of obesity, the cardiorenal metabolic syndrome and type 2 diabetes mellitus (T2DM). The progression of insulin resistance increases the risk for cardiovascular disease (CVD). The significance of insulin resistance is underscored by the alarming rise in the prevalence of obesity and its associated comorbidities in the Unites States and worldwide over the last 40-50 years. The incidence of obesity is also on the rise in adolescents. Furthermore, premenopausal women have lower CVD risk compared to men, but this protection is lost in the setting of obesity and insulin resistance. Although systemic and cardiovascular insulin resistance is associated with impaired insulin metabolic signaling and cardiovascular dysfunction, the mechanisms underlying insulin resistance and cardiovascular dysfunction remain poorly understood. Recent studies show that insulin resistance in obesity and diabetes is linked to a metabolic inflammatory response, a state of systemic and tissue specific chronic low grade inflammation. Evidence is also emerging that there is polarization of macrophages and lymphocytes towards a pro-inflammatory phenotype that contributes to progression of insulin resistance in obesity, cardiorenal metabolic syndrome and diabetes. In this review, we provide new insights into factors, such as, the renin-angiotensin-aldosterone system, sympathetic activation and incretin modulators (e.g., DPP-4) and immune responses that mediate this inflammatory state in obesity and other conditions characterized by insulin resistance. PMID:23932846

  11. Insulin resistance and beta-cell function in different ethnic groups in Kenya: the role of abdominal fat distribution.

    PubMed

    Christensen, D L; Faurholt-Jepsen, D; Faerch, K; Mwaniki, D L; Boit, M K; Kilonzo, B; Tetens, I; Friis, H; Borch-Johnsen, K

    2014-02-01

    Little is known about the pathophysiology of diabetes in Africans. Thus, we assessed whether insulin resistance and beta-cell function differed by ethnicity in Kenya and whether differences were modified by abdominal fat distribution. A cross-sectional study in 1,087 rural Luo (n = 361), Kamba (n = 378), and Maasai (n = 348) was conducted. All participants had a standard 75-g oral glucose tolerance test (OGTT). Venous blood samples were collected at 0, 30, and 120 min. Serum insulin was analysed at 0 and 30 min. From the OGTT, we assessed the homoeostasis model assessment of insulin resistance by computer model, early phase insulin secretion, and disposition index (DI) dividing insulin secretion by insulin resistance. Abdominal subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) thickness were carried out by ultrasonography. Linear regression analyses were done to assess ethnic differences in insulin indices. The Maasai had 32 and 17% higher insulin resistance than the Luo and Kamba, respectively (p < 0.001). Early phase insulin secretion was 16% higher in the Maasai compared to the Luo (p < 0.001). DI was 12% (p = 0.002) and 10% (p = 0.015) lower in the Maasai compared to the Luo and Kamba, respectively. Adjustments of SAT (range 0.1-7.1 cm) and VAT (range 1.5-14.2 cm) largely explained these inter-group differences with the Maasai having the highest combined abdominal fat accumulation. The Maasai had the highest insulin resistance and secretion, but the lowest relative beta-cell function compared to the Luo and Kamba. These differences were primarily explained by abdominal fat distribution. PMID:23563691

  12. Insulin Signaling in Liver and Adipose Tissues in Periparturient Dairy Cows Supplemented with Dietary Nicotinic Acid.

    PubMed

    Kinoshita, Asako; Kenéz, Ákos; Locher, Lena; Meyer, Ulrich; Dänicke, Sven; Rehage, Jürgen; Huber, Korinna

    2016-01-01

    The glucose homeostasis in dairy cattle is very well controlled, in line with the metabolic adaptation during the periparturient period. Former studies showed that nicotinic acid (NA) lowered plasma non-esterified fatty acids (NEFA) concentrations and increased insulin sensitivity in dairy cows. Thus, the purpose of this study was to investigate whether the expression of proteins involved in hepatic and adipose insulin signaling and protein expression of hepatic glucose transporter 2 (GLUT2) were affected by dietary NA and dietary concentrate intake in periparturient dairy cows. Twenty pluriparous German Holstein cows were fed with the same diet from about 21 days before the expected calving date (d-21) to calving. After calving, cows were randomly assigned in 4 groups and fed with diets different in concentrate proportion ("HC" with 60:40% or "LC" with 30:70% concentrate-to-roughage ratio) and supplemented with NA (24 g/day) (NA) or without (CON) until d21. Biopsy samples were taken from the liver, subcutaneous (SCAT) and retroperitoneal (RPAT) adipose tissues at d-21 and d21. Protein expression of insulin signaling molecules (insulin receptor (INSR), phosphatidylinositol-3-kinase (PI3K), protein kinase Cζ (PKCζ)) and hepatic GLUT2 was measured by Western Blotting. The ratio of protein expression at d21/at d-21 was calculated and statistically evaluated for the effects of time and diet. Cows in HC had significantly higher dietary energy intake than cows in LC. In RPAT a decrease in PI3K and PKCζ expression was found in all groups, irrespectively of diet. In the liver, the GLUT2 expression was significantly lower in cows in NA compared with cows in CON. In conclusion, insulin signaling might be decreased in RPAT over time without any effect of diet. NA was able to modulate hepatic GLUT2 expression, but its physiological role is unclear. PMID:26766039

  13. Insulin Signaling in Liver and Adipose Tissues in Periparturient Dairy Cows Supplemented with Dietary Nicotinic Acid

    PubMed Central

    Kinoshita, Asako; Kenéz, Ákos; Locher, Lena; Meyer, Ulrich; Dänicke, Sven; Rehage, Jürgen; Huber, Korinna

    2016-01-01

    The glucose homeostasis in dairy cattle is very well controlled, in line with the metabolic adaptation during the periparturient period. Former studies showed that nicotinic acid (NA) lowered plasma non-esterified fatty acids (NEFA) concentrations and increased insulin sensitivity in dairy cows. Thus, the purpose of this study was to investigate whether the expression of proteins involved in hepatic and adipose insulin signaling and protein expression of hepatic glucose transporter 2 (GLUT2) were affected by dietary NA and dietary concentrate intake in periparturient dairy cows. Twenty pluriparous German Holstein cows were fed with the same diet from about 21 days before the expected calving date (d-21) to calving. After calving, cows were randomly assigned in 4 groups and fed with diets different in concentrate proportion (“HC” with 60:40% or “LC” with 30:70% concentrate-to-roughage ratio) and supplemented with NA (24 g/day) (NA) or without (CON) until d21. Biopsy samples were taken from the liver, subcutaneous (SCAT) and retroperitoneal (RPAT) adipose tissues at d-21 and d21. Protein expression of insulin signaling molecules (insulin receptor (INSR), phosphatidylinositol-3-kinase (PI3K), protein kinase Cζ (PKCζ)) and hepatic GLUT2 was measured by Western Blotting. The ratio of protein expression at d21/at d-21 was calculated and statistically evaluated for the effects of time and diet. Cows in HC had significantly higher dietary energy intake than cows in LC. In RPAT a decrease in PI3K and PKCζ expression was found in all groups, irrespectively of diet. In the liver, the GLUT2 expression was significantly lower in cows in NA compared with cows in CON. In conclusion, insulin signaling might be decreased in RPAT over time without any effect of diet. NA was able to modulate hepatic GLUT2 expression, but its physiological role is unclear. PMID:26766039

  14. Earlier Menarche Is Associated with Lower Insulin Sensitivity and Increased Adiposity in Young Adult Women

    PubMed Central

    Wilson, Dyanne A.; Derraik, José G. B.; Rowe, Deborah L.; Hofman, Paul L.; Cutfield, Wayne S.

    2015-01-01

    Objective We aimed to assess whether age at menarche was associated with insulin sensitivity in young adult women. Methods We studied 54 healthy young women aged 20–30 years. Participants were grouped according to age at menarche: Early (≤11.0 years; n=13), Average (>12.0 and ≤13.0 years; n=28), and Late (≥14.0 years, n=13). Primary outcome was insulin sensitivity measured using intravenous glucose tolerance tests and Bergman’s minimal model. Body composition was assessed using whole-body dual-energy X-ray absorptiometry. Results Earlier menarche was associated with lower insulin sensitivity (p=0.015). There was also a continuous increase in adiposity with younger age at menarche, which was associated with increased weight (p=0.001), BMI (p=0.002), total body fat (p=0.049), and truncal fat (p=0.020). Stratified analyses showed that insulin sensitivity in Early women (5.5 x10-4·min-1(mU/l)) was lower than in Average (8.0 x10-4·min-1(mU/l), p=0.021) and Late (8.6 x10-4·min-1(mU/l), p=0.033) groups. Early women (weight=66.1 kg; BMI=24.1 kg/m2) were considerably heavier and fatter than Average (59.0 kg, p=0.004; 21.4 kg/m2, p=0.002) and Late (57.0 kg, p=0.001; 20.8 kg/m2, p=0.0009) women. Conclusions Early menarche is associated with lower insulin sensitivity and increased adiposity in young adulthood, potentially increasing the risk of type 2 diabetes and the metabolic syndrome later in life. PMID:26061526

  15. Insulin Resistance in Chileans of European and Indigenous Descent: Evidence for an Ethnicity x Environment Interaction

    PubMed Central

    Celis-Morales, Carlos A.; Perez-Bravo, Francisco; Ibañes, Luis; Sanzana, Ruth; Hormazabal, Edison; Ulloa, Natalia; Calvo, Carlos; Bailey, Mark E. S.; Gill, Jason M. R.

    2011-01-01

    Background Effects of urbanisation on diabetes risk appear to be greater in indigenous populations worldwide than in populations of European origin, but the reasons are unclear. This cross-sectional study aimed to determine whether the effects of environment (Rural vs. Urban), adiposity, fitness and lifestyle variables on insulin resistance differed between individuals of indigenous Mapuche origin compared to those of European origin in Chile. Methodology/Principal Findings 123 Rural Mapuche, 124 Urban Mapuche, 91 Rural European and 134 Urban European Chilean adults had blood taken for determination of HOMA-estimated insulin resistance (HOMAIR) and underwent assessment of physical activity/sedentary behaviour (using accelerometry), cardiorespiratory fitness, dietary intake and body composition. General linear models were used to determine interactions with ethnicity for key variables. There was a significant “ethnicity x environment” interaction for HOMAIR (Mean±SD; Rural Mapuche: 1.65±2.03, Urban Mapuche: 4.90±3.05, Rural European: 0.82±0.61, Urban European: 1.55±1.34, p(interaction) = 0.0003), such that the effect of urbanisation on HOMAIR was greater in Mapuches than Europeans. In addition, there were significant interactions (all p<0.004) with ethnicity for effects of adiposity, sedentary time and physical activity on HOMAIR, with greater effects seen in Mapuches compared to Europeans, an observation that persisted after adjustment for potential confounders. Conclusions/Significance Urbanisation, adiposity, physical activity and sedentary behaviour influence insulin resistance to a greater extent in Chilean Mapuches than Chileans of European descent. These findings have implications for the design and implementation of lifestyle strategies to reduce metabolic risk in different ethnic groups, and for understanding of the mechanisms underpinning human insulin resistance. PMID:21931814

  16. Insulin resistance in severe acne vulgaris

    PubMed Central

    Cengiz, Fatma Pelin; Kemeriz, Funda

    2015-01-01

    Introduction Acne vulgaris is a pilosebaceous gland disease that usually affects people from puberty to young adulthood. It is seen especially on the face, neck, trunk and arms. Its severity differs from patient to patient and its pathogenesis is multifactorial. The main pathogenic factors of acne are high sebaceous gland secretion, follicular hyperproliferation, high androgen effects, propionibacterium acnes colonization and inflammation. Diet is always thought a probable reason for acne and many studies are done about acne and diet. Aim To determine the effect of insulin resistance in severe acne vulgaris. Material and methods Two hundred and forty-three acne vulgaris patients and 156 healthy controls were enrolled into the study. The blood levels of insulin and glucose were measured. Homeostasis Model Assessment (HOMA) Index was calculated. The values were compared with the control group. Results All of the patients were in the severe acne group according to their scores on the global acne scoring scale. While fasting blood glucose levels were not different between the groups (p > 0.05, 82.91 ±9.76 vs. 80.26 ±8.33), the fasting insulin levels were significantly higher in the patient group than in the control group (p < 0.001, 14.01 ±11.94 vs. 9.12 ±3.53). Additionally, there was a highly significant difference between the patient and control groups in terms of HOMA values (p < 0.001, 2.87 ±2.56 vs. 1.63 ±0.65). Conclusions These results suggest that insulin resistance may have a role in the pathogenesis of acne. PMID:26366152

  17. The adipose renin-angiotensin system modulates sysemic markers of insulin sensitivity activates the intrarenal renin-angiotensin system

    SciTech Connect

    Kim, Suyeon; Soltani-Bejnood, Morvarid; Quignard-Boulange, Annie; Massiera, Florence; Teboul, Michele; Ailhaud, Gerard; Kim, Jung; Moustaid-Moussa, Naima; Voy, Brynn H

    2006-07-01

    BACKGROUND: A growing body of data provides increasing evidence that the adipose tissue renin-angiotensin system (RAS) contributes to regulation of fat mass. Beyond its paracrine actions within adipose tissue, adipocyte-derived angiotensin II (Ang II) may also impact systemic functions such as blood pressure and metabolism. METHODS AND RESULTS: We used a genetic approach to manipulate adipose RAS activity in mice and then study the consequences on metabolic parameters and on feedback regulation of the RAS. The models included deletion of the angiotensinogen (Agt) gene (Agt-KO), its expression solely in adipose tissue under the control of an adipocyte-specific promoter (aP2-Agt/ Agt-KO), and overexpression in adipose tissue of wild type mice (aP2-Agt). Total body weight, epididymal fat pad weight, and circulating levels of leptin, insulin and resistin were significantly decreased in Agt-KO mice, while plasma adiponectin levels were increased. Overexpression of Agt in adipose tissue resulted in increased adiposity and plasma leptin and insulin levels compared to wild type (WT) controls. Angiotensinogen and type I Ang II receptor protein levels were also markedly elevated in kidney of aP2-Agt mice, suggesting that hypertension in these animals may be in part due to stimulation of the intrarenal RAS. CONCLUSIONS: Taken together, the results from this study demonstrate that alterations in adipose RAS activity significantly alter both local and systemic physiology in a way that may contribute to the detrimental health effects of obesity.

  18. Skeletal muscle salt inducible kinase 1 promotes insulin resistance in obesity

    PubMed Central

    Nixon, Mark; Stewart-Fitzgibbon, Randi; Fu, Jingqi; Akhmedov, Dmitry; Rajendran, Kavitha; Mendoza-Rodriguez, Maria G.; Rivera-Molina, Yisel A.; Gibson, Micah; Berglund, Eric D.; Justice, Nicholas J.; Berdeaux, Rebecca

    2015-01-01

    Objective Insulin resistance causes type 2 diabetes mellitus and hyperglycemia due to excessive hepatic glucose production and inadequate peripheral glucose uptake. Our objectives were to test the hypothesis that the proposed CREB/CRTC2 inhibitor salt inducible kinase 1 (SIK1) contributes to whole body glucose homeostasis in vivo by regulating hepatic transcription of gluconeogenic genes and also to identify novel SIK1 actions on glucose metabolism. Methods We created conditional (floxed) SIK1-knockout mice and studied glucose metabolism in animals with global, liver, adipose or skeletal muscle Sik1 deletion. We examined cAMP-dependent regulation of SIK1 and the consequences of SIK1 depletion on primary mouse hepatocytes. We probed metabolic phenotypes in tissue-specific SIK1 knockout mice fed high fat diet through hyperinsulinemic-euglycemic clamps and biochemical analysis of insulin signaling. Results SIK1 knockout mice are viable and largely normoglycemic on chow diet. On high fat diet, global SIK1 knockout animals are strikingly protected from glucose intolerance, with both increased plasma insulin and enhanced peripheral insulin sensitivity. Surprisingly, liver SIK1 is not required for regulation of CRTC2 and gluconeogenesis, despite contributions of SIK1 to hepatocyte CRTC2 and gluconeogenesis regulation ex vivo. Sik1 mRNA accumulates in skeletal muscle of obese high fat diet-fed mice, and knockout of SIK1 in skeletal muscle, but not liver or adipose tissue, improves insulin sensitivity and muscle glucose uptake on high fat diet. Conclusions SIK1 is dispensable for glycemic control on chow diet. SIK1 promotes insulin resistance on high fat diet by a cell-autonomous mechanism in skeletal muscle. Our study establishes SIK1 as a promising therapeutic target to improve skeletal muscle insulin sensitivity in obese individuals without deleterious effects on hepatic glucose production. PMID:26844205

  19. Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat.

    PubMed

    Khan, Sabbir; Kumar, Sandeep; Jena, Gopabandhu

    2016-06-01

    Recent evidences highlighted the role of histone deacetylases (HDACs) in insulin-resistance, gluconeogenesis and islet function. HDACs can modulate the expression of various genes, which directly or indirectly affect glucose metabolism. This study was aimed to evaluate the role of valproic acid (VPA) on fat deposition, insulin-resistance and gluconeogenesis in type-2 diabetic rat. Diabetes was developed in Sprague-Dawley rats by the combination of high-fat diet and low dose streptozotocin. VPA at the doses of 150 and 300 mg/kg/day and metformin (positive control) 150 mg/kg twice daily for 10 weeks were administered by oral gavage. Insulin-resistance, dyslipidemia and glycemia were evaluated by biochemical estimations, while fat accumulation and structural alteration were assessed by histopathology. Protein expression and insulin signaling were evaluated by western blot and immunohistochemistry. VPA treatment significantly reduced the plasma glucose, HbA1c, insulin-resistance, fat deposition in brown adipose tissue, white adipose tissue and liver, which are comparable to metformin treatment. Further, VPA inhibited the gluconeogenesis and glucagon expression as well as restored the histopathological alterations in pancreas and liver. Our findings provide new insights on the anti-diabetic role of VPA in type-2 diabetes mellitus by the modulation of insulin signaling and forkhead box protein O1 (FOXO1)-mediated gluconeogenesis. Since VPA is a well established clinical drug, the detailed molecular mechanisms of the present findings can be further investigated for possible clinical use. PMID:26944797

  20. Visceral adipose tissue is not increased in Pima Indians compared with equally obese Caucasians and is not related to insulin action or secretion.

    PubMed

    Gautier, J F; Milner, M R; Elam, E; Chen, K; Ravussin, E; Pratley, R E

    1999-01-01

    Pima Indians are insulin resistant and hyperinsulinaemic compared with Caucasians. We investigated whether abdominal fat distribution was different between Pimas and Caucasians and whether differences in the amount of visceral fat explained metabolic differences between the groups. Total body fat (absorptiometry) and abdominal fat distribution at L4-L5 (magnetic resonance imaging) were compared in 20 Pima Indians (10 men/10 women) and 20 age-, sex- and BMI-matched Caucasians. Insulin action was measured as glucose disposal during a two-step hyperinsulinaemic-euglycaemic glucose clamp and insulin secretion was assessed in response to oral and intravenous glucose tolerance tests. By design, percent body fat was similar in Pimas and Caucasians. Abdominal visceral and subcutaneous adipose tissue areas were also similar in the two groups (151+/-16 vs 139+/-15 cm2 and 489+/-61 vs 441+/-7 cm2 respectively). Plasma insulin concentrations were higher in Pimas than Caucasians in the fasting state (27+/-6 vs 11+/-2 mU/ml; p < 0.01) and after a 75-g oral glucose load (area under the curve 19975+/-2626 vs 9293+/-1847 mU x l(-1) x 180 min(-1); p < 0.005). Glucose disposal was lower in Pimas than Caucasians during both steps of the clamp and negatively correlated (after adjustment for percent body fat and sex) with visceral adipose tissue in Caucasians (partial r = -0.51, p = 0.03), but not in Pima Indians (r = -0.03, p = 0.92). Insulin secretion was not related to visceral fat independently of percent body fat in either group. We conclude that a relative increase in visceral fat does not explain insulin resistance and hyperinsulinaemia in Pima Indians. PMID:10027574

  1. Pioglitazone Increases Whole Body Insulin Sensitivity in Obese, Insulin-Resistant Rhesus Monkeys

    PubMed Central

    Tozzo, Effie; Bhat, Gowri; Cheon, Kyeongmi; Camacho, Raul C.

    2015-01-01

    Hyperinsulinemic-euglycemic clamps are considered the "gold standard" for assessing whole body insulin sensitivity. When used in combination with tracer dilution techniques and physiological insulin concentrations, insulin sensitization can be dissected and attributed to hepatic and peripheral (primarily muscle) effects. Non-human primates (NHPs), such as rhesus monkeys, are the closest pre-clinical species to humans, and thus serve as an ideal model for testing of compound efficacy to support translation to human efficacy. We determined insulin infusion rates that resulted in high physiological insulin concentrations that elicited maximal pharmacodynamic responses during hyperinsulinemic-euglycemic clamps. These rates were then used with [U-13C]-D-glucose, to assess and document the degrees of hepatic and peripheral insulin resistance between healthy and insulin-resistant, dysmetabolic NHPs. Next, dysmetabolic NHPs were treated for 28 days with pioglitazone (3 mg/kg) and again had their insulin sensitivity assessed, illustrating a significant improvement in hepatic and peripheral insulin sensitivity. This coincided with a significant increase in insulin clearance, and normalization of circulating adiponectin. In conclusion, we have determined a physiological clamp paradigm (similar to humans) for assessing glucose turnover in NHPs. We have also demonstrated that insulin-resistant, dysmetabolic NHPs respond to the established insulin sensitizer, pioglitazone, thus confirming their use as an ideal pre-clinical translational model to assess insulin sensitizing compounds. PMID:25954816

  2. Role of sialic acid in insulin action and the insulin resistance of diabetes mellitus

    SciTech Connect

    Salhanick, A.I.; Amatruda, J.M. )

    1988-08-01

    Adipocytes treated with neuraminidase show markedly reduced responsiveness to insulin without any alteration in insulin binding. In addition, several studies have separately demonstrated both insulin resistance and decreases in membrane sialic acid content and associated biosynthetic enzymes in diabetes mellitus. In the present study, the authors investigated the role that sialic acid residues may play in insulin action and in the hepatic insulin resistance associated with nonketotic diabetes. Primary cultures of hepatocytes from normal rats treated with neuraminidase demonstrated a dose-dependent decrease in insulin-stimulated lipogenesis. At a concentration of neuraminidase that decreases insulin action by 50%, 23% of total cellular sialic acid content was released. Neuraminidase-releasable sialic acid was significantly decreased in hepatocytes from diabetic rats and this was associated with significant insulin resistance. Treatment of hepatocytes from diabetic rats with cytidine 5{prime}-monophospho-N-acetylneuraminic acid (CMP-NANA) enhanced insulin responsiveness 39%. The enhanced insulin responsiveness induced by CMP-NANA was blocked by cytidine 5{prime}-monophosphate (CMP) suggesting that the CMP-NANA effect was catalyzed by a cell surface sialyl-transferase. CMP reduced neuraminidase-releasable ({sup 14}C)sialic acid incorporation into hepatocytes by 43%. The data demonstrate a role for cell surface sialic acid residues in hepatic insulin action and support a role for decreased cell surface sialic acid residues in the insulin resistance of diabetes mellitus.

  3. A type IV P-type ATPase affects insulin-mediated glucose uptake in adipose tissue and skeletal muscle in mice.

    PubMed

    Dhar, Madhu S; Yuan, Joshua S; Elliott, Sarah B; Sommardahl, Carla

    2006-12-01

    Mice carrying two pink-eyed dilution (p) locus heterozygous deletions represent a novel polygenic mouse model of type 2 diabetes associated with obesity. Atp10c, a putative aminophospholipid transporter on mouse chromosome 7, is a candidate for the phenotype. The phenotype is diet-induced. As a next logical step in the validation and characterization of the model, experiments to analyze metabolic abnormalities associated with these mice were carried out. Results demonstrate that mutants (inheriting the p deletion maternally) heterozygous for Atp10c are hyperinsulinemic, insulin-resistant and have an altered insulin-stimulated response in peripheral tissues. Adipose tissue and the skeletal muscle are the targets, and GLUT4-mediated glucose uptake is the specific metabolic pathway associated with Atp10c deletion. Insulin resistance primarily affects the adipose tissue and the skeletal muscle, and the effect in the liver is secondary. Gene expression profiling using microarray and real-time PCR show significant changes in the expression of four genes--Vamp2, Dok1, Glut4 and Mapk14--involved in insulin signaling. The expression of Atp10c is also significantly altered in the adipose tissue and the soleus muscle. The most striking observation is the loss of Atp10c expression in the mutants, specifically in the soleus muscle, after eating the high-fat diet for 12 weeks. In conclusion, experiments suggest that the target genes and/or their cognate factors in conjunction with Atp10c presumably affect the normal translocation and sequestration of GLUT4 in both the target tissues. PMID:16517145

  4. Molecular Mechanisms of Chromium in Alleviating Insulin Resistance

    PubMed Central

    Hua, Yinan; Clark, Suzanne; Ren, Jun; Sreejayan, Nair

    2011-01-01

    Type 2 diabetes is often associated with obesity, dyslipidemia, and cardiovascular anomalies and is a major health problem approaching global epidemic proportions. Insulin resistance, a prediabetic condition, precedes the onset of frank type 2 diabetes and offers potential avenues for early intervention to treat the disease. Although lifestyle modifications and exercise can reduce the incidence of diabetes, compliance has proved to be difficult, warranting pharmacological interventions. However, most of the currently available drugs that improve insulin sensitivity have adverse effects. Therefore, attractive strategies to alleviate insulin resistance include dietary supplements. One such supplement is chromium, which has been shown reduce insulin resistance in some, but not all, studies. Furthermore, the molecular mechanisms of chromium in alleviating insulin resistance remain elusive. This review examines emerging reports on the effect of chromium, as well as molecular and cellular mechanisms by which chromium may provide beneficial effects in alleviating insulin resistance. PMID:22423897

  5. Obesity and Insulin Resistance: An Abridged Molecular Correlation

    PubMed Central

    Mukherjee, Biswajit; Hossain, Chowdhury M; Mondal, Laboni; Paul, Paramita; Ghosh, Miltu K

    2013-01-01

    A relationship between obesity and type 2 diabetes is now generally well accepted. This relationship represents several major health hazards including morbid obesity and cardiovascular complications worldwide. Diabetes mellitus is a complex metabolic disorder characterized by impaired insulin release and insulin resistance. Lipids play an important physiological role in skeletal muscle, heart, liver and pancreas. Deregulation of fatty acid metabolism is the main culprit for developing insulin resistance and type 2 diabetes. A predominant predisposing factor to developing obesity, insulin resistance and type 2 diabetes is the permanent elevation of free fatty acids in plasma followed by impaired utilization of lipids by muscle. Diabetes-induced inflammation and oxidative stress have also vital role for development of insulin resistance in diabetic patients. The present review is intended to describe the correlation between lipids, obesity and insulin resistance based on current literature, in order to elucidate involved molecular mechanisms in depth. PMID:25278764

  6. Effects of sleeve gastrectomy on insulin resistance

    PubMed Central

    CĂTOI, ADRIANA FLORINELA; PÂRVU, ALINA; MIRONIUC, AUREL; GALEA, ROMEO FLORIN; MUREŞAN, ADRIANA; BIDIAN, CRISTINA; POP, IOANA

    2016-01-01

    Background and aim Obesity is a major risk factor for the onset of insulin resistance (IR), hyperinsulinemia and type 2 diabetes mellitus (T2DM) Evidence data has proven that beyond important weight loss bariatric surgery especially Roux-en-Y gastric bypass (RYGB) and bilio-pancreatic diversion (BPD) leads to significant early reduction of insulinemia and of IR calculated through the homeostatic model assessment (HOMA-IR), independently of fat mass decrease. Sleeve gastrectomy (SG) is now used as a sole weight loss operation with good results. Therefore, the aim of the present study was to investigate the early changes of fasting blood glucose, insulin and HOMA-IR in a group of morbidly obese (MO) patients i.e. at 7, 30 and 90 days after SG. Methods The study included 20 MO patients (7 male and 13 female) submitted to SG. Anthropometrical (weight, body mass index –BMI, percent excess BMI loss -%EBMIL) and biochemical (plasma glucose, insulin and calculated HOMA-IR ) evaluation were performed before and at 7, 30 and 90 days after SG. In addition, a second group of 10 normal weight healthy subjects with a BMI ranging form 19 kg/m2 to 23.14 kg/m2, matched for age and gender was investigated. Results Plasma glucose (p=0.018), insulin (p=0.004) and HOMA-IR (p=0.006) values were statistically different between the studied groups. After surgery, at every follow-up point, there were statistically different weight and BMI mean values relative to the operation day (p<0.003). BMI, decreased at 7 days (estimated reduction=2.79; 95% CI:[2.12;3.45]), at 30 days (estimated reduction=5.65; 95% CI:[3.57;7.73]) and at 90 days (estimated reduction=10.88; 95% CI:[7.35;14.41]) respectively after SG. We noted a tendency toward statistical significant change of mean insulin values at 7 days after surgery (corrected p=0.075), no statistical change at 30 days (corrected p=0.327) and a significant change at 90 days (corrected p=0.027) after SG as compared to baseline. There was a

  7. Divergent role of sphingosine 1-phosphate on insulin resistance.

    PubMed

    Fayyaz, Susann; Japtok, Lukasz; Kleuser, Burkhard

    2014-01-01

    Insulin resistance is a complex metabolic disorder in which insulin-sensitive tissues fail to respond to the physiological action of insulin. There is a strong correlation of insulin resistance and the development of type 2 diabetes both reaching epidemic proportions. Dysfunctional lipid metabolism is a hallmark of insulin resistance and a risk factor for several cardiovascular and metabolic disorders. Numerous studies in humans and rodents have shown that insulin resistance is associated with elevations of non-esterified fatty acids (NEFA) in the plasma. Moreover, bioactive lipid intermediates such as diacylglycerol (DAG) and ceramides appear to accumulate in response to NEFA, which may interact with insulin signaling. However, recent work has also indicated that sphingosine 1-phosphate (S1P), a breakdown product of ceramide, modulate insulin signaling in different cell types. In this review, we summarize the current state of knowledge about S1P and insulin signaling in insulin sensitive cells. A specific focus is put on the action of S1P on hepatocytes, pancreatic β-cells and skeletal muscle cells. In particular, modulation of S1P-signaling can be considered as a potential therapeutic target for the treatment of insulin resistance and type 2 diabetes. PMID:24977487

  8. Acute and chronic regulation of leptin synthesis, storage, and secretion by insulin and dexamethasone in human adipose tissue.

    PubMed

    Lee, Mi-Jeong; Wang, Yanxin; Ricci, Matthew R; Sullivan, Sean; Russell, Colleen D; Fried, Susan K

    2007-03-01

    Serum leptin levels are upregulated in proportion to body fat and also increase over the short term in response to meals or insulin. To understand the mechanisms involved, we assessed leptin synthesis and secretion in samples of adipose tissue from subjects with a wide range of BMI. Tissue leptin content and relative rates of leptin biosynthesis, as determined by metabolic labeling, were highly correlated with each other and with BMI and fat cell size. To understand mechanisms regulating leptin synthesis in obesity, we used biosynthetic labeling to directly assess the effects of insulin and glucocorticoids (dexamethasone) on leptin synthesis and secretion in human adipose tissue. Chronic treatment (1-2 days in organ culture) with insulin increased relative rates of leptin biosynthesis without affecting leptin mRNA levels. In contrast, dexamethasone increased leptin mRNA and biosynthesis in parallel. Acute treatment with insulin or dexamethasone (added during 1-h preincubation and 45-min pulse labeling) did not affect relative rates of leptin biosynthesis, but pulse-chase studies showed that addition of insulin nearly doubled the release of [35S]leptin after a 1-h chase. We conclude that the higher leptin stores in adipose tissue of obese humans are maintained by chronic effects of insulin and glucocorticoids acting at pre- and posttranslational levels and that the ability of insulin to increase the release of preformed leptin may contribute to short-term variations in circulating leptin levels. PMID:17122089

  9. Predictors of insulin resistance in pediatric burn injury survivors 24 to 36 months post-burn

    PubMed Central

    Chondronikola, Maria; Meyer, Walter J.; Sidossis, Labros S.; Ojeda, Sylvia; Huddleston, Joanna; Stevens, Pamela; Børsheim, Elisabet; Suman, Oscar E.; Finnerty, Celeste C.; Herndon, David N.

    2014-01-01

    Background Burn injury is a dramatic event with acute and chronic consequences including insulin resistance. However, factors associated with insulin resistance have not been previously investigated. Purpose To identify factors associated with long-term insulin resistance in pediatric burn injury survivors. Methods The study sample consisted of 61 pediatric burn injury survivors 24 to 36 months after the burn injury, who underwent an oral glucose tolerance test. To assess insulin resistance, we calculated the area under the curve for glucose and insulin. The diagnostic criteria of the American Diabetes Association were used to define individuals with impaired glucose metabolism. Additional data collected include body composition, anthropometric measurements, burn characteristics and demographic information. The data were analyzed using multivariate linear regression analysis. Results Approximately 12% of the patients met the criteria for impaired glucose metabolism. After adjusting for possible confounders, burn size, age and percent body fat were associated with the area under the curve for glucose (p<0.05 for all). Time post-burn and lean mass were inversely associated with the area under the curve for glucose (p<0.05 for both). Similarly, older age predicted higher insulin area under the curve. Conclusion A significant proportion of pediatric injury survivors suffer from glucose abnormalities 24–36 months post-burn. Burn size, time post-burn, age, lean mass and adiposity are significant predictors of insulin resistance in pediatric burn injury survivors. Clinical evaluation and screening for abnormal glucose metabolism should be emphasized in patients with large burns, older age and survivors with high body fat. PMID:24918945

  10. ATF7 ablation prevents diet-induced obesity and insulin resistance.

    PubMed

    Liu, Yang; Maekawa, Toshio; Yoshida, Keisuke; Furuse, Tamio; Kaneda, Hideki; Wakana, Shigeharu; Ishii, Shunsuke

    2016-09-16

    The activating transcription factor (ATF)2 family of transcription factors regulates a variety of metabolic processes, including adipogenesis and adaptive thermogenesis. ATF7 is a member of the ATF2 family, and mediates epigenetic changes induced by environmental stresses, such as social isolation and pathogen infection. However, the metabolic role of ATF7 remains unknown. The aim of the present study is to examine the role of ATF7 in metabolism using ATF7-dificeint mice. Atf7(-/-) mice exhibited lower body weight and resisted diet-induced obesity. Serum triglycerides, resistin, and adipose tissue mass were all significantly lower in ATF7-deficient mice. Fasting glucose levels and glucose tolerance were unaltered, but systemic insulin sensitivity was increased, by ablation of ATF7. Indirect calorimetry revealed that oxygen consumption by Atf7(-/-) mice was comparable to that of wild-type littermates on a standard chow diet, but increased energy expenditure was observed in Atf7(-/-) mice on a high-fat diet. Hence, ATF7 ablation may impair the development and function of adipose tissue and result in elevated energy expenditure in response to high-fat-feeding obesity and insulin resistance, indicating that ATF7 is a potential therapeutic target for diet-induced obesity and insulin resistance. PMID:27498002

  11. The effect of glucose concentration on insulin-induced 3T3-L1 adipose cell differentiation.

    PubMed

    Gagnon, A; Sorisky, A

    1998-03-01

    We examined the effect of glucose concentration on insulin-induced 3T3-L1 adipose cell differentiation. Oil Red O staining of neutral lipid, cellular triglyceride mass, and glycerol phosphate dehydrogenase (GPDH) activity, were greater in 3T3-L1 cells cultured at 5 mM vs. 25 mM glucose. GPDH activity was 2- to 4-fold higher at 5 mM vs. 25 mM glucose over a range of insulin concentrations (0.1 to 100 nM). Insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) was 1.7-fold greater, and insulin-stimulated phosphoinositide 3-kinase association with IRS-1 was 2.3-fold higher, at 5 mM vs. 25 mM glucose. These effects of glucose were not caused by alterations in IRS-1 mass or cell-surface insulin binding. In preadipose cells at 5 mM glucose, expression of the leukocyte antigen-related (LAR) protein tyrosine phosphatase (negative regulator of insulin signaling) was 63% of the level at 25 mM glucose. Our data demonstrate that glucose concentration affects insulin-induced 3T3-L1 adipose cell differentiation as well as differentiation-directed insulin signaling pathways. Alterations in LAR expression potentially may be involved in modulating these responses. PMID:9545023

  12. Inhibin betaB expression in murine adipose tissue and its regulation by leptin, insulin and dexamethasone.

    PubMed

    Hoggard, N; Cruickshank, M; Moar, K M; Barrett, P; Bashir, S; Miller, J D B

    2009-10-01

    Inhibin betaB (INHBB; coding for the activin betaB subunit) has previously been identified in both human and rodent adipose tissue and using Taqman real-time PCR with specific primers we confirm the expression of INHBB mRNA in rodent adipose tissue. Expression of INHBB in murine epididymal adipose tissue was higher than in any of the other tissues studied and appears to be regulated by changes in energy balance and leptin. It was increased fourfold in the epididymal fat depot of ob/ob mice compared with the same fat depot in lean mice. The i.p. administration of leptin in obese ob/ob mice decreases the expression of INHBB. In human adipose tissue, INHBB is reduced by weight loss. In keeping with this, we demonstrate that INHBB expression in murine adipose tissue is decreased in fasting and increased upon refeeding. We show that INHBB is expressed in both the mature adipocyte and the stromal vascular fraction of adipose tissue. INHBB increases with the differentiation of pre-adipocytes into mature adipocytes in the 3T3-L1 cell line. In differentiated 3T3-L1 adipocytes, where receptors to activin have been previously reported, insulin increases the expression of INHBB, while dexamethasone decreases the expression of INHBB when compared with untreated control cells. Taken together, these results suggest that the regulation of INHBB expression in adipose tissue may play a physiological role in energy balance or the insulin insensitivity associated with obesity. PMID:19491194

  13. Metabolic syndrome and insulin resistance in obese adolescents

    PubMed Central

    Gobato, Amanda Oliva; Vasques, Ana Carolina J.; Zambon, Mariana Porto; Barros, Antonio de Azevedo; Hessel, Gabriel

    2014-01-01

    Objective: To verify the prevalence of metabolic syndrome and insulin resistance in obese adolescents and its relationship with different body composition indicators. Methods: A cross-sectional study comprising 79 adolescents aged ten to 18 years old. The assessed body composition indicators were: body mass index (BMI), body fat percentage, abdominal circumference, and subcutaneous fat. The metabolic syndrome was diagnosed according to the criteria proposed by Cook et al. The insulin resistance was determined by the Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) index for values above 3.16. The analysis of ROC curves was used to assess the BMI and the abdominal circumference, aiming to identify the subjects with metabolic syndrome and insulin resistance. The cutoff point corresponded to the percentage above the reference value used to diagnose obesity. Results: The metabolic syndrome was diagnosed in 45.5% of the patients and insulin resistance, in 29.1%. Insulin resistance showed association with HDL-cholesterol (p=0.032) and with metabolic syndrome (p=0.006). All body composition indicators were correlated with insulin resistance (p<0.01). In relation to the cutoff point evaluation, the values of 23.5 and 36.3% above the BMI reference point allowed the identification of insulin resistance and metabolic syndrome. The best cutoff point for abdominal circumference to identify insulin resistance was 40%. Conclusions: All body composition indicators, HDL-cholesterol and metabolic syndrome showed correlation with insulin resistance. The BMI was the most effective anthropometric indicator to identify insulin resistance. PMID:24676191

  14. Gut microbe-derived extracellular vesicles induce insulin resistance, thereby impairing glucose metabolism in skeletal muscle

    PubMed Central

    Choi, Youngwoo; Kwon, Yonghoon; Kim, Dae-Kyum; Jeon, Jinseong; Jang, Su Chul; Wang, Taejun; Ban, Minjee; Kim, Min-Hye; Jeon, Seong Gyu; Kim, Min-Sun; Choi, Cheol Soo; Jee, Young-Koo; Gho, Yong Song; Ryu, Sung Ho; Kim, Yoon-Keun

    2015-01-01

    Gut microbes might influence host metabolic homeostasis and contribute to the pathogenesis of type 2 diabetes (T2D), which is characterized by insulin resistance. Bacteria-derived extracellular vesicles (EVs) have been suggested to be important in the pathogenesis of diseases once believed to be non-infectious. Here, we hypothesize that gut microbe-derived EVs are important in the pathogenesis of T2D. In vivo administration of stool EVs from high fat diet (HFD)-fed mice induced insulin resistance and glucose intolerance compared to regular diet (RD)-fed mice. Metagenomic profiling of stool EVs by 16S ribosomal DNA sequencing revealed an increased amount of EVs derived from Pseudomonas panacis (phylum Proteobacteria) in HFD mice compared to RD mice. Interestingly, P. panacis EVs blocked the insulin signaling pathway in both skeletal muscle and adipose tissue. Moreover, isolated P. panacis EVs induced typical diabetic phenotypes, such as glucose intolerance after glucose administration or systemic insulin injection. Thus, gut microbe-derived EVs might be key players in the development of insulin resistance and impairment of glucose metabolism promoted by HFD. PMID:26510393

  15. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance

    PubMed Central

    Liu, Ying; Takahashi, Yoshinori; Desai, Neelam; Zhang, Jun; Serfass, Jacob M.; Shi, Yu-Guang; Lynch, Christopher J.; Wang, Hong-Gang

    2016-01-01

    Bif-1 is a membrane-curvature inducing protein that is implicated in the regulation of autophagy and tumorigenesis. Here, we report that Bif-1 plays a critical role in regulating lipid catabolism to control the size of lipid droplets and prevent the development of obesity and insulin resistance upon aging or dietary challenge. Our data show that Bif-1 deficiency promotes the expansion of adipose tissue mass without altering food intake or physical activities. While Bif-1 is dispensable for adipose tissue development, its deficiency reduces the basal rate of adipose tissue lipolysis and results in adipocyte hypertrophy upon aging. The importance of Bif-1 in lipid turnover is not limited to adipose tissue since fasting and refeeding-induced lipid droplet clearance is also attenuated by Bif-1 loss in the liver. Interestingly, obesity induced by a high fat-diet or Bif-1 deficiency downregulates the expression of proteins involved in the autophagy-lysosomal pathway, including Atg9a and Lamp1 in the adipose tissue. These findings thus identify Bif-1 as a novel regulator of lipid homeostasis to prevent the pathogenesis of obesity and its associated metabolic complications. PMID:26857140

  16. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance.

    PubMed

    Liu, Ying; Takahashi, Yoshinori; Desai, Neelam; Zhang, Jun; Serfass, Jacob M; Shi, Yu-Guang; Lynch, Christopher J; Wang, Hong-Gang

    2016-01-01

    Bif-1 is a membrane-curvature inducing protein that is implicated in the regulation of autophagy and tumorigenesis. Here, we report that Bif-1 plays a critical role in regulating lipid catabolism to control the size of lipid droplets and prevent the development of obesity and insulin resistance upon aging or dietary challenge. Our data show that Bif-1 deficiency promotes the expansion of adipose tissue mass without altering food intake or physical activities. While Bif-1 is dispensable for adipose tissue development, its deficiency reduces the basal rate of adipose tissue lipolysis and results in adipocyte hypertrophy upon aging. The importance of Bif-1 in lipid turnover is not limited to adipose tissue since fasting and refeeding-induced lipid droplet clearance is also attenuated by Bif-1 loss in the liver. Interestingly, obesity induced by a high fat-diet or Bif-1 deficiency downregulates the expression of proteins involved in the autophagy-lysosomal pathway, including Atg9a and Lamp1 in the adipose tissue. These findings thus identify Bif-1 as a novel regulator of lipid homeostasis to prevent the pathogenesis of obesity and its associated metabolic complications. PMID:26857140

  17. Cerebral blood flow links insulin resistance and baroreflex sensitivity.

    PubMed

    Ryan, John P; Sheu, Lei K; Verstynen, Timothy D; Onyewuenyi, Ikechukwu C; Gianaros, Peter J

    2013-01-01

    Insulin resistance confers risk for diabetes mellitus and associates with a reduced capacity of the arterial baroreflex to regulate blood pressure. Importantly, several brain regions that comprise the central autonomic network, which controls the baroreflex, are also sensitive to the neuromodulatory effects of insulin. However, it is unknown whether peripheral insulin resistance relates to activity within central autonomic network regions, which may in turn relate to reduced baroreflex regulation. Accordingly, we tested whether resting cerebral blood flow within central autonomic regions statistically mediated the relationship between insulin resistance and an indirect indicator of baroreflex regulation; namely, baroreflex sensitivity. Subjects were 92 community-dwelling adults free of confounding medical illnesses (48 men, 30-50 years old) who completed protocols to assess fasting insulin and glucose levels, resting baroreflex sensitivity, and resting cerebral blood flow. Baroreflex sensitivity was quantified by measuring the magnitude of spontaneous and sequential associations between beat-by-beat systolic blood pressure and heart rate changes. Individuals with greater insulin resistance, as measured by the homeostatic model assessment, exhibited reduced baroreflex sensitivity (b = -0.16, p < .05). Moreover, the relationship between insulin resistance and baroreflex sensitivity was statistically mediated by cerebral blood flow in central autonomic regions, including the insula and cingulate cortex (mediation coefficients < -0.06, p-values < .01). Activity within the central autonomic network may link insulin resistance to reduced baroreflex sensitivity. Our observations may help to characterize the neural pathways by which insulin resistance, and possibly diabetes mellitus, relates to adverse cardiovascular outcomes. PMID:24358272

  18. Temperature-Acclimated Brown Adipose Tissue Modulates Insulin Sensitivity in Humans

    PubMed Central

    Lee, Paul; Smith, Sheila; Linderman, Joyce; Courville, Amber B.; Brychta, Robert J.; Dieckmann, William; Werner, Charlotte D.; Chen, Kong Y.

    2014-01-01

    In rodents, brown adipose tissue (BAT) regulates cold- and diet-induced thermogenesis (CIT; DIT). Whether BAT recruitment is reversible and how it impacts on energy metabolism have not been investigated in humans. We examined the effects of temperature acclimation on BAT, energy balance, and substrate metabolism in a prospective crossover study of 4-month duration, consisting of four consecutive blocks of 1-month overnight temperature acclimation (24°C [month 1] → 19°C [month 2] → 24°C [month 3] → 27°C [month 4]) of five healthy men in a temperature-controlled research facility. Sequential monthly acclimation modulated BAT reversibly, boosting and suppressing its abundance and activity in mild cold and warm conditions (P < 0.05), respectively, independent of seasonal fluctuations (P < 0.01). BAT acclimation did not alter CIT but was accompanied by DIT (P < 0.05) and postprandial insulin sensitivity enhancement (P < 0.05), evident only after cold acclimation. Circulating and adipose tissue, but not skeletal muscle, expression levels of leptin and adiponectin displayed reciprocal changes concordant with cold-acclimated insulin sensitization. These results suggest regulatory links between BAT thermal plasticity and glucose metabolism in humans, opening avenues to harnessing BAT for metabolic benefits. PMID:24954193

  19. Chronic subordination stress selectively downregulates the insulin signaling pathway in liver and skeletal muscle but not in adipose tissue of male mice

    PubMed Central

    Sanghez, Valentina; Cubuk, Cankut; Sebastián-Leon, Patricia; Carobbio, Stefania; Dopazo, Joaquin; Vidal-Puig, Antonio; Bartolomucci, Alessandro

    2016-01-01

    Abstract Chronic stress has been associated with obesity, glucose intolerance, and insulin resistance. We developed a model of chronic psychosocial stress (CPS) in which subordinate mice are vulnerable to obesity and the metabolic-like syndrome while dominant mice exhibit a healthy metabolic phenotype. Here we tested the hypothesis that the metabolic difference between subordinate and dominant mice is associated with changes in functional pathways relevant for insulin sensitivity, glucose and lipid homeostasis. Male mice were exposed to CPS for four weeks and fed either a standard diet or a high-fat diet (HFD). We first measured, by real-time PCR candidate genes, in the liver, skeletal muscle, and the perigonadal white adipose tissue (pWAT). Subsequently, we used a probabilistic analysis approach to analyze different ways in which signals can be transmitted across the pathways in each tissue. Results showed that subordinate mice displayed a drastic downregulation of the insulin pathway in liver and muscle, indicative of insulin resistance, already on standard diet. Conversely, pWAT showed molecular changes suggestive of facilitated fat deposition in an otherwise insulin-sensitive tissue. The molecular changes in subordinate mice fed a standard diet were greater compared to HFD-fed controls. Finally, dominant mice maintained a substantially normal metabolic and molecular phenotype even when fed a HFD. Overall, our data demonstrate that subordination stress is a potent stimulus for the downregulation of the insulin signaling pathway in liver and muscle and a major risk factor for the development of obesity, insulin resistance, and type 2 diabetes mellitus. PMID:26946982

  20. Integrating Mechanisms for Insulin Resistance: Common Threads and Missing Links

    PubMed Central

    Samuel, Varman T.; Shulman, Gerald I.

    2012-01-01

    Insulin resistance is a complex metabolic disorder that defies a single etiological pathway. Accumulation of ectopic lipid metabolites, activation of the unfolded protein response (UPR) pathway and innate immune pathways have all been implicated in the pathogenesis of insulin resistance. However, these pathways are also closely linked to changes in fatty acid uptake, lipogenesis, and energy expenditure that can impact ectopic lipid deposition. Ultimately, accumulation of specific lipid metabolites (diacylglycerols and/or ceramides) in liver and skeletal muscle, may be a common pathway leading to impaired insulin signaling and insulin resistance. PMID:22385956

  1. Arginine supplementation improves insulin resistance in obese adolescents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arginine through a NO mediated mechanism improves insulin resistance in type 2 diabetes. To assess the effect of a short-term (1 week) dietary arginine supplementation on insulin resistance in glucose intolerant obese adolescents, we conducted a randomized, cross-over study in 12 subjects (16 +/- 1 ...

  2. Acylcarnitines: potential implications for skeletal muscle insulin resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin resistance is linked to increased acylcarnitine species in a number of tissues including skeletal muscle, due to incomplete fatty acid oxidation (FAO). It is not known if acylcarnitines participate in muscle insulin resistance or simply reflect dysregulated metabolism. The aim of this stud...

  3. Severe Insulin Resistance Improves Immediately After Sleeve Gastrectomy.

    PubMed

    Sharma, Rahul; Hassan, Chandra; Chaiban, Joumana T

    2016-01-01

    Introduction. Obese individuals exhibit insulin resistance often leading to adverse health outcomes. When compared with intensive medical therapy, bariatric surgery has shown better outcomes mainly in terms of insulin resistance and glycemic control. Using the Homeostasis Model Assessment of insulin resistance (HOMA-IR), we report herein a case illustrating a drastic improvement in severe insulin resistance after sleeve gastrectomy in the immediate postoperative period. Case Report. A patient with long-standing history of morbid obesity, type 2 diabetes, obstructive sleep apnea, hypertension, and severe insulin resistance (requiring approximately 2 units of insulin per kg per day) was enrolled in the medical weight management program for 6 months during which he lost 40 lbs and his insulin requirements decreased. He then underwent a sleeve gastrectomy and did not require insulin therapy as of postoperative day 1. His HOMA-IR improved by about 76% between day 1 and day 14 postoperatively. Conclusion. Sleeve gastrectomy leads to a drastic improvement in severe insulin resistance as early as the first postoperative day. PMID:26788532

  4. Liver innate immune cells and insulin resistance: the multiple facets of Kupffer cells.

    PubMed

    Jager, J; Aparicio-Vergara, M; Aouadi, M

    2016-08-01

    Obesity, which affects 600 million adults worldwide, is a major risk factor for type 2 diabetes (T2D) and insulin resistance. Current therapies for these metabolic disorders include weight management by lifestyle intervention or bariatric surgery and pharmacological treatment with the aim of regulating blood glucose. Probably because of their short-term effectiveness, these therapies have not been able to stop the rapidly rising prevalence of T2D over the past decades, highlighting an urgent need to develop new therapeutic strategies. The role of immune cells, such as macrophages, in insulin resistance has been extensively studied. Major advances have been made to elucidate the role of adipose tissue macrophages in these pathogeneses. Recently, anti-inflammatory drugs have been suggested as an alternative treatment for T2D, and clinical trials of these agents are currently ongoing. In addition, results of previous clinical trials using antibodies against inflammatory cytokines, which showed modest effects, are now being rigorously re-evaluated. However, it is still unclear how liver macrophages [termed Kupffer cells (KCs)], which constitute the major source of macrophages in the body, contribute to the development of insulin resistance. In this review, we will discuss the present understanding of the role of liver immune cells in the development of insulin resistance. We will particularly focus on KCs, which could represent an attractive target for the treatment of metabolic diseases. PMID:26864622

  5. Renal Lipotoxicity-Associated Inflammation and Insulin Resistance Affects Actin Cytoskeleton Organization in Podocytes

    PubMed Central

    Vivas, Yurena; Velasco, Ismael; Yeo, Tet-Kin; Chen, Sheldon; Medina-Gomez, Gema

    2015-01-01

    In the last few decades a change in lifestyle has led to an alarming increase in the prevalence of obesity and obesity-associated complications. Obese patients are at increased risk of developing hypertension, heart disease, insulin resistance (IR), dyslipidemia, type 2 diabetes and renal disease. The excess calories are stored as triglycerides in adipose tissue, but also may accumulate ectopically in other organs, including the kidney, which contributes to the damage through a toxic process named lipotoxicity. Recently, the evidence suggests that renal lipid accumulation leads to glomerular damage and, more specifically, produces dysfunction in podocytes, key cells that compose and maintain the glomerular filtration barrier. Our aim was to analyze the early mechanisms underlying the development of renal disease associated with the process of lipotoxicity in podocytes. Our results show that treatment of podocytes with palmitic acid produced intracellular accumulation of lipid droplets and abnormal glucose and lipid metabolism. This was accompanied by the development of inflammation, oxidative stress and endoplasmic reticulum stress and insulin resistance. We found specific rearrangements of the actin cytoskeleton and slit diaphragm proteins (Nephrin, P-Cadherin, Vimentin) associated with this insulin resistance in palmitic-treated podocytes. We conclude that lipotoxicity accelerates glomerular disease through lipid accumulation and inflammation. Moreover, saturated fatty acids specifically promote insulin resistance by disturbing the cytoarchitecture of podocytes. These data suggest that renal lipid metabolism and cytoskeleton rearrangements may serve as a target for specific therapies aimed at slowing the progression of podocyte failure during metabolic syndrome. PMID:26545114

  6. Ex vivo generation of glucose sensitive insulin secreting mesenchymal stem cells derived from human adipose tissue

    PubMed Central

    Dave, Shruti D.; Vanikar, Aruna V.; Trivedi, Hargovind L

    2012-01-01

    Background: Diabetics are incapable of producing insulin/have autoimmune mechanisms making it ineffective to control glucose secretion. We present a prospective study of glucose-sensitive insulin-secreting mesenchymal stem cells (IS-MSC) generated from human adipose tissue (h-AD) sans xenogenic material. Materials and Methods: Ten grams h-AD from donor anterior abdominal wall was collected in proliferation medium composed of α-Minimum Essential Media (α-MEM), albumin, fibroblast-growth factor and antibiotics, minced, incubated in collagenase-I at 37°C with shaker and centrifuged. Supernatant and pellets were separately cultured in proliferation medium on cell+ plates at 37°C with 5% CO2 for 10 days. Cells were harvested by trypsinization, checked for viability, sterility, counts, flow-cytometry (CD45-/90+/73+), and differentiated into insulin-expressing cells using medium composed of DMEM, gene expressing up-regulators and antibiotics for 3 days. They were studied for transcriptional factors Pax-6, Isl-1, pdx-1 (immunofluorescence). C-peptide and insulin were measured by chemiluminescence. In vitro glucose sensitivity assay was carried out by measuring levels of insulin and C-peptide secretion in absence of glucose followed by 2 hours incubation after glucose addition. Results: Mean IS-AD-MSC quantum was 3.21 ml, cell count, 1.5 ×103 cells/μl), CD45-/90+/73+ cells were 44.37% /25.52%. All of them showed presence of pax-6, pdx-1, and Isl-1. Mean C-Peptide and insulin levels were 0.36 ng/ml and 234 μU/ml, respectively, pre-glucose and 0.87 ng/ml and 618.3 μU/ml post-glucose additions. The mean rise in secretion levels was 2.42 and 2.65 fold, respectively. Conclusion: Insulin-secreting h-AD-MSC can be generated safely and effectively showing in vitro glucose responsive alteration in insulin and C-peptide secretion levels. PMID:22701849

  7. Thrombospondin 1 Mediates High-Fat Diet-Induced Muscle Fibrosis and Insulin Resistance in Male Mice

    PubMed Central

    Jiang, Yibin; Barnes, Richard H.; Tokunaga, Masakuni; Martinez-Santibañez, Gabriel; Geletka, Lynn; Lumeng, Carey N.; Buchner, David A.

    2013-01-01

    Thrombospondin 1 (THBS1 or TSP-1) is a circulating glycoprotein highly expressed in hypertrophic visceral adipose tissues of humans and mice. High-fat diet (HFD) feeding induces the robust increase of circulating THBS1 in the early stages of HFD challenge. The loss of Thbs1 protects male mice from diet-induced weight gain and adipocyte hypertrophy. Hyperinsulinemic euglycemic clamp study has demonstrated that Thbs1-null mice are protected from HFD-induced insulin resistance. Tissue-specific glucose uptake study has revealed that the insulin-sensitive phenotype of Thbs1-null mice is mostly mediated by skeletal muscles. Further assessments of the muscle phenotype using RNA sequencing, quantitative PCR, and histological studies have demonstrated that Thbs1-null skeletal muscles are protected from the HFD-dependent induction of Col3a1 and Col6a1, coupled with a new collagen deposition. At the same time, the Thbs1-null mice display a better circadian rhythm and higher amplitude of energy expenditure with a browning phenotype in sc adipose tissues. These results suggest that THBS1, which circulates in response to a HFD, may induce insulin resistance and fibrotic tissue damage in skeletal muscles as well as the de-browning of sc adipose tissues in the early stages of a HFD challenge. Our study may shed new light on the pathogenic role played by a circulating extracellular matrix protein in the cross talk between adipose tissues and skeletal muscles during obesity progression. PMID:24140711

  8. Thrombospondin 1 mediates high-fat diet-induced muscle fibrosis and insulin resistance in male mice.

    PubMed

    Inoue, Mayumi; Jiang, Yibin; Barnes, Richard H; Tokunaga, Masakuni; Martinez-Santibañez, Gabriel; Geletka, Lynn; Lumeng, Carey N; Buchner, David A; Chun, Tae-Hwa

    2013-12-01

    Thrombospondin 1 (THBS1 or TSP-1) is a circulating glycoprotein highly expressed in hypertrophic visceral adipose tissues of humans and mice. High-fat diet (HFD) feeding induces the robust increase of circulating THBS1 in the early stages of HFD challenge. The loss of Thbs1 protects male mice from diet-induced weight gain and adipocyte hypertrophy. Hyperinsulinemic euglycemic clamp study has demonstrated that Thbs1-null mice are protected from HFD-induced insulin resistance. Tissue-specific glucose uptake study has revealed that the insulin-sensitive phenotype of Thbs1-null mice is mostly mediated by skeletal muscles. Further assessments of the muscle phenotype using RNA sequencing, quantitative PCR, and histological studies have demonstrated that Thbs1-null skeletal muscles are protected from the HFD-dependent induction of Col3a1 and Col6a1, coupled with a new collagen deposition. At the same time, the Thbs1-null mice display a better circadian rhythm and higher amplitude of energy expenditure with a browning phenotype in sc adipose tissues. These results suggest that THBS1, which circulates in response to a HFD, may induce insulin resistance and fibrotic tissue damage in skeletal muscles as well as the de-browning of sc adipose tissues in the early stages of a HFD challenge. Our study may shed new light on the pathogenic role played by a circulating extracellular matrix protein in the cross talk between adipose tissues and skeletal muscles during obesity progression. PMID:24140711

  9. Decaffeinated green coffee bean extract attenuates diet-induced obesity and insulin resistance in mice.

    PubMed

    Song, Su Jin; Choi, Sena; Park, Taesun

    2014-01-01

    This study investigated whether decaffeinated green coffee bean extract prevents obesity and improves insulin resistance and elucidated its mechanism of action. Male C57BL/6N mice (N = 48) were divided into six dietary groups: chow diet, HFD, HFD-supplemented with 0.1%, 0.3%, and 0.9% decaffeinated green coffee bean extract, and 0.15% 5-caffeoylquinic acid. Based on the reduction in HFD-induced body weight gain and increments in plasma lipids, glucose, and insulin levels, the minimum effective dose of green coffee bean extract appears to be 0.3%. Green coffee bean extract resulted in downregulation of genes involved in WNT10b- and galanin-mediated adipogenesis and TLR4-mediated proinflammatory pathway and stimulation of GLUT4 translocation to the plasma membrane in white adipose tissue. Taken together, decaffeinated green coffee bean extract appeared to reverse HFD-induced fat accumulation and insulin resistance by downregulating the genes involved in adipogenesis and inflammation in visceral adipose tissue. PMID:24817902

  10. Decaffeinated Green Coffee Bean Extract Attenuates Diet-Induced Obesity and Insulin Resistance in Mice

    PubMed Central

    Song, Su Jin; Choi, Sena; Park, Taesun

    2014-01-01

    This study investigated whether decaffeinated green coffee bean extract prevents obesity and improves insulin resistance and elucidated its mechanism of action. Male C57BL/6N mice (N = 48) were divided into six dietary groups: chow diet, HFD, HFD-supplemented with 0.1%, 0.3%, and 0.9% decaffeinated green coffee bean extract, and 0.15% 5-caffeoylquinic acid. Based on the reduction in HFD-induced body weight gain and increments in plasma lipids, glucose, and insulin levels, the minimum effective dose of green coffee bean extract appears to be 0.3%. Green coffee bean extract resulted in downregulation of genes involved in WNT10b- and galanin-mediated adipogenesis and TLR4-mediated proinflammatory pathway and stimulation of GLUT4 translocation to the plasma membrane in white adipose tissue. Taken together, decaffeinated green coffee bean extract appeared to reverse HFD-induced fat accumulation and insulin resistance by downregulating the genes involved in adipogenesis and inflammation in visceral adipose tissue. PMID:24817902

  11. Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance.

    PubMed

    Saad, M J A; Santos, A; Prada, P O

    2016-07-01

    Obesity and insulin resistance are the major predisposing factors to comorbidities, such as Type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases, and several types of cancer. The prevalence of obesity is still increasing worldwide and now affects a large number of individuals. Here, we review the role of the gut microbiota in the pathophysiology of insulin resistance/obesity. The human intestine is colonized by ∼100 trillion bacteria, which constitute the gut microbiota. Studies have shown that lean and overweight rodents and humans may present differences in the composition of their intestinal flora. Over the past 10 years, data from different sources have established a causal link between the intestinal microbiota and obesity/insulin resistance. It is important to emphasize that diet-induced obesity promotes insulin resistance by mechanisms independent and dependent on gut microbiota. In this review, we present several mechanisms that contribute to explaining the link between intestinal flora and insulin resistance/obesity. The LPS from intestinal flora bacteria can induce a chronic subclinical inflammatory process and obesity, leading to insulin resistance through activation of TLR4. The reduction in circulating SCFA may also have an essential role in the installation of reduced insulin sensitivity and obesity. Other mechanisms include effects of bile acids, branched-chain amino acids (BCAA), and some other lesser-known factors. In the near future, this area should open new therapeutic avenues for obesity/insulin resistance and its comorbidities. PMID:27252163

  12. The expression of ob gene is not acutely regulated by insulin and fasting in human abdominal subcutaneous adipose tissue.

    PubMed

    Vidal, H; Auboeuf, D; De Vos, P; Staels, B; Riou, J P; Auwerx, J; Laville, M

    1996-07-15

    The regulation of ob gene expression in abdominal subcutaneous adipose tissue was investigated using a reverse transcription-competitive PCR method to quantify the mRNA level of leptin. Leptin mRNA level was highly correlated with the body mass index of 26 subjects (12 lean, 7 non-insulin-dependent diabetic, and 7 obese patients). The effect of fasting on ob gene expression was investigated in 10 subjects maintained on a hypocaloric diet (1045 KJ/d) for 5 d. While their metabolic parameters significantly changed (decrease in insulinemia, glycemia, and resting metabolic rate and increase in plasma ketone bodies), the caloric restriction did not modify the leptin mRNA level in the adipose tissue. To verify whether insulin regulates ob gene expression, six lean subjects underwent a 3-h euglycemic hyperinsulinemic (846 +/- 138 pmol/liter) clamp. Leptin and Glut 4 mRNA levels were quantified in adipose tissue biopsies taken before and at the end of the clamp. Insulin infusion produced a significant threefold increase in Glut 4 mRNA while leptin mRNA was not affected. It is concluded that ob gene expression is not acutely regulated by insulin or by metabolic factors related to fasting in human abdominal subcutaneous adipose tissue. PMID:8755631

  13. Hepatitis C Virus, Insulin Resistance, and Steatosis

    PubMed Central

    Kralj, Dominik; Jukić, Lucija Virović; Stojsavljević, Sanja; Duvnjak, Marko; Smolić, Martina; Čurčić, Ines Bilić

    2016-01-01

    Hepatitis C virus (HCV) is one of the main causes of liver disease worldwide. Liver steatosis is a common finding in many hepatic and extrahepatic disorders, the most common being metabolic syndrome (MS). Over time, it has been shown that the frequent coexistence of these two conditions is not coincidental, since many epidemiological, clinical, and experimental studies have indicated HCV to be strongly associated with liver steatosis and numerous metabolic derangements. Here, we present an overview of publications that provide clinical evidence of the metabolic effects of HCV and summarize the available data on the pathogenetic mechanisms of this association. It has been shown that HCV infection can induce insulin resistance (IR) in the liver and peripheral tissues through multiple mechanisms. Substantial research has suggested that HCV interferes with insulin signaling both directly and indirectly, inducing the production of several proinflammatory cytokines. HCV replication, assembly, and release from hepatocytes require close interactions with lipid droplets and host lipoproteins. This modulation of lipid metabolism in host cells can induce hepatic steatosis, which is more pronounced in patients with HCV genotype 3. The risk of steatosis depends on several viral factors (including genotype, viral load, and gene mutations) and host features (visceral obesity, type 2 diabetes mellitus, genetic predisposition, medication use, and alcohol consumption). HCV-related IR and steatosis have been shown to have a remarkable clinical impact on the prognosis of HCV infection and quality of life, due to their association with resistance to antiviral therapy, progression of hepatic fibrosis, and development of hepatocellular carcinoma. Finally, HCV-induced IR, oxidative stress, and changes in lipid and iron metabolism lead to glucose intolerance, arterial hypertension, hyperuricemia, and atherosclerosis, resulting in increased cardiovascular mortality. PMID:27047774

  14. Hepatitis C Virus, Insulin Resistance, and Steatosis.

    PubMed

    Kralj, Dominik; Virović Jukić, Lucija; Stojsavljević, Sanja; Duvnjak, Marko; Smolić, Martina; Čurčić, Ines Bilić

    2016-03-28

    Hepatitis C virus (HCV) is one of the main causes of liver disease worldwide. Liver steatosis is a common finding in many hepatic and extrahepatic disorders, the most common being metabolic syndrome (MS). Over time, it has been shown that the frequent coexistence of these two conditions is not coincidental, since many epidemiological, clinical, and experimental studies have indicated HCV to be strongly associated with liver steatosis and numerous metabolic derangements. Here, we present an overview of publications that provide clinical evidence of the metabolic effects of HCV and summarize the available data on the pathogenetic mechanisms of this association. It has been shown that HCV infection can induce insulin resistance (IR) in the liver and peripheral tissues through multiple mechanisms. Substantial research has suggested that HCV interferes with insulin signaling both directly and indirectly, inducing the production of several proinflammatory cytokines. HCV replication, assembly, and release from hepatocytes require close interactions with lipid droplets and host lipoproteins. This modulation of lipid metabolism in host cells can induce hepatic steatosis, which is more pronounced in patients with HCV genotype 3. The risk of steatosis depends on several viral factors (including genotype, viral load, and gene mutations) and host features (visceral obesity, type 2 diabetes mellitus, genetic predisposition, medication use, and alcohol consumption). HCV-related IR and steatosis have been shown to have a remarkable clinical impact on the prognosis of HCV infection and quality of life, due to their association with resistance to antiviral therapy, progression of hepatic fibrosis, and development of hepatocellular carcinoma. Finally, HCV-induced IR, oxidative stress, and changes in lipid and iron metabolism lead to glucose intolerance, arterial hypertension, hyperuricemia, and atherosclerosis, resulting in increased cardiovascular mortality. PMID:27047774

  15. Cholesterol-Induced Hepatic Inflammation Does Not Underlie the Predisposition to Insulin Resistance in Dyslipidemic Female LDL Receptor Knockout Mice

    PubMed Central

    Gruben, Nanda; Funke, Anouk; Kloosterhuis, Niels J.; Schreurs, Marijke; Sheedfar, Fareeba; Havinga, Rick; Houten, Sander M.; van de Sluis, Bart; Kuivenhoven, Jan Albert; Koonen, Debby P. Y.; Hofker, Marten H.

    2015-01-01

    Chronic inflammation is considered a causal risk factor predisposing to insulin resistance. However, evidence is accumulating that inflammation confined to the liver may not be causal to metabolic dysfunction. To investigate this, we assessed if hepatic inflammation explains the predisposition towards insulin resistance in low-density lipoprotein receptor knock-out (Ldlr−/−) mice. For this, wild type (WT) and Ldlr−/− mice were fed a chow diet, a high fat (HF) diet, or a high fat, high cholesterol (HFC) diet for 2 weeks. Plasma lipid levels were elevated in chow-fed Ldlr−/− mice compared to WT mice. Although short-term HF or HFC feeding did not result in body weight gain and adipose tissue inflammation, dyslipidemia was worsened in Ldlr−/− mice compared to WT mice. In addition, dyslipidemic HF-fed Ldlr−/− mice had a higher hepatic glucose production rate than HF-fed WT mice, while peripheral insulin resistance was unaffected. This suggests that HF-fed Ldlr−/− mice suffered from hepatic insulin resistance. While HFC-fed Ldlr−/− mice displayed the anticipated increased hepatic inflammation, this did neither exacerbate systemic nor hepatic insulin resistance. Therefore, our results show that hepatic insulin resistance is unrelated to cholesterol-induced hepatic inflammation in Ldlr−/− mice, indicating that hepatic inflammation may not contribute to metabolic dysfunction per se. PMID:25815343

  16. Excessive Refined Carbohydrates and Scarce Micronutrients Intakes Increase Inflammatory Mediators and Insulin Resistance in Prepubertal and Pubertal Obese Children Independently of Obesity

    PubMed Central

    López-Alarcón, Mardia; Perichart-Perera, Otilia; Rodríguez-Cruz, Maricela; Armenta-Álvarez, Andrea; Bram-Falcón, María Teresa; Mayorga-Ochoa, Marielle

    2014-01-01

    Background. Low-grade inflammation is the link between obesity and insulin resistance. Because physiologic insulin resistance occurs at puberty, obese pubertal children are at higher risk for insulin resistance. Excessive diets in refined carbohydrates and saturated fats are risk factors for insulin resistance, but calcium, magnesium, vitamin-D, and the omega-3 fatty acids likely protect against inflammation and insulin resistance. Objective. To analyze interactions among dietary saturated fat, refined carbohydrates, calcium, magnesium, vitamin D, and omega-3 fatty acids on the risk of inflammation and insulin resistance in a sample of prepubertal and pubertal children. Methods. A sample of 229 children from Mexico City was analyzed in a cross-sectional design. Anthropometric measurements, 24 h recall questionnaires, and blood samples were obtained. Serum insulin, glucose, calcium, magnesium, 25-OHD3, C-reactive protein, leptin, adiponectin, and erythrocytes fatty acids were measured. Parametric and nonparametric statistics were used for analysis. Results. While mean macronutrients intake was excessive, micronutrients intake was deficient (P < 0.01). Inflammation determinants were central obesity and magnesium-deficient diets. Determinants of insulin resistance were carbohydrates intake and circulating magnesium and adiponectin. Conclusions. Magnesium-deficient diets are determinants of inflammation, while high intake of refined carbohydrates is a risk factor for insulin resistance, independently of central adiposity. PMID:25477716

  17. Leptin, skeletal muscle lipids, and lipid-induced insulin resistance.

    PubMed

    Dube, John J; Bhatt, Bankim A; Dedousis, Nikolas; Bonen, Arend; O'Doherty, Robert M

    2007-08-01

    Leptin-induced increases in insulin sensitivity are well established and may be related to the effects of leptin on lipid metabolism. However, the effects of leptin on the levels of lipid metabolites implicated in pathogenesis of insulin resistance and the effects of leptin on lipid-induced insulin resistance are unknown. The current study addressed in rats the effects of hyperleptinemia (HL) on insulin action and markers of skeletal muscle (SkM) lipid metabolism in the absence or presence of acute hyperlipidemia induced by an infusion of a lipid emulsion. Compared with controls (CONT), HL increased insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamp ( approximately 15%), and increased SkM Akt ( approximately 30%) and glycogen synthase kinase 3 alpha ( approximately 52%) phosphorylation. These improvements in insulin action were associated with decreased SkM triglycerides (TG; approximately 61%), elevated ceramides ( approximately 50%), and similar diacylglycerol (DAG) levels in HL compared with CONT. Acute hyperlipidemia in CONT decreased insulin sensitivity ( approximately 25%) and increased SkM DAG ( approximately 33%) and ceramide ( approximately 60%) levels. However, hyperlipidemia did not induce insulin resistance or SkM DAG and ceramide accumulation in HL. SkM total fatty acid transporter CD36, plasma membrane fatty acid binding protein, acetyl Co-A carboxylase phosphorylation, and fatty acid oxidation were similar in HL compared with CONT. However, HL decreased SkM protein kinase C theta (PKC theta), a kinase implicated in mediating the detrimental effects of lipids on insulin action. We conclude that increases in insulin sensitivity induced by HL are associated with decreased levels of SkM TG and PKC theta and increased SkM insulin signaling, but not with decreases in other lipid metabolites implicated in altering SkM insulin sensitivity (DAG and ceramide). Furthermore, insulin resistance induced by an acute lipid infusion is prevented by

  18. New insights into insulin action and resistance in the vasculature

    PubMed Central

    Manrique, Camila; Lastra, Guido; Sowers, James R.

    2014-01-01

    Two-thirds of adults in the United States are overweight or obese, and another 26 million have type 2 diabetes. Decreased insulin sensitivity in cardiovascular tissue is an underlying abnormality in these individuals. Insulin metabolic signaling increases endothelial cell nitric oxide production. Impaired vascular insulin sensitivity is an early defect leading to impaired vascular relaxation. In overweight and obese persons, as well as in those with hypertension, systemic and vascular insulin resistance often occurs in conjunction with activation of the cardiovascular tissue renin–angiotensin–aldosterone system (RAAS). Activated angiotensin II type 1 receptor and mineralocorticoid receptor signaling promote the development of vascular insulin resistance and impaired endothelial nitric oxide–mediated relaxation. Research in this area has implicated excessive serine phosphorylation and proteasomal degradation of the docking protein insulin receptor substrate and enhanced signaling through hybrid insulin/insulin-like growth factor (IGF-1) receptor as important mechanisms underlying RAAS impediment of downstream vascular insulin metabolic signaling. This review will present recent evidence supporting the notion that RAAS signaling represents a potential pathway for the development of vascular insulin resistance and impaired endothelial-mediated vasodilation. PMID:24650277

  19. Influence of elevated liver fat on circulating adipocytokines and insulin resistance in obese Hispanic adolescents

    PubMed Central

    Kim, J. S.; Lê, K.-A.; Mahurkar, S.; Davis, J. N.; Goran, M. I.

    2013-01-01

    Summary Objective We performed this study to examine the metabolic differences arising from higher liver fat accumulation in obese Hispanic adolescents, with a particular focus on circulating levels of adipocytokines and insulin resistance. Methods Forty-one obese Hispanic adolescents (15.3 ± 1.0 years, body mass index percentile: 97.0 ± 3.9) were assessed for: visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT) and hepatic fat fraction (HFF) by magnetic resonance imaging; fasting measures of serum glucose, insulin and adipocytokines; homeostasis model assessment of insulin resistance (HOMA-IR); and insulin sensitivity (SI) and the acute insulin response to glucose (AIR) by intravenous glucose tolerance test. Subjects with normal levels of HFF (below 5%; n = 25) were compared to those with HFF > 5% (n = 16). Results The two groups differing in HFF were similar for total body fat, VAT and SAT. The group with HFF > 5% had significantly (P < 0.05) higher interleukin-8 (IL-8) (6.1 ± 1.6 vs. 3.2 ± 0.4 pg mL−1), NGF (30.2 ± 9.9 vs. 13.9 ± 1.6 pg mL−1), HOMA-IR (8.8 ± 1.1 vs. 5.5 ± 0.5), AIR (1869 ± 206 vs. 1092 ± 165) and a tendency for lower SI (1.2 ± 0.4 vs. 2.1 ± 0.3; P = 0.06), with no significant differences in any of other factors measured. Conclusions These data suggest that elevated liver fat is most closely associated with elevated serum IL-8 and NGF levels as well as increased AIR and HOMA-IR. These elevated factors may play significant roles in the metabolic abnormalities associated with elevated liver fat in obese Hispanics. PMID:22434756

  20. Substance P (SP)-Neurokinin-1 Receptor (NK-1R) Alters Adipose Tissue Responses to High-Fat Diet and Insulin Action

    PubMed Central

    Stavrakis, Dimitris; Bakirtzi, Kyriaki; Kokkotou, Efi; Pirtskhalava, Tamara; Nayeb-Hashemi, Hamed; Bowe, Collin; Bugni, James M.; Nuño, Miriam; Lu, Bao; Gerard, Norma P.; Leeman, Susan E.; Kirkland, James L.

    2011-01-01

    Peripheral administration of a specific neurokinin-1 receptor (NK-1R) antagonist to mice leads to reduced weight gain and circulating levels of insulin and leptin after high-fat diet (HFD). Here, we assessed the contribution of substance P (SP) and NK-1R in diet-induced obesity using NK-1R deficient [knockout (KO)] mice and extended our previous findings to show the effects of SP-NK-1R interactions on adipose tissue-associated insulin signaling and glucose metabolic responses. NK-1R KO and wild-type (WT) littermates were fed a HFD for 3 wk, and obesity-associated responses were determined. Compared with WT, NK-1 KO mice show reduced weight gain and circulating levels of leptin and insulin in response to HFD. Adiponectin receptor mRNA levels are higher in mesenteric fat and liver in NK-1 KO animals compared with WT, after HFD. Mesenteric fat from NK-1R KO mice fed with HFD has reduced stress-activated protein kinase/c-Jun N-terminal kinase and protein kinase Cθ activation compared with WT mice. After glucose challenge, NK-1R KO mice remove glucose from the circulation more efficiently than WT and pair-fed controls, suggesting an additional peripheral effect of NK-1R-mediated signaling on glucose metabolism. Glucose uptake experiments in isolated rat adipocytes showed that SP directly inhibits insulin-mediated glucose uptake. Our results further establish a role for SP-NK-1R interactions in adipose tissue responses, specifically as they relate to obesity-associated pathologies such as glucose intolerance and insulin resistance. Our results highlight this pathway as an important therapeutic approach for type 2 diabetes. PMID:21467195

  1. Is insulin resistance the principal cause of type 2 diabetes?

    PubMed

    Gerich, J E

    1999-09-01

    The data presented from these recent studies raise serious doubt concerning the commonly held view that insulin resistance is the principal cause of type 2 diabetes: first of all they provide evidence that insulin resistance may not be the primary genetic factor for type 2 diabetes; secondly, they demonstrate that at least under certain circumstances insulin resistance is not essential for diabetes to occur, and then finally, they indicate that insulin resistance may not be the predominant factor determining the degree of hyperglycaemia. Although these studies suggest that the role of insulin resistance relative to that of beta-cell dysfunction in the pathogenesis of type 2 diabetes has been generally overestimated, one should not be left with the impression that insulin resistance is not important. It is certainly an important factor in determining the degree of hyperglycaemia or glucose intolerance present at a given level of beta-cell function. The improvement in glycaemic control after weight loss which lessens insulin resistance or after the administration of pharmacologic agents that improve insulin sensitivity clearly argue that insulin resistance is important in this regard. In addition to influencing the severity of glucose intolerance, insulin resistance is probably also important in determining the time of onset of diabetes. It may do this simply by altering the balance between the body's demand for insulin and the ability of the pancreas to provide insulin. It might adversely affect beta-cell function in addition to increasing the demand for insulin. This concept is schematically represented in figure 3. It is well established that beta-cell function normally deteriorates as a function of age [41]. Although the prevalence of type 2 diabetes increases as a function of age, this by itself obviously does not result in diabetes in the great majority of people. In such individuals their insulin sensitivity is sufficient to maintain the balance between the

  2. Depletion of fat-resident Treg cells prevents age-associated insulin resistance.

    PubMed

    Bapat, Sagar P; Myoung Suh, Jae; Fang, Sungsoon; Liu, Sihao; Zhang, Yang; Cheng, Albert; Zhou, Carmen; Liang, Yuqiong; LeBlanc, Mathias; Liddle, Christopher; Atkins, Annette R; Yu, Ruth T; Downes, Michael; Evans, Ronald M; Zheng, Ye

    2015-12-01

    Age-associated insulin resistance (IR) and obesity-associated IR are two physiologically distinct forms of adult-onset diabetes. While macrophage-driven inflammation is a core driver of obesity-associated IR, the underlying mechanisms of the obesity-independent yet highly prevalent age-associated IR are largely unexplored. Here we show, using comparative adipo-immune profiling in mice, that fat-resident regulatory T cells, termed fTreg cells, accumulate in adipose tissue as a function of age, but not obesity. Supporting the existence of two distinct mechanisms underlying IR, mice deficient in fTreg cells are protected against age-associated IR, yet remain susceptible to obesity-associated IR and metabolic disease. By contrast, selective depletion of fTreg cells via anti-ST2 antibody treatment increases adipose tissue insulin sensitivity. These findings establish that distinct immune cell populations within adipose tissue underlie ageing- and obesity-associated IR, and implicate fTreg cells as adipo-immune drivers and potential therapeutic targets in the treatment of age-associated IR. PMID:26580014

  3. Antigen Presentation and T-Cell Activation Are Critical for RBP4-Induced Insulin Resistance.

    PubMed

    Moraes-Vieira, Pedro M; Castoldi, Angela; Aryal, Pratik; Wellenstein, Kerry; Peroni, Odile D; Kahn, Barbara B

    2016-05-01

    Adipose tissue (AT) inflammation contributes to impaired insulin action, which is a major cause of type 2 diabetes. RBP4 is an adipocyte- and liver-derived protein with an important role in insulin resistance, metabolic syndrome, and AT inflammation. RBP4 elevation causes AT inflammation by activating innate immunity, which elicits an adaptive immune response. RBP4-overexpressing mice (RBP4-Ox) are insulin resistant and glucose intolerant and have increased AT macrophages and T-helper 1 cells. We show that high-fat diet-fed RBP4(-/-) mice have reduced AT inflammation and improved insulin sensitivity versus wild type. We also elucidate the mechanism for RBP4-induced macrophage antigen presentation and subsequent T-cell activation. In RBP4-Ox, AT macrophages display enhanced c-Jun N-terminal kinase, extracellular signal-related kinase, and p38 phosphorylation. Inhibition of these pathways and of NF-κB reduces activation of macrophages and CD4 T cells. MyD88 is an adaptor protein involved in proinflammatory signaling. In macrophages from MyD88(-/-) mice, RBP4 fails to stimulate secretion of tumor necrosis factor, IL-12, and IL-6 and CD4 T-cell activation. In vivo blockade of antigen presentation by treating RBP4-Ox mice with CTLA4-Ig, which blocks costimulation of T cells, is sufficient to reduce AT inflammation and improve insulin resistance. Thus, MyD88 and downstream mitogen-activated protein kinase and NF-κB pathways are necessary for RBP4-induced macrophage antigen presentation and subsequent T-cell activation. Also, blocking antigen presentation with CTLA4-Ig improves RBP4-induced insulin resistance and macrophage-induced T-cell activation. PMID:26936962

  4. Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant

    PubMed Central

    Piston, David W.

    2015-01-01

    Traditional therapies for type 1 diabetes (T1D) involve insulin replacement or islet/pancreas transplantation and have numerous limitations. Our previous work demonstrated the ability of embryonic brown adipose tissue (BAT) transplants to establish normoglycemia without insulin in chemically induced models of insulin-deficient diabetes. The current study sought to extend the technique to an autoimmune-mediated T1D model and document the underlying mechanisms. In nonobese diabetic (NOD) mice, BAT transplants result in complete reversal of T1D associated with rapid and long-lasting euglycemia. In addition, BAT transplants placed prior to the onset of diabetes on NOD mice can prevent or significantly delay the onset of diabetes. As with streptozotocin (STZ)-diabetic models, euglycemia is independent of insulin and strongly correlates with decrease of inflammation and increase of adipokines. Plasma insulin-like growth factor-I (IGF-I) is the first hormone to increase following BAT transplants. Adipose tissue of transplant recipients consistently express IGF-I compared with little or no expression in controls, and plasma IGF-I levels show a direct negative correlation with glucose, glucagon, and inflammatory cytokines. Adipogenic and anti-inflammatory properties of IGF-I may stimulate regeneration of new healthy white adipose tissue, which in turn secretes hypoglycemic adipokines that substitute for insulin. IGF-I can also directly decrease blood glucose through activating insulin receptor. These data demonstrate the potential for insulin-independent reversal of autoimmune-induced T1D with BAT transplants and implicate IGF-I as a likely mediator in the resulting equilibrium. PMID:25898954

  5. Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant.

    PubMed

    Gunawardana, Subhadra C; Piston, David W

    2015-06-15

    Traditional therapies for type 1 diabetes (T1D) involve insulin replacement or islet/pancreas transplantation and have numerous limitations. Our previous work demonstrated the ability of embryonic brown adipose tissue (BAT) transplants to establish normoglycemia without insulin in chemically induced models of insulin-deficient diabetes. The current study sought to extend the technique to an autoimmune-mediated T1D model and document the underlying mechanisms. In nonobese diabetic (NOD) mice, BAT transplants result in complete reversal of T1D associated with rapid and long-lasting euglycemia. In addition, BAT transplants placed prior to the onset of diabetes on NOD mice can prevent or significantly delay the onset of diabetes. As with streptozotocin (STZ)-diabetic models, euglycemia is independent of insulin and strongly correlates with decrease of inflammation and increase of adipokines. Plasma insulin-like growth factor-I (IGF-I) is the first hormone to increase following BAT transplants. Adipose tissue of transplant recipients consistently express IGF-I compared with little or no expression in controls, and plasma IGF-I levels show a direct negative correlation with glucose, glucagon, and inflammatory cytokines. Adipogenic and anti-inflammatory properties of IGF-I may stimulate regeneration of new healthy white adipose tissue, which in turn secretes hypoglycemic adipokines that substitute for insulin. IGF-I can also directly decrease blood glucose through activating insulin receptor. These data demonstrate the potential for insulin-independent reversal of autoimmune-induced T1D with BAT transplants and implicate IGF-I as a likely mediator in the resulting equilibrium. PMID:25898954

  6. Effects of Insulin-Like Growth Factor (IGF)-I/IGF-Binding Protein-3 Treatment on Glucose Metabolism and Fat Distribution in Human Immunodeficiency Virus-Infected Patients with Abdominal Obesity and Insulin Resistance

    PubMed Central

    Rao, Madhu N.; Mulligan, Kathleen; Tai, Viva; Wen, Michael J.; Dyachenko, Artem; Weinberg, Melissa; Li, Xiaojuan; Lang, Thomas; Grunfeld, Carl; Schwarz, Jean-Marc; Schambelan, Morris

    2010-01-01

    Context: HIV-infected patients on antiretroviral therapy are at increased risk for excess visceral adiposity and insulin resistance. Treatment with GH decreases visceral adiposity but worsens glucose metabolism. IGF-I, which mediates many of the effects of GH, improves insulin sensitivity in HIV-negative individuals. Objective: Our objective was to determine whether IGF-I, complexed to its major binding protein, IGF-binding protein-3 (IGFBP-3), improves glucose metabolism and alters body fat distribution in HIV-infected patients with abdominal obesity and insulin resistance. Methods: We conducted a pilot, open-label study in 13 HIV-infected men with excess abdominal adiposity and insulin resistance to assess the effect of 3 months of treatment with IGF-I/IGFBP-3 on glucose metabolism and fat distribution. Glucose metabolism was assessed by oral glucose tolerance test and hyperinsulinemic-euglycemic clamp. Endogenous glucose production (EGP), gluconeogenesis, whole-body lipolysis, and de novo lipogenesis (DNL) were measured with stable isotope infusions. Body composition was assessed by dual-energy x-ray absorptiometry and abdominal computed tomography scan. Results: Glucose tolerance improved and insulin-mediated glucose uptake increased significantly during treatment. EGP increased under fasting conditions, and suppression of EGP by insulin was blunted. Fasting triglycerides decreased significantly in association with a decrease in hepatic DNL. Lean body mass increased and total body fat decreased, whereas visceral adipose tissue did not change. Conclusions: Treatment with IGF-I/IGFBP-3 improved whole-body glucose uptake and glucose tolerance, while increasing hepatic glucose production. Fasting triglycerides improved, reflecting decreased DNL, and visceral adiposity was unchanged. PMID:20610601

  7. Hypertension Management and Microvascular Insulin Resistance in Diabetes

    PubMed Central

    Ko, Seung-Hyun; Cao, Wenhong; Liu, Zhenqi

    2011-01-01

    Type 2 diabetes is in essence a vascular disease and is frequently associated with hypertension, macrovascular events, and microvascular complications. Microvascular dysfunction, including impaired recruitment and capillary rarefaction, has been implicated in the pathogenesis of diabetic complications. Microvascular insulin resistance and renin-angiotensin system upregulation are present in diabetes, and each contributes to the development of hypertension and microvascular dysfunction. In the insulin-sensitive state, insulin increases microvascular perfusion by increasing endothelial nitric oxide production, but this effect is abolished by insulin resistance. Angiotensin II, acting via the type 1 receptors, induces inflammation and oxidative stress, leading to impaired insulin signaling, reduced nitric oxide availability, and vasoconstriction. Conversely, it acts on the type 2 receptors to cause vasodilatation. Because substrate and hormonal exchanges occur in the microvasculature, antihypertensive agents targeted to improve microvascular insulin sensitivity and function may have beneficial effects beyond their capacity to lower blood pressure in patients with diabetes. PMID:20582734

  8. Autophagy downregulation contributes to insulin resistance mediated injury in insulin receptor knockout podocytes in vitro

    PubMed Central

    Xin, Wei; Li, Zhaoping; Chen, Liyong

    2016-01-01

    It is unknown whether autophagy activity is altered in insulin resistant podocytes and whether autophagy could be a therapeutic target for diabetic nephropathy (DN). Here we used shRNA transfection to knockdown the insulin receptor (IR) gene in cultured human immortalized podocytes as an in vitro insulin resistant model. Autophagy related proteins LC3, Beclin, and p62 as well as nephrin, a podocyte injury marker, were assessed using western blot and immunofluorescence staining. Our results show that autophagy is suppressed when podocytes lose insulin sensitivity and that treatment of rapamycin, an mTOR specific inhibitor, could attenuate insulin resistance induced podocytes injury via autophagy activation. The present study deepens our understanding of the role of autophagy in the pathogenesis of DN. PMID:27077005

  9. Adipose tissue fibrosis

    PubMed Central

    Buechler, Christa; Krautbauer, Sabrina; Eisinger, Kristina

    2015-01-01

    The increasing prevalence of obesity causes a major interest in white adipose tissue biology. Adipose tissue cells are surrounded by extracellular matrix proteins whose composition and remodeling is of crucial importance for cell function. The expansion of adipose tissue in obesity is linked to an inappropriate supply with oxygen and hypoxia development. Subsequent activation of hypoxia inducible factor 1 (HIF-1) inhibits preadipocyte differentiation and initiates adipose tissue fibrosis. Thereby adipose tissue growth is limited and excess triglycerides are stored in ectopic tissues. Stressed adipocytes and hypoxia contribute to immune cell immigration and activation which further aggravates adipose tissue fibrosis. There is substantial evidence that adipose tissue fibrosis is linked to metabolic dysfunction, both in rodent models and in the clinical setting. Peroxisome proliferator activated receptor gamma agonists and adiponectin both reduce adipose tissue fibrosis, inflammation and insulin resistance. Current knowledge suggests that antifibrotic drugs, increasing adipose tissue oxygen supply or HIF-1 antagonists will improve adipose tissue function and thereby ameliorate metabolic diseases. PMID:25987952

  10. [Childhhood obesity, insulin resistance and increased cardiovascular risk].

    PubMed

    Carlone, Angela; Venditti, Chiara; Cipolloni, Laura; Zampetti, Simona; Spoletini, Marialuisa; Capizzi, Marco; Leto, Gaetano; Buzzetti, Raffaella

    2012-10-01

    Excess fat is one of the major risk factors for insulin resistance predisposing to the development of cardiovascular diseases in western countries. We know that obese patients are strongly at risk of cardiovascular diseases, like myocardial infarction or stroke. These diseases are the most frequent cause of death in the adult population, representing a social and economic problem. Today there are not available and useful markers for screening and diagnosis of insulin- resistance in young people. "Easy-to-detect" clinical markers must be found to identify young subjects at risk of cardiovascular diseases. Very interesting the relationship between wrist circumference, its bone composition and insulin resistance. PMID:23114400

  11. Role of insulin resistance in uric acid nephrolithiasis

    PubMed Central

    Li, Hanhan; Klett, Dane E; Littleton, Raymond; Elder, Jack S; Sammon, Jesse D

    2014-01-01

    Metabolic syndrome has been implicated in the pathogenesis of uric acid stones. Although not completely understood, its role is supported by many studies demonstrating increased prevalence of uric acid stones in patients with metabolic syndrome and in particular insulin resistance, a major component of metabolic syndrome. This review presents epidemiologic studies demonstrating the association between metabolic syndrome and nephrolithiasis in general as well as the relationship between insulin resistance and uric acid stone formation, in particular. We also review studies that explore the pathophysiologic relationship between insulin resistance and uric acid nephrolithiasis. PMID:25374817

  12. Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue (AT) inflammation promotes insulin resistance (IR) and other obesity complications. AT inflammation and IR are associated with oxidative stress, adipocyte death, and the scavenging of dead adipocytes by proinflammatory CD11c+ AT macrophages (ATMF). We tested the hypothesis that supple...

  13. Effects of aerobic versus resistance exercise without caloric restriction on abdominal fat, intrahepatic lipid, and insulin sensitivity in obese adolescent boys: a randomized, controlled trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The optimal exercise modality for reductions of abdominal obesity and risk factors for type 2 diabetes in youth is unknown. We examined the effects of aerobic exercise (AE) versus resistance exercise (RE) without caloric restriction on abdominal adiposity, ectopic fat, and insulin sensitivity and se...

  14. [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene].

    PubMed

    Ros, P; Colino-Alcol, E; Grasso, V; Barbetti, F; Argente, J

    2015-01-01

    Insulin resistance syndromes without lipodystrophy are an infrequent and heterogeneous group of disorders with variable clinical phenotypes, associated with hyperglycemia and hyperinsulinemia. The three conditions related to mutations in the insulin receptor gene are leprechaunism or Donohue syndrome, Rabson-Mendenhall syndrome, and Type A syndrome. A case is presented on a patient diagnosed with type A insulin resistance, defined by the triad of extreme insulin resistance, acanthosis nigricans, and hyperandrogenism, carrying a heterozygous mutation in exon 19 of the insulin receptor gene coding for its tyrosine kinase domain that is crucial for the catalytic activity of the receptor. The molecular basis of the syndrome is reviewed, focusing on the structure-function relationships of the insulin receptor, knowing that the criteria for survival are linked to residual insulin receptor function. It is also pointed out that, although type A insulin resistance appears to represent a somewhat less severe condition, these patients have a high morbidity and their treatment is still unsatisfactory. PMID:25027621

  15. Similar and Additive Effects of Ovariectomy and Diabetes on Insulin Resistance and Lipid Metabolism

    PubMed Central

    Tawfik, Shady H.; Mahmoud, Bothaina F.; Saad, Mohamed I.; Shehata, Mona; Kamel, Maher A.; Helmy, Madiha H.

    2015-01-01

    Type 2 diabetes mellitus (T2DM) is among the leading causes of death in postmenopausal women. The disruption of ovarian function may contribute to the incidence of T2DM. The purpose of this study was to investigate the effects of ovariectomy and T2DM on glucose and lipid homeostasis, perilipin levels in adipose tissues, as a lipolytic regulator, and levels of certain adipokines. Ovariectomized (OVX) rats were used as a model for postmenopausal women. The study was performed on sham, OVX, sham diabetic, and OVX diabetic female rats. The results indicated that ovariectomy alters adipose tissue metabolism through reducing perilipin content in white adipose tissue (WAT); however it has no effect on perilipin level in brown adipose tissue (BAT). OVX diabetic females suffer from serious metabolic disturbances, suggested by exacerbation of insulin resistance in terms of disrupted lipid profile, higher HOMA-IR, hyperinsulinemia, higher leptin, and lower adiponectin concentrations. These metabolic derangements may underlie the predisposition for cardiovascular disease in women after menopause. Therefore, for efficient treatment, the menopausal status of diabetic female should be addressed, and the order of events is of great importance because ovariectomy following development of diabetes has more serious complications compared to development of diabetes as result of menopause. PMID:25834745

  16. Similar and additive effects of ovariectomy and diabetes on insulin resistance and lipid metabolism.

    PubMed

    Tawfik, Shady H; Mahmoud, Bothaina F; Saad, Mohamed I; Shehata, Mona; Kamel, Maher A; Helmy, Madiha H

    2015-01-01

    Type 2 diabetes mellitus (T2DM) is among the leading causes of death in postmenopausal women. The disruption of ovarian function may contribute to the incidence of T2DM. The purpose of this study was to investigate the effects of ovariectomy and T2DM on glucose and lipid homeostasis, perilipin levels in adipose tissues, as a lipolytic regulator, and levels of certain adipokines. Ovariectomized (OVX) rats were used as a model for postmenopausal women. The study was performed on sham, OVX, sham diabetic, and OVX diabetic female rats. The results indicated that ovariectomy alters adipose tissue metabolism through reducing perilipin content in white adipose tissue (WAT); however it has no effect on perilipin level in brown adipose tissue (BAT). OVX diabetic females suffer from serious metabolic disturbances, suggested by exacerbation of insulin resistance in terms of disrupted lipid profile, higher HOMA-IR, hyperinsulinemia, higher leptin, and lower adiponectin concentrations. These metabolic derangements may underlie the predisposition for cardiovascular disease in women after menopause. Therefore, for efficient treatment, the menopausal status of diabetic female should be addressed, and the order of events is of great importance because ovariectomy following development of diabetes has more serious complications compared to development of diabetes as result of menopause. PMID:25834745

  17. Cognitively impaired elderly exhibit insulin resistance and no memory improvement with infused insulin.

    PubMed

    Morris, Jill K; Vidoni, Eric D; Mahnken, Jonathan D; Montgomery, Robert N; Johnson, David K; Thyfault, John P; Burns, Jeffrey M

    2016-03-01

    Insulin resistance is a risk factor for Alzheimer's disease (AD), although its role in AD etiology is unclear. We assessed insulin resistance using fasting and insulin-stimulated measures in 51 elderly subjects with no dementia (ND; n = 37) and with cognitive impairment (CI; n = 14). CI subjects exhibited either mild CI or AD. Fasting insulin resistance was measured using the homeostatic model assessment of insulin resistance (HOMA-IR). Insulin-stimulated glucose disposal was assessed using the hyperinsulinemic-euglycemic clamp to calculate glucose disposal rate into lean mass, the primary site of insulin-stimulated glucose disposal. Because insulin crosses the blood-brain barrier, we also assessed whether insulin infusion would improve verbal episodic memory compared to baseline. Different but equivalent versions of cognitive tests were administered in counterbalanced order in the basal and insulin-stimulated state. Groups did not differ in age or body mass index. Cognitively impaired subjects exhibited greater insulin resistance as measured at fasting (HOMA-IR; ND: 1.09 [1.1] vs. CI: 2.01 [2.3], p = 0.028) and during the hyperinsulinemic clamp (glucose disposal rate into lean mass; ND: 9.9 (4.5) vs. AD 7.2 (3.2), p = 0.040). Cognitively impaired subjects also exhibited higher fasting insulin compared to ND subjects, (CI: 8.7 [7.8] vs. ND: 4.2 [3.8] μU/mL; p = 0.023) and higher fasting amylin (CI: 24.1 [39.1] vs. 8.37 [14.2]; p = 0.050) with no difference in fasting glucose. Insulin infusion elicited a detrimental effect on one test of verbal episodic memory (Free and Cued Selective Reminding Test) in both groups (p < 0.0001) and no change in performance on an additional task (delayed logical memory). In this study, although insulin resistance was observed in cognitively impaired subjects compared to ND controls, insulin infusion did not improve memory. Furthermore, a significant correlation between HOMA-IR and glucose disposal rate was present only in ND

  18. Metabolic Acidosis-Induced Insulin Resistance and Cardiovascular Risk

    PubMed Central

    Souto, Gema; Donapetry, Cristóbal; Calviño, Jesús

    2011-01-01

    Abstract Microalbuminuria has been conclusively established as an independent cardiovascular risk factor, and there is evidence of an association between insulin resistance and microalbuminuria, the former preceding the latter in prospective studies. It has been demonstrated that even the slightest degree of metabolic acidosis produces insulin resistance in healthy humans. Many recent epidemiological studies link metabolic acidosis indicators with insulin resistance and systemic hypertension. The strongly acidogenic diet consumed in developed countries produces a lifetime acidotic state, exacerbated by excess body weight and aging, which may result in insulin resistance, metabolic syndrome, and type 2 diabetes, contributing to cardiovascular risk, along with genetic causes, lack of physical exercise, and other factors. Elevated fruits and vegetables consumption has been associated with lower diabetes incidence. Diseases featuring severe atheromatosis and elevated cardiovascular risk, such as diabetes mellitus and chronic kidney failure, are typically characterized by a chronic state of metabolic acidosis. Diabetic patients consume particularly acidogenic diets, and deficiency of insulin action generates ketone bodies, creating a baseline state of metabolic acidosisworsened by inadequate metabolic control, which creates a vicious circle by inducing insulin resistance. Even very slight levels of chronic kidney insufficiency are associated with increased cardiovascular risk, which may be explained at least in part by deficient acid excretory capacity of the kidney and consequent metabolic acidosis-induced insulin resistance. PMID:21352078

  19. p-Cresyl sulfate promotes insulin resistance associated with CKD.

    PubMed

    Koppe, Laetitia; Pillon, Nicolas J; Vella, Roxane E; Croze, Marine L; Pelletier, Caroline C; Chambert, Stéphane; Massy, Ziad; Glorieux, Griet; Vanholder, Raymond; Dugenet, Yann; Soula, Hédi A; Fouque, Denis; Soulage, Christophe O

    2013-01-01

    The mechanisms underlying the insulin resistance that frequently accompanies CKD are poorly understood, but the retention of renally excreted compounds may play a role. One such compound is p-cresyl sulfate (PCS), a protein-bound uremic toxin that originates from tyrosine metabolism by intestinal microbes. Here, we sought to determine whether PCS contributes to CKD-associated insulin resistance. Administering PCS to mice with normal kidney function for 4 weeks triggered insulin resistance, loss of fat mass, and ectopic redistribution of lipid in muscle and liver, mimicking features associated with CKD. Mice treated with PCS exhibited altered insulin signaling in skeletal muscle through ERK1/2 activation. In addition, exposing C2C12 myotubes to concentrations of PCS observed in CKD caused insulin resistance through direct activation of ERK1/2. Subtotal nephrectomy led to insulin resistance and dyslipidemia in mice, and treatment with the prebiotic arabino-xylo-oligosaccharide, which reduced serum PCS by decreasing intestinal production of p-cresol, prevented these metabolic derangements. Taken together, these data suggest that PCS contributes to insulin resistance and that targeting PCS may be a therapeutic strategy in CKD. PMID:23274953

  20. Metabolic acidosis-induced insulin resistance and cardiovascular risk.

    PubMed

    Souto, Gema; Donapetry, Cristóbal; Calviño, Jesús; Adeva, Maria M

    2011-08-01

    Microalbuminuria has been conclusively established as an independent cardiovascular risk factor, and there is evidence of an association between insulin resistance and microalbuminuria, the former preceding the latter in prospective studies. It has been demonstrated that even the slightest degree of metabolic acidosis produces insulin resistance in healthy humans. Many recent epidemiological studies link metabolic acidosis indicators with insulin resistance and systemic hypertension. The strongly acidogenic diet consumed in developed countries produces a lifetime acidotic state, exacerbated by excess body weight and aging, which may result in insulin resistance, metabolic syndrome, and type 2 diabetes, contributing to cardiovascular risk, along with genetic causes, lack of physical exercise, and other factors. Elevated fruits and vegetables consumption has been associated with lower diabetes incidence. Diseases featuring severe atheromatosis and elevated cardiovascular risk, such as diabetes mellitus and chronic kidney failure, are typically characterized by a chronic state of metabolic acidosis. Diabetic patients consume particularly acidogenic diets, and deficiency of insulin action generates ketone bodies, creating a baseline state of metabolic acidosis worsened by inadequate metabolic control, which creates a vicious circle by inducing insulin resistance. Even very slight levels of chronic kidney insufficiency are associated with increased cardiovascular risk, which may be explained at least in part by deficient acid excretory capacity of the kidney and consequent metabolic acidosis-induced insulin resistance. PMID:21352078

  1. Acylcarnitines: potential implications for skeletal muscle insulin resistance

    PubMed Central

    Aguer, Céline; McCoin, Colin S.; Knotts, Trina A.; Thrush, A. Brianne; Ono-Moore, Kikumi; McPherson, Ruth; Dent, Robert; Hwang, Daniel H.; Adams, Sean H.; Harper, Mary-Ellen

    2015-01-01

    Insulin resistance may be linked to incomplete fatty acid β-oxidation and the subsequent increase in acylcarnitine species in different tissues including skeletal muscle. It is not known if acylcarnitines participate in muscle insulin resistance or simply reflect dysregulated metabolism. The aims of this study were to determine whether acylcarnitines can elicit muscle insulin resistance and to better understand the link between incomplete muscle fatty acid β-oxidation, oxidative stress, inflammation, and insulin-resistance development. Differentiated C2C12, primary mouse, and human myotubes were treated with acylcarnitines (C4:0, C14:0, C16:0) or with palmitate with or without carnitine acyltransferase inhibition by mildronate. Treatment with C4:0, C14:0, and C16:0 acylcarnitines resulted in 20–30% decrease in insulin response at the level of Akt phosphorylation and/or glucose uptake. Mildronate reversed palmitate-induced insulin resistance concomitant with an ∼25% decrease in short-chain acylcarnitine and acetylcarnitine secretion. Although proinflammatory cytokines were not affected under these conditions, oxidative stress was increased by 2–3 times by short- or long-chain acylcarnitines. Acylcarnitine-induced oxidative stress and insulin resistance were reversed by treatment with antioxidants. Results are consistent with the conclusion that incomplete muscle fatty acid β-oxidation causes acylcarnitine accumulation and associated oxidative stress, raising the possibility that these metabolites play a role in muscle insulin resistance.—Aguer, C., McCoin, C. S., Knotts, T. A., Thrush, A. B., Ono-Moore, K., McPherson, R., Dent, R., Hwang, D. H., Adams, S. H., Harper, M.-E. Acylcarnitines: potential implications for skeletal muscle insulin resistance. PMID:25342132

  2. Common genetic variants highlight the role of insulin resistance and body fat distribution in type 2 diabetes, independent of obesity.

    PubMed

    Scott, Robert A; Fall, Tove; Pasko, Dorota; Barker, Adam; Sharp, Stephen J; Arriola, Larraitz; Balkau, Beverley; Barricarte, Aurelio; Barroso, Inês; Boeing, Heiner; Clavel-Chapelon, Françoise; Crowe, Francesca L; Dekker, Jacqueline M; Fagherazzi, Guy; Ferrannini, Ele; Forouhi, Nita G; Franks, Paul W; Gavrila, Diana; Giedraitis, Vilmantas; Grioni, Sara; Groop, Leif C; Kaaks, Rudolf; Key, Timothy J; Kühn, Tilman; Lotta, Luca A; Nilsson, Peter M; Overvad, Kim; Palli, Domenico; Panico, Salvatore; Quirós, J Ramón; Rolandsson, Olov; Roswall, Nina; Sacerdote, Carlotta; Sala, Núria; Sánchez, María-José; Schulze, Matthias B; Siddiq, Afshan; Slimani, Nadia; Sluijs, Ivonne; Spijkerman, Annemieke M W; Tjonneland, Anne; Tumino, Rosario; van der A, Daphne L; Yaghootkar, Hanieh; McCarthy, Mark I; Semple, Robert K; Riboli, Elio; Walker, Mark; Ingelsson, Erik; Frayling, Tim M; Savage, David B; Langenberg, Claudia; Wareham, Nicholas J

    2014-12-01

    We aimed to validate genetic variants as instruments for insulin resistance and secretion, to characterize their association with intermediate phenotypes, and to investigate their role in type 2 diabetes (T2D) risk among normal-weight, overweight, and obese individuals. We investigated the association of genetic scores with euglycemic-hyperinsulinemic clamp- and oral glucose tolerance test-based measures of insulin resistance and secretion and a range of metabolic measures in up to 18,565 individuals. We also studied their association with T2D risk among normal-weight, overweight, and obese individuals in up to 8,124 incident T2D cases. The insulin resistance score was associated with lower insulin sensitivity measured by M/I value (β in SDs per allele [95% CI], -0.03 [-0.04, -0.01]; P = 0.004). This score was associated with lower BMI (-0.01 [-0.01, -0.0]; P = 0.02) and gluteofemoral fat mass (-0.03 [-0.05, -0.02; P = 1.4 × 10(-6)) and with higher alanine transaminase (0.02 [0.01, 0.03]; P = 0.002) and γ-glutamyl transferase (0.02 [0.01, 0.03]; P = 0.001). While the secretion score had a stronger association with T2D in leaner individuals (Pinteraction = 0.001), we saw no difference in the association of the insulin resistance score with T2D among BMI or waist strata (Pinteraction > 0.31). While insulin resistance is often considered secondary to obesity, the association of the insulin resistance score with lower BMI and adiposity and with incident T2D even among individuals of normal weight highlights the role of insulin resistance and ectopic fat distribution in T2D, independently of body size. PMID:24947364

  3. Integrated Network Analysis Reveals an Association between Plasma Mannose Levels and Insulin Resistance.

    PubMed

    Lee, Sunjae; Zhang, Cheng; Kilicarslan, Murat; Piening, Brian D; Bjornson, Elias; Hallström, Björn M; Groen, Albert K; Ferrannini, Ele; Laakso, Markku; Snyder, Michael; Blüher, Matthias; Uhlen, Mathias; Nielsen, Jens; Smith, Ulf; Serlie, Mireille J; Boren, Jan; Mardinoglu, Adil

    2016-07-12

    To investigate the biological processes that are altered in obese subjects, we generated cell-specific integrated networks (INs) by merging genome-scale metabolic, transcriptional regulatory and protein-protein interaction networks. We performed genome-wide transcriptomics analysis to determine the global gene expression changes in the liver and three adipose tissues from obese subjects undergoing bariatric surgery and integrated these data into the cell-specific INs. We found dysregulations in mannose metabolism in obese subjects and validated our predictions by detecting mannose levels in the plasma of the lean and obese subjects. We observed significant correlations between plasma mannose levels, BMI, and insulin resistance (IR). We also measured plasma mannose levels of the subjects in two additional different cohorts and observed that an increased plasma mannose level was associated with IR and insulin secretion. We finally identified mannose as one of the best plasma metabolites in explaining the variance in obesity-independent IR. PMID:27345421

  4. Pleotropic effects of leptin to reverse insulin resistance and diabetic ketoacidosis.

    PubMed

    Perry, Rachel J; Petersen, Kitt Falk; Shulman, Gerald I

    2016-05-01

    In this review we discuss the mechanisms for the pleotropic effects of leptin replacement therapy to reverse liver and muscle insulin resistance in lipodystrophic individuals, as well as insulin-independent effects of leptin replacement therapy to suppress white adipose tissue lipolysis, hepatic gluconeogenesis and fasting hyperglycaemia in rodent models of poorly controlled diabetes. On the basis of these studies we conclude with a view of the potential therapeutic applications of leptin replacement therapy in humans. This review summarises a presentation given at the 'Is leptin coming back?' symposium at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Thomas Meek and Gregory Morton, DOI: 10.1007/s00125-016-3898-3 , and by Christoffer Clemmensen and colleagues, DOI: 10.1007/s00125-016-3906-7 ) and an overview by the Session Chair, Ulf Smith (DOI: 10.1007/s00125-016-3894-7 ). PMID:26961503

  5. Xylitol prevents NEFA-induced insulin resistance in rats

    PubMed Central

    Kishore, P.; Kehlenbrink, S.; Hu, M.; Zhang, K.; Gutierrez-Juarez, R.; Koppaka, S.; El-Maghrabi, M. R.

    2013-01-01

    Aims/hypothesis Increased NEFA levels, characteristic of type 2 diabetes mellitus, contribute to skeletal muscle insulin resistance. While NEFA-induced insulin resistance was formerly attributed to decreased glycolysis, it is likely that glucose transport is the rate-limiting defect. Recently, the plant-derived sugar alcohol xylitol has been shown to have favourable metabolic effects in various animal models. Furthermore, its derivative xylulose 5-phosphate may prevent NEFA-induced suppression of glycolysis. We therefore examined whether and how xylitol might prevent NEFA-induced insulin resistance. Methods We examined the ability of xylitol to prevent NEFA-induced insulin resistance. Sustained ~1.5-fold elevations in NEFA levels were induced with Intralipid/heparin infusions during 5 h euglycaemic–hyperinsulinaemic clamp studies in 24 conscious non-diabetic Sprague-Dawley rats, with or without infusion of xylitol. Results Intralipid infusion reduced peripheral glucose uptake by ~25%, predominantly through suppression of glycogen synthesis. Co-infusion of xylitol prevented the NEFA-induced decreases in both glucose uptake and glycogen synthesis. Although glycolysis was increased by xylitol infusion alone, there was minimal NEFA-induced suppression of glycolysis, which was not affected by co-infusion of xylitol. Conclusions/interpretation We conclude that xylitol prevented NEFA-induced insulin resistance, with favourable effects on glycogen synthesis accompanying the improved insulin-mediated glucose uptake. This suggests that this pentose sweetener has beneficial insulin-sensitising effects. PMID:22460760

  6. Fibroblast Growth Factor 21 Improves Insulin Sensitivity and Synergizes with Insulin in Human Adipose Stem Cell-Derived (hASC) Adipocytes

    PubMed Central

    Lee, Darwin V.; Li, Dongmei; Yan, Qingyun; Zhu, Yimin; Goodwin, Bryan; Calle, Roberto; Brenner, Martin B.; Talukdar, Saswata

    2014-01-01

    Fibroblast growth factor 21 (FGF21) has evolved as a major metabolic regulator, the pharmacological administration of which causes weight loss, insulin sensitivity and glucose control in rodents and humans. To understand the molecular mechanisms by which FGF21 exerts its metabolic effects, we developed a human in vitro model of adipocytes to examine crosstalk between FGF21 and insulin signaling. Human adipose stem cell-derived (hASC) adipocytes were acutely treated with FGF21 alone, insulin alone, or in combination. Insulin signaling under these conditions was assessed by measuring tyrosine phosphorylation of insulin receptor (InsR), insulin receptor substrate-1 (IRS-1), and serine 473 phosphorylation of Akt, followed by a functional assay using 14C-2-deoxyglucose [14C]-2DG to measure glucose uptake in these cells. FGF21 alone caused a modest increase of glucose uptake, but treatment with FGF21 in combination with insulin had a synergistic effect on glucose uptake in these cells. The presence of FGF21 also effectively lowered the insulin concentration required to achieve the same level of glucose uptake compared to the absence of FGF21 by 10-fold. This acute effect of FGF21 on insulin signaling was not due to IR, IGF-1R, or IRS-1 activation. Moreover, we observed a substantial increase in basal S473-Akt phosphorylation by FGF21 alone, in contrast to the minimal shift in basal glucose uptake. Taken together, our data demonstrate that acute co-treatment of hASC-adipocytes with FGF21 and insulin can result in a synergistic improvement in glucose uptake. These effects were shown to occur at or downstream of Akt, or separate from the canonical insulin signaling pathway. PMID:25365322

  7. Polycystic ovary syndrome: insight into pathogenesis and a common association with insulin resistance.

    PubMed

    Barber, Thomas M; Dimitriadis, George K; Andreou, Avgi; Franks, Stephen

    2016-06-01

    Polycystic ovary syndrome (PCOS) is a common condition that typically develops in reproductive-age women. The cardinal clinical and biochemical characteristics of PCOS include reproductive dysfunction and hyperandrogenic features. PCOS is also strongly associated with obesity based on data from epidemiological and genetic studies. Accordingly, PCOS often becomes manifest in those women who carry a genetic predisposition to its development, and who also gain weight. The role of weight gain and obesity in the development of PCOS is mediated at least in part, through worsening of insulin resistance. Compensatory hyperinsulinaemia that develops in this context disrupts ovarian function, with enhanced androgen production and arrest of ovarian follicular development. Insulin resistance also contributes to the strong association of PCOS with adverse metabolic risk, including dysglycaemia, dyslipidaemia and fatty liver. Conversely, modest weight loss of just 5% body weight with improvement in insulin sensitivity, frequently results in clinically meaningful improvements in hyperandrogenic, reproductive and metabolic features. Future developments of novel therapies for obese women with PCOS should focus on promotion of weight loss and improvement in insulin sensitivity. In this context, therapies that complement lifestyle changes such as dietary modification and exercise, particularly during the maintenance phase of weight loss are important. Putative novel targets for therapy in PCOS include human brown adipose tissue. PMID:27251917

  8. Advanced glycation end-products: modifiable environmental factors profoundly mediate insulin resistance

    PubMed Central

    Ottum, Mona S.; Mistry, Anahita M.

    2015-01-01

    Advanced glycation end-products are toxic by-products of metabolism and are also acquired from high-temperature processed foods. They promote oxidative damage to proteins, lipids and nucleotides. Aging and chronic diseases are strongly associated with markers for oxidative stress, especially advanced glycation end-products, and resistance to peripheral insulin-mediated glucose uptake. Modifiable environmental factors including high levels of refined and simple carbohydrate diets, hypercaloric diets and sedentary lifestyles drive endogenous formation of advanced glycation end-products via accumulation of highly reactive glycolysis intermediates and activation of the polyol/aldose reductase pathway producing high intracellular fructose. High advanced glycation end-products overwhelm innate defenses of enzymes and receptor-mediated endocytosis and promote cell damage via the pro-inflammatory and pro-oxidant receptor for advanced glycation end-products. Oxidative stress disturbs cell signal transduction, especially insulin-mediated metabolic responses. Here we review emerging evidence that restriction of dietary advanced glycation end-products significantly reduces total systemic load and insulin resistance in animals and humans in diabetes, polycystic ovary syndrome, healthy populations and dementia. Of clinical importance, this insulin sensitizing effect is independent of physical activity, caloric intake and adiposity level. PMID:26236094

  9. Insulin resistance in SHR/NDmc-cp rats correlates with enlarged perivascular adipocytes and endothelial cell dysfunction in skeletal muscle.

    PubMed

    Hariya, Natsuyo; Mochizuki, Kazuki; Inoue, Seiya; Morioka, Kosuke; Shimada, Masaya; Okuda, Tohru; Goda, Toshinao

    2014-01-01

    Ectopic adipose tissue in skeletal muscle is implicated in the development of insulin resistance, which is frequently induced by abnormal dietary habits such as excessive eating and a high-fat diet. However, the characteristics of ectopic adipocytes are unknown. In this study, we investigated the characteristics of ectopic adipocytes in the skeletal muscle of spontaneously hypertensive corpulent congenic (SHR/NDmc-cp) rats as a model of insulin resistance from excessive eating. SHR/NDmc-cp rats displayed overt insulin resistance with high plasma glucose, insulin, and triacylglycerol concentrations relative to control Wistar-Kyoto (WKY) rats. In contrast, streptozotocin (STZ)-treated WKY rats had high glucose but low insulin concentrations. Ectopic adipocytes were found around blood vessels in the gastrocnemius in SHR/NDmc-cp rats. Areas of perivascular adipocytes and protein expression of resistin were greater in SHR/NDmc-cp rats than in control and STZ-treated WKY rats. The level of the phosphorylated (active) form of endothelial nitric oxide synthase in the gastrocnemius was lower in SHR/NDmc-cp rats than in the other groups. Insulin-resistant SHR/NDmc-cp rats showed enlarged perivascular adipocytes and greater endothelial cell dysfunction in the gastrocnemius. PMID:24759260

  10. Secretory function of adipose tissue.

    PubMed

    Kuryszko, J; Sławuta, P; Sapikowski, G

    2016-01-01

    There are two kinds of adipose tissue in mammals: white adipose tissue - WAT and brown adipose tissue - BAT. The main function of WAT is accumulation of triacylglycerols whereas the function of BAT is heat generation. At present, WAT is also considered to be an endocrine gland that produces bioactive adipokines, which take part in glucose and lipid metabolism. Considering its endocrine function, the adipose tissue is not a homogeneous gland but a group of a few glands which act differently. Studies on the secretory function of WAT began in 1994 after discovery of leptin known as the satiation hormone, which regulates body energy homeostasis and maintainence of body mass. Apart from leptin, the following belong to adipokines: adiponectin, resistin, apelin, visfatin and cytokines: TNF and IL 6. Adiponectin is a polypeptide hormone of antidiabetic, anti-inflammatory and anti-atherogenic activity. It plays a key role in carbohydrate and fat metabolism. Resistin exerts a counter effect compared to adiponectin and its physiological role is to maintain fasting glycaemia. Visfatin stimulates insulin secretion and increases insulin sensitivity and glucose uptake by muscle cells and adipocytes. Apelin probably increases the insulin sensitivity of tissues. TNF evokes insulin resistance by blocking insulin receptors and inhibits insulin secretion. Approximately 30% of circulating IL 6 comes from adipose tissue. It causes insulin resistance by decreasing the expression of insulin receptors, decreases adipogenesis and adiponectin and visfatin secretion, and stimulates hepatic gluconeogenesis. In 2004, Bays introduced the notion of adiposopathy, defined as dysfunction of the adipose tissue, whose main feature is insulin and leptin resistance as well as the production of inflammatory cytokines: TNF and IL 6 and monocyte chemoattractant protein. This means that excess of adipose tissue, especially visceral adipose tissue, leads to the development of a chronic subclinical

  11. Genetics of Insulin Resistance and the Metabolic Syndrome.

    PubMed

    Brown, Audrey E; Walker, Mark

    2016-08-01

    Insulin resistance and the metabolic syndrome are complex metabolic traits and key risk factors for the development of cardiovascular disease. They result from the interplay of environmental and genetic factors but the full extent of the genetic background to these conditions remains incomplete. Large-scale genome-wide association studies have helped advance the identification of common genetic variation associated with insulin resistance and the metabolic syndrome, and more recently, exome sequencing has allowed the identification of rare variants associated with the pathogenesis of these conditions. Many variants associated with insulin resistance are directly involved in glucose metabolism; however, functional studies are required to assess the contribution of other variants to the development of insulin resistance. Many genetic variants involved in the pathogenesis of the metabolic syndrome are associated with lipid metabolism. PMID:27312935

  12. Metabolic Syndrome: Insulin